
OLE JØRGEN ESPELAND
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Quickfeed Support for Feedback via Pull
Requests and Issues

Bachelor's Thesis - Computer Science - May 2022

I, Ole Jørgen Espeland, declare that this thesis titled, “Quickfeed Support

for Feedback via Pull Requests and Issues” and the work presented in it are my

own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

Abstract

QuickFeed is an automatic evaluation system, developed at the University of Sta-

vanger. Designedwith the intent of easing the submission of assignments, Quick-

Feed tests student code as they push it to a supported source controlmanagement

system. Based on the results of these tests, QuickFeed publishes feedback to stu-

dents via its custom web interface.

In this thesis, we explore the possibility of further expanding how students receive

feedback on their submissions, by usingGitHub’s pull request and issue features.

ii

Acknowledgements

I would like to thankmy supervisor, ProfessorHeinMeling; not just for providing

guidance and feedback throughout the project, but also for reviewing and helping

make improvements to my implementation.

I would also like to thank Jostein Hagen Lindhom, similarly for providing guaid-

ance and support, but especially for always being eager and ready to help with

any issues I faced, often saving me from much frustration.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 2

1.1 Motivation . 3

1.2 Objectives . 3

2 Background 4

2.1 GitHub . 4

2.1.1 Issues . 4

2.1.2 Pull Requests . 5

2.2 QuickFeed . 6

2.2.1 Protocol Buffers . 7

iv

2.2.2 QuickFeed Repository Structure 8

2.2.3 The Score Package . 10

2.2.4 Testing Assignments . 11

2.2.5 Webhooks . 12

2.2.6 Source Control Management API 13

3 RelatedWork 14

3.1 Earlier attempt . 14

4 Approach 15

4.1 Student Repository Access . 16

4.1.1 Possible Solutions . 17

4.1.2 Limiting Scope to Group Repositories 18

4.2 Creating Pull Requests . 19

4.2.1 Manual Creation . 20

4.2.2 Automatic Creation . 20

4.2.3 Conclusion . 21

4.3 Issue Creation . 22

4.4 Automated Student Feedback . 22

4.4.1 Pull Request Comments . 23

5 Implementation 24

5.1 Introduction . 24

5.1.1 Feature Overview . 24

5.2 Existing implementation . 25

5.2.1 SCM Expansion . 26

5.2.2 Logic . 26

5.2.3 Finding and Parsing Tasks 26

5.3 Managing Tasks and Issues . 28

5.3.1 Approach . 28

5.3.2 Differentiating Data Objects 29

5.3.3 Data Structures . 30

5.3.4 Synchronizing Tasks . 31

5.3.5 Synchronizing Issues . 33

5.4 Managing Pull Requests . 34

5.4.1 Pull Request Data Structure 34

5.4.2 Creating Pull Requests . 35

5.4.3 Closing Pull Requests . 36

5.5 Scoring Tasks . 37

5.6 Manual Feedback . 38

5.6.1 Assigning Reviewers . 39

5.6.2 Approving Pull Requests 41

5.7 Automatic Feedback . 41

5.7.1 Formatting Feedback Comments 42

5.7.2 Publishing Feedback Comments 43

6 Insights 45

6.1 User Experience . 45

6.2 Known Limitations . 46

6.2.1 Differing Branch Names 47

6.2.2 Human Error . 47

6.2.3 Manually Graded Assignments 48

6.3 Possible Improvements . 48

6.3.1 GitHub App . 48

6.3.2 Task Naming Format . 49

6.3.3 Linking Issues . 50

6.3.4 Support for Regular Assignments 50

7 Future Work 51

7.1 Further QuickFeed Integration . 51

7.2 Further GitHub Integration . 52

8 Conclusions 54

Bibliography 55

Chapter 1

Introduction

The University of Stavanger has for the last couple of years been developing a

project known as QuickFeed. Since its inception in 2015, both teachers and stu-

dents have contributed to its development [4, 3, 2, 10].

QuickFeed aims to ease the process of submitting student assignments for both

students and the teaching staff. Though not exclusively, the project is primarily

developed with the intent of handling code based assignments. QuickFeed will

run predetermined tests on submitted code, and uses their results to provide stu-

dents with feedback via its web interface. Using QuickFeed, assignments can be

both scored and graded without the teaching staff ever having to intervene.

To accommodate these features, QuickFeedusesGitHub to, amongst other things,

manage student code. GitHub is therefore one of the primary sites students in-

teract with, when working on QuickFeed managed assignments. Because of this,

there is a desire to further integrate QuickFeed with GitHub. Specifically, we aim

to use GitHub’s pull request and issue features to give students another avenue

for manual and automatic feedback.

2

1.1 Motivation

In the current iteration of QuickFeed, students only receive automated feedback

on their code throughQuickFeed’s customweb interface. Here, they can see what

parts of their code is failing, and also whether they have successfully passed the

assignment. The motivation behind this thesis is to further expand on how stu-

dents receive feedback when working on an assignment.

Using GitHub pull requests we can facilitate manual feedback directly on student

code, by using its review features. Pull requests also have the potential to support

automatic feedback, e.g., by another GitHub feature called workflows.

1.2 Objectives

This project has the following fundamental objectives.

First of, we want to give teachers the option of subdividing assignments into in-

dividual tasks, each describing specific problems students need to solve. When

a student wants to solve a given assignment task, they create a pull request, in

which they implement all code relevant for that task.

Furthermore, in this project, we want QuickFeed to assign reviewers to these

pull requests when appropriate. These reviewers can request changes and rec-

ommend improvements where they deem necessary, thereby providing students

with a new way of receiving feedback.

As students push code to their pull requests, we also want QuickFeed to publish

some sort of automatic feedback, giving the students a general indication on how

well they are doing, directly on the pull requests themselves.

Chapter 2

Background

In this chapter we describe existing technology and concepts that will be referred

to throughout the thesis.

2.1 GitHub

QuickFeed already relies on GitHub to manage assignments and student code.

This section looks at certain GitHub features that we want QuickFeed to support.

2.1.1 Issues

GitHub issues is a useful feature for tracking, discussing and logging various is-

sues/problems on aGitHub repository. Any collaborator to a repositorymay open

a GitHub issue, and describe any problem, idea or issue they have. Other users

may then contribute to the issue by commenting on it, thereby easing the com-

munication process within a project. GitHub issues can therefore function as a

central discussion hub, whichmakes it especially useful for larger projects involv-

ing several people.

4

Figure 2.1: Example of a GitHub issue comment section

2.1.2 Pull Requests

Pull requests are a desire to merge any feature branch, into the main branch of

a git repository. GitHub supports managing pull requests through its user inter-

face, and allows any contributor to a repository to create a pull request. Through

the user interface, progress on a branch can be tracked, reviewed and commented

on. In this sense, GitHub pull requests function as a central hub for feature

branches.

Code review is also an important part of the pull request process. Any eligible user

may review, comment on, and request changes to the source code of a given pull

request. The reviewermay also use reviews to approve a pull request formerging.

Pull requests can also be linked to issues. Doing this will automatically associate

any linked issue to the pull request, and cause them to close when the pull request

closes. A common workflow would be to create an issue, describing a problem,

and then creating an associated pull request for this issue.

Through its features, GitHub pull requests provide an efficient and manageable

way of implementing new features to any project.

Figure 2.2: Example of a GitHub pull request

2.2 QuickFeed

QuickFeed provides two primary features. A web interface that allows students to

enroll in courses, create groups and receive feedback on their submissions. And

a backend that tests, scores and grades student submitted code. The backend is

primarily implemented with the Go programming language, while the frontend

uses TypeScript and the React library. For data storage, QuickFeed relies on an

SqLite-database, managed using the the GORM library.

In this section we further describe some of QuickFeed’s key concepts, as well as

the technology it uses.

2.2.1 Protocol Buffers

Protocol buffers are a language-neutralmechanism for serializing structured data

[8]. It is often abbreviated as protobuf, and is used to define messages in a .proto

file. When the file is compiled, data structures and methods for the desired lan-

guage are generated in a separate file. QuickFeed uses protobuf to generate most

of its data structures. These are then stored in its internal database when neces-

sary.

1 message Assignment {
2 uint64 ID = 1;
3 uint64 CourseID = 2;
4 string name = 3;
5 string scriptFile = 4;
6 string deadline = 5;
7 bool autoApprove = 6;
8 uint32 order = 7;
9 bool isGroupLab = 8;
10 uint32 scoreLimit = 9;
11 uint32 reviewers = 10;
12 uint32 containerTimeout = 11;
13 repeated Submission submissions = 12;
14 repeated GradingBenchmark gradingBenchmarks = 14;
15 }

Code 2.1: Assignment message

Code 2.1 is an example of such a message. It holds a reference to a single Course

message and several Submission messages, as seen on Line 3 and 13 respec-

tively. When compiled, the resulting data structure is used by QuickFeed to rep-

resent assignments.

QuickFeed also uses protobuf messages in conjunction with gRPC, to facilitate

server-client communication. This part however, is not relevant for this project.

2.2.2 QuickFeed Repository Structure

When a teacher creates a course in QuickFeed, a GitHub organization is created

to represent it. Within this organization, three initial repositories are created,

as well as student repositories when students enroll. They are all described as

follows.

info: This repository simply holds information about a course. The repository is

available to all students, and would typically work as a simple information hub.

It is created and managed by the teaching staff.

assignments: The repository responsible for presenting the assignments to stu-

dents. Every assignment in a course is represented as a unique folder within this

repository. As teachers push new assignments to this repository, or update exist-

ing ones, students pull the changes to their own local git repositories.

tests: Teachers use this repository to store both test code and files needed to facil-

itate automatic testing of student code. It’s folder structure should be one-to-one

with assignments, with every assignment being represented by a unique folder.

When students submit code for an assignment, QuickFeed tests it with the test

code found in the folder representing that assignment. In addition, the repository

contains assignment specific assignment.yml files, as well as a scripts folder. The

scripts folder is used to store a run.sh file and a Dockerfile.

The assignment.yml file is used by teachers to specify assignment specific set-

tings. For instance, it can contain information about an assignment’s deadline,

and whether it is manually approved.

assignmentorder: 1
name: "lab1"
scriptfile: "run.sh"
deadline: "15-05-2022T16:00"
autoapprove: false

isgrouplab: true
reviewers: 2

Code 2.2: Example contents of an assignment.yml file

The run.sh file contains the script used by QuickFeed when testing student code.

As explained, it is contained within the scripts folder, but can also be located

within specific assignments. When running tests on an assignment, QuickFeed

will prioritize using any assignment specific script files.

Finally, the Dockerfile contained within scripts is used to create a docker con-

tainer. Within this container, QuickFeed runs the appropriate script, derived

from run.sh.

Figure 2.3: Example of a tests repository folder structure

Every time a teacher pushes to tests, QuickFeed runs the functionUpdateFromTest-

sRepo. This function will parse an assignment’s assignment.yml file, and use its

contents to create data objects defined by the Assignment message. They are

then used to create or update assignment database records.

Being a repository that is used andmanaged solely by the teaching staff, it follows

that students do not have access to its contents.

Student repositories: There are two types of student repositories, user and group

repositories. A user in this case would simply be any student who has enrolled in

the course. Whereas a group is any number of students that are working together.

Naturally, student repositories are only accessible by the students associatedwith

them, and the teaching staff.

Student repositories are named according to the following format: name-labs.

For an enrolled student, namewould be their GitHub user name. A group’s name

however, is defined by the groupmembers themselveswhen they enroll the group.

These repositories are the ones students push their code to as they work on as-

signments.

Figure 2.4: GitHub repository structure for a QuickFeed course

2.2.3 The Score Package

QuickFeed’s score package allows for scoring student submitted code. Every time

a student pushes code to their repository, QuickFeed will run tests on the code,

and generate a total score ranging from 0 to 100. In this section we describe the

parts of this package that are relevant for this thesis.

When teachers develop and push assignments to tests, they also create test code

that is meant to test student submitted code. As part of the score package, teach-

ers can specify for individual tests, what score they should give, and how that

score is gained. For example, a test can loop through several test conditions, and

thendecrement the score every time it fails. These tests have to be explicitly added

by teachers using either of the following methods: Add and AddSub. Doing so,

they are included in the pool of all tests that constitute an assignment.

Each individual score is defined by the protobuf message in Code 2.3. When

QuickFeed is finished running all tests, a test results data object is extracted con-

taining a list of all these scores.

1 message Score {
2 uint64 ID = 1;
3 uint64 SubmissionID = 2;
4 string Secret = 3;
5 string TestName = 4;
6 int32 Score = 6;
7 int32 MaxScore = 7;
8 int32 Weight = 8;
9 }

Code 2.3: Score message

The fields Score and MaxScore are used to represent a given test’s relative score,

e.g., 5 out of 7. Weight on the other hand, defines the weight of any test in relation

to all others in an assignment. If we have a test with a given weight of 5, and an

assignment where all test weights summed up give a total weight of 10, our test

would account for 50% of the entire assignment. So, if a student gets a score of

3 out of 6 on this test, it would give a score of 25 on the assignment as a whole.

Adding up all scores like this for an entire assignment, gives us the assignment

total score.

2.2.4 Testing Assignments

Having explored how QuickFeed scores student code, this section will further ex-

plore parts of the assignment submission process that are important.

As students push code to their GitHub repository, QuickFeed will do two things.

First, it will determine the assignments that have been worked on since the last

push. Then, for every worked on assignment, it will run the tests that are defined

for that assignment in tests.

Running the tests is done by QuickFeed’s ci package. To set up a test environ-

ment, it uses the Dockerfile found in tests to create a docker container. It then

continues by running the assignment’s script file, as mentioned in Section 2.2.2.

These script files can be assignment specific, but generally they use git clone to

merge the students code with the assignment tests; followed up by a command to

run all tests. The ci package also supports supplying the script with arguments,

e.g., to clone the correct student repository.

When this process is finished, QuickFeed extracts the test run’s results and uses

them to, amongst other things, determinewhether the student got a passing score.

2.2.5 Webhooks

QuickFeed communicates with GitHub in two ways. In this section we will detail

one of them, namely webhooks.

Awebhook is a ”user-defined callback overHTTP” [1]. In general, webhooks allow

developers to listen to events from any supporting site. When any such event

occurs, an HTTP request is sent to the address configured for the webhook. The

request contains data about the event, usually in a JSON format.

QuickFeed uses webhooks to retrieve data from push events on a course. When a

new course is created, QuickFeed creates a webhook on the GitHub organization

of the given course. This webhook is only triggered by push events, which are

then handled by QuickFeed accordingly:

• If a push event is associatedwith the tests repository, QuickFeedwill update

the course assignments.

• If a push event is associated with a student repository, QuickFeed will de-

termine the assignments that have beenworked on, and run the assignment

specific tests on them.

2.2.6 Source Control Management API

The second way QuickFeed communicates with GitHub is through a custom API.

To facilitate communicationwith potentially any source controlmanagement sys-

tem, a custom source control management API has been developed for Quick-

Feed. Usually abbreviated as the SCM API, the current iteration of QuickFeed

supports interacting with GitHub through this API, via the go-github library. The

library itself, communicates with GitHub’s own REST API using HTTP requests.

To authenticate with this GitHub API, QuickFeed is implemented as an OAuth

app. In essence, this means that QuickFeed can authenticate with the GitHub

API, as the identity of any of its users [5].

The SCM API allows QuickFeed to perform various tasks, such as creating or up-

dating repositories, creating webhooks, managing teams and more. QuickFeed’s

SCMAPI, together with webhooks, form a 2-way communication stream between

QuickFeed and GitHub.

Chapter 3

RelatedWork

3.1 Earlier attempt

Adil Khurshid presents an attempt at implementing QuickFeed support for feed-

back via pull requests and issues [9]. The motivation and desired result for his

project is very similar to this one.

Adil’s approach can be summarized as follows. To subdivide assignments into

tasks, he describes teachers creating task markdown files in tests. From the con-

tents of these markdown files, GitHub issues are created on all student reposito-

ries. Furthermore, when students want to solve tasks, they create pull requests.

When an assignment deadline has passed, student and teacher reviewers are as-

signed to these pull requests, thereby facilitating feedback on them.

A complete and finished implementation for the above approach was never ac-

complished, which is why the project is continued here.

14

Chapter 4

Approach

The general approach taken to fulfill the project’s goals can be summarized as

follows.

To subdivide assignments into tasks, teachers will create and push markdown

files to tests. Each task has a title and body, which is described by the contents of

one of these files. For every task a teacher creates, QuickFeed creates a GitHub

issue on all student repositories in a course to represent them. These issues have

the same title and body as the task they are based on. This way, issues are used

as a representation of tasks accessible to students.

To solve a task, students will create a pull request for the issue that represents

that task. When students push code to pull requests, QuickFeed will run tests on

it, similarly to the way it currently tests entire assignments. Based on the results

from a given test run, QuickFeed publishes feedback on the relevant pull request.

Furthermore, when enough tests pass, we assign one teacher and co-student to

review the pull request. Only when the teacher approves the pull request, can it

be merged.

This general approach can be visualized in Figure 4.1. It shows a single task that

serves as the basis for individual issues on three different student repositories.

15

For each of these issues, a pull request is created to solve the task the issue is

based on.

Figure 4.1: General approach

Before we can implementing anything, there are a few lingering design decisions

regarding this approach. For instance, how do we publish automatic feedback to

a pull request? In this chapter we discuss and analyse these design decisions, and

try to give a rationale for the decisions that were made.

4.1 Student Repository Access

Since students do not have access to other students’ repositories, they have no

easy way of accessing their code. This becomes a necessity when doing co-student

code review, as they must somehow be given access to the relevant pull request.

In this section we discuss possible solutions to overcome this problem.

4.1.1 Possible Solutions

A solution could be to use GitHub teams, a feature that would allow us to grant

limited access to individual repositories. When a student is assigned to review

someone else’s pull request, such a team can be created with read rights to the

relevant repository. Once the review is finished, we can either remove the team

from the repository, remove the student from the team, or just delete the team

altogether. This solution does however have some unwanted side effects, which

can be illustrated with the following scenario.

Imagine we have two students: A and B. Student A is finished with a task from

assignment 1, and therefore gets a reviewer assigned. Student B is assigned to

review it, and is granted access by QuickFeed to student A’s repository. Student A

is also diligent, and has already started working on assignment 2. In fact, student

A has nearly completed assignment 2. Student B however, has not even started

on assignment 2, but because they can now access student A’s assignments, they

see how he/she did it.

As a consequence, using GitHub teams wouldmean that assignments can only be

published after the deadline of the previous one is passed. A prospect that would

probably not be appealing to most teachers.

Another possible solution is to create a clone repository, containing only the rel-

evant assignment. This way, any reviewing student will only have access to the

assignment in question. QuickFeedwould create these repositories when needed,

and then delete them once the review is complete.

Implementing this however seems highly complex, as there is a myriad of com-

plications and problems that will have to be accounted for. For one, QuickFeed

must be expanded to handle, amongst other things, the following.

• Creating clone repositories containing only the assignment that is relevant,

and the accompanying pull request.

• Deleting these repositories when they are no longer needed.

• Associating actions on the original repository with the new one. I.e., we

must make sure that any relevant additions to the original repository are

reflected in the cloned one.

• Account for all possible complications that may occur.

An implementation like this also assumes that only one review is required per

assignment, when there could in fact be several. If for example an assignment

has three tasks, and therefore three related pull requests, how do we then create

these clone repositories? Would we create one per pull request? This seems like a

terrible approach, as the number of repositories createdwould become enormous

in courses with many students.

Let us say that we, despite these challenges, managed to create a fully functional

implementation of the above solution. We now have to cope with the prospect

of having further complexified the user experience. Possibly so much so that the

entire solution might be counter-productive.

4.1.2 Limiting Scope to Group Repositories

The two solutions proposed in the previous section either seem too complex, or

somewhat suboptimal. Instead of going through with one of them, a compromise

was agreed on to limit the project scope to only group assignments. This means

that instead of students reviewing each other’s code on regular assignments, they

will only do so on group assignments. Furthermore, students will also only review

other group members’ pull requests.

As an example, we can imagine a group assignment with three different tasks.

A group of three students would then create one pull request each, with every

member solving one task. They are then each assigned, when appropriate, to

review one of the other group members’ pull request.

The benefit of this approach is that it avoids students needing access to other

repositories all together. We only need to manage student review within a local

group scope, and not for an entire course.

One disadvantage is that teachers will have to more carefully plan out the tasks

they create. Say we have a group of four members, and an assignment with only

three tasks. One of the tasks will then have to be shared by two of the group

members. If every task is equally challenging to solve, it would put the other two

members at a disadvantage. It seems then that teachers should only create as

many tasks as there are designated group members, or at least a multiple of that

number.

Another consideration teachers will have to account for, is that they have to create

tasks that are independent of each other. If task A is dependent on task B being

complete, a consequence would be group members potentially having to wait for

each other.

4.2 Creating Pull Requests

Having limited our approach to only group assignments in the previous section,

we continue by discussing how to create the pull requests themselves.

There are two viable options, both with their own set of advantages and disad-

vantages. Option one is to have students create the pull requests. When group

assignments with tasks are created, group members can internally decide who

solves which task. Option two is having QuickFeed create the individual pull re-

quests when tasks and their respective issues are created.

4.2.1 Manual Creation

Anadvantage to letting studentsmanually create pull requests, is that groupmem-

bers can self organize on who does what. If a group member thinks a certain task

looks more interesting than the others, they can explicitly communicate this with

the rest of the group.

Manually creating a pull request also allow us to restore a working state, in case

a student incorrectly merges it. This could happen if the pull request has not

been approved by a teacher. The same process we use internally to create the pull

request, can be used again to recreate it.

The major disadvantage to relying on students to create pull requests, is the in-

creased complexity that comes with it. Students will have to learn how to create

pull request and when to do so, and if they mess up, they must know how to fix

any potential complications. If they do not, the teaching staff must also have the

capacity to assist them.

4.2.2 Automatic Creation

The clear advantage to having QuickFeed automatically create pull requests, is

the fact that we are not imposing more complexity on students. Furthermore, if

students are not involved, there is no opportunity for them to mess up. This also

alleviates the teachers, as they no longer need to assist in case something goes

wrong.

There is however a disadvantage to this approach. Given that QuickFeed relies on

authenticating with GitHub using users specific access tokens, each pull request

would have to bemade either in a student or teacher’s name. Both of these options

seem suboptimal. Creating them as teachers seems illogical, as one teacher would

then be the owner of a huge number of pull requests they do not interact with. If

we create them as students, we could do so for each individual group member.

This still leaves us with the issue of having to decide what group member to use

when creating the pull request. If the number of issues in a repository does not

align with the number of group members, what should happen? Even if we solve

these problems, we are still left with the fact that individual group members can

no longer self organize when solving tasks.

It seems then that any solution must create ”anonymous” pull requests, i.e., pull

requests that are not directly assigned to any student. One way to do this could be

to have a QuickFeed bot account. This bot account would then be the user used

to create all required pull requests.

There are however drawbacks to creating anonymous pull requests as well. To

facilitate student co-review, wemust have a reference to the studentwho ”checked

out” the pull request, i.e., the student actually committing to it. If we do not,

we will have no way of knowing from which pool of group members to select a

reviewer from. This is a problem, given the fact that a student should not be

assigned to review their own pull request.

4.2.3 Conclusion

While option two seems ideal, there are a few key points that made us instead go

with option one. First of all, the current iteration of QuickFeed does not seem

to fully support it, as we have no direct way to create anonymous pull requests.

Secondly, option one gives us a greater capacity to handle students incorrectly

mergeing pull requests.

It is worth noting that these two approaches are not necessarily mutually exclu-

sive, and QuickFeed could support both solutions at the same time. In fact, the

initial idea was to implement them both, and thus getting all their benefits.

4.3 Issue Creation

Having discussed our approach on creating pull requests, we continue by explor-

ing a similar problem. How do we create issues?

As mentioned previously, we want to create an issue on every group repository in

a course, for every task in an assignment. They thereby serve as a way of actually

displaying tasks to students. To create these issues, we must use the GitHub API,

and again, given that GitHub authenticates on a per user basis, these issues must

be created in the name of either a student or teacher.

Like with the pull request problem, creating them as a teacher seemswrong, how-

ever, creating issues as a student does not seem that problematic. It does notmat-

ter, given our context, who is assigned as an issue owner. The issues only serve

as a source of information, and the only time students interact with them is when

they create pull requests.

A solution could then be to simply have the first student within a group be set

as the issue creator. Of course, this is a somewhat ”hacky” solution, as it makes

more logical sense to have QuickFeed assigned as the owner. Which again boils

down to the fundamental issue on how QuickFeed authenticates with GitHub.

4.4 Automated Student Feedback

To facilitate automatic feedback on individual pull requests, the initial idea was to

use GitHub workflows. Mainly due to the fact that workflows are already tightly

integrated into the GitHub pull request user interface.

As students work on tasks, we imagined using workflows to provide feedback

based on the tests run on their code. However, as we researched ways to imple-

ment this, it became apparent that workflows were not an optimal approach. For

one, to have GitHub register a workflow, a .yml file describing it must be present

on any relevant repository. These files would have to be created and pushed to

assignments, and then pulled by every student. The biggest problem however,

is that GitHub does not support triggering workflows manually via API, and at

the same time having them appear in a pull request. Meaning that we can trigger

workflows remotely, but we cannot have them be displayed within a pull request

on the same trigger.

As a consequence, finding an alternate solution solution became necessary. Of

the options explored, the one we went with is described in the following section.

4.4.1 Pull Request Comments

Instead of providing automatic feedback via GitHubworkflows, we can instead do

so by commenting on the pull request itself. GitHub’s API allows for doing this,

again, with the caveat that we must comment as a student or teacher. Here, the

easiest solution is to simply comment as the student that created the pull request.

The comment itself can be constantly updated with new data, every time students

push to their pull request.

Currently, the automatic feedback QuickFeed returns via its web interface, de-

scribes how each individual test for an assignment fared. Furthermore, it also

gives a general score for the entire assignment, giving students an indication of

well they did overall. With this in mind, the type of feedback returned by these

comments should strive to do something similar.

Chapter 5

Implementation

5.1 Introduction

In this chapter, we explore how the project was implemented. Describing all ad-

ditions that were made to QuickFeed, and some of the challenges faced.

5.1.1 Feature Overview

To fully grasp what to implement, this section describes all the features we want

to have QuickFeed support.

Tasks and issues

First of all, we want QuickFeed to support teachers creating task markdown files

within individual assignments in tests. As these are created and pushed, Quick-

Feed should create GitHub issues, based on their contents, in all group reposi-

tories. Furthermore, when these task files are updated or deleted, their changes

should be reflected in their respective issues.

24

Figure 5.1: Example of a tests repository with task markdown files

Pull Requests

For every task, group members are expected to solve them by creating a new pull

request. QuickFeed should then support:

• Returning automatic feedback, in the form of a comment, every time a stu-

dent pushes to a pull request.

• Automatically assigning reviewers to a pull request when students get a

passing score on the task relevant for that pull request. Specifically, one

teacher and one other group member should be assigned.

5.2 Existing implementation

An implementation has already been attempted for this project. Before starting

on a new one, we first have to decide which parts of it we want to use, and which

to discard. These parts are summarized in this section.

5.2.1 SCM Expansion

The SCM package, described in Section 2.2.6, has been expanded to support the

following functions:

• CreateIssue - creates an issue on a repository.

• EditIssue - edits an issue on a repository.

• GetIssue - retrieves an issue based on issue number and repository.

• GetIssues - retrieves all issues from a repository.

CreateIssue and EditIssue proved useful, and are used with only minor adjust-

ments to them. The two other functions, were not needed, but still used in earlier

parts of the project when testing.

5.2.2 Logic

A lot of existing code was intended to handle the logic aroundmanaging tasks. In

short, this code was meant to do determine when to create, edit, or delete issues

on GitHub, based on task markdown files in tests. The code did however not

accomplish this in a functional manner, which lead to the dilemma of whether to

continue developing this faulty code, or simply start anew. In the end, we decided

that any attempt to fix things would be more time consuming and confusing than

simply starting fresh.

5.2.3 Finding and Parsing Tasks

When a teacher pushes assignments to the tests repository, QuickFeed will run

the function UpdateFromTestsRepo. In short, this function creates a local copy

of the folder structure in tests, and uses the assignment.yml files within to create

assignment data objects. These are then used to update the database records for

the relevant assignments. Added as a part of this process, was code to also parse

all task markdown files in tests, and use their contents to create task data objects.

Additionally, a new field is created for the existingAssignmentmessage, giving

the associated data structure the capacity to hold a list of tasks. This is used to

have any assignment data object created by UpdateFromTestsRepo also contain

all the task data objects for that assignment.

repeated Task tasks = 13; // Tasks associated with this assignment

Code 5.1: Modification to the Assignment message

To support parsing task markdown files, all task-*.md files are expected to con-

form to a standard format. The first line should start with the character sequence

”# <task title>”, followed by by two new line characters. Any following text there

after will be treated as the task body or description.

Using this format, the function newTask creates a task data object from any task

file.

1 func newTask(contents []byte, assignmentOrder uint32, name string) (*pb.Task,
error) {

2 if !bytes.HasPrefix(contents, []byte("# ")) {
3 return nil, fmt.Errorf("task with name: %s, does not start with a #

title marker", name)
4 }
5 bodyIndex := bytes.Index(contents, []byte("\n\n"))
6 if bodyIndex == -1 {
7 return nil, fmt.Errorf("failed to find task body in task: %s", name)
8 }
9

10 return &pb.Task{
11 AssignmentOrder: assignmentOrder,
12 Title: string(contents[2:bodyIndex]),
13 Body: string(contents[bodyIndex+2:]),
14 Name: name,
15 }, nil
16 }

Code 5.2: The newTask function

Going forward, the general approach to parsing and creating tasks is left as it is,

with only minor changes to the existing code.

5.3 Managing Tasks and Issues

Having looked at what existing code we decided to keep, we continue by explor-

ing the part of the project that was implemented first; how to manage tasks and

issues.

As a reminder, a task is defined by the contents of a single task-*.mdmarkdown

file in tests. When referring to teachers creating, updating or deleting tasks, we

mean how they create, update and delete these markdown files.

An issue on the other hand, is defined as any GitHub issue based on these tasks.

For instance, we can have a course with an assignment containing three tasks. In

this course, we also have five group repositories. These three tasks should then

be represented on all five group repositories as GitHub issues, giving us a total of

15 issues. Tasks therefore function as a ”benchmark”, used to create issues.

5.3.1 Approach

To support teachers creating, updating and deleting tasks, QuickFeed must have

the capacity to handle these events. For example, if a task is created, QuickFeed

should create an issue based on it in every group repository within the relevant

course. Similarly, as tasks are updated or deleted, these changes must also be

reflected in every issue created from them. In short, we need to keep every issue

in sync with its associated task.

To accomplish this, we keep a record of every task and issue inQuickFeed’s database.

The task database records are used to store a reference towhat a given task looked

like on the latest push to tests. Doing so, we can at any subsequent push check if

a task is in a different state than it was before, e.g., if a teacher updated its title.

Furthermore, by storing a reference to every issue created, we can know which

issues need to be altered. If, for example, a teacher changes the body of a task, we

must update not just the existing data record for that task, but also all issues that

were created from it.

The process of synchronizing both tasks and issues is handled by the new function

handleTasks, which is run as part of UpdateFromTestsRepo. UpdateFromTest-

sRepo in turn, is run every time someone pushes to tests. The function handle-

Tasks and the synchronization process in general, are further described in the

following sections.

5.3.2 Differentiating Data Objects

When dealing with tasks and assignments, we have to differentiate howwe create

data objects to represent them. For instance, QuickFeed currently creates assign-

ment data objects based on the contents of tests, as described in Section 5.2.3.

QuickFeed also stores representations of these assignments in the database. This

means that there are two types of assignment data objects we can refer to; those

created from the contents of tests, and those retrieved from the database.

Similarly, in this project, we have to deal with the prospect of task data objects

created from the contents of markdown files in tests, and existing ones in the

database. To knowwhich type is being referred to, we define the following abbre-

viations.

• TRtask - tests repository task. Meaning any task represented by a task-*.md

markdown file in tests.

• DBtask - database task. Meaning any task that refers to an existing task data

record stored in the database.

• TRassignment - tests repository assignment. Meaning any assignment rep-

resented by a folder and assignment.yml file in tests.

• DBassignment - database assignment. Meaning any assignment referring

to an existing stored assignment data record.

5.3.3 Data Structures

To manage tasks and issues, two new messages are defined in the ag.proto file:

Task and Issue.

1 message Task {
2 uint64 ID = 1;
3 uint64 assignmentID = 2; // foreign key
4 uint32 assignmentOrder = 3;
5 string title = 4;
6 string body = 5;
7 string name = 6;
8 repeated Issue issues = 7; // Issues that use this task as a benchmark
9 }

Code 5.3: Task message

The title and body fields are defined by the contents of a task markdown file.

These fields define the title and body of all issues that are created from this task.

For an assignment, order is defined as a number, used to determine the order in

which it is represented in a course. It is set by a teacher in the assignment.yml file,

as described in Section 2.2.2. By allowing QuickFeed to associate TRassignments

with DBassignments, it functions as a local assignment reference within a single

course. Similarly, when creating TRtasks we store a reference to the TRassign-

ment it was found in, by using the TRassignment’s order. If our scope is limited

to a single course, this allows us to know which DBassignment a given TRtask is

supposed to be a part of.

The name field is used to associate TRtasks with DBtasks. If a task markdown

file with the name task-hello_world.md is found within assignment1, then its

corresponding name will be assignment1/hello_world. This name is set when

the task itself is parsed, as described in Section 5.2.3.

1 message Issue {
2 uint64 ID = 1;
3 uint64 repositoryID = 2; // Represents the internal ID of a repository
4 uint64 taskID = 3; // Task that this issue draws its content from
5 uint64 issueNumber = 4; // Issue number on scm. Needed for associating db

issue with scm issue
6 }

Code 5.4: Issue message

When compiled, the generated data structure is used to represent issues inter-

nally in QuickFeed. The issueNumber field lets us reference any GitHub issue

within a repository.

5.3.4 Synchronizing Tasks

As mentioned, we store references to tasks in the database. When teachers push

new or updated tasks to tests, QuickFeed must create or update the existing DB-

task records representing them. Similarly, when a task has been deleted, its as-

sociated DBtask must also be deleted from the database.

These events are handled by the database method SynchronizeAssignmentTasks,

which is run at the start of handleTasks. SynchronizeAssignmentTasks is sup-

pliedwith everyTRassignment created byUpdateFromTestsRepo, eachwith their

list of TRtasks. They are then used to create the following mapping.

taskMap[assignmentOrder][taskName] = TRtask

Code 5.5: Task mapping

This mapping allows us to loop through all DBassignment records in a course,

and associate each of its DBtasks with a TRtask.

The process of synchronizing tasks is explained as follows. For every DBtask in a

DBassignment, check if it has the same name as any of the TRtasks belonging to

the TRassignment with the same order. If no match can be found for the DBtask,

it must mean that the TRtask has been removed, and the task itself no longer ex-

ists, which means that the DBtask can be safely deleted. However, if there is a

match for the DBtask, we check if its body or title differs from its TRtask coun-

terpart. If true, we conclude that the task has been updated, and if not, it must be

unchanged. Furthermore, any TRtask that is not represented by a DBtask must

represent a new task, and we therefore create a DBtask to represent it.

The main synchronization logic performed by SynchronizeAssignmentTasks is

listed in Code 5.6. Note that error handling has been removed for simplicity.

1 for _, DBassignment := range DBassignments {
2 var DBtasks []*pb.Task
3 tx.Find(&DBtasks, &pb.Task{AssignmentID: DBassignment.GetID()})
4 for _, DBtask := range DBtasks {
5 TRtask, ok := taskMap[DBassignment.Order][DBtask.Name]
6 if !ok {
7 // Existing task in database not among the supplied tasks
8 tx.Delete(DBtask).Error
9 DBtask.MarkDeleted()
10 updatedTasks = append(updatedTasks, DBtask)
11

12 // Find issues associated with the existing task and delete them
13 var issues []*pb.Issue
14 tx.Delete(issues, &pb.Issue{TaskID: DBtask.ID})
15 continue
16 }
17 if DBtask.HasChanged(TRtask) {
18 // Task has been changed and must be updated
19 DBtask.Title = TRtask.Title
20 DBtask.Body = TRtask.Body
21 updatedTasks = append(updatedTasks, DBtask)
22 tx.Model(&pb.Task{}).
23 Where(&pb.Task{ID: DBtask.GetID()}).
24 Updates(DBtask).Error
25 }
26 delete(taskMap[DBassignment.Order], DBtask.Name)
27 }
28

29 // Find new tasks to be created for the current assignment
30 for _, TRtask := range taskMap[DBassignment.Order] {
31 TRtask.AssignmentID = DBassignment.ID
32 createdTasks = append(createdTasks, TRtask)
33 }
34 }

Code 5.6: Task synchronization performed by SynchronizeAssignmentTasks

SynchronizeAssignmentTasks also returns the DBtasks it has created or updated,

which are used when synchronizing issues.

5.3.5 Synchronizing Issues

Having synchronized tasks, we must also create, update and delete all GitHub

issues where necessary, as well as their relevant database records.

As mentioned, SynchronizeAssignmentTasks already determines the tasks that

have been created, updated or deleted. In fact, when it detects that a task has been

deleted, it deletes not only the task but all associated issue records, as seen on

Line 14 in Code 5.6. Issue data records also never need to be updated, since they

carry no other non-relational information than an issue number, which always

remains static. The only remaining database related synchronization for issues is

therefore creating them.

The entire process of synchronizing issues happens in handleTasks, and is shown

in Code 5.7.

1 createdIssues := []*pb.Issue{}
2 for _, repo := range repos {
3 if !repo.IsGroupRepo() {
4 continue
5 }
6 repoCreatedIssues, err := createIssues(ctx, sc, course, repo, createdTasks)
7 if err != nil {
8 return err
9 }
10 createdIssues = append(createdIssues, repoCreatedIssues...)
11 if err = updateIssues(ctx, sc, course, repo, updatedTasks); err != nil {
12 return err
13 }
14 }
15 // Create issues in the database based on issues created on the scm.
16 return db.CreateIssues(createdIssues)

Code 5.7: Issue synchronization performed by handleTasks

In short, we use the created and updated DBtasks returned by SynchronizeAs-

signmentTasks, as arguments in createIssues andupdateIssues respectively. These

functions use the SCM functions described in Section 5.2.1. Then, by looping

through every course group repository, GitHub issues are created and updated

accordingly. The function createIssues also returns a list of all the issues it cre-

ated. These are used at the end of the process to create issue database records.

It is worthmentioning that there is no description of howwe delete GitHub issues

in the above process. To delete issues, we wanted to expand the SCM API to give

it that capacity. It turns out however, that GitHub’s REST API does not support

deleting issues. An alternative could have been to use GraphQL, a query language

for API’s, but instead we went for a simpler solution. In place of deleting issues,

they are closed, and their title and body are inserted with a statement indicating

that the associated task has been deleted.

5.4 Managing Pull Requests

Having implemented support for tasks and issues, we must now do the same for

pull requests.

5.4.1 Pull Request Data Structure

To manage pull requests we need a data structure to represent them. For this

purpose, the PullRequestmessage is created.

1 message PullRequest {
2 enum Stage {
3 NONE = 0;
4 DRAFT = 1;
5 REVIEW = 2;
6 APPROVED = 3;
7 }
8 uint64 ID = 1;
9 uint64 externalRepositoryID = 2; // Represents the external repository ID
10 uint64 taskID = 3; // Foreign key
11 uint64 issueID = 4; // Foreign key

12 uint64 userID = 5; // The user who owns this PR
13 uint64 commentID = 6; // GitHub ID of the comment used for

automatic feedback
14 string sourceBranch = 7; // The source branch for this pull request
15 uint64 number = 8; // Pull request number
16 Stage stage = 9;
17 }

Code 5.8: PullRequest message

It holds a reference to the issue that it was created for, as well as the task that

serves as the benchmark for said issue. These references allow us to quickly relate

any pull request to its corresponding task and issue.

The stage field is used to keep track of the ”stage” a pull request is in. When a

pull request is first created, it is in the draft stage. Once enough of its tests are

passing, it moves to the review stage, meaning that it is now ready for review.

The final stage, approved, is reached when a teacher actually approves the pull

request. How these stages are traversed, and how we know when to go from one

to another, is described in the following sections.

5.4.2 Creating Pull Requests

As students create pull requests to solve issues/tasks, we must make sure that

a pull request record is created and stored internally to represent them. Doing

so allows us to keep track of which student is solving what task, who should be

assigned to review the pull request, and more. This section describes how this is

implemented.

In Section 4.2 we decided to have students manually create pull requests. To ac-

commodate this feature, QuickFeedmust react to the pull requests being opened.

Expanding QuickFeed to also handle pull request related webhooks, allows us to

do just that.

Specifically, when a pull request is opened, the handlePullRequestOpened func-

tion is run. It will check if a pull request is legitimate, i.e., it was created on a

group repository and is linked to a valid issue. If successful, the function creates

a new data object to represent the pull request, by using the data in the event

payload, and then stores it in the database.

Associating a pull request to an issue requires the students themselves explicitly

doing so. GitHub allows you to link issues to pull requests on their creation, by

inserting a reference to them in the pull request body. Doing so, we thought that

the linked issue would also be part of the webhook payload, however, this turned

out to be incorrect. Instead we have to parse the issue number from the pull

request body itself, as shown below.

1 func getLinkedIssue(body string) (uint64, error) {
2 if count := strings.Count(body, "#"); count != 1 {
3 return 0, errors.New("pull request body does not contain exactly one '#'

character")
4 }
5 subStrings := strings.Split(body, "#")
6 issueNumber, err := strconv.Atoi(subStrings[len(subStrings)-1])
7 if err != nil {
8 return 0, fmt.Errorf("failed to parse issue number from pull request

body: %w", err)
9 }
10 return uint64(issueNumber), nil
11 }

Code 5.9: The getLinkedIssue function

This solution somewhat limits the possible contents of a pull request body. For

example, students must make sure only to use one ”#” character for the function

to succeed. Possible ways to improve this approach is further discussed in section

6.3.3.

5.4.3 Closing Pull Requests

When students close and merge pull requests—ideally when they are supposed

to—QuickFeedmust also act accordingly. Again, we usewebhooks to listen to pull

request closed events, and single out those that are relevant to QuickFeed. Rele-

vant in this context, is any event for a pull request that already exist inQuickFeed’s

database, i.e., they were created as part of the process described in the previous

section. Events for pull requests that are closed, but not merged, can also be fil-

tered out, as these constitute an incorrect close. If students do happen to close

pull requests like this, a working state can be restored by the student, simply by

reopening it. QuickFeed doing nothing in these cases is therefore the simplest

solution.

Assuming that the event is valid, there are two possible outcomes. Either the pull

request is approved, and it and its associated issue can safely be deleted from the

database. Or, it has been closed andmerged by a student without being explicitly

approved by a teacher. If this happens, QuickFeed must have the capacity to re-

store a working state for the issue/task in question. To handle these situations,

QuickFeed deletes only the pull request and not the issue record. This way, a stu-

dent doing an incorrect merge can simply reopen the issue that was closed, and

then create a new pull request to represent it. Thereby restoring a working state

with little QuickFeed involvement.

5.5 Scoring Tasks

To allow for both automatic and manual feedback, we need a way to score tasks.

Delivering automatic feedback requires us to do so solely on the tests associated

with any given task. Manual feedback on the other hand, needs some sort of task

related score to determine when to assign reviewers. Currently, QuickFeed only

tests and scores student code based on an assignment as a whole. Having it do so

on a per task basis therefore seems like a necessity to fulfill our goals.

QuickFeed’s ci package is fundamentally designed to test assignments, therefore

rewriting it to support tasks would be challenging. Any solution might also not

be backwards compatible. To implement our features though, QuickFeed does

not need to explicitly test task related code, only score it. As such, we can instead

complement the score package to support this functionality.

Doing so turned out to be pretty straight forward. First, the score message de-

scribed in Section 2.2.3 is modified to also include a task name field. Doing so,

gives us a direct reference to the task a given score is associated with. Further-

more, to support teachers adding task specific tests, two new variants of the ex-

isting Add and AddSub methods are created. These allow teachers to specify the

task name a test should be a part of. Finally, to generate a task specific total score,

QuickFeed simply sums over the scores that have that task’s name.

It should be noted that when referring to a task name in the context of the score

package, we mean the local task name. The local task name differs from the reg-

ular one by omitting the assignment name. As an example, a task with the name

assignment1/hello_worldwill have the local namehello_world. This was primar-

ily done to make the process of associating tests and tasks more intuitive for the

teachers doing so.

Given that students will be working on non-default local branches when solving

tasks, we also altered the ci package to support checking out these branches. As

mentioned in Section 2.2.4, QuickFeed supports supplying the run script with

arguments. By providing the script with the branch name, we can thereby switch

to the correct local branch before running tests.

Checkout branch if it is not main
if [{{ .BranchName }} != "main"]; then

git checkout {{ .BranchName }}
fi

Code 5.10: Checking out non-default local branch

With these changes implemented, we can generate a score from0 - 100 for specific

tasks, just as is already possible for entire assignments.

5.6 Manual Feedback

Having implementedQuickFeed support for scoring tasks in the previous section,

these features can nowbe used to facilitatemanual review. In short, our approach

is to assign one student and teacher reviewer to a pull request when a passing

score is achieved. This passing score limit is the same as a given task’s assignment

score limit.

Checking whether a task is passed or not must be done every time a student

pushes to a group repository. QuickFeed already has a function that handles

these push events, and we can therefore manage all review assignment related

logic there.

5.6.1 Assigning Reviewers

To handle pushes to non-default branches in group repositories we implemented

the handlePullRequestPush function. Its primary job is to attempt to find a pull

request that is associated with a given branch push. In the event payload, there is

information about both the branch and the repository that was pushed to. Using

these, QuickFeed queries the database for the specific pull request that is associ-

ated with them.

If a pull request exists for the repository and remote branch, it is used to retrieve

the task associated with it. Doing so allows us to get the specific task name, which

can then be used to retrieve the task specific total score. Finally, if this score is

greater than the score limit, the assignment process can begin.

Before assigning reviewers there are a few things that have to be accounted for.

First of, we need to make sure not to assign the same reviewers over and over. To

illustrate, we donotwant one teacher to review every pull request in a course, with

the rest of the teachers not being assigned to review anything. Similarly, having

one group member review every pull request within a group is also unwanted.

Secondly, the owner of a pull request must not be assigned as its reviewer.

To tackle the first problem, we use two maps, one for teachers and one for group

members, to facilitate in-memory storage of every reviewer. Specifically, these

maps track the total amount of times every reviewer has been assigned to a pull

request. They are described as follows, and are as shown, in fact maps of maps.

teacherReviewCounter[courseID][userID] = count
groupReviewCounter[groupID][userID] = count

Code 5.11: Maps used to store review counts

These are then used as arguments in the function getNextReviewer. getNextRe-

viewer’s purpose is to find, amongst the supplied users, the one that has the least

amount of total reviews, and then return said user. By supplying it with all course

teachers or a group’s members, it finds the next eligible teacher or student re-

viewer respectively. To tackle the second problem mentioned earlier, we make

sure to to not include the pull request owner in the user list.

1 func getNextReviewer(ID uint64, users []*pb.User, reviewCounter map[uint64]map[
uint64]int) (*pb.User, error) {

2 if len(users) == 0 {
3 return nil, errors.New("list of users is empty")
4 }
5 reviewerMap, ok := reviewCounter[ID]
6 if !ok {
7 // If a map does not exist for a given ID we create it,
8 // and return the first user.
9 reviewCounter[ID] = make(map[uint64]int)
10 reviewCounter[ID][users[0].GetID()] = 1
11 return users[0], nil
12 }
13 userWithLowestCount := users[0]
14 lowestCount := reviewerMap[users[0].GetID()]
15 for _, user := range users {
16 count, ok := reviewerMap[user.GetID()]
17 if !ok {
18 // If the user is not present in the review map,
19 // then they are returned as the next reviewer.
20 reviewerMap[user.GetID()] = 1
21 return user, nil
22 }
23 if count < lowestCount {
24 userWithLowestCount = user
25 lowestCount = count
26 }
27 }
28 reviewerMap[userWithLowestCount.GetID()]++
29 return userWithLowestCount , nil
30 }

Code 5.12: The getNextReviewer function

In order to actually assign reviewers to a GitHub pull request, the SCM API is

expanded with the function RequestReviewers. It is supplied with the GitHub

login usernames of the retrieved reviewers. If successful, the entire process is

finished by updating the pull request stage to review, signaling that it is now being

reviewed.

5.6.2 Approving Pull Requests

Having described how reviewers are assigned to pull requests in the previous sec-

tion, this section explores what happens when teachers approve them.

The functionhandlePullRequestReviewhandles everything related to pull request

reviews. It is triggered by pull request review related webhooks, and uses the

accompanying payload to find the relevant pull request record. If one exists, it

attempts to find the user that posted the review. The reason why the specific re-

viewer is needed, is because we must make sure that the review is from an actual

teacher. Otherwise, the group member that was assigned to review could also in-

ternally approve the pull request. So, as long as the review is from a teacher, the

pull request stage is updated to approved, meaning that it can be safely merged.

5.7 Automatic Feedback

UsingQuickFeed’s new capacity to score tasks, we implemented support forman-

ual feedback on pull requests. This new capacity also allows for automatic feed-

back on the same pull requests.

Our approach is to use a single comment on a student’s pull request to automati-

cally publish test results from their latest commit. This commentmust be updated

every time the student pushes to their pull request, and as such we can therefore

use the function handlePullRequestPush. A function that is used to manage all

non-default branch pushes to group repositories, as described in Section 5.6.1.

5.7.1 Formatting Feedback Comments

To create the feedback comment itself, we must format one based on the test re-

sults for a given push. For this purpose, we create the function CreateFeedback-

Comment.

The general idea is to use the task specific scores, as part of the test results for

an assignment, to generate a table. For every task specific test, we can describe

its received score, the weight of the test, and how much the results from that test

counts towards the total score. GitHub lets you create tables in comments by

using a special string formatting. With this in mind, CreateFeedbackComment is

implemented as described in Code 5.13.

1 func CreateFeedbackComment(results *score.Results, task *pb.Task, assignment *pb
.Assignment) string {

2 body := "## Test results from latest push\n"
3 body += "| Test Name | Score | Weight | % of Total |\n"
4 body += "| :-------- | :---- | :----- | ---------: |\n"
5

6 for _, score := range results.Scores {
7 if score.TaskName != task.LocalName() {
8 continue
9 }
10 percentageScore := (float64(score.Score) / float64(score.MaxScore)) * (

float64(score.Weight) / results.TotalTaskWeight(task.LocalName()))
11 body += fmt.Sprintf("| %s | %d/%d | %d | %.2f%% |\n", score.TestName,

score.Score, score.MaxScore, score.Weight, percentageScore*100)
12 }
13 body += fmt.Sprintf("| **Total** | | | **%d%%** |\n\n", results.TaskSum(task

.LocalName()))
14 body += fmt.Sprintf("Once a total score of %d%% is reached, reviewers are

automatically assigned.\n", assignment.GetScoreLimit())
15 return body
16 }

Code 5.13: The CreateFeedbackComment function

To illustrate, we can supply CreateFeedbackComment with the results, task and

assignment described in Code 5.14.

1 results := &score.Results{
2 Scores: []*score.Score{
3 {TestName: "Test1", TaskName: "1", Score: 5, MaxScore: 7, Weight: 2},
4 {TestName: "Test2", TaskName: "1", Score: 3, MaxScore: 9, Weight: 3},
5 {TestName: "Test3", TaskName: "1", Score: 8, MaxScore: 8, Weight: 5},
6 {TestName: "Test4", TaskName: "1", Score: 2, MaxScore: 5, Weight: 1},
7 {TestName: "Test5", TaskName: "1", Score: 5, MaxScore: 7, Weight: 1},
8 {TestName: "Test6", TaskName: "2", Score: 5, MaxScore: 7, Weight: 1},
9 {TestName: "Test7", TaskName: "3", Score: 5, MaxScore: 7, Weight: 1},
10 },
11 }
12 CreateFeedbackComment(results, &pb.Task{Name: "lab1/1"},
13 &pb.Assignment{Name: "lab1", ScoreLimit: 80})

Code 5.14: Example of a CreateFeedbackComment run

The resulting comment body in Figure 5.2 is then generated. Note that the tests

with name Test6 and Test7 are omitted from the table, because they are not as-

sociated with the task supplied to CreateFeedbackComment.

Figure 5.2: Feedback comment on a pull request

5.7.2 Publishing Feedback Comments

To actually publish the feedback comments to a GitHub pull request, we again

expand the SCM API. The function CreateIssueComment is used to create the

comments, while EditIssueComment updates existing ones. The reason for using

”Issue” in the function names instead of ”PullRequest”, is because GitHub treats

pull requests as issues with code. GitHub API calls to comment on issues and pull

requests are therefore the same.

The first time a student pushes to a pull request, we use CreateIssueComment

to create the initial comment. CreateIssueComment returns the ID of the com-

ment that was created, which is then stored as a field on the relevant pull request

record. Any subsequent pushes to the same pull request will then instead use

EditIssueComment, which takes that ID as an argument. Doing so, only one com-

ment is present on the student’s pull request, and is constantly updated with new

relevant data.

Chapter 6

Insights

In this chapter we describe insights regarding this projects implementation.

6.1 User Experience

The features implemented in this project impose new demands on both students

and teachers wanting to use them. The most apparent of them are listed in this

section.

Students solving group assignments with tasks, must be able to, or made aware

of the following:

• HowGitHub issues work, and the fact that they are representations of tasks

that teachers have created.

• How to create new branches and commit to them.

• How to create pull requests from these branches, and link the correct issue

to them.

45

• How to actually solve tasks. Meaning that they must know which parts of

an assignment is relevant for a given task.

• How the general flow of an assignment with tasks goes. In essence, they

must know the three stages that are relevant for pull requests; draft, review

and approved.

• How to close and merge pull requests when they are approved.

• How to handle situationswhere something goeswrong. For example, if they

create a pull request without correctly linking the relevant issue.

Similarly, teachers and the teaching staff in general must know the following:

• How to create tasks via markdown files.

• How to associate tests with tasks, using the score package.

• How to help students failing with any of the points in the previous list.

Especially for students, there is a lot of new ”stuff” to deal with. Any assignment

would have to carefully explain the points mentioned above.

6.2 Known Limitations

There are certain known limitations to this project’s implementation. These lim-

itations were discovered throughout the project, but no attempt to fix them was

made, mainly due to the fact they were considered edge cases. They are listed in

this section.

6.2.1 Differing Branch Names

There is aweakness related to students potentially having remote and local branches

with different names.

To facilitate testing and scoring of student code on non-default local branches,

we have to check out that local branch. We get the branch name to check out,

through the pull request opened event payload. This branch name however, is

for the remote GitHub repository the pull request was created for. Students can

in theory create a local branch called ”branch1”, and push it to the remote branch

”branch2”. If this is done, QuickFeed has no reference to the local branch it needs

to run tests on.

6.2.2 Human Error

There are certain actions students can perform, that QuickFeed simply cannot

handle with the current implementation.

For instance, if students were to manually delete the issues that QuickFeed cre-

ates, there would be no way of recreating them. This would break the entire as-

signment process, as students can no longer create pull requests for these issues.

Similarly, students can also delete the feedback comments created on their pull

requests. If this happens, an error will occur whenQuickFeed tries to publish new

feedback to the deleted comment.

Of course, these are fringe cases, as they require students doing something they

would probably know to be incorrect.

6.2.3 Manually Graded Assignments

Post implementation, a problem was encountered with how QuickFeed treats

manually graded assignments.

To QuickFeed, a manually graded assignment is any assignment whose review-

ers field is greater than zero. When handling push events for such assignments,

no automated tests are run. No automated tests, means no test scores and no

assignment total score.

In our implementation, we use scores for two purposes. One is to automatically

publish feedback on a pull request, while the other is to determine when to assign

reviewers to a pull request. If an assignment generates no scores, we have no

way of performing either of these tasks. It seems then that any assignment taking

advantage of the features developed in this project cannot be manually graded.

6.3 Possible Improvements

Certain parts of the implementation has the potential to be improved. These im-

provements primarily revolve around already implemented code, and are rela-

tively minor in scale. They are therefore discussed here, while any larger scale

project is instead proposed in Chapter 7.

6.3.1 GitHub App

When discussing how to create issues and pull requests in sections 4.3 and 4.2

respectively, we explored the need for QuickFeed to be able to identify as ”itself”.

Implementing QuickFeed as a GitHub App would accomplish this, as a GitHub

App acts on its own behalf when interacting with the GitHub API [5].

Running concurrently with this project, was another that converted QuickFeed

into a GitHub App. For this implementation to be fully optimal, it should take

advantage of this fact. For instance, creating issues should be done as QuickFeed,

and not as students. Similarly, while creating pull request feedback comments

as students is not that problematic, it would be best if they too were created as

QuickFeed.

QuickFeed being a GitHub App, also opens the door for pull requests being cre-

ated automatically, as discussed in Section 4.2. Any implementation would still

have to solve the problem of deciding the owner of a given pull request. To clar-

ify, even if pull requests are created anonymously, QuickFeed still needs to know

which student is actually working on it. Otherwise, we have no way of knowing

from which pool of group members we should assign reviewers, as explained in

Section 5.6.1.

6.3.2 Task Naming Format

A problem with the current implementation, is the fact that there are two types

of task names.

As discussed in Section 5.3.3, the task data structure has a field name. It is set

upon its creation, and is a combination of the assignment it is for, and the name

of the markdown file that describes it. For example, a task can have the name as-

signment1/hello_world. When complementing the score package to also support

tasks, we instead use a local task name, i.e., only hello_world.

Originally, including the assignment name was necessary to associate tasks with

eachotherwhen synchronizing them. Since then, the implementationhas changed,

and including the assignment name is no longer needed. A recommendation is

therefore to make the local task name standard, thereby avoiding any unwanted

confusion.

6.3.3 Linking Issues

When students create pull requests, a requirement is that they also link the rele-

vant issue, by inserting a reference to them in the pull request body. The imple-

mentation for this has two problems. First of, the function that parses the issue

from the pull request body, described in Code 5.9, is limited in its capabilities,

and demands a certain format. Secondly, if students were to fail, when linking

pull requests to issues, they are not immediately made aware.

To link an issue to a pull request, GitHub supports using a keyword such as ”Fixes”

or ”Closes”, followed by the character sequence ”#<issue number>”. As an exam-

ple, linking issue #30 to a new pull request can be done by inserting ”Fixes #30”

in the pull request body. The function that parses the issue number from this se-

quence is limited to only handling simple cases, as it only splits the pull request

body. A better solution would probably be to use a regular expression search.

To tackle the second problem, a solution could be to insert a comment or some-

thing similar in the faulty pull request, stating that an associated issue could not

be found. Another approach could be to support linking issues after the pull re-

quest has already been created. Thereby removing the need for students to create

a completely new pull request.

6.3.4 Support for Regular Assignments

While our implementation is intended primarily for group assignments, expand-

ing most parts of it to support regular assignments should not be difficult. In

fact, the only feature we have implemented that works explicitly on group as-

signments, is the co-student review portion. As discussed in 4.1, the reason we

limited the project’s scope to only group assignments, was because of the prob-

lem of how to give students access other student repositories. All other features,

such as creating issues from tasks, and managing pull request pushes, should be

implementable for regular assignments.

Chapter 7

FutureWork

Much of what is implemented serves only as a baseline, compared to the vast

range of possible future projects. This chapter discusses some possible projects

that expand on this one.

7.1 Further QuickFeed Integration

Even though QuickFeed now supports pull requests, issues and tasks, they are

not highly integrated with the rest of QuickFeed. The features developed in this

project are mostly standalone, and not generally connected with QuickFeed’s ex-

isting ones.

To illustrate, we can imagine a teacher creating an assignment with several tasks.

A group could in theory correctly solve all parts of this assignment, push it to

their group repository, and then have it scored the regular way. They would still

get a passing score in QuickFeed’s web interface, all the while having skipped the

entire pull request process. Similarly, doing things the intended way also has

no direct consequence on how QuickFeed treats the assignment submission as a

whole. Having a pull request approved, has no impact on how an assignment is

51

approved. Only when a teacher approves the assignment via the web interface, is

it actually approved.

A suggestion is therefore to further integrate the implemented featureswithQuick-

Feed’s assignment submission process. For example, a requirement to getting an

assignment approved, could be to have all relevant pull requests approved. To

support this, one would have to develop a system that compares the number of

approved pull requests, to the number of tasks for an assignment. Implementing

this would also require a rethink of the entire assignment approval process.

If such a system is developed, there is also the potential to further integrate it

with QuickFeed’s existing web interface. For example, assignments that rely on

pull request approval, can bemade to not require explicit approval via the web in-

terface. The assignment can instead be automatically approved once all relevant

pull requests are. This way, the need for a custom web interface diminishes.

Another way to move away from a custom web interface to simply relying on

GitHub’s, could be to expand on the feedback given in the pull request comments.

Technically, all data that is used for the current automatic feedback system, is

also available to be published in these comments. Of course, there might be limi-

tations to the amount of information a pull request comment can reliably express,

but the potential is still there.

7.2 Further GitHub Integration

There is also the potential to further integrate with GitHub.

For instance, GitHub’s Checks API seems to have a lot of potential [7]. In short, it

can be used to create custom checks on a pull request, by sending special webhook

events every time someone pushes code to a repository. These checks can then be

used on a pull request to signals whether it has been correctly approved or not.

Furthermore, if we only allow pull request merges when this check passes, we

can avoid students incorrectlymerging pull requests altogether. GitHub supports

limiting access like this by specifying rules on repository branches [6].

Chapter 8

Conclusions

This thesis had the goal of using GitHub’s issue and pull request features to fur-

ther expand on how students receive feedback when working on assignments.

By implementing QuickFeed support for teachers subdividing assignments into

tasks, we have created a new way for teachers to approach making assignments.

Furthermore, by expanding QuickFeed’s existing score package, we now support

testing and scoring tasks. This allows us to provide automated feedback directly

on pull requests, as well as manual feedback by teachers and co-students on stu-

dent code.

We believe that both students and teachers can benefit from the features imple-

mented in this project. Giving students an avenue for direct feedback on their

code through pull request code reviews, seems especially beneficial. Further-

more, familiarising students with GitHub pull requests can be highly beneficial

for them in the long run.

Even though these features are functional, there is still much that can be done to

improve them. In this sense, what has been accomplished in this project, should

hopefully serve as a good baseline for future projects.

54

Bibliography

[1] Atlassian.Webhooks. URL: https://developer.atlassian.com/server/
jira/platform/webhooks. (accessed: 09.04.2022).

[2] A.B. Brynildsen, J.H. Lindhom, and M. Bjerga. “Quickfeed: Redesigned

Web Frontend”. Bachelor’s Thesis. University of Stavanger, 2021.

[3] T. Darvik and T. Gliniecki. “Building Autograder front-end with ReactJS”.

Bachelor’s Thesis. University of Stavanger, 2016.

[4] H. Furubotten. “The autograder project: Improving software engineering

skills through automated feedback on programming exercises”. MA thesis.

University of Stavanger, 2015.

[5] GitHub. About Apps. URL: https://docs.github.com/en/developers/
apps/getting-started-with-apps/about-apps. (accessed: 07.05.2022).

[6] GitHub. About protected branches. URL: https://docs.github.com/
en / repositories / configuring - branches - and - merges - in - your -
repository/defining-the-mergeability-of-pull-requests/about-
protected-branches. (accessed: 08.05.2022).

[7] GitHub. Checks. URL: https://docs.github.com/en/rest/checks.
(accessed: 08.05.2022).

[8] Google.Protocol Buffers. URL: https://developers.google.com/protocol-
buffers. (accessed: 12.05.2022).

[9] A.Khurshid.Quickfeed Support for Feedback viaPull Requests and Issues.

University of Stavanger, 2021.

[10] D. Urdal and V. Yaseneva. “Experience Report: Replacing RESTwith gRPC

in Autograder”. Bachelor’s Thesis. University of Stavanger, 2019.

55

https://developer.atlassian.com/server/jira/platform/webhooks
https://developer.atlassian.com/server/jira/platform/webhooks
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/rest/checks
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Ole Jørgen Espeland

© 2022 Ole Jørgen Espeland

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives

	Background
	GitHub
	Issues
	Pull Requests

	QuickFeed
	Protocol Buffers
	QuickFeed Repository Structure
	The Score Package
	Testing Assignments
	Webhooks
	Source Control Management API

	Related Work
	Earlier attempt

	Approach
	Student Repository Access
	Possible Solutions
	Limiting Scope to Group Repositories

	Creating Pull Requests
	Manual Creation
	Automatic Creation
	Conclusion

	Issue Creation
	Automated Student Feedback
	Pull Request Comments

	Implementation
	Introduction
	Feature Overview

	Existing implementation
	SCM Expansion
	Logic
	Finding and Parsing Tasks

	Managing Tasks and Issues
	Approach
	Differentiating Data Objects
	Data Structures
	Synchronizing Tasks
	Synchronizing Issues

	Managing Pull Requests
	Pull Request Data Structure
	Creating Pull Requests
	Closing Pull Requests

	Scoring Tasks
	Manual Feedback
	Assigning Reviewers
	Approving Pull Requests

	Automatic Feedback
	Formatting Feedback Comments
	Publishing Feedback Comments

	Insights
	User Experience
	Known Limitations
	Differing Branch Names
	Human Error
	Manually Graded Assignments

	Possible Improvements
	GitHub App
	Task Naming Format
	Linking Issues
	Support for Regular Assignments

	Future Work
	Further QuickFeed Integration
	Further GitHub Integration

	Conclusions
	Bibliography

