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Abstract

Drilling fluids are an essential part of the drilling operation. One of the

main functions of a properly maintained drilling fluid is to suspend cuttings,

as well as weighting materials, in static conditions. Insufficient gel strength or

low-shear viscosity can enhance settling of weight material, known as barite

sag. Some drilling fluids display elastic and viscous characteristics at low shear

rates. This means that the fluid possess solid-like and liquid-like qualities.

This is known as viscoelasticity. It is thought that viscoelastic behavior can

give an advantageous knowledge about dynamic settlement. This involves

studies of drilling fluids viscoelastic behavior at deformation rates far below

the conventional viscometer range.

This study assess the influence of increasing water fraction in oil based drilling

fluids with the use of viscoelastic measurements, computing of the Unified

hydraulics model and cuttings transport simulation. Four different oil based

drilling fluids were used in this study. The density was equal for all samples at

1750 kg/m3 with an oil-water ratio increasing from 60:40 towards 90:10 and at

the same time keeping the viscosifying-clay concentration constant.

The experiments conducted in this thesis included dynamic and static sag

measurements to asses which fluid was most susceptible for barite sag. In

addition to conventional rheological methodology, a total of five different

types of viscoelastic measurements was included in the search for a qualitative

characterization. Viscosity profiles at shear rates far beyond conventional

viscometer was obtained from a shear rate ramp. In the evaluation of yield

stress in drilling fluids, a controlled stress ramp was performed.

A performance evaluation has been performed with the use of hydraulic

wellbore simulation and cuttings transport simulation. This was performed by

computing the Unified hydraulics model and by using Landmark’s WellPlan.
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The experimental investigations shows that the water fraction in oil based

drilling fluids has a significant impact when the drilling fluid was formulated

with 7 kg/m3 organophilic clay. The fluid sample with the lowest water fraction

showed a behavior of a viscoelastic liquid, while the remaining samples

showed viscoelastic gel characteristics. These characteristics are shown to

be time and temperature dependent. The characterizations also included a

yield stress evaluation based upon five different measurements techniques,

which reveal that the apparent yield stress is much lower than estimated by

the Herschel-Bulkley model and Bingham Plastic model. Hydraulic simulation

showed that a higher water fraction impose an increase in ECD and pump

pressure, while the cuttings transport simulation showed a beneficial effect

from the increased water fraction. This is primarily caused by the higher

viscosity.
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1 Introduction

Drilling fluids plays an essential role in the drilling process. In order to drill a well

successfully, the fluid need to carry drilled cuttings out from the well along annular

space to the surface. This is controlled by the rheological properties of the drilling

fluid. A well conditioned drilling fluid should be able to suspend drilled cuttings,

as well as weighting agents, when circulation comes to rest and at the same time

have a low viscosity during circulation to avoid excessive frictional pressure. High

frictional pressure may induce severe well problems such as lost circulation and well

collapse. During static conditions and low fluid velocities, a gel-structure should

be established by the fluid to avoid particles to settle out. This is achieved if the

gel-structure is developed quickly and has sufficient strength, which do not increase

extensively in time. These types of characteristics must be present over a range of

pressures and temperatures, from low temperatures at the sea floor to high reservoir

temperatures. This has evolved drilling fluids into complex fluids with rheological

behavior that is complicated to characterize.

During static and dynamic conditions, weighting agents may settle out of

suspension. This phenomenon is known as barite sag and is recognized as a

concern during drilling and completion as it can lead to well-control issues, lost

circulation and wellbore instability. Barite sag tend to be more extensive in OBM

than in WBM, and is most severe in inclined wellbores where fluid velocity is

low. Both static and dynamic sag are complex phenomenon which is not fully

understood despite the broad amount of research conducted over the past decade.

From rheology modeling it is common to assume that drilling fluids are purely

viscous and time independent. This is primarily caused by practical reasons.

Current literature states that drilling fluids are both viscous and elastic. This type of

behavior cannot be characterized with the use of conventional couette rotational

viscometer. In order to study structural behavior of drilling fluids, one need to

examine the fluids at shear rates far below of what is achievable with conventional

viscometers.

1



This thesis presents experimental characterization and performance study

of four different oil based drilling fluids with constant density and increasing

water fraction. The characterization includes rheology, viscoelasticity, and barite

sag measurements. Performance evaluation is based upon cuttings transport

simulation and computing of a rheology model to obtain wellbore hydraulics.

1.1 Problem Formulation

Due to the above mentioned reasons, adequate knowledge and characterization

of drilling fluids is necessary in order to understand the involved mechanisms in

drilling fluids. This thesis will attempt to assess the influence of increasing water

fraction in oil based drilling fluids with regards to viscoelasticity, rheology and barite

sag. Also the question about yield stress in drilling fluids will be investigated. In

addition, the performance of each of drilling fluid will be studied to address how

the OWR impact wellbore hydraulics and cuttings transport.

1.2 Objectives

The main objective of this thesis is;

• Assess a fundamental understanding of drilling fluids.

• Review literature of drilling fluid behavior in relation to barite sag.

• Perform dynamic and static sag analysis.

• Characterize the behavior of oil based drilling fluid with the use of viscoelastic

measurements and conventional rheological measurements.

• Conduct a performance analysis in terms of wellbore hydraulics and cuttings

transport simulation.

2



2 Theory

This section contains fundamental background theory about rheology and

viscoelasticity of drilling fluids, which is necessary to understand the content of the

experiments performed in this report.

2.1 Rheology

Rheology is the study of structural change under applied force. The most common

way to define Rheology is "the study of deformation and flow of matter" [1]. The

subject of rheology can involve a great deal of mathematical and physical analysis

depending if what type of approach is wanted [2]. Rheology measurements in

drilling fluids are important in order to characterize fluid flow behavior and the

related hydraulics under different temperature, pressure and shear rate. Rheology

and hydraulics are interrelated studies of fluid behavior [3]. There are two

fundamental flow regimes that can exist, which is depending on the fluid velocity,

viscosity, fluid density and flow area.

• Laminar flow regime where the fluid moves in a smooth, defined pattern. The

flow equations are determined analytically. Such flow regime occurs when

fluid is moving with low velocity or when fluid is viscous.

• Turbulent flow regime where the fluid moves in a chaotic pattern as it moves

along the flow channel. The flow equations are empirical using friction factor

concept.

In laminar flow the viscous forces are dominating whilst in turbulent flow

inertial forces are dominating [4, 5].

2.1.1 Viscosity

Viscosity can be described as a substance resistance to flow and is the most familiar

term used in rheology. On a daily basis a liquid is often referred to as "thick" or

"thin", which essential is describing a substance’s resistance to flow. Viscosity is

defined as [6]:
η=

τ

γ̇
(2.1)
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τ is the shear stress, γ̇ is the shear rate. In the literature, the shear-rate independent

viscosity is often denoted as µ while the shear rate dependent viscosity is often

denoted with η= η(γ̇). To avoid any misconceptions, the symbol used for viscosity

in this thesis is denoted asη. Among the factors that is affecting a pure (Newtonian)

liquids viscosity is temperature and pressure, where the temperature effect is

predominant. The temperature effect is inverse proportional with viscosity and

is more dominant for high viscosity substances than for low viscosity substances.

Due to the temperature effect on viscosity it is important to note what temperature

the viscosity is measured at and also to be consistent and accurate when doing

viscosity measurement. The pressure contribution on viscosity is usually small and

can be neglected in most circumstances, nonetheless when the pressures increases

the viscosity will increase [7]. Since drilling fluids usually does not have a constant

viscosity, a more thorough review about external effects on viscosity is given in

section 2.1.5 and section 2.1.7.

The unit of viscosity, η, is given as Pa · s in the SI system, or centiPoise in oilfield

units, signified cP. For water this unit is only 0.001 Pa · s at 20.2 ◦C, thereof the prefix

milli is necessary, hence mPa · s. Numerically, 1 mPa · s ≡ 1cP. [5, 7].

2.1.2 Shear Rate and Shear Stress

In any situations where it is flow, we have the concepts of shear rate and shear stress.

One may imagine laminar fluid flow as a hypothetical stack of small plates upon

each other resting on a stationary plane surface. When a force, F, is then applied

on the top plate it will move with a higher velocity than the plate below it due to

frictional resistance. In the simplest case the velocity of the plates below the upper

one will increase linearly, from zero to u, as shown in figure 1.

The force per unit area creating the flow or produced by flow is known as shear

stress, τ, and is given as:
F

A
=τ=η

du

dr
(2.2)

Where r is the distance from one plate to another and u is the velocity for the

uppermost plate. Shear stress is reported in standard oil field units as pounds of

force per hundred square feet required to maintain the shear rate (lb/100 ft2). This

is approximately what is read off the viscometer dial readings, (θ ), since one degree
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Figure 1: Illustration of shear stress in laminar flow regime for a Newtonian fluid.
Adapted from [8]

deflection on the dial reading is equal to 1.067lb/100 ft2.

τ(lb/100 ft2) = 1.067 ·θ (2.3)

The velocity gradient, or the rate at which one plate is moving relative to the next

plate is known as shear rate, often denoted as γ̇. The unit for shear rate is given

in reciprocal seconds (s−1) and is equal to the Fann VG mud viscometer RPM (Ω)

multiplied by 1.703 [3, 5, 7].

γ̇(s−1) = 1.703 ·Ω (2.4)

2.1.3 Yield Stress

Yield stress is the amount of stress required to overcome before flow initiates in a

liquid. In drilling fluids this is as measurement of the the electro-chemical and/or

attractive forces caused by the orientation and concentration of solids (colloidal

size) within the drilling fluid [3]. Applying a stress lower than a certain minimum

value will cause the liquid to behave elastically and no permanent deformation will

occur. Another term for yield stress is yield point (YP), where the latter is primarily

used for the Bingham Plastic model, which will be discussed in section 2.2.1. There

has been considerable discussion in the scientific literature about the yield stress
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concept and the modeling of yield stress fluids, mainly caused by limitations in

measuring flow at very low applied stress. The models containing a yield stress that

are being mentioned in section 2.2 predicts that the liquid will be stationary if the

applied stress is below the yield stress and that only elastic behavior is seen [9]. The

yield stress concept will be discussed further in section section 3.1.1.

2.1.4 Plastic Viscosity

Plastic viscosity (PV) is a parameter in the Bingham plastic model and is frequently

described as the resistance to flow due to mechanical friction. Many drilling fluids

engineers find this as an important measure of the drilling fluid because it give

an relative indication of solids concentration in the mud. Plastic viscosity is also

directly affected by the viscosity of the base fluid for OBM. In oil based mud poor

shearing, or poorly emulsified water in oil, can cause water droplets to coalesce

and act like fine solids and thus increase the PV. Plastic viscosity is reported in

centiPoise (cP) or in Pascal-seconds (Pa s) [6].

2.1.5 Thixotropy and Shear Thinning

Liquids that have a viscosity that decreases with time of shear is called thixotropic.

This is a time-dependent flow behavior and should not be confused with shear

thinning, which is decrease of viscosity with increase in shear rate. One can

expect thixotropic behavior for a shear thinning fluid though they occur due to

different effects. Most drilling fluids exhibit thixotropic properties and are highly

shear-thinning, due to clay or polymeric viscosifiers used in them. The thixotropic

effect is a completely reversible process such that the micro-structure within the

fluid is fully restored when the fluid has come to rest [10]. This implies that the

fluid has some kind of structural "memory" which is time dependent. During

the process of drilling a well, drilling fluid is pumped at high rate through the

drill string and passes through the bit before reaching annular space. Due to the

shear thinning behavior, the drilling fluid will have a low viscosity at high shear

rates for instance when being pumped down the drill string and through the bit.

Further the drilling fluid will have a higher viscosity in annular space, which is

crucial to carry out drilled cuttings out of the well. When circulation comes at rest,

during a connection, the thixotropic behaviour of the drilling fluid will develop a
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gel structure which will prevent cuttings to fall out of suspension. One measure of

the degree of shear thinning is the yield point to plastic viscosity ratio (YP/PV), the

higher the ratio the greater the thinning. Too high gel strength can cause excessive

pump pressures when breaking circulation and can also lead to poor solids removal

efficiency at surface. Furthermore, when pulling out of hole, high gel strength can

reduce the bottomhole pressure (BHP), also known as swabbing. This can be critical

if the BHP is reduced below the pore pressure and in this way initiate an influx of

formation fluids. On the other hand, if running too fast into the hole where the

gel strength is too high can cause excessive surge pressure which can provoke lost

circulation. Gel strength is measured usually 10sec and 10min after agitation ceases

on a conventional rotational viscometer. In some cases a 30min gel strenght can

be taken to ensure that the drilling fluid has a flat gel profile. Progressive gels is a

situation where the 30min gel strenght is much larger than 10min gel, and can be

used as a indication of ultra fine solids build up in fluid system.

In contrast to thixotropy is rheopexy, or anti-thixotropy in some litterature, which

a increase in viscosity over time. This kind of characteristics does not represent

drilling fluids and will for that reason not be elaborated any further [3, 5].

2.1.6 Newtonian Fluids

All liquids can be divided as either Newtonian or non-Newtonian defined by their

relationship between shear rate and shear stress. Newtonian liquids have a constant

viscosity that will not vary with deformation rate or time, under constant pressure

and temperature. The rheological behavior can be described by Newton’s law of

viscosity. These properties can be formulated by the following equation:

τ=η · γ̇ (2.5)

Where η is the viscosity in Pa · s, τ is the shear stress in Pa and γ̇ is shear rate in s−1.

When shear stress (τ) is plotted against shear rate (γ̇) it will be a linear plot, which

is intersecting through the origin, as seen in figure 2. This kind of plot is also known

as a flow curve, or a consistency curve, for a flow model. The slope of the curve will

then define the viscosity,η. Since the viscosity is constant, the viscosity determined

at an arbitrary steady-state shear rate may be used in hydraulic calculations for flow

at other shear rates. Pure fluids such as water, brine and oil exhibits Newtonian
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properties. It should be noted that for high enough shear rate, any Newtonian liquid

will become non-Newtonian[5, 7].

η, viscosity

Shear rate, γ
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Figure 2: Flow curve of a Newtonian fluid. Adapted from Caenn et al. [5]

2.1.7 Non-Newtonian Fluids

Fluids that do not obey a direct proportionality between shear stress and shear

rate are said to be non-Newtonian [9]. Unlike Newtonian fluids, the viscosity for

non-Newtonian fluids are varying with applied force or shear rate. Non-newtonian

fluids are commonly classifies into three categories:

1. Fluid properties are independent of duration of shear.

2. Fluid properties are dependent on duration of shear.

3. Fluid exhibits many properties that are characteristics of solids (viscoelastic).

The classifications are not a clear definition, and fluids might exhibit a combination

of these [9]. Drilling fluids are in general non-Newtonian [11]. When determining

flow behavior in turbulent flow for non-Newtonian fluid one can use friction factor

and Reynolds number concept. However, since the viscosity is not constant, as it

is for Newtonian fluids, one may not use a constant value for viscosity at one shear

rate for all calculations [5]
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2.2 Rheological Modeling

The goal of rheological modeling is to fit experimental data with a mathematical

model, which will give a description of the shear stress - shear rate relationship for

a particular liquid. The experimental data is collected by the use of a viscometer,

which will measure the shear stress for a given shear rate. The data is then plotted

on a rheogram (shear stress vs shear rate), which will determine what model

that display the best fit. Numerous rheological models has been developed to

describe the rheological characteristics. All rheological models requires at least

two measurements of shear stress at different shear rates to be able to predict

the shear stress at any other shear rate [3]. It is important to emphasize that

no rheological models will give an exact description the flow characteristics for

all drilling fluids over their entire shear rates range, however, some of them can

predict the behavior with high accuracy. When a rheological model is defined, one

may use the rheological data to model flow behavior in other geometries, such as

pipe flow or annular flow [3]. The mathematical expression by itself may not look

complicated; however, the models must be converted to flow equations based on

the shear stress at the wall in order to perform pressure loss calculations, which

involves advanced mathematical manipulation [12]. Advanced simulation software

is available for calculation of circulating hydraulics and hole cleaning efficiency,

however the software requires accurate models in order to obtain reliable results.

Figure 3 give an visualization of some of the common models used to describe

drilling fluids. The following sub-chapters will give an introduction to some of

the most common equations used to model non-Newtonian fluids, such as drilling

fluids. The Newtonian model has allready been covered in section section 2.1.6 and

will thus not be mentioned here.

2.2.1 Bingham Plastic Model

The Bingham plastic model is a two parameter linear model. This model

characterize fluids with a yield stress and a constant viscosity for shear stress

once the yield stress has been exceeded. The model show good accuracy for

the shear-stress/shear-rate relationship for flocculated clay water-base fluids,

however most drilling fluids are not Bingham fluids. The shear-stress/shear-rates
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Figure 3: Ideal consistency curves for common flow models. Adapted from Caenn
et al.[5]

relationship predicted by the model usually deviate at low and high shear rates.

Another limitation of the model is that it commonly overestimates the yield stress.

The Bingham plastic model is defined as:

τ=τy p +ηp v · γ̇ (2.6)

Where ηp v is the plastic viscosity and τ0 is the yield point, which is determined

from two measurements at shear rates of 600RPM (1022 s−1) and 300RPM (511 s−1).

Plastic viscosity and yield point can be calculated as:

ηp v = θ600−θ300 (2.7)

The unit of plastic viscosity is in cP. This is derived from the instrument dimensions

and the spring constant. See Caenn et al. [5] for full derivation.

τy p = 2 ·θ300−θ600 (2.8)
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Where θ600 is dial reading at 600RPM and θ300 is dial reading at a shear rate of

300RPM. The model is widely used due to the simplicity, and the two parameters

plastic viscosity and yield point are reported as a standard in the mud report on a

daily basis in accordance with API drilling fluid report [3, 6].

2.2.2 Power Law

The Power Law model is a two parameter model, which characterizes shear thinning

or shear thickening drilling fluids with no yield stress. One of the limitations for

the model is that it underestimates the low-shear viscosity, in fact the shear stress

for zero shear rate is always zero. Mathematically the Power Law is expressed as

followed:

τ= K · γ̇n ; 0< n ≤ 1 (2.9)

Where K is the consistency index, and has the unit of [force/area multiplied with

time], Pa sn in SI-units, and n is the flow behavior index, which is dimensionless,

and γ̇ is shear rate in s−1. Note that K and n are only of relevance with a specific

shear rate. When measurement for a Power Law fluid is plotted with logarithmic

scales it will be a straight line where the interception is K and the slope is n.

n =
l o g θ2

θ1

l o g γ̇2
γ̇1

(2.10)

The lower the value of "n" the more shear thinning a liquids is. Depending on the

value of n, one may characterize what type of liquid one is

n<1; For shear-thinning fluids

n=1; Newtonian

n>1; Shear thickening fluids

The values of the flow index and consistency index are usually determined from

the 600RPM and 300RPM dial readings; however, the generalized power-law applies

if corresponding shear-rate pairs are defined, ex. θ6 and θ3 [3, 6]:

K =
τ2

γ̇n
(2.11)
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2.2.3 Herschel–Bulkley Model

The Herschel–Bulkley (H-B) model includes yield stress into the power-law

equation and is for this reason known as the modified power-law. The model is

is describing shear thinning drilling fluids with a yield stress. It is considered to

be more complicated than Bingham Plastic and Power-law models as it has three

parameters. However, it represent a much more realistic flow behavior of drilling

fluids. The model has become the model of choice because of the accurate results

and it includes a yield stress, τy . It is also the recommended model in the current

API standard [6]
τ=τy +K · γ̇n (2.12)

The consistency index, K, and flow behavior index, n, has the same units as in

power law, but they are calculated differently. The value of K in the H-B model is

related to the solids content within the fluid in similar way as plastic viscosity is for

the Bingham model. In special cases, the H-B model will transform into Bingham

Plastic model (n=1), or Power-Law if yield stress is zero [6]. Determining an exact

solution for the H-B model is considered to be complex and is mostly limited to

computer programs [13]. One way of determine the value of τy is to interpolated

the shear stress between two known shear rates [14]:

τy =
τ∗2−τmi n ·τma x

2 ·τ∗−τmi n ·τma x
(2.13)

Whereτ∗ is the value of shear stress from the shear rate obtained from the geometric

mean of the max and min values, γ̇∗;

γ̇∗ =
p

γ̇ma x · γ̇mi n (2.14)

2.2.4 Unified Model

Another three parameter rheological model is the Unified model. The model

is a simplification based on the H-B model and it was developed with the

intention of practical use for field personnel, but still with high accuracy for well

hydraulics [13]. Mathematically, the equation is exactly the same as H-B model
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defiend in equation (2.12).

τ=τy +K · γ̇n

The difference between H-B model and the Unified model is how the values of n

and K are determined. One way to determine a value of the yield stress can be done

with the use of low-shear yield point (LSYP):

τ0 = 1.067(2 ·θ3−θ6) (2.15)

The ”1.067” is an conversion factor from dial readings to the unit lb/100 ft2 as

mentioned in section 2.1.2. This was first defined by Bern et al.[15]; however they

did not use the conversion factor. Determining the yield stress can be obtain with

other measurements. Zamora and Power [13] suggest six different options as usable

values of τy , where LSYP is among one of them. A comprehensive list of formulas

used in the Unified model is shown in appendix E. As an example, the flow behavior

index and consistency index for annular flow can be calculated as followed:

na = 3.32 log

�

2ηp v +τy p −τ0

ηp v +τy p −τ0

�

(2.16)

And the consistency index:

Ka =
ηp v +τy p −τ0

511na
(2.17)

Whereηp v is Bingham PV,τy p is Bingham YP andτ0 is defined in equation (2.15)

2.2.5 Robertson and Stiff Model

Robertson and Stiff Jr [16] purposed a three parameter model, which also combine

the use of a yield stress with shear-thinning behavior. The model uses thee

τ= A(γ̇+C )B (2.18)

Where the parameters A and B are considered to be equivalent to the power law

parameters K and n respectively. The last parameter C can be considered as a

correction factor to the shear rate. If B < 1 then the fluid is shear thinning. It is
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not widely used due to the complexity of determining A, B and C [14].

2.3 Viscoelasticity

Viscoelasticity is used to describe materials that are showing viscous and elastic

characteristics at the same time when undergoing deformation. Viscosity is

describing a fluids internal resistance to flow and can be described according to

Newton’s law of viscosity, while elasticity is the used in solid mechanics to describe

a materials ability to restore its original shape when a load is removed. Drilling fluids

exhibit viscoelastic behavior and viscoelastic measurements can be instrumental in

order to evaluate drilling fluids performance in drilling operations [17].

A fully elastic solid has the capability to store mechanical energy with no energy

dissipation. This means that if a load is applied on a elastic solid, it will restore

its shape instantaneous when unloading. In contrast to elastic solids, a viscous

Newtonian liquid will dissipate energy with no capability to store energy. By

combining the properties from a elastic solid and a viscous fluid it is reasonable

to assume that both of these characteristics will be present. From the above

definitions one can expect a viscoelastic material will store some of the energy,

available for recovery, and dissipate the rest. If we then follow up with the first

law of thermodynamics as: "Energy cannot be created nor destroyed, but only

transformed" [18].

Wd i s s =

(

0; for ideal elastic solids.

We x t ; for ideal viscous liquids.
(2.19)

Where the work dissipated is denoted as Wd i s s , total work done by external load as

We x t . The energy balance will thus be

Wd i s s =Wi n t −We x t (2.20)

Where Wi n t is work done by internal force.

Viscoelastic solids behave different from viscoelastic liquids, however both of

them show time dependencies upon an applied stress [19]. Among the parameters

of interest in order to quantify a materials viscoelastic properties when performing
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dynamic rheological measurements are G ′, G ′′ and complex viscosity η∗. These

parameters are measured in shear. The storage modulus, G′, represent the elastic

behavior of the material and is a measure of the energy stored upon shear. If

the applied energy is stored, the material will display full recovery and can be

considered as a ideal elastic solid. G′ is also known as the elastic modulus. The loss

modulus (or viscous modulus), G′′, represent the viscous behavior of the material

and is a measure of the energy damped, or lost , during shear. Energy is either lost

in the process of rearrangements of the materials structure or dissipated as heat

into it’s surrounding. The lost energy represents an irreversible deformation of a

material.The ratio of G′′ to G′, known as the damping factor (or loss factor) and is

a measure of the viscous to the elastic portion of the deformation represented in

figure 4.

tan(δ) =
G ′′

G ′
; 0◦ ≤ δ ≤ 90◦ (2.21)

The loss factor can be used to determine if a material is behaving like a liquid or a

solid. An ideal elastic solid is expressed as δ = 0◦ and the value of δ will be δ = 90◦

for ideal viscous liquid. At the exact balance of viscous and elastic behavior δ= 45◦

is an important analysis criteria in gel formation process and yield stress analysis

since it represents the transition from solid to viscous behavior.

G*G''

G' Re

Im

δ

Figure 4: Argand plot of storage modulus, loss modulus and resulting vector of
complex shear modulus. Showing phase angle δ. Adapted from Mezger(2002) [19]

The vector sum of G′ and G′′ represents complex loss modulus, denoted as G∗ and
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is a measure of the resistance to deformation, or stiffness, of the sample being

tested [19]. The magnitude of complex modulus can be expressed as [19]:

G ∗ =
p

(G ′′)2+ (G ′)2 (2.22)

Complex viscosity, denoted as η∗, can be described as a viscoelastic flow

resistance of a sample and can be seen as the oscillatory equivalent of shear

viscosity. This can be presented in similar fashion as complex modulus, shown in

figure 4. The difference is that x axis is nowη′ and y-axis as−η′′. These represent the

viscous component and elastic component respectively. The magnitude of complex

viscosity can be expressed as the vector sum of these two

|η∗|=
Æ

(η′)2+ (η′′)2 (2.23)

Some materials behave such that complex viscosity and shear-rate dependent

viscosity, η(γ̇), has identical shape when plotted in the same diagram. This applies

if the measurements are performed withing the linear viscoelastic (LVE) range. The

phenomenon is known as the Cox-Merz relation which is an empirically found on

the following form:

η(γ̇) = |η∗(ω)| (2.24)

The relation is valid if the values of γ̇ [s−1] andω [s−1] are equal in size. However, for

materials showing gel-like character (G ′ >G ′′) in the low-shear region, the relation

is not useful [19]

Viscoelasticity vs Thixotropy
Thixotropy is change in micro-structure by disruption or recovery- in time,

while viscoelasticity is response from the micro-structure in time without being

deformed. This holds true as long as the viscoelastic measurements are withing the

linear viscoelastic region. This is the region where both G ′ and G ′′ is independent

of stress or strain, and is inevitable in viscoelastic measurements [7], this will be

highligted in section 2.3.6.

Viscoelastic measurements of a drilling fluid is not possible be achieved with

conventional rheological characterization. Small micro-structural deformation can

be measured through dynamic testing, which will be highlighted in the following
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sections.

2.3.1 Viscoelastic Models

In order to get a fundamental understanding of the subject of viscoelasticity one

may use simple mechanical models. The models consist of springs or dashpots

to visualize elastic and viscous elements, respectively. Linear elastic elements

are represented as springs that comply with Hooke’s law, i.e. force is directly

proportional to strain. Viscous elements are represented in similar fashion only

using a dashpot to describe the viscous response. A dashpot is a damper that resist

motion through viscous friction, and can be described with Newtons law of The

simplest model used to describe viscoelastic liquids are the Maxwell model. The

Maxwell model consist of a spring and a dashpot in series. If we arrange a spring

and a dashpot in parallel we end ut with the Kelvin-Voigt model which is the simples

representation of viscoelastic solids. If these two are combined together in a series

one end up with a Burgers model.

2.3.2 Viscoelastic Measurements

Some of the fundamental methods in viscoelastic characterization is mentioned

in the following sections. The information gained out of these experiment are

instrumental for characterization of viscoelastic materials. In connection with

viscoelastic measurements one may use either angluar frequency (ω) or frequency

(f). To avoid confusion, the term angular frequency is exclusively used in this thesis,

which is the angular displacement over one period (T):

ω=
2π

T
= 2π f (2.25)

2.3.3 Creep Test

Creep testing is one of the fundamental characterization techniques of a

viscoelastic material [20]. The elasticity in a sample can be determined form creep

and creep-recovery test. Creep test involves to apply a small constant stress to the

material being tested over a defined time interval and observe the change in strain.

At some time level, defined as t2 in figure 5, the stress is released and the following
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recovery is observed in time. This is know as the recovery phase. The deformation

may be elastic or viscous depending on the material being tested.

τ

τ0
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Figure 5: Creep and recovery curve of a viscoelastic, ideal viscous liquid and ideal
elastic solid. Left: Constant in time shear stress, τ. Elastic portion represented by
γe, viscous portion as γv. Adapted from Mezger (2002) [19].

One of the parameters that can be obtained from a creep test is zero-shear

viscosity, η0. Zero-shear viscosity is related to deformation at very low shear rate

and is determined when the steady-state flow is reached in the end of the test [19].
Furthermore one may determine the limit of (LVE) region through examination of

creep compliance function, J (t ), which is defined in the interval where the sample is

being loaded with a constant shear stress. The stres-strain relation can be expressed

by the creep compliance;

J(t)[Pa−1] =
γ(t)
τ0

(2.26)

Creep compliance defines how easily a material can be deformed by a given stress,

where a high value indicates that the material is easier to deform. In the LVE

range, the creep compliance will be independent of the applied stress. Hence,

this can be used to define the yield stress of a fluid by applying an incremental

increase in stress over multiple tests. Yield stress can be defined when the J(t)

curve starts to be deviate [21]. Another application from the creep test is to analyze

the potential for barite sag in a drilling fluid. The settling of barite due to gravity

is corresponding to a constant shear stress, which is a similar deformation which

occurs in a creep-recovery test [22].
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2.3.4 Relaxation Test

In a relaxation test a sudden constant strain is applied and the responding shear

stress is observed. It is a measure of the required stress to maintain a constant

strain. The sudden strain should be applied in a slow manner so that inertia effects

can be neglected [20]. Elastic materials do not relax, hence the observed stress is

constant and will stay constant for a infinite time. Viscous fluids, on the other

hand, show completely opposite behavior and will relax instantaneous. Viscoelastic

materials is thus expected to behave as an intermediate between elastic and viscous,

as demonstrated in figure 6 [19].
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Figure 6: Relaxion test showing responding stress for constant strain, τe is

equilibrium stress. Adapted from Mezger (2002) [19].

2.3.5 Oscillatory Tests

Along with creep test, oscillatory testing is the most frequently used technique

for analyzing viscoelastic behavior [7]. Oscillation can be explained as variation

between two states in time. The principle behind oscillatory experiments can be

illustrated by a two-plate-model as in figure 7.

A test sample is placed in between a stationary and a movable layer, which

is connected to a rotating wheel. Rotation of the wheel will cause oscillatory

movement of the upper layer in similar fashion as a sin(x) function. Since the lower

layer is immovable, the movement of the upper layer will create a resultant shear

stress equal to ±τ on the stationary layer. One complete rotation of the wheel

corresponds to one complete oscillation period with a angular frequency equal to
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Figure 7: Illustration of the two-plate-model oscillatory test. Adapted from
Mezger[19].

ω in units s−1 or rad/s. The velocity of the moving layer is equal to the rate of

deformation, γ̇(t ), and will be at its highest for 0◦ and 180◦. The corresponding stress

measured from an applied strain depends on the material being tested. A perfect

elastic material will show no delay for the stress curve,τ(t), compared with the strain

curve, γ(t) [19]. A perfect viscous liquid; on the other hand, will show a delay for

τ(t) of 90◦ for the same experiment, for the same reasons as already discussed in

section 2.3.
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Figure 8: Stress strain response for a oscillatory measurement of a viscoelastic
material. Adapted from Mezger (2002) [19].

From figure 8, the applied strain is [17]:

γ(t) = γa · sin(ωt) (2.27)

Where γa is the strain amplitude,ω is angular frequency in rad/s.

The measured shear stress with controlled strain is;

τ(t) =τa · sin(ωt+δ) (2.28)

Where and the phase shift angle is denoted as δ, in [◦] and τa is stress amplitude

If one use controlled shear stress, the applied shear stress is:

τ(t) =τa · sin(ωt) (2.29)

Where τa = constant in Pa, and angular frequency is ω = ω(t ). And the measured
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strain function shifted by δ is thus:

γ(t) = γa · sin(ωt+δ) (2.30)

Storage modulus and loss modulus can be written as:

G ′ =
τa

γa
cosδ (2.31)

G ′′ =
τa

γa
sinδ (2.32)

The response in shear stress as a function of strain can be written as:

τ(t ) = γ0

�

G ′ sin(ωt ) +G ′′ cos(ωt )
�

(2.33)

τ(t) = γa

��

τa

γa
cosδ

�

sin(ωt) +
�

τa

γa
sinδ

�

cos(ωt)
�

(2.34)

2.3.6 Amplitude Sweep

Amplitude sweep test is done in oscillation. The objective with a amplitude

sweep is to define the LVE range by keeping the frequency constant and let the

amplitude increase with time. This can be performed with either controlled strain

or controlled stress. Amplitude sweep is also known as strain sweep or stress sweep.

The LVE range is where the structure of a material remains intact for a stress or

strain amplitue. The LVE range can be defined by plotting storage modulus (G ′)

and loss modulus (G ′′) against strain (or stress) using logarithmic scale on both axis.

Whenever the amplitude is within the LVE range then G ′ and G ′′ are constant, i.e.

storage modulus and loss modulus are independent of stress-strain amplitude in

the LVE range. For a situation where G ′ > G ′′ the elastic behavior dominates over

viscous behavior and the material is showing a gel character. On the other hand

where G ′′ is greater than G ′, the opposite is correct, and viscous behavior dominate

over elastic behavior, and the material will show characteristics of a liquid even

when at rest, i.e. in the LVE range. When the amplitude has reach a certain limiting

value, then both G ′ and G ′′ will start to diverge from their past constant values and

irreversible deformation occur. The LVE is not valid at the point where one of the
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curves starts to diverge from its constant value. There are numerous methods of

determining LVE range. Usually G ′(γ) is used to define the LVE range since it tend

to diverge before G ′′. It is imperative that the limiting value for LVE region, in terms

of strain, γy s , is defined for every new, unknown, sample since it defines the limiting

value for further analysis. By performing a amplitude sweep one may determine the

yield stress, τy s which is defined at strain equal to γy s . The flow pointτ f p is defined

at the crossover point where G ′ =G ′′ as shown in figure 9 [19, 21].

Log τ
Log γγL

Log G''

τfpτy

Log G'

Log G''
Log G'

LVE range LVE range

Figure 9: Left:Strain amplitdue sweeps showing gel-like character. Right: Stress
amplitude sweep showing yield point τl and flow point τfp. Limit of LVE range
included. Adapted from Mezger [21].

2.3.7 Frequency Sweep

Frequency sweeps are oscillatory tests where the amplitude is kept at a constant

value while the frequency vary. The objective of this test is to investigate

time-dependent viscoelastic properties. This test is usually performed in such way

that the frequencies are descending from high towards low frequencies. Rapid

oscillations (high frequency) are representing short-term behavior and likewise are

low frequencies used to investigate long-term behavior. The results obtain for the

test is usually plotted on double logarithmic axis with G ′, G ′′ and η∗ on the Y-axis

and angular frequency,ω, on the x-axis. In order to perform frequency sweeps one

must know the limiting values of the LVE domain. Information on the maximum

strain amplitude values to be used is obtained from the amplitude sweep test, hence

it is imperative to carry out an amplitude sweep in prior of a frequency sweep [21].
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The shear rate values from frequency sweep can be calculated as followed:

γ̇= γa ·ω (2.35)

2.3.8 Dynamic Time Sweep

Time sweep is used to observe time-dependent behavior of viscoelastic properties.

Pre-shearing of the sample at constant temperature in prior of test is required

to break the structure of the sample. The test itself is performed within the LVE

region at isothermal conditions using constant amplitude and frequency. Time

sweep can be used to observe the thixotropic behavior and the following structural

regeneration (gel-behavior). The data can be presented on a x-y plot where time is

on x-axis and G ′, G ′′ and/or η∗ is on y-axis in a logarithmic scale[21]. By evaluating

the viscoelastic properties over time one may characterize the material’s gelling

time and settling properties. A drilling fluid with progressive gel-strenght will show

an continuous increase in storage modulus over time [17].

2.3.9 Dynamic Temperature Sweep

Temperature sweep are oscillatory test performed at constant amplitude and

frequency in each test interval. The only variable is the temperature, where the

temperature may be increased in steps or linearly. The objective of temperature

sweep is to examine the influence of temperature on a viscoelastic material [21].
For some materials the temperature where the material is transforming from

viscoelastic liquid to viscoelastic gel can be determined. This can be valuable

information when studying settling of weight materials in drilling fluids [21].
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2.3.10 Classification of Materials from Oscillatory Tests

As described through these foregoing sections, interpretation of G ′ and G ′′ are

important to understand the structural build up when testing a viscoelastic sample.

The following is a representation of the calculated and measured values from

the applied parameters, while table 1 classify the materials based upon the

measurements [21].

• Applied : Frequency, strain or stress amplitude

• Measured : Phase angle (δ) and ratio of strain and stress amplitude

• Calculated : Storage Modulus : Stored energy or elasticity

– Loss Modulus: Dissipated energy

– tan(δ) : Damping

– Complex Viscosity, η∗: Resistance to flow

Table 1: Classification of Materials from Oscillatory Tests [21]

Ideally viscos

flow behavior

Behavior

of a viscoelastic

liqids

50/50 ratio of

the viscous and

elastic portions

Behavior of

a viscoelastic gel

or solid

Ideally elastic

deformation

behavior

δ= 90◦ 90◦ >δ> 45◦ δ= 45◦ 45◦ >δ> 0◦ δ= 0◦

tan(δ)→∞ tan(δ)> 1 tan(δ) = 1 tan(δ)< 1 tan(δ)→ 0

G ′→ 0 G ′′ >G ′ G ′ =G ′′ G ′′ <G ′ G ′′→ 0
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2.4 Functions of Drilling Fluids

Drilling fluid is the liquid that is circulated through the wellbore during drilling

and workover operations. The drilling fluid system, or more known as the "mud

system", is in contact with the wellbore throughout the whole drilling operation and

it has multiple important functions in order to drill a well efficient and successfully.

Drilling fluids are suspensions of solids containing clay particles and weighting

agents such as barite or calcium carbonate with chemical additives as required to

modify fluid properties. There are multiple different types of drilling fluids such as

pneumatic fluid systems (foam, gas), water based systems, synthetic based and oil

based systems, however water-based and oil-based systems are those that are being

used on the Norwegian Continental Shelf (NCS) [5, 11]

Drilling fluids are an essential part of drilling wells. The functions are described

as tasks that the drilling fluid, or "mud", is capable of performing although not all of

them are in the same degree of importance as others. Control formation pressure

and remove cuttings out of the well are imperative functions for drilling fluids in

every drilling operation. Among the functions mentioned above the most common

functions of a drilling fluid are highlighted in the following sections;[3]

1. Control formation pressures.

2. Remove cuttings from the well.

3. Suspend and release cuttings.

4. Seal permeable formations.

5. Maintain wellbore stability.

6. Minimize reservoir damage.

7. Cool, lubricate, and support the bit and drilling assembly.

8. Transmit hydraulic energy to tools and bit.

9. Ensure adequate formation evaluation.

10. Control corrosion.

11. Facilitate cementing and completion.

12. Minimize impact on the environment.
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2.4.1 Control Well Pressure

In order to avoid influx of formation fluids, and thus a potential well control

situation, it is necessary to have a higher pressure in the well than the formation

pore pressure. As formation pressure increases with the vertical depth of the

well, the mud weight has to be increased to balance out the formation pressure

and maintain wellbore stability. If the wellbore pressure is too high and exceed

the fracture pressure of the formation, a lost circulation situation can occur. In

the event of lost circulation it is important to refill annulus with drilling fluid to

maintain the wellbore pressure in balance with the formation pressure [3]. On

the other hand, if the wellbore pressure is reduced below the formation collapse

pressure the structural integrity of the wellbore will eventually become unstable

which in turn may lead to a mechanical rock-failure mechanism with the associated

problems of stuck pipe and loss of well [11]. The hydrostatic pressure exerted by the

mud column can be calculated as

P =ρg htvd (2.36)

Where P is pressure in Pa, ρ is density of mud in kg/m3, g is free-fall acceleration in

m/s2 and h is true vertical depth in meter.

2.4.2 Wellbore Stability

In prior of drilling, the rock strength at some depth is in equilibrium with the

in-situ rock stresses. The equilibrium between rock strength and in-situ stresses are

however disturbed when a hole is being drilled [11]. Wellbore stability is a function

of mechanical and chemical factors. In order to balance out the mechanical forces

acting the wellbore, correct mud weight must be within a range. Hydrostatic

pressure exerted by the mud column will provide a means of controlling the stresses

adjacent to the wellbore other than those exerted by formation fluids [3]. In

addition, chemical fluids from the mud are introduced and an interaction process

begins between the drilling fluid and in-situ formation. In shales, this chemical

differences between drilling fluid and formation will over time cause formation

swelling and softening, which will lead to other problems such as sloughing and

tight hole conditions. Once wellbore instability has occurred, it will become
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weaker and more difficult to stabilize [3, 11]. Aadnoy[4] purposed "the median

line principle", which is a method of mud weight schedule designed to minimize

borehole stability problems. This is obtained by keeping the mud weight close to

the in-situ stresses

2.4.3 Cuttings Transport

Along with controlling well pressure, one of the most important function of a drilling

fluid is to suspend and transport drilling cuttings along the annulus to the surface

where they can be removed by solids equipment. If cuttings are not transported

out of the well, it will accumulate in the well and may lead to severe problems

such as high torque and drag, stuck pipe, hole packing-off, difficulties of running /
cementing casing, and increased bottomhole pressure which again can impose lost

circulation [11] [4]. In addition, drilled cuttings will get crushed by the drill string if

it is not removed, and high concentration of ultra-fine solids will be incorporated

in the mud system. This can result in solids build up in the mud system, which

in turn can lead to progressive gel strength and elevated rheology caused by the

increase surface area of the particles. Ultra-fine solids (2-44µm) is not possible to

remove with solids equipment and dilution of fresh fluid is the only outcome. The

viscosity and rheological properties of the mud system has a significant effect on

hole cleaning. Adequate gel strength is required to ensure that the cuttings remain

suspended under static conditions when circulation is shut off, however too high

gel strength will induce excessive pressures when circulation is broken [3] [11]. A

more in-depth review of hole cleaning is written in section 2.7.2.

2.4.4 Seal Permeable Formation

During conventional over-balanced drilling in permeable formation as mentioned

in section 2.4.1, mud filtrate will invade the formation, and solids within the mud

system will deposit a filter cake on the wall of the formation. A proper maintained

mud system should deposited a filter cake on the formation wall that is thin and

have a low-permeability in order to minimize filtration invasion. The ability to seal

permeable formations is important for successful drilling of the well.
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2.4.5 Cooling and Lubrication

During the process of drilling heat is generated by frictional interaction between

bit and formation. In addition to heat generated by friction, elevated temperatures

from the formation may lead to failure of mud motors, drill bit and bottomhole

assembly (BHA) components if not being cooled down. The circulation of drilling

fluid from surface down the drill string and up annular space will transport heat

away from the source and cool down components. In addition to transporting heat

away, the mud will also provide some degree of lubricity and in such way reduce

the frictional heat generated. The degree of lubricity will depend on mud type and

solids content within the system. In general, oil based mud (OBM) will provide

better lubricity than water based mud (WBM), however friction reducers may be

added to improve lubricity [3].

2.5 Oil Based Drilling Fluids

Oil based drilling fluids are mixtures of two immiscible liquids: Oil and water. They

are invert emulsions since water is broken up into small droplets and uniformly

dispersed into the oil, however the word emulsion is commonly used and will be

used ahead. The water phase is know as the internal phase while the oil is known as

the continuous phase. The volume percentage of oil relative to water is recognized

as oil-water ratio and is abbreviated as OWR. For most drilling operations the

OWR is in the range of 70:30 to 90:10 and is defined in mud program for each

drilling operation. However, oil based drilling fluids are stable at OWR lower than

70:30 as long as there is sufficient emulsifier to form a film around each water

droplet and that the droplets are small of uniform size. As a result of water are

dispersed into small droplets, a higher water content will increased contact surface

area between water and oil. The increased water will affect the stability of the

mud as there is less free space for water droplets to move around and will for that

reason more easily coalescence into larger water droplets. Furthermore, the water

droplets will act much like fine solids are to water based systems, thus increasing

the rheology, which will affect the wellbore hydraulics. In order to have a stable

emulsion the water must be dispersed into uniform small droplets. This is done

by applied mixing energy in the form of shear, which can be obtained through
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high pressure mud-guns or when circulating mud in the well where turbulent flow

occurs. Unsheared emulsion will have spherical droplets, while they get ellipsoidal

when shear is applied before they eventually split in two smaller droplets[23].
Proper shearing of OBM is essential in order to obtain a smooth viscosity profile

and non-progressive gel strengths. A relative measure of the stability of an oil based

drilling fluid is electrical stability, often abbreviated as ES, which measures the

voltage required to induce a current through the sample. Electical stability above

500 V is often considered as a minimum for a stable mud for drilling purposes.

Water droplets within the emulsion will form a conductive pathway hence reduce

the ES. The larger the water droplets are, the lower the resulting ES will be [3].

The advantages of using OBM compared to WBM are many and is the only choice

in some circumstances. Among the benefits of using OBM is shale inhibition, lower

equivalent circulating density (ECD), reduced torque and drag, improved wellbore

stability, temperature stability, and corrosion friendly. However, OBM is more

expensive, it is considered to be more harmful than WBM with respect to healt and

environment. Furthermore, treatment of lost circulation is considered to be more

difficult with oil based than water based drilling fluids, and discharge of whole mud

and cuttings are prohibited in most offshore locations in the world [3, 4].

2.6 Composition of Oil Based Drilling Fluids

The following will give a general overview of the most important composition of a

oil based drilling fluid.

Base Oil: The base fluid of oil based drilling fluids are known as the

continuous phase. Historically the base fluid for such drilling fluids were

crude oil and diesel oil, however these are not used in the modern formulation

as they represent a health and environmental risk. Today, non aromatic

mineral oil and linear paraffin base oil are examples of base fluid used as the

continuous phase.

Weighting Material: Weighting agents are added to the drilling fluid to

achieve a desired mud weight. The most used weighting material used in both

oil based and water based drilling fluids is barite. Barite is an inert mineral,
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BaSO4, which is considered to be cheap and due to the high density it can

increase the mud weight quickly. One of the major disadvantages of using

barite is that it may damage formation permeability as it is very difficult to

remove. Another factor to mention is that barite absorbs gamma rays, which

may come in conflict when logging in high density drilling fluids [11]. Other

weighting agents with higher density than barite that are available is itabirite

and ilmenit [5]. Historically it has been reported that ilmenite is abrasive and

casuses erosion; however, recent studies show that this can be avoided by

adjusting the particle size distribution of ilmenite and that it give an overall

benefit as a weighting material compared to barite [24].

Viscosifier: The primary viscosifier in oil based drilling fluids are surface

treated bentonite clay also known as organophilic clay. The surface treatment

is required to make the clay dispersible in oil and thus yield. Water and

organophilic clay are synergistic in how much it yield. The clay requires water

as a polar activator, hence, the effect of clay will decrease as the oil-water ratio

increase. Sufficient shear and temperature is also required to ensure that full

yield of the clay [3] [25].

Fluid Loss Agent: The primary fluid loss control agent in oil based mud is

natural asphalt (gilsonite), amine treated lignite or cross-linked polymers.

Asphaltic materials are natural hydrocarbons and are thus naturally oil-wet.

They are also more efficient fluid loss agent than amine treated liqnite

when used in equal concentrations, however asphaltic materials can damage

formation permeability, and as it is a natural hydrocarbon it can give an

influence on fluid interpretation when performing reservoir fluid sampling

during exploration drilling.

Emulsifier: Emulsifiers are chemicals that reduces the surface tension

between two immiscible liquids. They are required in oil based drilling fluids

to make it possible to maintain a stable dispersion of fine water droplets

into oil. The emulsifier are usually usually long-chain alcohols, fatty acids or

polymers. Fatty acids requires lime to form soaps, which will function as a

emulsifier. Now days it is common to use an emulsification package, which

provide emulsification and wetting agent in one chemical
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Wetting Agent: Oil based drilling fluids uses wetting agents to make solids and

weighting materials oil-wet. If there is insufficient wetting agent, the solids

can get water-wet, which will cause settling of solids out of the drilling fluid.

In addition to the chemicals mentioned above, oil based drilling fluids also include

salts, usually calcium-chloride brine in the water phase, which offer inhibition

properties for most shales. Ideally the water phase salinity in the drilling fluid will

prevent shale to absorb any water by balancing out the formation salinity. Too high

salinity may cause dehydration of shale [3].
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2.7 Drilling Fluids Performance

2.7.1 Barite Sag

Settling of weight material in drilling fluids is commonly referred to as barite

sag. This causes fluctuations in the mud density and is especially prominent in

high-angle wells, in particular those exceeding 60◦ where annular velocity is low

and the viscosity for the drilling fluid is low. Sag is recognized as a major concern

in drilling and completion operations as it can lead to well-control issues, stuck

pipe, lost circulation, and wellbore-instability [3]. The occurrence of barite sag is

commonly observed when circulating bottoms up and the resulting mud weight,

out of the hole, is lower than the mud weight going into the well. Although Barite

sag tend to be more prominent in OBM than in WBM, it can also occur in WBM [26].
One method to avoid barite sag is to use drilling fluids based on heavy brine. These

fluids are less subjected to sag since they has a lower concentration of particles, but

they do not exhibit the same drilling properties as OBM [27].

Static sag occurs in fluids that are static for a longer period of time. Moreover,

if the fluid column is inclined, the settling rate will accelerate significantly. Settling

of barite in inclined tubes can be explained as boycott settling. As barite settles

out from the suspension zone on the low side, the lighter fluid will travle upwards

on the high side. This will create a thin layer of low density fluid on the top of the

tube and another just below the upper wall. The particles will then settle out from

the sedimention zone and accumulate into a sediment bed on the lower wall as

seen in figure 10. The pressure difference over the cross sectional area will create

convectional currents, forcing the low density fluid upwards and the sediment

bed downwards. The effect of downward flow and sediment bed sliding is called

slumping. In deviated wellbores, the flow stream moves along the high side, which

will accelerate boycott settling even more. Settling of barite occurs more frequent

during circulating than in static situations, hence barite sag is primarily a dynamic

settling problem. When drilling under high temperature - high pressure (HTHP)

condtions, the mud weight are commonly high and temperatures are high. This

causes the viscosity of the drilling fluid to decrease, which in turn can accelerate the

potential for sag. These types of wells are specially prone to dynamic barite sag in a
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situation where annluar velocity is low, such as when circulating with low flow rate

through the choke on the blow out preventer or when running casing [3]. Barite sag

in the field is a complex phenomenon with combining factors of pipe eccentricity,

annular velocity, drilling fluid rheology, wellbore angle and temperature to mention

some.

Clarified fluid

Sag (sediment)

bed

Suspension

zone

Slump

Figure 10: Illustration of boycott settling. Adapted from M-I Swaco([3])

Barite sag potential of a drilling fluid can be analyzed through laboratory testing.

However these tests can only give an indication of the settling potential for a

particular drilling fluid as they cannot simulate all of the well parameters affecting

sag in the wellbore.

Dynamic Testing
Laboratory measurements of dynamic sag performance test can be measured by

the use of a conventional viscometer or a flow loop. The viscometer sag shoe test is

performed by using a conventional rotational viscometer, a thermocup and a "sag

shoe". The upper surface of the shoe is made out of thermoplastic and has a slope

with a small collection well at the end of it. The sag shoe is designed in such manner

so that it intentionally concentrate settled barite into the collection well. The test is

good to observe tendencies of a fluids capability of suspending weighting material

under dynamic conditions. It is important to be aware of that this test is a relative
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measure of a particular fluids ability to suspend the weighting material and is not a

direct measurement of the barite sag under all well conditions. Sag measurements

obtained from a flow loop is more accurate on how drilling fluids will perform in

the field as they other parameters such as flow rate, eccentricity, pipe rotation and

inclination can be manipulated [28].

Static Testing
In this test the drilling fluid is put in a cell (typically 350ml) and then pressured up

to prevent fluid of boiling. The cell is then set in a heating oven for a longer period

of time for aging, 16hrs or as required, and at a desired testing angle. When the

aging is completed, the fluid is separated into five parts and the density of each

layer respectively is determined to observe how the weighting material has settled

under static condtions. The uppermost layer is typically a free-oil layer which is

measured first. Furthermore, the fluid can then be tested in normal fashion to

observe how aging has an influence on the drilling fluids properties. The aging

testing may also be performed under dynamic conditions by the use of a roller oven.

Under static conditions the only force acting on the weighting material is the

gravity force. If sufficient gel strength is obtained, the force acting on the particle

must overcome the gel strength minus the buoyancy force in order to settle out the

particle. The gel strength can hold back a force equal to:

F =τg e l ·Ap (2.37)

Where τg e l is the gel strength and Ap is the area of the particle. The equilibrium

force is achieved when the gel strength acting on the surface area of the particle is

equal to the gravitational force acting on the volume;

4πr 2
pτg =∆ρ

4

3
πg r 3

p (2.38)

τg ≥
(ρp −ρ f )

6
g Dp (2.39)

Whereρp is density of settling particle,ρ f is density of fluid, both in kg/m3. For API

drilling rated barite the density is ρb = 4.200 kg/m3, 97% of the weight shall be less
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than 75µm and no more than 30% by weight shall be smaller than 6µm in diameter.

If we then calculate the theoretical gel strength required to hold a barite particle

of 30µm in a mud weight of 1500 kg/m3, the gel strength would then be 0.13 Pa

(or (0.27 lb/100 ft2)), which is lower than one could measure with a conventional

viscometer. In reality, most drilling fluids will sag even with gel strengths much

higher than this [6, 29].
The terminal velocity of spherical particles in Newtonian fluids can be expressed

by Stokes’ law.

vt =
2(ρp−ρf)

18η
·gD2

p (2.40)

2.7.2 Hole Cleaning

Hole cleaning is the subject of removing drilled cuttings and transport them out

of the well. It is one of the highest concern when drilling a well, and in particular

for high angle wells or extended-reach drilling. A thorough understanding of the

mechanisms behind hole cleaning is imperative in order to successfully drill such

wells. Although the role of fluid rheology is considered to be plays a key role in hole

cleaning, there are several other factors, which is of high relevance to achieve good

hole cleaning. Among the factors affecting hole cleaning efficiency are;

• Pipe Rotation

• Wellbore Angle

• Flow rate

• Hole size

• Drill pipe eccentricity

• Cuttings size and shape

• Rate of penetration

• Drill string design
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Hole cleaning dynamics depends on the hole angle of the well and is commonly

separated into three different regimes:

• Low angle (0◦−45◦)

• Medium angle (45◦−60◦)

• High angle (> 60◦)

The main difference with respect to cuttings transportation in vertical wells

compared to high angle wells is that the cuttings in high angle wells has a very small

distance to travel before reaching the bottom of the well. In horizontal wellbores,

the cuttings cannot be suspended even with high flow rates, hence the cutting will

fall down on the low side and form a beach. For wellbore angles between 45◦−60◦,

the cuttings bed will be more easily brought into suspension during circulation,

however when the flow comes to rest, the cutting falls out of suspension and fall

on the low side of the well causing a potential slide of cuttings, and form dunes.

The fluid velocity for horizontal wells is also different when compared to vertical

holes. In vertical wellbores the annular velocity profile is uniform around the drill

pipe, however for horizontal wells the velocity distribution is not equally over the

cross-sectional area of the well. This is caused by cuttings accumulation on the

low side of the well, which will cause much higher fluid velocity on the high side

compared to the low side. In fact, the fluid may almost be at rest on the low side.

The only way to get the drilled cuttings into the higher velocity area under these

circumstances is to apply pipe rotation [30]. The pipe rotation must be above the

"viscous coupling" threshold between drill pipe and drilling fluid [31]. The viscous

coupling is a fluid film rotating with the pipe, and is a function of fluid rheology

and rotational speed of drill pipe, this is illustrated in figure 11. With appropriate

fluid rheology the cuttings can then be transported away from its past position until

it falls down on the low side again. Without pipe rotation the cuttings will remain

stationary on the low side [30].
A primary rheological parameter to monitor a drilling fluids hole cleaning

capability is considered to be the low shear rate dial readings, i.e. 6 and 3-rpm on

the VG-meter. Mims et al.[30] recommends that the 6-rpm dial reading should be 1

- 1.5 times the hole size when using water based drilling fluids in long horizontal

wells, and that it should be slightly less than one when using oil based drilling
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Figure 11: Hole cleaning concept in horizontal well with rotating drill pipe, adapted
from Mims et al. [30]

fluids. Furthermore, they also recommend that the oil- water ratio should be kept

high when drilling such wells to ensure that the plastic viscosity is kept low and to

reduce the ECD. Although the viscosity profile for an oil based and water based

drilling fluid might be quite similar, they act differently in respect to hole cleaning.

When using water based drilling fluid, there is a risk that the water may react with

the cuttings bed and form a gel-structure within the cuttings bed itself. This will

not occur in the same way when using oil based drilling fluids as there is less

free water to react with the cuttings. This is also why the 10-sec and 10-min gel

strength is recommended to be kept low, and that the drilling fluid should only

show a low degree of shear-thinning to obtain good hole cleaning [32]. For drilling

operations on the NCS, the 3RPM dial reading on a conventional viscometer is a

standard rheology specification for each section. This is not one specific number,

but rather a small range where the 3RPM readings shall be within for a specific

mud system. For top-hole drilling (spudding), the funnel viscosity is typically the

rheology specification.
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3 Literature Study

This section contains research performed by others as a foundation for the

experiments being performed in this paper.

3.1 Viscoelasticity and Barite Sag in Drilling Fluids

It is widely addressed in the literature that rheology of drilling fluids plays an

important role in respect to barite sag. Static settlement of barite can be

reduced with appropriate gel strength. However, controlling dynamic sag is more

complicated than controlling static sag and cannot be predict by standard viscosity

measurements. In a situation where static sag is negligible, dynamic sag can be

much more severe. Some authors states that dynamic sag may be reduced with

elevated gel-strengths and/or low-shear rheology, that is the θ6 and θ3 readings on

the Fann VG-meter [15], [33], [34]. Bern et al.[15] suggested an alternative method

to the Bingham yield point, commonly known as low-shear yield point (LSYP).

LSYP[lb/100 ft2] = 2 ·θ3−θ6 (3.1)

Furthermore, it is suggest that the LSYP should be be in the range of 7−15 lb/100 ft2

to minimize barite sag [15]. A numerous of studies has tried to investigate the

complexity of dynamic sag in drilling fluids. It is thought that viscoelastic behavior

can give advantageous knowledge about dynamic settlement. This involves

studies of drilling fluids viscoelastic behavior at deformation rates far below the

conventional viscometer range.

Hanson et al.[33] conducted more than 70 test on a flow loop in order to study the

phenomenon of dynamic sag. The paper present case histories and follow up with

ten practical guidelines to minimize sag problems. One of the recommendation

is to not thin the drilling fluid too much in prior of running casing as this may

promote sag. However, reduced rheology is in general preferred during cement

jobs as this increases the mud mobility during the cement job, which is important

for a successful cement job. Furthermore, it was also recognized that dynamic sag

is more sever under low fluid velocities and that slumping was most extensive in
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angles between 40◦ − 50◦. The paper concludes that sag is primarily caused by

enhanced boycott settling due to dynamic conditions and that dynamic sag is more

prominent than static sag because of this.

Arild Saasen [29] made a comprehensive article about the theory describing

weight materials behavior in emulsions and oil based drilling fluids. This theory

argued that the viscosity of these fluids are low when the share rate is ultra low

and that a shear-thickening behavior occur over a very small share rate. This

low viscosity environment is caused by a crystalline structure of water droplets

created by Brownian motion, which is destroyed when the shear rate is increased

followed with an increase in viscosity. It is also argued for that static sag of weight

material occur in a non-continuous fashion. Initially the particle will settle due to a

low viscosity environment caused by the crystalline structure. When the particle

accelerate downwards the viscosity around the particle increases, which causes

the particle to stop. This process will occur over again, making the particle to

settle step-wise . The shear-thickening effect is in contrast to the shear thinning

effect observed at higher share rates. Furthermore, possible methods to reduce

critical shear rate where this shear-thickening behavior is suggested in order to

mitigate sag. One of the methods mentioned is to decrease the oil-water ratio as

this reduce the free space for water droplets to move before they collide with nearby

water droplets. It is also argued for that reducing the free space between water

droplets, without changing the water fraction, would also reduce the onset of shear

thickening. This could be done by apply more mixing energy.

Manipulating of the internal water phase composition in oil based drilling was

performed by Omland et al.[35], with focus on correlating static sag with fluid

composition. This was done by formulating 16 different invert emulsion fluids

with same density and water activity. Four different base fluids was used for the

continuous phase, and additionally four different salts used for internal phase. The

results showed that static sag was higher when a low-viscosity base fluid was used.

The paper concludes that the choice of base fluid is imperative in controlling the

drilling fluid viscosity and that ammonium calcium nitrate (NH4Ca(NO3)) salt used

as internal phase provided better sag stability when compared to the frequently

used calcium chloride (CaCl2).
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A similar approach was made by Tehrani et al.[36]. They focused on how

viscosifying the internal brine phase of an oil based drilling fluid would affect fluid

rheology in connection with dynamic sag. Dynamic sag testing was done with a

sag shoe and a Fann 35 model rotational viscometer. All chemical concentration

constant where held constant while the type and concentration of viscosifier was

altered. Observations showed good correlation between reduction in dynamic sag

and the LSYP. When the LSYP was increased, the measure barite sag decreased.

Addition of ionic polymer showed a reduction of sag close to 30% in the laboratory

tests.

Ehrhorn and Saasen[37] discuss the importance of rheology in connection to

barite sag. The paper states that oil based mud does not develop any gel structure

as there is no bonding forces between individual particles within the fluid. In

the conclusion it is stated that static or dynamic sag can not be prevented, only

minimized if the viscosity at low-shear rate is sufficient.

Tehrani et al. [28] investigated the correlation between the rheological

properties of invert emulsion fluids and barite sag measured in the lab. This was

done by addition of different organophilic clay and polymers in invert emulsions

before investigating dynamic sag. From the experiment it was found a correlation

between low-shear rate viscosity and dynamic sag behavior down to shear rate of

0.001s−1 for fluids containing clay, where a higher degree of sag was observed for

fluids showed lack of low-shear rate viscosity. Viscoelastic measurements was also

used in the attempt to correlate dynamic sag measured in the lab with viscoelastic

parameters such as G ′, tan(δ), and complex viscosity η∗. Experiments showed that

dynamic sag decreased when the elastic properties of the fluid increased, ı.e. when

the fluid showed behavior of viscoelastic gel or solid. This correlation was obtained

when comparing dynamic sag and tanδ, at a frequency of 1 Hz. Temperature

dependency on elastic modulus was also found, and in particular that elasticity was

reduced as temperature increased.
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Herzhaft et al. [38] study oil based mud formulations used in deep water drilling

operations. Several oscillatory measurements at low temperature to study the

structural properties at rest. Viscous modulus (G ′′) and elastic modulus (G ′) was

compared for pre-sheared mud samples and un-sheared mud samples. Their

measurements showed that the viscous modulus was not significantly affected by

shear, however, elastic modulus showed a lower value when being pre-sheared.

The linear viscoelastic range was larger for pre-sheared samples. The paper

identified that the interaction between organophilic clay and emulsion droplets was

responsible for a solid-like structure at low shear rates promoting elastic structure at

rest. This interaction could be described as colloidal particles which is destroyed if

mixing energy is high enough. In common with Tehrani et al. [28], it was showed

that the level of elasticity decreased for increased temperature. Observations

performed suggested an intermediate plateau in shear stress at intermediate shear

rates and Newtonian-like behavior at low, and high shear rates. These trends were

observed for temperatures from 0 ◦C to 80 ◦C. Comparison of between low-shear

rate rheometer with the conventional VG-35 was also conducted. It was concluded

that the conventional VG-35 viscometer overestimates the viscosity at low shear

rates.

In the search for a correlation between rheological behavior of oil based drilling

fluids and dynamic sag, Savari et al.[39], performed a series of laboratory tests

on five different field mud samples. A Dynamic High Angle Sag Tester (DHAST)

was used to study dynamic sag and an Anton Paar high end rheometer for the

rheological measurements. From the DHAST measurement, it seems like the sag

rate was at the highest for all fluid samples when a shear rate of 10 s−1 was applied.

Results presented in the paper showed some general trends from the amplitude

sweep test where high G ∗ (complex modulus) and dynamic yield stress show better

sag performance. From the frequency sweep test, their measurements showed that

the two samples with highest value of tanδ (viscous dominance) also showed high

ability to sag. Their complex viscosity (η∗) values form the same measurement did

not show the same correlation. Their test results were not consistent for all fluid

samples, which indicates that several mechanisms are involved in barite sag.

Bui et al. [17] studied viscoelastic properties and their applications in oil based

42



drilling fluids, primarily in the linear viscoelastic range. The paper provide a

comprehensive description on viscoelasticity behavior and testing. Furthermore, it

was observed that linear viscoelastic range, gel strenght and dynamic yield stress is

dependent on temperature and frequency. All of these decreased when temperature

was increased and frequency was decreased. The time to develop a gel-structure

was observed to be higher then what is recommended by API to determine the

gel-strength. It was also investigated if the samples obeyed the Cox-Merz rule

(explained in section 2.3). The results showed that the steady shear viscosity was

lower than complex viscosity, and the samples did not follow the Cox-Merz rule.

Saasen et al. [34] performed a research study on static and dynamic sag in water

based drilling fluids with the use of viscoelastic measurements and a standard

Fann-35 viscometer. The research was introduced by classifying the drilling fluids

by plotting the 3-rpm reading versus gel-strength, classified as high or low. This gave

four different classifications of the fluids. Furthermore, to quantify the measured

barite sag, a sag number was defined based upon a sag cell. When the static sag

was plotted, represented by sag number, vs the 3-rpm reading, it was observed a

poor correlation - indicating that the 3-rpm reading is not a good measure of sag

potential. When the static sag was plotted against 10-min gel strength, a better

correlation was obtained. The trend showed that a higher gel-strength reduced gel,

however; this was not valid for all fluids. The dynamic sag measurements showed

that viscosity may play an important role, given that the fluid has some resistance

to static sag. Viscoelastic measurements was also performed, which focused on

G ′ and G ′′, and in particluar the ratio of these two as this indicates structural

build up of the fluid. The results indicates that G ′/G ′′ will provide information

about static sag potential. However, it was emphasized that the value of (G ′/G ′′)

is dependent on measurement technique with respect to frequency and amplitude.

The hypothesis that G ′/G ′′ should be greater than a constant to avoid static sag

was thus supported. In the conclusion of the paper, it is mentioned that dynamic

sag is related to low-shear viscosity and that gel formation is an important factor in

connection to static sag.

The paper from Omland et al. [23] studied how the amount of shear, or

mixing energy, affect an invert-emulsion drilling fluids behavior. Barite sag and
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viscoelasticity was investigated to observe if the applied mixing energy influenced

the properties. When mixing energy is applied to an emulsion, the droplets will

become smaller which increase the surface area and reduce the distance between

them. The increased surface are will increase the viscosity while the reduce

emulsion droplets will increase the storage modulus, which is related to barite sag.

Sag measurements taken at different times of shearing showed improvements when

the fluid was sheared for a longer period. Also, the crossover point in the amplitude

sweep showed improvements when a the fluid was sheared. The paper concludes

that increased shear energy is beneficial with regards to sag potential; and that

barite sag potential can be predicted from viscoelastic measurements.

3.1.1 Yield Stress in Drilling Fluids

Yield stress has already been defined from the literature in section 2.1.3 as the

amount of stress required to initiate a flow in a liquid. Some highly shear-thinning

liquids appear to show yield stress characteristics since a rapid drop in viscosity

is observed over a small difference in shear stress, as shown in figure 12. Using

appropriate measurement techniques for measurements below this value for shear

stress, it can be shown that the viscosity is constant, although large, before it drops

many orders of magnitude. Therefor It might be better to refer to a "yield stress

region" rather than a yield point [7, 40].

In the paper from Barnes [40] it is argued for that the models containing yield

stress gives a good description of flow above the critical stress limit, but also that

yield stress for non-Newtonian liquids is just an value that is extrapolated from

higher shear rates and that yield stress is not a correct measure for the limiting value

of flow. Caenn et al.[5] states that most drilling fluids behaves as an intermediate

between Bingham plastic and ideal power law fluids, and that drilling fluids have

a indefinite yield stress that is lower than one would get by extrapolating shear

stress values form high shear rates. Jachnik [41] compares current measurement

techniques to estimate yield stress in drilling fluids and compared them with

a controlled shear stress rheometer. The comparison showed that curve fit

methods obtained from conventional viscometer overestimated apparent yield

stress unless the fluid contained a high concentration of fine solids, which led to an
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Figure 12: Flow curve of 10% bentonite suspension showing the viscosity drop over
a small range of shear stress. From Barnes[40]

underestimation of yield stress. This was also the same for low-shear yield stress,

defined in equation (3.1). The paper conclude that viscosity calculated from models

are usually underestimated due to the shear rates experienced in parts of annular

space (< 0.01 s−1. The paper also emphasizes that the industry relies too much on

the Bingham plastic model and suggest that the model should be abandoned, with

the exception of monitoring plastic viscosity. Another study emphasizing the yield

stress topic is the paper from Maxey et al.[42]. They question what methodology is

the most appropriate to as direct measurement of the yield stress. In the research,

a controlled shear stress and oscillatory measurement techniques was used to

evaluate yield stress. The paper recommend that rheological characterization

should be performed at shear rate below 0.1 s−1 for more accurate hydraulic

predictions, and that the measured yield stress values depended on the measuring

technique.

Zamora et al. [43] states in the paper that the yield stress is difficult to determine for

a given liquid. The paper suggest that a direct measurement for the yield stress is

preferred since yield stress is a property of the liquid, which is independent of any

models.
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4 Experimental Studies

The oil based drilling fluids used in this thesis were provided by M-I Swaco Norway

in accordance with specifications given from the University of Stavanger for this

thesis. In order to investigate the oil-water ratio impact on oil based drilling fluids it

was essential to keep the concentration for as many as possible chemicals constant

for all of the four fluids and let the OWR vary from 60:40 to 90:10. The density of the

drilling fluids used in this thesis was 1750 kg/m3 and had an OWR of 60:40, 70:30,

80:20 and 90:10. Constant density is important in order to characterize the influence

of water since solids will affect the fluid behavior. Hence, the only chemicals that are

not constant for these fluids are water, baseoil, salt and barite. Salt was necessary to

keep as a variable in order to obtain an equal water phase salinity. The formulation

of all four drilling fluids is given appendix A.

The rheological measurements were conducted to investigate the fundamental

rheological behavior of the drilling fluids at different temperatures. This was

performed using the OFI model 800 8-speed, which is a conventional couette

geometry, direct-indicating viscometer. These type of instruments are quick and

easy to use, but are not as accurate as a high end rheometer. The sag testing

was performed under static and dynamic conditions with the use of an alternative

static sag test and sag shoe kit, respectively. Observations made in this section

will be used in hydraulic modeling and cuttings transport simulation, while the

sag observations are to be used in connection with viscoelastic measurements in

section 4.4 to investigate for any possible correlations.
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4.1 Preprations

Due to the thixotropic behavior of drilling fluids, rheological measurements are

dependent of shear history. In order to obtain consistent measurements for all four

samples, it was important to define a procedure prior of testing. The preparation

included to shear the samples using a Hamilton Beach mixer for 30min prior to

performing rheological measurements on the viscometer in order to obtain the

same initial state for all samples. This was also done to ensure that a the water

was completely dispersed into the oil, and to shear any organophilic clay residues

within the drilling fluid. The electrical stability (ES) of the mud was measured before

and after shearing as an measure of emulsion stability, given in table 12. Before

the rheological measurements were carried out, the drilling fluid was heated to

specified temperature using a heating cup, and the drilling fluid was then stirred

at high shear rate. The measurements were then performed from high to low shear

rates before the 10 s and 10min gel strength was measured.

4.2 Rheological results

The following subsection contains the results obtained from the rheological

measurements. The flow curves are represented in oilfield units as this is the

most common representation in the oil industry. The y-axis represents the shear

stress and is given in dial readings that are not corrected to lb/100 ft2 and the shear

rate is given in reciprocal seconds on the x-axis. The flow curves are represented

at 50 ◦C, with the remaining 20 ◦C and 80 ◦C measurements given in appendix B.

A comprehensive table for all of the rheological measurements, including gel

strengths, are given in table 3.

The measurements are shown in figure 13 and gives an overview in how

OWR affect the shear stress measurements. Dial readings decrease when the

OWR increase, with a significant difference between the OWR 60:40 sample and

OWR90:10. This will lead to increased pump pressure and annular pressure loss,

which will be discussed in section 5.1.

The measurements in table 2 shows the ES measurements before and after

shearing the mud on a Hamilton Beach mixer for 30min. The ES increasing when

the water fraction is decreasing, which is a measure of emulsions stability. The
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Figure 13: Flow curves for all four samples measured at 50 ◦C

fluid sample with the largest water fraction has the lowest ES, which is caused

by the increased concentration of water droplets within the fluid which creates a

conductive pathway between the probes. The 90:10 OWR can be evaluated as the

most stabile emulsion based upon the measurements, primarily caused by the very

low water fraction.

Table 2: Electrical Stability before and after shearing (50 ◦C).

OWR ES before shearing [V] ES after shearing[V]

60:40 502 598

70:30 699 860

80:20 746 1218

90:10 641 1977
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Table 3: Dial reading measurements of all four mud systems on 20 ◦C, 50 ◦C and 80 ◦C.
Shear stress not corrected to lb/100 ft2

Oil Water Ratio 60 : 40 70 : 30 80 : 20 90 : 10

Temperature 20 ◦C 50 ◦C 80 ◦C 20 ◦C 50 ◦C 80 ◦C 20 ◦C 50 ◦C 80 ◦C 20 ◦C 50 ◦C 80 ◦C

Shear rate[RPM]

600 278 234 118 131 99 58 85 70 49 62 53 34

300 159 134 74 75 59 37 47 39 29 37 28 19

200 116 99 57 54 44 30 34 29 22 27 21 14

100 71 63 38 35 28 20 21 18 15 15 13 10

60 53 47 30 26 21 16 15 14 12 11 10 6

30 36 33 22 18 15 14 11 10 7 7 6 5

6 19 17 13 10 9 6 5 5 5 3,5 3,5 3,5

3 17 15 11 9 7 5 4,5 4,5 4,5 3 3 3

10sec gel: 14 13 10 7 6 5 5,5 5 5 3 3 2

10min gel: 18 14 11 9 7 6 6 5,5 5,5 4 4 3,5
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4.2.1 Model Fit

The rheological modeling was done in order to evaluate which rheological model

describes the drilling fluids used in this thesis best. A total of 6 different models

was used in this modeling where the rheological measurements in table 3 was used

as input. Theses were; Newtonian, Bingham Plastic, Power Law, Herschel Bulkley,

Robertson and Stiff, and the Unified model. The Herschel Bulkley, Robertson and

Stiff and the Unified model gives the most accurate description of the drilling

fluids used here. The Robertson and Stiff model had the highest accuracy with an

average deviation from measured values of 1.78% while the other two had a slightly

higher deviation. The complete comparison for all models is given in appendix B.1.

figure 14 compares the measured rheological values against the rheological models.

Values on vertical axis is % deviation from measure values, with average deviation

value given to the far right, denoted as "avg". The comparison reveal that the all of

the models has an increase discrepancy for the 90:10 OWR drilling fluid.

20°C 50°C 80°C 20°C 50°C 80°C 20°C 50°C 80°C 20°C 50°C 80°C Avg 
OWR 60:40 OWR 70:30 OWR 80:20 OWR 90:10

Herschel Bulkley (%) 1,2 1,5 2,2 1,6 1,3 2,9 1,7 1,2 1,6 1,5 3,1 3,5 1,9
Unified (%) 1,7 1,7 1,6 2,1 0,9 2,8 2,5 1,3 1,7 1,2 3,0 5,0 2,1
Robertson and Stiff (%) 0,7 1,3 2,3 1,6 1,1 1,6 1,7 1,3 1,8 1,5 2,4 3,9 1,8
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Figure 14: Comparison chart of the rheological models Herschel Bulkley, Robertson

and Stiff, and the Unified model. Model deviation against measured rheological

valuses, given in %.
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4.3 Sag Measurements

4.3.1 Alternative Static Sag Measurement

To measure the rate at which barite settle out of the fluid under static conditions,

an alternative static sag test was developed. In addition, it was thought that

this method would give insight in the stability of the fluid before taking dynamic

oscillatory measurements at approximately static conditions for up to 3 hours.

The method was performed under static conditions at 20 ◦C with the use of a

standard viscometer cup, a steel cylinder submerged into the fluid sample attached

to a piece of string, which was hung of from a digital weight. The size of the steel

cylinder was; [H = 2.5 mm D = 2.5 mm]. The experiment was performed over a

period of 4hrs and weight measurements were taken every 5th minute. The initial

setup is illustrated in figure 15.

Submerged 

steel cylinder

OBM

Barite particles

Figure 15: Experimental setup for alternative static sag test

The initial weight measurements of the submerged steel cylinder, for the 90:10

sample, showed a decreasing trend, or equivalent to an increase in force acting

upwards, up to 20min. This might be explained by some initial structure in the

sample fluid when it comes to rest. The following measurements shows an increase
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in weight as an result of barite sag with a linear trend from t = 85 min. The rate at

which the barite settles out from t = 85 min to t = 235 min is 0.282 g/h. However,

the rate may be have been greater because of the buoyancy is acting in the opposite

direction. The same experiment was performed on the fluid with an OWR of 80:20.

Now the behavior is very different. A decrease in ∆m is seen over a period of 3,5

hours before any weight increase is observed. The results indicate that the 90:10

OWR fluid does not have any structure within the fluid which can prevent settling

even at ambient temperature. Due to the observed trend from the 80:20 sample, the

remaining 70:30 and 60:40 samples were not tested.
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Figure 16: Results from alternative sag test. Change in weight of a cylinder

submerged into OBM over time due to barite sag, measured at 20 ◦C over a period

of ≈ 4hrs

4.3.2 Dynamic Sag Measurement

Dynamic sag measurements were performed in order to quantify which of the

drilling fluids that was most prone to dynamic sag. The VSST method was chosen

to measure this. Prior of measurements, the fluids was sheared with an Hamilton
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Beach mixer for 15 minutes. The VSST method was performed at 50 ◦C with the

use of 140 ml fluid. In order to avoid premature saging while heating up the fluid,

the initial shear rate was set to 600RPM before a reference weight was taken from

the collection well at the end of the sag shoe. This volume was then returned into

the heating cup before the shear rate was reduced to constant value of 100RPM for

30min. After the 30min period is over, a new weight measurement is taken. This was

conduced with a 20 ml pycnometer and a digital weight. To calculate the change in

fluid density with the following formula:

∆(ρm ud ) =
m f i na l −mi ni t i a l

Volume
[sg] (4.1)

The results are illustrated in figure 17
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Figure 17: Dynamic sag measurements for all four samples at 50 ◦C with the use of
the VSST method.

The experiment showed that the dynamic sag increase with OWR, and an

increase of 0, 14sg is observed if we compare 60:40 against the 90:10. This can

be seen in connection with the low-shear rheology of the drilling fluids, given

section 4.2.
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4.4 Dynamic Measurements

The following sections contains the main emphasis in characterization of the

drilling fluids presented in this thesis. A total of seven different types of measuring

methods were used in the characterization. To avoid a plethora of similar graphical

presentations in this section, only the outermost important results are presented

while the remaining observations are given in appendix D. The units for stress in the

results are given in Pa. Note that the samples are divided by their OWR, meaning

that the fluid with an OWR of 60:40 will be denoted as "sample 60:40". The same

accounts for the samples with an OWR of 70:30, 80:20 and 90:10.

4.4.1 Experimental Setup

The Anton Paar Modular Compact Rheometer 302 was used for the dynamic

measurements. This is an advanced rheometer which can function as both

stress-controlled and strain-controlled. The instrument is equipped with a Peltier

temperature element, which provides high accuracy temperature regulation with

quick response. The following tests were performed in order to characterize the

fluids:

• Amplitude Sweep.

• Frequency Sweep.

• Time Sweep.

• Temperature Sweep.

• Creep Recovery Test.

• Controlled Stress Ramp.

• Shear Rate Ramp.

Both non-steady shear and dynamic measurements was performed on all

drilling fluids. For the stress ramp and shear rate ramp, a concentric cup geometry

was used. The cup geometry was chosen for these measurements to avoid wall

slip. The remaining test was performed on a 50 mm parallel plate geometry. The

preliminary rheological measurements and sag testing made in section 4.2 and

section 4.3.2 revealed wide difference in the fluid characteristics. Due to the fact

that testing of drilling fluids is highly dependent on the measurement techniques,
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the following procedures was followed on a general basis to minimize measurement

error:

• To ensure that reasonable results was achieved from all fluid systems, a

temperature of 20 ◦C was chosen as a test temperature for all isothermal tests.

• All of the test samples was sheared for 10min on a Hamilton Beach mixer prior

of starting a series of tests to provide an equal preference for all samples.

• The sample was set to rest for 10min after it was applied on the instrument to

achieve a start temperature of 20 ◦C, and equal start conditions.

4.4.2 Amplitude Sweep - Results

The amplitude sweep test was the first test to be performed in order to define the

linear region of the viscoelasticity and to observe the structural characteristics of

the liquds. This was, at first, performed with angular frequency of 10 rad/s with the

strain varying from 5×10−4 % to 50 %. The results from the amplitude sweep test is

presented in figure 18.

0,1

1

10

100

0,001 0,01 0,1 1 10 100

G
', 

G
'' 

[P
a]

 

Strain, γ[%]   
OWR 60:40, G' OWR 60:40, G''
OWR 70:30, G' OWR 70:30, G''
OWR 80:20, G' OWR 80:20, G''
OWR 90:10, G' OWR 90:10, G''

Figure 18: Amplitude sweep test performed on all fluid samples at 20 ◦C and ω =
10 rad/s. Note thatω= 20 rad/s for the 90:10 sample.
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Figure 18 shows that the LVE region is less than 1% for all samples. For the

90:10 OWR sample, the loss modulus was higher than storage modulus, which is

in contrast to what is observed for the other samples. This means that the 90:10

sample exhibit the character of a viscoelastic liquid and that the viscous behavior

dominates over the elastic ones. The other samples shows an elastic dominance

over the entire LVE region and can thus be characterized as viscoelastic gel. Table 4

defines the crossover point (or flow point) where G ′ =G ′′, (τ f p ), and the maximum

LVE range in terms of strain (γy s ) and stress τy s . The applied strain in further

analysis is a smaller value than the γy s as a safety margin to not exceed the LVE

region.

The flow point and the degree of viscoelasticity can be much more easily be

presented by plotting phase angle,δ, against shear stress as this is 45◦when G ′′ =G ′,

as shown in figure 19. A low value of the phase angle, δ, represents a greater value

of G ′ compared to G ′′.
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Figure 19: Amplitude sweep test presented with phase angle δ vs shear stress τ to
give a better visualization of flow point in terms of stress. Vertical arrows indicating
τ f p . Same measurements as in figure 18 and table 4
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Table 4: Amplitude Sweep Summary

Sample name τys[Pa] γys [%] τfp [Pa] G ′′ =G ′ [Pa]

60:40 0,44 0,34 4,94 20,28

70:30 0,17 0,33 1,85 9,78

80:20 0,07 0,32 0,61 7,11

90:10 N/A 0,28 N/A N/A

The higher water faction in the 60:40 sample contributes to an elevated storage

modulus. This might be due to increased interaction between clay and emulsion

droplet. The ratio of G ′′ and G ′ decreases with higher water content, meaning that

there is a larger degree of elastic behavior.

Additional testing of the 90:10 OWR sample was performed at 1 rad/s, 10 rad/s,

20 rad/s, 50 rad/s and 100 rad/s
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Repeatability
The fluid with an OWR of 80:20 was tested at four different times with same

parameters in order to observe the reliability of the results obtained in the

amplitude sweep. The results showed some discrepancies with two + two in pair

exhibit similar behavior. This indicates how important the measurement technique

and procedures are. This test could have achieved better results if another fluid with

better structure was chosen, for instance the sample with OWR 60:40.
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Figure 20: Four different amplitude sweep tests for 80:20 OWR to test the reliability
of the amplitude sweep test. Measured at 20◦C andω= 10 rad/second

The phase angle vs shear stress to observe the flow point, τ f p , in relation to these

measurements are given in appendix D.1
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Frequency Dependency Another set of amplitude sweeps was performed

to investigate the frequency dependency on the LVE range. The same procedure was

followed as defined in section 4.4.1, except that the angular frequency was increased

from ω = 10 rad/s to ω = 50 rad/s. The observation for 60:40, 70:30 and 80:20

is given in figure 21 andfigure 22. The results from this experiment showed that

the LVE range is similar with an increased frequency for both the 60:40 and 70:30

samples. Both the storage modulus and loss modulus showed an overall increase

for all of the samples; however, the loss modulus increased the most. This can be

observed in figure 22 as the phase angle is increasing. The flow point increased for

both the 70:30 and the 80:20 samples, while was approximately the same for the

60:40 sample.
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OWR 90:10,  G', ω=50rad/s  OWR 90:10  G'', ω=50rad/s  

Figure 21: Amplitude sweep performed on all fluids atω= 50 rad/s, 20◦C

The 90:10 sample were more difficult to interpret due decreasing trend of G ′

at very low strain, indicating that the LVE was not obtained. A total of five different

angular frequencies were performed on the 90:10 sample withω= 1 rad/s, 10 rad/s,

59



20 rad/s, 50 rad/s and 100 rad/s. The observations are given in appendix D.1,

which gives a good visualization of the increase in both G ′ ang G ′′ with frequency.

The experimental results to compare the angular frequency dependency for the

remaining samples are shown in figure 22. To illustrate the changes, the phase angle

is plotted against the shear stress.

The frequency dependency is an important observation to remember when

performing the subsequent tests as they must be tested within the linear region to

reveal the viscoelastic characteristics.
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Figure 22: Amplitude sweep performed at 10 rad/s and 50 rad/s
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Effect of Shearing In order to investigate how the effect of shearing affect the

viscoelastic properties of the fluid sample, an amplitude sweep test was performed

on the fluid with an OWR of 60:40. The fluid sample was sheared on a Hamilton

Beach mixer for 5min, 20min and 60min. The sample was then set to rest for 10min

on the Peltier to reach an equilibrium temperature of 20 ◦C before the amplitude

sweep test was performed with the same parameters as the defined in section 4.4.1.
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Figure 23: Amplitude sweep test performed on sample with an OWR of 60:40 at 20 ◦C
andω= 10 rad/s after shearing of 5min, 20min and 60min

The results show a small increase in the ratio of G ′′ to G ′ when time of shear

increase, from 0.33 for 5min of shear, to 0.34 for 20min of shear and 0.36 at 60min

of shear. It can be seen in figure 23 that G ′′ is not as much affected by time of shear

as G ′ is. This means that the fluid is less degree of elastic dominance when time of

shear increase. This observation is not necessarily what one would expect, as more

shear would cause smaller water droplets and thus reduce the distance between

each of the water droplets, which in theory should increase the storage modulus, as

reviewed in the literature study of ref.[23]; however, similar tendency was observed
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by [38]. The amount of applied mixing energy with the Hamilton Beach mixer used

may also not be sufficient to affect the size of the water droplets significantly. The

flow point and LVE region is almost unchanged.
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4.4.3 Frequency Sweep

Frequency sweep test was included to test the time dependent deformation

response of a material. The angular frequency was set from high to low to avoid

settling of weighting material. For the 80:20 and 90:10 samples, the angular

frequency was set to start from a lower angular frequency than the other samples

because of uncertainty in their LVE region for higher angular frequencies. The input

parameters used the sweep is given in table 5. The results obtained can be used to

evaluate solid suspension properties of the fluid. The experimental observations

are divided into two figures, figure 24 and figure 25.

Table 5: Input Parameters in the frequency sweep test

Sample name γ [%] ω [rad/s]

60:40 0,1 0,01 - 100

70:30 0,1 0,01 - 100

80:20 0,036 0,01 - 10

90:10 0,01 0,01 - 10
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OWR 80:20, G' OWR 80:20, G'' OWR 90:10, G' OWR 90:10, G''

Figure 24: Frequency sweep performed at 20◦C, γ = 0.1% for 60:40 and 70:30,

γ= 0.036% for 80:20 and γ= 0.01% for 90:10
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Figure 25: Frequency sweep performed with same parameters as in figure 24.
Complex viscosity and damping factor as vertical axis. 90:10 sample not included
due to very fluctuating values.

From figure 24, the 60:40 sample display elastic response over the entire range of

angular frequencies. The separation of G ′ and G ′′ remains almost constant from

10 rad/s and downwards, hence, the behavior can be considered to be independent

of the angular frequency below 10 rad/s. When the OWR is decreased to 70:30,

similar response is observed; however, a drop in G ′ and η∗ is seen at angluar

frequency close to 0.01 rad/s. This may indicate difficulties of keeping barite

in suspension. For the 80:20 sample, an elastic dominance is observed from

10 rad/s down to 0.1 rad/s before a significant reduction in both G ′ and G ′′ is

seen. This is much alike what is observed for the 70:30 sample, with an offset in

angular frequency of 0.1 rad/s. The same observations were made at a later stage,

given in appendix D.2. From the amplitude sweep test, the 90:10 OWR sample

showed viscoelastic liquid behavior. This type of behavior was also observed in

the frequency sweep with an viscous-like beavior (G ′′ > G ′), confirming its lack of

structure.
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4.4.4 Time Sweep

The time sweep was performed in order to investigate how the structure of the

fluid evolved over time. By observing how the elastic modulus develop over time,

it is possible to study development and growth of a gel-like structure. The angular

frequency was equal to 10 rad/s, which was the same as in the primary amplitude

sweep, where the LVE range was well defined. The fluids were pre-sheared at

1000 s−1 for five minutes before the same strain used in section 4.4.3 was used and

a total observation time of one hour was set. Time sweep observations is given

in figure 26, where the storage modulus against time is shown on the left, and

the corresponding damping factor (tan(δ)) is given on the right. Note that the

measurements starts after 5 minutes of shear.
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Figure 26: Time sweep of all samples at angular frequency of ω = 10 rad/s, with
pre-shear of 1000 s−1 for 5min, thereof the start time of 5min.

The initial observation is equal for all of the drilling fluids. An increase in G ′

and a drop in tan(δ) is observed due to the buildup of a structure. However, the

subsequent reactions are very different for each of the samples. The 60:40 sample

shows a continuous buildup and has not reached an equilibrium even after 1 hour.

In the case of the 70:30 sample, a minimum value for tan(δ) is reached after 30
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minutes before an increasing trend is observed over the remaining period. This can

be interpreted as a breakdown of structure and barite will start to settle out. This

is also observed for the 80:20 and 90:10 samples, although at an earlier stage. The

90:10 sample is showing large fluctuations in the damping factor after 25 minutes,

indicating that barite is settling out and free oil moving upwards.

This is much alike what was observed for the 90:10 sample during the "alternative"

static sag test in section 4.3.1. First an initial structure is developed before

breakdown is observed and barite settle out. The two separate observations may be

related. If the shear stress induced by the particles on the fluid in static conditions

exceed the strength of the structure governed by the viscoelastic properties, the

barite will settle out. If the gel strength is first broken the settling rate will increase

even further until an constant rate is reached, as seen in section 4.3.1.

Effect of Angular Frequency:

Due to the observed breakdown of structure over time for all fluids except the 60:40

sample, the angular frequency was reduced to 1 rad/s in order to investigate if the

breakdown also occurred at lower angular frequencies. The shear rate for a constant

amplitude (γa ) and angular frequency can be calculated with the equation (2.35)

γ̇= γa ·ω

Hence, with an reduction in angular frequency from 10 rad/s to 1 rad/s, and with a

constant strain within the LVE range, the share rate is now 10% of the previous tests.

Figure 27 shows a comparison between the time sweeps performed at angular

frequency of 1 and 10 rad/s in therms of G ′. The results reveal that the structural

build up is very similar to what was observed in the first time sweep even when

the angular frequency is reduced. The main difference is that the values for G ′ is

reduced, which is what one would expect. The same observation can be made if

one take the API gel-strength on conventional viscometer. If we use a higher shear

rate than 3RPM the shear stress will be higher and vice versa.

From the figure 27, it might appear that the 70:30 sample does not show any

structural breakdown; however, it does reach its maximum after 59 minutes, at a

value of 48.7 Pa, and start to degrade afterwards. Measurement for 90:10 sample
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Figure 27: Time sweep of 70:30, 80:20 and 90:10 samples at angular frequency of
1 rad/s and 10 rad/s, showing storage modulus against time.

was aborted once the breakdown was observed. Additional time sweep tests are

given in appendix D.3.
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4.4.5 Temperature Sweep

Temperature sweep test was performed on all fluid samples. This test was

performed in order to evaluate if there existed a temperature at which the fluid

changed from being a viscoelastic gel to a viscoelastic liquid. The initial setup

was performed with a linear temperature increase of 0, 00926◦C/s from an initial

temperature of 4 ◦C to the end temperature of 80 ◦C. The angular frequency was set

to 10 rad/s with the same strain defined in section 4.4.3. The test sample was let to

rest for 10min to reach an equilibrium temperature of 4 ◦C. The initial setup caused

the duration of the measurement to be last for more than two hours, which led to

questionable results for the 70:30, 80:20 and 90:10 samples. More reliable results

were obtained when a temperature gradient of 0, 05◦C/s per second was used. The

observations are illustrated with G ′, G ′′ and tan(δ). Figure 28 is showing the results

for 60:40 and 70:30, while 80:20 and 90:10 are presented in figure 29.
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Figure 28: Temperature sweep of 60:40 and 70:30 samples at angular frequency of
ω= 10 rad/s
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Figure 29: Temperature sweep of 80:20 and 90:10 samples at angular frequency of
ω= 10 rad/s

All of the samples show same initial behavior for G ′. A temperature of 4 ◦C makes

a distinct elastic dominance, followed by a decrease as temperature increase.This

is shown by an increase in damping factor from 4 ◦C to 20 ◦C in figure 28 and

figure 29. Only the 90:10 sample have a cross over point where G ′′ > G ′, which

occur at temperature close to 17 ◦C; however, the remaining results for this sample is

questionable due to fluctuations in damping factor values at elevated temperatures.

For the samples with an OWR of 60:40, 70:30 and 80:20, the elastic modulus is greater

than the viscous modulus over the whole temperature range, with no cross over

point where G ′ = G ′′. At the initial temperature, the value of G ′ is significantly

higher than at 20 ◦C. The 60:40 sample shows an continuous increase in damping

factor over the whole temperature sweep. This might indicate that the fluid is

showing a decreasing stability and is more prone to barite sag when the temperature

is elevated; moreover, the same tendency is not observed for the other fluids. Also,

the G ′ curve is showing the same shape for all of fluids except the 90:10 sample. This

means that the shape of the complex viscosity curve (η∗) is similar in shape, which

means that the minimum value of η∗ is not where the temperature is highest, but
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at the minimum point of G ′. The results obtained for the samples with an OWR of

80:20 and 90:10, the results are more questionable, at least for temperatures above

45 ◦C. This is probably caused by a thin layer of base oil raising, which makes only

the upper part of the sample subjected to oscillation while the remaining sample

is stagnant. The following table defines the minimum value of η∗ ang G ′ at the

corresponding temperature. The 90:10 sample showed its minimum for complex

viscosity at the end temperature and is not included in the subsequent table.

Table 6: Min. values for η∗ and G ′ from temperature sweep

η∗ [Pa s] G ′ [Pa] Temperature [◦C]

OWR 60:40: 10,9 102 39,8

OWR 70:30: 2,66 23,6 34,2

OWR 80:20: 1,24 10,5 31,1

This type of test is especially subjected to measurements error due to the

temperature increase over time, which may cause evaporation, expansion /
contraction, settlements of solids, and phase separation. The latter definitely

happened during the measurements with the 90:10 sample when using a

temperature increase of 0, 00926◦C/s.

Additional tests with increased temperature gradient of 0, 00926◦C/s was also

performed, see appendix D.4.

4.4.6 Creep-Recovery Test

Creep-recovery test was performed on the fluids that showed a viscoelastic gel

behavior. That is the fluids with an OWR of 60:40, 70:30 and 80:20. The 90:10

sample was not tested due to previous testing performed. The initial setup for

the creep-recovery test was equal for both the 60:40 and 70:30 samples, while the

80:20 sample was tested with a lower shear stress. The creep recovery test was

performed in order to characterize the fluids stability when a small stress is applied.

Deformation at constant stress is similar to what happens during static sag. The

following procedure was used;

• Preshear sample at 1000 s−1 for 3min
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• Rest period of 10min

• Teperature was set to 20◦C

• Applied shear stres for the 60:40 and 70:30 samples was 0.15 Pa

• Applied shear stress for the 80:20 sample was 0.02 Pa

• In the recovery phase, τ= 0

• Temperature = 20 ◦C
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Figure 30: Creep recovery test of 60:40 and 70:30 samples with applied stress at
τ0 = 0, 15Pa. Applied stress for 80:20 sample; τ0 = 0, 02Pa

The experimental observation is given in figure 30. When a constant shear stress

is applied that is within the LVE region, the sample will deform until it has reached

a steady state, or until the stress is released. When an equal shear stress is applied

on the 60:40 and 70:30 samples the deformation is largest in the 70:30 sample.

In the recovery phase the 70:30 fluid has a larger permanent deformation, which

means that the 60:40 sample display a greater elastic behavior. In the case of the

80:20 sample, a significantly larger deformation is observed when a smaller stress
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is applied. It also display a large permanent deformation after 10 minutes of rest

compared to the two other samples. In other words, the fluid shows a signs of a

weak structure, which will cause the fluid to be prone to static sag.

Additional creep-recovery test is given in figure 52, figure 52.

4.4.7 Controlled Stress Ramp

The stress ramp measurements were performed on all fluids with the use of a

concentric cylinder measuring set. In this experiment the shear stress was ramped

in a linear way from 0.1 Pa to 10 Pa at temperature of 20 ◦C. Also, to avoid too high

shear rates as the stress was ramped, the parameters was set in a such way that the

test was terminated if the shear rate exceeded 100 s−1.

This type of test is a quick method to determine the apparent yield stress.

Figure 31 shows the viscosity as a function of shear stress, η(τ).
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Figure 31: Viscosity vs shear stress from controlled stress ramp measurement
showing the maximum viscosity method for determination of apparent yield stress.
Measured at 20 ◦C. The arrows represent the apparent yield stress.
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Normally, figure 31 would not have been in a logarithmic scale on the x-axis,

however this was done to fit in all the four curves in one plot due to the significant

spread maximum viscosity values over a small change in shear stress. When the

same plot is presented on a non-logarithmic scale, a rapid viscosity increase is

observed before a distinct viscosity peak is observed. Before the viscosity peak

is reached, the liquid is undergoing elastic deformation and the peak is observed

when this structure is broken (yields) and the fluid starts to flow. The observations

made shows that an apparent yield stress exist for the 60:40, 70:30 and 80:20 fluids

since a maximum viscosity peak is observed, while the 90:10 sample does not

appear to have a distinct maximum value, which confirms the amplitude sweep

results. The fluid is not undergoing elastic deformation due to the fact that there is

a viscous dominance for this fluid.
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Figure 32: Viscosity vs shear stress for 60:40 sample from controlled stress ramp

measurement showing the maximum viscosity. Same measurement as in figure 31

This experiment was also performed with applied stress varied from from 1 Pa

to 10 Pa, and from 0.01 Pa to 10 Pa. The plots for these are given in appendix D.6
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4.4.8 Controled Shear Rate Sweep

The shear rate ramp was performed in order to obtain viscosity profiles over a wide

range of shear rates for each of the drilling fluids being studied. This was conducted

by controlling the shear rate in a non-steady state, from 1022 s−1 to 0.001 s−1. The

sample was first pre-sheared for three minutes at 1022 s−1 before the measurements

started at a temperature of 20 ◦C.
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Figure 33: Left: Viscosity vs shear stress. Right: Viscosity vs shear rate - for all four
samples, measured in shear rates from 1022 s−1 to 0.01 s−1 measured at 20 ◦C

From figure 33, the viscosity for the sample fluid with lowest OWR has a significantly

higher viscosity than the sample with highest OWR at a shear rate of 0.001 s−1 when

measured at 20 ◦C. The increased water fraction will indeed increase the viscosity.

This may be caused by less free space for water droplets to move freely before

they collide into nearby water droplets, which in turn increase the overall viscosity,

mentioned by [29]. One interesting observation is that the viscosity reduction

between the fluid sample with 60:40 OWR and 70:30 OWR is approximately constant

for shear rates between 500 s−1 and 0.016 s−1. However, the difference increase for

lower shear rates, and the same correlation is not observed for the other fluids with

a significant viscosity reduction for the fluid with an OWR of 90:10.

The viscosity curves for the remaining fluids is approaching very high values

when the shear rate is low. This type of behavior can indicate that the fluids show
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yield stress behavior, which can be seen in connection with the controlled stress

ramp experiments. This will be discussed in the following section.

4.4.9 Yield Stress Evaluation

A total of five methods has been evaluated in the search of determining the yield

stress of the fluid samples. As already discussed in section 3.1.1 the yield stress may

not be easily defined with a single point measurement due to the fact that yielding

occur over a range of stresses and is rather a process than a single event. However,

a single value for yield stress is much more useful when comparing the sample

fluids that are being tested. Table 7 summarize the values of yield stress obtained

during the foregoing experiments. The 90:10 sample did not show any yield stress

under any of the dynamic tests. This is because G ′′ >G ′ from the amplitude sweep,

and it did not show a pronounced maximum viscosity value from the controlled

stress ramp. The Herschel-Bulkley yield stress and Bingham YP is derived from the

rheology measurements at 20 ◦C in table 3. The shear stress form the LVE region,

τy s , and the flow point was defined from the amplitude sweep, the maximum

viscosity method was defined from the controlled shear stress ramp. The shear

stress values from shear rate of 0.001 s−1 in section 4.4.8 is also included, denoted as

low shear stress in the table. The figure for these are given in appendix D.7 /figure 55

Table 7: Yield stress evaluation from measurements performed at 20◦C.

Sample name 60:40 70:30 80:20 90:10

Bingham YP[Pa] 19,20 9,12 4,32 5,76

Herschel-Bulkley[Pa]: 7.10 3.52 1.98 1.32

Flow point τ f p [Pa]: 4.49 1.85 0.61 N/A

Low Shear Stress[Pa]: 1.23 0.42 0.18 0.016

Max. Viscosity[Pa]: 0.60 0.35 0.20 N/A

LVE, τy s [Pa]: 0.44 0.17 0.07 N/A
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A wide spread in apparent yield stress is seen in the table. The Herschel-Bulkley

model estimates a yield stress that is higher than the other types of measurements

techniques. This is because it is extrapolated from a shear rate of ≈ 5 s−1 to

zero. It also estimates that the 90:10 sample has a yield stress whereas viscoelastic

measurements showed that the fluid did not have any yield stress. The Bingham

YP is also included here because of the wide use of it in the oil industry. It

is well documented that this model overestimates the yield stress significantly,

which it also does here. The overestimation of yield stress based upon rheology

measurements from conventional viscometer, highlight their limitations. Using the

flow point (G ′ = G ′′) from the amplitude sweep as a yield stress measurement is

more convenient than using the maximum shear stress value in the LVE region.

This is caused by the fact that using the LVE region as a criterion is vulnerable to

a subjective interpretation; however, the values of τy s and τ f p are significantly

different. Another measurement technique not included here is multiple creep

sweeps. This could have defined the yield stress at a more accurate level.
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5 Wellbore Simulation

This section contains the performance study of the drilling fluids used in this

thesis. Cuttings transport simulation was performed in Landmarks Wellplan while

the hydraulic calculations were performed by computing the Unified rheology

model. The simulations and calculations were done one the basis of comparing

the performance of the fluids against each other when the oil-water ratio was

adjusted.The hydraulic simulation includes pump pressure, annular pressure loss

and ECD.

5.1 Hydraulics

The Unified model was used to calculate annular pressure loss and total pump

pressure. The ECD was calculated from the annular pressure loss with the following

formula:

ECD=ρ f +
∆Pf r i c

g ·ht v d
(5.1)

Where ρ f is the density of the fluid (1,75sg), ∆P is the annular pressure loss, g is

the free-fall acceleration and ht v d is the vertical depth of the wellbore. In order to

simplify the calculations, the well was chosen to be 8,5" vertical well with a 5,5"

drill pipe without a BHA. The depth of the well was chosen to be the same as for

the well used in cuttings transport simulation, 3356 m. The density of the drilling

fluid is also assumed to be constant at 1,75sg, hence no temperature corrections was

performed. In addition, the wellbore is assumed to be cuttings free, with no rotation

applied. This will obviously lead to an offset in the pump pressure, annular pressure

loss and ECD; however, the simulation was performed with the only purpose to

compare the fluids itself. To avoid too many plots on one diagram, only the pump

and annular pressures from rheology measurements at 20 ◦C and 50 ◦C are included

in figure. The remaining results are given in appendix C.

5.1.1 Pump Pressure Simulation

The pump pressure is the sum of frictional pressure loss over the nozzles and in

annulus. Simulation shows a significantly higher pump pressure for the fluid with
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the lowest OWR, which is primarily caused by the higher rheology. The difference in

pump pressure decrease for the remaining three fluids. One interesting observation

is the effect of turbulent flow regime for the fluids that has the highest OWR.

This is indicated by with a upwards bend in the pump pressure curve seen in

figure 34, leading to similar pump pressure for the 80:20 and 90:10 fluids. In a real

8,5"-section drilling operation, the pump pressure would probably be higher than

what is simulated here, due to the simplifications made as mentioned above.
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Figure 34: Pump pressure simulationn from the Unified model of a hypothetical
8,5" section. Rheology from all four fluid samples at temperature of 20 ◦C and 50 ◦C
used as input parameters
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5.1.2 Annular Pressure Loss and ECD simulation

The effect of fluid rheology is more distinct when computing the annular pressure

loss. Frictional pressure loss for the fluid sample of 80:20 and 90:10 OWR are almost

similar in value. The largest difference between these two samples is observed

before the onset for turbulent flow regime for the 90:10 sample at 1325 l/min. The

largest difference is observed between the drilling fluid with 60:40 and 80:20 OWR

at 50 ◦C and flowrate of 1900 l/min, where the annular pressure loss is in order of

75bar and 22bar respectively. This is shown in figure 35. The difference between the

70:30 and 80:20 sample is in order of 34bar and 22bar at 1900 l/min at fluid rheology

of 50 ◦C. The ECD was calculated from the annular pressure loss and has the exact

same curves as shown in figure 35. Again, the increased rheology caused by elevated

water fraction in the 60:40 fluid sample lead to an significant increase in the ECD,

as shown in figure 36. For the hydraulic simulation with 80 ◦C display less difference

between the pressure losses. This is due to the decrease in viscosity as temperature

increase. This is given in appendix C.
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Figure 35: Annular pressure loss simulation from the Unified model for a
hypothetical 8,5" section. Rheology from all four fluid samples at temperature of
20 ◦C and 50 ◦C used as input parameters.

5.2 Cutting Transport

Cuttings transport simulation was done with two different scenarios. The first

simulation is a minimum required flow rate to remove cuttings out of the well, while

the second one is minimum flow rate agains wellbore inclination. The wellbore

chosen for the first simulation was a 3354 m long well with an maximum inclination

of 38◦ with the section for the simulation was a 8.5" section of 2311 m with the

previous casing (13 3/8") sat at 1223 m.

The simulation was done to evaluate the cuttings transport capacity of each of the

fluids. Drilling fluid rheology at 50 ◦C was used for the simulation. The following

parameters were used for the cuttings transport simulation.

The minimum required flow rate to remove all drilled cutting was first found,

and then a lower flow rate was set for the cuttings bed height simulation in order

to give a visualization of the cuttings bed height at that given flow rate. Minimum

required flow rate is given in table 9
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Table 8: Wellbore simulation parameters for cuttings bed height simulation

Input Value

Cuttings Diameter: 0,32 [cm]
Cuttings Density: 2,50 [sg]
Bed Porosity: 36,0 [%]
Rate of Penetration: 9 [m/hr]
Rotary Speed 100 [rpm]

Additional Input

Bit Diameter: 8,50 [in]
Annulus Diameter: 8,50 [in]

Table 9: Minimum required flow rate.

Drilling Fluid Minimum Flow Rate [lpm]

OWR: 60:40 1667

OWR: 70:30 1667

OWR: 80:20 1892

OWR: 90:10 1863

The cuttings transport simulation is shown in figure 37 where the vertical axis

is the measured depth of the well, and the horizontal axis represents cuttings bed

height. Cuttings transport simulation was performed at flow rate of 1422 l/min. The

fluids transport capacity decrease with increasing OWR. This is seen in connection

with the rheology input as discussed in section 4.2. Nevertheless, the fluid with an

OWR of 70:30 has a quite similar performance as the 60:40 fluid, while the 80:20

and 90:10 shows a less degree of transport capacity. This is probably caused by

the low-end rheology, that is the 3 and 6-rpm dial readings, which is much lower

for the 80:20 and 90:10 fluids when compared to the two other fluids at 50 ◦C, The

fluctuations in the cuttings bed height seen in figure 37 is due to the change in

inclination with depth.
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Minimum Required Flow Rate
The minimum required flow rate simulation is shown in figure 38. The rheology

specifications used in the cuttings transport simulation was also used here. This

simulation is based upon a 8,5" well with only a 5" drill pipe as given in table 10 and

is a flow-rate vs inclination simulation.

Table 10: Wellbore simulation parameters for minimum required flow rate vs
wellbore inclination

Input Value

Cuttings Diameter: 0,32 [cm]
Cuttings Density: 2,50 [sg]
Bed Porosity: 36,0 [%]
Rate of Penetration: 9 [m/hr]
Rotary Speed 100 [rpm]

Additional Input

Bit Diameter: 8,50 [in]
Annulus Diameter: 8,50 [in]
Pipe Diameter: 5,00 [in]
Tool Joint Diameter: 5,50 [in]
Minimum Pump Rate: 379 [lpm]
Increment Pump Rate: 357 [lpm]
Max Pump Rate: 3785 [lpm]

The simulation reveals that the fluid with the lowest rheology requires a less flow

rate than both the fluids with an OWR of 80:20 and 70:30. Both 70:30 and 80:20

fluid samples showed an increase in the minimum required flow rate at wellbore

inclination of 30◦. The exact explanation for this for this is most likely because of

the early onset of turbulent flow regime caused by the low rheology profile for the

90:10 sample. The 60:40 requires the lowest amount of flow to transport cutting out

of the well, which is primarily caused by elevated rheology when compared to the

other fluid samples.
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5.3 Summary Performace Study

From the cuttings transport and minimum flow rate simulation it may appear that

the fluid with OWR of 60:40 has the best performance. However, when including the

hydraulics into the evaluation it is evident that this fluid also impose a significantly

higher pump pressure and annular pressure loss than the other drilling fluids. An

oil based drilling fluid with an OWR of 60:40 is hardly ever used in real drilling

operations due to the above observations with regards to hydraulics. Another

concern, not studied in this thesis, is the stability of drilling fluids with low OWR.
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6 Summary and Discussion

6.1 Characterization of Drilling Fluid

The characterization of the drilling fluids started with rheological measurement

performed on a OFI model 800 8-speed conventional rotational direct-indicating

viscometer. These measurements were performed at 20◦C, 50◦C and 80◦C, which

included gel measurements at 10 s and 10min. Barite sag potential was then

investigated at both static and dynamic conditions. The final, and main emphasis

in the characterization was performed with an Anton Paar MCR 302 rheometer. A

total of five oscillatory and two rotational tests were performed in this investigation.

Finally, the hydraulics and cuttings transport simulation was conducted.

Rheological Measurements
The preliminary rheology characterization showed how the temperature and water

fraction of oil based drilling fluids influenced the shear stress. The measurements

(given in table 3) showed a significant spread in measured shear stress, with a

pronounced increase for the 60:40 OWR. This was expected from the literature

review, as water will increase the rheology. From model fit analysis it was observed

that the Herschel Bulkley, Robertson and Stiff and the Unified model gives a good

description of all fluids with an overall average deviation close to 2% from measured

values at 20◦C, 50◦C and 80◦C. The Bingham plastic model showed an average

deviation of 15,29%.

Barite sag measurements was performed in both dynamic and static

conditions. The static sag measurement was performed in a non-conventional

fashion in order to observe the rate at which barite settled out and also to observe

if there was any static sag at ambient temperature. From the measurement it

was observed that barite settled out almost immediately in the 90:10 sample, and

continued to settled out with an constant rate of ≈ 0.282 g/h. This was in contrary

to what was observed for the 80:20 sample where the first indication of settling

occurred after 3.5 h. The lack of water in the drilling fluid limits the organophilic

clay to fully yield, which consequently results in lack of structure when the water

fraction is low, allowing barite to settle out.
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Dynamic Measurements
The main investigations in characterizing the drilling fluids was performed in

viscoelastic measurements.

Amplitude Sweep
From the amplitude sweep it observed that the drilling fluid with an OWR of 90:10

showed behavior of a viscoealstic liquid. This was observed for angular frequency

lower than 50 rad/s at a temperature of 20◦C. As water fraction increased the

fluids exhibit viscoelastic gel character, as storager modulus was greater than loss

modulus over the entire LVE region for the remaining samples. The separation

indicates there was some kind of internal structure within the fluid. The separation

increased when the water fraction in the drilling fluid increased, meaning that

there was observed a larger degree of elastic behavior when OWR decreased. It

is difficult to determine if this increased elastic behavior is actually caused by

clay that is yielding due to increased water concentration or if its caused by an

interaction between the clay and emulsion droplets as reported in [38]. From the

literature review it is also plausible that the water droplets are contributing to this

effect. When the results from amplitude sweep are seen in connection with the

dynamic sag measurements, it seems like the dynamic sag is reduced when the

elastic properties are increase, as reported by [28]. The clay concentration is equal

for all of the drilling fluids making reasonable to assume that the water droplet

interaction with clay may be the primary cause for this elevated elastic behavior.

Effect of Angular Frequency: Additional amplitude sweep was performed by

increasing the angular frequency from 10 to 50 rad/s. An increased value of loss

modulus was observed indicating a lower degree of viscolastic gel behavior with

increased frequency. The LVE region did not change significantly for any of the

fluid samples, nor did the stress at the at the end of LVE region. The flow point

increased when the angular frequency increased for both 70:30 and 80:20, while it

was approximately the same for the 60:40 sample.
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Effect of Shearing: Additional experiments were performed to study the

influence of shearing. The experiment revealed that both storage -and loss modulus

decreased when time of shear increased. Storage modulus was more effected than

loss modulus when time of shear increased, showing more viscous dominance. The

observation is of same tendency as Herzhaft et al.[38] observed.

Frequency Sweep
The observations made in the frequency sweep experiment revealed that all of the

sample, except 90:10 sample, showed elastic dominance over most of the applied

frequencies. The 60:40 sample showed independent behavior for all frequencies,

while a drop in storage modulus was observed for both 70:30 and 80:20 at low

frequencies. This could indicate difficulties of keeping barite in suspension, and

that they are frequency dependent. The 90:10 sample showed viscoelastic liquid

like behavior over all frequencies being applied, confirming what was observed in

the amplitude sweep.

Time Sweep
Time sweep experiment revealed that the structural behavior with increasing OWR

was time dependent. Initial structure build up was observed for all fluid samples.

The 60:40 sample showed a continuous structural growth over the whole testing

period, while the other sample showed a structural breakdown. The time of

structural breakdown decreased with an increased OWR, where the 90:10 sample

showed first tendency of breakdown after 13 min. This could indicate lack of

structure, which could rise the potential of barite sag. Additional testing with

lower frequency was also performed. The same observations were made although

breakdown was then observed at a later stage.

Temperature Sweep
The temperature sweep was performed from 4◦C to 80◦C on all fluid samples. This

experiment showed that the fluid sample with an OWR of 60:40, 70:30 and 80:20

behaved stable over a wide range of temperatures. This was analyzed through

the elastic dominance being present over the whole temperatures region being

tested for. Only the 90:10 showed a crossover point from being viscoelastic gel

to viscoelastic liquid. This was found to be at 17◦C. The initial response was
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equal for each of the fluid samples with a pronounced elastic dominance at 4◦C.

This behavior can be related to deep-water drilling where sea floor temperatures

are close to 0◦C. The fluid close to the wall of the riser would exhibit a strong

elastic dominance, which may induce a higher BHP when pumps are started after

a period of rest. The 60:40 sample showed a continuous increase in damping factor

indicating lack of stability at elevated temperatures. The experiment also revealed

that complex viscosity η∗ had its minimum when the temperature was far below

maximum.

Creep-Recovery Test
Experiments performed with the creep-recover method showed that the degree of

deformation when the applied stress was constant. The observations made showed

that the degree of deformation increased with OWR. Deformation at a constant

stress is thought to give a better representation of barite sag. The 80:20 sample

displayed the largest deformation, indicating that the structure was weak, which

consequently increase the potential of barite sag in static conditions.

Controlled Stress Ramp
Controlled stress ramp was used to evaluate if the fluids had a yield stress. The fluid

sample was subjected to a constant stress increase until a shear stress of 10 Pa or

a shear rate of 100 s−1 was reached. The yield stress was then evaluated from the

maximum viscosity method. From this method it was observed that the all samples

except 90:10 exhibited elastic behavior before a viscosity peak was observed. The

shear stress at this viscosity peak was evaluated as the yield stress.

Controlled Shear Rate Sweep
From the controlled shear rate sweep the viscosity profiles from each of the fluid

sample was obtained. The experiment showed that the viscosity was higher when

OWR decreased for all shear rates, which was expected from the literature review.

The 90:10 sample showed the lowest degree of shear thinning, which is a primarily

caused by lower fraction of water. In static conditions the water droplets are

spherically and become ellipsoidal when the fluid is subjected to shear. Also the

droplets will tend to align themselves in the direction of the flow, causing any

structure to deform, causing shear thinning.
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6.2 Performance Evaluation

The performance evaluation was performed with two different approaches. First,

a wellbore hydraulic simulation was performed at 20◦C, 50◦C and 80◦C with the

use of the Unified rheology model. The simulation was based upon the rheology

measurements form table 3. Secondly, a cuttings transport and minimum required

flow rate simulation was performed with the use of Landmark’s Wellplan. These

simulations were conducted in order to evaluate the performance of oil based

drilling fluids when the water fraction was altered.

Wellbore Hydraulics
Wellbore hydraulic simulation showed that a lower OWR imposed a higher pump

pressure for all temperatures being tested for. The onset of turbulent flow regime

decreased with lower water fraction and higher temperature. This is seen in

connection with the lower rheology these fluids display. In fact, the difference in

pump pressure from the 80:20 and 90:10 fluid sample is almost negligible for all

temperatures, due to turbulent flow. The 60:40 sample display the highest pump

pressure at all temperatures.

Due to the fact that annular pressure loss is included in the pump pressure

calculation, the simulation of annular pressure loss showed same type of behavior

as for the pump pressure. However, the fluid sample with an OWR of 60:40 display a

significantly higher pressure loss at 1900lpm, all in laminar flow regime. Due to the

early onset of turbulent flow regime, at 1300lpm, for the 90:10 OWR fluid sample,

the annular pressure loss at 1900lpm is higher then what is observed for the 80:20

fluid. Wellbore hydraulics can seen in good correlation with the rheology for the

fluids simulated with. The ECD simulation showed exactly the same behavior as

the annular pressure loss as ECD is directly proportional to this.

Cuttings Transport
Cuttings transport simulation was performed to evaluate the cuttings transport

capacity for each of the fluids. The rheology at 50◦C was used for the simulation.

From the simulation is was observed that the cutting transport performance

decreased with increasing OWR. This is, again, in direct correlation with fluid

rheology, where a higher rheology impose a better transport capacity. The cuttings

transport capacity of the 60:40 and 70:30 fluids is not significantly different, whereas
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the 80:20 and 90:10 are showing lack of carrying capacity when the flow rate was

at 1422lpm. The minimum required flow rate to remove all drilled cuttings from

the wellbore was shown to be equal for both 60:40 and 70:30 at 1667lpm. The min.

required flow rate for 80:20 and 90:10 fluids was 1892lpm and 1863lpm respectively.

The lower flow rate required for the 90:10 was due to the onset of turbulent flow

regime.

6.3 Weaknesses and Limitations

This subsection contains potential weakness and limitations of the experimental

work performed in this study. The hydraulic simulations had several simplifications

stated in section 5; however, the simulation was used to compare each fluid system

against each other. The simulation was not intended to represent a 100% realistic

scenario.

Viscometer Measurements
The experiments performed with the conventional viscometer were all performed

with equal methodology to minimize any potential source of error. Nevertheless,

when measuring the sample with an OWR of 90:10 at 80 ◦C, it was evident that fluid

was prone to barite sag. After the measurements was performed at 80 ◦C a distinct

barite slump was observable in the bottom of the heating cup, indicating that barite

had settled. This may have influenced the rheological measurements, which in turn

affects the hydraulic calculations. This could also explain why all of the rheology

models had a higher deviation for the 90:10 sample than for the other samples.

From the flow curves obtain in section 4.4.8 at 20 ◦C one may also evaluate the

reliability of the viscometer at low shear rates. For the 90:10 sample at a shear rate

equivalent of 3RPM the shear stress is 0.59 Pa, which is equivalent to 1,23 lb/100 ft2

≈ 1◦ dial reading on the viscometer, while the viscometer dial reading showed

3, 5◦. However, the shear rate used on the rheometer was continous (non steady

state), whilst the viscometer is a steady state measurements. This will influence the

measurements due to the thixotropic behavior of drilling fluids and may thus not

be compared directly. The suspicion that the viscosity is over estimated at low shear

rates for conventional viscometers was also review in the literature study, from [38].
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Rheometer Measurements
Measurements made with the Anton Paar MCR 302 are in particular sensitive to

erroneous measurements when performed in oscillation. This was most prominent

when conducting temperature sweep for the fluids with low water fraction ı.e 80:20

and 90:10. The temperature sweep is prone to measurement error due to long

measurement time with increasing temperature. This will increase sag potential

during the experiment. In addition, when the temperature increase, the sample

can expand which will affect the filling. This could have been avoided if normal

force control on the rheometer was activated. Elevated temperature makes the

sample vulnerable for phase separation, evaporation and drying of sample. Phase

separation (free oil) occurred with the 90:10 sample during the temperature sweep

when performed with an temperature increase of 0, 00926◦C/s, as seen in figure 39.

The results from that measurement can be observed in figure 51, appendix D.4. In

the picture there is a clear separation with free oil on top. One may also observe

barite particles on the left hand side while fluid loss material (black particles) is

floating on the edge of the free oil in the center. This was the reason why the rate of

temperature was set to a faster rate, as shown in the results.

Figure 39: Phase separation after temperature sweep of 90:10 sample.

As previously described in the introduction to section 4.4, the preparations is

of high importance when performing viscoelastic measurement at very low shear

rates. This was also the reason why equal procedures was followed for each of the

samples being tested. The following steps in the measurement which can influence
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the results.

• Shear history

• Sample trimming prior of starting experiment

• Rest period before experiment started

• Stability of drilling fluid

Observations made in the time sweep tests reveal change in fluid behavior in time,

which makes accurate and reproducible measurements more difficult. The fluid

samples were at first used in a series of measurements without being changed.

This method was changed to new samples for each measurement technique due to

questionable results for the 80:20 and 90:10 samples. Repeatability test performed

with the amplitude sweep on the 80:20 sample showed that exact repetitive results

are difficult to obtain.

Barite Sag Measurements
The static barite sag measurement was performed with an alternative methodology.

The more common and known procedure is to measure static sag is to use an

aging cell of 350 ml and let the drilling fluid at isothermal temperature over a

longer period. This test was planned for; however, due to limited fluid volumes

and uncertainties in how this influenced the properties of the drilling fluid it was

decided to perform this measurement at last. The test was not conducted due to

limited amount of volume and time. This could have given more data on static sag

potential for each of the fluid.
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7 Conclusion

This thesis has studied the influence of increased water fraction in oil based drilling

fluids. This has been done through extensive testing, with main emphasis in

viscoelastic characterization. A thorough literature study has been performed

showing little research on this particular subject.

The main observations made in characterizing the drilling fluids can be

summarized with the following conclusions:

• Rheology of drilling fluids is highly dependent on temperature and OWR.

Higher shear stress is displayed when the OWR is decreased. The most

pronounced increase is observed when the OWR is changed from 70:30 to

60:40.

• From the model fit analysis it was found that the Herschel-Bulkley, Robertson

and Stiff, and the Unified model gives the best description of the fluids.

• Increased OWR caused the fluid to be more susceptible for dynamic sag. The

fluid sample with the lowest OWR showed the lowest degree of dynamic sag,

with an increasing severity of sag when the OWR was increased. This is seen in

connection with the rheological measurements for the corresponding fluids.

• The fluid with the lowest water fraction displayed no signs of internal

structure, which consequently led to static sag of weight material at ambient

temperature.

• The elastic properties was found to decrease when the OWR of the drilling

fluid increased. When the water fraction was sufficiently low, the fluid

change characteristics from viscoelastic-gel to viscoelastic-liquid. The lack of

structure when OWR is increased results in a more pronounced deformation

upon applied stress. This was observed from the creep analysis. Stability of

internal structure is more stable when the water fraction of the drilling fluid

is high.

• Structural breakdown over time was observed for all fluids except the fluid

with an OWR of 60:40. This was observed at angular frequency of 110 rad/s
and 10 rad/s.
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• The apparent yield stress in the drilling fluids was found to be low and is

highly dependent on measurement technique. The fluid that displayed the

highest yield stress also had the lowest OWR. The Herschel-Bulkley model and

Bingham Plastic model overestimates the yield stress. The fluid with an OWR

of 90:10 displayed no signs of yield stress from viscoelastic measurements and

shear stress ramp.

From the performance analysis it was observed that the water fraction in oil based

drilling fluids plays an important factor in connection with wellbore hydraulics and

cuttings transport. The fluid with the lowest OWR imposed a larger impact on

wellbore hydraulics then the remaining fluids. Annular pressure loss was 3 times

higher for the 60:40 sample when it was compared to the sample which displayed

the lowest frictional pressure loss. This was compared at flow rate of 1900lpm and

temperature of 50◦C. The onset of turbulent flow regime caused the pump pressure

and annular pressure loss for the fluid sample with 80:20 and 90:10 OWR to be

almost equal.

The cuttings transport simulation showed that a higher rheology caused more

efficient carrying capacity of the fluids. The low OWR was the primary reason for

the higher rheology. Cuttings transport capacity decreased with increasing OWR.
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Appendices

A Drilling Fluid Formulation

Table 11: Mud formulation

Oil Water Ratio 60 : 40 70 : 30 80 : 20 90 : 10

Weight [s g] 1,75 1,75 1,75 1,75

Sample volume, ml 1000 1000 1000 1000

Chemicals, [g/l]

Base oil 330,6 387,3 443,1 498,4

Emulsifier 25,0 25,0 25,0 25,0

Clay 7,0 7,0 7,0 7,0

Alkalinity 25,0 25,0 25,0 25,0

Filter Loss Agent 10,0 10,0 10,0 10,0

Fresh Water 275,8 205,8 136,4 67,8

Salt 84,8 63,3 42,0 20,9

Weight Material 990,8 1026,6 1061,4 1095,9

Mixing date 07.01.15 07.01.15 07.01.15 07.01.15
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B Rheological Measurements
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Figure 40: Rheological measurements for all fluid samples at temperature of
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20°C 50°C 80°C 20°C 50°C 80°C 20°C 50°C 80°C 20°C 50°C 80°C
OWR 60:40 OWR 70:30 80:20 90:10

Herschel Bulkley 1,19 1,48 2,16 1,59 1,30 2,91 1,68 1,19 1,58 1,53 3,13 3,51
Unified 1,67 1,67 1,56 2,13 0,85 2,83 2,50 1,33 1,66 1,24 3,01 5,03
Robertson and Stiff 0,67 1,34 2,31 1,63 1,07 1,58 1,68 1,30 1,83 1,52 2,45 3,93
Power Law 12,95 11,92 9,10 12,54 12,02 7,04 13,23 13,74 12,05 13,91 9,78 13,60
Bingham 14,37 16,00 19,11 14,19 15,27 25,17 12,43 10,50 12,56 12,48 25,68 5,77
Newtonian 39,36 40,33 45,35 39,93 41,98 47,39 37,79 39,33 43,79 36,46 44,96 41,27
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Figure 41: Comparison of rheological models.
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B.1 Rheological Model Comparison

C Hydraulic Simulation
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Figure 42: Total pump pressure for all fluid samples at 20 ◦C , 50 ◦C and 80 ◦C.

Simulation based upon the Unified rheology model and measurements given in

table 3
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Figure 43: Total annular pressure loss simulated for all fluid samples at 20 ◦C, 50 ◦C

and 80 ◦C. Simulation based upon the Unified rheology model and measurements

given in table 3
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based upon the annular pressure loss given in figure 43.
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D Aton Paar Measurements

D.1 Amplitude Sweep
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Figure 45: Phase angle vs shear stress from repeatability testing of OWR 80:20 at

20◦C ,ω= 10 rad/s
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Figure 46: All amplitude sweeps performed on the 90:10 sample with increasing

angular frequency. Arrows indicating crossover point.

105



D.2 Frequency Sweep
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Figure 47: Frequency sweep performed outside linear range at 20◦C, γ = 0.1% for
60:40 and γ= 0.01% for 90:10
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D.3 Time Sweep
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Figure 48: Time sweep performed at ω = 1 rad/s and ω = 10 rad/s, 20◦C for 80:20
sample
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Figure 49: Erroneous time sweep measurement atω = 10 rad/s, 20◦C , γ = 0.1% for

60:40 sample
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D.4 Temperature Sweep
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Figure 50: Temperature sweep measurements at angular frequency ofω= 10 rad/s

and d T /d t = 0, 05◦C/s. No rest period before testing commenced.
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Figure 51: Erroneous temperature sweep measurements due to phase separation,
at angular frequency ofω= 10 rad/s and d T /d t = 0, 00926◦C/s.
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D.5 Creep Recovery Test
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Figure 52: Creep recovery test at different magnitude of stress. Part of preliminary

testing to achieve reasonable results.
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D.6 Controlled Shear Stress Ramp
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Figure 53: Controlled stress ramp for all fluids.
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Figure 54: Controlled stress ramp for all fluids at τ= 0.01Pa.
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D.7 Shear rate ramp

0,01

0,1

1

10

0,001 0,01 0,1 1

Sh
ea

r S
tr

es
s, 
τ 

[P
a]

Shear rate,   [1/s]
OWR 60:40 OWR 70:30 OWR 80:20 OWR 90:10

γ

Figure 55: Low shear rate flow curves for all samples measured at 20◦C . Used to
evaluate yield stress in section 4.4.9.
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E Summary of Unified hydraulics model used in

simulation

The Unified hydraulics model can be applied to calculate frictional pressure loss in

annuli and inside pipe. The equations that are being used for frictional pressure loss

in pipe flow is presented first followed by the equations for annluar flow. Note that

the units given in the following equations are in standard oil field units. The output

values in this thesis are converted with conversion factors for the end results. The

general equation is on the following form[14, 43]:

τ=τy +kγn

E.1 Pipe Flow

Plastic Viscosity

ηp v = θ600−θ300

Bingham Yield Point

τy = 2θ300−θ600

Low Shear Yield Stress

τ0 = 2θ3−θ6

Flow Behaviour index

np = 3.32 log

�

2ηp v +τy

ηp v +τy

�
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Concisitency factor

Kp =
ηp v +τy

511np

Geometrical factor used to calculate shear rate at wall, γw :

G =
� (3−α)n +1

(4−α)n

�

h

1+
α

2

i

; α= 0 for pipe flow

Mean velocity inside pipe

Vp =
24, 51Q

d 2
i

Shear rate at the wall

γ̇w = 1.6
G V

dh y d

where dh y d is hydraulic diameter of pipe.

Shear stress at the wall

τw = 1.066
��

4−α
3−α

�n

τy +kγn
w

�

Generalized reynolds number to define flow regime,

NR eG
=

ρV 2
p

19.36τw

For laminar flow regime:

fl a m =
16

NR eG
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For transitional flow:

ft r a n s =
16NR eG

(3470−1370 ·np )2

For turbulent flow:

ft u r b =
a

N b
R eG

(

a = log(np )+3.93
50 .

b = 1.75−log(np )
7 .

Fanning friction factor f:

f = ( f 12
i n t + f 12

l a m )
1/12

where

fi n t = ( f
−8

t r a n s + f −8
t u r b )

−1/8

Frictional pressure loss gradient

�

d P

d L

�

= 1.076
fp V 2

p ρ

105Di
; [psi/ft]

Pressure loss over the pipe length

∆P =
�

d P

d L

�

·∆L

Pressure loss over bit nozzle

∆Pno z z l e [PSI]=
156ρq 2

(D 2
N1
+D 2

N2
+D 2

N3
)2
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Where DN is nozzle diameter in inch

E.2 Annluar Flow

Plastic Viscosity

ηp = θ600−θ300

Bingham Yield Point

τy = 2θ300−θ600

Low Shear Yield Stress

τ0 = 2θ3−θ6

Flow Behaviour index

na = 3.32 log

�

2ηp v +τy −τ0

ηp v +τy −τ0

�

Concisitency factor

Ka =
ηp v +τy −τ0

511na

Geometrical factor used to calculate shear rate at wall, γw :

G =
� (3−α)n +1

(4−α)n

�

h

1+
α

2

i

; α= 1 for annular flow

Mean velocity inside pipe

Va =
24, 51Q

d 2
o −d 2

i
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Shear rate at the wall

γ̇w = 1.6
G V

dh y d

where dh y d is hydraulic diameter of pipe.

Shear stress at the wall

τw = 1.066
��

4−α
3−α

�n

τy +kγn
w

�

Generalized reynolds number to define flow regime,

NR eG
=

ρV 2
a

19.36τw

For laminar flow regime:

fl a m =
24

NR eG

For transitional flow:

ft r a n s =
16NR eG

(3470−1370 ·na )2

For turbulent flow:

ft u r b =
a

N b
R eG

(

a = log(np )+3.93
50 .

b = 1.75−log(np )
7 .

Fanning friction factor f:

f = ( f 12
i n t + f 12

l a m )
1/12
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where

fi n t = ( f
−8

t r a n s + f −8
t u r b )

−1/8

Frictional pressure loss gradient

�

d P

d L

�

= 1.076
fa V 2

a ρ

105Do
; [psi/ft]

∆P [PSI] =
�

d P

d L

�

·∆L

Pressure loss over bit nozzle

∆Pno z z l e [PSI]=
156ρq 2

(D 2
N1
+D 2

N2
+D 2

N3
)2

Where DN is nozzle diameter in inch
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E.3 Conversions Factors

Table 12: Conversion Factors.
Unit to change To unit Multiply by

PSI Bar 0.06895

gal/min liter/min 3.7854

feet meter 0,3048

ppg sg 0,12

To convert viscometer dial reading [◦] to Pa:

1dial reading= 1, 067[(lb/100 ft2)]

1[lb/100 ft2] = 0, 48[Pa]

convert shear rate from RPM to s−1

γ̇[s−1] =RPM ·1, 703
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