
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/specialization: Spring semester 2022

Bachelor in Computer Technology Open/Restricted access

Author(s): Darya Baturyna, Christer Constantin Selbach Iordanescu

Subject responsible: Karl Skretting

Supervisor(s): Karl Skretting

Title of the bachelor’s thesis: Visualisering av stor mengde kartdata for Hafrsfjord

English title: Visualization of a large amount of the map data for Hafrsfjord

Study credits: 20

Keywords: Number of pages: 54

Python, OpenCV, Qt5, Image processing, big data, GIS, visualization + attachments/other: 9

Stavanger, 15 May 2022

Abstract

The problem statement is to create an application that can process large
and redundant data files received as coordinates of Hafrsfjord along with
depth level, such that depth for each point can be shown expediently; with
further data visualization as images and depth simulation to show drying
of the whole Hafrsfjord as well as the part of it.

The workload is split into two parts: one for the handling of the raw data,
and one for the visualization. The raw data files containing the coordinates
with their respective depth levels were processes so that they could be stored
in two-dimensional data structures. This was done in order for the data
structures to be converted into images. Instead of converting the depth
coordinates into a single big image, the decision was made to create the
image through splitting it into tiles. Received images in the form of tiles of
specified size are displayed in the application. All loading is happening in
the background to avoid lags due to the amount of images. To show drying
of the Hafrsfjord, a depth simulator is created, allowing to change the water
level based on the chosen sea level.

The solution to the problem was to generate data structures for each tile, so
that when reading through the data files, each coordinate could be appended
to its belonging data structure. This resulted in each data structure could
easily be converted into a tiled image. The final application includes an
easy-to-use user interface, that automatically arranges multiple photos with
thought to effectivity, provides depth level and drying features and includes
a built-in map editor e.g., grid, pointer, extra map signs, etc.

i

Contents

Abstract i

Acknowledgements vi

1 Introduction 1

1.1 Universal Transverse Mercator (UTM) 2

1.2 What’s different about our app? 3

1.3 Technologies . 3

1.3.1 Python . 3

1.3.2 NumPy . 4

1.3.3 PyQt5 . 4

1.3.4 OpenCV . 5

1.3.5 GitHub & Overleaf 5

1.3.6 Collections/Deque 6

1.3.7 Classes provided by Karl Skretting 6

ii

CONTENTS

1.3.8 AppImageViewer1 7

1.4 Further development . 8

1.5 Outline . 8

2 Manipulation of raw data 10

2.1 Introduction . 10

2.2 Constructing a tiled map . 11

2.2.1 A tiled image . 11

2.2.2 Zoom Level . 11

2.2.3 Reading the Files . 12

2.2.4 Two-dimensional Numpy Arrays 12

2.2.5 The offset . 13

2.2.6 asc/z01FilesMeta . 13

2.2.7 A tiled Map . 13

2.3 The class: HafrsTiles . 15

2.3.1 tileDimension() . 15

2.3.2 hdpToTileAndPoint() 15

2.3.3 nTilesInFilesMeta() 16

2.3.4 addTilesToArray() 16

2.3.5 addTilesToDict() . 16

iii

CONTENTS

2.3.6 populateDict() . 17

2.3.7 curOpen(), curRead(), curClose() 17

2.3.8 addPointsToTiles() 17

2.3.9 createImage() . 18

2.4 How to run the program . 18

2.5 Results . 18

2.5.1 Amount of generated images 18

2.5.2 Time and memory 19

3 Visualization and Graphical User Interface 21

3.1 GUI layout . 22

3.2 List of methods . 22

3.3 Limitations . 26

3.4 Program . 27

3.4.1 Zooming . 27

3.4.2 Mouse events . 28

3.4.3 Navigation/Position information, extra signs & Grid 29

3.4.4 Depth simulation and scaling dialogue 31

3.5 Visualization of images . 33

3.6 Testing . 37

iv

CONTENTS

4 Discussion 38

4.1 The depth values . 38

4.2 The tiled images . 39

4.3 Missing values . 40

4.4 Building the image . 41

4.5 Depth visualization and time complexity 41

4.6 Placement of multiple pixmaps and extra objects 43

4.7 Economy and environmental accounting 45

5 Conclusion 46

Bibliography 48

Attachments 48

A Software 49

A.1 Directory tree . 49

A.2 Download links & Requirements 52

A.2.1 Installation . 52

B User manual 53

B.1 Application startup . 53

B.2 IVE Keyboard Shortcuts . 55

v

Acknowledgements

We would like to thank our supervisor, Karl Skretting, for valuable
guidance and expertise throughout this thesis process.

vi

Chapter 1

Introduction

The ancient Greek scientist Ptolemy, in his famous "Guide to Geography"
[9], thought that the map, using mathematics, allows us to survey the entire
Earth in one image. A depth map, as it can be guessed from the name alone,
an image or image channel that contains information relating to the distance
of the surfaces of scene objects from a viewpoint [10]. It is needed so that
fishermen, travelers can navigate a section of water, also frequently used
in hydrogeological observations to track aquatic environment changes and
for understanding the depth at the given location, as well as in other parts
of the reservoir. The main issue is that most of the information comes in
large and difficult to read files, making it almost impossible to analyze or
simulate potentially upcoming changes.

Figure 1.1: Thesis

1

1.1 Universal Transverse Mercator (UTM)

The objective of this thesis (fig. 1.1) is to build a program that can read
both large and redundant depth data files, interpret and visualize the data
in a clear way. Also, allowing to track and simulate changes in the water
level, e.g., simulating devastation of the water in Hafrsfjord.

1.1 Universal Transverse Mercator (UTM)

In our thesis, Hafrsfjord data comes in .asc or .z01 files containing both
north and east coordinates given in Universal Transverse Mercator (UTM)
coordinates [6]. Universal Transverse Mercator is an international system
for map-references and is a two-dimensional coordinate system. The UTM-
system covers the world’s entire surface and is sectioned into two parts. The
first part is east-west and is divided into 60 zones that are 6 longitudes wide.
The next part is north-south and is divided into 20 belts, which extend for
8 latitudes. These 20 belts has been given the letters ranging from C-X,
excluding the letters I and O. The surface of the world has with this been
divided into 1200 (60×20) zone belts [6]. The UTM coordinates included
in this project starts with 32V, where 32 is the zone and V is the belt (as
shown on fig. 1.2).

Figure 1.2: UTM

2

1.2 What’s different about our app?

1.2 What’s different about our app?

The problem statement split into two main parts: raw data and GUI. One
of the main goals for the project is to keep everything at a good productivity
and efficiency level. In the earlier work with Hafrsfjord, coordinates were
stored in a database which made it harder to work with, now all coordinates
are stored in separate .asc files. Still, the time it takes to go through hundred
million coordinates in .asc files is long, to keep up with the set goal, create
a productive and efficient app, the expected running time for all the data
to process was set to 14 hours. The time it takes to process all raw data
files from point to point was optimized to 12.5 hours.

In case of image visualization, Google Map’s[7] concept of splitting image
into tiles used to make image processing at different levels more comfortable.
The concept goes out with starting at a default level and splitting images
into given tiles size while zooming in and zooming out. This technique allows
providing more details per tile and increases efficiency during different image
manipulations provided in GUI part (image display, color change, depth
level simulation, etc.).

And last but not least, both raw data part and GUI are independent and
can be run separately, which significantly increases the program’s runtime.

1.3 Technologies

This section aims to describe the different technologies and libraries used
to present raw data into viewable tiled pictures with further visualization.

1.3.1 Python

Python is an object-oriented programming language that is easy to use,
that aims to help users construct clear and logical code.
Python comes with a large array of libraries and frameworks that comes in
handy for both big and small-scale projects.[4] In the course of our study in

3

1.3 Technologies

the university of Stavanger, Python has been the most used programming
language, and is a natural choice for us to use in the development of our
thesis.

1.3.2 NumPy

NumPy is the central package for scientific computing in Python. It is a
Python library for multidimensional arrays objects, which is faster, more
flexible and more complex than the built-in Python arrays. It also pro-
vides a collection of routines for fast operations on arrays, including logical,
mathematical, shape manipulation, sorting, basic linear algebra, selecting
and a lot more. [8]
For our project, we were given a set of files containing UTM coordinates.
After the files were compressed to 5 percent of their original size, we were
left with files that were 1.25 gigabytes large in total, containing 887141602
UTM coordinates.
For this large amount of elements, it would have been too slow to use
Pythons built-in arrays, so NumPy was a much better choice for the com-
putation.

1.3.3 PyQt5

Qt itself is a large and popular framework on C++, used for creation of
graphical user interfaces on all major desktop, mobile and embedded plat-
forms such as Windows, Linux, macOS, Android, iOS and many more.

PyQt is an open source Python binding for the Qt widget toolkit, func-
tions as a cross-platform application development environment. It consists
of over five hundred classes covering a decent range of features such as
XML processing, networks, Web toolkits, SQL databases and GUI.PyQt is
widely used by many large companies from various industries: LG, Mer-
cedes, AMD, Panasonic, Harman, etc.

Most of the documentation written for PyQt is either for C++ language
or PyQt4 version, while in this application we are using the newest version
PyQt5. Despite not that simple searching work, PyQt5 is a good choice for

4

1.3 Technologies

GUI due to use of NumPy and OpenCV for image processing.

Another graphical framework that was considered - Tkinter, which is simple
and fast in development. But in contrast to Tkinter Qt has its own designer,
the set of Qt components is wider and better than in tkinter and last but
not the least Qt libs may be more suitable for GUI (e.g. due to asynchrony).

1.3.4 OpenCV

Open Source Computer Vision Library builds on numpy where images are
stored in memory as numpy-arrays, which makes it a good choice for image
processing. Besides that, OpenCV is widely used in companies, research
groups and government agencies. But most of the information is written
for C++ same as PyQt5 documentation.

OpenCV has extremely simple user interface, contains a library for Python
with a bunch of CV functions and has excellent performance.

1.3.5 GitHub & Overleaf

GitHub is an open source code hosting platform for version control and
collaboration. Due to its pros as code storage and sharing, easy team com-
munication and analyzing of activities, it was used as our group’s main
social network.

The Kanban board technique used in a project management tool by GitHub
allows having a full control over each member’s tasks and track of progress.
On the board itself, each member can drag tasks, add bugs issues or note
cards.

The beauty of GitHub version control, lies in easy access to a previous ver-
sion of the project at any stage of the process, which gives space for secure
updates without worrying about losing or destroying any data. Program-
mers can easily roll back the application and run it locally.

Overleaf is another useful tool to make collaboration on a project easier and

5

1.3 Technologies

is an analogue of online LaTeX. It provides built-in templates for different
document types, allows real-time edition by several members and provides
full range of different text modifications, file attachments, adding of code
and lists and even more.

1.3.6 Collections/Deque

Deque in python is implemented using the module “collections”. Deque is
a double-ended queue, and is preferred over the Python list structure in
cases where operations such as pop and append are needed. There is O(n)
complexity for pop and append operations on pythons lists. As for deque,
there is O(1) complexity for the pop and append operations. [3]

Because of the large amount of data in our project, it made it a natural
choice to use deque over lists, as this would reduce the time it takes to read
all entries by a lot.

1.3.7 Classes provided by Karl Skretting

This section will contain classes that Karl Skretting has provided us to build
our program.

HafrsDepthPoint

HafrsDepthPoint is a class used to represent our UTM coordinates in a
neatly fashion. It takes three values as parameters; North, East and Depth,
and depending on the method chosen, it can represent the point in various
ways. For our project, we only needed the point to be represented with the
offset subtracted from the north and east values.

6

1.3 Technologies

HafrsDepthPointList

This class builds on HafrsDepthPoint in that instead of listing one point
at a time, it appends multiple points into a python list, with an append
method that is more memory efficient.

HafrsFiles

The HafrsFiles is a class that makes it easier to use the depth data files.
The asc-files we were given were uncompressed text-files and are way too
large. By using two modules created by Karl Skretting; clsMyBAzip1.py
and funMyCompress.py, which is used for compressing and decompressing
files, our asc-files were compressed and converted to z01-files, which are 5
percent of the size of the asc-files.

HafrsFiles contains a number of handy methods, but the ones we used were
for opening, closing and reading files. Because the asc-files were decom-
pressed and were converted to z01-files, it was not possible to process them
without the use of these methods.

1.3.8 AppImageViewer1

AppImageViewer1 is a simple Qt program made as example solution to parts
of assignments in ELE610: Robotic technology course, which was provided
by our mentor as a template to build the application on. The program
contains two main classes: MyGraphicsView and MainWindow.

MyGraphicsView class contains basic examples of the processed events and
controllers for a mouse such as mousePressEvent, mouseMoveEvent and
mouseReleaseEvent; all of the events take cursor position according to the
scene into consideration. This class uses some variables that belong to
MainWindow object.

MainWindow is the main class that contains settings for a window, view
and scene setup, and some basic image processing methods such as open,

7

1.4 Further development

close and save a file and a more complex method for image cropping.

1.4 Further development

The project we have worked on is done within the frames of our thesis
goals. The finished program is buildable and has a potential for further
development. There are some features that are left uncompleted due to
time restrictions that will be mentioned in a later chapter and could be
resolved in further updates.

One of the extra features that could be added is building maps with different
geological map references. A more flexible solution could be implemented
such that map references could be converted into other map references,
making the program independent on receiving only the UTM coordinates.
Many famous real-time location sharing apps such as Google Maps, Gule
Sider, etc. use World Geodetic System WGS84 [6] standard as the default
reference coordinate system and provide conversions to other coordinate
systems.

The program is currently not capable of distinguishing heights that are
above water levels, known as altitude. In case of wider range of heights and
depths, altitude and sea level, an extension allowing to manipulate height
data alongside with depth level would be useful. As well as, it can be
expanded with GUI visualization of heights based on altitude and special
objects or formations (rocks and boulders).

1.5 Outline

The rest of the thesis is outlined as follows:

Chapter 2 presents raw data used in the project, including methods
to manipulate data and files alongside with results and solution to
solve data processing.

8

1.5 Outline

Chapter 3 introduces visualization goals, GUI folder tree and pro-
gram with proposed solution on visualization of processed data.

Chapter 4 presents discussions and evaluation of results against
problem statement alongside with alternative solutions.

Chapter 5 summarizes and concludes the work done.

Bibliography and Attachments includes a list of resources used
in researching work, directory tree, user manual and required instal-
lations and a downloadable zipped file with application.

9

Chapter 2

Manipulation of raw data

2.1 Introduction

Hafrsfjord is a fjord that resides in Stavanger and Sola. The distance from
its most northern to its most southern point stretches for 9 kilometres.[5]
We were handed data files containing UTM coordinates that covers the
entire fjord.

This chapter will cover what a tiled image is and how to build a program
that can generate tiled images by using the large set of data files containing
UTM coordinates with corresponding depth values. The goal is to create a
program that enables the end application a way to view the whole fjord or
sections of it, by enabling zooming.

First comes a description of what a tiled image and map is and mentioning
some key features used in the development process. Secondly there will be
a description of what the program contains of and how it works.

10

2.2 Constructing a tiled map

2.2 Constructing a tiled map

2.2.1 A tiled image

Instead of rendering a single image, we broke our image into smaller even
sized squared pieces (tiles), that could be put back together, just like mosaic.
As an example, think of an image of size mxm. The amount of tiles that can
be generated (n) is dependant on the image size (m) and the tile dimension
(d). To compute n, the equation used is: n = m2/d2. To calculate the tile
dimension (d), we decided on using a zoom level as input in this equation
2.2.2

Figure 2.1: 20x20 image split into 25 4x4 tiles

2.2.2 Zoom Level

The zoom level is a metric for how much or little the application is able to
increase or decrease the size of the image. The equation for calculating the
tile dimensions: 2(14− ZoomLevel)
We chose zoom levels that fit into a range between 1 and 9 which returns
appropriate tile dimensions for our project. The base or default zoom level,

11

2.2 Constructing a tiled map

where each pixel represent 1x1 meters, is zoom level = 5. So if you put 5 as
ZoomLevel into the equation: 2(14− 5) you will get 512 as a result, which
is our base tile dimension.
For zoom level 5, each pixel is 1x1 meters. If you increase the zoom level,
you will get smaller tile dimensions with corresponding pixel sizes. For
example, if you chose zoom level 9, each pixel will correspond to 1/16x1/16
of a meter or 6.25x6.25 cm. On the other hand, if you decrease the zoom
level, the tile dimensions will get bigger. For zoom level 1, the tile dimension
will be 8192x8192, and each pixel will correspond to 16x16 meters.
The tile dimension given by our equation also helps to determine how many
tiles are required for a given area.

2.2.3 Reading the Files

Before we could start working with our UTM coordinates, we needed a way
to browse the text-files. Luckily, Python has an easy and short way to
handle files. To read through a file, we used the built-in open() function.
The way Pythons open() functions works, is that it takes a file, and a mode
(in our case, we used the mode "r", which is for reading) and in a sequential
order, goes through the file, line by line. [2] The beauty of this, is that we
now have our UTM coordinates extracted from the file, and ready to be
processed and added to Numpy arrays.

2.2.4 Two-dimensional Numpy Arrays

As pictures are most commonly visualized as pixel matrices [1], we chose
to build ours as a two-dimensional matrix, using numpy´s two-dimensional
array.
Here is an example of a UTM coordinate: 6534883.10 305802.71. The first
number is a north coordinate, and the second is an east coordinate, and
together they form a point. This point has a depth value assigned to it,
and is what is added to the matrix. One can define a numpy array as such:
np.zeros(X, Y)), which will create an X times Y matrix, where X are rows
and Y are columns. In our case, north is represented as rows and east is
represented as columns.

12

2.2 Constructing a tiled map

Figure 2.2: A 2-dim Numpy array

2.2.5 The offset

In this project, we use an offset of: (6530000, 300000), which is a point
located south-west of Hafrsfjord.
What we did with the offset was to subtract it from the UTM coordinates
to get more manageable numbers to work with, as its only the 4 last digits
in the coordinates that will vary within the area that Hafrsfjord is located.

2.2.6 asc/z01FilesMeta

ascFilesMeta or ascZ01FilesMeta are lists containing metadata from all the
asc or z01 files. Each entry in the list has a file name, number of points
within the file and maximum and minimum points.

Figure 2.3: The 15 first elements in the asc/z01FilesMeta

2.2.7 A tiled Map

The design process of creating a tiled map is to first choose a map size and
tile size. For a map with 20x20 as dimensions and a tile size of 4x4 would

13

2.2 Constructing a tiled map

generate 25 tiles. A map with these dimensions has 400 pixels, which is
equal to the amount of pixels contained in 25 4x4 tiles (4*4=16 pixels in
one tile, and 16*25 = 400 pixels).
This can be thought of as an x/y coordinate system with x and y values
ranging from 0 to 20, which is filled by 25 4×4 quadrants. Now that the map
is split into quadrants or tiles, it is possible to assign each tile a coordinate.
Assume that each tile has its own x/y coordinate system, and that its (0,0)
value lies at the bottom left side. This makes it possible to assign each tile
a coordinate at its (0,0) value, which makes it possible to navigate the map
by tiles.
So if we want to plot for example p1 that has the values (13, 13) in this
map, we look for the tile which corresponds to p1, and that is tile (3,3).
Within this tile, the point resides at (1,1).

The tile coordinate is calculated by floor dividing each element in a point
with the tile dimension; 13 // 4 = 3. The point within the tile is calculated
by taking each element in a point and using the modulus operator with the
tile dimension; 13 modulus 4 = 1.

Figure 2.4: Tile coordinates and points within the tile

14

2.3 The class: HafrsTiles

2.3 The class: HafrsTiles

HafrsTiles is a class made to manipulate the raw data, so that they can be
viewed as tiled images by creating methods for extracting relevant informa-
tion from the different data files. The class has three instance attributes;
tileDict for storing the different tiles as numpy arrays, tileArray for storing
all the different tiles as tuples, and level which is used to set the tile dimen-
sion.

2.3.1 tileDimension()

tileDimension() is a simple helper method that returns the tile dimension
by using the value of level, which by default is set to 5. It uses a simple
equation to calculate the tile dimension: tileDimension = 2(14− level)

2.3.2 hdpToTileAndPoint()

The hdpToTileAndPoint() method is in a way the engine behind the pro-
gram. It takes an UTM coordinate with its respective depth value as a
parameter along with the offset and converts the point into tile coordi-
nates, and where within this tile the point resides.
Take this point as an example which has the form (North, East, Depth):
(6534882.66,305802.76,11.18). To convert the point into a tile coordinate,
first off the offset needs to be subtracted from the north and east values
and then floor divided by the tile dimension. Secondly, to get the values
from the point within the tile, the procedure is almost the same, except
instead of using floor division, we use the modulus operator. This would
result in our point being converted into two tuples; (9,11) which is the tile
coordinate and (274,170) which is the coordinate within the tile. Lastly,
the depth value is multiplied by 100 so that it is converted from meters
to centimetres. So for level 5 which has tile dimension = 512, the point
(6534882.66,305802.76,11.18) lies in tile (9,11) which is 9*512 north of origo
(0,0) and 11*512 east of origo. This tile covers an area of 512*512, and
within this tile, our point is located at (6534882.66 - 6530000(north offset))

15

2.3 The class: HafrsTiles

- 9*512 which gives its north coordinate of 274, the same procedure is done
for the east coordinate with the east offset, and will give the point 170.

2.3.3 nTilesInFilesMeta()

This method uses hdpToTileAndPoint() as a helper method to calculate
the number of tiles that an asc or z01 file contains, by taking the max/min
entry in the asc/z01FilesMeta as a parameter. I created this equation that
calculates how many tiles a file consists of using the asc/z01FilesMeta en-
tries: n = (maxNorth - minNorth + 1) * (maxEast - minEast +1), where
n is the nuber of tiles within a file, maxNorth is the highest north value,
minNorth is the minimum north value, maxEast is the highest east value
and minEast is the minumum east value.

2.3.4 addTilesToArray()

addTilesToArray() is a method that calculates all existing tiles contained
in a asc or z01 file and appends them to the tileList attribute. By taking
an asc/z01 meta value as a parameter, the method looks at the max and
min values for its north and east coordinates to determine every individual
tile that the file covers.

2.3.5 addTilesToDict()

This method adds the tile values from tileList to the attribute tileDict.
addTilesToDict() iterates through the tileList attribute and converts them
into key:value pairs. The keys are made up of the current level appointed
to the class and the north and east coordinate that the tile belongs to.
The keys are assigned a Numpy array with dimensions that corresponds to
the level assigned to the class. Here is an example of how the key:value
pairs looks like for level 5 within the dictionary; ’HafrsNi5N4608E5632’ :
’np.zeros((512,512),np.dtype=int16)’

16

2.3 The class: HafrsTiles

2.3.6 populateDict()

This is a simple method that iterates though the asc/z01 meta list and
populates tileDict by using addTilesToDict() for each iteration.

2.3.7 curOpen(), curRead(), curClose()

These are methods created by Karl Skretting for opening, reading and clos-
ing files. CurOpen() prepares a file for reading by using pythons open()
function, and curClose() closes a file by setting the dFile attribute to None
which just tells the program that there is currently no active file open. For
.z01 files, curRead() will read a minimum of 3000 lines from a file and ap-
pend them to the deque, as for .asc files, curRead() can be set to more wide
variety of values.

2.3.8 addPointsToTiles()

This method starts by adding the correct file-path to the catalogs list, where
the z01 files are stored.
By calling the populateDict() method, all previous mentioned methods from
the HafrsTiles class will be called to form the tileDict.

The method iterates through the asc/z01FilesMeta, calls curOpen() and
reads through each file by calling curRead(), adding its data (UTM:depth
value pairs) to the deque. From here the data are removed by using the
function popleft() which returns the deques leftmost item. The item re-
turned gets processed by hdpToTileAndPoint() that generates information
required to access the correct key in the tileDict and adds points to its
respected numpy arrays. This is done as long as there are points left in
the deque, and when the file has been read through, a call to curClose() is
initiated, and a new iteration can commence.

After a successful call to this method, all of the Numpy arrays in tileDict
should have been populated with depth values.

17

2.4 How to run the program

2.3.9 createImage()

This method iterates though tileDict and uses OpenCv´s imwrite method
to convert all the numpy arrays into images. It takes an image file extension
and a file path as parameters.

2.4 How to run the program

The program can be run by creating an instance of the class and passing it
a level, or if the level is not specified it will be run with the default level of
5.
A call to the method addPointsToTiles() with the asc/z01FilesMeta as
parameter will populate all numpy arrays with points as long as all the
.z01/.asc files are within the specified file path, and a call to createImage()
with a file-extension as parameter will produce all the tiled images and store
them in the current file-path. If no file-path is entered into createImage(),
the images will be saved in the current working directory.

Figure 2.5: How to run the program

2.5 Results

2.5.1 Amount of generated images

The amount of images generated is dependent on the level used in the
program. For higher levels more images will be generated and visa versa.

The different amounts of images generated by the different levels is shown
below:

18

2.5 Results

Level 2: 5
Level 3: 11
level 4: 21
level 5: 57
level 6: 183
level 7: 660

2.5.2 Time and memory

Because the program had to read and process very big amounts of data, the
time it took to run the program took around 750 minutes or 12 and a half
hours. The dominant factor for the high run-time is reading through all
the files and adding points to the numpy arrays. To convert all the numpy
arrays into images using opencv had a negligible impact on the run-time.

To process all the data files for all 9 different levels, the run-time would be
at a total of around 112.5 hours.

The amount of memory the images occupy is dependent on the level. There
are a lot more images generated at high levels, but these images takes less
memory as they are of lower dimensions. At lower levels, fewer images are
generated, but each image is of a greater size and therefor occupy more
memory. The amount of memory for all the level 7 images comes to a total
of 10 MB, as for level 2, the total amount is 337 KB.

19

2.5 Results

Figure 2.6: Some run times for reading and appending points.

20

Chapter 3

Visualization and Graphical
User Interface

The main goal for the visualization part is to efficiently display processed
data in form of tiles and show that Hafrsfjord is emptied of water.

Visualization and Graphical User Interface section provides full information
about the final program layout, features provided for a user-friendly inter-
action, methods and techniques for visualization of the processed data and
more. Most part of the visualization concentrates around image display,
storing, manipulation and mainly on simulation of water level. Hafrsfjord
is emptied of water, which makes visualization of expected drying out an
important feature.

In creation of the visual part of an application, the QT library uses. The Qt
library includes the Qt resource system, which is a convenient way of adding
binary files such as icons, images, translation files, and other resources to
applications. For image manipulation such as conventions from numpy array
to qimage, qimage to pixmap and other way, Pylab library including NumPy
was used. Features such as depth simulation, colormaps and change of image
channels done with help of OpenCV.

More detailed discussion and overview of what was used and removed, al-
ternative solutions will be taken in section 4.

21

3.1 GUI layout

3.1 GUI layout

Full list of folders and files is provided under, full dictionary tree of the
whole application and detailed information can be found in Appendix A.1:

bachelor_2022
...

GUI

Images

QImagesMethods.py

app.py

clsColorDialog.py

stack.py

stylesheet.qss

3.2 List of methods

Contains a list of features that are included in the program and description
on how they are connected and contribute to a total solution and how they
are built up.

app.py: The main program for the application contains all methods to open
file, show tiles and different image manipulation methods such as cropping,
zooming, color change, depth value simulation, etc, Contains two classes:
QGraphicsView class with mouse events and MainWindow class with the
main program.

* Not all methods are listed in the table, details on QGraphicsView will be
taken in section 3.4.2 as well as methods for the grid and pointer.

22

3.2 List of methods

main_actions(),
main_menu(),
setMenuItems()

sets actions on the main
menu; setup main menu;

setup for the menu items.

toolbar(), showToolbar(),
statusBar()

setup for the toolbar;
enables/disables toolbar;
setup for the status bar.

addExtra(), assignSign(),
undoSigns(), deleteAll()

enables/disables add extra
feature; creates a pixmap
of the sign which will be

used in QGraph-
icsView.mousePressEvent()
and updates cursor; deletes

last added sign from the
scene; removes all added

signs to the scene.

sceneMoved()

enabled whenever scene is
scrolled, updates visible

tiles by calling
chooseImage() method,

draws back grid if the one
existed.

openFile(),
openFileDialog()

allows choosing an .asc file
and to display processed

image on the scene.

closeWin(),
save/printFile()

closes the window, saves or
prints the scene (only the

visible tiles will be
saved/printed).

23

3.2 List of methods

showHafrsfjord()

Main method to display
processed tiles, also used

to display tiles when
zoomIn/-out is called.

Uses
pixmap2image2np_multi()

to update qimage and
npImage array. Calls

chooseImage() that checks
and updates the scene if

image should be displayed.
Resizes scene sceneResize()

and updates menu items
setMenuItems().

pixmap2image2np_multi(),
np2image2pixmap_multi()

used to convert between
pixmap-qimage-nparray

when one of them is
updated.

removeAllPixmaps() removes all pixmaps from
the scene.

changeDepth(),
tryDepth(),
greyColormap() and
changeCmap()

First a changeDepth()
creates an object of class

that triggers tryDepth() for
a quick update of the

visible tiles on the scene.
Beforehand, images turned
to grey by greyColormap().
Chosen colomap is applied

by changeCmap().
Depending on results from

created object,
changeDepth() updates or

resets the scene.

clsColorDialog.py: Contains a program for dialogue window called in
app.py by MainWindow class in the changeDepth() method. The dialogue
allows quick test of the changed values by tryDepth() method called by
clsColorDialog.py when either slider value is changed, colormap assigned

24

3.2 List of methods

or scaling factor is updated.

scaleUp(), scaleDown(),
scaleReset(), tryScale()

called on buttons when
clicked, either scales an

image up, down or resets.
When tryScale() is called,

it updates scaling factor
and calls tryClicked()

method inside
clsColorDialog.py.

okClicked(),
cancelClicked()

either sends 1 if accepted
(OK), 0 if rejected

(Cancel) in changeDepth()
when

ColorDialog().result() is
called.

tryClicked()

gets threshold value,
colomap index and calls
tryDepth() method with
those values for a quick

visualization of the
image/-s.

sliderMoved(),
spinChanged()

updates threshold value
based on slider value;

updates slider value based
on the spin; both call

tryDepth() method with
updated threshold value.

getValues()

return threshold value,
called by changeDepth()

method to get the
threshold value.

stack.py: Class object created and called by app.py MainWindow class,
used to delete all or last added sign to the scene.

25

3.3 Limitations

push() adds an element to the top
(end of the array).

peek() returns 1st top/last
element of the array.

pop() removes top element and
returns its value.

isEmpty() and size()
return True if no elements
in a stack; returns stack
size.

QImageMethods.py: Contains methods such as conversion between qim-
age and image numpy array. Called by MainWindow class in app.py for
methods: pixmap2image2np_multi, np2image2pixmap_multi (for Hafrs-
fjord tiles) and pixmap2image2np, np2image2pixmap (for one image).

qimage2np()
takes qimage as input and
returns numpy array of an
image if successes.

np2qimage()

takes numpy array of an
image and converts to
qimage, return qimage if
successes, else empty
qimage.

Rest of GUI chapters provide feature limitations, program overview and
finally testing.

3.3 Limitations

Zooming Due to time consumption to create tiles for each level, the ap-
plication is using pre saved image folders, two levels over default and two
less than default level. In the first place, Zooming was not expected to
have any limitations, resizing of an image is now limited by 2 zooming levels
both ways.

26

3.4 Program

Scaling allows user to choose the wanted scaling factor from the checkbox.
The scale factor >1 indicates shrinking, and the scale factor <1 stands for
stretching. For the best scaling results that do reflect the general case,
it’s common not to use nice numbers such as 0.5, 2 or 4, etc. as they can
edge cases. To find unique factors, a current resolution of an image, w x
h, would be divided by the expectedly resized width and height returning
scale_x and scale_y factors. But in this project it’s hard to predict the
next best resolution mainly because of the variety of image modification,
therefore basic scaling factors of 2, 6, 14, 18 and 26 in square root are used.

Scaling can be easily activated with Ctrl+wheel.When setting up a wheel, a
problem occurred, the wheel event wasn’t able to scale when the scrollbar
appeared.To solve this problem, the wheel event is tracked by event filtering.

3.4 Program

Let’s take a look at the program itself.

3.4.1 Zooming

The amount of information available and size of a tile on each zooming
depends on a zoom level, activate from the View or by pressing Ctrl + +/-.
As a default start point, zoom level is 5 which corresponds to a tile of a size
512 pixels. Percent visualization is used to track changes in zoom level due
to its common use in mostly all application. Percentage is displayed on the
status bar at the button of an application.

When one of the zooming functions is triggered, image level is then going
one level up or down. If zooming is not successful, level and tiles size will
reset. A folder with images equivalent to the level received will be handled
by showHafrsfjord() method. If level is greater than the default one, >5, the
level parameter changes to +1 and tiles size is doubled. Same rules apply to
lower level, <5, the level updates to -1 and tiles size is now halved. Zooming
is equivalent to basic level 5 visualization of multiple images. Therefore, this
part will be taken together with subchapter 3.5, Visualization of images.

27

3.4 Program

3.4.2 Mouse events

For simplicity, most of the features provided in the IVE application bound
to the mouse, either to start an event or to end it. In this subchapter, only
basic interactions of MouseMoveEvent, MousePressedEvent, MouseReleased
and WheelEvent will be discussed. More details will come in a separate
feature subchapter

MouseMoveEvent allows displaying current coordinate position based on a
mouse position on a scene and its depth. All information, immediately,
shows on a status bar at the bottom of the application. MouseMoveEvent
is called whenever the mouse moves over the view.

Figure 3.1: Coordinates for cursor

MousePressedEvent is used mostly for all the features, some of them requires
direct interaction with the menu bar to start. Also, used for activation of
rubber band used in image cropping. Actions to crop an image, add a grid
or a point are first triggered from the View menu. Grid will be immediately
displayed, for the pointer, it requires to be added to the scene by Left-
interaction with the scene, or Right-click to remove a pointer. When mouse
is pressed, the pointer can be moved all over the scene til released. If nothing
mentioned is activated, Drag and move event starts, allowing to scroll with
the mouse all over the scene in both directions.

MouseReleasedEvent called whenever a mouse button is released after be-
ing pressed in the view. Currently, used for image cropping function to
deactivate rubber band triggered by MousePressEvent and to get coordi-
nates where the cropping should end. Also, this event takes part in the
drag and move method, which stops when mouse is released. If the pointer
is active, releasing the mouse updates the position of the cursor and calls
QMessageBox to show detailed information of the chosen location.

And lastly, WheelEvent called whenever the mouse wheel is rolled forward
or backward, calls self.scaleUp and self.scaleDown functions when combined
with Ctrl + +/-. A positive value indicates that the wheel was rotated for-
wards away from the user, and a negative value indicates that the wheel
was rotated backwards toward the user. To mention, mouse wheel intercept
with scrollbar which appears when scene is getting larger, therefor wheel

28

3.4 Program

event was modified to Ctrl+wheelUp and Ctrl+wheelDown. Scaling function
scales at the approximate mouse position and is limited to 4 times scaling,
but scaling factor can be modified and tested in Colormap and scaling dia-
logue. angleDelta().y() method provides the angle through which the mouse
rotated since the previous event.

All MouseEvents work only when scene is not empty. And coordinates
used in the events are received from event.pos(), it returns the position of
the mouse cursor, relative to the widget that received an event. Mainly
all parameters on the status bar, coordinates with depth value and image
pixels with zooming percentage, are updated by MouseEvents.

3.4.3 Navigation/Position information, extra signs & Grid

Position marker: Navigation is possible from the toolbar by clicking the
location button. An information box created with QMessageBox library will
pop up, and a marker will be set at the given position. To close navigation
mode, either click on the location button from the toolbar or right-click
anywhere on a pixmap.

Figure 3.2: Grid, navigation point and extra signs

Another useful feature is a grid, available from View menu for activation,

29

3.4 Program

Figure 3.3: Grid, navigation point for one image

deactivates the same way. North-east coordinates are displayed alongside
the grid. Grid size updates whenever self.zoomUp or self.zoomDown is
called. To create a more visual friendly and precise grid, showGrid() method
is called to check whether any grid exists if so make it visible, else draw a
new one. By using max_min() method that finds minimum and maximum
values of the tiles positions and then based on that creates a grid. Minimum
and maximum values are updated on each call of sceneMoved when scrolled,
allowing to create a dynamic grid. To draw a grid, another method used
drawGrid(), lines are added by addLine() and appended to the array that
keeps track of the grid lines on the scene.

1 qline = self.scene.addLine(line, -self.min_x + ...
self.tilepx, line, -self.max_x, pen)

2 self.gridLines.append(qline)

Extra signs is a new feature to add extra details or information to make
tiles. Works similar to the pointer. To activate the menu, Add extra signs
box should be checked, called by addExtra(). When a sign is chosen, a
method called assignSign(), sing is formatted to the pixmap and the cursor
is updated. To reset the cursor, right-click on the scene. Sings can be either
removed one by one or remove all items, last added elements will be removed
first. Sings are stored in a (First in-Last out), which simplifies removal.

Navigation points, extra signs and grid are created can be displayed to-
gether. To create a more precise position marker instead of top-left place-
ment, translate() method is used on x and y coordinates, which allows draw-

30

3.4 Program

ing in the center of a cursor. All elements, grid, points and icons, are inde-
pendet on the scene and cane be removed without effect on other elements.
To avoid any overlay when zooming or updating an image in Colormap
and scaling dialogue, self.resetGridPointer() method is called which resets
grid and point parameters by calling self.showGrid() and self.setPointer().
Extra signs can be removed by clicking on the basket on the toolbar.

3.4.4 Depth simulation and scaling dialogue

Depth simulation, colormaps and scaling can be accessed from View menu
- Colormap and scaling or simply by key combination Ctrl+D. For more
efficient work with images, all of them are turned into greytoned ones before
colormaps are applied. Colormap and scaling dialogue provides 4 types of
image modifications: choose one of the suggested colormaps, simulate depth
level, change scaling parameters and scaling itself.

Figure 3.4: Colormap and scaling dialog

ColorDialog class contains setup and methods for Colormaps and scaling
dialogue, is a descent of MainWindows class and QWidget. When dia-
logue is activated, the object of ColorDialog is created. For this class, extra
libraries have been imported such as QSlider, QLayouts, QSpinBox, QLa-
bel,QComboBox, QRadioButton, QButtonGroup, etc.

31

3.4 Program

Firstly, the range of colormaps displayed as droplist is created. Each item
in a list has its own id. When the user chooses from the list, the object
is triggered, calling self.tryClicked method. Index of recently changed col-
ormap is then received by self.selectmap.currentIndex() which returns id of
chosen colormap. Also, whenever the slider changes its value, the same
method, self.tryClicked is called. Threshold and slider values are equal,
therefore when slider value changes, threshold value sets equal to slider in
self.sliderMoved. As well as, when threshold value manually changes, slider
is set equally by self.spinChanged.

Both colormap index value and threshold are parameters in the method
self.tryDepth, called by self.tryClicked. This method allows the user to
quickly show results of colormap and threshold value, in other words the
user can choose colormap or use default one and simulate changes in depth
level by simply changing t value (=threshold value). Before any changes
may apply, the image is converted to gray singled channelled image. In
self.tryDepth, t value received from ColorDialog class is then set into
cv2.threshold(image, thresh=t, maxval=255, type=cv2.THRESH_BINARY)
where image is numpy array for an image, thresh stands for threshold value,
maxval sets all pixels greater than t value to its value and type is a threshold
type to be used. For THRESH_BINARY, the threshold value is a unique
number, all pixel intensities less that t value will be assigned 0, all pix-
els greater that t sets to max value, usually 255. This method simulates
changes in depth level by manipulating gray tones.

Human eyes are not built to observe fine changes in grayscale images, there-
fore a greyscaled image will be recolored. Colormap id parameter received
from self.tryClicked is then used in calling another method, self.changeCmap,
which takes in id together with image numpy array and applies colormaps
depending on id received.To mention, image numpy array remains the same,
no changes will occur til Ok is clicked. OpenCV defines 12 colormaps that
can be assigned to greyscaled images using cv2.applyColorMap(). But in
the output color reverses due to OpenCV’s sequence being in BGR, there-
fore cv2.COLOR_BGR2RGB method calls on an image to convert bgr to
rgb to achieve expected colormap. And to make it all show on a pixmap,
np2image2pixmap() sets all required parameters but as long as numpyAlso
is False, image numpy array is not modified.

1 self.greyColormap () #updates to grayscale if not yet

32

3.5 Visualization of images

2 #update threshold value , updates all but not numpy array
3 (used_thr , B) = cv2.threshold(im, thresh=t, maxval=255 , ...

type=cv2.THRESH_BINARY)
4 self.np2image2pixmap(B, numpyAlso=False)
5

6 #snippet of the code for colormap (mulitple tiles)
7 cmap = cv2.COLORMAP_SUMMER
8 satelight = cv2.applyColorMap(im, cmap)
9 satelight_vr = cv2.cvtColor(satelight , cv2.COLOR_BGR2RGB)

10 if key:
11 self.np2image2pixmap_multi(key , satelight_vr , ...

numpyAlso=num)
12 else: #when only one image
13 self.np2image2pixmap(satelight_vr , numpyAlso=num)

When the user is finished with all simulations, one of the three QPUsh-
Buttons is triggered. Depending on ColorDialog. Result, pixmap will be
backed up to its previous version or by receiving the final t.getValues()
threshold, change colormap, update all other features and save new pixmap,
numpyAlso parameter in np2image2pixmap() will be set to True, therefor
image numpy array will be updated.

Lastly, user can change scaling factor depending on preferred resizing and
scale in/out directly from the dialogue. All scaling can be reset with Reset
button. As mentioned before, scaling both ways is possible up to 4 levels.

3.5 Visualization of images

By accessing File menu - show Hafrsfjord, self.showHafrsfjord method is
triggered. In order to get started with visualization of images, a method for
iteration of all image files in a specified folder is expected, which requires
some extra libraries to import. Depending on the zoom level the amount of
files is dynamically increasing or decreasing, those circumstances make any
manual path updates inefficient.

In self.showHafrsfjord, os.listdit() method is called to iterate through the
images and print the names in order. To get started some imports have to be
done, operating module os to interact with the operating system and to get
access to the folders listdir() are imported. As mentioned, in the application

33

3.5 Visualization of images

Figure 3.5: Black-white Hafrsfjord image, level 5

all images are saved in .jpg and few in .png format, therefore only .jpg
and .png files will be loaded by using the endswith() restriction function.
The concept of displaying multiple images and furthermore modification of
the following lays in adding QGraphicsPixmapItems to the scene. Before
any pixmap is added to the scene, a check is triggered, in case there is
something, removeAllPixmaps() method will take care of it by removing all
added items. Hence, method is also used for zooming in and out, everything
is set dynamic. All image information is stored in a dictionary with (east,
north) as a key and contains an array as a value.

1

2 #snippet of the showHafrsjord()
3 self.imageDict = {}
4 self.visible = {}
5 self.min_y=self.min_x=10000
6 self.max_y=self.max_x=0
7 if len(self.scene.items()) > 0:
8 self.removeAllPixmaps(all=True)

34

3.5 Visualization of images

9 first_el = True
10 x, y = 0,0
11 path ="../Gui/Images/ImageTilesLevel"+str(self.level)+
12 "/ImageTilesLevel"+str(self.level)
13 sceneRect = ...

self.view.mapToScene(self.view.rect()).boundingRect()
14 for images in os.listdir(path):
15 image_info = []
16 impath = join(path, images)
17 if (images.endswith(".jpg") and ...

isfile(impath)) or ...
(images.endswith(".png") and isfile(impath)):

18 image_info = []
19 self.pixmap.load(impath)
20 if self.pixmap.isNull():
21 print("Couldn't load an image")
22 else:
23 north = int(images[9:13])
24 east = int(images[14:18])
25 self.pixmap2image2np_multi() #updates ...

qimage and npImage array
26 image_info.append(self.pixmap)
27 image_info.append(self.prevPixmap)
28 image_info.append(self.image)
29 image_info.append(self.npImage)
30 image_info.append(None) #acts like ...

self.curItem for each image
31 self.imageDict[f"{east},{north}"] = ...

image_info
32 if first_el:
33 first_el = False
34 x, y = east, north
35 self.firstx, self.firsty = east, north
36 self.chooseImage(east, north, east, ...

north, ...
sceneRect.width(),sceneRect.height())

37 continue
38 self.chooseImage(east, north, x, y, ...

sceneRect.width(), sceneRect.height())

All mentioned, main information such as pixmap, previous pixmap, qimage
and numpy array and object of the scene item (set to None), for each image
is stored in a dictionary, self.imageDict. Dictionaries mainly have searching
time complexity at O(1) and items can be searched by half key. This feature
may be quite useful in case searching by one of the coordinates. When it
comes to images received, each image name contains image level, north

35

3.5 Visualization of images

and east coordinates. A default level is 5 with tiles size of 512 pixels, tiles
position can be counted by dividing north and east coordinates by tiles size,
in the default case by 512. In case of image display, QGraphics coordinates
system start in the left-top corner with (0,0) origin. While images were
created with the thought of left-bottom corner with (0,0) origin. To handle
correct image display, coordinates are scale as (1,-1).

Visualisation of multiple images is built on GraphicsPixmapItem(self.pixmap)
that creates an item that will display the given pixmap, self.scene.addItem(...)
adds the given item to the scene. Depending on the amount of images
that are expected to load, lags may occur. To solve this problem, im-
ages are loaded in the background while showing only tiles inside the vis-
ible area. To handle any movement, all changes in scene are catched by
self.view....ScrollBar().valueChanged.connect(self.sceneMoved) which refer-
ences to self.sceneMoved method. With new x and y, old x and y, visi-
blewidth and visibleheight, we have all to update tiles. But this will work
for later images. In the main function, showHafrsfjord, a new element is
added, sceneRect. sceneRect returns origin of current view, width and
height. Since the chance for displaying some images from the start is very
law, (x,y)-start points from sceneRect are too law for values that are used
in an app, display of images will be built around the first image in a file.
The main goal is to find a north-east pair that is inside the range which is
handled by self.chooseImage():

1 sceneRect =
2 ... self.view.mapToScene(self.view.rect()).boundingRect ()
3 for key in self.imageDict:
4 if key in self.visible:
5 continue
6 east , north = self.key_convertion(key)
7 self.chooseImage(east , north , int(abs(sceneRect.x())),
8 ... int(abs(sceneRect.y())), sceneRect.width (),
9 ... sceneRect.height ())

Looking through self.imageDict to find key-pairs.First, the check is done
on the key, to find if it’s already visible. If not, call self.chooseImage() to
check if key-pair matches the requirements and if so, display and add to the
scene. The Final Hafrsfjord image is shown in 3.5.

36

3.6 Testing

3.6 Testing

As a starting point in GUI programming and setup, a simple image process-
ing program was used, AppImageViewer1. It contains some basic options
such as Open file, Save as, Close the program. For the testing purposes,
AppImageViewer1 program was used as a template and rewritten to use.
First, when Open file was clicked, a window allowing to choose an image was
popped up. The chosen image was then displayed on a pixmap. The image
used for testing was of expected in the future image size format, 3000×2500
pixels.

After an update, when Open file was triggered, it asked a user to choose
an asc-file and referenced the received information to an App.py file that
contained Hafrsfjord class. From the given information, a numpy-array is
created and converted into an OpenCV image that was then returned to
GUI’s MainWindow class. This feature still remains in the final project as
a potential for testing and future update of an app.

The image received is then displayed in a pixmap. Later the application was
updated, and extra class Tiles were added to split the received image into
tiles of a given format by simply calling zoomUp function. The idea was to
simulate splitting of an image and displaying several tiles on a pixmap.

Similarly, a class for Colormap and scaling dialogue created, it contains
its own main method to start the dialogue and some basic test methods.
Each class has its own tests inside the main method. App excepts .asc files,
images or just shows Hafrsfjord. All methods remain in the final product
folder, with thought for future update.

37

Chapter 4

Discussion

This chapter will contain a discussion around eventual improvements that
could have been implemented to the program, comparing the problem state-
ment with the results and presentation of the possible alternative solutions.

4.1 The depth values

A problem that occurred that was left unaddressed was that there could be
multiple depth values added to the same pixel. This would happen more
frequently at lower zoom levels, as each pixel would represent a larger area.
The result of this was that every time a depth value was added to the same
pixel, the program would overwrite the previous value, which makes the
representation of some pixels less accurate.
We came up with two theories on how to solve this problem. The first
theory was to calculate the average value of all depth values within one
pixel. This would represent the depth value in a more accurate manner
than the method used in our program. The second theory was to use an
80 percentile that would result in a more accurate representation than our
previous theory. This is because some values could be more spread out,
and by using 80 percentiles we would acquire a point that was in the more
concentrated area, instead of the average value that could be a less good
representation if some of the values deviated a lot from the majority of the

38

4.2 The tiled images

Figure 4.1: A pixel represented as 4x4m with multiple values

values.

4.2 The tiled images

The goal for generating the tiled images was to visualize the depths as
grayscale. OpenCV has a color-range ranging from 0 to 255. If a pixel has
the value 0, it will be presented in the image as black, on the other hand, if
a pixel has the value 255, it will be presented as white and values in between
0 and 255 will be grayscale.

The depth values from the data files were originally presented in meters.
If we were to use the depth values in this way, the image would become
almost completely black, because the water levels in Hafrsfjorden are low.

39

4.3 Missing values

Figure 4.2: Tiled image

By converting the depth values into centimeters, the images became more
detailed with better gray-scale, but this also lead to a problem. As pre-
viously mentioned, the color values range from 0 to 255, and because of
this, depth values greater than 255 centimeters or 2.55 meters all became
white. This is usually not a problem when viewing the map close to land,
where the depths decline, but further away from land, where depths become
greater than 2.55 meters, details fade away and pixels become all white.

4.3 Missing values

All black areas in the images represent either land or that no values are
present in the matrix.

There can occur black dots within the image, that represents a dropped
value, or a value that has not been recorded for some reason. A solution to

40

4.4 Building the image

this, which we have not had time to address, is to use the pixel value of its
adjacent point.

4.4 Building the image

To build all the tiled images for all the 9 different levels took around 112
hours, and is a non practical way to generate the images. A solution for not
needing to run the program 9 different times (one for each level), which we
did not have time to implement, is to run the program at level 9, where the
tile dimensions are at the lowest (1/32x1/32)m and build the other images
from these images.This could have been done by combining 4 level 9 tiles
which correlates to 1 level 8 tile, and by repeating this process, all the tiled
images for all levels could be generated, and this would take a fraction of
the time compared to re-reading through all the files for each level.

4.5 Depth visualization and time complexity

As given in the problem statement 1.1, the main goal for the visualization
was to create an application that can show Hafrsfjord processed data in
a user-friendly way, alongside with visualization of the whole or partial
Hafrsfjord dry out.

One of the main decisions made was to make Hafrsfjord class for the raw
data and visualization of the processed data, GUI, independent. It is quite
time-consuming to process raw data, in order to reduce the running time for
the application, all methods that may require tiles dependent on the level
were pre saved in the folder Images for a quicker access. On the other hand,
this technique requires some extra storage memory. The final application is
created the way that it wouldn’t require much effort to connect both parts
for further collaboration.

All the processed data is in the format of a big amount of tiles of a given
size that creates a lot of lags while first display. Which in the first place was
not that efficient due to the QGraphicsScene being emptied before getting
images for each new zoom in/out levels. With each zoom in level the amount

41

4.5 Depth visualization and time complexity

of tiles increases which causes even more delays when all of them are being
loaded and displayed. Therefore, all tiles are loaded in the background and
only tiles inside the visible area are being loaded for display. This method
also shows good timing while colormap and depth level modifications. When
Colormap and scaling dialogue are activated, quick changes extend only to
the visible area, which fastens the process drastically. As well as, when the
user decides to save the changes, then and only then all the tiles will be
updated, in the background. This method prevents any possible delays to
appear.

An alternative method for displaying images on zooming in and out,
could be creating different scene layers, which may reduce the time it takes
to switch between zooming levels. As explained in the GUI chapter 3.5,
while zooming in and out all the previous items stored in the scene are
removed and then new items in form of QGraphicsPixmapItem been added.
In case of the current application, this display technique doesn’t affect the
application in a drastic way, but may delay in the future.

One of the main features in GUI is Colormap and scaling dialogue which is
used to simulate depth level to show drying out, change colormaps and up-
date scaling factor. To solve the issue with drying out, threshold image pro-
cessing (segmenting images) method used. With help of threshold t (thresh)
value, each pixel in an image depending on its intensity will be replaced. If
pixel value is less than fixed thresh value, then by calling cv2.thresohold(),
the pixel will be given a value of 0, else if pixel intensity is greater than
the threshold, the pixel will get white. In case of depth visualization and
drying, this results in the darker colors (assigned to coastline) being darker,
and the gray-white pixels assigned to water becoming whiter, allowing to
manipulate pixels both way making darker pixels to show more on an im-
age, simulating drying. Or if going the other way, showing higher depth
level. To make changes even more visible, the user can choose one of the
provided colormaps. When it comes to application of colormaps, CV2 has a
good range of 12 different colormaps, but due to CV2 segment being BGR
format, a little conversion cv2.cvtColor(heat, cv2.COLOR_BGR2RGB) is
required.

In the early stage of application, instead of threshold and colormaps were
seaborne library used. Seaborne is an analogue of Matplotlib, which spec-

42

4.6 Placement of multiple pixmaps and extra objects

ifies mainly in graph visualization. This method was not that efficient in
subsequent perspectives. First of all, the definition of dots per inch, known
as dpi, is required in order to resize an image. The main issue with using
this method was lags and delays when larger images were added, also all
images over 3000x3000px. This method was optimized by plotting on the
same figure, but once again such modifications on larger images have little
to say, we can conclude that plotting was inefficient in this case. As another
alternative for one image updates, PyQtGraph could have been used, as it’s
more comparable with PyQt and is more frequently used for real-time graph
modifications.

4.6 Placement of multiple pixmaps and extra ob-
jects

In the previous section, visualization and display of multiple tiles taken to
look at. This part discusses methods used to store and further placement
of tiles on the scene before displaying as placement of extra items such
as grid, pointer and map signs. In order to processed data, it should be
stored somewhere in a form that when the visible area is moved, the pro-
gram would know what tiles to be shown next. For that purpose, all tiles
stored as pixmaps in the dictionary, converted to QGraphicsPixmapItems
and whenever QGraphicsPixmapItem tiles are in the visible area, add those
to the scene.

At the same time, there are several alternative methods on how to place
multiple pixmaps for further visualization. One of them is to use QGraphics-
GridLayout, by first adding pixmap to the scene self.scene.addPixmap(pixmap)
and creating GraphicWidget. The only problem would be QGraphicsLayout
that takes only QGraphicsLayoutItem. But again could be solved by cre-
ating a container class for the pixmap item of type QGraphicsLayoutitem.
And then implement the required function. This could be seen as another
way of placing tiles simular to the one used.

Secondly, one view can have only one scene. Then it is possible to add
pixmap to the scene, creating an item of type QGraphicsPixmap and adding
it to QGraphicsScene, assign scene to the view, and by adding view to the
layout create a layout of views. In the application, for each image, a pixmap

43

4.6 Placement of multiple pixmaps and extra objects

is created and then added to the scene. Before any pixmap is added, all
items previously assigned to the scenes are removed. This alternative is not
that efficient as it requires several views to be displayed and manipulated,
which causes a lot of dictionary manipulations and movements.

Therefore, the best alternative or potential upgrade is to use the layered
method discussed in section 4.5.

Another issue to mention is conversion of the tiled images back to the depth
array, this is not npImage array used in pixmpa2qimage2np. GUI class
contains conversion between pixmap, qimage and npImage array but due to
images being stored as .jpg and .png, it is not possible to convert those to
back to depth array. The reason is that .jpg type cannot carry more than
8 bits per channel and 8 to 16-bit integer for .png.

Beside main modifications, the application allows adding grid (array of lines
that create a grid), point and extra map signs to the scene. For application
of mentioned features, an extra item in the form of a grid, point marker
or stack of extra signs been added to the QGraphicsScene. Under will be
provided an old version for comparison.

Previously all items have been draw on a pixmap by QPainter which was
not a good practice in terms of access and update of the elements. Grid
updated self.npImage and could be backed up with self.prevPixmap while
pointer didn’t change an image array. Both grid and pointer could be
called together. For more precise drawing painter.translate(.5, .5) and
painter.setRenderHints(painter.Antialiasing) been added.

Updated version all changes happens independently and doesn’t require any
drawing to be called on the pixmaps. Meaning that any new items added to
the scene can be easily removed or edited without pixmaps being involved,
which make application more efficient and editions more productive. A
new feature for grabbing and dragging the point marker have been added,
allowing quick and simple location check. Display of an image created by
".asc" file allows displaying the coordinates alongside the grid. This feature
was removed for the tiles, for a better overview of the depth tiles, also
can be easily restored by just adding addText() method inside drawGrid()
function.

44

4.7 Economy and environmental accounting

The last thing to mention, is extra sings that can be added to the map.
The application allows, by enabling Add extra signs from the toolbar, to
add map signs to the tiles. This is the feature that can be modified and
updated by threshold image processing as well as it is done for the depth
values, if altitude values would be added.

4.7 Economy and environmental accounting

Due to the low energy consumption and the inappropriateness of specifying
the material used, the decision was made not to take into consideration
both economy and environmental accounting, as those are irrelevant.

45

Chapter 5

Conclusion

As part of the thesis work mentioned in 1.1, we have implemented an ap-
plication that read, interpret and arrange large and redundant data so that
one for each point (with resolution down to centimeter level both in posi-
tion and depth) can display depths for a selected area appropriately. It was
achieved by visualizing large images with depth data for each pixel.

With the development of zoom levels ranging from 1 to 9 and creating a
method that could generate tile dimensions by taking the zoom levels as a
parameter, we achieved not only visualization down to 1×1 meters but a
more varied range, up to 16×16 meters and down to 6.25×6.25 centimeters.
This made zooming more smooth and flexible and makes the program more
user-friendly. As for the memory consumption, the compression of the .asc
files into .z01 files made a huge impact. The data files after the compression
had been reduced to 5 percent of what they were while uncompressed.

Achieved images with depth data visualized in the GUI which contains a
simulator that shows depth level change in both ways. User can visualize
that Hafrsfjord is emptied of water, change color of the map for a better
similarity. The application is expanded with finds, special objects / forma-
tions (rocks and boulders) for a more complex view. All changes appear
effectively without delays due to optimization of the image load in the back-
ground.

46

Bibliography

[1] analyticsvidhya.com. How images are stored in the com-
puter? https://www.analyticsvidhya.com/blog/2021/03/grayscale-
and-rgb-format-for-storing-images/. Last accessed: May 12, 2022.

[2] docs.python.org/. Built-in functions, open().
https://docs.python.org/3/library/functions.htmlopen. Last ac-
cessed: May 12, 2022.

[3] docs.python.org. collections - container datatypes, deque objects.
https://docs.python.org/3/library/collections.htmlcollections.deque.
Last accessed: May 12, 2022.

[4] docs.python.org. General python faq, what is python?
https://docs.python.org/3/faq/general.htmlwhat-is-python. Last
accessed: May 12, 2022.

[5] fjordnorway.com. Hafrsfjord. https://www.fjordnorway.com/no/se-og-
gjore/hafrsfjord. Last accessed: May 12, 2022.

[6] GISGeography. How universal transverse mercator (utm) works.
https://gisgeography.com/utm-universal-transverse-mercator-
projection/, October 29 2021. Last accessed: May 01, 2022.

[7] Antin Harasymiv. Prototyping a smoother map.
https://medium.com/google-design/google-maps-cb0326d165f5,
August 27 2018. Last accessed: May 10, 2022.

[8] https://numpy.org. What is numpy?
https://numpy.org/doc/stable/user/whatisnumpy.html. Last ac-
cessed: May 12, 2022.

47

BIBLIOGRAPHY

[9] Claudius Ptolemy. The Geography of Ptolemy. around AD 150.

[10] Wikipedia. Depth map. https://en.wikipedia.org/wiki/Depth_map.

48

Attachments A

Software

This chapter contains a directory tree with description, required installa-
tions and a downloadable zipped file with application.

A.1 Directory tree

After detailed close up at each folder, a directory tree of the full application
will be provided.

App folder contains files created for testing GUI for one image. Allowing
to create an image from .asc file received from MainWindow class in GUI.

ELE610pyfiles provides a variety of AppImageViewer programs, dialogs
and startups which provides simple image processing applications and were
used as a template for visualization of GUI.

GUI consists of Images folder which contains icons, tiles for 5 zoom levels,
application logo and several images used for testing of splitting and depth
color change; QImagesMethods methods for conversions of qimages and
numpy arrays; app which contains a full visualization program including
two main classes MainWindow and QGraphicsView; clsColorDialog is a
dialog called by app method whenever user decides to simulate depth level,

49

A.1 Directory tree

change colormap or scaling factor; stack provides a class of type stack (First
in—Last out) used to undo changes to the scene whenever extra items are
added; stylesheet.qss is a Qt Style Sheet analog of Cascading Style Sheets
(css) stylesheet used to customize the appearance of an app as the whole or
by changing the look of each element on its own.

HafrsfjordFiles is part of the raw data program which provides a module
clsHafrsDepthPoint.py for presenting UTM coordinates in various ways.
clsHafrsFiles.py contain a class for opening, reading and closing files and
the class HafrsTiles that is responsible for manipulating the UTM coordi-
nates so that they can be converted into tiled images. clsMyBAzip1.py,
funMyCompress.py are modules for compressing and decompressing the
.asc and .z01. 1_N.z01 contains all the .z01 files which stores the depth
points.

README.md contains “about” section of the application.

50

A.1 Directory tree

bachelor_2022

App

16.asc

Visualization of Hafrsfjord.png

app.py

frog.jpeg

zoom.py

ELE610py3files

GUI

Images

QImagesMethods.py

app.py

clsColorDialog.py

stack.py

stylesheet.qss

HafrsfjordFiles

clsHafrsDepthPoint.py

clsHafrsFiles.py

clsMyBAzip1.py

funMyCompress.py

1_N.z01

README.md

Figure A.1: Full directory tree

51

A.2 Download links & Requirements

A.2 Download links & Requirements

Downloadable zipped file with application (Click to download)

Due to the rights reserved and contract assigned where our group is re-
stricted with any sharing of Hafrsfjord files, GitHub link is not provided as
it requires publicity of the repository.

A.2.1 Installation

For proper use, the application requires several libraries and packages to be
installed beforehand. For the project, Python 3.x has been used, where
the needed packages usually work well on all platforms. The main packages
mentioned in this document are: numpy, OpenCV, PyQt5.

Python can be installed by accessing it from the official Python download
page. An administrator access to the computer may be required. The
program also requires an Integrated Developer Environment (IDE) such
as Anaconda or PyCharm. Packages should then be installed by PIP
Installs Packages, also known as pip. Code used for installation is listed
under:

1 :\> pip install numpy
2 :\> pip install opencv-python
3 :\> pip install qimage2ndarray
4 :\> pip install pyqt5 or conda install pyqt (for anaconda)

The application doesn’t have any specific minimum requirements, but the
raw data part of the program is CPU demanding.

52

https://drive.google.com/file/d/1sjPJkmbDZKlyk8NRcMHA239-FtiXFcLC/view?usp=sharing
https://www.python.org/downloads/
https://www.python.org/downloads/

Attachments B

User manual

B.1 Application startup

The program starts with running GUI’s app.py file. As shown in the
figure A.1 in Attachments A.1, the main app.py file can be found in bach-
elor_2022 ⇒ GUI ⇒ app.py.

As show in the figure B.1, there are two visualization possibilities, either to
show pre saved Hafrsfjorden or import an .asc file and display the outcome
as an image.

Regardless the choice, Show Hafrsfjord or Open .asc file, all special
features are available and are provided in a list under:

File menu:

• Show Hafrsfjord displays tiles of different parts of Hafrsfjord
as a set.

• Open file, allows opening .asc file and displaying image gener-
ated based on coordinates and depth values.

• Save file, saves only visible area of an image (for Hafrsfjord),
else saves a whole image (for .asc files).

53

B.1 Application startup

Figure B.1: Application starting page

• Print prints only the visible area of an image (for Hafrsfjord),
else prints the whole image (for .asc files).

• Clear clears the scene (for Hafrsfjord) or pixmap (for .asc).
• Exit exits the application.

View menu:

• Zoom in/Zoom out zooms in/out by updating tiles to the
given level, only for Hafrsfjord.

• Default size, allows resetting all window/view size, scaling/-
zooming, etc. changes back to the default ones.

• Toolbar, enables/disables visualization of the toolbar.
• Grid, enables/disables the grid.

Edit menu:

• Crop allows cropping of the given rectangle with further display
of the outcome.

• Undo, undoes last change.
• Colormap and scaling, displays colormap and scaling dialogue

allowing to:

54

B.2 IVE Keyboard Shortcuts

Change colormap.
Depth level simulation with colored slider.
Change the scaling factor with testing of scaling in/out and

reset functions.

Help menu:

• Help provides overall description of the application.

• About displays creator information and version.

Toolbar provides a short path to the most used features such as saving,
cropping, editing an image and setting a marker together with extra signs
to the scene.

B.2 IVE Keyboard Shortcuts

Overview over shortcuts used in an application. All keyboard shortcuts are
available on non-NOB keyboards and on Mac. If a shortcut isn’t available
on your keyboard, you might trigger it from the menu itself.

Some features are also available through the toolbar.

Windows Description

Ctrl + 0 Open file.

Ctrl + S Save file as.

(continued on the next page)

55

B.2 IVE Keyboard Shortcuts

(from previous page)

Windows Description

Ctrl + P Prints image with location and app name.

Ctrl + C Removes image and clears pixmap.

Ctrl + Q Quite the program.

Ctrl + Z Undo the latest changes.

Ctrl + R Crop an image by indicating rectangle.

Ctrl + D Color bar and scaling dialogue.

Ctrl + + Zoom in.

Ctrl + - Zoom out.

Ctrl + mousewheelUp Scale in.

(continued on the next page)

56

B.2 IVE Keyboard Shortcuts

(from previous page)

Windows Description

Ctrl + mousewheelDown Scale out.

Ctrl + 1 Returns to the default size.

57

	Abstract
	Acknowledgements
	Introduction
	Universal Transverse Mercator (UTM)
	What's different about our app?
	Technologies
	Python
	NumPy
	PyQt5
	OpenCV
	GitHub & Overleaf
	Collections/Deque
	Classes provided by Karl Skretting
	AppImageViewer1

	Further development
	Outline

	Manipulation of raw data
	Introduction
	Constructing a tiled map
	A tiled image
	Zoom Level
	Reading the Files
	Two-dimensional Numpy Arrays
	The offset
	asc/z01FilesMeta
	A tiled Map

	The class: HafrsTiles
	tileDimension()
	hdpToTileAndPoint()
	nTilesInFilesMeta()
	addTilesToArray()
	addTilesToDict()
	populateDict()
	curOpen(), curRead(), curClose()
	addPointsToTiles()
	createImage()

	How to run the program
	Results
	Amount of generated images
	Time and memory

	Visualization and Graphical User Interface
	GUI layout
	List of methods
	Limitations
	Program
	Zooming
	Mouse events
	Navigation/Position information, extra signs & Grid
	Depth simulation and scaling dialogue

	Visualization of images
	Testing

	Discussion
	The depth values
	The tiled images
	Missing values
	Building the image
	Depth visualization and time complexity
	Placement of multiple pixmaps and extra objects
	Economy and environmental accounting

	Conclusion
	Bibliography
	Attachments
	Software
	Directory tree
	Download links & Requirements
	Installation

	User manual
	Application startup
	IVE Keyboard Shortcuts

