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Abstract

This thesis will investigate different sampled-data strategies that can be used for the
digital implementation of a controller. To implement the controller several discretization
techniques are considered and compared including implicit and explicit Euler methods,
Tustin approximation and zero-order hold. The first sampled-data strategy to be investi-
gated is classical periodic sampling, where the output signal is measured periodically,
and the controller output is updated every fixed amount of time. The deterioration of
performance as sampling times increase as well as the stability properties is investigated
for the different discretized models. In a more advanced stage of this project, an event-
triggered strategy is considered. In event-triggered control, sensor sampling and control
updates are generated only when the system’s state deviate too much from the desired
value, which offers a reactive approach to control.
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Chapter 1

Motivation

1.1 Introduction

One of the most fundamental concepts of system theory is the combining of multiple
simple interconnecting simple systems in order to create more powerful and complex ones.
Developments in computer and communication technologies during recent years have
led to an advance in new types of large-scale embedded and networked control systems
(NCS). In these systems sensors, controllers and actuators are connected by a network
or other shared framework. These systems operate under communication constraints
and as such it is desirable to limit the both the required monitoring of sensors and
the amount of computation instants to just the instances in which the system requires
attention. In a lot of today’s standard courses in control theory, periodic sampling is
considered the best approach for implementing digital feedback control laws. Dealing
with constrained resources can simply be the utilization of efficient, robust sampling
with proper discretized models, however alternatives in the form of aperiodic control,
often referred to as event-based control has been around since as early as the 1960’s.
The discussion of periodic versus aperiodic control has since come in and out of fashion,
but in the early 2000’s as the popularity of NCS’s has increased and papers detailing
the advantages and viability of event-based control started appearing the discussion has
made a resurgence.

1.2 History of event-based and resource efficient control

Periodic sampling is not required. The most suitable sampling is by transmission of
only significant data, as the new value obtained when the data are changed by a given

1



2 Chapter 1 Motivation

increment. In certain cases, transmission of data by this means can be used to increase
channel capacity. -P.H. Ellis, 1959

The first mention of event-based control appeared in 1959 by research engineer P. H.
Ellis as digital control had only just begun to emerge. Since then it has been applied in
several fields in the last 63 years, some notable mentions are:

• In 1963 S. Gupta [1] applied event-based sampling to increase the efficiency of
control systems

• In 1966 A. Liff and J. Wolf [2] discussed the optimal sampling rate for discrete-
time modelling of continuous-time systems.

• In 1966 G. Bekey and R. Tomovic [3] wrote about the sensitivity of discrete
systems to variation of sampling interval.

• In 1966 G. Bekey and R. Tomovic [4] produced a second article the same year
discussing adaptive sampling based on amplitude sensitivity.

• In 1967 D. Ciscato and L. Martiani [5] wrote an article on increasing sampling
efficiency by adaptive sampling.

• In 1969 J. Mitchell and J. McDaniel [6] explored an adaptive sampling
technique.

1.3 Objective

The main objectives of this thesis is to investigate sampled-data strategies for control of
a continuous system. The steps taken can be segmented into the following parts:

• Develop a state-space representation of the 3DOF hover.

• Develop several discretized approximations of the state-space model.

• Compare the different models and come to a conclusion about the performance of
the different discretization methods.

• Develop a digital feedback control law for the system based on the discretized
models.

• Construct a functional event-triggering condition for efficient sampling of the
system.
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The different sampled-data strategies will be tested on the 3DOF Hover produced by
Quanser, see Figure 2.1 which is available in the laboratory located in KE-E458.





Chapter 2

Modelling the system

The theoretical results described in this report are applied to the 3 degrees of freedom
(DOF) Hover located at the University of Stavanger in room KE E-455. Section 2.1
describes the physical system and its components. Assuming a model linearized at the
equilibrium point in which the propellers are aligned with the pitch, roll and yaw axis,
equations (2.2), (2.3) and (2.5) in subsections 2.1.1 and 2.1.2 describes motion about
the body axes of the system. Section 2.2 details the construction of the same linear
state-space model as is provided by the manufacturers manual, [7]. In section 2.2.1 it is
demonstrated how the same model can be acquired from a nonlinear model based on
Newton-Euler formulations and Jacobian linearization. In section 2.3 several methods
for discretization of the state-space model are compared.

2.1 The Quanser 3DOF Hover

The Hover consists of four propellers connected by a round, planar frame. Each propeller
is driven by its own DC motor mounted to the frame, the frame is in turn mounted to
a three DOF joint allowing the body to freely move about the three axes. The front
and back propellers rotate counter-clockwise (CCW), while the left and right propellers
rotate clockwise (CW). This ensures that when the thrust from the four propellers are
equal the total torque of the system is balanced. The propellers generate lift to control
the roll and pitch angles and the motion about the yaw axis is produced by the total
difference in torques generated by the CW propeller pair and the CCW pair. The hover
has three encoders that measure the angles, each with a resolution of 8192 counts per
revolution, thus the precision of the measured angles is accurate down to 0.0439 degrees.

5



6 Chapter 2 Modelling the system

Figure 2.1: 3DOF Hover from Quanser. [7]

Figure 2.2: Free body diagram of the hover. [7]

The thrust force generated by the front, back left and right motors is denoted by Ff , Fb, Fl

and Fr. The pitch, roll and yaw angles are denoted by θp, θr and θy, respectively. When
θp = θr = 0 the hover is parallel to the ground.

2.1.1 Pitch and Roll axis model

Rotation about the pitch axis can be described by the equation (2.1)

Jpθ̈p = ∆FL (2.1)



Chapter 2 Modelling the system 7

Figure 2.3: Free body diagram of the pitch axis. [7]

where Jp is the moment of inertia about the pitch axis, ∆F is the thrust-force differential,
L is the distance between the propeller and the pivot point and θp is the pitch angle. From
Fig 2.3 it is clear that θp increases as Ff increases in relation to Fb. The force generated
by a motor/propeller pair is assumed to be KfV , resulting in ∆F = Kf (Vf − Vb). Using
Equation (2.1) a model for the pitch axis can be derived as:

Jpθ̈p = LKf (Vf − Vb) (2.2)

where the meaning of the different parameters is described in table 2.1.

Symbol Description Value Unit

Jp Moment of inertia about pitch axis 0.0552 Kg −m2

L Distance from propeller to pivot point 0.197 m
Kf Force-thrust constant of motor/propeller 0.1188 N/V
θp Pitch angle – Rad
Vf Voltage applied to front motor – V
Vb Voltage applied to back motor – V

Table 2.1: Variables regarding pitch model.

The exact same can be shown for the roll axis:

Jrθ̈r = LKf (Vr − Vl) (2.3)

an overview of the different parameters are listed in table 2.2.

2.1.2 Yaw axis model

Rotation around the yaw axis is as mentioned caused by the total difference in torques
generated by the CW propeller pair and CCW pair. The torque generated by each
propeller is assumed to be τ = KtVm[7] where Vm is the motor voltage.

Jy θ̈y = ∆τ = τl + τr − τf − τb (2.4)
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Symbol Description Value Unit

Jr Moment of inertia about roll axis 0.0552 Kg −m2

L Distance from propeller to pivot point 0.197 m
Kf Force-thrust constant of motor/propeller 0.1188 N/V
θr Roll angle – Rad
Vr Voltage applied to right motor – V
Vl Voltage applied to left motor – V

Table 2.2: Variables regarding roll model.

where τl and τr is the CW pair and τf and τb is the CCW pair. In terms of motor
voltages Equation (2.4) becomes:

Jy θ̈y = Kt(Vl + Vr) −Kt(Vf + Vb) (2.5)

parameters for the yaw model are listed in table 2.3.

Symbol Description Value Unit

Jy Moment of inertia about yaw axis 0.110 Kg −m2

Kt Torque thrust constant of motor/propeller 0.0036 N −m/V
θy Yaw angle – Rad
Vr Voltage applied to right motor – V
Vl Voltage applied to left motor – V
Vf Voltage applied to front motor – V
Vb Voltage applied to back motor – V
τm Torque generated by individual motor KtVm Nm

Table 2.3: Variables regarding yaw model.

2.2 State-space model

“Since Newton, mankind has come to realize that the laws of physics are always expressed
in the language of differential equations.” -Steven Strogatz

A dynamic model generally consists of one or more ordinary differential equations (ODEs).
As a systems complexity grows it becomes increasingly challenging to express it well
using transfer functions. In the case of MIMO systems like the 3DOF hover this is
especially the case. A way to largely mitigate this issue is to use state-space modelling to
represent the system. State-space modelling provides a practical, concise representation
of a physical system. For linear systems the state-space representation replaces an n-th
order ODE with a single matrix equation containing a set of p input, q output and n

state variables, where the input and state variables are related by a set of ODEs.
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The general state-space representation of a linear system is given by equations (2.6) and
(2.7)

ẋ(t) = Ax(t) + Bu(t) (2.6)

y(t) = Cx(t) + Du(t) (2.7)

Where bold symbols denote vectors and matrices and plain text represents scalars.
Vectors and matrices used in the state-space model are listed in table 2.4.

Symbol Description

x ∈ Rn State vector
y ∈ Rq Output vector
u ∈ Rp Input vector

A ∈ Rn×n System matrix
B ∈ Rn×p Input matrix
C ∈ Rq×n Output matrix
D ∈ Rq×n Feedthrough matrix

Table 2.4: Notations regarding state-space representation.

In Section 2.1, expressions for motion about the pitch, roll and yaw axis’ was derived.
Taking Equations (2.2), (2.3) and (2.5) and solving for θ̈ gives the basis for a state-space
representation of the hover system:

θ̈p = LKf

Jp
(Vf − Vb) (2.8)

θ̈r = LKf

Jr
(Vr − Vl) (2.9)

θ̈y = Kt

Jy
(Vr + Vl) + Kt

Jy
(Vf + Vb) (2.10)

The state variables should be chosen such that x describes the system at its current state,
and that knowledge of the state variables at t = t0 along with knowledge of the inputs
at t > t0 completely determines any future state of the system. A suitable choice of
state variables are θp, θr, θy, θ̇p, θ̇r and θ̇y as it satisfies the above conditions. The output
vector, y will be the angles and the input vector, u is the motor voltages.

xT =
[
θp θr θy θ̇p θ̇r θ̇y

]
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yT =
[
θp θr θy

]

uT =
[
Vf Vb Vl Vr

]

This results in the following state-space representation:

ẋ1(t) = θ̇p = x4(t)

ẋ2(t) = θ̇r = x5(t)

ẋ3(t) = θ̇y = x6(t)

ẋ4(t) = θ̈p = LKf

Jp
(u1(t) − u2(t))

ẋ5(t) = θ̈r = LKf

Jr
(u4(t) − u3(t))

ẋ6(t) = θ̈y = Kt

Jy
(u3(t) + u4(t)) − Kt

Jy
(u1 + u2)

y1(t) = θp = x1(t)

y2(t) = θr = x2(t)

y3(t) = θy = x3(t)

Putting the vectors above into Equations (2.6) and (2.7) gives the compact state-space
representation for the hover system.
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

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)
ẋ6(t)


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

A



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


+



0 0 0 0
0 0 0 0
0 0 0 0

LKf

Jp
−LKf

Jp
0 0

0 0 −LKf

Jr

LKf

Jr

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy


︸ ︷︷ ︸

B


u1(t)
u2(t)
u3(t)
u4(t)



(2.11)


y1(t)
y2(t)
y3(t)

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


︸ ︷︷ ︸

C



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


+


0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

D


u1(t)
u2(t)
u3(t)
u4(t)



2.2.1 Nonlinear model

Since the hover does in fact have nonlinear dynamics due to coupling between the axes
it is worth looking into a nonlinear mathematical model of the system. In [8] a set of
equations describing the dynamics of a rigid quad-copter with symmetrical axes was
derived using Newton-Euler formulations.

ϕ̇ = p+ q · sin(ϕ)tan(θ) + r · cos(ϕ)tan(θ) (2.12)

θ̇ = q · cos(ϕ) − r · sin(ϕ) (2.13)

ψ̇ = q · sin(ϕ)sec(θ) + r · cos(ϕ)sec(θ) (2.14)

ṗ = Jp − Jy

Jr
qr + 1

Jr
τr (2.15)
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q̇ = Jy − Jr

Jp
pr + 1

Jp
+ 1
Jp
τp (2.16)

ṙ = Jr − Jp

Jy
pq + 1

Jy
τy (2.17)

where ϕ, θ, ψ are the Euler angles and p, q, r are the angular rates. Furthermore Jr, Jp

and Jy are the moments of inertia and τp, τr and τy are the torques as described by
equations (2.2), (2.3) and (2.5). Choosing state variables as xT =

[
ϕ θ ψ p q r

]
and the input vector as uT =

[
Vf Vb Vl Vr

]
in combination with equations (2.12)-

(2.17) result in the following state-dependent coefficient (SDC) state and input matrices
A(x) and B(x).

A(x) =



0 0 0 1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 0 0 0 cos(ϕ) −sin(ϕ)
0 0 0 0 sin(ϕ)

cos(θ)
cos(ϕ)
cos(θ)

0 0 0 0 0 Jp−Jy

Jr
q

0 0 0 Jy−Jr

Jp
r 0 0

0 0 0 0 Jr−Jp

Jy
r 0



B(x) =



0 0 0 0
0 0 0 0
0 0 0 0

LKf

Jp
−LKf

Jp
0 0

0 0 LKf

Jr
−LKf

Jr

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy


Linearizing the resulting matrices A(x) around the equilibrium point x = 0 using by
Jacobian linearization yields:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


whilst B(x) remain the same. The linear matrices obtained are indeed identical to the
model provided by the manufacturer of the system.
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2.3 Discretization

A sampled data control system refers to a control system in which a continuous plant
interacts with a digital controller. Since any digital system operates in the discrete-
time realm the reason for discretizing the continuous-time system are fairly obvious. It
allows the controller to be implemented in the first place and to observe the estimated
continuous-time system.

When designing a discrete-time controller for a continuous-time system there are two
fundamental approaches to consider. One approach is to design a controller in the
continuous-time domain and subsequently discretize it, ending up with a controller that
approximates the behaviour of the original. The other approach and the one focused on
in this thesis is to derive a discrete-time equivalent of the continuous system and directly
design a discrete-time controller that satisfies the desired requirements for the feedback
control system.

In the physical world signals are usually continuous, meaning data exist for any time t.
In a computer however, everything is discrete. Before a continuous system can interact
with a discrete-time controller, a discrete-time sequence must be derived from the original
signal. This process is called sampling and can be done by passing a signal through
an analog-digital (A/D) converter which transforms the continuous signal y(t) into a
discrete-time signal y(k).

Figure 2.4: Sampling process by means of an A/D converter. Taken from [9]

Usually, but not always, the sampled signal is a sequence of equally spaced sampling
instants tk = kT , with k being a integer time index separated by a time interval T known
as the sampling time. In the case of T being constant as illustrated in Fig. 2.4, it is
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referred to as periodic sampling. Several sampling strategies are explored in this thesis,
however in the following subsections calculations are made using periodic sampling.

In Section 2.2, it was shown that a linear, time-invariant continuous-time system can be
represented by a set of first order matrix differential equations of the form (2.6) with ẋ(t)
being the continuous-time (CT) derivative of x. By first finding a discrete-time (DT)
solution to the differential equation it is possible to obtain a DT state-space representation
of the system in question. There are several ways to approximate this solution, the
simplest of which are the forward and backward Euler’s methods, Tustin approximation
and Zero-order hold discretization.

2.3.1 Forward Euler

Considering the problem of computing an integral:

J =
∫ t

0
f(τ) dτ (2.18)

The forward Euler method is the simplest approach to numerical integration of ODEs.
The method is explicit in that it calculates the state of a system at a future time as a
function of the current state of the system. The method works by approximating the
integral of f(t) by summing the area of each rectangle. The area is calculated taking the
amplitude at kT and looking forward T units of time until the next sampling instance
(k + 1)T .

Figure 2.5: Forward Euler approximation of the integral of f(t). Taken from [9]

The forward Euler method can be derived by applying this to the generic ODE (2.18)
integrating over one time step of the differential equation from kT to (k + 1)T and
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applying the fundamental theory of calculus

x((k + 1)T ) − x(kT ) =
∫ (k+1)T

kT
f(τ) dτ (2.19)

using the left Riemann sum the integral of one time step can be written as

∫ (k+1)T

kT
f(τ) dτ ≈ Tf(x(kT ) (2.20)

then by substituting for the integral, the next state of the system at time (k + 1)T can
be approximated as

x((k + 1)T ) = x(kT ) + Tf(x(kT ))

Where x(kT ) is the value of x at time tk = kT and x((k + 1)T ) is the value of x at time
tk+1 = (k + 1)T .

Finally, if we look at the definition of the derivative:

ẋ = lim
δt→0

δx

δt
(2.21)

Where δx is the change in x over time interval δt. The forward finite difference approxi-
mation of the derivative (2.22) can be related to the forward Euler approximation.

ẋ(t) ∼=
x((k + 1)T ) − x(kT )

T
= f(x(kT )) (2.22)

Applying the forward Euler approximation to a continuous state-space model is achieved
by substituting (2.22) into expression (2.6):

x((k + 1)T ) − x(kT )
T

= Ax(kT ) + Bu(kT )

x((k + 1)T ) − x(kT ) = TAx(kT ) + TBu(kT )

x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )

Comparing equation (2.7) for the output vector y(·) at time tk = kT with the general
output vector for a continuous system, implies that CF E

d and DF E
d are unchanged from

the original output and feedthrough matrices.

The discretized model is then given by:

x((k + 1)T ) = AF E
d x(kT ) + BF E

d u(kT )
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y(kT ) = CF E
d x(kT ) + DF E

d u(kT )

where:

AF E
d = I + A

BF E
d = TB

CF E
d = C

DF E
d = D

2.3.2 Backward Euler

The second variation of Euler’s method has the same foundation, but looking backward
from kT to kT − T . The backward Euler method differs from the forward Euler method
in that it is an implicit method, i.e. solving an ODE as a function of both the current
state and the state at a later time.

Figure 2.6: Backward Euler approximation of the integral of f(t). Taken from [9]

The backward Euler approximation is derived in a similar fashion to the forward Euler
method, however the approximation of the integral in equation (2.19) is made using the
right Riemann sum. Applied to a generic ODE this equates to:

x((k + 1)T ) − x(kT ) =
∫ (k+1)T

kT
f(τ) dτ ≈ Tf(x((k + 1)T )) (2.23)

The backward Euler approximation can be applied to the state-space model in order to
discretize the system’s equations as it allows for the approximation of ẋ(t) in equation
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(2.6) in the following manner:

ẋ((k + 1)T ) ∼=
x((k + 1)T ) − x(kT )

T
(2.24)

The continuous state-space representation is then transformed into

x((k + 1)T ) − x(kT )
T

= Ax((k + 1)T ) + Bu((k + 1)T ) (2.25)

y(kT ) = Cx(kT ) + Du(kT ) (2.26)

Solving for x(kT ) and defining a change of variable, w((k + 1)T ) equation (2.27) is
obtained

x((k + 1)T ) − TAx((k + 1)T ) − TBu((k + 1)T ) = x(kT ) ≜ w((k + 1)T ) (2.27)

Collecting terms and multiplying with the matrix inverse of the factor on either side
allows the solving of (2.27) for x in terms of w and u:

(I − TA)x((k + 1)T ) = w((k + 1)T ) + TBu((k + 1)T )

x((k + 1)T ) = (I − TA)−1w((k + 1)T ) + (I − TA)−1TBu((k + 1)T )

Rewriting the above expression at sample kT instead of (k + 1)T yields:

x(kT ) = (I − TA)−1w(kT ) + (I − TA)−1TBu(kT ) (2.28)

which equals the discrete-time state-space equation (2.29) with w(kT ) as the new state
variable replacing x(kT ).

w((k + 1)T ) = (I − TA)−1w(kT ) + (I − TA)−1TBu(kT ) (2.29)

The output equation must also be updated by replacing x(kT ) in (2.26) with equation
(2.29):

y(kT ) = C(I − TA)−1)w(kT ) + C(I − TA)−1TBu(kT ) + Du(kT ) (2.30)

Hence, the backward Euler approximation of the state-space model is given by:

w((k + 1)T ) = ABE
d w(kT ) + BBE

d u(kT )

y(kT ) = CBE
d w(kT ) + DBE

d u(kT )
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where the discrete-time matrices are given by:

ABE
d = (I − TA)−1

BBE
d = (I − TA)−1TB

CBE
d = C(I − TA)−1

DBE
d = C(I − TA)−1TB + D

2.3.3 Tustin approximation

Tustin approximation, also known as the bilinear transform is another way of transforming
a continuous-time system into a discrete-time representation. The method is based on
approximating the integral of a generic ODE, f(t) by the average values of f(t) at the
left and right endpoints of the previously considered rectangles, f(kT ) and f((k + 1)T ).
See figures 2.5 and 2.6.

Figure 2.7: Tustin approximation of the integral of f(t). Taken from [10]

Figure 2.8: The trapezoidal rule works by approximating the region under the graph
by as the area of a trapezoid bounded by the endpoints a and b and a linear function

(red line) . Image taken from [10]
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If the distance between a and b is said to be T units apart the area of a trapezoid, A in
Fig.2.8, above is given by the formula:

A = a+ b

2 T

Thus, the integral in equation (2.19) can be approximated by:

x((k + 1)T ) − x(kT ) =
∫ (k+1)T

kT
f(τ) dτ ∼= T

f(x(kT ) + f(x((k + 1)T )
2 (2.31)

Rearranging equation (2.31) so the expression for ẋ(t) is on the left hand side yields:

x((k + 1)T ) − x(kT )
T

∼=
f(x(kT ) + f(x((k + 1)T )

2 = ẋ(kT ) + ẋ((k + 1)T )
2 (2.32)

The Tustin approximation can then be applied to the state-space model in order to
discretize the system’s equations by replacing ẋ(t) in (2.6) with (2.32) in the following
manner:

x((k + 1)T ) − x(kT )
T

= ẋ(kT ) + ẋ((k + 1)T )
2 (2.33)

The continuous-time state-space representation is then transformed into:

x((k + 1)T ) − x(kT )
T

= A(x(kT ) + x((k + 1)T )) + B(u(kT ) + u((k + 1)T ))
2 (2.34)

y(kT ) = Cx(kT ) + Du(kT ) (2.35)

Rearranging the state equations such that all terms containing (k + 1)T on the left side
and kT on the right side yields:

x((k+1)T )− TA
2 x((k+1)T )− TB

2 u((k+1)T ) = x(kT )+ TA
2 x(kT )+ TB

2 u(kT ) (2.36)

A change of variable is performed, introducing the scale factor
√
T to balance the gain of

the discrete equivalent between input and output.

√
Tw((k + 1)T ) ≜ x(kT ) + TA

2 x(kT ) + TB
2 u(kT ) (2.37)

x((k + 1)T ) − TA
2 x((k + 1)T ) − TB

2 u((k + 1)T ) =
√
Tw((k + 1)T ) (2.38)
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Rewriting the above expression at sample kT instead of (k + 1)T , and solving for x(kT )

x(kT ) − TA
2 x(kT ) − TB

2 u(kT ) =
√
Tw(kT ) (2.39)

x(kT ) =
(

I − TA
2

)−1 √
Tw(kT ) +

(
I − TA

2

)−1 TB
2 u(kT ) (2.40)

Combining (2.40) and (2.37):

√
Tw((k + 1)T ) =

(
I + TA

2

)(
I − TA

2

)−1 {√
Tw(kT ) + TB

2 u(kT )
}

+ TB
2 u(kT )

(2.41)w�
w((k+1)T ) =

(
I + TA

2

)(
I − TA

2

)−1
w(kT )+

[(
I + TA

2

)(
I − TA

2

)−1
+ I
]

1
2

√
TBu(kT )

(2.42)

The Tustin discretized state-space equations can be found by rewriting equation (2.42)
using the following identity:

(
I + TA

2

)(
I − TA

2

)−1
+ I =

(
I + TA

2

)(
I − TA

2

)−1
+
(

I − TA
2

)(
I − TA

2

)−1

=
(

I + TA
2 + I − TA

2

)(
I − TA

2

)−1

= 2I
(

I − TA
2

)−1

(2.43)w�
w((k + 1)T ) =

(
I + TA

2

)(
I − TA

2

)−1
w(kT ) +

(
I − TA

2

)−1 √
TBu(kT ) (2.44)

The output equation must also be updated by replacing x(kT ) in (2.35) with the equivalent
(2.40):

y(kT ) = C
((

I − TA
2

)−1 √
Tw(kT ) +

(
I − TA

2

)−1 TB
2 u(kT )

)
+ Du(kT )

w�
y(kT ) = C

(
I − TA

2

)−1 √
Tw(kT ) +

[
C
(

I − TA
2

)−1 TB
2 + D

]
u(kT ) (2.45)
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The Tustin approximation of the state-space model is given by (2.44) and (2.45):

w((k + 1)T ) = AT U
d w(kT ) + BT U

d u(kT )

y(kT ) = CT U
d w(kT ) + DT U

d u(kT )

where the discrete-time matrices are given by:

AT U
d =

(
I + TA

2

)(
I − TA

2

)−1

BT U
d =

(
I − TA

2

)−1 √
TB

CT U
d = C

(
I − TA

2

)−1 √
T

DT U
d = C

(
I − TA

2

)−1 TB
2 + D

2.3.4 Zero order hold

Data hold is a commonly used mathematical model of the signal reconstruction achieved
from conventional D/A converters. It is done as a way generating a continuous-time
signal, h(t) from a discrete-time signal, x(kT ). The conversion works by approximating
h(t) in the time interval kT ≤ t < h(k + 1)T as a polynomial in τ :

h(kT + τ) = anτ
n + an−1τ

n−1 + ...+ a1τ + a0

Where 0 ≤ τ ≤ T :
h(kT ) = x(kT )

such that:
h(kT + τ) = anτ

n + an−1τ
n−1 + ...+ a1τ + x(kT )

The order of the hold is defined by the order of the polynomial, n. This thesis will only
consider the zero-order hold (ZOH) that is obtained when n = 0:

h(kT + τ) = x(kT ), τϵ[0, T ], k = 0, 1, 2, ...

Higher order holds provide increased accuracy in approximating the continuous-time
signal at the cost of increasing the time delay and the complexity.Fig.2.9, shows an
example of a signal reconstructed by a ZOH.
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Figure 2.9: By setting u(t) = u(kT ) in the interval kT ≤ t < (k + 1)T a discrete-time
signal can be transformed into a continuous-time signal using the ZOH transform. Taken

from [9]

The ZOH can also be used as a way of discretizing a continuous-time LTI state-space
model:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.46)

w�
x((k + 1)T ) = AZOH

d x(kT ) + BZOH
d u(kT )

y(kT ) = CZOH
d x(kT ) + DZOH

d u(kT )
(2.47)

By assuming the input vector u(t) only changes at the equally spaced sampling times, T
(ZOH):

u(t) = u(kT ) for kT ≤ t < (k + 1)T (2.48)

and expressing the LTI system as the complete solution of (2.46) given by equation
(2.49)1:

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ = eAt

(
x(0) +

∫ t

0
e−Aτ Bu(τ)dτ

)
(2.49)

1The explicit expression for continuous-time LTI system is taken from [11]
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x(kT ) and x((k + 1)T ) can be rewritten as:

x(kT ) = eAkT
(
x(0) +

∫ kT

0
e−Aτ Bu(τ)dτ

)
x((k + 1)T ) = eA(k+1)T

(
x(0) +

∫ (k+1)T

0
e−Aτ Bu(τ)dτ

)
= eAT eAkT

(
x(0) +

∫ kT

0
e−Aτ Bu(τ)dτ +

∫ (k+1)T

kT
e−Aτ Bu(τ)dτ

)
x((k + 1)T ) = eATx(kT ) + eA(k+1)T

∫ (k+1)T

kT
e−Aτ Bu(τ)dτ

= eATx(kT ) +
∫ (k+1)T

kT
eA[(k+1)T −τ ]Bu(τ)dτ

(2.50)

Finally the discrete-time matrices that yield the exact values at t = kT can be found by
looking at the expression for x((k+ 1)T obtained after introducing the change of variable
λ = (k + 1)T − τ into equation (2.50) and taking into account the ZOH assumption
(2.48):

x((k + 1)T ) = eATx(kT ) +
∫ T

0
eAλBu(kT )dλ (2.51)

The discrete-time version of the output and feedthrough matrices from (2.46) remain
unchanged. Thus, the discretized model (2.47) is given by the matrices:

AZOH
d = eAT

BZOH
d =

∫ T

0
eAλBdλ

CZOH
d = C

DZOH
d = D

Unlike the discretization techniques discussed previously in sections 2.3.1, 2.3.2 and 2.3.3
the discrete representation (2.51) contains no approximation, meaning it calculates the
exact values of the state vector at times t = kT thus, the method perfectly represents
the evolution of the state vector given the assumption that u(t) is constant between
consecutive time samples (2.48) holds true.

2.3.5 Investigating a special case for the hover model

When comparing the results of the different discretized models special case is observed.
When calculating the discrete-time matrices of the hover model the Tustin approximation
and the Zero-order hold method yield the same A and B matrices:
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AZOH
d = eAT = AT U

d =
(

I + TA
2

)(
I − TA

2

)−1

BZOH
d =

∫ T

0
eAλBdλ = BT U

d =
(

I − TA
2

)−1 √
TB

In section 2.2 the state matrix for the hover was found to be the non diagonalizable
matrix, A:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



The discrete-time state matrix AT U
d is obtained by solving:

(
I + TA

2

)
=



1 0 0 T/2 0 0
0 1 0 0 T/2 0
0 0 1 0 0 T/2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


=
(

I − TA
2

)−1

w�

(
I + TA

2

)(
I − TA

2

)−1
=



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


The matrix exponential of a given matrix AT is found by solving the power series:

eAT =
∞∑

k=0

1
k! (AT )k (2.52)
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A nilpotent matrix is a nth order square matrix, N , that when raised to some integer k
referred to as its index results in the zero matrix. More generally any nth order triangular
matrix with zeros along its main diagonal is nilpotent with index, k ≤ n. The hover
state matrix A is nilpotent with index 2 and therefore:

Aj = 0 ∀ j ≥ k

A2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Hence, equation (2.52) turns into an expression containing only two non-zero terms:

∞∑
k=0

1
k! (AT )k = 1

0!(AT )0 + 1
1!(AT )1 + 1

2! ∗ 0 + 0 + .... = I + AT (2.53)

w�

I + AT =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



For the input matrix B: 

0 0 0 0
0 0 0 0
0 0 0 0

LKf

Jp
−LKf

Jp
0 0

0 0 −LKf

Jr

LKf

Jr

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy


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the discrete-time matrix AT U
d is found by solving the equation:

(
I − TA

2

)−1 √
TB

BT U
d =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∗

√
T ∗



0 0 0 0
0 0 0 0
0 0 0 0

LKf

Jp
−LKf

Jp
0 0

0 0 −LKf

Jr

LKf

Jr

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy


(2.54)

w�

BT U
d =



−KtT
√

T
2Jy

−KtT
√

T
2Jy

KtT
√

T
2Jy

KtT
√

T
2Jy

Kf LT
√

T
2Jp

−Kf LT
√

T
2Jp

0 0

0 0 Kf LT
√

T
2Jr

−Kf LT
√

T
2Jr

−Kt

√
T

Jy
−Kt

√
T

Jy

Kt

√
T

Jy

Kt

√
T

Jy

Kf L
√

T
Jp

−Kf L
√

T
Jp

0 0

0 0 Kf L
√

T
Jr

−Kf L
√

T
Jr



(2.55)

Using Matlab’s symbolic math toolbox to calculate BZOH
d yields the following result:

BZOH
d =



−KtT 2

2Jy
−KtT 2

2Jy

KtT 2

2Jy

KtT 2

2Jy

Kf LT 2

2Jp
−Kf LT 2

2Jp
0 0

0 0 Kf LT 2

2Jr
−Kf LT 2

2Jr

−KtT
Jy

−KtT
Jy

KtT
Jy

KtT
Jy

Kf LT
Jp

−Kf LT
Jp

0 0

0 0 Kf LT
Jr

−Kf LT
Jr



(2.56)
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The matrices appear different at first, however state-space representations are not unique.
In can be shown that two state-space models, sys1(A1, B1, C1, D1) and sys2(A2, B2, C2, D2)
are representations of the same system if there exist a transformation matrix Tf such
that:

A1 = Tf A2Tf
−1 (2.57)

B1 = Tf B2 (2.58)

C1 = C2Tf
−1 (2.59)

D1 = D2 (2.60)

A closer look at BT U
d and BZOH

d reveals that there exists transformation matrix Tf = I
√
T

where T is the periodic sampling interval. This matrix satisfies (2.57) and (2.58) The
systems are in fact not identical as seen in the comparisons made in 3, only the state and
input matrices which are used to calculate the control gain matrix K (4.6) are. Resulting
in equal performance as calculated by the cost function, J given by equation (4.3).





Chapter 3

Comparison of the discretized models

This section will analyse the different discretized models derived in section 2.3. At small
values of T the models are essentially equivalent, this is shown in Figure 3.1 where
T = 0.02s. For perspective CT functions in MATLAB has a sampling time of T = 0.002s.
Therefore the models will be compared to each other based on stability properties and
how well they fit the original model as T increases and the differences become more
noticeable as seen in Figure 3.2. As T increases performance may decline and in some
cases instability can be introduced. The figures presented in this section is made by
discretizing the CT system (2.11) with arbitrary inputs, u(k).

29
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Figure 3.1: The CT and DT models simulated with arbitrary inputs, u(k) and u(t) are
indistinguishable for a small sampling time of T = 0.02s.
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Figure 3.2: The CT and DT models simulated with the same inputs, u(k) and u(t)
as in 3.1 with T = 2s. The deviations from the CT system are noticeable in all cases

except for ZOH.

3.1 Stability

When considering the stability of a system based on the eigenvalues the criteria differ for
CT and DT systems.

Consider the open loop system ẋ = Ax ∈ Rn. For a CT LTI system it is simple to solve
for x(t) at some later point based on initial eigenvalues and an initial condition x(0):

x(t) = VeDtV−1x(0) (3.1)

Where D ∈ Cn×n is a matrix with eigenvalues, λi along its diagonal and V is a matrix
containing the corresponding right eigenvectors such that AV = VD where column i in
V = vi. This solves the eigenvalue problem:
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Avi = λivi (3.2)

D =


λ1 0 · · · 0

0 λ2
...

... . . . 0
0 · · · 0 λn

 (3.3)

Looking at equation (3.1) it can be shown that the stability of the system is decided by
the matrix exponential, eDt.

eDt =


eλ1t 0 · · · 0

0 eλ2t
...

... . . . 0
0 · · · 0 eλnt

 (3.4)

λ = a± ib and e±λt = eat[cos(bt) ± isin(bt)
]

(3.5)

From (3.5) it is clear that eDt converges to infinity when the real part of the eigenvalues
are a > 0 and to zero for a < 0 as illustrated in Figure 3.3:

Figure 3.3: Modified illustration showing the effects of the real part of eigenvalues for a
CT LTI system, taken from [12]. The red graph is the asymptotically unstable system

where eDt

converges to infinity and the blue graph is the asymptotically stable system where the
matrix exponential converges to zero.
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Given the eigenvalues of A a question is raised regarding whether the stability properties of
the CT system are preserved during discretization or not. In the case of FE discretization
where AF E

d = I + TA, the DT eigenvalues, λF E
i can be derived by transforming (3.2)

into:

AF E
d vi = λF E

i vi (3.6)

Avi = λiviw�
TAvi = Tλiviw�

vi + TAvi = vi + Tλiviw�
(I + TA)︸ ︷︷ ︸

AF E
d

vi = (1 + Tλi)︸ ︷︷ ︸
λF E

i

vi

Comparing the asymptotic stability region of the CT system Re(λi) < 0 with Re(λF E
i )

we get the asymptotic stability region Re(λF E
i ) < 1:

1 − TRe(λi) = Re(λF E
i )w�

Re(λi) = 1
T

(Re(λF E
i ) − 1)w�

1
T

(Re(λF E
i ) − 1) < 0w�

Re(λF E
i ) < 1

As λi is mapped onto λF E
i = 1 + Tλi the CT stability region bound by Re(λi) > 0 is

transformed into the region Re(λF E
i . Both regions are presented in Figure 3.4. It can be

seen that not all parts of the CT stability region is mapped onto the DT equivalent, a
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consequence of this is that there is a possibility for a stable CT system could be mapped
into an unstable DT system.

Figure 3.4: Plot of the stability regions of the CT system and the FE discretized model
of it.

The eigenvalues of ABE = (I − TA)−1 are found in similar fashion by transforming A in
(3.1) into and equivalent based on ABE :

Avi = λiviw�
−TAvi = −Tλiviw�

vi − TAvi = vi − Tλiviw�
(I − TA)vi = (1 − Tλi)viw�
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(I − TA)−1(I − TA)vi = (1 − Tλi)(I − TA)−1viw�
1

1 − Tλi︸ ︷︷ ︸
λBE

i

vi = (I − TA)−1︸ ︷︷ ︸
ABE

d

vi

Since λi is mapped onto λBE
i = 1

1−Tλi
it can be shown that:

λBE
i = 1

1 − Tλi
= 1

2 + { 1
1 − Tλi

− 1
2} = 1

2 − 1
2

1 + Tλi

1 − Tλi

By substituting λi with jw, w ∈ R the above expression turns into:

λBE
i = 1

2 − 1
2

1 + Tjw
1 − Tjw , where

∣∣∣1 + Tjw
1 − Tjw

∣∣∣ = 1 ∀ w ∈ R (3.7)

The stable region in CT is mapped into a circle with radius 0.5 and centered in (0.5,0) as
seen in Figure 3.5. With this method any stable CT system will preserve stability in DT,
although in some cases unstable CT systems can be mapped into a stable DT system.

Figure 3.5: Plot of the stability regions of the CT system and the BE discretized model
of it.
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For the Tustin approximation the eigenvalues of AT U
d = (I + TA

2 )(I − TA
2 )−1 can be

found by taking:

Avi = λiviw�
TA
2 vi = Tλi

2 viw�
(I + TA

2 )vi = (1 + Tλi

2 )vi

In combination with:

Avi = λiviw�
−TA

2 vi = −Tλi

2 viw�
(I − TA

2 )vi = (1 − Tλi

2 )viw�
(I − TA

2 )−1vi = 1
1 − Tλi

2
vi

Finally resulting in:

(I + TA
2 )(I − TA

2 )−1vi = (I + TA
2 ) 1

I − Tλi
2
vi

1
I − Tλi

2
(I + TA

2 )vi =
(1 + Tλi

2 )
(1 − Tλi

2 )
vi

w�
λT U

i =
(1 + Tλi

2 )
(1 − Tλi

2 )

By substituting λi with jw, w ∈ R the above expression turns into:
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λT U
i = 1 + Tλi/2

1 − Tλi/2
= 1 + aT/2 + jwT/2

1 − aT/2 − jwT/2

Where a is the real part of λi and the mapping of the stability region of λT U
i turns out

to be the inside of the unit circle as given by:

|λT U
i | = |1 + aT/2 + jwT/2

1 − aT/2 − jwT/2 | =
√

(1 + aT/2)2 + w2T2/4√
(1 − aT/2)2 + w2T2/4

< 1

Squaring both sides of the inequality yields:

1 + a2T 2

4 + aT + w2T 2

4 < 1 + a2T 2

4 − aT + w2T 2

4w�
2aT < 0 −→ a < 0

This establishes a direct correspondence between the left half-plane of the complex plane
for the CT system and the inside of the unit circle for the DT system as seen in Figure
3.6. The stable region in CT is mapped onto the stable region in DT and stability is
guaranteed.
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Figure 3.6: Plot of the stability regions of the CT system and the TU discretized model
of it.

Finally for the zero-order hold discretization method where AZOH
d = eAT the eigende-

composition of A is given by:
A = VDV−1

w�
AZOH

d = eAT = VeDT V−1

Where D is the diagonal matrix with the eigenvalues of A along its diagonal. This gives
the eigenvalues λZOH

i = eλiT Mapping the eigenvalues yields:

|λZOH
i | = eaT

√
cos2wT + sin2wT = eaT < 1

The obtained region is then:

a < ln1 = 0 −→ a < 0
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Figure 3.7: Plot of the stability regions of the CT system and the ZOH discretized
model of it.

In conclusion the forward Euler discretization technique is the worst method since it does
not preserve stability and has lower performance in most cases then the other techniques
reviewed. The backwards Euler performes better however it does not compare very well
to the Tustin approximation which in turn can not compete against the zero-order hold.
This was expected as the ZOH model is a mathematical model of the praxtical signal
reconstruction done by conventional digital to analog converter.
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3.1.1 Simulated and applied results

Figure 3.8: Simulated response of FE discretized system with T=0.1.

Figure 3.9: Simulated response of FE discretized system with T=0.1.
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Figure 3.10: Actual response of FE discretized system with T=0.1.

Figure 3.11: Actual response of FE discretized system with T=0.1.



42 Chapter 3 Comparison of the discretized models

Figure 3.12: Simulated response of event-triggered control when initialized at an
elevated pitch angle.

Figure 3.13: Simulated response of TU discretized system with T=0.1.
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Figure 3.14: Simulated response of TU discretized system with T=0.1.





Chapter 4

Control

In the previous chapter it became clear that choice of discretization method plays a big
part in the properties of a DT model. In this chapter the different models will be applied
to design feedback control laws for the hover system and additional comparisons will be
made.

4.1 Controllability

Controllability is an essential property of a dynamic system which describes its ability to
move from any initial condition x(0) = 0 to any final state x(kf ) = xf by manipulation
of its input vector u. The algebraic controllability theorem presented next provides a
necessary and sufficient criterion to determine the controllability of a LTI system.

Theorem 4.1. The discrete-time LTI system:

x(k + 1) = Ax(k) + Bu(k)

is controllable if and only if the controllability matrix C:

C = [B AB A2B · · · An−1B]

has full rank.

The n×nm matrix C has full rank (i.e. rank(C) = n) if it contains n linearly independent
columns or rows. Considering a fundamental result in linear algebra proves the column
and row rank of any matrix are always equal, the controllability can be determined
calculating either one[13].

45
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In the case of the 3DOF hover system the controllability matrix C is a large 6×24 matrix,
however, as shown in 2.3.5 matrix A is a nilpotent matrix with index k = 2 rendering A
to the power of 2 and above equal to zero:

C = [B AB A2B A3B A4B A5B] = [B AB · · · 0]

w�

C =



0 0 0 0 LKf

Jp
−LKf

Jp
0 0 · · · 0

0 0 0 0 0 0 LKf

Jr
−LKf

Jr
· · · 0

0 0 0 0 −Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy

...
LKf

Jp
−LKf

Jp
0 0 0 0 0 0

...
0 0 −LKf

Jr

LKf

Jr
0 0 0 0 · · · 0

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy

0 0 0 0 · · · 0


(4.1)

Calculating the rank of the controllability matrix in Matlab yields:

rank(C) = 6

proving that the system is indeed controllable. Furthermore, the controllability is
preserved under discretization as shown in [14].

4.2 Linear Quadratic Regulator

A popular approach to designing a controller for a linear time-invariant (LTI) system
is the linear quadratic regulator (LQR). LQR is an optimal control technique based on
the state-space representation of a system. The technique is used to construct a linear
feedback control law (4.2) that minimizes a linear cost function (4.3). Said cost function
contains weight factors defined by the system engineer based on performance and energy
requirements. Thus, the resulting control law provides the best possible performance
with respect to predefined performance metrics.

u(k) = Kx(k) (4.2)

When designing a controller for the 3DOF hover the objective is to reach the desired
system state, xref (k) as quickly as possible. When the desired state is obtained the
error, e(k) = xref (k) − x(k) becomes zero, this is achieved by driving the current state
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x(k) towards the reference through actuation given by the LQR control law. A discrete
quadratic cost function (4.3) is chosen to quantify how well the desired state is reached:

J =
∞∑

k=0

[
eT (k)Qe(k) + uT (k)Ru(k)

]
[15] (4.3)

To properly gauge the performance it is important to ensure all summed terms contribute
positive to the cost, J . Therefore the Q matrix that penalizes poor performance must
be a positive semi-definite matrix, Q ≽ 0 such that eT (k)Qe(k) ≥ 0 for any e(k). A
cost function containing only the first term is sufficient to bring the state error to zero
as quickly as possible, however the calculated gain matrix would result in unphysical
levels of actuation. The second term of the cost function is therefore added to penalize
actuator usage. The positive definite R matrix act alongside Q as to provide a trade-off
between quick performance and expended energy, without this the most effective control
law would be found to have an infinitely large control signal u(k).

A common method of choosing Q and R is to set them as diagonal n × n and p × p

matrices, corresponding to the dimension of the state- and input vectors respectively.
The i-th element along the diagonal represents the weight of the i-th state or input. For
the hover, the following matrices were chosen:

Q =



500 0 0 0 0 0
0 350 0 0 0 0
0 0 350 0 0 0
0 0 0 0 0 0
0 0 0 0 20 0
0 0 0 0 0 20


(4.4)

R =


0.01 0 0 0

0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

 (4.5)

Once chosen the LQR problem can be solved to get the control law u = −Kx(k) that
produces the lowest cost, where K is given by:

K =
(
R + BT PB

)−1
BT PA (4.6)

and P is the stabilizing solution to the discrete-time algebraic Riccati equation (DARE)[15]:
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P = AT PA − AT PB
(
R + BT PB

)−1
BT PA (4.7)

as mentioned a discrete quadratic cost function (4.3) is used to quantify the performance
of the digital control. This is opposed to a continuous cost function (4.8). For small
sampling times the difference is negligible, but as T grows interesting phenomena such
as hidden oscillations/intersample ripple may occur which can skewer the resulting cost
value, J .

J =
∫ ∞

0

[
eT (t)Qe(t) + uT (t)Ru(t)

]
(4.8)

Figure 4.1 and 4.2 shows the real cost and the cost calculated using the discrete-time
cost function (4.3).

Figure 4.1: With a smaller sampling time of 0.2s the discrete-time and the continuous-
time cost function yield very similar results for performance as expected

Increasing the sample time, T increases the cost as expected, but the different cost
functions give misleading results as the intersample behaviour is neglected in the discrete-
time version as made clear by Figure 4.2.
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Figure 4.2: For a larger sampling time of 2s the discrete-time cost function results in
a significantly smaller cost. The reason is missing information concerning intersample

behaviour.

4.2.1 LQR Stability

For a system linearized about an equilibrium point x∗ is asymptotically stable about x∗

if solutions that start close enough to the point, x∗ remain close to it and eventually
converge to the equilibrium.

Given the infinite horizon LQR problem where R ≻ 0 is positive definite, Q ≽ 0 is
positive semi-definite and the pair (A,B) is observable and controllable there exists a
unique and positive definite solution to the discrete algebraic riccati equation, P , and
the optimal closed-loop system:

ẋ = (A − BK)x

where:
K = R−1BT P

is asymptotically stable. This can be verified by looking at the closed-loop eigenvalues of
the system. If the real parts of the eigenvalues are negative it is a sufficient and necessary
condition of a stable system as shown in section 3.1.

4.3 Simulated and applied results

Figure 4.3 display the systems simulated response to zero-order hold discretization and
setpoint regulation for each axis. Figure 4.4 shows the actual applied response when the
same settings were applied to the real 3DOF hover.
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Figure 4.3: Simulated response of ZOH discretized system with T=0.2.

Figure 4.4: Actual response of ZOH discretized system with T=0.2 when applied to
the hover system. The closed-loop response follows the reference quite well, however

there is a static deviation due to the lack of integrator in the LQR method.

4.4 Event-triggered control

!! Why it is important to constrain energy consumption, communication and computation
events !!

It is important to consider energy consumption and communication loads on systems.
Rather than computing the control law (4.2) every constant time-step T like in section
4.2 u can be computed only when a certain threshold is reached where performance is no
longer satisfactory. To define such a threshold a way to quantify performance is needed,
one way to do this is by employing a Lyapunov function for the ideal closed-loop system.
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The Lyapunov function can be thought of as a way of describing the energy of a system.
One can imagine V (x) as a set of contour lines with constant distance to the equilibrium
point of a system x∗ where its energy is equal to zero. The time derivative of the function
V̇ (x) describes the evolution of the total energy in the system i.e. whether it accumulates
or disperses energy. Therefore, for a stable system the Lyapunov function must satisfy
the following criteria: V (x) > 0, ∀ x ̸= x∗

V (x∗) = 0V̇ (x) < 0, ∀ x ̸= x∗

V̇ (x∗) = 0

Finding the Lyapunov function can be difficult in certain cases, but for a linear system
ẋ = (A + BK)x the function is denoted by:

V (x(t)) = xT (t)Px(t) (4.9)

Where P ∈ Rn×n is some symmetric and positive definite matrix. The derivative of
V (x) needs to satisfy the linear matrix inequality (LMI):

V̇ (x(t)) = −xT (t)Qx(t)

≤ −σxT (t)Qx(t)
(4.10)

Where σ ∈ [0, 1] determines the rate of convergence of V̇ (x). If a slow decrease of V̇ (x)
can be tolerated, σ can be set to a small value.

The time derivative of the Lyapunov function can be found by taking the partial derivatives
of V (x(t)) along with the property (AB)T = BT AT ⇒ ẋT (t) = xT (t)(A + BK)T :

V̇ (x(t)) = ∂V

∂x

∂x

∂t
= ẋT (t)Px(t) + xT (t)Ṗx(t)︸ ︷︷ ︸

0

+xT (t)Pẋ(t)

= xT (t)
(
(A + BK)T P + P(A + BK)

)
︸ ︷︷ ︸

−Q

x(t)

= −xT (t)Qx(t) ≤ −σxT (t)Qx(t)

(4.11)

Where the matrix Q ∈ Rn×n is symmetric and positive definite. The negativeness of
the derivative V̇ (x) guarantees the decreasing of the Lyapunov function.
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Since the aim of event-triggered control is to reduce the amount of times the control
input signal u is updated, the signal is held constant between consecutive updates using
a zero-order hold.

u(t) = u(tk), ∀t ∈ [tk, tk+1), k ∈ N

Where the sequence {tk}, k ∈ N is referred to as the triggering times and represent the
instances at which the control signal (4.2) is updated and sent to the actuators. It is
important to note that the triggering times will in general not be equidistant, therefore
the implementation of event-triggered sampling will result in aperiodic control. The
event-triggering condition is defined using equation (4.11), when the condition is about
to be violated, i.e., at the threshold where the inequality (4.11) becomes an equality the
input signal is recomputed. Introducing the error variable:

e(t) = x(tk) − x(t) ∀t ∈ [tk, tk+1), k ∈ N (4.12)

using (4.12), the closed-loop system during the time interval [tk, tk+1) can be rewritten
as:

ẋ = Ax(t) + BKx(tk)

= Ax(t) + BKx(t) − BKx(t)︸ ︷︷ ︸
0

+BKx(tk)

= Ax(t) + BKx(t) + BK (x(tk) − x(t))︸ ︷︷ ︸
e(t)

= (A + BK)x(t) + BKe(t)

(4.13)

By considering this into the time derivative of the Lyapunov function (4.11) it can be
rewritten as:

V̇ (x) = −xT (t)Qx(t) + 2xT (t)PBKe(t) (4.14)

Finally, the event-triggering condition can be defined by rewriting the inequality (4.11)
in the following manner:

− xT (t)Qx(t) + 2xT (t)PBKe(t) ≤ −σxT (t)Qx(t)

w�
− (1 − σ)xT (t)Qx(t) + 2xT (t)PBKe(t) ≤ 0 (4.15)
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The event is triggered at the triggering times, tk which is defined as the times when the
equality (4.15) holds. The irregular occurrence of these instants proposes the question of
the existence of a lower bound, τ, tk+1 − tk ≥ τ, k ∈ N, which in the literature [16] is
referred to as the minimal inter-event time. When the minimal inter-event time is too
small, approaching or even equal to zero, an event triggered implementation will require
very fast updates, even infinitely fast for τ = 0. Such a value for τ would be impossible
to implement digitally.

4.4.1 Simulated and experimental results

The simulated results worked out as expected after implementing the triggering condition
(4.15) into simulink using function blocks as seen in Appendices B B and C C. The
condition was designed to drive the system to zero as opposed to the error signal as for
standard feedback controllers. After initiating the system the condition was violated
quickly and performed as expected. The performance of the control and the actuator
instances are presented in Figure 4.5.

Figure 4.5: Simulated response of event-triggered control when initialized at an elevated
pitch angle.

The same setup was implemented on the laboratory model, however the resulting
performance was unsatisfactory. Despite the triggering condition performing as expected
as seen in Figure 4.6.
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Figure 4.6: Trigger condition as deviations from zero was introduced through pushing
the model.

Figure 4.7 shows the motors being actuated as the hover deviates from zero.

Figure 4.7: Motor actuation during experiments on the hover system as the trigger
condition is violated. The asynchronous samples are clearly present.
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Conclusion and Future Directions

The foundation of this thesis was to investigate sampled-data strategies for control
of a continuous- time system. The main goal was to compare different discretization
techniques, sampling times and strategies to find more optimal and efficient ways of
performing digital system control. In conclusion the forward Euler discretization technique
is the worst method since it does not preserve stability and has lower performance in most
cases then the other techniques reviewed. The backwards Euler performes better however
it does not compare very well to the Tustin approximation which in turn can not compete
against the zero-order hold. This was expected as the ZOH model is a mathematical
model of the practical signal reconstruction done by conventional digital to analog
converter. It was also possible to control the system with much larger sampling times
which would be beneficial in resource constrained environments. The event-triggered
control unfortunately didnt go as well as i had hoped, but the simulation showed promise.
The triggering function picked up when the system deviated past a certain threshold and
the controller was updated (however poorly so).
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Sampled Data Strategies For The Control of a 3DOF 
Hover System

Emil E. Kleivdal
University of Stavanger

A sampled data control system refers to a control system in 
which a continuous plant interacts with a digital
controller.

The System

A special thank you to Damiano Rotondo for invaluable help 
with the project.
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Linear Quadratic Regulator

Discretization

The dynamics of each axis can be described by the following 
three equations:

Modelling
A popular approach to designing a controller for a linear time-
invariant (LTI) system is the linear quadratic regulator (LQR).
LQR is an optimal control technique based on the state-space 
representation of a system. 

The technique is used to design a control law, 
that minimizes some cost function, J.

The cost function includes matrices Q and R that penalizes 
the time it takes to regulate as well as the energy expenditure 
during regulation. Tweaking the matrices allows for additional 
freedom when tailoring the regulator to a specific system.

Example of a LQR 
controlled system.

For a digital controller to interact with the continuous-time 
signals coming from the hover, said signals must first be 
transformed into their discrete-time counterparts. Several 
discretization techniques are utilized in this thesis to achieve 
this.

• The explicit Euler’s method , as seen in the figure below.
• The implicit Euler’s method.
• Tustin approximation, sometimes referred to as the bilinear 

transform.
• Zero order hold discretization.

The hover consists of a round 
frame with four propellers, 
each driven by a DC motor. The 
hover is mounted on a 3 
degrees of freedom (DOF) pivot 
joint. The propellers generate 
lift  that can be used to move 
control the pitch, roll and yaw 
angles. 

The position of the hover is 
monitored by three 
encoders, one on each axis. 
These encoders produce a 
continuous signal that 
forms the basis of the state-
space model used to 
mathematically represent 
the hover system.

From these equations a state-space model given by

can be constructed by combining a proper choice of state, 
output and input vectors with the equations for angular 
motion above.

The resulting state-space model written out was found to be:

The following graph demonstrates the performance of LQR 
control applied to the hover system compared to simulations 
after zero order hold discretization:

Graph 1,  Pitch angle comparison.

Graph 2,  Yaw angle comparison.

GRAPH

Event triggered control
The idea is to monitor the state of a system and only compute 
and transmit output signals when it is necessary. The aim is to 
reduce communication load on networked systems as well as 
the computational power required by embedded 
microprocessors.

This is accomplished by implementing an event triggering 
condition.

The condition is violated once the system deviates from the 
desired state past a certain threshold. The figure below 
shows how the event triggered system brings back to zero 
after, for instance a gust of wind. Note that the control law is not 

updated with a fixed period.

A drawback of event triggered control is that it requires the 
constant monitor of the systems states, a possible way past 
this is self triggered control. In self triggered control 
measurements are only taken at certain sampling instants, 
where at each sampling instant the next is determined.

This makes it possible to completely shut off sensors and 
communication between samples, further reducing energy 
usage and bandwidth requirements, however it renders the 
system strictly open-loop between samples.

The roll and pitch models are 
similar as the angle is decided by 
the difference in thrust between 
the two propellers on said axis, as 
the figure below shows. The yaw 
angle on the other hand is 

determined by all four 
propellers together.
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Simulink schemes
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Quanser	3	DOF	Hover:
Closed-loop	Actual	System

X

X_d	(rad)

u	(V)

LQR	Controllerx_d	(rad)

Desired	Position
from	Joystick

u	(V)

X_meas

Vm	(V)

3-DOF	Hover

x_d	(rad)

Desired	Angle
from	Program

Vm

X_sim

X_des

Scopes1



Ch	#0	=	pitch
Ch	#1	=	roll
Ch	#2	=	yaw

3DOF	HOVER	Subsystem
Reads	angles	from	encoder	and	applied	voltage	to	motors.

u	=	[u_front,	u_back,	u_right,	u_left

A0	#0	=	front	motor
A0	#1	=	back	motor
A0	#3	=	right	motor
A0	#2	=	left	motor

x	=	[theta_y,	theta_p,	theta_r,	theta_dot_y,	theta_dot_p,	theta_dot_r,	]

Motor	Input	Voltage

yaw

pitch

roll

2
Vm	(V)

1
X_meas

UPM	Voltage	Limit:
0	to	VMAX_AMP

HIL
Write
Analog

(HIL-1)

HIL-1	(q8_usb-0)

Encoder	Resolution:
Yaw

Encoder	Resolution:
Roll	

Encoder	Resolution:
Pitch

Derivative	Filter:	Yaw

Derivative	Filter:	Roll

Derivative	Filter:	Pitch

Cable	Gain
Pre-Compensation

Cable	Gain

1
u	(V)

HIL
Read
Encoder
Timebase

0

1

2

(HIL-1)
yaw

pitch

roll



Desired	yaw	angle
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