
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Vårsemesteret 2022

Bachelor i ingeniørfag / Åpen eller Konfidensiell

Datateknologi

Forfatter(e): Aleksander Vae Haaland, Marcus Meihack Thompson

Fagansvarlig: Antorweep Chakravorty

Veileder(e): Antorweep Chakravorty

Tittel på bacheloroppgaven: NFT Marketplace

Engelsk tittel: NFT Marketplace

Studiepoeng: 20

Emneord: Sidetall:

NFT, Marketplace, Blockchain 24 + vedlegg/annet: 37

Ethereum, Solidity Stavanger 15. mai 2022

Contents

Innhold i

Acknowledgements v

Abstract v

1 Introduction 1

1.1 Background & Motivation 1

1.2 Objectives . 4

2 Technology Choices 5

2.1 React . 5

2.1.1 Next.js . 5

2.1.2 Tailwind CSS . 6

2.2 Solidity . 7

2.2.1 OpenZeppelin Contracts 7

Page i of 38

CONTENTS

2.2.2 Remix IDE . 8

2.3 HardHat . 8

2.4 Moralis . 9

2.4.1 Web3 API . 9

2.4.2 IPFS . 9

2.5 Visual Studio Code . 10

2.6 GitHub . 10

3 Implementation 11

3.1 Base Application . 11

3.2 HardHat - Local Development environment 12

3.2.1 Final Deployment of smart contracts 14

3.3 Minting an NFT . 15

3.3.1 Front-End . 15

3.3.2 NFT - Smart Contract 15

3.3.3 Moralis decentralised database and IPFS 16

3.4 Marketplace core structure 18

3.4.1 Listing the NFT . 18

3.4.2 Buying an NFT . 18

3.4.3 Querying the non-fungible tokens 19

Page ii of 38

CONTENTS

3.4.4 Rich description . 20

4 Discussion and future improvements 21

4.1 Royalties . 21

4.2 Rework the approval process 22

4.3 ERC721 vs ERC1155 . 22

4.4 Image conversion . 23

4.5 From closed to open marketplace 23

5 Conclusion 24

Bibliografi 26

Attachment 26

A Solidity smart contact 27

A.1 Minter.sol - NFT smart contract 27

B Solidity smart contact 29

B.1 MarketplaceHandler.sol - Marketplace smart contract 29

C Moralis Cloud Functions 36

C.1 Moralis Cloud Functions for querying and joining table records 36

Page iii of 38

Acknowledgements

We would like to thank our internal supervisor and course coordinator Ass.
Prof Antorweep Chakravorty (University of Stavanger) for his guidance and
support through this thesis.

Page iv of 38

Abstract

With the rapidly growing blockchain global markets, developing decen-
tralised applications residing on blockchains such as Ethereum, Fantom and
Avalanche are of growing interest [Publishing, 2021]. Therefore, the main
objective of this thesis is to investigate non-fungible tokens and develop
a trading platform for users with Ethereum wallets to mint, buy and sell
tokens between themselves. To do this the decentralised application will
utilise smart contracts deployed on an Ethereum TestNet and Next.js in
combination with Tailwind CSS to create a user-friendly experience in form
of a single page application.

Link to the Vercel hosted application

Link to GitHub repository for application source code

Page v of 38

https://nft-marketplace-bachelor-thesis.vercel.app/
https://github.com/AVHMMT-Production/NFT-Marketplace-Bachelor-Thesis

Chapter 1

Introduction

1.1 Background & Motivation

NFT is an abbreviation for non-fungible token. Fungible indicates that one
has an asset that is exchanged for another. It is a commodity, similar to
a dollar or a gram of gold. If someone was to exchange a dollar bill for
another, it makes no difference which dollar bill one has seeing as they have
the same monetary value. When something is non-fungible, it is one-of-a-
kind.

Ethereum is related to a cryptocurrency called ether. One of the reasons it
is such a unique system is that it allows for the creation of new currencies
and tokens on top of it, but the NFT was an innovation apart from that.
This token cannot be swapped for any other token. It is a one-of-a-kind
token, and one’s ownership of this particular token is noteworthy because
it signifies something unique.

While NFTs have recently been connected with artwork, the reality is that
they can represent anything, which is how its proponents perceive it. As a
symbol of what decentralised finance could potentially be. The concept of
NFTs are seen as far back as 2012, but they did not gain much traction un-

Page 1 of 38

1.1 Background & Motivation

til 2014, when people began creating and exchanging these tokens. When
NFTs truly gained traction was when "CryptoKitties" launched. These
were cartoon cats that one could purchase, collect, breed, and sell. They
were all unique, and some of those ended up selling for hundreds of thou-
sands of dollars, and that is when this concept took off. Around the same
time, there was an early NFT project called "crypto punks." These pixe-
lated images of faces were generated, and people began buying and selling
them. Today these are selling for exorbitant prices, but the true sonic boom
occurred when Michael Joseph Winkelmann, known as "Beeple," sold his
69 million dollar sketchbook called "Everydays" through Christie’s auction
house. This was something that everyone noticed, and it is still the most
popular NFT artwork to date. [Marcobello, 2022] [Christie’s, 2021]

Many people view NFTs as a get-rich-quick scheme. One could earn millions
of dollars, or one can earn nothing and lose their money due to transaction
costs and the cost of purchasing ether to mint the NFT in the first place.
By definition, a given NFT is only worth what someone else is prepared
to pay for it. These things will occur in fads and interest waves. Prior to
digital scarcity, the issue with digital content was that one could not fully
own it. For example, after finishing reading a book bought on a kindle there
is not much one can do. It is not possible to sell the book second-hand.
With non-fungible tokens people can truly own it in a way that they could
not have done previously.

Artists have developed a following of passionate admirers who follow their
work on platforms like Instagram, but as one knows, artists have often not
been reimbursed for that labour until now. Now, for the first time, NFTs
are providing a means for these digital artists to profit from their labour.

The public will begin to understand what it means to own something digi-
tally and possibly appreciate the potential significance of those items.
So the billion-dollar question is whether NFTs are a fad or are here to stay.

Many crypto investors hope that NFTs will become a natural part of this
decentralised financial world. That NFTs will become a method to express

Page 2 of 38

1.1 Background & Motivation

ones fandom and demonstrate ones affiliation with a particular group or
community. There are so many different things that can be NFTs, and
while some of them will be temporary, it’s almost certain some will stick
around.

The global blockchain market is estimated to reach $56.7 billion by 2026
from $6 billion in 2021. The forecasted compound annual growth rate dur-
ing this period is 56.9%. Learning and developing an application that is con-
nected to such a rapidly growing industry, could be of interest. [Publishing, 2021]

Page 3 of 38

1.2 Objectives

1.2 Objectives

The Objective of this project is to develop a web application that allows
users with an Ethereum wallet to mint, buy and sell their NFTs.

Objectives for our project

• User authentication and login with Ethereum wallet

• Restricted file upload

• Mint token to blockchain with smart contracts

• List token for sale with user regulated price

• Cancel listing, returning token to owner

• Buying token that is listed

• Transferring token to new owner

• Rich description with markdown editor

Page 4 of 38

Chapter 2

Technology Choices

2.1 React

For this NFT marketplace the goal was to make a responsive and modern
web app that would function with mobile as well. React is a JavaScript
library used to build user interfaces specifically for SPAs. This makes it
easier to create an responsive and modern looking app. The library allows
the developer to reuse UI components which eases the Front-end develop-
ment. One can develop React apps using either Typescript or JavaScript.
This project however utilises JavaScript.

Reference [Platforms, 2022]

2.1.1 Next.js

To make life even easier, this project uses Next.js in addition to React.
Next.js is used by some of the biggest websites like Twitch.TV, GitHub,
Netflix and Ticketmaster. Next.js is a React framework for constructing
JavaScript single-page applications, with numerous advantages accrue from
this architecture, both for users and for developers. The more one connects
digitally as consumers, the more irritated one can become when websites

Page 5 of 38

2.1 React

and apps fail to load within milliseconds. The primary motivation for choos-
ing Next.js is mainly linked to speed and performance.

All React components that comprise a website’s user interface are firstly
rendered on the server side. This implies that once the HTML is provided
to the client, nothing further is required for the user to be able to see the
page’s content. This gives the user the impression that the website is load-
ing considerably faster. By rendering the same components on the server
and client sides, means it may minimise development time by building the
React components once and letting Next.js take care of re-rendering them
in the user’s browser.

Next.js is intelligent, meaning it only needs to load the JavaScript and CSS
required for each given page. This results in much quicker page loading
speeds since the user’s browser is not required to retrieve the JavaScript
and CSS that is not relevant to the current page.

Hot Module Replacement enables developers to immediately view changes
they make during development live in the application. Unlike typical live
reload solutions, it simply reloads the modules that have changed, keeping
the application’s previous state and decreasing the time necessary to see
changes in action.

[Neutkens et al., 2021]

2.1.2 Tailwind CSS

Tailwind CSS comprises a set of utility classes that perform a specific func-
tion. This could refer to the colour of the text, the background, the spacing
between the lines, or the borders. This strategy enables the developer to
create a page using atomic CSS. In the atomic approach to CSS program-
ming, the developer has classes that control a subset of the look.

Reference [Labs Inc., 2022]

Page 6 of 38

2.2 Solidity

2.2 Solidity

Solidity is a programming language for developing smart contracts that run
on blockchains such as Ethereum. It is an object-oriented programming
language that borrows heavily from JavaScript, Python, and C++. It is
written in the C++ programming language and is optimised for use with
the Ethereum Virtual Machine (EVM).

Solidity is used to write the contracts that run on the EVM. It is a high-level
programming language compatible with the way humans express instruc-
tions through numbers and letters rather than binary code. While early
Turing machines relied on binary inputs, Solidity eliminates this complex-
ity. It humanises the input process by using more approachable code that
is akin to JavaScript in many respects.

Smart contracts in Solidity are composed of instructions that are subse-
quently compiled to the EVM’s bytecode. The nodes in the Ethereum net-
work run EVM instances that enable them to cooperate in implementing
the same set of instructions.

Reference [Moralis, 2021]

2.2.1 OpenZeppelin Contracts

Writing Solidity contracts from scratch can introduce a number of serious
issues, the most notable of which being long execution times and security
risks. This is where OpenZepplin contracts come into use. OpenZepplin
is a set of Solidity smart contracts that implements typical smart contract
features. For instance, the implementations of the ERC20 and ERC721 and
other major token specifications. Additionally, there are a few variants of
ICOs and other solidity patterns.

Reference [ope, 2022]

Page 7 of 38

2.3 HardHat

2.2.2 Remix IDE

Remix is an open-source Ethereum integrated development environment
(IDE) for writing, compiling, and debugging Solidity code. As such, Remix
can be a critical tool in the development of Web3 and DApps.

What is then Remix IDE? The in-browser coding is a unique and rather
practical feature of Remix IDE. This is an open-source application that
enables the creation of Solidity contracts directly from the browser using
JavaScript.

Remix IDE is structured similarly to the most popular programming lan-
guages. Three of the most often used modules include ones for testing,
debugging, and deploying smart contracts. Additionally, Remix includes
various libraries that help accelerate development.

Reference [Aniket et al., 2020]

2.3 HardHat

Hardhat is a development environment for testing, compiling, deploying,
and debugging decentralized applications based on the Ethereum network.
It enables the developer to manage a large number of the duties associated
with developing DApps and smart contracts. Additionally, they provide the
developer with the tools necessary to manage this process. Additionally,
Hardhat assists in automating several of these tasks.

Hardhat comes with a pre-built local Ethereum network that is optimized
for development. This network is dedicated to debugging Solidity and in-
cludes stack traces, messages when DApp transactions fail, and more. This
is something that aids the developer in determining where or why an appli-
cation fails during development.

The environment is defined via plugins, from which a large portion of the
functionality derives. This means the developer may pick and choose which
plugins to include in their development process.

Page 8 of 38

2.4 Moralis

Reference [Foundation, 2021]

2.4 Moralis

Moralis provides backend management for this blockchain project. The
Moralis SDK lets the developer construct a decentralized application with
user authentication using a cryptocurrency wallet such as MetaMask and
blockchain data such as user token balances, NFTs, transactions, and events.

When a user logs into the DApp utilising crypto wallet authentication,
their wallet address will be automatically added to the Moralis database
and any other data required for the marketplace, such as token balances,
past transactions, or events. [Moralis, 2022b]

2.4.1 Web3 API

The Moralis Web3 API allows the developer to retrieve information from
the EVM blockchain, including block information, transaction information,
NFT metadata, token values, user balances, and the owner list of a partic-
ular NFT. This project makes use of the Moralis SDK to access and use the
Web3 API and its functions. [Moralis, 2022a]

2.4.2 IPFS

It can be highly costly to store decentralized files and data within ones
contracts. This is where one can use IPFS instead. IPFS is a protocol for
the decentralized storage of data such as files, applications, and webpages.
IPFS’s primary advantage is that it eliminates some of the problems asso-
ciated with centralization, including such as censorship and single point of
failure. Moralis has native support for IPFS making the integration even
smoother. [Developers, 2021b]

Page 9 of 38

2.5 Visual Studio Code

2.5 Visual Studio Code

Visual Studio Code is a desktop-based, lightweight, yet comprehensive source
code editor. It includes support for JavaScript and Node.js and has a robust
ecosystem of extensions for other languages to make the development more
accessible and efficient. [Developers, 2021a]

2.6 GitHub

GitHub is a company that provides a cloud-based hosting solution for Git
repositories. Essentially, it makes using Git for version control and collabo-
ration considerably simpler. Version control enables the developer to track
and manage modifications to a project’s source code. [Docs, 2018]

Page 10 of 38

Chapter 3

Implementation

This chapter will describe:

• Construction and solutions for creating a decentralised application

• Construction and solutions for creating an NFT Marketplace

• Difficulties around smart contracts

3.1 Base Application

The base of the decentralised application, hereby referred to as DApp, is
React and Next.js. When creating a simple React application, one usually
uses the npx create-react-app app-name command. This creates the di-
rectories and files necessary to have a basic react app, and is a good place
to start when building the app. Using npx create-next-app app-name, to
create the base of the application. From there the developer starts installing
all the different npm packages needed. The Moralis SDK and ethers.js are
two of them.

Page 11 of 38

3.2 HardHat - Local Development environment

3.2 HardHat - Local Development environment

Developing smart contracts and testing them in the DApp is a costly pro-
cedure, especially if one was to deploy a contract every time changes were
made. Doing this to any blockchain costs ERC20 tokens, also known as
crypto. Deploying to the Ethereum MainNet blockchain would cost a fair
amount of money, largely because the blockchain is so busy that the "gas
money" is quite substantial. A software developer called Eric Khun with
experience in Web3 development, posted this on twitter September of 2021.
Refer to figure 3.1 He paid a total of 436 USD for the deployment of his
smart contract, which is not a small amount to pay for ones creation to be-
come accessible to everyone. The explanation of the cost can be separated
into four parts.

1. The amount of bytecode in the smart contract increases the cost
quickly. The larger the contract is, the more expensive it becomes
to deploy. It needs more space on the blockchain to be stored in the
first place. Each byte costs 200 gas. The total of bytecode includes the
inherited parent contracts one might use to complete ones contract.

2. A flat fee of 32 000 gas for the creation operation, which is called
when one creates the contract. Which in turn is on top of 21 000 gas
for a normal transaction.

3. All the TX data has a cost. 4 gas for zero bytes and 68 for all non-zero
bytes.

4. If ones contract has an extensive constructor, the additional comput-
ing cost would be substantial.

Page 12 of 38

3.2 HardHat - Local Development environment

Figure 3.1: Eric Khun tweeting about the beauty and horror of deploying
a smart contract onto Mainnet. Source: https://twitter.com/eric_khun/
status/1440899940453060608?s=20&t=6f1xYRCf1su8CaDULvNmzQ, May 2022

If one googles, GAS to ETH, they would likely find that 1 ETH is equal
to around 630 GAS. But GAS and the gas that is referred to here are not
the same. Gas used to describe transaction fees within ETH is actually
called gwei, and 1 ETH is equal to one billion gwei. Which means that even
though the gas numbers mentioned earlier could sound rather expensive, it
is at least more sensible than what one would fear.

Now back to the local development environment. Using HardHat one can
start a local blockchain that they can test in. HardHat provides the devel-
oper with ten different crypto wallets filled with Ethereum, that they can
use in their testing. The developer can add these to their wallet to start
tesing different aspects of their DApp. Deploying to HardHat is also easily
done with a deployment script as shown in the code below.

Page 13 of 38

https://twitter.com/eric_khun/status/1440899940453060608?s=20&t=6f1xYRCf1su8CaDULvNmzQ
https://twitter.com/eric_khun/status/1440899940453060608?s=20&t=6f1xYRCf1su8CaDULvNmzQ

3.2 HardHat - Local Development environment

1 const hre = require("hardhat");
2
3 async function main() {
4 const Market = await ...

hre.ethers.getContractFactory("Market");
5 const market = await Market.deploy ();
6 await market.deployed ();
7 console.log("nftMarket deployed to:", market.address);
8
9 const NFT = await hre.ethers.getContractFactory("NFT");

10 const nft = await NFT.deploy(market.address);
11 await nft.deployed ();
12 console.log("NFT deployed to:", nft.address)
13 }
14
15 main()
16 .then (() => process.exit (0))
17 .catch((error) => {
18 console.error(error);
19 process.exit (1);
20 });

Code 3.1: deploy.js code snippet for deploying the smart contracts using HardHat

This is a fairly standard script used by many to deploy their NFT and
Market contracts to their local blockchain. One defines the contract factory,
and awaits for it to deploy with the variables the particular contract needs
to be created. For instance, the NFT contract used needs the Marketplace
contracts address on the blockchain before it can be constructed. After
having been deployed, one gets their addresses logged in the console, ready
for use in the development of this DApp.

3.2.1 Final Deployment of smart contracts

When developing a DApp there are lots of different blockchains one could
deploy the smart contracts to. Some "blockchains" such as Polygon are
layer two solutions that work atop of the Ethereum platform, which gives
them benefits such as being less expensive and faster but binds them to the
platform which makes them vulnerable to the same downtime and faults
the original platform may experience. There are also other blockchains for
instance, Avalanche and Fantom, which are powered by its respective native

Page 14 of 38

3.3 Minting an NFT

tokens. However, since the marketplace was developed with Ethereum in
mind, the Ethereum testnets made most sense to consider. Currently there
are two official Ethereum testnets, Sepolia which is a proof-of-work testnet
and Görli which is a proof-of-authority testnet. Unfortunatly they are both
pretty fresh of the press, which makes it hard getting ETH tokens to deploy
and interact with it but also there is a lack of resources and guides sur-
rounding them. For this thesis then, out of the three deprecated testnets,
Rinkeby was selected as the TestNet of choice. It is solid, works well and
has an established community around it making it easier to develop on.

3.3 Minting an NFT

It was decided that users should have the ability to mint NFTs on the site.
This feature makes it relatively easy to incorporate their NFTs into the
marketplace infrastructure and functionality.

3.3.1 Front-End

Beginning with the front-end aspect of the minting process. Technically, one
could upload any file and mint an non-fungible token. But this marketplace,
like many others, only allows images to be minted. Further setting up a
simple but clean form using Tailwind CSS, with a file upload that showcases
the image, photo and/or art one wants to make into a token. The file upload
restricts one from uploading anything that is not an image. JPEG, PNG,
WEBP and GIFs are allowed on the site.

3.3.2 NFT - Smart Contract

The smart contract for the NFT is relatively simple yet effective. See at-
tachment A.

The contract uses Counters from “Counters.Counter”. Counters are a very
effective way of handling ids in a contract. It has built-in functionality for
increments, decrements, showing the current value and resetting altogether,

Page 15 of 38

3.3 Minting an NFT

which helps keep an accurate count on how many tokens this contract has
and what the subsequent tokens id must be.

The contract demands an address to deploy and create the contract on
the blockchain. This address is the marketplace smart contracts address,
which are set up as the operator. Next up is the mintNFT(); function.
This function retrieves the id for this token and mints the token using the
message sender and the new id. The message sender is whoever called the
mint function on the site. The tokens URI is set with its id so that all the
metadata is connected to the corresponding token. The marketplace then
has to be approved, which means that the marketplace contract will be able
to execute transactions on the owners behalf.

When a user buys another users token, the marketplace will control the
transaction on the users behalf. Since the site focuses on NFTs that has
been minted on the site, it will not handle tokens that have been minted
by the user somewhere else. It would be possible to let tokens from other
marketplaces and non-fungible token smart contracts be exchanged on the
DApp, as long as they reside on the same blockchain as this sites smart
contracts are deployed. It was decided to not go down that route since that
would require a rewrite of how the contracts and website operates on base
level. See chapter 4.5

All NFTs minted on the DApp becomes part of a collection. The collection
has the name of "Bachelor T. Tokens", and will be shown as part of that
collection on sites like OpenSea. If the user would want to have their token
as part of another collection, they would have to transfer the token between
the smart contracts or mint it on that contract. Essentially, a smart contract
which mints non-fungible tokens is the collection that token is a part of.

3.3.3 Moralis decentralised database and IPFS

Since decentralisation is the whole concept, the images and data must be
saved in a decentralised matter. A web server with a database is the
standard in the web development industry, but for a DApp the project
needs IPFS and a decentralised database. This is where Moralis comes into
the picture, reference to chapter 2.4. Moralis hosts servers connected to
a blockchain of choice to save metadata and data related to ones DApp,

Page 16 of 38

3.3 Minting an NFT

aswell as hosting an IPFS service to save files onto.

When the user presses the "Mint NFT" button on the webpage, the image
is created into a Moralis File object with the .saveIPFS(); function which
reads the base64 data of the image and uploads it to Moralis IPFS service.
Using the .ipfs(); function on the same object afterwards will return the
hash for the file. This is then used in the metadata object, since this is
where the DApp will need to fetch the image from to show it on the site.
Saving the metadata is done with the exact same method. A metadata
object is created, made into a Moralis File object and sent off to Moralis
IPFS. The URI is saved on the blockchain as the tokens URI. This makes
the reference point consistent, and one can not edit the metadata easily
without direct access to the IPFS service and its files.

When this is happening, a record of the NFT is also saved in a database
table called "MintedNFTs" on the DApps Moralis database. This makes
querying for NFTs relatively simple to do. The homepage only queries the
tables for the information needed since it contains everything that it needs.

Page 17 of 38

3.4 Marketplace core structure

3.4 Marketplace core structure

The marketplace has its own smart contract which handles, listing, buying
and selling non-fungible tokens on the DApp. To see the source code for
the marketplace smart contract, see attachment B

3.4.1 Listing the NFT

When the user mints the NFT, it is also added to the marketplace smart
contract. That is why there are two transactions to be approved by the user
when one mints a token. This allows the DApp to have control over the
token and know the status of it. This is because the contract can contain
custom variables holding information, like if a token is for sale.

If the user then wants to list the non-fungible token for sale on the market-
place, they would have to view the token and press Sell. This opens an
input box where the user sets the price they want to sell the token for. They
then confirm that they want to sell the token, and it is set as for sale on the
contract. The token is transferred to the marketplace contract, the seller
variable is set to the current owner, owner is set to a null address, the price
is set to the desired value and it is set as for sale. The owner could then
view the same token and cancel the listing by pressing the Cancel Sale
button on the page. This sets the price back to 0, transfers the token back
to the owner and puts it as not for sale. The seller and owner variables are
also reset back to what they were before it was put up for sale.

3.4.2 Buying an NFT

Another user can view this token whenever they want with the name, de-
scription and image shown to them. When a user that is neither the owner
nor the seller views the token while it is up for sale, they will have the
option to buy the token for the price that the owner has specified. If this
occurs, the market smart contract executes the createMarketSale(); func-
tion. The function transfers the specified price from the buyer to the seller,
transfers the token from the smart contract to the buyer and sets all relevant

Page 18 of 38

3.4 Marketplace core structure

variables to their respective new value. The counter for items currently for
sale, is also reduced. The user can now find the token in their inventory.
This can be verified at sites like Etherscan and testnets.OpenSea.io.

3.4.3 Querying the non-fungible tokens

The querying of tokens is done by two different methods, depending on
where the user travels on the DApp.

Moralis Cloud Functions

Moralis Cloud Functions is used to query the two tables; "ListedNFTs" and
"MintedNFTs", which then get joined to create a more complete picture
of the tokens. This is slightly quicker than querying the smart contract
for information on every page load. The Moralis tables are also updated
when certain actions like buying and listing occurs on the DApp. By having
the Moralis cloud server run the code, the end-users devices won’t need to
use computing power for those functions. It is also handy as it cleans up
the source code, especially when the function is used multiple times across
several pages.

Pages that use the Moralis cloud method to gather data concerning the
tokens are the index page, dashboard and feed.

Source code can be referenced in attachment C.

Smart Contract

The dynamic pages which presents a specific token, query the marketplace
smart contract. This is because it is where all the interaction with the con-
tracts happen. It is therefore extra important that all information regarding
the token is up to date and correct. Moralis might have had a bad sync
which results in outdated information regarding the token. Outdated token
information is not as big of a deal on the front page since users would end

Page 19 of 38

3.4 Marketplace core structure

up seeing the current data, if they were to view the token.

The access control checks that is done on the current viewing user needs
to be precise to show the correct functions. A random user should not be
able to press the Sell button, regardless of the internal access control in
the smart contract.

3.4.4 Rich description

One of the key features of the DApp is the ability to write a rich description.
Using the npm package called react-md-editor, the users are able to write
exactly the description they want. With everything from titles, font styles
like bold and italic, lists and images. The description is saved as a string
with everything the preview component needed to display the description in
the correct manner. Other marketplaces with markdown enabled will have
the ability to show the tokens description as the user wrote it.

Page 20 of 38

Chapter 4

Discussion and future
improvements

With all the developments around Ethereum 2.0 and new standards for fun-
gible and non-fungible tokens alike, there are certainly future improvements
to be done on this marketplace.

4.1 Royalties

One of the talking points about how NFTs can positively change the art
industry is how it handles royalties. An artist can mint their art, display it
digitally and sell it to practically anyone; like Beeple who sold his NFT for
69 million dollars, referenced in chapter 1.1. If he has set a royalties rate
on this NFT he could earn around 5 - 10% of what the NFT gets sold for
next time. This has to be implemented of course, and sites like OpenSea
does this within its own marketplace. Essentially the artist can choose their
royalty rate when they put the token up for sale. There has been developed
a standard for this called EIP-2981.

"A standardized way to retrieve royalty payment information for non-fungible
tokens (NFTs) to enable universal support for royalty payments across all
NFT marketplaces and ecosystem participants." [Burks et al., 2020]

Page 21 of 38

4.2 Rework the approval process

This helps artists get royalties no matter which marketplace their non-
fungible tokens gets sold on next. Even though this standard was published
back in September of 2020, it has not been enforced enough. Plenty of
marketplaces use their own royalty payment method, which makes getting
the artist what they deserve quite hard at times.

4.2 Rework the approval process

As mentioned earlier, it was decided to simplify the selling process using
two contracts. The NFT contract handles minting and only minting of
the contract, meanwhile the Marketplace contract has control over what is
on the site and how transactions are carried out. When minting, the user
grants the Marketplace contract the freedom to handle transaction on the
behalf of the owner. This is a misstep. One could grant the approval per
user basis, which would be a lot safer. The buyer would then have to "ask"
the owner for permission to buy it, the owner would grant the permission
and the buyer could then execute the transaction. By using this method,
one could actually run the marketplace with only one contract. Everything
could be handled by the NFT contract alone.

4.3 ERC721 vs ERC1155

ERC721 is the golden standard for non-fungible tokens as it stands to-
day, however ERC1155 is constantly gaining ground. ERC1155 is the big
brother, the successor to ERC721, building on all the previous standards
like ERC20, ERC721 and ERC777. This is a novel token standard with
the ability to represent fungible and non-fungible tokens, with the added
bonus of greater gas efficiency. Moving to this standard with EIP-2981 im-
plemented would be a great choice for a future rework of the core structure
of the marketplace.

One thing that is for certain, is the fact that blockchain technology is not
standing still. It is constantly moving, developing and figuring out ways to
become better, safer and more efficient.

Page 22 of 38

4.4 Image conversion

4.4 Image conversion

A problem using IPFS services to store metadata and images, is the fact
that no matter how fast ones computer and internet connection is, one is
restricted by the IPFS. Larger images can be very slow to download and
preview on the site, especially if the IPFS service is sort of busy. A way to
sort this out may be the use of the new WebP format.

"WebP is a modern image format that provides superior lossless and lossy
compression for images on the web."[Google, 2010]

"WebP lossless images are 26% smaller in size compared to PNGs. WebP
lossy images are 25-34% smaller than comparable JPEG images at equiva-
lent SSIM quality index." [Google, 2010]

Saving space, faster loading and fast upload could make the app feeling
more responsive and better to use. It could be used for JPEG, PNG and
GIFs. It however has a drawback when it comes to animation. WebP needs
more processing power to show the animation than what a comparable GIF
demands. Which is one of the reasons why WebP has not taken the web by
storm yet.

4.5 From closed to open marketplace

The marketplace as it stands is a closed market. Only non-fungible tokens
minted on the site has the opportunity to be exchanged and listed on the
market. The move from closed to open would require rewrite of the smart
contract and DApp logic. If the DApp was open, the users would see all
of their non-fungible tokens on the Rinkeby blockchain and could select
which ones they wanted to list on the marketplace. The logic would have to
handle duplicate token ids, getting approval from the user to complete the
transaction on the users behalf and talking to the correct token contract.

Page 23 of 38

Chapter 5

Conclusion

A decentralised application was developed in this thesis. This app was
created with React and Next.js. The purpose for this NFT marketplace
was to create a responsive and modern online interface that would allow
users to login, upload, mint, buy, and sell non-fungible tokens. Hardhat
was used to design and test the solidity smart contracts before publishing
them on the Ethereum Testnet.

The application is presently hosted on Vercel [Hos, 2022] in the Rinkeby
network and is available for public testing and minting. Login to the site
with ones MetaMask wallet, which is also linked to the Rinkeby network.
Only non-fungible tokens created on the website can be exchanged and
published on the market. However, the tokens minted on the site can also
be viewed via OpenSea.

Page 24 of 38

Bibliography

[Hos, 2022] (2022). Nft marketplace hosted on vercel. https://
nft-marketplace-bachelor-thesis.vercel.app/.

[ope, 2022] (2022). Openzeppelin smart contract documentation. https:
//docs.openzeppelin.com/.

[Aniket et al., 2020] Aniket, Raj, P., and Rob (2020). Welcome to remix’s
documentation! https://remix-ide.readthedocs.io/.

[Burks et al., 2020] Burks, Z., Morgan, J., Malone, B., and Seibel, J.
(2020). Eip-2981: Nft royalty standard. https://eips.ethereum.org/
EIPS/eip-2981.

[Christie’s, 2021] Christie’s (2021). Beeple’s masterwork:
The first purely digital artwork offered at christie’s:
Christie’s. https://www.christies.com/features/
Monumental-collage-by-Beeple-is-first-purely-digital-artwork-NFT-to-come-to-auction-11510-7.
aspx.

[Developers, 2021a] Developers, M. (2021a). Documentation for visual stu-
dio code. https://code.visualstudio.com/docs.

[Developers, 2021b] Developers, P. L. (2021b). Welcome to the ipfs docs.
https://docs.ipfs.io/.

[Docs, 2018] Docs, G. (2018). Learning about github. https://docs.
github.com/en/get-started/learning-about-github.

[Foundation, 2021] Foundation, N. (2021). Ethereum development environ-
ment for professionals by nomic foundation.

Page 25 of 38

https://nft-marketplace-bachelor-thesis.vercel.app/
https://nft-marketplace-bachelor-thesis.vercel.app/
https://docs.openzeppelin.com/
https://docs.openzeppelin.com/
https://remix-ide.readthedocs.io/
https://eips.ethereum.org/EIPS/eip-2981
https://eips.ethereum.org/EIPS/eip-2981
https://www.christies.com/features/Monumental-collage-by-Beeple-is-first-purely-digital-artwork-NFT-to-come-to-auction-11510-7.aspx
https://www.christies.com/features/Monumental-collage-by-Beeple-is-first-purely-digital-artwork-NFT-to-come-to-auction-11510-7.aspx
https://www.christies.com/features/Monumental-collage-by-Beeple-is-first-purely-digital-artwork-NFT-to-come-to-auction-11510-7.aspx
https://code.visualstudio.com/docs
https://docs.ipfs.io/
https://docs.github.com/en/get-started/learning-about-github
https://docs.github.com/en/get-started/learning-about-github

BIBLIOGRAPHY

[Google, 2010] Google (2010). An image format for the web | webp | google
developers. https://developers.google.com/speed/webp.

[Labs Inc., 2022] Labs Inc., T. (2022). Installation: Tailwind cli - tailwind
css. https://tailwindcss.com/docs.

[Marcobello, 2022] Marcobello, M. (2022). Cryptopunks,
cryptocats and cryptokitties: How they started and
how they’re going. https://www.coindesk.com/learn/
cryptopunks-cryptocats-and-cryptokitties-how-they-started-and-how-theyre-going/.

[Moralis, 2021] Moralis (2021). Solidity explained - what is solidity? "
moralis " the ultimate web3 development platform. https://moralis.
io/solidity-explained-what-is-solidity.

[Moralis, 2022a] Moralis (2022a). Moralis web3 api. https://docs.
moralis.io/moralis-dapp/web3-api.

[Moralis, 2022b] Moralis (2022b). What is moralis? https://docs.
moralis.io/.

[Neutkens et al., 2021] Neutkens, T., Kanezawa, N., Rauch, G., Susiripala,
A., Kovanen, T., and Zajdband, D. (2021). Next.js documentation.
https://nextjs.org/docs/basic-features/pages.

[Platforms, 2022] Platforms, M. (2022). Getting started. https://
reactjs.org/docs/getting-started.html.

[Publishing, 2021] Publishing, B. (2021). Blockchain: Global
markets. https://www.bccresearch.com/market-research/
information-technology/global-blockchain-market.html.

Page 26 of 38

https://developers.google.com/speed/webp
https://tailwindcss.com/docs
https://www.coindesk.com/learn/cryptopunks-cryptocats-and-cryptokitties-how-they-started-and-how-theyre-going/
https://www.coindesk.com/learn/cryptopunks-cryptocats-and-cryptokitties-how-they-started-and-how-theyre-going/
https://moralis.io/solidity-explained-what-is-solidity
https://moralis.io/solidity-explained-what-is-solidity
https://docs.moralis.io/moralis-dapp/web3-api
https://docs.moralis.io/moralis-dapp/web3-api
https://docs.moralis.io/
https://docs.moralis.io/
https://nextjs.org/docs/basic-features/pages
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.bccresearch.com/market-research/information-technology/global-blockchain-market.html
https://www.bccresearch.com/market-research/information-technology/global-blockchain-market.html

Attachment A

Solidity smart contact

A.1 Minter.sol - NFT smart contract

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.4;
3
4 import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
5 import ...

"@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
6 import "@openzeppelin/contracts/utils/Counters.sol";
7
8 contract Minter is ERC721URIStorage {
9 using Counters for Counters.Counter;

10 Counters.Counter private _tokenIds;
11 address contractAddress;
12
13 constructor(address marketplaceAddress) ...

ERC721("Bachelor T. Tokens", "BTT") {
14 contractAddress = marketplaceAddress;
15 }
16
17 function mintNFT (string memory tokenURI) public ...

returns (uint) {
18 _tokenIds.increment ();
19 uint256 newItemId = _tokenIds.current ();
20
21 _safeMint(msg.sender , newItemId);

Page 27 of 38

A.1 Minter.sol - NFT smart contract

22 _setTokenURI(newItemId , tokenURI);
23 setApprovalForAll(contractAddress , true);
24 return newItemId;
25 }
26 }

Page 28 of 38

Attachment B

Solidity smart contact

B.1 MarketplaceHandler.sol - Marketplace smart
contract

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.4;
3
4 import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
5 import "@openzeppelin/contracts/utils/Counters.sol";
6 import ...

"@openzeppelin/contracts/security/ReentrancyGuard.sol";
7
8 contract MarketplaceHandler is ReentrancyGuard {
9 using Counters for Counters.Counter;

10 Counters.Counter private _itemIds;
11 Counters.Counter private _itemsSold;
12 Counters.Counter private _itemsForSale;
13
14 address payable owner;
15 uint256 listingPrice = 0.005 ether;
16
17 constructor () {
18 owner = payable(msg.sender);
19 }
20
21 struct MarketItem {
22 uint itemId;

Page 29 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

23 address nftContract;
24 uint256 tokenId;
25 address payable creator;
26 address payable seller;
27 address payable owner;
28 uint256 price;
29 bool forSale;
30 }
31
32 mapping(uint256 => MarketItem) private idToMarketItem;
33
34 event MarketItemCreated (
35 uint indexed itemId ,
36 address indexed nftContract ,
37 uint256 indexed tokenId ,
38 address seller ,
39 address owner ,
40 uint256 price ,
41 bool forSale
42);
43
44 event NFTListed (
45 uint indexed itemId ,
46 address indexed nftContract ,
47 uint256 indexed tokenId ,
48 address creator ,
49 address seller ,
50 address owner ,
51 bool forSale
52);
53
54 event Transfer (
55 uint indexed itemId ,
56 address indexed nftContract ,
57 uint256 indexed tokenId ,
58 address sender ,
59 address owner ,
60 bool isApproved
61);
62
63 function getListingPrice () public view returns ...

(uint256) {
64 return listingPrice;
65 }
66
67 function listNFT(
68 address nftContract ,
69 uint256 tokenId
70) public {

Page 30 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

71 _itemIds.increment ();
72 uint256 itemId = _itemIds.current ();
73
74 idToMarketItem[itemId] = MarketItem(
75 itemId ,
76 nftContract ,
77 tokenId ,
78 payable(msg.sender),
79 payable(address (0)),
80 payable(msg.sender),
81 0,
82 false
83);
84 }
85
86 function createMarketItem(
87 address nftContract ,
88 uint256 tokenId ,
89 uint256 price ,
90 uint256 itemId
91) public payable nonReentrant {
92 require(price > 0, "Price must be at least 1 wei");
93 require(msg.value == listingPrice , "Price must ...

me equal to listing price");
94
95 _itemsForSale.increment ();
96 idToMarketItem[itemId]. forSale = true;
97 idToMarketItem[itemId]. seller = ...

payable(msg.sender);
98 idToMarketItem[itemId].owner = payable(address (0));
99 idToMarketItem[itemId].price = price;

100
101 IERC721(nftContract).transferFrom(msg.sender , ...

address(this), tokenId);
102
103 emit MarketItemCreated(
104 itemId ,
105 nftContract ,
106 tokenId ,
107 msg.sender ,
108 address (0),
109 price ,
110 true
111);
112 }
113
114 function createMarketSale(
115 address nftContract ,
116 uint256 itemId

Page 31 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

117) public payable nonReentrant {
118 uint price = idToMarketItem[itemId].price;
119 uint tokenId = idToMarketItem[itemId]. tokenId;
120 bool approved = ...

IERC721(nftContract).isApprovedForAll(msg.sender , ...
address(this));

121 require(msg.value == price , "Please submit the ...
asking price in order to complete the ...
purchase");

122
123 emit Transfer(
124 itemId ,
125 nftContract ,
126 tokenId ,
127 msg.sender ,
128 idToMarketItem[itemId].owner ,
129 approved
130);
131
132 idToMarketItem[itemId]. seller.transfer(msg.value);
133 IERC721(nftContract).approve(msg.sender , tokenId);
134 IERC721(nftContract).transferFrom(address(this), ...

msg.sender , tokenId);
135 idToMarketItem[itemId].owner = payable(msg.sender);
136 idToMarketItem[itemId]. seller = ...

payable(address (0));
137 idToMarketItem[itemId]. forSale = false;
138 _itemsForSale.decrement ();
139 payable(owner).transfer(listingPrice);
140
141
142
143 }
144
145 function cancelMarketSale(
146 address nftContract ,
147 uint256 tokenId ,
148 uint256 itemId
149) public payable nonReentrant {
150
151 _itemsForSale.decrement ();
152 idToMarketItem[itemId]. forSale = false;
153 idToMarketItem[itemId]. seller = ...

payable(address (0));
154 idToMarketItem[itemId].price = 0;
155 idToMarketItem[itemId].owner = ...

payable(msg.sender);
156

Page 32 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

157 IERC721(nftContract).transferFrom(address(this), ...
msg.sender , tokenId);

158 }
159
160 function fetchMarketItems () public view returns ...

(MarketItem [] memory) {
161 uint totalItemCount = _itemIds.current ();
162 uint unsoldItemCount = _itemsForSale.current ();
163 uint currentIndex = 0;
164
165 MarketItem [] memory items = new ...

MarketItem [](unsoldItemCount);
166 for (uint i = 0; i < totalItemCount; i++) {
167 if (idToMarketItem[i + 1]. owner == ...

address (0) && idToMarketItem[i + ...
1]. forSale == true) {

168 uint currentId = idToMarketItem[i + ...
1]. itemId;

169 MarketItem storage currentItem = ...
idToMarketItem[currentId];

170 items[currentIndex] = currentItem;
171 currentIndex += 1;
172 }
173 }
174 return items;
175 }
176
177 function fetchItemIds () public view returns (uint) {
178 return _itemIds.current ();
179 }
180
181 function fetchMyNFTs () public view returns ...

(MarketItem [] memory) {
182 uint totalItemCount = _itemIds.current ();
183 uint itemCount = 0;
184 uint currentIndex = 0;
185
186 for (uint i = 0; i < totalItemCount; i++) {
187 if (idToMarketItem[i + 1]. owner == ...

msg.sender) {
188 itemCount += 1;
189 }
190 }
191
192 MarketItem [] memory items = new ...

MarketItem [](itemCount);
193 for (uint i = 0; i < totalItemCount; i++) {
194 if (idToMarketItem[i + 1]. owner == ...

msg.sender) {

Page 33 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

195 uint currentId = idToMarketItem[i + ...
1]. itemId;

196 MarketItem storage currentItem = ...
idToMarketItem[currentId];

197 items[currentIndex] = currentItem;
198 currentIndex += 1;
199 }
200 }
201 return items;
202 }
203
204 function fetchItemsCreated () public view returns ...

(MarketItem [] memory) {
205 uint totalItemCount = _itemIds.current ();
206 uint itemCount = 0;
207 uint currentIndex = 0;
208
209 for (uint i = 0; i < totalItemCount; i++) {
210 if (idToMarketItem[i + 1]. creator == ...

msg.sender) {
211 itemCount += 1;
212 }
213 }
214
215 MarketItem [] memory items = new ...

MarketItem [](itemCount);
216 for (uint i = 0; i < totalItemCount; i++) {
217 if (idToMarketItem[i + 1]. creator == ...

msg.sender) {
218 uint currentId = idToMarketItem[i + ...

1]. itemId;
219 MarketItem storage currentItem = ...

idToMarketItem[currentId];
220 items[currentIndex] = currentItem;
221 items[currentIndex]. itemId = currentId;
222 currentIndex += 1;
223 }
224 }
225 return items;
226 }
227
228 function fetchNFT(
229 uint256 id
230) public view returns (MarketItem [] memory) {
231 uint totalItemCount = _itemIds.current ();
232
233 MarketItem [] memory item = new MarketItem [](1);
234 for (uint i = 0; i < totalItemCount; i++) {
235 if (idToMarketItem[i + 1]. itemId == id) {

Page 34 of 38

B.1 MarketplaceHandler.sol - Marketplace smart contract

236 uint currentId = idToMarketItem[i + ...
1]. itemId;

237 MarketItem storage currentItem = ...
idToMarketItem[currentId];

238 item [0] = currentItem;
239 item [0]. itemId = currentId;
240 }
241 }
242 return item;
243 }
244 }

Page 35 of 38

Attachment C

Moralis Cloud Functions

C.1 Moralis Cloud Functions for querying and join-
ing table records

1 Moralis.Cloud.define("listedAndSoldNFTs", async ...
(request) => {

2 const query = new Moralis.Query("ListedNFTs");
3 query.descending("createdAt");
4 query.limit (10);
5 const list = await query.find();
6
7 const query2 = new Moralis.Query("MintedNFTs");
8 query2.descending("createdAt");
9 let mints = await query2.find();

10 let listed = [];
11 let sold = [];
12
13 for (let i = 0; i < list.length; i++) {
14 if (list[i]. attributes.Sold === 0) {
15 for (let j = 0; j < mints.length; j++) {
16 if (list[i]. attributes.TokenID === ...

mints[j]. attributes.tokenId) {
17 const nft = {
18 tokenId: list[i]. attributes.TokenID ,
19 price: list[i]. attributes.Price.toString (),
20 createdAt: list[i]. attributes.createdAt ,
21 image: mints[j]. attributes.image ,

Page 36 of 38

C.1 Moralis Cloud Functions for querying and joining table
records

22 name: mints[j]. attributes.name
23 }
24 listed.push(nft)
25 }
26 }
27 }
28 }
29
30 for (let i = 0; i < list.length; i++) {
31 if (list[i]. attributes.Sold === 1) {
32 for (let j = 0; j < mints.length; j++) {
33 if (list[i]. attributes.TokenID === ...

mints[j]. attributes.tokenId) {
34 const nft = {
35 tokenId: list[i]. attributes.TokenID ,
36 price: list[i]. attributes.Price.toString (),
37 createdAt: list[i]. attributes.createdAt ,
38 image: mints[j]. attributes.image ,
39 name: mints[j]. attributes.name
40 }
41 sold.push(nft)
42 }
43 }
44 }
45 }
46
47 return [listed , sold]
48 });
49
50 Moralis.Cloud.define("createdNFTs", async (request) => {
51 const query = new Moralis.Query("ListedNFTs");
52 query.descending("createdAt");
53 const list = await query.find();
54
55 const query2 = new Moralis.Query("MintedNFTs");
56 query2.descending("createdAt");
57 let mints = await query2.find();
58 let created = [];
59
60 for (let i = 0; i < mints.length; i++) {
61 if (mints[i]. attributes.creator == ...

request.params.acc) {
62 for (let j = 0; j < list.length; j++) {
63 if (mints[i]. attributes.TokenID === ...

list[j]. attributes.tokenId) {
64 const nft = {
65 tokenId: list[j]. attributes.TokenID ,
66 price: list[j]. attributes.Price.toString (),
67 createdAt: mints[i]. attributes.createdAt ,

Page 37 of 38

C.1 Moralis Cloud Functions for querying and joining table
records

68 image: mints[i]. attributes.image ,
69 name: mints[i]. attributes.name ,
70 }
71 created.push(nft)
72 }
73 }
74 }
75 }
76
77 return created
78 });

Page 38 of 38

	Innhold
	Acknowledgements
	Abstract
	Introduction
	Background & Motivation
	Objectives

	Technology Choices
	React
	Next.js
	Tailwind CSS

	Solidity
	OpenZeppelin Contracts
	Remix IDE

	HardHat
	Moralis
	Web3 API
	IPFS

	Visual Studio Code
	GitHub

	Implementation
	Base Application
	HardHat - Local Development environment
	Final Deployment of smart contracts

	Minting an NFT
	Front-End
	NFT - Smart Contract
	Moralis decentralised database and IPFS

	Marketplace core structure
	Listing the NFT
	Buying an NFT
	Querying the non-fungible tokens
	Rich description

	Discussion and future improvements
	Royalties
	Rework the approval process
	ERC721 vs ERC1155
	Image conversion
	From closed to open marketplace

	Conclusion
	Bibliografi
	Attachment
	Solidity smart contact
	Minter.sol - NFT smart contract

	Solidity smart contact
	MarketplaceHandler.sol - Marketplace smart contract

	Moralis Cloud Functions
	Moralis Cloud Functions for querying and joining table records

