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Abstract 
 
Unlike the conventional well technology, slim hole uses a relatively narrower well size. The 

concept has been introduced long, but the application in petroleum well not very common. 

Based on its advantage in terms of cost, there is a possibility to use it for petroleum well and 

geothermal wells.  

 

This thesis evaluates the slim hole drilling method with the objective of investigating how far 

one can drill. For this, the thesis work considers three qualification operational conditions. 

These are drill string mechanics (Torque, drag & Stress in drill string), hydraulics and cutting 

transport efficiency. The method of analysis flow chart is presented in section § 6.2. 

 

Using this method, two slim well structures obtained from Kuwait, and Carter Creek Field were 

analyzed. In addition, an ultra-deep slim-hole scenario also designed and analyzed.  

 

Based on the evaluation of considered designs, the feasible slim well design presented in three 

categories: 

• Shallow-slim well (up to 13000ft) can be drilled with low grade E-75  

• Deep-slim well (16000 ft) can be drilling with a combination of (E-75 and G-95) Grades  

• Ultra-deep slim well: (20000 ft) can be drillied with high grade, S-135. 
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Nomenclature 
 
A       area 
F   force 
g   gravitational constant 
P    pressure 

K    consistency index 
𝑃𝑃𝑎𝑎   Annulus pressure 
T  Torque 

∆𝑇𝑇    Increment torque 
W           weight 
 
 
𝛼𝛼   Azimuth 
𝛽𝛽    Buoyancy factor 
𝜃𝜃    Inclination 
𝜎𝜎   Normal Stress 

yσ   Yield strength of pipe 
𝜇𝜇    Fluids Viscosity, Pa.s, mPa.s or Cp 
𝜌𝜌     Density, SG or 𝑘𝑘𝑘𝑘/𝑚𝑚3 

𝜏𝜏   Shear Stress, Pa 

𝜏𝜏0   Yield Point/ Stress, Pa 

 

Subscripts 
 
i    = inner 
o   = outer 
r   = radial 
a   = axial 
n   = normal 
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1 Introduction  
 

This thesis presents an evaluation of slim well in order to investigate its application for 

geothermal and for petroleum well. The analysis was based on several drilling operation, 

namely mechanical, hydraulics and cutting transport issues. Simulations well were built based 

on Kuwait (slim hole well design) and Carter (slim hole well design) wells. In these wells, 

several simulation experiments were carried out in order to select the right quality of drill string. 

The problems related to the low grade strings are attached in appendix. The solution with high 

grade is presented in the main report. For the analysis, Wellplan/Landmark and Excel 

implemented models were used. 

 

1.1 Background 
The world demand for energy is increasing, and fuel fossils seems has risen to global 

prominence.  The term energy source covers major fossil fuels such as (Petroleum, coal and 

natural gas), as well as nuclear and hydropower and other renewable energy resources. Figure 

1.1: shows predicted growth of primary energy consumption by fuel from year 2003 to 2030. 

The estimates of all energy types have been expected to be a significant growth of 30 %( 

nuclear) and 95 % (coal) during this period. 

 

 
                             Figure 1.1: World consumption growth of primary Energy from 2003 to 2030 [1]. 
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It is been thought that the temperature will rise if this continues to increase, resulting a 

greenhouse effect. As we know that today and the next several years will be facing global 

warming. This is a great concern due to the huge impact on environment and humankind such 

the rise of sea levels in the coastal areas. Due to this matter, there are currently increase efforts 

to switch the major energy sources such as fossil fuels (coal, petroleum, natural gas) to 

renewable energy. The latter group consists of the contribution from geothermal, solar, wind 

and biomass energy sources. Even though, the renewable energy source is expected to provide 

around twice the contribution of hydro by 2030 increasing by a significant percentage. There is 

still projected to provide around 7% of the total energy to make it serious alternative. At the 

same period, the fossil fuel consumption is projected to increase massively [1]. 

For these reasons, the energy demand and supply will be causing to rely more and more 

energy import over the next several decades which will ultimately drive the energy cost up to a 

point where it will have a huge impact overall competitiveness to all countries. According to 

the International Energy Agent (IEA), it is estimated that over & 700 billion in capital 

investments will be made through 2035 to meet the meet the primary energy rising demand 

requirements in the years to come [2]. 

It becomes an increasing concern on the challenges that the oil industries will face to 

cope the rising needs for fossil fuels.  With the current conditions where there will be an 

increasing number of wells to be abandoned due to the large number of oil fields that are already 

no longer producible or profitable as reaching at the end of its life cycle. This, coupled with the 

maturing areas where margins are declining and the number of new giants oil fields are 

extremely becoming difficult to discover. Most of the new discoveries tend to be smaller fields 

that are often not economical to exploit them. This suggests that it will become extremely 

difficult maintaining an economic global oil reserves at a desirable level once oil prices become 

higher. 

Therefore, the oil industry are seeking new technologies to overcome operational and 

cost challenges that help to drill more efficient and cost effective way. Since the need to reduce 

capital budget under current economic condition in the oil companies become more critical due 

to such as the high cost of the day rate hiring a drilling rig and other costs associated with 

equipment. We can say that the oil industry want to make great effort to reduce the drilling 

costs such as by drilling wells as a small as possible. In recent decades, the petroleum industry 

is moving to more remote areas of the world for exploration activity. The transportation to this 

remote locations becomes much more difficult to reach and expensive due the time consuming 

of the equipment transportation. In this climate, slim hole drilling technology is proposed as a 
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method that significantly reduces the cost of transportation and equipment. This can be achieved 

because of the use of smaller drilling rigs and/or workover rigs, easier equipment mobilization, 

reduced casing size, minimized drilling waste and smaller equipment. Therefore, slim hole 

drilling is becoming more accepted as viable drilling method especially to reduce capital 

investment in exploration activity. 

Since rising development costs are one of the major problems facing the oil companies 

today.  The recent efforts by the companies is to design several new concepts to improve drilling 

techniques.  Among the ideas, the use of slim hole technique is proving to be the most cost 

effective.  The technique has been experimentally applied within the industry to evaluate its 

significance as cost reduction measure. The results showed a significant reduction in overall 

drilling cost for exploration and development oil fields.in comparison with conventional 

drilling, slim hole wells indicated a significant cost reduction of 30-40% range for exploration 

and appraisal wells and 30-40% for injection and production wells. This advantageous savings 

is achieved by variety categories including less site preparation, rig rate and time, tubulars, 

mud, cement and even environment. The Carter Oil Co. had drilled 108 slim hole wells 

documenting with an estimated savings of $ 162,000 below the cost which would have been 

incurred with conventional sized holes. With the performance of modified slim hole program, 

the slim hole technique resulted 8 % less penetration rate and 5 % reduction a bit life than 

conventional [3]. Furthermore, slim hole practice are most applicable in conventional wells 

where unexpected problem may occur such as a lost circulation or differential sticking that 

might lead to plugging and abandonment or sidetracking of the well. Slim hole drilling 

technique with the permit selection of the optimum sized slim hole rig allows that the well can 

be drilled further and all the way down the target depth. 

In some horizontal wells that could otherwise be unprofitable to develop with 

conventional drilling. Today’s improvement of equipment, technology and economic has made 

possible to change this scenario as compared to earlier times. Slim hole drilling provides the re-

entering of the existing wells has been a boost to the development of horizontal drilling. It has 

provided the opportunity to effectively develop new reserves, access by passed oil and convert 

the existing wells to horizontal wells [4]. New technology such as geosteering technique made 

possible for the drillers to accurately steer downhole equipment and bits to stay within pay 

zones and reach the target.   The use for a smaller diameter wellbore to replace the larger 

wellbores where there is limitation to drill deeper regarding to casing design can slim hole 

technology help the industry to reach this goal. Slim well technology can handle this with no 

limitation of how further a well can be drilled, even if some well problems occur during drilling.  
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However, it is important to evaluate problems relating to torque, drag, stresses and friction 

losses in drillstring when the well becomes ultra-deep. 

As the environment becomes more and more focused area in the petroleum industry. 

The goal is to improve working condition (HSE) such as to have zero accidents and to be as 

environment friendly as possible in order to reduce environmental impact. To be able to reach 

this goal, the oil companies needs new technology that minimizes environmental issues such as 

pollution. One way to achieve this goal is the use of slim hole drilling technique that requires 

smaller drilling rigs, minimize drilling wastes, and reduce noise and air pollution and less 

transportation for mobilization and demobilization of drilling equipment.  

Since the introduction of slim well technology, one of the application is in shallow well 

exploration well- however due to its cost and simplicity, it could have a potential for geothermal 

well. It is therefore an important to evaluate the application of slim well for petroleum well and 

for geothermal wells. This thesis is going to analysis these issues.  

 

1.2 Problem formulation  
As mentioned earlier, this thesis is going to generate realistic case scenarios in petroleum and 

geothermal wells. Therefore, the issues to be addressed in this thesis are:  

• How far we can drill in vertical and designer (any inclined) well geometry with slim 

hole? 

• How is the hole cleaning phenomenon in ultra-deep and shallow slim hole? 

• How is the hydraulics in slim well? 

 

1.3 Objective   
In order to answer and evaluate the issues addressed earlier, this task of this thesis is: 

• To review the slim hole drilling technology 

• To review theories for the analysis of slim hole drilling technology 

• To perform simulation studies based on the reviewed theories such as: 

o torque, drag and stress in drill string 

o cutting transport simulation  

o hydraulics simulation 
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1.4 Structure of the thesis  
 
In chapter 1 introduction of the thesis will be given as the background, problem formulation, 

the objectives and the report structure of the thesis.  

In chapter two work published in the open literature of slim hole drilling will be reviewed.  

The theory behind the simulation study of torque, drag, stresses, hydraulic and hole 

cleaning is treated in chapter 3.   

Several simulation studies for the qualification of drill string mechanics for a given 

operational conditions will be analyzed in chapter 4. Of particular interest of torque, drag and 

von-misses would be analytically examined which can be critical to the success of slim wells.  

In chapter 5, the study of pressure losses in the narrow annulus in slim wells due to high 

annular pressure will be presented by using Unified hydraulic model.  Besides that, cuttings 

transport would be simulated of comparing conventional and slim hole drilling.  

In chapter 6 contains general observation of the results obtained from literature review 

and chapter 4-5 will be briefly presented.  

In Chapter 7, the main conclusion of this thesis is treated. 
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2 Literature study on Slimhole Drilling  
 

This chapter presents the literature study on slimhole drilling technology along with benefits 

and applications. 

2.1 Introduction 
 
In the oil and gas industry, wells can be intended to drill in many different ways to serve 

multiple purpose depending on the design and operators requirements. Since there is high 

demand in the oil world and the technology is emerging with pace, the current trend is to drill 

wells in cheaply, safely and more efficient manner. This can be achieved by developing new 

types of wells that can lead to in a more cost effective way. For instance, slim hole well which 

can minimize the drilling cost and risk and may help cut the rig time that can lead to an increase 

the recovery rate. Therefore, the concept of smaller size hole have the possibility to offer for 

smaller drilling rig with potentially smaller surface area. In addition, it offers reducing the 

required for mud and cement volumes, with required smaller reserve mud pit. 

There is an improvement in equipment and the technology but still the petroleum 

industry needs to minimize the cost of drilling with more difficult wells such as deep wells, 

HPHT wells. Advance technology means that we can recent safely drill new wells with small 

diameter and with minimum borehole problems. 

Despite the development of the new technologies, still some studies shows that there is 

an increase in well cost. Referring to Figure 2.1, illustrates the dramatic increase in well costs 

for 8 field on Norwegian Continental Shelf (NCS). The presentation states that the well costs 

on fixed installation have doubled in a last six years. In addition, mobile drillings units doubled 

the costs at the same period [5].  
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              Figure 2.1: Well costs for 8 fields on NCS within the period 2003 to 2015 [5]. 

Therefore, the need for more cost effective wells has been a vital factor to consider in 

well planning. With the current trend towards an emerging technology, “slimmer” wells can be 

simple and better in economy which can be proven to be sound and successful in proper 

application, reducing the well cost. Because of operational problems such as drill pipe 

performance, poor bit, high ECDs and standpipe pressures resulting from inappropriate mud 

system, the gross progress per day reduced with the sizes below 7-7/8 is showed in Figure 2.2. 

Furthermore, a lack of understanding of the drilling process led to cumulative operational 

problems [6]. 

 

 
                                             Figure 2.2: Effect of hole size on overall drilling efficiency [6]. 
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2.2 Slim hole drilling regards to conventional drilling 
 
Typically, definition of slim hole drilling means different thing to different people. However, 

some companies refer to as reduced number of casing strings when they design production 

wells. This involves eliminating the need for a second set of BOPs that further reduced the 

volume of rocks drilled. For instance, in its North Sea forth field, BP Exploration Co, removed 

the 20-inch casing string. This resulted of 30 to 40 percent well cost reduction over the 15-well 

program that has been investigated by using the same conventional equipment. The major 

reason for pursuing slim hole drilling concept is that one of the most development cost effective 

methods in oil and gas field [7]. 

Generally, a slim hole is defined as the drilling of a well with a diameter less than that 

used on conventional wells [8]. By analyzing more on this type of drilling, one may conclude 

that there will be improved well designs compared to the traditional drilling. The increased 

focus to maximize the profitability of new drilled wells can significantly lead to cause slim 

wells to become the opportunity for the petroleum industry to cut drilling and completion costs. 

The following Table 2.1 makes comparison between slim hole wellbore and conventional 

wellbores. For those wells which are designed with lateral wellbore diameters that are greater 

than 8 in will be referred to conventional wellbores. While for those wells with hole size that is 

less than 6 inch will be called “Slim hole “wellbores [9]. 
 

             Table 2.1: Comparison between conventional and slim of Lateral Hole Designs [9]. 

ITEM  CONVENTIONAL Hole Design SLIM Hole Design 
Lateral Diameter           8,5 inch          3,875  inch 
Build Rates ( Degree\100)          10-12         16-20+ 
Radius of Build ( Feet)          573-477       358-287 
Casing designs   
Surface          13,375  inch            8,625 inch 
Intermediate            9,625  inch            4,5  inch 

 
Recent development of materials and advance technology that allow drilling, 

completion, and production operation has made possible for the use of slim hole drilling in the 

petroleum industry. This drilling technique is becoming more accepted as more instruments are 

developed and built to accommodate the use of small hole diameter. Therefore, the method will 

viable to both deviated and horizontal drilling operation due to it is principle advantage: reduced 

cost [10]. 
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For instance, one thousand feet of casing for 12 ¼ inch hole weighs 59 tons while the equivalent 

length of 8 ½ in hole casing weighs about 29 tons and the steel is priced by the ton. Several 

other items such as drill bit, drill pipe, mud chemicals, cement and cuttings cleaning budgets 

become smaller. Due to the scaling down the hole diameter, the overall size of the required 

drilling rig, its lifting capacity and its footprint can be minimized. Because of the reduction of 

diameter, there is loss of torque transmission capability that requires compensatory application 

of higher rotation rates than are commonly used in conventional drilling. in the end, the time to 

reach the TD is cut down as a smaller diameter hole is usually faster to drill, all other factors 

being the same [10]. 

2.3 Current technology in Slim Hole Drilling 
 
Currently, new drilling technologies have been developed for smaller diameter wells that has a 

considerable benefits over the conventional method in terms of application. Their results are in 

substantial advantages over the traditional drilling, for instance reducing the well cost and risk, 

increasing of drilling rate that further can lead to increase of drilling efficiency and is more 

environmentally friendly.  This includes: 

• Slim hole Coiling tubing  

• Continuous coring method 

• Down sized conventional drilling 

 

2.3.1 Slim Hole Coiled Tubing Drilling 
 
Slim hole coiled tubing (SHCT) is one of the new drilling technology over the last 10 years. It 

combines slim hole technology with coiled tubing technology which has a large number of 

advantages as compared to conventional drilling technique in a certain applications. In addition, 

SHCT has the potential to reduce the drilling cost and risk and remarkable potential 

applicability. This typical applications for slim hole coiled tubing include: [11] 

 

 Exploration wells where 4-D image of recoverable hydrocarbon and 

unrecoverable can be acquired and monitored with the ideal depth, without 

disturbing development or injection. 

 In a shallow well, it has notable benefit, the space and load is only 1/3 of 

conventional drilling technology. 
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 Oil well re-entry. SHCT provides a means of improving recovery by vertical 

injection and porosity of different horizontal level can be obtained by seismic 

prospection system. 

 As this new drilling technology is progressing and more downhole tools have 

been developed in the coiled tubing industry. Drilling deep wells in existing well 

with extended slim hole section, reservoir can be evaluated more economically 

with slim hole coiled tubing and the pay zone is more easier to approach. 

 
2.3.1.1 Potential benefits of slim hole coiled tubing technology 
  
The potential advantages that involve this new technology include:  Comparing to the 

traditional drilling, SHCT can decrease drilling time, reduce material and equipment resulting 

to reduced drilling cost.  

The use of these technology is expected to minimize the cost by 1/5 in drilling, 1/3 in 

exploration and ½ in development. According to Department of energy (DOE) in US, the 

development of SHCT can lead to the increasing of production in shallow well(less than 1500 

m) up to 350 ×180𝑚𝑚3. In addition, the method reduced the environmental impact by producing 

less drilling waste and lighter equipment take less space. Potential benefit of the method include 

also: less requirement on crew and reduced human hazards by automated equipment, 

RIH/POOH is quicker because no connection is needed. The ability of the remote control and 

real time transmission is being improved by adapting cable on coiled tubing [11]. 

  In 1993, 5 oil contractors and 6 service companies participated in to study the concept 

of slim hole coiled tubing drilling  by analysis of application in deep well. Their study concluded 

that the slim hole reduced the cost dramatically resulting from reduced material. Furthermore, 

the drilling mud for 300 m is estimated to be only 0.16 𝑚𝑚3 with slim hole drilling compared to 

the traditional drilling which is ten times of that [11]. 

The research for slim hole coiled tubing concluded also that it is not only lowering the 

cost but has also the capability to reduce the hazard on environment. It is promising technology 

which the oil industry needs to put more and more emphasis to improve and make new 

researches in order to achieve or even exceed international standards. The author indicated also 

that the study of basic subject in this technology is big effort to accomplish its development. 

Another big aspect to improve this technology is also introducing more experience from 

countries such as Canada and USA where coiled tubing technology is more mature [11]. 
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2.3.2 Continuous coring technique 

Slim hole drilling with continuous coring method provides the potential to obtain large 

quantities of geological information from core samples. This technique is used on the mining 

industry to certify that an ore body discovery contains a sufficient mineralogical grade in order 

to justify full-scale mining. This is usually lead to coring of up to 90 percent of a well [7]. Oil 

and gas industry adapted the technique for exploration drilling in the late 1950s. However, the 

effort to consider slim coring began in 1980s and 1990s with companies such as Strato Drill 

Inc. in Texas USA [7]. 

The technique offers the potential to deliver the core facilitate rate of penetration (ROP) 

and maintain minimum pressures on the formations penetrated. An oil-emulsion type inhibited 

is commonly used to prevent hydration of shales and solution of salts. Hence, a formation of 

high pressure is penetrated which could cause a catastrophic situation such as a blow out or 

fracture of shallow formation. Therefore, a pressure gauge is located inside the drillers view 

that indicates the pressure in the hole annulus. Due to the fluid being static in the hole annulus, 

the pressure is obtainable.  In addition, a heavy standby mud is maintained of high lubrication 

and low water loss characteristics to prevent blow out and treat lost circulation. 

This method was designed to provide a large detailed reliable subsurface information at 

the time of penetration and at time of greatest need. Using this technique, Strato Drill Inc. Tested 

over wide variety of formation in well in Texas, USA providing 100 percent of the core of the 

sections penetrated.  Although a good recovery rates have been stated, the technique is more 

than satisfactory in rate of penetration and evidenced side advantages such as minimized lost 

circulation, no caving , bridging, accurate WOB control, a smaller rig sizes are used and better 

hole condition for testing and completion than traditional method.  

A slim hole test was made to analyze the cost of required hydraulic pressure, pump 

volume, Pump horse power (HP), mud and drill site. Table 2.2 summarize the comparison of 

hydraulic requirement of the core drill technique and conventional drilling.  The basis of the 

test data include: [12] 

 
                 Hole size: 7 inch (17.78 cm) 

                  Ascending mud circulation velocity: 3 ft./s  

                  Mud: 9.5 ppg 

                 Viscosity of mud: 3 cP 

                  Conventional drill pipe OD: 3 ½ in API 

                  Core drill pipe OD: 4 Inch and   2 ½ in core tube 
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            Table 2.2: Comparison of hydraulic requirement of the Core Drill vs standard drilling [12] 

  FRICTION 
LOSS 

FRICTION 
LOSS 

TOTA
L 

FRICTION HP 

DRILL, Ft Mud Vol Per 1000 ft. Per 1000 ft. Friction per 1000 
 Gal/min descending ascending loss/100

0 
 

Conventional 270 14 13 153 34,5 
Core Drill 37 17,5 11 28,5 0,86 

      

RATIO:  

Conventional 7,3 8 1,1 5,4 40 
Core Drill 1 1 1 1 1 

 

The tests conducted of continuous core technique has been concluded as viable tool for 

oil and gas exploration as it obtains 100 percent core recovery and allows detailed evaluation 

of formation penetrated. Hence, it provides higher drilling efficiency and reduced cost by 

continuous determination of optimum WOB and optimum rotary speed. The technique also 

offers less labor requirement, less mud volume, reduced chance of lost circulation, no need for 

logging and better condition hole for completion [12]. 

One of the most benefit of the continuous coring method is the utilization of small 

modified mining capable of continuous coring using wireline retrievable core barrels that has 

the ability to maintain high rate of penetration and still offer high recovery rate while coring 

compared to the conventional coring method. Because of the ability to retrieve the core without 

tripping the pipe. The significantly reduced rig size results to reducing site costs when drilling 

in remote exploration location [12]. 

The technique is a great step forward in the development for better drilling method but 

the problem associated around drill string and hydraulics can be sceptical to the oil and gas 

companies. Because of the smaller annulus that maximizes the hydraulics, fluids which could 

result in well control problem. The technique has a thin wall pipe that does not allow sufficient 

WOB to be applied and bottom-hole assemblies for weight. The limitation of the depth which 

is about 3000 meter can be another big issue for the petroleum industry to imply this method 

[13]. 

The current efforts by the companies viewed of this drilling technique by investigating 

the potential of slim-hole continuous coring. As result of their study, it has been found a minor 

and major alteration for the use of mining rigs in specific project. Therefore, the use of 
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continuous coring only the lower true slim-hole sections is preferably considerable while 

performing more conventional drilling in the upper part [13]. 

2.4. Types of Slim hole Wells and Their Applications  
 

2.4.1. Slim hole technology for exploration in remote area 
 
Slimhole wells may very beneficial in remote exploratory areas. Such areas are where both the 

risks and potential for rewards are increasing because of lack infrastructure or an established 

company presence, the road construction and logistics can be expensive. In this situation, 

introducing the concept of drilling small diameter wells may become attractive. The method 

can be more efficient in such areas by using smaller rigs and equipment where it can easily be 

transported by a helicopter or along with the existing road with no need of upgrading [14]. 

Such wells use less mud, casing, cement, water, diesel and they generate smaller volume 

of cuttings and require less people to operate and support the drilling system. The environmental 

impact in exploration and production also plays a significant role as slimhole to become 

‘’smart’’ holes. As shown in Figure 2.4, the size of the well site reduced by 75 percent, mud 

consumption and cuttings reduced by 75% , and the hole diameter reduced by 50%. The overall 

cost reduced from 40 % to 60% compared to Conventional Well [14]. 

In 1990, BP Exploration (BPX) identified the potential benefits of the slim hole 

exploration in screening its remote properties. It is been conducted field research lead by BP 

research to investigate the strength and weakness of the slimhole drilling [14]. BPX drilled six 

wells for evaluation program on it onshore Plunger Field, England. BP recorded 70 % savings 

in site preparation than a conventional rig. The time savings on rigging up and down the smaller 

equipment reduced transportation cost by 60% to 70%. In one application, the smaller hole size 

in Sixfold recorded decrease in formation cuttings volume and resulting reduction in disposal 

cost. It is been achieved a savings resulting from a reduction in consumables such as rock bits, 

muds, cement and fuel oil [7]. They concluded their study that a cost savings in excess of 40% 

were achieved in the slimhole exploration project. 
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               Figure 2.3: Slimhole Technique reduces both Well and Site Costs [6]. 
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2.4.2. Slimhole Technology for Horizontal Drilling 
 
A recent trend that certainly operators will be adapted over the next few years is the need to 

drill what is called `` Slim hole horizontal’’. Because of the use of slim hole horizontal that can 

be drilled at successively smaller diameter wellbore to reduce costs has been made possible to 

replace the need for larger wellbores to handle the high flowrates. Even though the principle 

benefit of the smaller diameters of slim hole is a reduced cost, but in practical applications 

proved that the method could limit the potential ability of the well to produce, and other factors 

such as low rock permeability can also be a limiting factor. However, not productivity but 

reduced cost can be deciding factor in the horizontal lateral length and diameter. For instance, 

a such areas where is desired to intersect a large number of fracture to improve production but 

the well is not sufficient productive and reserves are not enough to pay for the additional costs 

of a larger lateral hole, a slimhole completion can be  an efficient method. Due to its principal 

benefit: reduced cost, operators are willing to take the greater risk and limitation associated 

with slimhole horizontal well [6]. 

In late 1991, Oryx energy Company developed the concept a slimhole horizontal drilling 

program in Pearsall Field located in South Texas. It was decided to develop an extensive 

horizontal drilling program to drill new wells in this area. In Fig. 2.4.2 shows a typical drilled 

well in the fractured Austin Chalk formation. The idea was to reduce costs in such areas where 

productive rates were not contingent on the size of the lateral wellbore. Because the use of 

smaller drilling rigs or workover rigs and smaller casing size can minimize drilling cost in 

horizontal wells. Three wells were drilled to evaluate the proposal using a smaller drilling rig 

to the intermediate casing point. The intermediate casing was run and cemented. The drilling 

rig was released, then the workover rig replaced to drill the curve and lateral section. This 

offered to two benefits. The first one was a small drilling rigs could drill the upper hole more 

rapidly than the workover rig and at reduced cost than that required to drill conventional wells. 

Secondly, the less expensive workover rig could more easily manipulate the tubing used for the 

drill string [13]. 

Results from Oryx seen in slimhole horizontal drilling operation showed a significant 

cost reduction. Based on the results of the second well that performed under very typical 

conditions seen in drilling operation in the Pearsall Field. It has been found complete lost 

circulation, it drilled while the well was flowing, and drilled through unconsolidated volcanic 

as intervals with little problems. Even though the hourly penetration rates were the equivalent 

of those seen in larger conventional wellbores, the costs were significantly reduced. The cost 
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of this slimhole horizontal wells from first well is reduced 20% while savings nearly 32% of 

conventional design and 16% from the reduced hole design were also seen. The following table 

shows the comparative drilling cost for newly drilled wells. 

 

 
  
Figure 2.4:  Typical newly drill wellbore configuration in Austin Chalk formation [4] 

 
                         Table 2.3: Comparison for the newly drilled wells in terms of drilling cost [4] 

 Hole Size 
 

Depth/ 
Displacement 

Total/ 
Cost index 
 

Lateral  
Cost Index 

Conventional 8 ½ ‘’ 10389’/3741’ 1.00 1.00 
Reduced Hole 6 1/8’’  9,698’/3,257’ 0.84 0.87 
Slimhole 4 ¾ ‘’ 9,697’/3,154 0.68 0.73 

        
 

Cost index refers to total well costs while Lateral cost index is the cost associated with lateral 

hole. 

The results from these wells show that slim hole horizontal drilling operation, whether 

re-entry or newly drilled wells provides significant potential for cost savings and were 

promising. Based on the results, the technology shows a great promise and must continue to do 

so to meet the needs of the petroleum industry. In table 2.4.3 shows the actual cost beneficial 

that were seen from the use of slim hole operations in Oryx’s Pearsall Field operations. 
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          Table 2.4:  Performance comparison Drilling Cost Slim hole vs Larger design [4] 

INDEX HOLE SIZE DEPTH/DISPLACEMT TOTAL INDEX 
LATERAL 
COST 

Conventional  8 1/2" 10,289/3741 1 1 
Reduced Hole     6 1/8" 9,698’/3,257'' 0,82 0,87 
Slim hole Re-entry 3 7/8" ……../1980 0,5 2,38 
Slim hole New Well 4 3/4" 9697/3154 0,68 0,75 

 

 

2.4.4 Slim technology for Re-entering Existing Wells 
 
The use of slim hole drilling to re-enter wells are into two ways: sidetracking existing wells to 

horizontal or deepening existing wells. In this technique of sidetracking, a portion of the 

existing casing is milled out by either applying section milling or window milling operations. 

Then the hole is sidetracked to horizontal. Window milling operation does not need a cement 

plug for kicking off and less casing is removed compared to section milling. In this case, the 

sidetracking is achieved while cutting out the window. Therefore, window-milling operation 

can reduce the time required for sidetracks [6]. 

In 1990, Oryx drilled a number of re-entry horizontal slim hole wells due to the need to 

utilize existing wells in marginally productive area of the Pearsall Field. It was planned to mill 

a section in the production casing and kick off out of the section. This was to achieve 2000- 

2500 ft. of departure. It was planned to drill a 4-1/2 inch lateral even though the wells had 5-

1/2. All the work was done continuous operation (24hr) workover rig. Although five wells were 

re-entered, the result was not convincing in terms of cost. Lateral hole costs were higher on a 

per foot comparison. In this case, the program was terminated. However, in 1991, interests was 

renewed in looking re-entries for evaluating these marginal areas. There was some 

improvements by the equipment and techniques used previously. Hence, technology to utilize 

coiled tubing in order to serve as the drilling rig was developed. Due to increase of the daily 

ROP by 55% and lateral displacement by 6%, the results were economically encouraging. This 

also reduced the number of day by 31%. In addition, the increase of ROP and reduced problems 

resulted 53% well cost reduction. A significant cost reduction was achieved in that conventional 

drilling costs had been reduced by 21% through improved operations and the conventional hole 

lateral costs had been reduced a dramatic 67% from the previous year. 
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Baker Huges and Husky Oil Operation (Hollies and Szutiak, 1997) reported the successful 

application of slim-hole drilling techniques to revive the drilling problem for re-entry well in 

the Rainbow Lake Field. The horizontal section had drilling problems such as differential 

sticking, lost circulation, an overlying gas cap  and sour uphole zones in the build section. In 

the slim hole approach, intermediate liner (4 ½ inch) was run into the curve, then the lateral is 

drilled with a reliable 3 -7/8 inch slim hole system. According to husky, the completion of these 

wells resulted no more expensive than the conventional single- size version. Even the 

production rates were similar for slimhole and conventional. The savings with the slim-hole 

dual size section become 10-15% less than conventional. In addition, it has been also compared 

the productive time and cost for conventional re-entries and the slim-hole dual hole. The last 

one was the most efficient in time and cost. After learning the experience from the slim-hole 

completion, it showed a dramatic reduction in cost with time and the length of lateral has also 

increased significantly. Husky found that slim-hole performance has been consistent as the 

technique have been improved  as well as the well cost per meter of horizontal hole has 

improved $ 203/m making 28% improvements comparing to a new grassroots horizontal. 

Hence, the slim-hole re-entries operation can be successfully completed on an average of 17 

days [15]. 

BP Exploration Inc. drilled 50 sidetrack wells by drilling new wellbores from low yield 

or damaged wells. The company reported that sidetracking technique minimized the drilling 

cost up to 55% thus from $ 2.2 to $ 1 million for marginal areas of the Prudhoe Bay reservoir. 

In addition, sidetracking also improved the reserve for the Prudhoe Bay reservoirs. For instance, 

one horizontal sidetrack that has been drilled into Ivishak field’s zone one is producing up to 

BOPD from previously unproductive well. Because of the horizontal sidetracking allows to 

access those thin, segregated layers of oil that earlier was uneconomic to produce. 

In another company, Union Pacific Resources Co. (UPRC) reported that the average 

drilling cost for performing a reentry horizontal well in Pearsall Field, was up to $100/ft of 

exposed formation comparing to an average $162/ft for a new horizontal well in the same area, 

the benefit ranged up to 38%. The Fig.2 provide the cost savings for different types of re-entries. 
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                                          Figure 2.5: Cost Reduction for Different Types of Re-entries [6] 

 

2.5 Benefits of Slimhole Drilling. 

2.5.1 Reduction for Drilling Cost 
The use of slim hole technique offers significant economic advantage over conventional 

practice by reducing the drilling cost. The slim hole results are reported to be proving effective. 

With the current condition in oil industry, the cost savings is very important aspect because of 

the reduced capital investment. Slim hole exploration project in remote location reported 30-

60% cost reduction and 25-40% for development wells less than conventional drilling operation 

[16].The saving can be achieved in variety of categories including:[4] 

• The use of smaller drilling rigs and/or workover rigs 

• Reduced casing sizes 

• Less site preparation and easier mobilization of equipment 

• Less capital investment 

• Minimized drilling waste and other costs associated with hole size 

• Less cuttings volume, rig rate and time, cementing, mud and fuel costs. 

• The less cutting volume allow more efficient mud cleaning or use of cheaper solids 

formate brine. 

•  Easier to be able to drill, evaluate and complete through the reduced casing sizes. 
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The composite experience of the Carter Oil Co revealed a significant savings of $ 162,000 in 

slim hole drilling practices. In terms of bit life and penetration rate, slim hole drilling 

performance showed bit to 82% of conventional value and required 35 rotating hours on bottom 

while conventional experience ranged from 33-62 hours. Overall slim hole savings evolve from 

reduced footage rates and reduction in day work, volumetric reductions and improved rig 

mobility. In this case, slim hole wells indicate a significant economic advantage over 

conventional drilling if properly sized slim hole equipment is used [3]. 

2.5.2 Minimization of disposal cost 
During drilling operation, it is important to consider the amount of cuttings volume, mud 

volume, cement and completion fluid that have to be disposed of. With current increasing costs 

associated with waste disposal, the oil industry  are seeking new technology that pollutes less, 

and smaller hole sizes that requires less mud, cuttings and cement. One way to achieve this is 

by reducing the hole size drilled to less than what is typically drilled in conventional oil well. 

For instance, a slim well with a hole size that is half of a conventional one enables to reduce 

the cuttings volume to around 25% of conventional volume. This will greatly lower costs of 

waste disposal. According to Floyd, the smaller diameter wells of sixfold was recorded decrease 

in formation cutting volume and a corresponding reduction in mud volumes. Generally, the 

annular volume of slim hole wells is an orderly magnitude smaller than conventional annular 

volume [7]. 

2.5.3 Technical and Environmental impact advantages 
As the environment is becoming something that is focused more and more upon, reducing the 

environmental impact of drilling becomes more of a priority for the oil companies. Therefore, 

slim hole drilling can be the new technology that reduces the environmental impact and 

contributes to reduce such as noise levels, exhaust emission and disposal wastes. This aspect is 

already important as the environment becomes more and more crucial for drilling wells in the 

future. Therefore, the industry have to change its habits and consider this environmental aspect 

with care and has to anticipate the future needs of regional, international laws which will be 

rapidly implemented. However, slim hole technology provides the opportunity to minimize 

waste, this can be seen for the following factors; [17] 

• Reduction of access road, track, and the site derive from the rig components weights 

and sizes. 

• The location size 1000 sq (10 000 sq ft) that is 6 time less than a normal site 
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• Drilling wastes volumes are divided by 3, which allow an easy physic treatment, and in 

the future a stabilization and solidification on site. 

 

Using small equipment in slim hole drilling makes particularly suitable for sites demanding a 

low impact on the environment. The compactness of slim hole drilling rig has environmental 

benefits such as the drill site area can be significantly reduced. Slimhole drilling rig is capable 

using drill site location less than 7500 𝑓𝑓𝑓𝑓3 while conventional drilling rig requires at least four 

times the areas as shown in Table 2.5.  the drillstring weight, mud tank and rig weight for 

slim hole drilling  at total depth of 5000 ft  are much less than  conventional drilling. As can 

seen on table, the power required to pump the mud for slim hole drilling is also less than to 

that conventional, thereby reducing fuel consumption and air pollution. Using slim rig will 

also reduce the noise. This is particularly beneficial when drilling near residential location [7]. 
                    Table 2.5: Comparison of Conventional and Slimhole Rigs at TD 5000ft 

Type of Rig Conventional Slimhole 
Hole Diameter-in 8,5 3 to 4 
Drillstring weight, Metric tons 40 5 to 7 
Rig weight, Metric tons 65 12 
Drillsite area, % 100 25 
Installed power, Kw 350 75 to 100 
Mud pump power, Kw 300 45 to 90 
Mud tank capacity, bbl 470 30 
Hole volume, bbl/100ft 60 6 to 12 

 

2.6 Limitation and Potential Disadvantages  
 
From technical and economic standpoint slimhole drilling promises to cut the drilling and 

completion costs significantly.  It may also offer significant potential to reduce workover costs. 

However, the savings achieved by the cost reduction from slimhole drilling can be offset by 

increased mechanical failures, reduced lateral hole length and lack of directional control [4]. 

From the standpoint of the oil industry, the adaptation of slim exploration wells brings new 

challenges to the oil fields:[18] 

 

• Formation testing in small- diameter wells needs to be considered and studied. 

• New technology is needed to improve some of the problems and limitation of slimhole 

drilling and improve real-time analysis of cores and logs 
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• Cementing operation might become difficult with respect to channeling behind pipe and 

fracturing of weak formations due to the high pump pressure required to overcome the 

increased friction in the small annulus. 

• Kick detection is a difficult issue because the annulus contains such a small fluid, a kick 

poses serious threat of emptying the well. As result of the small annular clearance, most 

of the pressure drop occurs in the annulus section.in contrast, those wells drilled with 

conventional drilling rig, the pressure drop occurs in the pipe. Therefore, kicks must be 

detected early after only small influx of fluid. 

• Safety of the rig and crew presents additional problems in areas including kick control 

and early gas detection. 

In addition, depth can be a key limiting factor when designing a slim well. However, many of 

the advances in technology now enable to reach to 17000 ft. Chevron recently reported a slim 

hole well design at increasing depth to around 17000ft in the Carter Creek field in Southwest 

Wyoming [19]. 

Some of the disadvantages with drilling slim wells can be- high ECD that can limit mud weight, 

limit completion options, production rates and potential for future sidetrack options, limited 

amount of raw petrophysical information obtained. 
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3 THEORY  
 
 

This chapter presents theories used to evaluate the performance of slim hole technology. These 

are drill string mechanic, hydraulics and hole cleaning. Uses these theories, simulation studies 

will be presented in chapter 4 and 5.   

3.1 Introduction 
 
The literature review in previous chapter has shown that slimhole drilling can be offset by 

mechanical failures. These issues can affect operations, economics and can also pose significant 

challenges for the operator. Therefore, the technologies such as WellPlan Landmark that have 

been found can be vital to the success of slimhole drilling. These include: 

• Torque, drag and stresses in drillstring 

• Hydraulics and Hole cleaning 

• Equivalent Circulation Density 

• Others, well design, drillstring design 

To ascertain a background for the simulation study in chapter 4 and 5, a basic theory  with view 

to understanding the science and technology behind torque, drag, stresses , hydraulics and hole 

cleaning will be reviewed in the following sections. 

 

3.2 Torque and Drag 
 
In this section, the theory for Torque and Drag will be presented, as well as the buckling and 

tensile limit. The purpose of the theory is to provide us the fundamental for understanding using 

mechanics of materials to design safe operational window (buckling and tensile limits, Drag 

and Torque, stress in the drill string). Before proceeding with various simulation study through 

WellPlan, the basic principal for T & D model are defined. 
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                                        Figure 3.1: Drill string forces in the borehole [21] 

 
.
 

3.2.1 Drag in Inclined Well 
 
Drag is the additional load compared to free rotating drillstring weight. This additional load is 

usually positive when tripping out of hole and negative when tripping into hole. The drag force 

is mainly generated by the drillstring contact with the wellbore due to friction.  

From force balance, applying the condition of equilibrium along the axial directions, force 

balance along the inclined plane one can obtain: [20] 

 

𝑑𝑑𝑑𝑑 = 𝑤𝑤∆𝑠𝑠(cos𝛼𝛼 ±  𝜇𝜇 sin𝛼𝛼)                                                                                     (3.1) 

Where the plus and minus sign allows us for the load movement direction whether pulling out 

of the hole or running in to the hole. 
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                                     Figure 3.2: Forces acting on inclined Drill string [20] 

Johancsik assumed both Torque and Drag assumed to be caused that result from contact of the 

drilling string with the wellbore by sliding friction forces. He then define the sliding friction 

force to be a function of the normal contact force and the coefficient of the friction between the 

contact surfaces based on the coulomb’s friction [22]. 

Based on coulomb friction model, an increase or decrease in the load will lead to 

downward or upward movement when the drill string is stationary. Integrating the equation 

stated above over the top and bottom load limits, one can present the force in the drill string 

as: [20] 

 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑤𝑤∇𝑠𝑠(cos𝛼𝛼 ± sin𝛼𝛼 )                                                                      (3.2) 

The “+” means pulling out of the hole while  ≪ −≫ defines the running into the hole. The first 

term inside the bracket defines the weight of the pipe and second term defines the additional 

friction force required the pipe. The change in force when the motion acts upon either upward 

or downward is found by subtracting the weight from the forces stated above. The static weight 

is given as: 

 

𝑤𝑤∇𝑠𝑠 cos𝛼𝛼                                                                                                                     (3.3) 
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The torque and rotating friction follows up the same principle. The applied torque is obtained 

by multiplying the friction factor 𝜇𝜇 with normal moment(𝑤𝑤∇𝑠𝑠𝑠𝑠), giving torque as: [20] 

 

𝑇𝑇 =  𝜇𝜇𝜇𝜇∇𝑠𝑠𝑠𝑠 sin𝛼𝛼                                                                                                         (3.4) 

 

3.2.2 Drag in any curved well 
 
The following figure show represents a drill string which is divided into segments. These 

segments are loaded at top and the bottom with compressive (– ) and tensile (+) loads. 

Furthermore, these loads, thermal, hydrostatic and fluid flow shear forces are also responsible 

for the length of the drill pipe. 

 

     
                                                      Figure 3.3: Segmented Drill strings and loadings[20] 

  

Balancing between the net force and the vector sum of the axial component of the weight, W 

and the friction force, first order differential force can be found as the following 

(Johansick):[24]  

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ± ���𝛽𝛽𝑤𝑤𝑠𝑠 sin𝜃𝜃 + 𝐹𝐹 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ �𝐹𝐹 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
� + 𝛽𝛽𝑤𝑤𝑠𝑠 cos 𝜃𝜃                                          (3.5) 

 

Where the plus and minus sign consents for pipe movement direction, ‘’+’’ is when pulling out 

of the hole (hoisting) where the friction adds to the axial load and ‘’-‘’ is running into the hole 

(lowering), in other word downward motion, the opposite. 

 

 

Drill string 
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The equation above, square root term indicates the normal force per unit length for any curved 

well geometry. The equation is function of well inclination(𝜃𝜃) and azimuth(𝛼𝛼), where each 

segment can be calculated as the following:’ 
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  Where:            wi =weight per unit length 
                          β = Buoyance factor 
 

 

Buoyancy effect 
 

Buoyance is actually a design parameter and has a very important effect in deep petroleum 

wells. It plays an important role that the unit mass of the drill pipe or the weight is corrected 

by buoyancy. The standard buoyance factor is given as: [24] 

 

 

𝛽𝛽 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑖𝑖𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎

= 1 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                                                     (3.7) 

The above equation is valid if the inside and the outside of the pipe are filled with mud. An 

equation where different density exists on the inside and outside of the drillpipe. The 

following equation results: [20] 

 

𝛽𝛽 = 1 − 𝜌𝜌𝑜𝑜𝑟𝑟𝑟𝑟2−𝜌𝜌𝑖𝑖𝑟𝑟𝑟𝑟2

𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟2−𝑟𝑟𝑟𝑟2)                                                                                                  (3.8) 

The above equations are both valid for vertical and deviated wells, and the buoyed unit must 

be: 

𝑤𝑤 = 𝛽𝛽𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                                                            (3.9) 
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3.2.3 Torque 
 

Torque or moment is rotational force and generally defined as a result of force multiplied by an 

arm. It is the moment required to rotate the pipe and the rotational force should overcome the 

frictional in the well and on the bit with the formation during drilling. Torque is mathematically 

expressed as: 

 

Torque= Force x Distance 

 

High torque and high drag forces are normally associated with each other. In drilling 

application, an ideal vertical well the torque loss would be zero, except for a small loss due to 

viscous force resulted by mud. However, if is in a deviated well the torque loss may be 

significant, especially in long complex or extended reach well. In drilling operation, torque loss 

is a major limiting factor to how long drilling can be continued. Torque is dependent to the 

radius of which rotation occurs and the friction coefficient and the normal force over pipe.   

The increment torque calculation is: [20] 

 

∆𝑇𝑇 = 𝜇𝜇𝑁𝑁𝑖𝑖𝑟𝑟∆𝑆𝑆                             (3.10) 
 
In conditions when both buckled and non-buckled string the torque loss per unit length is 
represented as  
 
𝑇𝑇𝑖𝑖+1 = 𝑇𝑇𝑖𝑖 + ∑ 𝜇𝜇𝑟𝑟𝑖𝑖𝑛𝑛

𝑖𝑖−1 𝑁𝑁𝑖𝑖(𝑆𝑆𝑖𝑖+1 − 𝑆𝑆𝑖𝑖)                                                                                 (3.11)
 

                                                                
 

3.2.4 Friction factor  
 
Friction  Factor  also known as friction coefficient plays an important role in drilling operations 

and in the solid mechanics calculations due to torque and drag as well as hydraulic calculations, 

including surge, swab and hookload estimation during cementing. One of the challenges during 

drilling, running casing and completion is to minimize torque, drag and stress in drillstrings. As 

we drill deeper or inclined wells, friction increases because of the increased contact area 

between the drillstring and the wellbore wall. Therefore, the friction force must be considered 

when the workstring is tripped out/in or rotated on/ off bottom. The simulation of drilling 

operation with the friction force is very complex due to some uncertainties that affect the 

friction term [25]. 
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Friction factor is not really pure friction factor at all but more of a “fudge factor”. Because there 

are several issues to be considered in addition to friction. They include: [21] 

• Mud system lubricity 

• Hole cleaning  ( Cuttings bed) 

• Pipe stiffness and key seats 

• Dogleg severity and wellbore tortuosity 

• Stabilizer  and centralizer interaction 

• Consideration to  the type of operation (e.g. rotating or sliding) 

Furthermore, it should be noted that Slack-off, pick-up and torque friction factors might appear 

to be same in the nature but in reality, they are different. The industry will usually only allow a 

single friction factor for a given hole section. For instance, in our simulation study it is essential 

at the beginning of the project to establish a database for cased hole and open hole friction 

factors for the mud type used. However, In order to model torque and drag accurately, it is 

important to note that separate friction factors are required for pick-up, slack-off and torque. 

Table 3.1 shows the typical coefficient of friction to different types of fluid [21]. 

 

            Table 3.1: Range of friction factors [25] 

   
Fluid type  Friction Factors 
  Cased Hole  Open Hole 
Oil-based 0.16-0.20 0.17-0.25 
Water-based 0.25-0.35 0.25-0.40 
Brine 0.30-0.40 0.30-0.4 
Polymer-based 0.15-0.22 0.2-0.30 
Synthetic-based 0.12-0.18 0.15-0.25 
Foam 0.30-0.40 0.35-0.55 
Air 0.35-0.55 0.40-0.60 
   

In most torque and drag analysis models, the friction coefficients are calibrated to enable 

to adjust the mud weight as well as the string weight and consequently, enables to match the 

calculated pick up, slack off and torque values to the actual value measured on the rig. The 

friction factor  back calculated for pick-up and slack-off is usually  different than  one used for 

the torque. The discrepancy between the friction factors may be due to the type of either soft 

string or stiff string model used. Some discrepancy may also exist between the pick-up and 

slack-off friction coefficients. This could be due to the different borehole conditions or due to 
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the compression force in tubulars incorrectly modeled with the type of model used during this 

operation. Friction coefficients are mainly dependent on mud type and lubricity, open hole and 

cased hole and contact force. However, the friction coefficient is not depend the tortuosity of 

the well path since is usually masked behind friction factor that are falsely higher than it should 

be [26]. 

3.3 Stresses in drill string simulation 
 

Stress is defined as force per unit. In this section, the theory to analyze stress in drill string used 

in WellPlan software simulation will be presented. The main purposes for stress analysis is to 

ensure the pipe body can withstand the operational loads and can be run, pull out of the hole 

and not buckled during operation. It will also be discussed the theory of thermal and pressure 

induced stresses in circular cylinder that describes the states of stress in drill string.  

Generally, circular cylinders are categorized into two types; thin walled, if 𝑡𝑡 < 1/10. 𝑟𝑟 and 

thick walled, if 𝑡𝑡 > 1/10. 𝑟𝑟.  Where t represents the thickness of the cylinder and r is the inner 

radius of the cylinder. 

In order to derive the stress distribution through the wall thickness assuming the stress 

is generated due to pressure only, one has to combine conditions such as equilibrium equation, 

compatibility relations, constitutive stress-strain-temperature relation and appropriate boundary 

condition. Therefore, the following equations can be derived the stress flied across the thickness 

of the cylinder as: [27]  

Radial stress 

𝜎𝜎𝑟𝑟 = 𝑃𝑃𝑎𝑎𝑎𝑎2−𝑃𝑃𝑏𝑏𝑏𝑏2

𝑏𝑏2−𝑎𝑎2
− 𝑎𝑎2𝑏𝑏2

(𝑏𝑏2−𝑎𝑎2)𝑟𝑟2
(𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏) + 𝜎𝜎𝑟𝑟(∆𝑇𝑇)                                                              (3.12) 

Hoop stress 

𝜎𝜎𝜃𝜃 = 𝑃𝑃𝑎𝑎𝑎𝑎2−𝑃𝑃𝑏𝑏𝑏𝑏2

𝑏𝑏2−𝑎𝑎2
+ 𝑎𝑎2𝑏𝑏2

(𝑏𝑏2−𝑎𝑎2)𝑟𝑟2
(𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏) + 𝜎𝜎𝑟𝑟(∆𝑇𝑇)                                                              (3.13) 

 

Axial stress  

In order to define axial stress, first two types of axial forces known as the “real force”, 𝐹𝐹𝑎𝑎 and 

the “effective force”, 𝐹𝐹𝑒𝑒  also known as the weight must be defined. The real force is the actual 

force in the pipe wall measured by a strain gauge while the effective is the axial fore when the 

effects of pressure are ignored. However, the axial force (tension or compression) applied to 

the pipe leads to the axial stress. When the CT is in tension, the axial force becomes the axial 

force divided by the cross-sectional area [27]. 
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𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎
𝐴𝐴

+ 𝑃𝑃𝑎𝑎𝑎𝑎2−𝑃𝑃𝑏𝑏𝑏𝑏2

𝑏𝑏2−𝑎𝑎2
+ 𝜎𝜎𝑟𝑟(∆𝑇𝑇)                                                                                      (3.14) 

 

In case pressure is applied to the fluid inside the pipe, the real axial force in the pipe wall is 

now increased by the internal pressure multiplied by the cross sectional area. This results the 

effective force and the real force are not the same. Therefore, the relationship between the real 

and effective force is given as: 

𝐹𝐹𝑒𝑒 = 𝐹𝐹𝑎𝑎 + 𝑃𝑃𝑎𝑎𝐴𝐴𝑎𝑎 − 𝑃𝑃𝑏𝑏𝐴𝐴𝑏𝑏                                                                                                  (3.15) 

 

The above equations are used for thick wall cylinder. Because of the most of the drilling pipe 

are thin walled type. Equations 3.14-3.16 will be approximated for the thin wall cylinder. In 

figure 3.5 shows the stress distribution across the wall of the cylinder. 

 
 
 
 
 
                                         

 

 

 

 

 

 

 

                    

                                     Figure 3.5: Stress distribution through the wall thickness of the cylinder [27] 

Shear stress 

According to Aadnøy (2006), the average shear stress caused by the applied moment is 

approximated for thin walled wall cylinder. In the presence of torque, T, it can be written as: 

𝜏𝜏 = 𝑇𝑇
2𝜋𝜋.𝑟𝑟2𝑡𝑡

                                                                                                                          (3.16) 
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Bending stress 

Bending stress occurs due to the effects of drilling doglegs and by buckling. Both effects are 

essential and beam theory can be used to find the bending stress. This stress (𝜎𝜎𝑏𝑏) is greater at 

the outer diameter (𝐷𝐷𝑜𝑜) of the pipe. The maximum bending stress can be written as: 

𝜎𝜎𝐷𝐷𝐷𝐷 = ± 𝐸𝐸𝐸𝐸
2𝑅𝑅

= ± 𝜋𝜋.𝐸𝐸.𝐷𝐷𝐷𝐷.𝐷𝐷0
432000

                                                                                                  (3.17) 

 

Where DL indicates dogleg severity given by degree/100ft, R= radius of curvature, + tensile= 

on the outside of the bend and – compression= inside of the bend. The minimum axial stress 

can be found as: 

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝐷𝐷𝐷𝐷                                                                                                             (3.18) 

 

While the maximum axial stress becomes: 

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝑎𝑎 + 𝜎𝜎𝐷𝐷𝐷𝐷                                                                                                              (3.19) 

 

Then, allowable maximum axial stress that based on zero pressure and zero bending stress 

becomes: 

𝜎𝜎𝑆𝑆−𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑦𝑦/𝑆𝑆𝑆𝑆                                                                                                                     (3.20) 

 

After converting this equation to force, the maximum allowable axial force is: 

𝐹𝐹𝑎𝑎−𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑆𝑆−𝑆𝑆𝑆𝑆 ∗ 𝐴𝐴                                                                                                               (3.21) 

 

3.3.1 Failure criteria and designing limit 
 
In this section, Von-Misses failure criteria will be presented because the Wellplan software 

simulation uses this type of failure model. 

The von Mises is based on the combination of three principle stresses (axial, radial and hoop 

stress) and the shear stress caused by torque. It is commonly used to describe the yielding of 

steel under combined states of stress. Yielding as function for the combined three stresses is 

given as: [27] 

 

𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉 = �1
2

{(𝜎𝜎𝜃𝜃 − 𝜎𝜎𝑟𝑟)2 + (𝜎𝜎𝑟𝑟 − 𝜎𝜎𝑎𝑎)2 + (𝜎𝜎𝑎𝑎 − 𝜃𝜃)2} + 3𝜏𝜏2                                               (3.22) 
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The shear stress term drops out of the equation if there is no torque. In order to calculate the 

yield limits for pipe one has to set the von Mises stress,𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣 to the yield stress, 𝜎𝜎𝑦𝑦 for the 

material. 

 

In addition, the following condition should be considered for designing purpose. 

 

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚│𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ,𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢│  

 

The tri-axial stress intensity is given as: 

 

𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑦𝑦
𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉

                      

 
3.3.2 Buckling limit 
  
Drill string buckling is a compressive load required to cause drill string failure. During drilling 

operation, this force is used as limit beyond load should not be applied. There are several 

buckling loads available in literature.  

Among others, which takes the effect of azimuth and inclination is the one derived by [He95]. 

The model is given as:[28] 

 

r
EIN

F n
icn

β
=                                                                                                            (3.23)

                                        
Where β is a constant , = 4, for sinusoidal buckling, and 8 + for helical buckling. 
 
For non-buckled string, the normal contact force N = Nn given by  
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esn ds
dsinF
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θ                           (3.24) 

Where 

e

iioo

m
AA

1b
ρρ −

−=               (3.25) 

 
The contact force is not constant. The model presented earlier can be written in the fourth order 
polynomial equation as [He95]  
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( ) ( ){ }2
icr

2
iicrs

2
4
icr a.sinFaFsinbw

r
EIF ϕθθβ

++
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



=               (3.26) 

 

ds
da i

θ
=  and 

ds
da ϕ

ϕ =  

The above equation can be written in normalized form as: 
 

( ) ( )2
ncrn

2
ncrni

4
ncr FaFa1F ϕ++=                   (3.27) 

 
Where 

icr
scr

icr
ncr F

sinEIbmg
r

F
F

F
θβ

==  

 
The build rate in normalized form is given as: 
 

i
iscr

ni a
sinmg.b.r

EI
sinbmg
aF

a
θ

β
θ

==               (3.28) 

 
The azimuth build rate in normalized form is given as: 
 

ϕ
ϕ

ϕ
θβ a

mg.b.r
sinEI

mg.b
aF

a scr
n ==                 (3.29) 

 
3.3.3 Tensile limit 
 
Tensile load is a load applied during pulling. The maximum tensile limit is the defined as the 

load that causes the drill string body reaches to yield point. Using the definition of safety factor, 

the tensile limit can be calculated by multiplying the yield stress of the material multiplied by 

the cross-sectional area. The maximum tensile force given as: [20] 

SF
A

F y
y

σ.
=                                        (3.30) 

Where Fy = Body strength at yield, N yσ = Yield strength of pipe, N/m2 A = Crossectional area 
 

 

 

 

 

MSc Thesis, 2015-Abdi   34 
 



Analysis of Slimhole drilling operations 
___________________________________________________________________________ 

3.4 Cuttings transport  
 

3.4.1 Introduction 
 

Efficient removal of cuttings from wellbore is considered as an essential for the success of the 

overall drilling operation. Insufficient hole cleaning results that the cuttings may deposit and 

accumulate in the annulus and causes several drilling problems that include: [29] 

 

• Increase in drilling string  torque and drag 

• Poor hole condition can lead to slow rate of penetration 

• Stuck pipe  

• Difficulty when running and cementing casing (reason for channeling...)[30] 

 

To avoid such problems, it is very crucial to handle this situation properly during planning 

phase in order to achieve sufficient hole cleaning. Failure to remove drilled cuttings can 

ultimately result such as stuck pipe incidents that can lead to the loss of a well. This only 

accident may cost over $ 1 million USD which will increase the operational cost for the 

industry. Moreover, transportation of cuttings in the annulus is very complex process since 

being affected by many parameters. The major factors affecting transportation of cuttings in the 

annulus can be categorized into three groups: [29] [30] 

 

 Fluid parameters 

 Cutting parameter and 

 Operational parameters 

 

The drilling fluid has the ability to remove cuttings from the wellbore to prevent deposition and 

accumulation of cuttings in the annulus. Several factors affecting the carrying capacity of 

drilling fluid is listed on the following table [29] [30] 
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                       Table 3.2: Factors affecting the carrying capacity of drilling fluid 

   

Fluid Parameters Cutting parameter Wellbore configuration + operational 
parameters 

Mud density Cutting density  Angle of inclination 

Rheology Cutting size Pipe rotation 

 Shape Rate of penetration 

 Cutting 
concentration Eccentricity of the hole 

 Bed porosity Flow rate 

 Angle of repose Depth, hole size/casing well inside diameter 
   

 

Studies shown that the fluid-flow velocity is the dominant drilling variable on hole cleaning 

because of its direct relation to shear stress acting on the cutting beds. In horizontal or inclined 

well, sufficient shear stress should be applied such that the cutting particle are lifted up from 

the cutting bed surface in order to erode the developed bed. Recently, studies of cutting 

transport has been in progress.  A numerous experimental studies has been conducted and 

laboratory test results states that in order to remove cuttings for any hole size and hole angle, a 

high flow rate   shows  that high flow rate should be applied. However, a higher fluid flow rate 

may give rise to the equivalent circulation density thus far result well fracturing. In extended 

reach wells, it is an essential issue to avoid this minimization of pressure loss in the annulus. 

Because the pressure losses depend on the fluid density, fluid velocity and particle 

concentration, it is an important issue for the drilling to make compromise between well 

stability and cutting transport. Therefore, one can optimize an appropriate flow rate for these 

operations. 

Inadequate hole cleaning and cutting transport problems are so common in directional 

and horizontal drilling. As seen in Figure 3.6, the formation of cutting bed is relatively at higher 

angles from vertical and also cutting bed would slide down in intermediate angle [29][30]. 
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                                  Figure 3.6: Deposition of cuttings in inclined well 

 

Using the same information input data used for torque and drag analysis, in the simulation part, 

section § 5.2, cutting transport for slim well compared to conventional well.  Efficient removal 

of cuttings from a wellbore is an essential for conducting a successful drilling operation. 

Therefore, using the Hydraulic module in WELLPLAN software will help to examine the 

minimum flowrate and determine the minimum flow rate to transport cutting and bed height 

simulation by using flow rate lower than the minimum allowable flow rate. 

The theory of fluid rheology and basic theory related to cuttings transport will be presented in 

the following sections. 

 

3.4.2 Rheology models and fluid types  
 
3.4.2.1 Fluid rheology 
 
Rheology is the study of the deformation and the flow of fluids. Newtonian model and non-

Newtonian model are the two types of rheology model, where the non-Newtonian consists of 

seven major models (Bingham plastic, Power law, API, Herschel-Buckley, Unified and 

Robertson stiff). Figure 3.7 illustrates a typical rheological behavior of the fluid system [30]. 

 

 

 

 

MSc Thesis, 2015-Abdi   37 
 



Analysis of Slimhole drilling operations 
___________________________________________________________________________ 

 

                            
                                     Figure 3.7: Rheological behavior of the fluid system 

 
3.4.2.2 Newtonian Fluid 
 

A fluid that obey the newton’s law of viscosity are called as Newtonian fluids. An equation of 

Newtonian fluid is given by 

 

𝜏𝜏 = 𝜇𝜇𝜇𝜇                                                                                                                            (3.31) 

 

In figure 1, we observe that shear stress (𝜏𝜏) is proportional to the shear rate (𝛾𝛾) as a linear 

function of a straight line from the origin and the Newtonian viscosity (𝜇𝜇) represents the slope 

and is dependent of 𝛾𝛾. 

 
3.4.2.3 Non-Newtonian fluids 
 

Generally non-Newtonian fluids are complex mixtures which do not obey the Newton’s law of 

viscosity. These include slurries, pastes, gels and polymer solutions. 

3.4.2.4 Bingham Plastic Model 
Bingham plastic is one of the most widely used rheological model and first two-parameter 

model. The shear stress –shear rate is directly proportional in excess of the yield stress, 𝜏𝜏𝑌𝑌. The 

plastic viscosity is the constant of proportionality. 

𝜏𝜏 = 𝜏𝜏𝑦𝑦 +  𝜇𝜇𝑝𝑝𝑦𝑦                                                                                                                  (3.32) 
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However, the model does not represent accurately the behavior of the drilling fluid at very high 

shear rate (at the bit) or very low shear rates (in the annulus). The yield stress (𝜏𝜏𝑦𝑦) and plastic 

viscosity (𝜇𝜇𝑝𝑝) can be obtained either by reading from the graph or using the following equation 

[30] [31] 

𝜇𝜇𝑝𝑝 (𝑐𝑐𝑐𝑐) = 𝑅𝑅600 − 𝑅𝑅300                                                                                                   (3.33) 

 𝜏𝜏𝑦𝑦  � 𝑙𝑙𝑙𝑙𝑙𝑙
100𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� = 𝑅𝑅300 − 𝜇𝜇𝑝𝑝                (3.34) 

3.4.2.5 Power Law Model 
 

The power law represents a better behavior of the drilling fluid and describes the fluids without 

yield stress characterized by non-linear flow curve as given:  

𝜏𝜏 = 𝐾𝐾𝑦𝑦𝑛𝑛                                                                                                                         (3.35) 

Where the k represents the consistency index and n is the flow behavior index. This popular 

model with n lower than unity approximates to such fluids after the yield stress is exceeded. 

These power –law parameters can be obtained from the following equations: [31] 

𝑛𝑛 = 3.32log (𝑅𝑅600
𝑅𝑅300

)                                                                                                          (3.36) 

𝐾𝐾 = 𝑅𝑅300
511𝑛𝑛

= 𝑅𝑅600
1022𝑛𝑛

                                                                                                          (3.37) 

 

3.4.2.6 The Herschel-Buckley (H-B) 
 
The H-B is three parameter model n, k and 𝜏𝜏𝑦𝑦 that is commonly used to describe the behavior 

of yield-pseudoplastics.in addition, the H-B model can also represent a shear-thinning or shear 

thickening behavior depending on the value n [32]. 

𝜏𝜏 = 𝜏𝜏𝑦𝑦 + 𝑘𝑘𝑌𝑌𝑛𝑛                                                                                                                    (3.38)                                                       

The model combines the effects of power-law and Bingham behavior in a fluid [32].  

 
3.4.2.7 Unified rheology model 
 
The model is a modified version of power law model. It is very similar to the Herschel-Buckley 

model. The Fluids rheological behavior is described with simple equation given by: 

    𝜏𝜏 = 𝜏𝜏𝑦𝑦 + 𝐾𝐾𝛾𝛾𝑛𝑛                                                                                                               (3.39) 

Where, the shear stress (𝜏𝜏), the shear yield (𝜏𝜏𝑦𝑦), the shear rate (𝛾𝛾), Consistency index (K) and 

flow behavior index (n) results from rheometer that used to characterize the fluid behavior ( 

Fann 70 rheology data). 
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3.4.3 Basic theory related to cuttings transport  
 
Most of the studies have been focused on cutting transport problems. However, a very limited 

information is available for small sand-sized solids transport which is essential for successful 

drilling. For any well, it is an important for an efficient hole cleaning. During drilling, all the 

cuttings are in suspension and when the circulation is stopped, the suspended cuttings may 

deposit as cuttings bed especially in most high angles and horizontal wells where a solids bed 

is formed. Since this study simulation is based on two cases of deep wells, a smaller solids are 

easier to keep in suspension and may easily deposit and form a bed. This can be more difficult 

to re-suspend since a bed with a smaller particle is more compact than a bed with a larger 

drilling cuttings, hence more difficult to erode. Field experience and experimental observations 

showed that inefficient transport of a smaller cuttings causes for excessive torque and drag. 

Therefore, it is been developed a mechanic model that predict the Critical Re-suspension 

Velocity (CRV) which is the minimum requirement for hole cleanout when the circulation is 

stopped [33]. 

The movement of a solid particle in suspension is dominated by the forces acting on the 

particle as shown in Figure 4.8. According to Duan et al [33], these loading forces are 

categorized in three groups: The hydrodynamic forces, static forces and inter-particle forces. 

According to them, Van der waals forces (𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣 ) are colloidal forces existing between any 

neighboring particles. Gravity (𝐹𝐹𝑔𝑔 ) and buoyancy (𝐹𝐹𝑏𝑏) are the static forces that are due to the 

properties of the particle and its surrounding fluid. Drag (𝐹𝐹𝐷𝐷) and lift (𝐹𝐹𝐿𝐿) are hydrodynamic 

forces incurred from the fluid flow. The forces applied to a protruding particle on a bed depend 

on the relationship between the solids angle of repose and hole angle [33]. 

 
                     Figure 4.8: Forces acting on a solids particle on cuttings bed [33] 
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3.4.3.1 Cuttings bed properties 
 

The cuttings bed properties have major effects on hole cleaning if the cuttings particles is loose 

and porous. Therefore, to optimize hole cleaning, it is necessary to remove single cuttings 

particles that are not adhered to the bed. Some fluid may migrate when the cuttings bed is loose 

and highly porous and theoretically may reduce the flow above the bed. However, it is desirable 

to reduce the cuttings bed consolidation as much as possible. In practical operation, it is not 

expected the migration flow to be significantly large and should not hinder hole cleaning. This 

means that will be optimized when the bed is as loosely as possible [34]. 

 
3.4.3.2 Particle slip velocity 
 
When the particle is in a stationary liquid state, the slip velocity (𝑉𝑉𝑠𝑠) can be assumed to equal 

to the terminal settling velocity. Because of the complex movement of the particle in the 

annulus, the assumption can be a questionable [30]. 

The cutting slip velocity is defined as the velocity a drilled cuttings have the tendency to fall 

down through the fluid medium. The fluid annular average velocity (𝑣𝑣𝑎𝑎) should be higher than  

the cuttings average slip velocity (𝑣𝑣𝑠𝑠) to be able the fluid to lift the cuttings to the surface. The 

average cuttings transport velocity is then given by :[35] 

𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑠𝑠                                                                                                                     (3.40) 
𝑣𝑣𝑡𝑡
𝑣𝑣𝑎𝑎

= 1 − 𝑣𝑣𝑠𝑠
𝑣𝑣𝑎𝑎

= 𝑅𝑅𝑡𝑡                                                                                                              (3.41) 

 

Where 𝑅𝑅𝑡𝑡 is the cuttings transport ratio 

 

The regime of the flowing fluid and vertical slippage plays an important role when the 

phenomenon of cuttings transport is considered. If the fluid is under turbulent flow depending 

on the cuttings shape and dimensions induces a turbulent regime of particle slippage. The 

momentum forces of the fluid is the only factor that determines the particle slip velocity. The 

fluid viscosity has little or no influence at all.  However, a laminar flow will always provide a 

lower value of particle slippage. Therefore, the laminar flow will normally provide a better 

transport than the turbulent flow. If the case is inclined annulus, the benefit of laminar flow will 

be cancelled while the angle of inclination is increased. Because of the significance of the axial 

component of particle slip velocity increases [35]. 
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In addition, the terminal velocity of a small particle settling under the laminar flow condition is 

given by Stoke’s laws as: [35] 

𝑉𝑉𝑆𝑆 = 𝑔𝑔𝑑𝑑𝑝𝑝2(𝜌𝜌𝑝𝑝−𝜌𝜌𝑠𝑠)
18𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒

                                                                                                               (3.42)                      

Where 𝑉𝑉𝑆𝑆 represents slip velocity, 𝑑𝑑𝑝𝑝= diameter of the particle, It should be noted that, the 

above equation is only valid for sufficiently small particles Reynold number < 1. 

 
3.5 Hydraulics 
 

Hydraulics plays an important role in many oil field operations such as drilling, completion, 

workover and production. The two most popular models used for drilling fluid hydraulics are 

either power law or Bingham plastic rheological model. These models do provide a simple way 

for fair estimates of hydraulics for conventional vertical well using simple drilling fluids. 

Therefore, the understanding of the knowledge of rheological data and methods of predicting 

pressure loss are essential in order to calculate proper pump rate and prevent any barrier in 

drilling operation [36].However, in this thesis, the unified hydraulic model is used.   

 

3.5.1 Pressure loss due to friction 
 
 Drilling conventional wells, the increase in equivalent circulating density (ECD) by annular 

losses is usually small compared to hydrostatic pressure gradient. According to the standard 

API RP 59, ECD is defined as the effective density of the circulating fluid in the wellbore 

resulting from the sum of the hydrostatic pressure imposed by the static pressure and the friction 

pressure and the mathematical expression of this is given by;  

𝐸𝐸𝐸𝐸𝐸𝐸 =  ∑𝑃𝑃𝑎𝑎
𝑇𝑇𝑇𝑇𝑇𝑇 .𝑔𝑔

+  𝜌𝜌𝑚𝑚                                                                                                      (3.43)                                                              

Where, ∑𝑃𝑃𝑎𝑎 represents the total annulus pressure loss (Pa), TVD is the hole true vertical depth 

(m), mud density (𝑘𝑘𝑘𝑘/𝑚𝑚3), and g- acceleration to gravity (𝑚𝑚/𝑠𝑠2). 

Because of the narrow annular geometries and thus the smaller the annulus clearance in slim 

hole drilling, the use of drilling practices is therefore to express this annulus pressure by ECD. 

The frictional pressure loss depend on several factors including: [36] 

• Drilling fluid flow behavior of the rheological relation ( Newtonian or non-Newtonian) 

• The Flow regime of the drilling fluid ( laminar, turbulent or intermediate flow) 

• Flow rate of the drilling fluid (q) 
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• Drilling fluid properties  such as viscosity and density) 

• Hole geometry and Drill string configuration 

 

The drilling fluid is pumped through the surface lines, standpipe hose, Kelly, down the drill 

string and bottom-hole assembly and circulated back up to the annulus and through the surface 

mud treating system [13].   

During circulation operation when the drilling fluid is pumped, the friction between the drilling 

fluid and the wall of the drill pipe and annulus results pressure loss: [37] the frictional pressure 

losses mainly comes from: 

 

• In the surface equipment (∆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) such as Kelly, swivel, standpipe. 

• Inside the drill string (∆𝑃𝑃𝑑𝑑𝑑𝑑 ) and drill collar,∆𝑃𝑃𝑑𝑑𝑑𝑑. 

• Across the bit,∆𝑃𝑃𝑏𝑏. 

• In the annulus around the drill string, ∆𝑃𝑃𝑎𝑎. 

The pump pressure is the sum of the pressure loses and can be calculated as the following 

equation; 

∆𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  ∆𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                                               

 The frictional losses across the bit is given by; 

 

∆𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 = 156𝑝𝑝𝑞𝑞2

�𝐷𝐷𝑁𝑁12+𝐷𝐷𝑁𝑁22+𝐷𝐷𝑁𝑁32�
2                                                                                             (3.44)                                                                                                               

 

Where ∆𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the pump pressure. As the velocity of the mud is increased, the 

pressure loss will increase. The pressure loss will also be higher with decreasing flow area.  

Since the friction between the drilling fluid and the wall of the annulus causes pressure 

loss, the bottom hole pressures will increase when the mud is being circulated compared to 

when is not circulated. This bottomhole pressure is caused by the hydrostatic pressure of the 

wellbore fluid and may be calculated in static with the equation:  [38]    

 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 = 𝜌𝜌𝑀𝑀𝑀𝑀 × 𝑔𝑔 × 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥10−5   

 

In this equation 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 is the bottomhole pressure given in bars, 𝜌𝜌𝑀𝑀𝑀𝑀 is the mud density in 

(𝑘𝑘𝑘𝑘/𝑚𝑚3), 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 is the true vertical depth of the well given in meters. 
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In figure 3.9 illustrates the pressure loss across different sections. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
                                             Figure 3.9: Diagram of the well fluid system 

 

3.5.2 Unified pressure loss model  
 
Table 3.3: illustrates the summary of rheological and hydraulic equation of the unified model 
in pipe and annular flow.  

∆Ps 

∆Pdp 

∆Pb 

∆Padp 

∆Padc 

Drill Bit 

Drill collar 

Drill pipe 

Well/casing 

∆Pdc 
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                       Table 3.3:  Summary of rheological and hydraulic equation for Unified Model [37] 

 
   
            Pipe  flow  

 
                    Annular flow  

                                                    
 𝜇𝜇𝑝𝑝 = 𝑅𝑅600 − 𝑅𝑅300                   𝜏𝜏𝑦𝑦 = 𝑅𝑅300 − 𝜇𝜇𝑝𝑝                  𝜏𝜏𝑜𝑜 = 1.066(2𝑅𝑅3 − 𝑅𝑅6)     
                                                 𝝁𝝁𝒑𝒑 = 𝒄𝒄𝒄𝒄 
                                                 𝝉𝝉 = 𝒍𝒍𝒍𝒍𝒍𝒍/𝟏𝟏𝟏𝟏𝟏𝟏𝒇𝒇𝒇𝒇𝟐𝟐 

𝑁𝑁𝑝𝑝 = 3.32 log(
2𝜇𝜇𝑝𝑝 + 𝜏𝜏𝑦𝑦
𝜇𝜇𝑝𝑝 + 𝜏𝜏𝑦𝑦

) 

𝐾𝐾𝑝𝑝 = 1.066(
𝜇𝜇𝑝𝑝 + 𝜏𝜏𝑦𝑦

511
) 

𝑁𝑁𝑝𝑝 = 3.32 log(
2𝜇𝜇𝑝𝑝 + 𝜏𝜏𝑦𝑦 − 𝜏𝜏𝑦𝑦

𝜇𝜇𝑝𝑝 + 𝜏𝜏𝑦𝑦
) 

                𝐾𝐾𝑝𝑝 = 1.066 �𝜇𝜇𝑝𝑝+𝜏𝜏𝑦𝑦−𝜏𝜏𝑜𝑜
511

�   

𝐺𝐺 = �(3−𝛼𝛼)𝑛𝑛+1
(4−𝛼𝛼)𝑛𝑛

� �1 + 𝛼𝛼
2
�                𝜶𝜶 = 𝟏𝟏 𝒇𝒇𝒇𝒇𝒇𝒇 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂   

                                                            𝜶𝜶 = 𝟏𝟏 𝒇𝒇𝒇𝒇𝒇𝒇 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑   

𝑣𝑣𝑝𝑝 =
24.51𝑞𝑞
𝐷𝐷𝑝𝑝2

     𝑣𝑣𝑎𝑎 = 24.51𝑞𝑞
𝐷𝐷22−𝐷𝐷12

    ,                𝑣𝑣 = 𝑓𝑓𝑓𝑓/𝑚𝑚𝑚𝑚𝑚𝑚 

                                                       𝛾𝛾𝑤𝑤 = 1.6∗𝐺𝐺∗𝑣𝑣
𝐷𝐷𝑅𝑅

                              𝛾𝛾𝑤𝑤 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 

                              𝜏𝜏𝑤𝑤 = ��4−𝛼𝛼
3−𝛼𝛼

�
𝑛𝑛

  𝜏𝜏𝑜𝑜 + 𝑘𝑘𝛾𝛾𝑤𝑤𝑛𝑛 �                              𝝉𝝉𝒘𝒘 =  𝒍𝒍𝒍𝒍𝒍𝒍/𝟏𝟏𝟏𝟏𝟏𝟏𝒇𝒇𝒇𝒇𝟐𝟐 

𝑁𝑁𝑅𝑅𝑅𝑅𝑝𝑝 =
𝜌𝜌𝑣𝑣𝑝𝑝2

19.36𝜏𝜏𝑤𝑤
 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎 =

𝜌𝜌𝑣𝑣𝑎𝑎2

19.36𝜏𝜏𝑤𝑤
 

Laminar:  
               𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 16

𝑁𝑁𝑅𝑅𝑅𝑅
 

Transient:     
                 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 16𝑁𝑁𝑅𝑅𝑅𝑅

�3470−1370𝑛𝑛𝑝𝑝�
2 

Turbulent: 

𝑎𝑎 = log   𝑛𝑛+3.93
50

𝑏𝑏 = 1.75−log𝑛𝑛
7

  �𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎
𝑁𝑁𝑅𝑅𝑅𝑅𝑏𝑏

 

 

   
            𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 16

𝑁𝑁𝑅𝑅𝑅𝑅
 

        𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
16𝑁𝑁𝑅𝑅𝑅𝑅

(3470 − 1370𝑛𝑛𝑎𝑎)2 

 
Turbulent: 

 𝑎𝑎 = log   𝑛𝑛+3.93
50

𝑏𝑏 = 1.75−log𝑛𝑛
7

  �   𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎
𝑁𝑁𝑅𝑅𝑅𝑅𝑏𝑏

 

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
−8 + 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

−8�
−1/8

 

𝑓𝑓𝑃𝑃 = �𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
12 + 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

12�
1/12

 𝑓𝑓𝑎𝑎 = �𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
12 + 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

12�
1/12
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                       psi/ft 
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� ∆𝐿𝐿                                    psi 

�
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𝑑𝑑𝑑𝑑
�∆𝐿𝐿 

     

                                            ∆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 156𝑝𝑝𝑞𝑞2

�𝐷𝐷𝑁𝑁12+𝐷𝐷𝑁𝑁22+𝐷𝐷𝑁𝑁32�
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4 DRILL STRING MECHANICS SIMULATION 
STUDY 
 

4.1- Introduction 
 
In general, rising development costs is one of major challenges facing the petroleum industry.  

During recent years several studies and experimental have been conducted to achieve the 

efficient recovery of oil and reduce the cost of drilling operation. As mentioned on the literature 

review, slim hole drilling have resulted proving to among the  most effective concepts by 

reducing the drilling cost. In preceding chapters, a literature review of slim hole as well as 

theory related to torque, drag, hole cleaning and hydraulics were reviewed. To combat the 

increasing development cost one has to put more emphasis on the well design process during 

the drilling operation. 

 
In order to evaluate the application of slim hole, this section presents several simulation studies 

on the load carrying capacity and stress in the drill string.  

 

For the qualification of drill string mechanics, three simulations were considered. These are 

torque, drag and Von-mises stress.  For a given operational conditions, if three loads are within 

the allowable window, it is then possible to uses the selected drill string. The safe operational 

window is bounded between the buckling, tensile, torsional limits. 

 

The qualified systems presented in this section, are after doing several simulations with low 

grade drill string. The results of the low grade strings for most cases show failure and are 

attached in Appendix C.  
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4.2 Shallow and ultra-deep slim hole-Kuwait 
 
4.2.1 Well profile and objectives 
 

The six Field in Northern Kuwait has been considered too fast track production of gas/light oil 

from deep HPHT Jurassic reservoirs launched by Kuwait Oil Company (KOC). Prior to these, 

the objective of the venture is to access production of gas and light oil to these northern fields 

to 1000 MMscf/d gas and 350000 bbl/d by the year 2015. The challenge of wellbore 

construction in these northern fields is reaching with total depth of 15000 to 17000ft with 

pressure of 10000psi and temperature of 280℉. 

 

It is a deep HPHT exploratory well that require a large-hole casing design to isolate problematic 

formations and to reach the target zones with maximum hole size. The surface and intermediate 

sections are drilled with larger diameter bits ranging from 28-in to 16-inch. The casing plan of 

the conventional well starts up from 30-inch casing conductor and ends with 5-inch liner. The 

target zone from Zubair to Hith was one of the most difficult/problematic hole sections. It was 

traditionally drilled with 16-inch bits and the formations consists of abrasive sandstone, reactive 

shale, limestone and anhydrites with UCS that varies between 5-30kpsi. The sections are 

divided into three basic sections: Upper Zubair Formation, Middle Ratawi Shale and Lower 

Ratawi Limestone to Hith. 

 

Since the most crucial section is the Zubair to Hith, the drilling team considered to redesign the 

wells to use smaller casing and liner best suited for the smaller development rig’s capacities.  

Prior to these and to reduce the cost, the KOC development and bit provider’s engineering 

developed the first slim hole well plan and casing string design to explore Cretaceous formation 

in Northern Kuwait. With previous large hole design, the study determined the 7 ¾-in casing 

shoe to be set at around 13625ft and 10 ¾-in shoe was set at 9745ft at roughly 150ft into Zubair 

formation. The drilling team were able successfully downsize the hole/casing size [39]. 

The company achieved saving the drilling operation by 55 % drilling time and over $1 

million USD compared to the large hole and liner-string design due to the downsizing strategy 

and change in casing string design. In addition, the entire operation was completed with zero 

HSE related complications.  Therefore, slim hole technology promises reducing cost from a 

downsizing and change in casing standpoint with regarding to the field results from this project. 
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Hence, the operation was completed successfully achieving the desired isolation in the zones 

of interest.  

 

 
 
                      Figure 4.1: Geological area and the typical deep well casing program [39] 

In this section, an attempt to evaluate the field data of these wellbore construction well will be 

analyzed by using WellPlan Software. The objective was to re-design the wells to smaller 

diameter hole compared with the standard well construction. Secondly, to investigate the torque 

and drag analysis for conditions tripping in, tripping out and stresses in the drill string. 

 

The parameters data needed for this simulation study is not as accurate to the measured data in 

the wells. However, the torque and drag model was adjusted to measured data, either by 

changing some file data such as the friction factors, the weight of drilling pipe, the bit-type and 

the grade of the casing. We used a wellpath planning program to calculate the survey data for a 

Deep slim well, simulating of the old conventional well by changing the MD with new 

Measured Depth. The intent when creating the data set of this study has been to determine if 
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the design is in safe operational window (buckling and tensile limits, Drag and Torque, stress 

in the drill string).   

 

4.2.2-Simulation arrangement for shallow and ultra-deep slim 
 
 
4.2.2.1-Drill string design 
 

Drill string editor is related to the cased and open hole specification. The hole section editor 

requires the specific dimensions of the cased and open hole which includes measured depth, the 

length, inside diameter, weight and item description such as the Grade by API casing as well as 

the friction coefficient. Table 4.1-shows the drill string strategy that calculates all required input 

information to design shallow slim hole well (13630).  As well table 4.2 has same input 

information that considers the key issues related to friction factors for designing torque and 

drag on slim hole well design on 20000ft. For instance, the friction factor that is applied on 

ultra-deep simulation operation is 0.25 for cased hole and 0.30 for open hole. This is the 

simulation arrangement that guides to model torque, drag and Stresses in drill string. The values 

required in the hole section editor are shown on the tables below. 

 

                      Table 4.1:  Hole section editor for slim hole well design for 13630 ft 

 
 
                        Table 4.2: Hole section editor for slim hole well for 20000 ft 
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4.2.2.2-Drill Pipe and Bottom Hole Assembly Design table 
 
Table 4.3 and 4.4 is related to the drill string specification (Drill Pipe + BHA). The Drill pipe 

requires the specific dimensions such as inside diameter, outside diameter, length of the drill 

pipe, density of the pipe, grade and connection. As it can be also seen from the table, bottom 

hole assembly consisting such as jar, sub, heavy weight and bit specification has been pre-

entered.  The user can choose the drill string assembly specification that are suited to the 

simulation study. It is possible to select or change any particular tool in the bottom hole 

assembly by clicking the row. The values that required to enter in appropriate rows and Column 

are not calculated automatic by the program but it is assumed values that is used. These values 

uses the program to design torque, drag and stresses in the drill string. It is not only used on this 

situation but it is essential for also evaluation process on hole cleaning. Table 4.3 shows the 

drill pipe and BHA specification entered for the shallow slim hole well to obtain torque, drag 

and stresses plot. , while table 4.4 is the data information implemented to design slim hole for 

20000ft. 

  
                           Table 4.3: String editor for slim hole for 13630 ft 

 
 
                            Table 4.4:  String editor for slim hole for 20000ft 

 
 
4.2.2.3- Geothermal gradient 
 
According to the oilfield glossary, geothermal gradient is the rate of increase in temperature 

with the respect to the increasing depth in the earth. It is important for drilling engineers to 
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know about the gradient when designing particularly a deep well because the temperature and 

pressure increases per unit depth in the earth. The formation temperature can be found by 

adding the surface to the product of the depth and the geothermal gradient and can be expressed 

as: 

𝑻𝑻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑻𝑻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑫𝑫𝛁𝛁𝑻𝑻 

Figure 4.2 shows the geothermal gradient which increases by1.5° 𝐹𝐹/100𝑓𝑓𝑓𝑓. As it can be seen 

from the figure, the bottom hole temperature is 350℉ and the surface temperature is 80℉. 

 
 
               Figure 4.2: Geothermal gradient graph (Measured depth vs Temperature) 

 
4.2.2.4-Drilling fluid editor 
 
Figure 4.3 shows the measured viscometer data of the fluid system. The plastic and yield stress 

of the fluid systems are 40cP and 18lbf/100sqft respectively. The density of the fluid is 1.75sg. 

 
 

                                                  Figure 4.3: Viscometer data of drilling fluid 
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4.2.2.5- Well Structure 
 
This section presents the well structure. Figure 4.4 and Figure 4.5 show the well geometry of 

shallow-slim and ultra-deep slim well along with the strings, respectively. The survey data, 

dogleg severity, well inclination and azimuths of the wells are given in Appendix A.  

 
   
                                                                  Figure 4.4: Field case, Well schematic 
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                                                          Figure 4.5: Well configuration used for ultra-deep well scenario. 
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4.2.3-Simulation result for shallow-slim hole well (13630 ft) 
  

Torque and drag analysis plays an important role in drillings operation. In this analysis is 

performed using Landmark’s WellPlan torque and drag. In previous sections had been provided 

the inputs necessary for this simulation.  During the simulation process when applied different 

scenarios is presented to answer “Will torque and drag design exceed the operating limit for the 

proposed well friction coefficients and Grades”? 
 

For determination whether the design is in the safe operational window, torque drag effective 

tension graph should be used. For stress analysis, true tension should only be used.  

The outputs observed from the torque drag effective graph consists the following curves: 

• Tension limit 

• Helical Buckling ( rotating) 

• Tripping out/in 

In this section, we have simulated both conventional and slim hole based on the Kuwait field. 

It is presented different scenarios to see the changes that is made until technically feasible well 

design is achieved. During this simulation we assumed a worst case scenario such that cutting 

and well collapse could increase the friction coefficient. Therefore, the well-drilling coefficient 

of friction was assumed to be 0.20 for the drill string casing and 0.40 for open hole. 

 

The simulation result with the conventional shows that during tripping out with E-grade drill 

string reaches to yielding at the top section. The same problem also observed on torque graph. 

The results are shown on Appendix C.  

 

In order to solve the problem, it is been considered to change the friction factors by assuming 

for the value of open hole as 0.30 and kept unchanged for cased hole equal to 0.20. The objective 

was to investigate out if it will affect the normal torque drag and tension graph. It has been 

found that the change of friction factor had a little impact on new design as the outputs passes 

through the tensile limit. Therefore, it is proposed to use a higher grade (G-grade) on the top 

section and E-grade on the lower part of the drill string. The combination of E-grade and G-

grade solved the problem. 
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As result of this, the plots are shown on Appendix-C which indicates that all the operation 

curves falls to the right tension limit curve. Therefore, it is predicted not to occur a problem 

since the new design is in the safe operational window.  

 

Similarly the slim hole was simulated based on similar well conditions. The results are shown 

in the following figures. Figure 4.6- shows the effective tension distribution along the drillstring 

for tripping in/out from surface to depth 13630 ft.  The well schematic is same as that depicted 

in figure 4.4. The drillstring configuration are given in table 4.1 and 4.3. 

As it can be observed from the graph, it is noticed that tripping out operation is closely the 

tension limit at the surface resulting in the very low overpull margin. Both figure 4.6 and figure 

4.7 illustrates that the drill string is in a safe operational window since it does not cross the 

tension and torque limit. 

 

         Drag result 

 

                                           Figure 4.6: Drag effective tension graph for shallow-slim hole well design 
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Torque result 

Figure 4.7- shows torque graph simulated for tripping in, tripping out and rotating on bottom. 

The data are given in table 4.1 and 4.3.The left side of the curve is the 1000ft-lbf torsional 

limit. As it can be observed from the figure, at depth of 1360 ft, the torque on bit is 0 ft-lbf on 

both tripping in/out operations. However, when landing the drillbit at the surface, it shows an 

increase of torque force to 6500 ft-lbf when tripping in while it indicates an increase around 

9200 ft-lbf when tripping out. 

 

  

 
                                              

                                                Figure 4.7: Torque graph for shallow-slim hole well design 

 
 
 
 
         
Stress in drill string result 
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Load on drill string creates stresses in drilling string. The stresses are in the radial, tangential 

and in the axial directions. The loads are due to by the applied dynamic pressure in and outside 

of the drill string. These are a function of static mud weight and the dynamic friction due to 

fluid flows. The axial external loads and due to bending contribute to the axial stresses. The 

applied torque generate shear stress in the drill string. All of these stresses are used in Von-

Mises failure criteria. Drill string fails when the stress drill string (Von-Mises) reaches to the 

yield strength of the drill string. The theory is presented in section 3.3. 

To evaluate the condition of drill string in the slimhole, the Von-Mises stress was calculated 

using equation 3.2 reviewed in section 3.  

 

Figure 4.8 shows von-mises stress in drill string. Von-mises simulation was for 300gpm flow 

rate. The result that the stress is within the stress limit. 

.  

 

 
                                  

                                         Figure 4.8: Stresses in Drill string For slim Hole Design at flow rate = 300 gpm 
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4.2.4- Simulation result and analysis for ultra-deep-20000 ft 
 
One of the research question raised in problem formulation was how far one can drill with slim 

hole? 

 

To investigate this, at first 24000ft long well were considered. The well and drill string, and 

drilling fluid information are presented in Appendix C-1. The torque and drag, and stress result 

are presented in appendix C-1. The result reshows that this well length, the selected drill string 

cannot carry the loads. 

 

The second attempt was made by reducing the well depth to 2000ft. For this well, all the input 

data are identical with the wellbore profile mentioned earlier except the changes made on the 

well depth. The same friction factor is applied as the cased hole is equal to 0.25 and 0.30 for 

open hole. In tables 4.2 and 4.3- are presented the hole section editor and drill string data. In 

order to fulfill the task, it was decided to perform simulation study to analyze the torque, drag 

and stresses during the drilling operation.  

 

Drag on drill string 

 

Figure 4.9- Displays the tension for the drill string versus measured well depth along the drill 

string.  The negative value indicates the compression force while the positive values shows the 

tension in the drill string. The red line to the right represents the tension limit  when while the 

grey line to the left shows helical buckling limit when there is rotation.  For the tripping in/out 

operations, the tension in the drill string is at highest level on the surface (150/300 kip) . 

 

The drag plot also indicates that all the operations, tripping in/out are between the drill string 

buckling and tensile limit, meaning it is operating in the safe window. After simulating with 

lower grades such as G and E-grade, it is been found that the drill string passes the tensile limit. 

Therefore, it is been considered the S-grade. Even though this grade is more expensive, it is 

recognized as the most suitable grade for this ultra-deep slim hole simulation. 
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                                                                      Figure 4.9:  Effective tension for ultra-deep slim well 

                                     
Torque  

Figure 4.10- shows the torque graph obtained from the wellplan simulation. The green curve 

represents the drillstring when tripping in while the blue curve shows it is tripping out. As it 

can be seen from the figure, the torques obtained from the two operations are within the safe 

window.   

 
                                                        Figure 4.10: Effective torque graph for slim well 
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Stress in drill string 
 
Figure 4.11- shows the stress during tripping in and Figure shows the stresses during tripping 

out. As shown on the figures, in both cases the stress in with in the safe window.  

Based on the three simulations result. Slim hole can be drilled up to 20000ft provided that the 

drill string is a higher quality, which is S-Grade. However for the lower grade qualities, which 

as E-and G-grades, the length should be 17000ft as shown in section 4.3.  

 

 

 
                                  

                                               Figure 4.11: Von-Mises stresses tripping in operation 
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                                         Figure 4.12: Von-Mises stresses tripping in operation 
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4.3 Deep slim hole-Carter Creek Field -USA 
 

This well is a slim well drilled in the Carter Creek Field in Southwest Wyoming and was 

discovered by Chevron In 1977.  The True Vertical Depth is 15000 ft and the measured depth 

of this well is +/- 17000 ft.  The characteristic of the area such as extremely hard, abrasive 

formation, plastic salt and steeply dipping beds have presented many challenges to the 

operators. Due to this, it is required to 150-200 days to construct and drilling operation to +/- 

17000 ‘MD. It had long been considered slim hole drilling at carter creek, planning a 6 –inch 

hole size at TD enabled the idea of an 8-1/2 –inch intermediate hole section with 7-inch casing. 

The surface casing being reduced to 9-5/8 –inch in a 12-1/4 –inch hole. Therefore, slim hole 

drilling has proven a valuable well design strategy by achieving cost saving due to such as 

smaller rig [19]. The slim well has a simple well profile, with hole section shown in the 

following table. The torque and drag simulation was performed on 16000 ft deviated well 

geometry.  Figure 4.13 shows a well schematic with around 6.5 inch drilling assembly used in 

this simulation. 

 

 
                           Figure 4.13: Well schematic for deep slim hole well in Carter Creek Field 
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4.3.1- Simulation arrangement 
 
Table 4.5- shows the drillstring and borehole data used in this simulation. The industry will 

usually only allow a single friction factor for a given hole section. As seen on the table, it is 

only allowed for the entry of a single cased hole and single open hole friction factor. The hole 

section editor requires the specific dimensions of the cased and open hole which includes 

measured depth, the length, inside diameter, weight and item description such as the Grade by 

API casing as well as the friction coefficient 

The borehole section is set the last casing and the open hole where the cased hole is 14500ft 

and the open hole is 1500ft length. As illustrated the below table, it can be noticed that the 

drilling string parts (Drill Pipe + BHA) is entered from top to bottom. Each section type follows 

up by filling in nominal diameter, weight and item description. the user needs to  select the right 

parameter /value  to enter in the appropriate column/row  to use during simulation of torque, 

drag and stresses analysis. The intent of creating the input data was enable to display the 

perspective point of interest. 

 
  
                       Table 4.5: Borehole and drillstring data used deep-slim hole well design 
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4.3.2 Simulation results and discussion 
 
The objective of this part of the simulation is to outline the drill string qualification procedure 

based on drill string mechanics. These are analysis of torque, drag and stress in drill string. The 

simulation controlling parameters are operation and flow rate and the coefficient of friction.  

 
Before to use the slim hole simulation, it is important to determine how friction coefficients and 

flowrates could involve on designing tension, torque and stresses graph obtained from the 

wellplan software. Therefore, a scenario for a sensitivity analysis of the friction factor was 

considered during the simulation study. It could be helpful to analyze torque, drag and stresses 

for the slim well as operational perspective .At the same time, one should try to obtain an 

acceptable slim well design operational window from the wellplan software by inputs of 

different flowrates. Once the result predicts that it is within the safe operational window, then 

tripping in/out operation is moving under normal condition. On the other hand, if any problem 

occurs during the operation, a new friction coefficient or change of grade can be proposed. 

 
Drag at 0.25/ 0.25 using 250 and 350 gpm flowrate 
 
The effective tension plot is used for determination when the drillstring will buckle or fail due 

to tension. The blue line is the tripping out operation when used friction factor 0.25/0.25 with 

350 gpm flow rate. The green line represents tripping out when used coefficient friction of 0.25/ 

0.40 with 250 gpm flowrate. Figure 4.14- shows that the green line is closer to the tensile limit 

than the blue line which lies under the safe window. This indicates that by increasing the 

wellbore friction factor, the tension will increase. For instance, as it can be observed from the 

figure, the tension value decreased due to the decrease of coefficient factor when tripping out. 

At coefficient 0.25/0.25 shows that tripping out operation curve lies left to the tensile limit.   

Therefore, this does satisfy the requirements the parameters that are being used such as the 

flowrate 350 gpm. 
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                                                       Figure 4.14: Drag Effective Tension for slim well 

                                  
Torque at 0.25/ 0.25 applying 250 and 350 gpm flowrate 
 
As mentioned on the drag discussion, by increasing the well friction coefficient, the tension 

value will increase. Similarly, the torque value will increase during tripping out due to decrease 

in flow rate. Figure 4.15-shows the effect of flowrate on the torque during tripping out operation 

at a constant coefficient friction on both cased and open hole. The drill string is in the safe 

operation window since it does not cross the torque limit.  

 

 
                            Figure 4.15: effect of flowrate on torque during tripping out with 0.25/025 friction factor. 
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Stress at 0.25/ 0.25 applying 250 and 350 gpm flowrate  
 
Figure 4.16- The stress plot obtained from using 250gpm and 350 gpm flowrates, shows that 

VonMisses in both situation passes over the stress limit. Due to this reason , our model become 

risky to design. This observation tells us that for a flow rate higher than ( 250 and 350 gpm) 

may solve the problem of stresses on the drill string. As can be seen on the top part of von-

mises, the stess reaching the line. However, it is possible to make a wider window by combining 

a higher grade (G-grade or S-Grade) on top section with the lower grade (E-Grade). 

 
                                        Figure 4.16: Von-Mises Stress with flow rate 250 and 350 gpm. 

             
Any well planning should be run torque, drag and stress in order to qualify the procedure based 

on operational perspective. It is important to evaluate different values of CoFs, flow rate and 

rotation speed in worst-case scenario to ensure the drill string can be within the safe operation 

window.  

As brief conclusion, if the well friction coefficient will be increased at lower flow rate during 

tripping out operation, it will result higher tension value (see Figure 4.14). Additionally, it is 

been noticed that the lower flowrate at constant friction factor will decrease the torque value 

along the drill string at the surface (See figure 4.15). Hence, the entire drill string both drag and 

torque are on the safe operational window on this conditions which satisfies the slimhole well 

design requirement. During the simulation, the effect of rotation speed was investigated. It is 

been found that higher RPM with higher flow rate results lower tension and torque value. Again 

the similar conditions were used on the stress graph. The results shows that it crosses the stress 

limit. In this case, it is recognized that it has no effect on our stress graph. However, after 

simulating with higher flow rate for example 600 gpm, it is been observed that that the Von-
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Misses stays within the stress limit. It is recognized that flow rate has more effect on stresses 

than drag and torque values during tripping out operation on slim hole well design. 

 

The aim for this section was to evaluate different parameters in order to have a reasonable result 

for torque, drag and stresses on drillstring for slimhole well design. Therefore, to be able to 

have a reasonable results, it is been considered the effect of changing the grade on torque, drag 

and stresses simulation. The objective was to develop a qualification for slim well to select the 

type of G-grade drillstring. As mentioned on the theory section, many studies have shown that 

friction factor can be adjusted depending on analysis which is applied on drag, torque and stress 

simulation on drillstring. Currently on this section, it is b assumed different friction factor 

compared to the previous section as: 

• 0.25- for cased hole 

• 0.30- for an open hole 

As it can been seen from the new plots, the change of COFs and the grading qualified for this 

slim hole well geometry is qualified  as expected the outputs to remain in the safe operational 

window. Figure 4.17- shows that the drillstring is safe since it does not pass the tensile limit 

during tripping out when applied with higher grade than E-grade. 

 

Figure 4.18- shows torque plot when used G-grade.The torque was simulated and checked the 

result accomplished during the tripping out/in, rotating on operations. It can be more clearly 

noticeable that all operations are shifted to left side of the torque limit indicating that torque at 

the surface decreases due to  the higher grade. It may be conlcued that the drillstring is on the 

safe window according to applied frition factor and G-grade. Figure 4.19- indicates that with 

simulating flow rate at 600 gpm the Von-misses does not cross over the stress limit indicating 

that the model is a safe. 
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Slim hole drag plot for normal coefficient at  casing=0.25 and OH=0.30 

 
                                      Figure 4.17: Drag Effective plot simulated with G-grade 

         
 Slim hole torque plot for Normal coefficient at casing= 0.25 and OH=0.30 
 
 

 
 

                                         Figure 4.18:  Torque plot for the application of G-grade 

 Slim hole stress plot for 600 gpm Normal coefficient of 0.25 and 0.30 friction . 
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                        Figure 4.19:  Von-Mises stresses when applied with flowrate at 600gpm and G-grade 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MSc Thesis, 2015-Abdi   69 
 



Analysis of Slimhole drilling operations 
___________________________________________________________________________ 

5.0 Hydraulics and hole cleaning simulation study   
 
This chapter presents simulation studies of slim hole with regards to hydraulics and hole 

cleaning efficiencies. The results are compared with a typical conventional well structure.  

 

5.1 Hydraulics simulation  
 
Hydraulics is an important issue to consider in drilling operation. Drilling slim holes means 

drilling small diameter holes that requires smaller drill-pipe, bits, and annular clearance. This 

will affect many interrelated issues around drilling fluids and the circulating pressure 

developed. The main functions of the circulating drilling fluid are to lift cuttings from beneath 

the drill bit to the surface, maintain the hydrostatic pressure to avoid formation fluids from 

flowing into the well, and to keep the hole open and competent for subsequent drilling until 

casing is run. The drilling fluid is pumped through the surface lines, pipe, Kelly, down the drill 

string and bottom-hole assembly and then circulated back through the annulus and the surface 

mud treating system. Hydraulics can be expressed as the optimization of the rates and pressures 

of the drilling fluid through the system. For any drilling operation, hydraulic analysis is an 

important aspect. Because hydraulic optimization involves the careful analysis of the fluid 

properties and pipe, bit and hole geometries to optimize the end results of the interrelated 

drilling fluid functions such as increasing rate of penetration while keeping control of the well, 

a competent, in-gauge bore and preventing formation damage.[10] 

 

The slim hole geometries has a smaller drill string, narrow annulus and higher rotating speed 

(positive effect for cutting transport) which create added sensitivities to the key hydraulics 

variable. Some of the consideration that can result from this, include:[10] 

• Higher annular pressure because of the smaller annulus 

• Increased Equivalent Circulating Density (ECD) due to higher annular friction (Risk of 

pipe sticking and lost circulation). 

• The greater ECD sensitivity to flow rate changes because of the higher annular friction. 

• The effect of rotary speed on annular friction and ECD is greater 

• Higher rotating speed can create drill solids and weighting materials to place out inside 

of the drill pipe 
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Due to the above heightened sensitivities and narrow annulus in slim wells, it makes absolutely 

essential to study the pressure losses in the annulus and overall hydraulics by using accurate 

hydraulics models. . There are a several hydraulics models that can used to estimate pressure 

drops such as Bingham Plastic, Power law and Herschel Buckley in the Oil and Gas Fields. 

However, in this study, it is used to run the unified hydraulic model to analyze the pressure 

losses and ECD in both a slim-hole and conventional well.  

 
In this chapter a hydraulic simulation study based on slim-hole drilling experience in Whitney 

Canyon Carter Creek Field, USA is presented. The aim for the Carter Creek Field was to drill 

Slim-hole well to enhance development drilling economic. Therefore, it is important to compare 

the hydraulics behavior for both conventional and slim-drilling. Hence, there is a big concern 

in the smaller diameter in the annulus of slim hole well because of the increase in annular 

friction pressure when pumped drilling fluid with higher flow rates.  In slim-hole drilling case, 

we used the standard equipment and the data used in this study are summarized in the following 

table. In addition, a flow rate was selected as 0, 50, 100, 150,200, 250, 300,350, 400,450, 

500,550 and 600 Gal/min.  

 

5.1.1 Simulation arrangement 
 
For this simulation a 16000ft long well with 6.5’’ size were considered. The drill string is 
OD=4.5’’ and ID =4.0”. The system consists of three bits with 28’’ size. Figure 5.1: shows an 
illustration of hydraulics simulation well. 
 
   
                              Table 5.1: Well geometry and mud properties data values 

 SLIM-HOLE DRILLING CONVENTIONAL DRILLING 
Depth (ft) 16 000 16 000 
Mud Weight (ppg) 14.161 14.161 
Drill Pipe OD (in.) 4.5 5.5 
Drill Pipe ID (in.) 4.0 5.0 
Bit Size (in.) 6.5 8.5 
Md.PV (cp) 34 ( From white & Zamora) 34 
Md. YP ( lb/100 ft) 24 ( From white & Zamora) 24 
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                                                      Figure 5.1: Illustration of simulation well 

 
Drilling fluids 
 
The rheological mode used was unified model based on R3-R100 and R300-R600 readings. 

 Table 5.2-represents rheological properties used in this simulation.  

 

                                                     Table 5.2: Rheological properties from Fann70    

RPM Viscous Drilling Fluid Less Viscous Drilling Fluid 
600 92 73,6 
300 58 46,4 
200 46 38,6 
100 32 25,6 

6 10 8 
3 8 6,4 

Density, PPG 14,1 11,3 
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5.1.2 Simulation result  
 
This section presents the simulation results of pump and annular pressure loses. In addition, 

the ECD was calculated.  For the simulation Unified model presented in Table 3.3 was used.  

 

5.1.2.1 Pump and annular pressures in slim and conventional well  
 
In Figure 5.2: shows the behavior of pressure drop loss versus the flow rate. This simulation is 

based on only the viscous fluid shown in table 5.2. Since the difference between conventional 

and slim-hole wells is the annular volume, understanding the pressure loss at the annulus is an 

essential for well stability and thus to reach a successful drilling operation. Hole pressure losses 

are simulated for the different flow rate using the unified hydraulic model. As it can be observed 

from the figure the pressure drops are greater in slim hole well as the flow rate increases 

compared with conventional well.  For instance, the effect of flow rate at 300 gpm on annular 

pressure drop when pumped 14.2 ppg mud on the 16 000 ft slim hole has annular pressure of 

4400 psi compared to 640 psi in the conventional well. Because of the narrow annular geometry 

in SHD, the annular pressure drop is increased. The result showed also a significant increasing 

in the system pressure loss due to pressure increase in the annulus of slim hole well. The pump 

pressure loss is the sum of the pressure loss at the surface + pressure lost through the pipe, 

annulus and the bit. 

 

 
 
           Figure 5.2: Total pressure Loss vs Flowrate comparison of slim hole and conventional well 
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5.1.2.2 Pressure and ECD analysis with viscous and less viscous fluid systems 
  
Aadnøy (2010) proposed a design methodology called ``the median-line principle’’. According 

to the author the mud weight is a key parameter in drilling operation and the difference between 

success and failure is nearly always tied to the mud program. This means that too low mud may 

cause in collapse and fill problems, while too high a mud weight may result in mud losses or 

differential sticking. To minimize the borehole problems, the mud weight should be maintained 

close to the level of the in situ stresses. The author also states that the two most drilling problems 

are stuck pipe and circulation losses and may take 10-20% of the total well time which can be 

high cost to the drilling operation. 

 

Figure 5.3: illustrates typical mud weight selections.  The median line mud weight is 

beneficial and will provide a common optimum for many key elements that influence to the 

success of a drilling operation. 

 
                                            Figure 5.3: Optimal mud weight selection [40] 
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Therefore, in this simulation approaches the relationship between the ECD and the fracture 

gradient in order to minimize the risk of differential sticking or lost circulation. The equivalent 

circulating density is plotted versus fracture line to illustrate the required mud density to assess 

well hole stability to achieve a successful drilling operation 

This section presents the behaviors of pressure and ECD in slim and conventional. For this 

simulation both the viscous and the less viscous fluids shown in table 5.2 were used. The less 

viscous is 10% reduction of the viscous. This shows that the density of the viscous and the 

less viscous are 14.1ppg and 11.3 ppg, respectively. In this simulation  

 
 

In figure 5.4 represents Equivalent Circulating Density in annulus versus fracture 

gradient with effect of reduced mud weight from 14.1 to 11.3 ppg. The blue curve represents 

the fracture gradient point. The red curve represents the conventional ECD with mud weight 

equal to 14.1 ppg , the grey curve represents the slim ECD when the mud density equals to 14.1 

and the orange curve represents the slim ECD when the mud weight is 11.3.  We observe that 

(grey) curve crosses the fracture line  and may result to mud losses or pipe sticking when the 

mud weight equals to 14.1 ppg or because of the reduced annular clearance, While the ( orange) 

curve indicates that  it is safe which lies under the fracture line when the mud weight is reduced 

to 11.3  ppg. Higher ECD may affect drilling parameters such as mud flow rate.  

 

 
  

        Figure 5.4: Equivalent Circulating Density (PPG) vs. Fracture gradient with varying Mud Weight 
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Figure 5.5: shows the relationship between flow rate (Q) and pressure drop. With pressure in 

the annulus and pump pressure is applied while the flow rate from one to the maximum of 600 

gpm is used. The pressure losses is calculated for each flow rate. The following figure illustrates 

how the mud weight substantially affect the annular pressure drop when reduced. As it can be 

seen on the figure, after the reduction of mud weight, the total pressure and the pressure in the 

annulus in the slim well is decreased compared to Figure 5.2. To minimize the potential threat 

to hole stability and well control, it is important to use the desired mud weight in one hand and 

flow rate on the other hand. In addition, it is essential to select accurate model that predicts the 

pressure losses in the annulus and ECD. Since the borehole instability is more problematic in 

Slim hole drilling technique because of the involvement of fluid flow in the reduced annular 

geometries. , it is essential to select accurate model that predicts the pressure losses in the 

annulus and ECD. Due to no standard pressure models that has been accepted to analyze the 

pressure losses in the annulus for slim hole condition, therefore, the model used in this figure 

is based on the unified hydraulic model. 

 

 

 
                   

                                        Figure 5.5: Flow Rate, Q, Gal/min vs Pressure loss, DP, psi 
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5.2 Hole Cleaning 
 

During drilling phase, transportation of drilled cuttings is vital factor to be considered for 

efficient hole cleaning since it is an important topic that remains one of the major concerns to 

the drilling operation in the oil and gas industry. Removal of drilling cuttings from annulus 

space and efficient transport of cuttings to the surface is an essential to the drilling operation.  

In effective hole cleaning can lead to costly drilling problems such as slow drilling rate, high 

torque and drag. An excessive cuttings in the annular of the slim hole because of the high 

flowrate can increase the ECD to cross the fracture gradient and lead to formation fracturing 

and in the worst case, can cause stuck pipe. These problems can be avoided by understanding 

the nature and causes of the problem. Therefore, it very crucial to handle this type of situation 

properly during well planning operation to establish a sufficient hole cleaning. 

 

A good borehole cleaning can be achieved by careful monitoring and properly controlled 

during the removal of cuttings at the hole bottom and from the bit teeth to the surface. 

Optimization of cutting transport in the annulus depends on numerous factors such as fluid 

density, annulus geometry, size of the cuttings, cutting bed-formation, drill pipe rotary speed, 

drilling rate, hole inclination and fluid rheological properties of the drilling fluid. 

Although many studies on hole cleaning has been conducted on conventional drilling by the 

drilling industry, there is still inadequate studies on cuttings transport in slim hole drilling. In 

below section, a cutting transport simulation was conducted to evaluate the effect of parameters 

on bed height and minimum flowrate to transport drilling cuttings through the annular space 

 
 
5.2.1 Cutting transport on ultra-deep slim hole-Kuwait-2000ft 
 

The cutting transport simulation was performed on the well geometry discussed earlier in 

section 4.3. in addition, the behavior of cutting in bed and the effect of flow rate was compared 

between slim hole and conventional hole. 

The well geometry, drilling string data and hole data used in this part can be found in section 

4.2.4 in chapter 4.  

 
 

5.2.1.1 Simulation parameters 
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The purpose of this chapter is to study the hole cleaning issues in slim hole and conventional 

hole. For the study, we used an industry Landmark/Wellplan software. Figure 5.6: shows the 

transport parameters used in the cuttings transport phenomenon.  It shows also  that the drill 

string for slim well should have  an annulus diameter of at least 6.5 in and 3.5 drill pipe down 

to the BHA for the  hole cleaning problem analysis. The simulation was performed using rate 

of penetration around 25 ft/hr, minimum pump rate for 800 gpm and 40 RPM for the drilling 

rotation.  

            Hole cleaning Simulation arrangement for Kuwait-2000ft 
 

   
 
Transport parameters for Slim hole 

 
Transport parameters for Conventional 
hole 

         

                           Figure 5.6:  Transport parameters used in the cuttings transport phenomenon. 

             
5.2.1.2 Drilling fluid (Fann) 
 
For this simulation, a higher viscous Oil based mud (OBM) and mud weight of 18.6 ppg (1.86 

s.g) was considered. The rheological properties from Fann data 70 used on cutting transport 

simulation have been adapted from table 5.2. 
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Figure 5.7: Rheogram (Shear stress vs Shear rate) and Fann data used to characterize the fluid 
behavior. 

5.2.2:  Simulation results 
5.2.2.1 Minimum flow rate simulation result 
In the experimental well, minimum flow required to transport cutting were simulated and shows 

in Figure 5.8. The simulation assumed a well from vertical to horizontal well. The objective of 

this simulation is to analyze the cutting transport phenomenon in geothermal (i.e. typical 

vertical) and petroleum well (deviated to 90deg.) As can be seen from the vertical well, the slim 

well requires about 48% less flow rate than the conventional well. Similarly, in horizontal well, 

the slim hole requires about 46% less flow rate than the conventional well.  One of the possible 

reason among others is that in slim hole the cutting concentration is lower than the conventional.  

 
      Figure 5.8: Minimum flow rate vs angle of hole inclination when mud weight of 18.6 ppg is used. 

Hence, the smaller annular cross section area in a slim hole lowers the flow rate needed to 

achieve the required annular velocity for adequate cuttings removal. In theoretically, bore hole 
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cleaning should not be problem in slim holes but other factors become more important and may 

dominate. For instance, mud flow rate and annular flow regime (laminar or turbulent) is much 

more critical in slim-hole well geometry than conventional. 

5.2.2.2: Bed height simulation 
 

Poor-hole cleaning causes several drilling related problems. For instance, as mentioned in the 

introduction part, cutting accumulation in a well increase torque, drag, lower ROP, increase 

ECD and drill string sticking. Before drilling, it is important to simulation study in order to 

determine the minimum flow rate to transport and also to compute the ECD so that it will not 

exceed well fracture gradient. In this section the effect of flowrate on bed height were analyzed 

in the well geometries. For the study the real well geometry was considered and the well 

inclination is shown on Figure 5.9. The bed height simulation was performed in the following 

well inclination. 

 

 
 
                              Figure 5.9: Distance along string vs angle of inclination for the real well geometry. 

 
 
Figure 5.10 shows the simulation result for the bed height in slim and conventional hole carried 

out on well depth of 2000 ft (See table 4.2 and 4.4). From the simulation it was found out that 

the minimum flow rate required to completely remove from slim and conventional well was 
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130 and 246gpm, respectively. In order to observe bed height, during simulation we used a 

125gpm pump pressure.  As shown on figure 5.10, as the inclination angle increases, the bed 

height for slim hole increases 0 to about 0.30 inch while the conventional hole is around 3.40 

inch. In other words, the result from simulation indicates greater cuttings bed is formed in larger 

holes than slim holes. This is due to the smaller annulus diameter in slim hole which requires 

lower flow rate to achieve the capability to transport cuttings. As it can be also observed from 

the figure, the conventional hole needs a higher flow rate (246 gpm) than slim hole in order to 

increase the lifting capability, or else causes that cuttings to deposit on the inclined section of 

the wellbore. Many studies have shown that the flow rate is the main factor affecting the cuttings 

transport performance. 

 

 
 
Figure 5.10: Variation of bed height for slimhole and conventional hole with pump pressure (125gpm) 
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5.2.2 Cutting transport deep slim hole-Carter Creek field-
16000 ft 
 

In this section, simulation was carried out in order to analyze the factors affecting cuttings 

transport controlled by many parameters such as effect of drill pipe rotation ( RPM), rate of 

penetration( ROP), bed height and as well as  inclination, hole and drill pipe diameter.  The 

purpose for the analysis is to determine if the hole can be cleaned effectively with the applied 

transport parameter data such as applying by varied flow rate. 

5.2.2.1 Simulation arrangement for cuttings transport 
 
The cutting transport simulation was carried out to investigate the parametric and operational 

sensitivities of slim well compared to conventional well.  The simulation arrangement was 

based on the data set on table 5.2.2.1 given in appendix-B. 

 

During this simulation, the following drilling parameters are kept constant for both optimized 
slim hole and conventional hole: 

• Cuttings Diameter =0.125 (inch) 
• Cuttings Density =2.5 (SG) 
• Bed Porosity = 36% 
• ROP = 25 (ft/hr) 
• RPM = 50 rpm 
•  

In addition, it is been simulated using a flow rate ranging from 200 to 400 gpm. In this part, it 

is common to use different bit size because of the comparison of the two type of the well that 

have different geometries.  To show how to achieve a cutting transport in slim hole well, it is 

been considered to use the project on Carter Creek field. Table The bit size and pipe diameter 

are varying as given on the following table: 
                      Table 5.1: Transport Data Analysis 

Transport Analysis Data Conventional Hole Slim Hole 
Bit Diameter (inch) 6.5  8.5 
Pipe Diameter (inch) 5      4 
Joint Diameter 5.5 4.5 
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Figure 5.11: the well inclination in which simulation was performed.  

 

 

 
 

                    Figure 5.11: Simulation results in Conventional well (Depth vs angle of inclination) 

 
 
Bed height simulation result 
 
In figure 5.12, the blue and orange lines represents for the minimum flow rate required to 
completely transport cutting out of the slim and the conventional wells, respectively.   
 
In order to create and compare the bed heights in the two wells, we reduced the flow rates by 
10% as follows:  
 

a) Slim minim flow rate reduced from 119 to 107ppg 
b) Conventional flow rate reduced from 466 to 419 ppg 

The result of the simulation are shown on Figure 5.13. As can be observed from the figure 

below, the bed height for slim optimized well at around 15000 ft increases from 0 inch to 

approximately 0.5 inch.  As well for the conventional bed height began to increase from 0 to 

1.5 inch at around 6000 ft. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30 35 40

De
pt

h,
 ft

Inclination(°)

MSc Thesis, 2015-Abdi   83 
 



Analysis of Slimhole drilling operations 
___________________________________________________________________________ 

 
                Figure 5.12: Minimum flow rate to transport cutting 

 
 

 
                           

                              Figure 5.13: Bed height in slim and conventional well 
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6 Summary and Discussion 
 
In order to qualify the application of slim hole for petroleum and geothermal wells, several 

simulation studies were carried out. These are torque, drag, stress, hole cleaning and hydraulic 

performances in the designed system. 

 

6.1 Observation based on simulation  
 

a) Parameters effect 
 

Based on drill string mechanics simulation 

 
Based on both design in Kuwait and Carter field, it is been investigated the critical parameters 

such as flow rate and friction, which influences drill string mechanics (torque, drag and stresses 

controlling parameters. In the simulation study, it is found that friction is very crucial when 

analyzing torque and drag in slim holes. We examined a worst case friction coefficients to 

ensure if our torque and drag graphs are operating in the safe window when rotating, tripping 

in/out operations. The results obtained from the simulation study in slim wells shown that: 

 Increase in friction factor (FF) will increase the tension value (Drag) during tripping 

out operation in and vise-versa. 

 The torque value increases with lower flow rate during tripping our operation 

 It is observed that there is a direct correlation between flow rate and von-mises stresses. 

The von-mises stresses stays within operational window if applied high flow rate and 

vice-versa. 

 

Based on hole cleaning and hydraulics simulation 

For hole cleaning and hydraulics, flow rate and rheology of drilling fluids are a key parameters, 

which needs to be examined during slim hole design phase. Based on these, it is possible to 

qualify the maximum depth one can reach the target.  

 

In the simulation section, it is found that vertical slim wells requires 48% flow rate less than 

conventional. For horizontal slim wells requires 46% flowrate lower than conventional wells. 

This simulation result matches with the literature study. As mentioned in the literature study 

section that drilling with slim wells reduces requires less mud and reduces the amount of 
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cuttings depending on either vertical or inclined well designs. This will greatly minimizes the 

costs of waste disposal during drilling operation. 

 

In hydraulic simulation, it is been observed higher ECD from drilling slim well with higher 

mud density (14.3 ppg) crosses the fracture line. As stated in the literature when the mud is 

being circulated inside the wellbore, the bottomhole pressure increases because of friction 

forces resulted due to mud moving in the annulus. The ECD from drilling with slim wells 

increases due to the smaller annulus. 

 

In order to minimize the drilling problems that can cause higher ECD in slim wells such as lost 

circulation, wellbore stability, kicks, it is important to control ECD by using the desired mud 

density in one hand and flow rate on other hand. Therefore, after reducing 10% of the mud 

weight to 11.3 ppg, it is recognizable that is possible to design slim well with less viscous 

density in order to be within the mud program window. 

 
b) Ultra-deep slim hole well 

 
One of the research question was to answer how long can we drill  a slim well. It is been 

examined a fiction well “worst case scenario” with well length of 24 000 ft based on Kuwait 

slimhole design. The result obtained from using torque, drag and stresses analysis showed that 

the drillstring cannot carry the loads. This tells that to drill a well length of 24000 ft to reach 

the target is one the critical technologies in a slimhole well design. This matches what is 

mentioned in literature in section 2.6 that a depth can be the key limiting factor when a 

designing a slim well. Therefore, we selected a well length of 20000 ft to see the benefits 

coming from the reduction of footage. We started simulating with low grade E and G. it is been 

found the drillstring passes the tensile limit after shortening the well length.  The recognition 

when unexpected problems occurs, one should face with an immediate remedial action. This 

can lead to a successful drilling, completion and lower the cost for the project. Therefore, by 

using S grade solved the problem and recognized as the most suitable grade for the ultra-deep 

simulation even though it costs higher than E and G grades.  Well length reduction and higher 

grading will push the tripping out/in slimhole design operation to lie within the safe operational 

window and this generally gives a better ultra-deep slimhole design and well stability. 
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6.2 Slim hole analysis flow chart  
 
This part present the methodology used to analyze slim hole. As mentioned earlier, three 

operational issues were considered. Several trial and error simulation were carried out in order 

to select the right drill string grade and operational parameters, such as ROP, RPM, trip in and 

out speed, flow rate. Figure 6.1 illustrates the analysis flow chart 
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              Figure 6.1: Slim hole analysis flow chart 

STEP 1: Drill string simulation 
Torque, Drag, Stress 

STEP 2: Hole cleaning simulation 
Bed height, minimum flow rate 

Redesign (Grade) 
Change flow rate 
Change friction 

STEP 3: Hydraulics simulation 
ECD 

Yes 

No 

No 

Adjust rheology  
Adjust density 

No 

Slim hole qualified for operation 

STEP 1: Well design 
 

Is hole cleaning ok? 

Yes 

Yes 

Is ECD in safe 
window? 

Adjust rheology  
Adjust density 

Is drill string safe? 
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STEP 1: Well design: 
 
The well design consists of  

a) Hole section (Open hole + Casing+ Friction coefficient+Flow rate) 

b) Drill string desing (Drill pipe + BHA) 

c) Well path (Survey, inclination, azimuth, and MD) 

d) Drilling fluid (Rhelogy and density) 

e) Geothermal gradient (Surface temperature and temperature gradient) 

f) Pore pressure 

g) Fracture pressure 

 

After building the simulation, the torque, drag and stress simulation will be performed.  We 

determine if the torque, drag and stresses in the drill string exceeds the tensile limit or buckling 

limit. If the considered system qualified, proceed step two. Otherwise, we need go back and 

redesign the strings and change the drilling fluid flow rate and change the friction coefficient, 

which can be controlled by the Oil based mud system. Repeat simulation until the operation be 

within the safe allowable working window.  

 
As illustration: 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 2: Hole cleaning  
 

Use the transport analysis data available in wellplan to fill up with the required pumprate, rop, 

rpm, bit diameter, drillpipe diameter, cuttings density and cuttings diameter. If it is achievable 

with this data’s, proceed to the next step. If it is not achievable, consider reducing the drilling 

fluid density and adjust rheology properties. If still is not, continue increasing the pumprate 

until an achievable minimum flow rate and bed height for slim well design is obtained.   
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As illustration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 3: Hydraulic simulation   

Use the hydraulic module (Unified) to perform the fracture gradient plots. Compare the results 

obtained from the simulation. Check if the ECD is below the fracture gradient. If it is 

determined to be true, proceed to the next step. If it is not, go back to adjust the rheology and 

density by reducing the mud weight and considering to change the flow rate as required the 

ECD  to remain within the fracture gradient window. Then proceed to the next step if the ECD. 

First we simulated with higher mud density (14.1 ppg). As seen in the illustration, the grey 

curve crosses the fracture. Therefore, it is been adjusted the rheology with less vicous mud 

density (11.3 ppg). This showed that ECD from slim wells can be managed with less viscosu 

and the right flowrate. 
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7 Conclusions 
 
In this thesis, several simulation scenarios were generated and tested with three important 

operational aspects in order to qualify for the application of slim hole design for petroleum and 

geothermal wells. These are drill string mechanics (Torque, drag, and stress in string), hole 

cleaning and hydraulics performance. From the overall simulation study, this thesis comes to 

the conclusion that:  

 

a) For shallow well (13000ft), it is possible to drill with the low grade (E-75).  

b) For deep well (16000ft), it is possible to drill with a combination of high (G-95) a low 

grade (E-75). This design is cost effective and operationally feasible in terms of 

hydraulics, drill string mechanics and hole cleaning issues 

c) For ultra-deep well (20000ft), it is possible to drill with a higher grade drill string 

namely S-135.  

d)   Based on the overall simulation results, it is shown that the cutting transport efficiency 

in slim hole is better than the conventional showing that lower flow rate was able to 

completely clean up the bed height.  The analysis shows both in vertical and horizontal 

well. This shows the application of slim hole in geothermal and in petroleum wells.in 

the vertical well, the slim well requires about 48% less flowrate than the conventional. 

Similarly, in horizontal well, the slim hole requires around 46%. 

e) From the simulation study, it was investigated that friction coefficient is very crucial 

parameter for the torque and drag operation. This can be controlled by using oil based 

mud and good hole cleaning measures 

f) For safe operation, the ECD should be within the operational window. From hydraulics 

simulation study it was found out that to maintain ECD one can design the appropriate 

density and rheology during design phase. From the consider simulation arrangement, 

the simulation results shows less viscous and less density fluid system manage ECD in 

slim hole provided that using the right flow rate.  
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Appendix B: Cutting transport data 
 
 
Table 5.2.2.1 and 5.2.2.1 shows the simulation drill string and BHA data used .The simulation 

arrangement generated in this section has been adapted on Carter- creek field, reproduced 

hereunder.      

                    Hole Section (Casing + Open Hole) 

 
             Table 5.2.2.1: Hole data for optimized slim solution  (Casing +Open Hole) 

            
                   Drill string data (Drill pipe + BHE) 

 
                  Table 5.4.2: String section for 9500 ft and 6000 ft drill pipe length 

                 
 Well Schematic for Conventional well 

  
 
Figure 5.4.1: Drill pipe representation 
 
 

MSc Thesis, 2015-Abdi   97 
 



Analysis of Slimhole drilling operations 
___________________________________________________________________________ 

 
 
 5.4.4 Drilling fluid and transport analysis Data 
 

       
 
 
 
 

 
 
 
 
Cuttings Transport Parametric 
 
Figure 5.4.4 displays parametric study of a conventional hole (green line) and slim hole (blue 

line). The ROP value equals to 25 ft/hr (7.62 m/h) was maintained constant in both situation. 

In this simulation, the result shows that at inclination angle of 35° degrees is required minimum 

flow rate equal to 120 gpm (454 l/min) for the blue curve and 200 gpm (757 l/min) for the green 

curve. At inclination of  90° degrees, this corresponds to a minimum flow rate that equals to 
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175 gpm (662 l/min) and 285 gpm (1079 l/min). Therefore, the figure demonstrates that higher 

flow rate is required for conventional well than slim well for an efficient hole cleaning. 

 
 

 
Figure 5.4.5 : Min. Flow rate vs  angle of angle of inclination at ROP= 25 
ft/hr 

 
 
Effect of flow rate on bed height 
 The simulation results shown on the following figure demonstrates the effect of pump rate 

(200 gpm) on cuttings bed deposition. The operational parameters used in this simulation are 

kept constant as presented in the previous section. In figure 5.45, a flow rate value equal to 

200 gpm was used to  

  
 5.4.5: Effect on flow rate regards to cutting bed deposition at Pump Rate= 150 gpm 
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   For Pump rate at 200 gpm 

 
 

               5.4.6: Effect of flow rate = 200 gpm on the  bed height 
 
The second observation  In figure   5.4.6 indicates that increasing the flow rate to 200 gpm  is 

capable of cleaning the cuttings in the well bore for the slim as the angle of inclination increases 

compared to the larger size hole. The green curve illustrates that at inclination angle  
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Appendix C: Ultra –deep slim well & Conventional well simulation  
C-1:- 24000ft long slim hole-Problem 
 
In below section, torque and drag analysis for ultra -deep well will be performed. It was 

assumed to drill a well to total depth at 24000 ft. In order to have accurate assessment for the 

forces and stresses affecting in the drill string, we need to analyze the torque, drag and stresses 

during the drilling operation. 

 
 

 

 

  
 
The follow shows the results of torque obtained for a well that has been extended to target depth 

of 24000ft. As can be seen on the tension graph, tripping out curve crosses the operating limit. 
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C-2: 17000ft long conventional hole-Solution based on Kuwait well 
 
The problem presented in appendix-2 was solved by using a higher grade on the top section of 
the drill string. The results are shown on Figure YY1 
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As results obtained from the simulation, both situations indicates that the von Misses stress does 
not exceeding the yield point. Therefore, the operation is a safe. 

C-3:-20000ft long conventional hole-Solution 
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Appendix D: Well survey data 
MD (ft) INC (°) AZ (°) 

0 0 67,73 
584,4 0,1 298 

678 0,06 309,93 
770,9 0,18 249,32 
865,7 0,31 153,14 

1045,2 0,15 117,22 
1138,3 0,06 222,3 
1232,9 0,13 197,58 
1325,2 0,15 167,42 
1398,1 0,23 185,68 
1511,4 0,32 176,78 

1797 0,72 186,62 
1891,6 0,93 177,96 
1987,3 1,22 185,23 
2081,3 1,41 184,71 
2175,4 1,71 188,92 
2270,3 1,99 186,52 
2366,7 2,11 184,49 
2460,6 2,04 180,63 

2555 2,56 181,46 
2646,5 2,68 180,81 

2732 2,8 181,89 
2825,6 2,81 181,18 
2918,2 2,89 178,95 
3104,4 3,32 181,26 
3195,7 3,26 180,69 

3291 3,29 180,87 
3386,9 3,24 181,77 
3481,3 3,13 181,71 
3575,5 3,22 179,61 
3670,6 3,28 178,28 
3764,1 3,42 178,59 
3852,4 3,28 178,41 
3947,8 3,18 179,06 
4030,1 3,09 181,55 
4117,1 2,9 179,33 
4210,8 1,98 177,08 
4395,7 0,41 144,38 

4500 1,64 77,68 
4585,1 4,25 68,48 

4677 5,5 66,47 
4774 5,47 65,41 
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4868,2 8,2 72,15 
4957,1 9,73 68,56 
5051,3 11,25 66,96 
5154,8 13,44 69,7 
5261,9 15,99 68,19 
5341,2 17,94 66,03 
5436,5 20,73 65,21 
5490,5 21,77 65,44 
5570,5 24,38 66,48 
5648,7 26,55 66,19 
5741,2 26,63 66,19 
5847,2 26,74 62,77 
5938,3 26,38 62,89 
6026,5 25,79 63,01 
6120,6 25,47 63,45 
6212,6 25,15 63,59 

6301 24,98 64,19 
6397,1 25,72 64,27 
6488,2 26,43 65,34 
6582,3 26,64 65,78 
6679,3 26,22 67,7 
6774,2 26,23 67,67 
6860,7 25,74 68 
6953,4 25,33 68,18 
7056,9 24,73 68,13 
7150,9 24,53 68,98 
7244,3 23,62 68,32 
7307,6 23,69 68,09 
7400,1 24,53 68,31 
7490,9 25,89 67,26 
7585,8 27,11 66,96 
7681,8 27,72 66,36 
7784,9 28,19 65,79 
7866,2 27,61 66,06 
7967,8 27,9 65,66 
8052,2 28,21 65,41 
8154,7 28,71 64,98 
8248,1 29,33 64,88 
8332,4 29,54 64,86 
8425,5 29,43 63,48 
8517,3 28,66 64,83 
8610,1 29,23 64,27 
8703,1 28,52 64,76 
8797,4 28,81 64,82 
8889,4 28,76 46,95 
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8985,7 28,09 64,81 
9091 27,59 64,58 

9170,2 27,13 64,17 
9264 26,96 63,84 

9365,7 25,68 63,24 
9385,7 25,43 63,12 
9476,6 23,77 63 
9549,8 22,36 62,4 
9644,5 22,33 64,24 
9735,8 23,25 56,05 
9832,1 25,18 67,26 
9924,2 26,74 66,35 

10020,9 26,39 69,8 
10113,1 26,8 70,64 

10202 25,97 70,79 
10294,4 27,16 66,41 
10391,6 27 66,47 
10398,3 28,36 68,64 
10577,5 29,49 64,84 
10672,2 29,19 65,49 

10766 33,1 69,66 
10859,9 36,13 69,25 
10954,1 35,22 67,54 
11043,1 34,45 64,7 
11140,6 31,91 62,37 
11245,6 31,2 63,1 
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Appendix E:  Well plan cutting transport models 
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