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Abstract 

Well collapse is a typical wellbore instability problem in brittle shale and unconsolidated 

formations. In this thesis, the thermal, chemical, mechanical, hydraulic, elastic and 

transient effects on the well collapse strength are studied. Single and combined parametric 

sensitivity studies of collapse pressure were carried out on two well programs, namely 

Norne and Heidrun. 

The result of the sensitivity study indicates that: 

 The most sensitive parameters were found to be the Biot’s coefficient, Poisson’s 

ratio and the water activity of the drilling fluid for steady state simulation and the 

uniaxial compressive strength for transient state simulation. 

 Parameters such as the coefficient of linear thermal conductivity, E-modulus, and 

the internal friction angle were found to be less responsive to collapse pressure. 

 The combined effect of chemical and transient state demonstrates positive and 

negative synergy depending on the osmotic outflow. 
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𝐶𝑃 = 𝑆𝑝𝑒𝑐𝑖𝑡𝑖𝑐 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝐽/𝐾] 

𝑘0 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [𝑊/(𝑚 ∗ 𝐾)] 

𝐼𝑚 = 𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒[𝑚2] 

𝑎𝑑𝑓 = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑 

𝑎𝑓𝑤 = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑤𝑎𝑡𝑒𝑟 

𝑃𝜋 = 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[𝑀𝑃𝑎] 

𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[𝐾] 

𝑇𝑊 = 𝑊𝑒𝑙𝑙 𝑤𝑎𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝐾]  
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𝑇0 = 𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝐾]  

𝑒𝑟𝑓𝑐 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑡 = 𝑇𝑖𝑚𝑒[𝑠𝑒𝑐𝑜𝑛𝑑𝑠, ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 𝑑𝑎𝑦𝑠] 

𝑎𝑚 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑜𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 [𝐾−1] 

𝑅𝑔 = 𝐺𝑎𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 8.314[𝐽/(𝑚𝑜𝑙 ∗ 𝐾)] 

𝜑 = 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑟𝑖𝑐𝑖𝑡𝑖𝑜𝑛 [𝑑𝑒𝑔]  

𝛽𝑀𝐶 = 𝐹𝑟𝑎𝑐𝑡𝑖𝑢𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑐𝑘 𝑠𝑝𝑒𝑐𝑖𝑒𝑚𝑒𝑛 [𝑑𝑒𝑔] (𝑀𝑜ℎ𝑟 − 𝐶𝑜𝑢𝑙𝑜𝑚𝑏)  

𝛼𝐷𝑝, 𝛽 𝐷𝑃

= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝐷𝑟𝑢𝑐𝑘𝑒𝑟 𝑃𝑟𝑎𝑔𝑒𝑟) 

√𝐽2 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑦 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

𝐼1 = 𝑀𝑒𝑎𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠[𝑑𝑒𝑔]  

𝑘𝑀𝐶 , 𝜂𝑀𝐶 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑀𝑜ℎ𝑟 − 𝐶𝑜𝑢𝑙𝑜𝑚𝑏) 

𝑘𝑆, 𝜂𝑆, 𝛼𝑆, 𝛽𝑠, 𝜔𝑆 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑆𝑡𝑎𝑠𝑠𝑖 𝑑′𝐴𝑙𝑖𝑎) 

𝑚𝐸𝑤𝑦 , 𝜂𝐸𝑤𝑦 , 𝑠𝐿𝑎𝑑𝑒 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (𝐸𝑤𝑦) 

𝑘𝑀𝑔𝐶 , 𝑚𝑀𝑔𝐶 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠(𝑀𝑜𝑔𝑖 − 𝐶𝑜𝑢𝑙𝑜𝑚𝑏) 

∆𝑡𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒[𝜇𝑠/𝑓𝑡] 
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1. Introduction 
 

In this thesis, geomechanical modeling and sensitivity analysis are presented. Based on Stassi 

d’Alia and Mohr-Coulomb failure criteria, two well collapse models were derived. 

Furthermore, driving forces such as chemical and thermal effects were simulated. The models 

were tested on Norne and Heidrun well programs. Both the steady state and the transient state 

of the models were analyzed. 

1.1 Background 

The fact that well instability is a major cost factor for the oil and gas industry, is familiar to 

most drilling engineers. Bernt S. Aadnøy (Aadnøy, 2003) estimated that the overall drilling 

costs increase by 10% due to wellbore instability issues. Two well-known wellbore failures are 

namely well collapse and well fracture. These are generally caused by shear failure and tensile 

mechanisms, respectively. As shales are common rocks in drilled formations (about 75%), up 

to 90% of the wellbore instability problems occur in these rocks (Steiger & Leung, 1992). 

Despite all of the previous theoretical and experimental studies performed regarding wellbore 

instability, the problem is still critical and a cost factor for the industry.   

The rock-fluid physical-chemical interaction is a complex process. Many efforts have been 

carried out to construct a model that considers all of the effects and provides information to 

design the most proper mud weight program for a well. However, there is still no perfect model. 

While drilling, the pore pressure continuously changes from its original magnitude, as result of 

temperature, chemical interactions between the mud and the formation and transient effects. As 

the new pore pressures establish, the stress concentrations around the wellbore changes 

accordingly. Hence, all of the aforementioned effects have an impact on the on the original well 

pressures, strengths and Young’s modulus. A proper model is therefore essential for predicting 

these effects.  

In this thesis, two failure criteria are reviewed and two models based on these criteria are then 

derived in order to analyze the chemical, thermal and transient effects. Shale exhibits 

anisotropic property such that elastic and mechanical properties measurement is directional 

dependent. However, in this study, a non-laminated based failure criterion was used to study 

the well collapse behavior in shale formations. The shale geomechanical properties, stresses 

around wellbore, driving forces, and various shear failure criteria are. In addition, transient and 
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steady state well collapse modeling and simulation studies in a given well program is presented. 

Parametric sensitivity studies are evaluated in order to investigate the main dominant driving 

forces and parameters. Finally, the results obtained from different shear failure models will be 

compared.  

1.2 Problem Definition 

As reviewed in the above section, wellbore instability is a critical problem and cost factor for 

the industry. In the literature, several models are available. The models are a function of diverse 

driving forces. As pressures, stresses and parameters relevant for wellbore designing changes 

over time, well failure may occur not just while drilling, but also days after. This is mainly 

caused by the changes in the physical properties of the shale which swells in contact with water, 

and also due to the pore pressure change when drilling in low permeable formations and not 

being able to dissipate when in contact with the mud (Zhang, et al., 2006). This means that, 

time delay and transient effects must also be considered while drilling to avoid well failure.  

The intention of a well program is to show the ideal drilling operation in order to drill safely, 

economic, fast and without instability problems. Therefore, the drilling fluid, well pressures 

and strengths must be designed within the safe operational window. In addition thermal, 

chemical and transient effects must be considered while designing these limits. 

This thesis addresses issues such as: 

 How does the chemical, thermal, the transient effect and the magnitude of these effects 

in terms of percentage, change in collapse strengths? 

 How does single and combined parameters affect the whole picture of well collapse 

curve? 

 Which parameters are the most sensitive and which parameters are insignificant to the 

associated collapse models? 

The analysis of these addressed issues will provide information for designing drilling fluid with 

respect to density and chemical composition. As a result, one can learn the dynamics of the pore 

pressure, in-situ stress, uniaxial compressive strength and finally the transient feature of the 

well program.  
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1.3 Objectives 

The primary objectives of this thesis are: 

 To review the mechanical, elastic and mineralogy of shale formation 

 To review stress around the wellbore and failure criterion for non-laminated isotropic 

formation 

 To derive well collapse models based on Stassi d’Alia and Mohr-Coulomb failure 

criteria coupling thermal, chemical and transient effect on the collapse pressure 

 Using the derived models, to perform field case studies on Heidrun and Norne well 

programs: 

o To perform a single parametric sensitivity studies 

o To perform combined parametric sensitivity studies 
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2 Literature Study 
 

2.1  Typical Geological Formation in NCS 

Sedimentary rocks are formed by surface processes through the rock cycle. These processes are 

weathering (both physical and chemical), erosion, transportation, deposition (also called 

sedimentation), burial and diagenesis. Most sediments are created by weathering of the 

continental shelf, while others are the remains of mineral shells secreted by organisms. Oil, 

natural gas and coal, our most valuable fossil-fuel resources, are found in these rocks.  

The most common sedimentary rocks in a petroleum system are carbonates, sandstone and 

shale. Carbonates and sandstones are typically reservoir rocks, while shale is often referred to 

as a cap or seal rock. However, depending on the properties, sandstones and carbonates may 

function as seals and shales also may contain oil or gas. Figure 2.1 illustrates a typical petroleum 

system explaining the several elements present. 

 

 

FIGURE 2.1: THE PRINCIPLES OF A PETROLEUM SYSTEM (MYERS, 2015) 

 

Shales are fine-grained clastic sedimentary rocks that mainly consist of hardened clay, silt or 

mud. The clay content in shale is approximately 40 % or even higher (Shaw & Weaver, 1965). 

These rocks form distinctive layers, which are easily split. They might be porous, but rarely 

permeable, which makes them proper seal rocks. Sandstones are also clastic sedimentary rocks, 

but unlike shales they are composed of sand grains and they are often porous and permeable 

making them ideal reservoir rocks. Carbonates are sedimentary rocks made of carbonate 

minerals such as calcite and dolomite. These rocks are also potential good reservoir rocks, when 
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the porosity and permeability are adequate. Limestone and marble are well known carbonates. 

The first oil field in Norway, Ekofisk, was a permeable chalk reservoir. Chalk is a type of 

limestone. Figure 2.2 shows the three mentioned sedimentary rocks. 

 

 

FIGURE 2.2: FROM LEFT SHALE, SANDSTONE AND LIMESTONE (KING, 2015)   

 

 

The Norwegian Continental Shelf (herby referred to as NCS) is where all of Norway’s oil 

reserves are located. The NCS is commonly divided in three provinces, the Norwegian Sea 

(Heidrun and Ormen Lange), the North Sea (Ekofisk) and the Barents Sea (Snøhvit and Goliat). 

Figure 2.3 illustrates the NCS with the three provinces. On average, fields on the Norwegian 

shelf have a recovery factor of 46% for oil. (Bjørlykke, 2010). While the majority of the 

producing oil fields are located in the North Sea, the attention of the operators is increasingly 

directed towards the Barents Sea developments. 
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FIGURE 2.3: MAP OVER THE NORWEGIAN CONTINENTAL SHELF (NPD FACTS, 2013)  

 

2.1.1 Challenges of Drilling in a Shale Formation 

Wellbore instability is a major concern during drilling operations. It is the result of several 

factors. Among these are solid-fluid interaction, challenging and complex stress conditions, 

wellbore deviation, irregular reservoir behavior, inconsistency, lack of appropriate drilling 

practices, deep water, high pressure and high temperature (HPHT) reservoirs (Aadnøy & 

Looyeh, 2011). The complex problem includes rock mechanics, stress analysis, in-situ stress 

calculations, pore pressure prediction, shale/fluid chemical reactions and thermal stimulation 

(Farrokhrouz & Asef, 2013). 

To prevent this problem, a balance between the stress and strength must be restored and 

maintained during drilling, while chemical, thermal and hydraulic driving forces must be 

controlled. The drilling fluid composition, mud weight, well trajectory and many other factors 

needs to be planned in advance. The failure mechanisms are tensile and collapse (Aadnøy & 

Looyeh, 2011). In this thesis, the focus will be on collapse. Collapse generally occurs due to a 

too low mud weight, and too high hoop stresses around the wellbore wall. There are many 

wellbore problems that are connected to collapse, such as fill, washouts, clay swelling, 

differential sticking and tight hole (Aadnøy & Chenevert, 1987). Figure 2.4 illustrates the 

different scenarios for a stable and unstable well. 
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FIGURE 2.4: BOREHOLE PRESSURES WITH THE ALLOWABLE MUD WEIGHT WINDOW (AADNØY, 2010)  

 

The estimated overall expenses of wellbore instability costs the industry an average of 8 billion 

dollars a year (Soroush, 2013). Out of this, 41% of the cost is due to non-productive time (NPT). 

Nearly 90 % of the problems occur in shale (Steiger & Leung, 1992). Shale makes up to three 

fourths of drilled formations, and because of this fact and considering the potential instabilities 

it may cause, it is treated with with precaution (Farrokhrouz & Asef, 2013). As shales are very 

sensitive to water, they are probably the weakest formation encountered while drilling. 

Problems generally occur as a result of abundant swelling clay minerals in the shales. It is 

commonly seen as caving and sloughing in shale. The resulting scenarios are hole enlargement, 

bridges and fill which leads to stuck pipe, lost circulation, and difficulties with running casings 

and interpreting logs. These problems are frequently associated with high pore pressure.  

A typical wellbore instability problem in shales, is chemical interactions with the drilling fluid. 

This meaning shale hydration, swelling and dispersion as well as dissolution of soluble 

formations. Mechanical stresses also yields problems such as tension failure (fracturing and lost 

circulation) and compression failure (spalling and collapse). Erosion may also become a 

problem in shale zones. Occasionally wellbore instability leads to sticking of the drill pipe due 

to large fragments of brittle shale (>100 cm3) which breaks off the wellbore walls. Solving this 

problem requires postponement of the drilling operation and significant additional costs. (Yu, 

et al., 2002). 
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As shales do not react with oil-based muds, this solves the swelling problem.  However, because 

of environmental and economic concerns, the usage of oil-based muds have been  less frequent. 

Oil muds are more prone to environmental damage and cost more than the common water based 

muds. With increasing environmental demands regarding oil-based drilling fluids, the use of 

water based muds (WBM) is growing. Observations show that the swelling of the shales are 

related to the activity of the water and the properties of the solute present in the liquid phase of 

the mud. In fact, it is the imbalance between the mud and the shale in the water activity which 

generates osmotic flow of ions and water resulting in instability. Fortunately WBMs may be 

designed to inhibit shale swelling. By implementing additives or inhibitors to the mud, 

satisfying properties of the drilling fluid may be achieved.  

2.1.2 Characteristics of a Shale Formation  

Shales are fine-grained rocks (finer than 0.0039 mm), composed of silt-sized particles plus a 

significant component of flakes of clay minerals (Grotzinger & Jordan, 2010). The thin layers 

make the shale fissile, and causing them to break along parallel layering or bedding planes. The 

laminated structure is what makes the shale unique compared to other mud rocks. Lamination 

thickness usually ranges from 0,1 to 0,4 mm (Farrokhrouz & Asef, 2013). Figure 2.5 shows 

laminated shale seen from a Scanning Electron Microscope (SEM). Shale is the result of 

compaction diagenesis of mud and is usually deposited by low-energy currents. The calm 

currents allow the fine particles to settle slowly to the bottom.  

 

FIGURE 2.5: LAMINATED SHALE (SHAW & WEAVER, 1965)  

 

The clay content in shales is the main reason for the several problems occurring while drilling 

through these formations. The common clay minerals represented montmorillonite, illite, 

smectite and kaolinite. It also usually consist of quartz, feldspar and carbonate grains. 
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Shale is typically categorized between soft (ductile) and hard (brittle) features. The soft shales 

commonly occurs in shallower depths, and due to this, they have high porosity and high water 

content. These shales consists of smectite and illite and are associated with swabbing, lost 

circulation, wash out and pack off. The color of the shale is generally gray, but it mostly depends 

on the mineral content. Green, brown or red shales indicate the content of iron oxide, while a 

black color indicates a source of organic matter. 

The density shales ranges from 2.65-2.8 g/cm3, while the porosity ranges from approximately 

2-20 % (Ludovic, et al., 2012). Due to narrow pore sizes in the matrix, shales are known to 

possess extremely small, yet widely unpredictable permeabilities. The range of permeability is 

approximately 1 x 10−18m2  to 1 x 10−21m2 (Farrokhrouz & Asef, 2013).They are therefore 

often known as typical cap or seal rocks in a petroleum depositional system. Figure 2.6 show 

the permeability of several rock types, where it should be noted that shale has the lowest 

permeability of the sedimentary rocks. 

 

FIGURE 2.6: GENERAL RANGE OF PERMEABILITIES REPORTED IN THE LITERATURE FOR SHALES AND 

ASSOCIATED ROCKS (LUDOVIC, ET AL., 2012) 

 

Along with the low permeability, shales also tend to have low porosities. In general, if porosity 

decreases, the permeability decreases logarithmically. Also the strength of shale is to decrease 

in a nonlinear manner with increasing porosity (Farrokhrouz & Asef, 2010). The pore mean 

radius is another element, which has an impact on the permeability, as an increasing radius will 

increase the diameter of pathway for the fluids to flow.  

Table 2.1 shows typical parameter values for shale. As a few of these parameters were not 

available for this study, the given values by (Chen, et al., 2001) were considered to be realistic 

during the simulation in this thesis. 
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TABLE 2.1: LIST OF INPUT PARAMETERS FOR MODELING (CHEN, ET AL., 2001) 

 

 

 

2.1.3 Anisotropy of Shale  

Anisotropy indicates that the properties of a material is directionally dependent. Isotropy is the 

opposite of anisotropy, and implies equal properties in all directions. Figure 2.7 illustrates the 

difference between isotropic and anisotropic deformation of a borehole. Most materials show 
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anisotropic behavior and the most common rock-forming minerals are usually anisotropic (i.e. 

quartz and feldspar). The strength and hardness of anisotropic materials varies for the exact 

same sample measured in several orientations.  

 
FIGURE 2.7: BOREHOLE DEFORMATION. ISOTROPIC VS. ANISOTROPIC STRESSES (CHEN, ET AL., 2001)  

 

The difference between horizontal and vertical permeability might also be of significance when 

dealing with anisotropic rock formations in oil wells. When the in-situ stresses are anisotropic, 

a potential failure will have implications for the direction of the maximum horizontal stress. 

Typically, the borehole will then become elliptic (Chen, et al., 2001). Figure 2.8 and 

 Figure 2.9 illustrates the principles of anisotropic compressive strength and inclination 

of beddings. 

      

FIGURE 2.8: ANISOTROPIC EFFECT ON COMPRESSIVE STRENGTH (SOROUSH, 2013)  
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 FIGURE 2.9: EXPLANATION OF INCLINATION OF BEDDING (SOROUSH, 2013)  

 

Clastic sediments may develop anisotropic properties both during and after deposition. While 

periodic layering produces beds of varying material or grain size, the directionality of the 

transporting medium also affects the ordering of the grains. Hence, anisotropy depends on both 

the variation of material and the variation of the arrangement and grain size. 

In a sedimentary basin, shales are quite abundant and show a relatively high degree of 

anisotropy. During seismic exploration of oil, shales will act as proper seismic reflectors and 

provide information regarding petrophysical properties, which is important for exploration and 

reservoir management within a medium in motion. Particles are then displaced and a force 

proportional to the displacement acts on the particles, and tries to bring them back to their 

original position.  

2.1.3.1 Elastic Wave 

An elastic wave will propagate when a material is elastic and the particles in a specific region 

are vibrating. For example, sound is transmitted by gas as an elastic wave, as gas is an elastic 

medium.  For correlating purposes, such as comparing sonic logs in deviated and vertical wells, 

detecting and quantifying this type of anisotropy is important. Other examples of common uses 

of anisotropic correlations are studies of amplitude variation with offset and borehole and 

surface seismic imaging (Yenugu, 2010). 

2.1.3.2 Elastic Parameters from Wave Velocity 

As mentioned above, shales tend to have anisotropic properties, due to the natural lamination 

of the rock. The anisotropy is reflected in the acoustic velocities of the shale (Stjern, et al., 

2003).  The velocity of elastic waves depends on several parameters such as density, porosity, 
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grain size, mineralogy, water content/absorption, temperature and stress level (Soroush, et al., 

2010). By assuming an anisotropy and a travel direction along the well for the acoustic wave, 

the corresponding P-wave (compressional) velocity may be estimated for a given inclination. 

The uniaxial compressive strength might also be estimated from these velocity values. 

While predicting analysis for sanding and wellbore instability, formation elastic parameters 

such as Young’s modulus and Poisson’s ratio are used as input parameters. They are commonly 

known as static elastic properties and are estimated by laboratory experiments on core samples. 

In 1974 Gardner (Gardner, et al., 1974) empirically derived an equation that relates seismic P-

wave velocity to the bulk density of the lithology in which the wave travels. The equation reads: 

𝝆 = 𝜶𝑮𝑹𝑽𝒑
𝜷𝑮𝑹                                                              (2.1)                                                        

Where 𝜌 is the bulk density in 𝑔/𝑐𝑚3, 𝑉𝑝 is the P-wave velocity given in 𝑓𝑡/𝑠 , 𝛼𝐺𝑅 and 𝛽𝐺𝑅 

are empirically derived constant depending on the lithology. By assuming a good fit by taking 

𝛼𝐺𝑅 = 0,23  and 𝛽𝐺𝑅 = 0,25 (Gardner, et al., 1974) the equation reduces to the following:  

𝝆 = 𝟎, 𝟐𝟑𝑽𝒑
𝟎,𝟐𝟓

                                                               (2.2)                                                      

The above-mentioned constants are usually calibrated from density and sonic well logs, but 

Gardner’s constants may be applied if these logs are not available.  

2.1.3.3  Log Responses in a Shale Formation 

The logging responses deducted from shale formations are commonly known by geophysicists 

because shales are good reflectors of signals and as they are abundant in a petroleum 

sedimentary basin. When interpreting the logs it is essential to consider where there are thin 

layers, or mixed formations (i.e. sandy shale), and (of course) if the formation contains fluid. 

In this section, several logs are presented and the responses they display in shale formations. 

The Caliper Log records the hole diameter by rotating one or more arms attached. This log will 

indicate when the shale is causing caving (enlarged hole diameter) or sloughing (tight hole). 

The Gamma Ray Log measures the natural gamma ray level in the formation. Shale will show 

high gamma ray radiation (24-1000 API), while sandstone and carbonate will show low (18-

160 API) (Rider & Kennedy, 2012). 
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The Resistivity Log measures formation resistivity by electric currents. High resistivity 

readings indicates high hydrocarbon content as hydrocarbon is a non-conductive fluid, while 

low resistivity readings implies high water content in the formation (i.e. “wet sand”) as water 

is a conductive fluid. Hence, this log is the most proper for hydrocarbon determination. There 

are two common resistivity logs used in the oil industry, Induction Log and Laterolog Log. The 

Induction Log measures formation resistivity by a transmitter and receiver which measure the 

resistivity of the formation by inducing current flow. The resistivity in shale varies extremely 

and is between 0.5-1000 ohm-m, while the readings from sandstone are generally up to 1000 

ohm-m (Rider & Kennedy, 2012). This log represent shallow, medium and deep resistivity. As 

shale is a non-permeable zone, the log does not separate between deep and medium resistivity 

in shale.  

Density Log measures the bulk density of the formation, which subsequently may be related to 

the porosity once the lithology is known. Common readings are 2,65 - 2,7 gm/cc in shale and 

2,59-2,84 gm/cc in sand (Rider & Kennedy, 2012). 

Neutron Log measures the formation’s ability to attenuate the passage of neutron through the 

formation. It is a measure of hydrogen content, which represents presence of water or oil in the 

formation. The readings of this log in shale formations will be high and range between 25-75% 

due to water trapped inside the formation (Rider & Kennedy, 2012). The readings in oil or water 

zones will have the fraction equal to 1 (Rider & Kennedy, 2012). 

Sonic Log measures the minimum time required by a compression wave to travel vertically one 

foot of formation adjacent to the wellbore. The Sonic Travel Time may be related to porosity 

whenever the lithology is known. The unit of travel time is microseconds per foot. Typical sonic 

log readings for shale is 62,5-167 μs/ft (Rider & Kennedy, 2012). Figure 2.10 shows a simple 

explanation of the different logs above. 
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FIGURE 2.10: ILLUSTRATION OF A TYPICAL WELL LOG (HENDERSON, ET AL., 2012) 

 

2.2 Rock Mechanics 

Rock mechanics is the theoretical and applied science of the mechanical behavior of rocks in 

the force fields of their physical environment (Soroush, 2013). Geomechanics is the mechanical 

behavior of all geo-materials, including soils. Petroleum geomechanics is the discipline that 

involves rock mechanics, geophysics, petrophysics and geology to quantify the response of the 

Earth’s changes in stresses, reservoir pressure and formation temperature. It applies the 

principles of rock mechanics to predict the failure of porous, granular, discontinuous, 

heterogeneous, and anisotropic materials under high stress and high temperature condition. 

Figure 2.11 display three typical stress regimes, also called faults. The purpose of studying 

geomechanics is to reduce NPT (Non-Productive Time), deduct costs and to reduce risk. By 

fault leakage and geomechanic analysis of a rock, the exploration risk reduces.  

 

 
FIGURE 2.11: ANDERSON'S CLASSIFICATION OF STRESS REGIMES (FAULTS) (SOROUSH, 2013)  
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During drilling, analysis of the rock formation will provide a more accurate and safe operating 

mud window, which will reduce kicks and lost circulation. It will also improve wellbore 

stability, by reducing stuck pipe, sidetracks, washing and reaming. During production, it 

improves fluid flow from natural fractures, predicts and manages sand production, optimizes 

hydraulic fracturing operation, and reduces casing shear and collapse. 

A geomechanical model includes vertical stress (σV ), maximum horizontal stress (σHmax ),  

minimum horizontal stress (σhmin ), stress direction (σHmax, AZI), pore pressure (PP ) and rock 

strength (UCS).These stresses can be used to analyze borehole problems such as fracturing, lost 

circulation, collapse and sand production. Vertical stress is always the greatest stress and one 

principal stress is always vertical. Open fractures are perpendicular to σhmin direction. 

Horizontal wells drilled in the σHmax direction are most stable (Soroush, 2013). 

Geomechanics of shale differs from conventional reservoirs due to inelastic matrix behavior, 

stress sensitivity, rock anisotropy (laminations and natural fractures), rock rheology, low matrix 

permeability (Soroush, 2013). Consequently, the mechanical properties of the shale will vary 

with the applied load. Because of the anisotropy, the properties parallel and perpendicular to 

the bedding planes are individual. During drilling, it is essential to understand these properties 

as these have major impact on the drilling operation and well stability. Nevertheless, while the 

drilling mud weight is designed, the geomechanical properties of the shale should be 

considered. Table 2.2 presents interesting differences between conventional and shale 

geomechanics. 
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TABLE 2.2: CONVENTIONAL GEOMECHANICS VS. SHALE (SOROUSH, 2013) 

Conventional geomechanics vs. Shale 

Subject Conventional Shale 

Wellbore instability Dominated by mechanical 

failure 

Dominated by physic chemical 

effects 

Rock behavioral models Elastic to elastoplastic Inelastic 

Rock mechanical 

characteristics 

More brittle More ductile 

Rock properties Isotropic to anisotropic Usually transversely isotropic 

(TI) 

Stress regime Usually anisotropic Less anisotropic to isotropic 

Rock- fluid interaction Mechanical Mechanical- chemical 

Natural fractures Close/open depends on 

their orientation 

Healed/less permeable 

Borehole enlargement More breakout More washout 

Pore pressure estimation Measurement Prediction 

Hydraulic fracturing 

efficiency  

Higher Lower 

Depletion related 

deformation 

Faulting Compaction 

 

2.2.1 Mechanical Properties of Shale 

2.2.1.1  Stress 

Stress is the force acting over an area (any surface). Stresses have both magnitudes and 

orientation. The stress on a plane may be broken into two components, one perpendicular to the 

plane face, the normal stress (σ), and the other parallel to the plane, the shear stress (σxy). Stress 

at a point in the subsurface is defined in terms of three normal stresses and six shear stresses. 

For normal stress components, we usually use only one subscript i.e. σx not σxx. (Soroush, 2013): 

𝑺𝒕𝒓𝒆𝒔𝒔 = 𝝈 =
𝑭(𝑭𝒐𝒓𝒄𝒆)

𝑨(𝑨𝒓𝒆𝒂)
                                                            (2.3) 

 

2.2.1.2 Strain 

The definition of strain is the change in length per original length due to an applied load. Strains 

are categorized as “scientific strains” and “engineering strains”. The initial/original dimension 

is used for engineering strain, and the actual dimension (which changes with time) is applied 

for scientific strain. 
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𝑺𝒕𝒓𝒂𝒊𝒏 =  𝜺 =
∆𝑳(𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉)

𝑳(𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒍𝒆𝒏𝒈𝒕𝒉)
                                                  (2.4) 

The fundamental relation between stress and strain is Hookes Law: 

𝝈 = 𝑬𝜺                                                                          (2.5) 

By combining the equation for stress and strain into Hookes Law, one can derive the load-

deformation as: 

∆𝑳 =
𝑭𝑳

𝑬𝑨
                                                                           (2.6) 

As stress cannot be measured directly, strain (deformation) is usually measured in-situ or in the 

laboratory, before stress is calculated. Stress and strain are proportional to each other through a 

simple linear relationship shown in Figure 2.12 below. Engineers use stress-strain diagrams to 

safely design wells and steel constructions, exposed to static loads. The following stress-strain 

curve illustrates a clear transition between linear elastic to plastic for steel materials. One can 

easily read the yield stress from the curve (i.e. the lower yield point), showing a clear transition 

between linear elastic to plastic. 

 
FIGURE 2.12: A TYPICAL STRESS-STRAIN CURVE (SOROUSH, 2013) 

 

The “Ultimate Tensile Strength” is the maximum load the material can be exposed to before it 

fails. The “yield point” is the stress at transition zone between elastic and plastic region. This 

point is the reference point for noting the strength of a material.  
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2.2.1.3 Young’s Modulus  

Young’s modulus, also known as Modulus of Elasticity, E, is a measure of the stiffness of a 

material. It is applicable to a linear elastic region where stress is directly proportional to strain. 

The slope (i.e. E) is given as: 

  𝑬 =
𝚫𝝈

𝜟𝜺
                                                                                               (2.7) 

The elastic parameter Young’s modulus is established by sonic wave velocity. This parameter 

considers temperature and other changing factors down in the wellbore.  

2.2.1.4  Poisson’s Ratio 

Poisson's ratio for axial member is a material property that predicts the lateral strain as a ratio 

of the axial strain. This relationship is given by:  

𝒗 =
−𝜺𝒍

𝜺𝒂
                                                                                     (2.8) 

                         

Where 𝜀𝑙 is the strain in the lateral direction and 𝜀𝑎 is the axial strain. 

2.1.1.1 Uniaxial Compressive Strength (UCS)  

Uniaxial compressive strength is the strength of the rock while it is compressed in a uniaxial 

direction, without lateral restraint. It is defined by the following equation (Fjær, et al., 2008): 

𝑼𝑪𝑺 = 𝑪𝟎 = 𝟐𝑺𝟎 𝐭𝐚𝐧 𝜷𝑼𝑪𝑺                                                      (2.9) 

Where 𝑆0  is the cohesion strength, the ability of molecules sticking together under tensile 

loading and resist deformation, while 𝛽𝑈𝐶𝑆 is the orientation of the failure plane. The cohesive 

force, is the force attracting two touching molecules. Figure 2.13 shows the different failure 

phases of the material during uniaxial compressive loading. 
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FIGURE 2.13: ILLUSTRATION OF STRESS AS A FUNCTION OF STRAIN (DEFORMATION IN A UNIAXIAL 

COMPRESSION TEST) (FJÆR, ET AL., 2008) 

 

2.1.2 Stress Components 

Imagine a perfect cube with six equal sides. The law on balance of forces suggests that stress 

components may be transformed by defining random planes inside the cube. This law states 

that identical stresses act in different directions on each of the side. Nine stress vectors are 

established for the cube. Three normal stress vectors 𝜎𝑥𝑥 , 𝜎𝑦𝑦  and 𝜎𝑧𝑧, and six shear stress 

vectors 𝜏𝑥𝑦, 𝜏𝑦𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑥, 𝜏𝑦𝑧 and 𝜏𝑧𝑦. The indexes defines the axis normal to the plane(first) 

and the direction of the stress component (second). Two identical indexes implies normal 

stresses and are given with only one index, e.g. 𝜎𝑥𝑥 = 𝜎𝑥. 

The shear stresses in opposite directions become equal when the object is at ease or non-

rotating: 

𝝉𝒙𝒚 = 𝝉𝒚𝒙 , 𝝉𝒙𝒛 = 𝝉𝒛𝒙   𝒂𝒏𝒅  𝝉𝒚𝒛 = 𝝉𝒛𝒚                                            (2.10) 

The stress state can be defined as a matrix by three normal and three shear stresses: 

[𝝈] = [

𝝈𝒙 𝝉𝒙𝒚 𝝉𝒙𝒛

𝝉𝒙𝒚 𝝈𝒚 𝝉𝒚𝒛

𝝉𝒙𝒛 𝝉𝒚𝒛 𝝈𝒛

]                                                                              (2.11) 

While rotation, all of the shear stresses will be neglected, leaving only the three normal stresses 

left, also known as the principal stresses. 
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[𝝈] = [

𝝈𝒙 𝟎 𝟎
𝟎 𝝈𝒚 𝟎

𝟎 𝟎 𝝈𝒛

]                                                                                (2.12) 

When an element (in any component) is in a highly specific orientation, such that the only 

resultant stresses are normal stresses, these are called “principal stresses”. Principal stresses are 

essential for predicting rock failure. Two principal stresses are in the horizontal plane and most 

shear failure criteria comprise two or three principal stresses. 

2.1.2.1 In-Situ Stresses 

In-situ stresses are stresses exerted on sediments, at equilibrium or undisturbed state. They are 

also called far-field stresses. In-situ stresses comprise horizontal and vertical stresses. The 

vertical stresses are owed to overburden stresses from the overlying rocks and horizontal 

stresses are due to overburden, tectonic and geological depositions. However, geologists 

differentiate between paleo-stress and in-situ or contemporary stress. Paleo-stress is stress that 

earlier, in a specific geological period, acted upon the given rocks. In-situ or contemporary 

stress are stresses which may be implied by plate motion, earthquakes or borehole data 

(Dorkhabi, 2014). Figure 2.14 illustrates tensoral general in-situ stresses. 

 

FIGURE 2.14: TENSORAL REPRESENTATION OF GENERAL IN-SITU STRESSES (SOROUSH, 2013)  

 

2.1.2.2 Vertical Stress 

Vertical stress 𝜎𝑣  is mainly due to the weight of overlying formations and the fluids they 

contain, and is known as Overburden Stress. Vertical stress may also include stresses resulting 

from geological conditions such as magma or salt dome intruding in the surrounding areas of 

the rock formation. The overburden stress have the ability to spread and expand the underlying 

sediments in horizontal lateral directions, due to the effect of Poisson’s Ratio. The overburden 

stress increases in depth as the number of overlying sediments increases. While formations are 
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homogenous, the vertical stress is given by 𝜎𝑣 = 𝜌𝑔𝑧. If the formations are not homogenous, 

the density will vary and the equation below has to be applied to determine the overburden 

stress.  

𝒑(𝒛) = 𝒑𝟎 + 𝒈 ∫ 𝝆(𝒛)
𝒛

𝟎
 𝒅𝒛                                                        (2.13) 

Where p(z) is the overburden pressure at depth z, p0 is the datum pressure (i.e. at surface), g is 

the acceleration due to gravity on Earth and 𝜌𝑜 is the density of the overlying rock at depth z. 

2.1.2.3 Horizontal Stresses 

Horizontal stresses are caused by lateral movement of the overburden stress which are restricted 

by the presence of adjacent materials. These stresses are known as maximum,𝜎𝐻 and minimum 

𝜎ℎ  horizontal stresses. Underground formations are affected by horizontal stresses when 

sediments are moving in horizontal directions in addition the the vertical stress impact. 

However, in this case the rock is assumed to be isotropic, but in real life situations rock 

formations cannot always be treated as isotropic and homogeneous. Poroelastic theory might 

have to be used for some cases. When tectonic forces are not present, the horizontal stresses 

may be neglected. 

For vertical fracture, the minimum horizontal stress can be estimated using the equation (Fjær, 

et al., 2008): 

𝝈𝒉 =
𝒗

𝟏−𝒗
(𝝈𝒗 − 𝜶𝑩𝒊𝒐𝒕𝑷𝒑) + 𝜶𝑩𝒊𝒐𝒕𝑷𝒑 + 𝝈𝒆𝒙𝒕                                              (2.14) 

Where 𝜎ℎ  = minimum horizontal stress, 𝜎𝑣  = overburden, 𝑃𝑝  = pore pressure, 𝛼𝐵𝑖𝑜𝑡  = Biot 

constant and 𝜎𝑒𝑥𝑡 = tectonic stress. 𝑣 is Poisson’s ratio and can be estimated from acoustic log 

data or lithology correlations. 

2.1.3 Stresses around a Wellbore 

Underlying formations are at all times in a stressed state, caused by tectonic and overburden 

stresses. Figure 2.15 gives a simplified illustration of stresses around a wellbore. While drilling 

a well, the existing stresses in the solid material changes. After a while, the borehole wall is 

only supported by hydrostatic fluid column in the well.  
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FIGURE 2.15: STRESSES AROUND A WELLBORE (FARROKHROUZ & ASEF, 2013) 

However, as the in-situ stresses generally do not match the hydrostatic fluid column pressure, 

there will be a stress redistribution around the well. Figure 2.16 shows a simplified drawing of 

the stress distribution for a deviated well. Managing and correlating the stresses is highly 

demanding in order to avoid failure. Hence, knowledge of the wellbore stresses is needed to 

ensure wellbore stability (Fjær, et al., 2008). 

 

 

FIGURE 2.16: STRESSES IN DEVIATED WELLS (SOROUSH, 2013) 

Ernst Gustav Kirsch was a German engineer who introduced equations for describing the elastic 

stress state around a circular hole in an infinite plate with unidirectional (one-dimensional) 

tension. The Kirsch Equations are widely used for vertical boreholes with diverse far-field 

stresses. He also proposed equations for shear stresses. Bernt S. Aadnøy derived the equations 

accordingly (Aadnøy & Looyeh, 2011):  

 

𝝈𝒓 =
𝟏

𝟐
(𝝈𝒙 + 𝝈𝒚) (𝟏 −

𝒂𝟐

𝒓𝟐) +
𝟏

𝟐
(𝝈𝒙 − 𝝈𝒚) (𝟏 + 𝟑

𝒂𝟒

𝒓𝟒 − 𝟒
𝒂𝟐

𝒓𝟐) 𝒄𝒐𝒔𝟐𝜽 + 𝝉𝒙𝒚 (𝟏 + 𝟑
𝒂𝟒

𝒓𝟒 − 𝟒
𝒂𝟐

𝒓𝟐) 𝐬𝐢𝐧 𝟐𝜽 +
𝒂𝟐

𝒓𝟐 𝑷𝒘      (2.15) 

𝝈𝜽 =
𝟏

𝟐
(𝝈𝒙 + 𝝈𝒚) (𝟏 +

𝒂𝟐

𝒓𝟐) −
𝟏

𝟐
(𝝈𝒙 − 𝝈𝒚) (𝟏 + 𝟑

𝒂𝟒

𝒓𝟒) 𝐜𝐨𝐬 𝟐𝜽 − 𝝉𝒙𝒚 (𝟏 + 𝟑
𝒂𝟒

𝒓𝟒) 𝐬𝐢𝐧 𝟐𝜽 −
𝒂𝟐

𝒓𝟐 𝑷𝒘         (2.16) 
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𝝈𝒛 = 𝝈𝒛𝒛 − 𝟐𝒗(𝝈𝒙 − 𝝈𝒚)
𝒂𝟐

𝒓𝟐 𝒄𝒐𝒔𝟐𝜽 − 𝟒𝒗𝝉𝒙𝒚
𝒂𝟐

𝒓𝟐 𝒔𝒊𝒏𝟐𝜽 → 𝑷𝒍𝒂𝒏𝒆 𝒔𝒕𝒓𝒂𝒊𝒏                              (2.17) 

𝝈𝒛 = 𝝈𝒛𝒛 → 𝑷𝒍𝒂𝒏𝒆 𝒔𝒕𝒓𝒆𝒔𝒔 

𝝉𝒓𝜽 = [
𝟏

𝟐
(𝝈𝒙 − 𝝈𝒚)𝒔𝒊𝒏𝟐𝜽 + 𝝉𝒙𝒚𝒄𝒐𝒔𝟐𝜽] (𝟏 − 𝟑

𝒂𝟒

𝒓𝟒 + 𝟐
𝒂𝟐

𝒓𝟐)                                   (2.18) 

𝝉𝒓𝒛 = (𝝉𝒙𝒚 𝐜𝐨𝐬 𝜽 + 𝝉𝒚𝒛𝒔𝒊𝒏𝜽) (𝟏 −
𝒂𝟐

𝒓𝟐)                                                    (2.19) 

𝝉𝜽𝒛 = (−𝝉𝒙𝒛𝒔𝒊𝒏𝜽 + 𝝉𝒚𝒛𝒄𝒐𝒔𝜽) (𝟏 +
𝒂𝟐

𝒓𝟐)                                                    (2.20) 

 

2.1.3.1 Stress Transformation 

In most cases, a well is oriented and has an azimuth (𝛼) and/or an inclination(𝑖). The in-situ 

stresses then need to be transformed into the new coordinate system. Figure 2.17 shows a simple 

explanation of the meaning of stress transformation. In order to determine the magnitudes and 

orientations of the stress or strain components transformation equations must be applied.  

 
FIGURE 2.17: TRANSPOSE OF IN-SITU STRESSES TO A WELL COORDINATE SYSTEM (SOROUSH, 2013) 

 

Bernt S. Aadnøy derived the equations accordingly (Aadnøy & Chenevert, 1987):     

𝝈𝒙𝒙 = (𝝈𝒉 𝐜𝐨𝐬𝟐 𝝋 + 𝝈𝑯 𝐬𝐢𝐧𝟐 𝝋) 𝐜𝐨𝐬𝟐 𝜸 + 𝝈𝒗𝐬𝐢𝐧𝟐 𝜸                                                 (2.21) 

𝝈𝒚𝒚 = 𝝈𝒉 𝐬𝐢𝐧𝟐 𝝋 + 𝝈𝑯 𝐜𝐨𝐬𝟐 𝝋                                                                 (2.22) 

𝝈𝒛𝒛 = (𝝈𝒉 𝐜𝐨𝐬𝟐 𝝋 + 𝝈𝑯 𝐬𝐢𝐧𝟐 𝝋) 𝐬𝐢𝐧𝟐 𝜸 + 𝝈𝒗𝐜𝐨𝐬𝟐 𝜸                                                  (2.23)                   

𝝉𝒙𝒚 =
𝟏

𝟐
(𝝈𝑯 − 𝝈𝒉) 𝐬𝐢𝐧 𝟐𝝋 𝐜𝐨𝐬 𝜸                                                              (2.24) 

𝝉𝒚𝒛 =
𝟏

𝟐
(𝝈𝑯 − 𝝈𝒉) 𝐬𝐢𝐧 𝟐𝝋 𝐬𝐢𝐧 𝜸                                                                (2.25)    

𝝉𝒙𝒛 =
𝟏

𝟐
(𝝈𝒉 𝐜𝐨𝐬𝟐 𝝋 + 𝝈𝑯 𝐬𝐢𝐧𝟐 𝝋 − 𝝈𝒗) 𝐬𝐢𝐧 𝟐𝜸                                              (2.26) 
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2.1.4 Principal Stresses 

The definition of principal stresses is that for the principal stress orientation on the faces, the 

shear stresses are zero. The principal stress components are ordered such that 𝜎1 > 𝜎2 > 𝜎3. 

Vertical stress, 𝜎𝑣,  is usually assumed to be a principal stress component, as such, the other 

two components lie in the horizontal plane and is designated 𝜎𝐻𝑚𝑎𝑥 and 𝜎ℎ𝑚𝑖𝑛 (Soroush, 2013). 

Figure 2.18 explains the principal stresses as wellbore stresses. 

 

FIGURE 2.18: NEAR WELLBORE STRESSES (SOROUSH, 2013) 

Anyhow, principal stresses may be estimated once the shear and the normal stresses are 

established. Applying the equation below, the stress vector at the wellbore wall, (𝑟 = 𝑎), is 

equal to: 

[𝝈] = [

𝝈𝒓 𝟎 𝟎
𝟎 𝝈𝜽 𝝉𝜽𝒛

𝟎 𝝉𝒛𝜽 𝝈𝒛𝒛

]                                                               (2.27) 

Bernt S. Aadnøy derived the equations for principal stresses accordingly (Aadnøy & Looyeh, 

2011):  

𝝈𝟏 = 𝑷𝒘                                                                     (2.28) 

𝝈𝟐 =
𝟏

𝟐
(𝝈𝜽 − 𝝈𝒛𝒛) +

𝟏

𝟐
√(𝝈𝜽 − 𝝈𝒛𝒛)𝟐 + 𝟒𝝉𝜽𝒛

𝟐                                  (2.29) 

𝝈𝟑 =
𝟏

𝟐
(𝝈𝜽 − 𝝈𝒛𝒛) −

𝟏

𝟐
√(𝝈𝜽 − 𝝈𝒛𝒛)𝟐 + 𝟒𝝉𝜽𝒛

𝟐                                  (2.30) 
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2.2 Driving Forces 

Thermal and chemical effects are highly crucial when drilling into shale formation as they may 

influence the collapse and tensile strength significantly. Experiments performed by Mody & 

Hale (Chen, et al., 2001) showed that the original pore pressure increased due to these effects. 

Chemical effects are generally caused by osmosis. Osmosis is the transport of solvent through 

a semipermeable membrane from the dilute solution side to the concentrated solution side of 

the membrane. It is driven by chemical potential differences between the water on either side 

of the membrane. With and ideal semipermeable membrane, only water should permeate 

through the membrane (Cheryan, 1998).  

Osmosis is a function of two important factors, namely the water activity of the drilling fluid 

and of the formation. The chemical effect caused by a difference between the shale formation 

water activity and the drilling fluid water activity is equivalent to the hydraulic potential in a 

system (Cheryan, 1998). Membrane efficiency is estimated as the ratio of the observed osmotic 

pressure by the theoretical osmotic pressure. The osmotic pressure is the force per unit area 

required to prevent water passing through a semi-permeable membrane into an area of high 

solute concentration (Cheryan, 1998).  

As the pore pressure is influenced by the osmotic effect, the wellbore stresses are also impacted. 

The wellbore stresses may also be influenced by temperature changes in the well. These effects 

may be caused by fluids in the annulus with different temperatures, or even temperature that 

leads to volumetric expansion (Ewy & Chen, 2005). For a radial system, such as a wellbore, 

thermal and chemical effects are given by the following equations (Chen, et al., 2001): 

𝝏𝑻

𝝏𝒕
= 𝒄𝒐 (

𝝏𝟐𝑻

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏𝑻

𝝏𝒓
) + 𝒄𝒐

′ (
𝝏𝑻

𝝏𝒓

𝝏𝑷

𝝏𝒓
+ 𝑻 (

𝝏𝟐𝑷

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏𝑷

𝝏𝒓
))                         (2.31)                  

𝝏𝑷

𝝏𝒕
= 𝒄 (

𝝏𝟐𝑷

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏𝑷

𝝏𝒓
) + 𝒄′ 𝝏𝑻

𝝏𝒕
                                                 (2.32)                      

Where T is temperature, P is pore pressure, 𝑐𝑜 is the thermal diffusivity of a porous medium, 

𝑐𝑜
′  is the coupling coefficient, and 𝑐′ is the other coupling coefficient. 

The thermal and hydraulic diffusivity may also be expressed by the following equations by 

Venkanna (Venkanna, 2010) and Cossé (Cossé, 1993)  :  
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𝒄 =
𝒌

𝝋𝝁𝒄𝒕
                                                             (2.33)               

Where k is the permeability, 𝜑  is the porosity,  𝜇  is the dynamic viscosity and 𝑐𝑡  is the 

compressibility of fluid. 

𝒄𝒐 =
𝒌𝒐

𝝆𝒄𝒑
                                                                               (2.34)          

Where 𝑘𝑜 is the thermal conductivity, 𝜌 is the density and 𝑐𝑝 is the specific heat capacity.The 

two terms containing 𝑐𝑜, in equation 2.31, are the temperature changes due to heat conduction. 

The first term in the equation 2.31 containing 𝑐𝑜
′ , is the temperature change due to heat 

convection and the second term is temperature due to pressure diffusion. However, the terms 

containing 𝑐 , gives the pore pressure diffusivity due to hydraulic force, while the term 

containing 𝑐′, gives the pore pressure ch5ange due to temperature variation (Ewy & Chen, 

2005). 

The convection term (equation 2.31) is negligible due to a low permeable formation (shale). 

The coupling coefficient (equation 2.31) can be disregarded due to the insignificant magnitude 

compared to the thermal diffusivity. Gathering the above assumptions, the above equation can 

then be simplified, as the whole term containing the coupling coefficient can be neglected 

(Chen, et al., 2001). Decoupling the above equations and considering the assumptions, the 

equations transforms to the following (Chen, et al., 2001): 

𝝏𝑻

𝝏𝒕
= 𝒄𝒐 (

𝝏𝟐𝑻

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏𝑻

𝝏𝒓
)                                                                         (2.35)                                                           

𝝏𝑷

𝝏𝒕
= 𝒄 (

𝝏𝟐𝑷

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏𝑷

𝝏𝒓
) + 𝒄′ 𝝏𝑻

𝝏𝒕
                                                                 (2.36)                                          

2.2.1 Chemical Effects 

The chemical potential due to osmosis in a system is estimated by the following equations by 

Mody and Hale (Chen, et al., 2001): 

𝑷𝝅 = −𝑰𝒎
𝑹𝒈𝑻

𝑽
𝒍𝒏

𝒂𝒅𝒇

𝒂𝒇𝒘
                                                               (2.37)           

Where 𝑃𝜋 is the chemical potential, 𝐼𝑚 is the membrane efficiency, 𝑅𝑔 is the gas constant, T is 

thetemperature of the well wall, V is the partial molar volume of water, 𝑎𝑑𝑓 is the activity of 

drilling mud and 𝑎𝑓𝑤 is the activity of shale. The membrane efficiency is kept in equation 2.37, 
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as shale does not have a permeable membrane while interacting with water. Hence, the partial 

membrane is considered when 𝐼𝑚, is in a range of 0.01-0.1 for shale (Chen, et al., 2001).  

The magnitude of the activity of the drilling fluid and the activity of the formation water 

determines if the direction of the water movement is to be either inwards or outwards. Water 

activity is the ratio of vapor pressure of a given liquid divided by vapor pressure of pure water 

(Soroush, 2013). The activity is controlled by the salt content, meaning the salinity of the fluid. 

The higher the salinity, the lower the activity (Soroush, 2013). The flow of water containing 

salt will therefore influence the pore pressure due to osmosis. 

An increase in pore pressure, leading to a decrease in the effective stresses in the wellbore, will 

result in a reduced collapse strength. If the pore pressure decreases, the result will be the 

opposite. However, if the pore pressure is altered due to chemical effects, the pore pressure will 

generally increase if moved away from the wellbore, and eventually decrease if it is observed 

moving away from the wellbore wall. This scenario is due to osmosis and the balancing of the 

hydraulic effect, and when the hydraulic effect exceeds this effect it results in a decrease of the 

pore pressure (Yu, et al., 2003). As seen, when water flows inwards due to osmotic effect, the 

pore pressure increases until it reaches a certain point, where it will slowly decrease again. 

When  water comes out, the pore pressure increases only when as moving away from the 

wellbore wall. Furthermore, it should be noted that the pore pressure around the wall increases 

whenever the mud weight is altered due to higher hydraulic force on the wall, caused by the 

difference in initial pore pressure and the actual well pressure. 

As illustrated in the below figure 2.19 and figure 2.20 the water molecules move from the higher 

activity to the lower activity. The pore pressure will increase or decrease (depending on the 

value of the activity) due to osmosis. 

 

FIGURE 2.19: WELLBORE DRILLED IN A SHALE FORMATION (FARROKHROUZ & ASEF, 2013)  
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FIGURE 2.20: PORES IN A SHALE FORMATION IN CONTACT WITH A SALTED SOLUTION (FARROKHROUZ & 

ASEF, 2013) 

 

2.2.2  Thermal Effects 

Cooling the formation is needed to maintain wellbore stability. Hence, cooler muds may reduce 

the pore pressure and increase the collapse stress. On the contrary, hotter muds cause instability 

in the shales. 

Thermal driving forces are important as thermal diffusion into shale formations develops faster 

than hydraulic diffusion and thereby dominates the pore pressure changes in the early stage 

(Chen, et al., 2001). The thermal diffusion induces further pore pressure and rock stress 

changes, which affects the wellbore stability (Chen, et al., 2001). In addition, temperature 

changes due to injection or production of fluids with different temperatures in the annulus may 

induce thermal stresses. The changes may also lead to volumetric expansion in the rock matrix 

and the pore fluid, which again will have an impact on the pore pressure (Ewy & Chen, 2005). 

Carlaw and Jeager (1959) simplified the equation 2.35 for short time and distance as following 

(Chen, et al., 2001): 

𝑻(𝒓, 𝒕) = 𝑻𝒐 + (𝑻𝒘 − 𝑻𝒐)√
𝒓𝒘

𝒓
𝒆𝒓𝒇𝒄 {

𝒓−𝒓𝒘

𝟐√𝒄𝒐𝒕
}                                           (2.38) 



30 
 

Where 𝑇𝑜 is the formation temperature, 𝑇𝑤 is the well wall temperature, 𝑟𝑤 is the well radius, 𝑟 

is the distance away from the wellbore center, 𝑒𝑟𝑓𝑐 is the complementary error function, 𝑐𝑜 is 

thermal diffusivity and 𝑡 is time.  

By applying equation 2.38, the temperature profile may be estimated with respect to the specific 

radius and wellbore radius, at any time for minor distances. As the temperature varies, the 

effective stresses will change and affect the collapse strength. 

An analytical solution to equation 2.36 was also derived in order to determine a pore pressure 

profile with respect to time and wellbore radius. The equation is presented below (Chen, et al., 

2001): 

𝒑(𝒓, 𝒕) = 𝒑𝒐 + (𝒑𝒘 − 𝒑𝝅 − 𝒑𝒐)√
𝒓𝒘

𝒓
𝒆𝒓𝒇𝒄 {

𝒓−𝒓𝒘

𝟐√𝒄𝒕
} −

𝒄′(𝑻𝒘−𝑻𝒐)

𝟏−𝒄/𝒄𝒐
√

𝒓𝒘

𝒓
[𝒆𝒓𝒇𝒄 {

𝒓−𝒓𝒘

𝟐√𝒄𝒕
} − 𝒆𝒓𝒇𝒄 {

𝒓−𝒓𝒘

𝟐√𝒄𝒐𝒕
}]         (2.39)          

Where 𝑝𝑜 is the initial pore pressure, 𝑝𝑤 is the well pressure, and 𝑝𝜋 is the chemical potential. 

The first term is the hydraulic diffusivity effect on the pore pressure, considering the difference 

between well pressure and the sum of chemical potential and initial pore pressure. The second 

term considers the temperature effects in the wellbore or the thermal diffusivity, which affects 

the pore pressure profile. If the wall temperature is higher than the formation temperature, the 

pore pressure will generally increase. 

2.2.3 Chemical Effects 

As temperature and pore pressure profiles are established, the stresses induced by hydraulics of 

the fluid flow and temperature, can be determined by the following equations (Chen, et al., 

2001):  

𝝈𝒓𝒓 =
𝜶(𝟏−𝟐𝒗)

𝟏−𝒗

𝟏

𝒓𝟐 ∫ 𝒑𝒇(𝒓, 𝒕)𝒓𝒅𝒓
𝒓

𝒓𝒘
+

𝑬𝜶𝒎

𝟑(𝟏−𝒗)

𝟏

𝒓𝟐 ∫ 𝑻𝒇(𝒓, 𝒕)𝒓𝒅𝒓
𝒓

𝒓𝒘
+

𝒓𝒘
𝟐

𝒓𝟐 𝑷𝒘                  (2.40)           

𝝈𝜽𝜽 = −
𝜶(𝟏−𝟐𝒗)

𝟏−𝒗
[

𝟏

𝒓𝟐 ∫ 𝒑𝒇(𝒓, 𝒕)𝒓𝒅𝒓
𝒓

𝒓𝒘
− 𝒑𝒇(𝒓, 𝒕)] −

𝑬𝜶𝒎

𝟑(𝟏−𝒗)
[

𝟏

𝒓𝟐 ∫ 𝑻𝒇(𝒓, 𝒕)𝒓𝒅𝒓
𝒓

𝒓𝒘
− 𝑻𝒇(𝒓, 𝒕)] −

𝒓𝒘
𝟐

𝒓𝟐 𝑷𝒘     (2.41)       

𝝈𝒛𝒛 =
𝜶(𝟏−𝟐𝒗)

𝟏−𝒗
𝒑𝒇(𝒓, 𝒕) +

𝑬𝜶𝒎

𝟑(𝟏−𝒗)
𝑻𝒇(𝒓, 𝒕)                                          (2.42)        

    

Where 𝐸 is Young’s modulus, 𝜎𝑟𝑟 is radial stress, 𝜎𝜃𝜃 is tangential stress, 𝜎𝑧𝑧 is axial stress 𝛼𝑚 

is volumetric linear thermal expansion coefficient of rock matrix in K-1. The first term in all of 
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the above equations is the induced stresses caused by the fluid flow, the second is due to thermal 

effects and the third term is due to well pressure. However, the third term is only applicable for 

pressures in a cylindrical profile. To modify this term to in-situ stresses in a well, the Kirsch’s 

equations (2.15-2.20) may be coupled in order to determine the induced stresses due to well 

pressure and in-situ stresses around a wellbore.  It should also be noted that the two first terms 

depend on Young’s modulus, Poisson’s ratio, volumetric expansivity and Biot’s coefficient of 

the formation. 

Removing the integrals from equations 2.40- 2.42, the stress equations may be simplified to 

(Chen, et al., 2001): 

𝝈𝒓𝒓 = 𝒑𝒘                                                                 (2.43) 

𝝈𝜽𝜽 =
𝜶(𝟏−𝟐𝒗)

𝟏−𝒗
(𝑷𝒘 − 𝑷𝝅 − 𝑷𝒐) +

𝑬𝜶𝒎

𝟑(𝟏−𝒗)
(𝑻𝒘 − 𝑻𝒐) − 𝒑𝒘                                 (2.44)    

𝝈𝒛𝒛 =
𝜶(𝟏−𝟐𝒗)

𝟏−𝒗
(𝑷𝒘 − 𝑷𝝅 − 𝑷𝒐) +

𝑬𝜶𝒎

𝟑(𝟏−𝒗)
(𝑻𝒘 − 𝑻𝒐)                                   (2.45)          

Hence, final stress fields around the wellbore may be determined by coupling Kirsch’s 

equations 2.15-2.20 with the above equations. Equation 2.44 is the combination of hydraulic 

and osmotic effect. An equation for only hydraulic effect is as following: 

𝝈𝜽
𝑯𝒚𝒅

= 𝜶
𝟏−𝟐𝝂

𝟏−𝝂
(𝑷𝒘 − 𝑷𝟎) − 𝑷𝟎                                             (2.46)                                                

2.2.4 Effects of Salts on the Mechanical Strength of Shale 

Salts have proved to be beneficial in stabilizing shale formations. They lower the water activity, 

which increases the osmotic pressure gradients. The mobility of the solute is also low in shale 

which increases the membrane efficiency of the shale-mud system. The resulting outcome is a 

generated effective osmotic pressures which is able to offset the hydraulic mud over-balance 

and stability is restored through dehydration. In order to partially compensate the hydraulic 

inflow of mud filtrate, it is possible to use high-salinity fluids to stimulate the osmotic back 

flow of shale pore water towards the wellbore (Farrokhrouz & Asef, 2013). Examples of salt 

additives are Potassium Chloride (KCl), Sodium Chloride (NaCl), Calcium Chloride (CaCl
2
), 

and Magnesium Chloride (MgCl
2
) (Yu, et al., 2002). 
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2.3 Failure Criteria 

A failure mode is a manner in which a rock failure may occur. In order to avoid failure, one 

needs to be prepared, take precautions and apply risk-reducing measures. The main rock failure 

modes in a well are tensile and collapse. For tensile failure, one uses the maximum-normal 

stress criterion, and for compressive failure, the maximum strain energy of distortion criterion 

is used. In order to use the correct components for the failure analysis, the in-situ stresses must 

be transformed. Isotropic stresses is assumed 𝜎ℎ = 𝜎𝐻 . The overburden stress, 𝜎𝑣 , is either 

retrieved from a drilling mud program or calculated by using the densities and depths.  

2.3.1 Collapse Failure Criteria and Collapse Model 

When hydrostatic drilling fluid column pressure is too low, the structural integrity of the hole 

is reduced, and borehole collapse may occur. Shear failure occasionally develops due to high 

compressive loading on rock formations. The resulting problems are commonly drill pipe 

sticking and possible loss of well. 

Faults develop as a result of the shear stresses exceeding the strength of the rock. The planes 

will thereby slide and separate from each other. The compressive loading and stresses around 

the wellbore will have an essential impact on the shape of the wellbore. The wellbore will 

maintain its circular form if the stresses are even and of same magnitudes. However, if the 

compressive loading is acting on several axes, the wellbore will deform. Nevertheless, collapse 

failure, may still occur in circular shaped wellbores. As this type of failure leads to several well 

stability problems, several analytical and numerical models have been established for 

controlling and preventing collapse failure. Several collapse failure models are used in the 

petroleum industry, and among these are Drucker- Prager, Ewy, Stassi d’Alia, Mogi- Coulomb 

criteria and Mohr- Coulomb criteria. 

Wellbore collapse occurs when the stress surrounding the rock, exceeds the strength. This type 

of compressive failure develops from failure at wellbore wall, failure inside the formation or as 

a time-dependent failure (Chen, et al., 2001). Each presented failure model for collapse has its 

advantages and downsides when applied. The key is to choose the most appropriate, and take 

precautions to the shortcomings of the model. 
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2.3.1.1 Mohr- Coulomb 

The Mohr-Coulomb criterion is the most applied and straightforward failure criterion for rock 

materials. This criterion assumption that overburden stress, 𝜎𝑣,  has zero influence on the 

strength of the rocks. The Mohr- Coulomb failure criterion links the shearing resistance of the 

involved forces and friction, to the connecting bonds between the rock grains. The criterion is 

linearly approximated as (Aadnøy & Looyeh, 2011): 

𝝉 = 𝝉𝟎 + 𝝈 𝒕𝒂𝒏 𝝋                                                             (2.47) 

Where τ is the shear stress, 𝜏0  is the cohesive strength, σ is the effective normal stress and 𝜑 is 

the angle or internal friction. Figure 2.21 illustrates the Mohr- Coulomb failure envelope. 

 

FIGURE 2.21: MOHR-COULOMB FAILURE ENVELOPE WHERE THE CIRCLES IN THE ENVELOPE, EACH 

REPRESENTS A TRIAXIAL TEST (AADNØY & LOOYEH, 2011) 

Mohr-Coulomb:   

𝝈𝟏,𝟐 =
𝝈𝜽+𝝈𝒛

𝟐
± √(

𝝈𝜽−𝝈𝒛

𝟐
)

𝟐

+ 𝝈𝜽𝒛
𝟐                                                      (2.48) 

𝒓 = √(
𝝈𝜽−𝝈𝒛

𝟐
)

𝟐

+ 𝝈𝜽𝒛
𝟐                                                             (2.49) 

𝜎𝑚𝑖𝑛=𝐶𝑒𝑛𝑡𝑒𝑟−𝑟 

𝜎𝑚𝑎𝑥=𝐶𝑒𝑛𝑡𝑒𝑟+𝑟 

Mohr-Coulomb principal stresses: 
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{𝝈𝒓}                                                                                     (2.50) 

{
𝝈𝜽+𝝈𝒛

𝟐
+ √(

𝝈𝜽−𝝈𝒛

𝟐
)

𝟐

+ 𝝈𝜽𝒛
𝟐 }                                                  (2.51) 

{
𝝈𝜽+𝝈𝒛

𝟐
− √(

𝝈𝜽−𝝈𝒛

𝟐
)

𝟐

+ 𝝈𝜽𝒛
𝟐 }                                                   (2.52) 

When analyzing rock failure, an expression for the particular stress state should be established. 

If the effective stress is assumed to be represented as in Figure 2.21, the failure point (σ, τ) may 

be expressed as the following: 

𝝉 =
𝟏

𝟐
(𝝈𝟏 − 𝝈𝟑) 𝐜𝐨𝐬 𝝋                                                            (2.53) 

𝝈 =
𝟏

𝟐
(𝝈𝟏 + 𝝈𝟑) −

𝟏

𝟐
(𝝈𝟏 − 𝝈𝟑) 𝐬𝐢𝐧 𝝋                                                (2.54) 

The fracture angle of the rock specimen βMC, and the angle of internal friction φ obtained from 

the Mohr-Coulomb model, are related to one another by the following relation (Aadnøy & 

Looyeh, 2011): 

𝜷𝑴𝑪 = 𝟒𝟓° +
𝝋

𝟐
                                                                                  (2.55) 

It should be noted that the above equations (2.53 and 2.54) do not consider the intermediate 

principal stress, which results in an underestimation of the rock strength. Hence, the presented 

collapse pressure curve will be too conservative (Al-Ajmi & Zimmermann, 2006). Several 

assumptions must also be made in order to apply the equations for well collapse by the Mohr-

Coulomb model. The shear stress in the Kirsch’s equations may be neglected. The normal and 

shear stresses are estimated from the borehole wall, which gives us 𝑎 = 𝑟. The angle 𝜃  is 

assumed equal to 𝜋/2 in order to provide the maximum values of the stresses. Inserting these 

values in the equations 2.15- 2.20 section 2.1.3, the stress components reduces to the following: 
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𝝈𝒓 = 𝑷𝒘 − 𝑷𝟎                                                                     (2.56) 

𝝈𝜽 = 𝟑𝝈𝒙 − 𝝈𝒚 − 𝑷𝒘 − 𝑷𝟎                                             (2.57) 

𝝈𝒛 = 𝝈𝒛𝒛 + 𝟐𝝂(𝝈𝒙 − 𝝈𝒚) − 𝑷𝟎                                                    (2.58) 

𝝉𝒓𝜽 = 𝝉𝒓𝒛 = 𝟎                                                               (2.59)   

𝝉𝜽𝒛 = −𝟐𝝉𝒙𝒛                                                            (2.60) 

Consequently, the stresses are in terms of in-situ stresses, and the principal stresses may be 

calculated by inserting these equations in equations 2.28-2.30. If the well is assumed vertical, 

the principal stresses are given as the following (Fjær, et al., 2008):  

  

𝝈𝒓 = 𝑷𝒘                                                                       (2.61) 

𝝈𝜽 = 𝟐𝝈𝒉 − 𝑷𝒘                                                           (2.62) 

𝝈𝒛 = 𝝈𝒗                                                                           (2.63) 

Hence, the equations above show that pressure variations will affect the radial and hoop stress, 

while the axial stress will not be changed. When collapse failure occurs, the hoop stress exceeds 

the radial stress. This occurs at three scenarios (Al-Ajmi & Zimmermann, 2006): 

𝝈𝜽 > 𝝈𝒓 > 𝝈𝒛                                                             (2.64) 

𝝈𝒛 > 𝝈𝜽 > 𝝈𝒓                                                             (2.65) 

𝝈𝜽 > 𝝈𝒛 > 𝝈𝒓                                                            (2.66) 

These scenarios may be implemented with the values for maximum and minimum principal 

stresses in the given Mohr-Coulomb failure criterion model to derive equations for well collapse 

pressure. The equations are derived as following for the different cases in parentheses (Fjær, et 

al., 2008): 
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TABLE 2.3: DERIVED EQUATIONS FOR MOHR- COULOMB FAILURE CRITERIA MODEL (FJÆR, ET AL., 2008) 

Case Equation Number 

𝜎𝜃 ≥ 𝜎𝑧 > 𝜎𝑟 
  𝑃𝑤 ≤ 𝑃0 +

2(𝜎ℎ − 𝑃0) − 𝐶0

1 − tan2 𝛽𝑀𝐶
 

( 2.67) 

 

𝜎𝑧 ≥ 𝜎𝜃 > 𝜎𝑟  

  𝑃𝑤 ≤ 𝑃0 +
𝜎𝑣 − 𝑃0 − 𝐶0

tan2 𝛽𝑀𝐶
 

( 2.68) 

𝜎𝑧 ≥ 𝜎𝑟 > 𝜎𝜃 
  𝑃𝑤 ≥ 𝑃0 + 2(𝜎ℎ − 𝑃0) −

𝜎𝑣 − 𝑃0 − 𝐶0

tan2 𝛽𝑀𝐶
 

( 2.69) 

 

 𝜎𝑟 ≥ 𝜎𝑧 > 𝜎𝜃 
  𝑃𝑤 ≥ 𝑃0 +

2(𝜎ℎ − 𝑃0) tan2 𝛽𝑀𝐶 + 𝐶0

tan2 𝛽𝑀𝐶
 

( 2.70) 

 

𝜎𝑟 ≥ 𝜎𝜃 > 𝜎𝑧   𝑃𝑤 ≥ 𝑃0 + (𝜎𝑣 − 𝑃0) tan2 𝛽𝑀𝐶 + 𝐶0 ( 2.71) 

 

𝜎𝜃 ≥ 𝜎𝑟 > 𝜎𝑧   𝑃𝑤 ≤ 𝑃0 + 2(𝜎ℎ − 𝑃0) −(𝜎𝑣 − 𝑃0)tan2 𝛽𝑀𝐶 − 𝐶0 ( 2.72) 

 

 

2.3.1.2 Drucker-Prager 

The Drucker-Prager failure criterion is an extended variant of the Von-Mises criterion. The 

criterion assumes that the octahedral shearing approaches the critical value when (Yu, et al., 

2002): 

𝜶𝑫𝑷𝑰𝟏 + √𝑱𝟐 − 𝜷𝑫𝑷 = 𝟎                                                              (2.73) 

Where αDP and βDP are associated with the internal friction angle φ and the cohesive strength τ0 

for linear conditions. For evaluating a given rock formation failure, the second deviatoric 

invariant (√𝐽2 ) must be plotted against the first invariant, the mean effective stress (𝐼1) (Yu, et 

al., 2002). 

√𝑱𝟐 = 𝜶𝑫𝑷𝑰𝟏 + 𝜷𝑫𝑷                                                                        (2.74) 

𝑰𝟏 =
𝝈𝒓𝒓+𝝈𝜽𝜽+𝝈𝒛𝒛

𝟑
− 𝒑(𝒓, 𝒕)                                                        (2.75) 

𝑱𝟐 =
𝟏

𝟔
((𝝈𝒓𝒓 − 𝝈𝜽𝜽)𝟐 + (𝝈𝜽𝜽 − 𝝈𝒛𝒛)𝟐 + (𝝈𝒓𝒓 − 𝝈𝒛𝒛)𝟐) + 𝝈𝒓𝜽

𝟐 + 𝝈𝜽𝒛
𝟐 + 𝝈𝒓𝒛

𝟐             (2.76) 

The constants 𝛼 and 𝛽 are estimated by using Young’s Modulus and Poisson’s ratio as follows 

(Yu, et al., 2002):  
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𝜷𝑫𝑷 =
𝟐√𝟐𝒄 𝐜𝐨𝐬 𝝋

𝟑−𝐬𝐢𝐧 𝝋
                                                                       (2.77) 

𝛂𝐃𝐏 =
𝟐√𝟐  𝐬𝐢𝐧 𝛗

𝟑−𝐬𝐢𝐧 𝛗
                                                                    (2.78) 

Where c is the cohesive strength and 𝜃 is the friction angle. 

A potential failure occurs when the effective collapse stress, 𝜎𝑐𝑙 given at a specific point is less 

than zero (Yu, et al., 2002): 

𝝈𝒄𝒍 = −√𝑱𝟐 + 𝛂𝐃𝐏𝑰𝟏 + 𝜷𝑫𝑷 ≤ 𝟎                                                  (2.79) 

Hence, collapse failure happens when the rock strength exceeds the rock stress, or in this case, 

when the failure index 𝜎𝑐𝑙, becomes negative. This criterion fits higher stress levels.  

2.3.1.3 Ewy-Modified Lade 

The Lade failure criterion is developed for cohesion material. The model reads (Ewy, 1998):  

(
𝑰𝟏

𝟑

𝑰𝟑
− 𝟐𝟕) (

𝑰𝟏

𝑷𝒂
)

𝒎𝑬𝒘𝒚
− 𝜼𝑬𝒘𝒚,𝟏 = 𝟎                                                   (2.80)    

I1 and I3 are the first and the second invariant stresses tensors, mEwy and 𝜂𝐸𝑤𝑦,1 are material 

constants and 𝑃𝑎 is the atmospheric pressure. In addition: 

𝑰𝟏 = 𝝈𝟏 + 𝝈𝟑 + 𝝈𝟑                                                            (2.81) 

𝑰𝟑 = 𝝈𝟏𝝈𝟐𝝈𝟑                                                                      (2.82) 

 

2.3.1.3.1 Modified Version 

The modification is on the first and the second invariant stresses tensors. These are given as 

(Ewy, 1998): 

𝑰𝟏 = (𝝈𝟏 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎) + (𝝈𝟐 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎) + (𝝈𝟑 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎)                                (2.83) 

𝑰𝟑 = (𝝈𝟏 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎)(𝝈𝟐 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎)(𝝈𝟑 + 𝑺𝑬𝒘𝒚 − 𝑷𝟎)                                   (2.84) 

The material constants SEwy and ηEwy relate to the Coulomb strength parameters by: 
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𝑺𝑬𝒘𝒚 =
𝒄

𝐭𝐚𝐧 𝝓
                                                           (2.85) 

𝜼𝑬𝒘𝒚 = 𝟒𝐭𝐚𝐧𝟐 𝝓
(𝟗−𝟕 𝐬𝐢𝐧 𝝓)

(𝟏−𝐬𝐢𝐧 𝝓)
                                                      (2.86) 

 

2.3.1.4 Mogi- Coulomb 

The Mogi-Coulomb failure criterion is considered an extended version of the Mohr-Coulomb 

criterion. It was introduced by Al-Ajmi and Zimmermann (Al-Ajmi & Zimmermann, 2006), 

who reviewed several rock failure models on data from numbers of rock types. Their conclusion 

was that the Mohr-Coulomb criterion underestimated the rock strength, while the Drucker- 

Prager criterion overestimated it. By considering the importance of the intermediate principal 

stress associated with failure, and accounting for the cohesion strength and the friction angle, 

they stated that applying this model would give best practice. The formulation of the criterion 

is given as following (Al-Ajmi & Zimmermann, 2006): 

𝝉𝒐𝒄𝒕 = 𝒌𝑴𝒈𝑪 + 𝒎𝑴𝒈𝑪𝝈𝒐𝒄𝒕                                                             (2.87) 

Where 𝜏𝑜𝑐𝑡  and 𝜎𝑜𝑐𝑡  are the octahedral shear and normal stresses expressed as (Al-Ajmi & 

Zimmermann, 2006): 

𝝉𝒐𝒄𝒕 =
𝟏

𝟑
√(𝝈𝟏 − 𝝈𝟐)𝟐 + (𝝈𝟏 − 𝝈𝟑)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 =  √

𝟐

𝟑
𝑱𝟐                       (2.88) 

𝝈𝒐𝒄𝒕 =
𝟏

𝟑
(𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑)                                                   (2.89) 

In this relation, kMgC and mMgC are rock material constants and these may be evaluated from the 

intercept and the slope of the resulting failure envelope when plotting 𝜏𝑜𝑐𝑡 versus 𝜎𝑜𝑐𝑡.  The 

Figure 2.22 illustrates the example of the best fits from a fictional triaxial and polyaxial test. 
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FIGURE 2.22: MOGI-COULOMB FAILURE ENVELOPE (AL-AJMI & ZIMMERMANN, 2006) 

 

2.3.1.5 Stassi D’Alia 

Stassi d’Alia is a simple linear elastic failure criterion model used to estimate shear failure. The 

model has been commonly used by Statoil ASA as it has proven to provide reliable data for 

many years. The failure criterion is presented as follows (Stjern, et al., 2003):  

(𝝈𝟏 − 𝝈𝟐)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 + (𝝈𝟑 − 𝝈𝟏)𝟐 = 𝟐(𝑪𝟎 − 𝝉𝟎)(𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑 + 𝟐𝑪𝟎𝝉𝟎)              (2.90) 

The tensile strength,𝜏0, is often set equal to zero, to prevent sudden unwanted effects occurring 

when the tensile strength is increased. 

When 𝜏0 = 0: 

(𝝈𝟏 − 𝝈𝟑)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 + (𝝈𝟑 − 𝝈𝟏)𝟐 = 𝟐𝑪𝟎(𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑)                        (2.91) 

One disadvantage of the model is that it seems to overestimate the importance of the 

intermediate principal stress,𝜎2 , resulting in misleading collapse predictions. However, to 

improve the source of error, the criterion might be calibrated against collapse problems in two 

comparable wells (Stjern, et al., 2003).  

2.3.2 Fracture Model 

Tensile failure of a material occurs when the tensile strength is exceeded by the minimum 

compressive effective principal stress,  𝜎𝑚𝑖𝑛
𝑒𝑓

, resulting in a non-negative breakdown failure 

index 𝜎𝑏𝑑. The ultimate tensile strength is the limit where the tensile stress may lead to tensile 

failure.   
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2.3.2.1 Rankine Failure Criteria 

Unlike for collapse failure modeling, one failure criterion for tensile failure modeling is used. 

The failure criterion according to Rankine is given as (Fjær, et al., 2008):  

𝝈𝟑 = −𝝈𝑻                                                                         (2.92) 

Where  𝜎3 is the effective minimum principal stress and 𝜎𝑇 is the tensile strength of the rock. 

This type of failure may be ductile, which yields at the first stage, hardens at the second stage 

and breaks after a possible “neck” formation. When brittle failure occurs, the formation may 

suddenly break into two or several pieces at low stress state. Naturally, formed cracks or 

fractures make rocks weak and the tensile strength for rocks is negligible. 
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3 Well Collapse Modeling 

 

This chapter presents the well collapse modeling derived for this thesis. The well collapse 

models are based on the Stassi d’Alia and the Mohr-Coulomb failure criteria. The models will 

be used in the case studies of the Heidrun and Norne well programs.  

3.1 Well Collapse Modeling Based on Stassi D’Alia 

Failure Criteria 

This well collapse model is based on the Stassi d’Alia failure criterion. The derived model 

considers driving forces such as temperature and chemical effects. This is an improved borehole 

stability model, routinely used by Statoil ASA (Stjern, et al., 2003).  

The Stassi d’Alia failure criterion: 

(𝝈𝟏 − 𝝈𝟐)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 + (𝝈𝟑 − 𝝈𝟏)𝟐 = 𝟐(𝑪𝟎 − 𝝉𝟎)(𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑 + 𝟐𝑪𝟎𝝉𝟎)              (2.90) 

Assume that the tensile strength is equal to zero, ( 𝜏0 = 0), to avoid unexpected effects that 

commonly occur if the tensile strength is increased. 

(𝝈𝟏 − 𝝈𝟑)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 + (𝝈𝟑 − 𝝈𝟏)𝟐 = 𝟐𝑪𝟎(𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑)                            (2.91) 

The stresses are as following: 

𝝈𝟏 = 𝝈𝜽 = 𝟑𝝈𝒙 − 𝝈𝒚 + 𝟐𝜼(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) + 𝒌𝑺 − 𝑷𝒘                                     (3.1) 

𝝈𝟐 = 𝝈𝒛 = 𝝈𝒗 + 𝒌𝑺 + 𝟐𝜼(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎)                                           (3.2) 

𝝈𝟑 = 𝑷𝒘                                                                           (3.3) 

Where: 

𝒌𝑺 =
𝑬𝜶𝒎

𝟑(𝟏−𝒗)
(𝑻𝒘 − 𝑻𝒐)                                                         (3.4) 

𝜼𝑺 =
𝜶𝒐(𝟏−𝟐𝒗)

𝟏−𝒗
                                                                     (3.5) 

Inserting the stresses into the failure criteria: 
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𝝈𝟏 − 𝝈𝟐 = 𝟑𝝈𝒙 − 𝝈𝒚 + 𝟐𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) + 𝒌𝑺 − 𝑷𝒘 − 𝝈𝒗 − 𝟐𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) − 𝒌𝑺          (3.6) 

𝝈𝟏 − 𝝈𝟐 = 𝟑𝝈𝒙 − 𝝈𝒚 − 𝑷𝒘 − 𝝈𝒗 = 𝑪𝟏𝟐 − 𝑷𝒘                                          (3.7) 

𝝈𝟐 − 𝝈𝟑 = 𝝈𝒗 + 𝒌𝑺 + 𝟐𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) − 𝑷𝒘                                         (3.8) 

𝝈𝒗 + 𝒌𝑺 − 𝟐𝜼𝑺(𝑷𝝅 + 𝑷𝟎) − (𝟏 − 𝟐𝜼𝑺)𝑷𝒘 = 𝑪𝟐𝟑 − 𝜶𝑺𝑷𝒘                                    (3.9) 

𝝈𝟑 − 𝝈𝟏 = 𝟑𝝈𝒙 − 𝝈𝒚 + 𝟐𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) + 𝒌𝑺 − 𝟐𝑷𝒘 = 𝑪𝟏𝟑 − 𝜷𝑺𝑷𝒘                   (3.10) 

𝝈𝟏 + 𝝈𝟐 + 𝝈𝟑 = 𝟑𝝈𝒙 − 𝝈𝒚 + 𝟒𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) + 𝟐𝒌𝑺 + 𝝈𝒗 = 𝑪𝟏𝟐𝟑 − 𝝎𝑺𝑷𝒘              (3.11) 

Finally: 

(𝑪𝟏𝟐 − 𝑷𝒘)𝟐 + (𝑪𝟐𝟑 − 𝜶𝑺𝑷𝒘)𝟐 + (𝑪𝟏𝟑 − 𝜷𝑺𝑷𝒘)𝟐 = 𝟐𝑪𝟎(𝑪𝟏𝟐𝟑 − 𝝎𝑺𝑷𝒘)                   (3.12) 

𝑷𝒘
𝟐 − 𝟐𝑪𝟏𝟐𝑷𝒘 + 𝑪𝟏𝟐

𝟐 + 𝜶𝑺
𝟐𝑷𝒘

𝟐 − 𝟐𝜶𝑺𝑪𝟐𝟑𝑷𝒘 + 𝑪𝟐𝟑
𝟐 + 𝜷𝑺

𝟐𝑷𝒘
𝟐 − 𝟐𝑪𝟏𝟑𝜷𝑺𝑷𝒘 + 𝑪𝟏𝟑

𝟐 = 𝟐𝑪𝟎𝑪𝟏𝟐𝟑 + 𝟐𝑪𝟎𝝎𝑺𝑷𝒘) (3.13) 

𝑷𝒘
𝟐 (𝟏 + 𝜶𝑺

𝟐 + 𝜷𝑺
𝟐) − 𝟐(𝑪𝟏𝟐 + 𝑪𝟐𝟑 + 𝑪𝟏𝟑 +𝑪𝟎𝝎𝑺)𝑷𝒘 + 𝑪𝟏𝟐

𝟐 + 𝑪𝟐𝟑
𝟐 + 𝑪𝟏𝟑

𝟐 − 𝟐𝑪𝟎𝑪𝟏𝟐𝟑 = 𝟎      (3.14) 

Applying the second-degree formula: 

𝒂𝑷𝒘
𝟐 + 𝒃𝑷𝒘 + 𝒄 = 𝟎                                                            (3.15) 

Where: 

𝒂 = 𝟏 + 𝜶𝑺
𝟐 + 𝜷𝑺

𝟐 = 𝟏 + (𝟏 − 𝟐𝜼𝑺)𝟐 + 𝟒(𝟏 − 𝜼𝑺)𝟐                                   (3.16) 

𝜷𝑺 = 𝟐𝜼𝑺 − 𝟐 = −(𝟐 − 𝟐𝜼𝑺)                                                  (3.17) 

𝒃 = −𝟐(𝑪𝟏𝟐 + 𝑪𝟐𝟑 + 𝑪𝟏𝟑)                                                   (3.18) 

𝝎𝑺 = 𝟒𝜼𝑺                                                                        (3.19) 

𝑪𝟏𝟐 = 𝟑𝝈𝒙 − 𝝈𝒚 + 𝒌𝑺 − 𝝈𝒗                                                  (3.20) 

𝑪𝟐𝟑 = 𝝈𝒗 + 𝒌𝑺 − 𝟐𝜼𝑺(𝑷𝝅 + 𝑷𝟎)                                                (3.21) 

𝑪𝟏𝟑 = 𝟑𝝈𝒙 − 𝝈𝒚 − 𝟐𝜼𝑺(𝑷𝝅 + 𝑷𝟎) + 𝒌                                           (3.22) 
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 𝑪𝟏𝟐𝟑 = 𝟑𝝈𝒙 + 𝟒𝜼𝑺(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎) + 𝟐𝒌𝑺 + 𝝈𝒗                                        (3.23) 

𝒄 = 𝑪𝟏𝟐
𝟐 + 𝑪𝟐𝟑

𝟐 + 𝑪𝟏𝟑
𝟐 − 𝟐𝑪𝟎𝑪𝟏𝟐𝟑 + 𝟑𝑷𝟎

𝑵𝒆𝒘                                          (3.24) 

So: 

𝑷𝑺𝒕𝒂𝒔𝒔𝒊 𝒅′𝑨𝒍𝒊𝒂 =
−𝒃±√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
                                                      (3.25) 

 

3.2 Well Collapse Modeling Based on the Mohr-

Coulomb Failure Criterion 

Abdullah Tariq (Tariq, 2014) presented an analysis of the Mohr-Coulomb model where the 

result demonstrated that the model is very sensitive to thermal and chemical effects. The model 

demonstrated that the well got stronger when 𝑎𝑑𝑓 > 𝑎𝑓𝑤. However, in this thesis, a new model 

was derived, based on other states of Mohr-Coulomb. The approach is as it was presented in 

section 2.3.1.1 for the case 𝜎𝑧 ≥ 𝜎𝜃 > 𝜎𝑟 (Fjær, et al., 2008): 

  𝑷𝒘 ≤ 𝑷𝟎 +
𝝈𝒗−𝑷𝟎−𝑪𝟎

𝐭𝐚𝐧𝟐 𝜷𝑴𝑪
                                                       (3.26) 

The stresses at the wellbore are: 

𝝈𝒛𝒛 = 𝝈𝒛 + 𝟐𝝂(𝝈𝒙 − 𝝈𝒚) + 𝒌𝑴𝑪 + 𝟐𝜼𝑴𝑪(𝑷𝒘 − 𝑷𝝅 − 𝑷𝟎)                                  (3.27) 

𝝈𝒓 = 𝑷𝒘 − 𝑷𝟎                                                                              (3.28) 

Inserting into Mohr-Coulomb failure criterion (equation 3.26), one can solve the collapse 

pressure: 

𝑷𝒄𝒑 =
𝝈𝒛+𝟐𝝂(𝝈𝒙−𝝈𝒚)+𝒌𝑴𝑪−𝑪𝟎+𝜶𝑴𝑪𝑷𝟎 𝐭𝐚𝐧𝟐 𝜷𝑴𝑪−𝟐𝜼(𝑷𝝅−𝑷𝟎)

𝐭𝐚𝐧𝟐 𝜷𝑴𝑪−𝟐𝜼𝑴𝑪
                                       (3.29) 

In the absence of thermal, poroelastic and chemical effect: 

𝑷𝒄𝒑 =
𝝈𝒛+𝟐𝝂(𝝈𝒙−𝝈𝒚)−𝑪𝟎+𝜶𝑴𝑪𝑷𝟎 (𝟏−𝐭𝐚𝐧𝟐 𝜷𝑴𝑪)

𝐭𝐚𝐧𝟐 𝜷𝑴𝑪
                                         (3.30) 
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3.3 Transient State Modeling 

As sonic logs are not available for the modeling in this thesis, back calculations for 

compressional wave velocity using Gardner’s relation (equation 2.2) was performed. Uniaxial 

compressive strength may be calculated using several models, but in this thesis the model 

derived by Horsrud (2001) (Horsrud, 2001) and Lal et al (1999) (Lal, 1999) is applied. By using 

sonic logs they could estimate the strength as following (Horsrud, 2001): 

𝑪𝟎[𝑴𝑷𝒂] = 𝟎, 𝟕𝟕 (
𝟑𝟎𝟒,𝟖

∆𝒕(𝒔𝒐𝒏𝒊𝒄)
)

𝟐,𝟗𝟑

                                                (3.31) 

                                      

𝑪𝟎 = 𝟎, 𝟕𝟕𝒗𝒑
𝟐,𝟗𝟑

                                                           (3.32) 

                                                     

The transient effect is dependent on the uniaxial compressive strength (UCS). As the uniaxial 

compressive strength is a time dependent parameter, it may be expressed as following (Lal, 

1999): 

𝑪(𝒕) = (𝑪𝒐 − 𝑪𝒆)𝒆𝒂𝒕 + 𝑪𝒆                                                     (3.33) 

 

Where t is time in days, a is a constant and 𝐶𝑒 is the equivalent cohesive strength. As time 

passes, the cohesive strength of any formation reduces to the equivalent cohesive strength. 

Figure 3.1 illustrates the uniaxial compressive strength (cohesive strength) as a function of time. 

For this simulation, the constant a = -0,5 and the equivalent cohesive strength, 𝐶𝑒 was assumed 

to be 60% of the steady state uniaxial compressive strength, 𝐶0. As can be seen, the strength 

reduces 66% after 10 days. 

 

 

Figure 3.1: Cohesive Strength as a function of time (graph from Excel) 
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4 Simulation 
 

As new stresses around the wellbore arises, and hence the collapse strength changes. A 

continuous control over the well pressures is required and ensuring that wellbore instability is 

maintained. By applying the given equations from chapter 2 and the derived models from 

chapter 3, new collapse pressures may be simulated. The primary objective of this simulation 

is to study the effect of changing various parameters. From the results, one will learn which 

parameters are the most sensitive therefore given the most caution. 

This chapter presents simulation studies on the two Norwegian Continental shelf oil field well 

programs, namely Heidrun and Norne. The Heidrun field case study is simulated both with the 

Mohr-Coulomb model and the Stassi d’Alia model, and the Norne field is only simulated using 

the Stassi d’Alia model. Both fields are simulated under steady and transient state conditions. 

The following sensitivity studies were performed by using Excel spreadsheets. Data from the 

Heidrun well program (Figure 4.3) and Norne well program (Figure 4.29) was digitized and 

implemented in the models. The shale properties used for the analyses were based on the given 

values in  

Table 2.1. The simulation results presented below are for the most sensitive parameters of the 

well program, whereas less sensitive parameter effects are for the most sensitive presented in 

the appendix. To illustrate the effects, the percentage change is presented in both diagrams and 

numbers.1 

4.1 Heidrun Field Simulation with Mohr-Coulomb 

Model  

For the Heidrun case study, the analyses were performed, based on the Mohr-Coulomb model 

derived in section 3.2. 

4.1.1 Heidrun Field  

The Heidrun field is situated at the Haltenbanken outside Mid-Norway, as shown in Figure 4.1. 

The field was discovered in 1985 by Conoco, and has been producing oil and gas since 1995. 

                                                                 
1 Ref = reference, meaning steady state 
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The current operator of the field is Statoil with a company share of approximately 13,043160 

% (NPD Facts Heidrun, 2015). The other partners are Petoro AS, ConocoPhillips Skandinavia 

AS and Eni Norge AS. A total of 76 wells have been planned on the main field, consisting of 

51 production wells, 24 water injection wells and one gas injection well (NPD Facts Heidrun, 

2015). 

 

FIGURE 4.1: THE LOCATION OF THE HEIDRUN FIELD (ANON., 2009)     

 

With a water depth of approximately 350 meters (NPD Facts Heidrun, 2015), the field is 

developed with a floating concrete TLP (Tension Leg Platform), installed over a subsea 

template. However, the northern part (The North Flank) is mainly developed with subsea 

facilities. Figure 4.2 shows an image of the platform above sea level. 

 

 

FIGURE 4.2: THE HEIDRUN FIELD (NPD FACTS HEIDRUN, 2015)  

 



47 
 

The reservoir is a sandstone reservoir of the respective Garn, Ile, Tilje and Åre Formations of 

Early and Middle Jurrasic age. As the reservoir is very faulted, the reservoir quality varies, 

depending on the formation. The depth of the reservoir is about 2300 meters (NPD Facts 

Heidrun, 2015).To withhold and maintain a high pressure, water and gas is injected in the Garn 

and Ile Formation as they are good quality formations. As the Tilje and Åre Formations are 

more complex, water injection is the only recovery strategy in this part of the reservoir. 

Considering the age of the field, several methods have been implemented to prolong the lifetime 

of the wells and improve the recovery. A few examples of these are: new drilling technology, 

new EOR (Enhanced Oil Recovery) methods, new well targets and Light Well Interventions. 

The shale formations in the Heidrun field are namely Brygge, Tare and Tang which are of 

Lower-Tertiary age. These three formations are commonly known as the “troublesome BTT” 

(Brygge Tare Tang). Drilling these shales resulted in severe pack-off and lost circulation 

problems (Stjern, et al., 2003).  

The wellbore program used in this thesis for the Heidrun simulations is a prognosis of a stability 

plot from a typical Heidrun TLP well (Stjern, et al., 2003). See figure 4.3. As Heidrun is located 

in an environmentally critical area, only water-based mud is accepted during drilling. However, 

KCl is utilized as an inhibitive additive in the mud. 

The Heidrun TLP wells are generally drilled in three sections; the 171/2U section down into the 

Kai formation, the 121/2U section reaching top of the reservoir and the 811/2U section through 

the reservoir (Stjern, et al., 2003). 
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FIGURE 4.3: PROGNOSIS STABILITY PLOT FOR A TYPICAL HEIDRUN TLP WELL (STJERN, ET AL., 2003)  
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4.1.2 Steady State Parameter Sensitivity Studies  

The exact changes (increase or decrease) are defined in the sections below. The sensitivity of 

two parameters is analyzed. 

4.1.2.1 Effect of Poisson’s Ratio  

Poisson’s ratio is an important parameter used to compute the horizontal stress, the thermal and 

poroelastic effect. This simulation will illustrate the effects of changing the value of Poisson’s 

ratio from 0,22 to 0,25 and then to 0,27. Table 4.1 displays the simulation input parameters. 

The reference values are in the first column, with Poisson’s ratio = 0,22.  

TABLE 4.1: INPUT PARAMETERS 

Parameters Ref. Input values 

Poisson’s ratio, ν 0,22 0,25 0,27 

Biot’s coefficient, αBiot 0,86 - - 

MC= 0,62 0,57 0,54 

Internal friction angle, φ, deg 35 - - 

Failure angle, βMC, deg 62,5 - - 

 

Figure 4.4 shows the simulation result. As seen from figure 4.5, when the Poisson’s ratio 

increases by 3%, the collapse pressure increases by an average value of 0,8%. 
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FIGURE 4.5: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE                                                       
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4.1.2.2 Effect of Biot’s Coefficient 

Table 4:2 displays  the simulation input parameters. The reference values are in the first column, 

with Biot’s coefficient = 0,86. This simulation will display the effects of changing the value of 

Biot’s coefficient from 0,86 to 0,87 to 0,88 to 0,95.  Figure 4.6 shows the simulation result. As 

seen from figure 4.7 when the Biot’s coefficient increases by 1%, the collapse pressure 

increases by an average of 0,9%. 

 

TABLE 4.2: INPUT PARAMETERS 

Parameters Ref. Input values 

Biot’s coefficient, αBiot 0,86 0,87 0,88 0,95 

Poisson’s ratio, ν 0,22 - - - 

MC= 0,62 - - - 

Internal friction angle,φ, deg 35 - - - 

Failure angle, βMC, deg 
62,5 - - - 
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FIGURE 4.6: PRESSURE RESULTS FOR CHANGES IN 

BIOT'S COEFFICIENT 

 

FIGURE 4.7: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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4.1.2.3 Effect of Activity 

Table 4:3 display the simulation input parameters. The reference values are in the first column, 

and considered while there is no chemical effect activity (𝑎𝑓𝑤 = 𝑎𝑑𝑓 ). The second column 

display the values for 𝑎𝑓𝑤 = 0,91 and 𝑎𝑑𝑓 = 0,80 (𝑎𝑓𝑤 > 𝑎𝑑𝑓), and the third column show the 

values for 𝑎𝑓𝑤 = 0,91 and 𝑎𝑑𝑓 = 0,95 (𝑎𝑓𝑤 < 𝑎𝑑𝑓). The value for the water activity in the 

shale does not vary as the activity of the formation water cannot be changed. 

TABLE 4.3: INPUT PARAMETERS 

Parameters Ref. Input values 

Activity, a afw = adf adf=0,80 adf=0,95 

Thermal conductivity, k0 8,633x10-6 - - 

E-modulus 6895 - - 

Temperature, deg C Tw - - 

Internal friction angle, φ , deg 32 - - 

Biot’s coefficient, αBiot 0,86 - - 

Poisson’s ratio, ν 0,22 - - 

MC= 0,62 - - 

Failure angle, βMC, deg 61 - - 

 

Figure 4.8 shows the simulation result. As seen from figure 4.9, when water activity of the 

drilling fluid is 13,8% lower than the activity of the shale formation, the collapse pressure 

changes from a negative effect (minimum at -22,9%) to a positive effect (maximum at 17,6%), 

and then to a negative effect again (-2,8 % at the bottom of the well). When the water activity 

of the drilling fluid is 4,2% higher than the activity of the shale formation, the collapse pressure 

changes by 4,9% on the top of the well, by 28,6% at the maximum, and then it changes by 3,1% 

at the bottom of the well. 
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FIGURE 4.8: PRESSURE RESULTS FOR CHANGES IN 

WATER ACTIVITY OF THE DRILLING FLUID 

FIGURE 4.9: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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4.1.3 Transient State Parameter Sensitivity Studies 

In the above steady state well instability study, it was demonstrated that the combination of 

temperature and chemical effects influences the collapse strength. In this simulation, the 

transient effect is simulated based on in-situ stresses, thermal, chemical, and poroelastic driving 

forces. 

4.1.3.1 Transient Effect on the Uniaxial Compressive Strength 

Figure 4.10 shows the transient effect on the input parameter uniaxial compressive strength. 

The figure illustrates how the strength changes from the reference point (where only in-situ 

stresses are affecting) to after one day and ten days (during thermal and chemical effects). The 

figure displays that the UCS increases with time. 

 

 

FIGURE 4.10: TRANSIENT EFFECT ON THE UCS 

 

The uniaxial compressive strength decreases 15,7% after 1 day, and after 10 days it decreases 
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4.1.3.2 The Effect of Only In-Situ Stresses on the Collapse Pressure 
 

Figure 4.11 displays the effect of only the in-situ stresses (without thermal and chemical 

effects). As seen, the change is not very visible from the first day to the tenth day. Figure 4.12 

displays the percent change in the collapse pressure after one day and ten days when only in-

situ stresses are acting. As seen, first the collapse pressure increases and changes with a 

maximum percentage of 21,2 % then after ten days (20,6% after one day) at 1500 meters. 

Afterwards it decreases again, and changes with a percentage of 1,2 % after ten days (0,8 % 

after one day) in the bottom of the well. Hence, the collapse pressure is most affected in the 

middle of the well, when only in-situ stresses are the acting force. 
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FIGURE 4.11: EFFECT OF ONLY IN-SITU STRESSES 

 
FIGURE 4.12: PERCENTAGE CHANGE OF 

THE COLLAPSE PRESSURE 
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4.1.3.3 Combined Effect after One Day 

Figure 4.13 displays the total effect after one day. As seen, when the activity of the drilling 

fluid is higher than the activity of the formation water(𝑎𝑑𝑓 > 𝑎𝑓𝑤 ), the collapse pressure 

increases. When the activity of the drilling fluid is lower than the activity of the formation 

water(𝑎𝑑𝑓 < 𝑎𝑓𝑤), the collapse pressure decreases. It should be noted here, that if neither 

transient nor chemical and thermal effects are designed for, the well might collapse in some 

sections when 𝑎𝑑𝑓 < 𝑎𝑓𝑤.  Figure 4.14 displays the percentage change in collapse pressure after 

one day. As seen, when 𝑎𝑑𝑓 < 𝑎𝑓𝑤, the change is first increasing (from -22,7% to 18,5% at the 

maximum), but then it decreases again (from 18,5% to -5,5%). When 𝑎𝑑𝑟 > 𝑎𝑓𝑤, the change is 

first increasing (from -5,1% to 29,2% at the maximum), but then it decreases again (from 29,2% 

to -0,1%).  
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FIGURE 4.13: TOTAL EFFECT AFTER ONE DAY 

 
FIGURE 4.14: PERCENTAGE CHANGE OF 

THE COLLAPSE PRESSURE AFTER ONE 

DAY 
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4.1.3.4 Combined Effect after Ten Days 

Figure 4.15 displays the total effect after ten days. As seen, the curves are quite similar to the 

curves in figure 4.13 for one day. Hence, the collapse pressure changes in a similar way after 

ten days. Figure 4.16 displays the percentage change after ten days, with a basis of the reference 

point. This figure is also very similar to the figure for one day (Figure 4.14). As seen, 

when 𝑎𝑑𝑓 < 𝑎𝑓𝑤, the change is first increasing (from -22,4% to 19,4% at the maximum), but 

then it decreases again (from 19,4% to -4,9%). When 𝑎𝑑𝑓 > 𝑎𝑓𝑤, the change is first increasing 

(from 5,5% to 30,2% at the maximum), but then it decreases again (from 30,2% to 0,8%) to the 

bottom of the well. 
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FIGURE 4.15: TOTAL EFFECT AFTER TEN DAYS 

 

FIGURE 4.16: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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4.1.3.5 Combined Effect from the First to the Tenth Day  

The figures 4.17 and 4.18 considers the effect of only in-situ stresses (no thermal or chemical 

effects). Figure 4.17 displays the change of the collapse pressure when only in-situ stresses are 

affecting. The figure displays that there is not much of a change from the first to the tenth day 

as the curves are almost identical. Figure 4.18 displays the percentage change in the collapse 

pressure after the tenth day with the basis of the first day. As seen, the change is very low and 

ranges from 0,2-0,5%. 
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 FIGURE 4.17: COLLAPSE PRESSURES FROM THE FIRST 

TO THE TENTH DAY WHEN ONLY IN-SITU STRESSES ARE 

ACTING 

FIGURE 4.18: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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Figure 4.19 and 4.20 considers the thermal and chemical effect on the collapse pressure from 

the first day to the tenth day. Figure 4.19 displays the change in thermal and chemical effect 

when 𝑎𝑑𝑓 > 𝑎𝑓𝑤 and when 𝑎𝑑𝑓 < 𝑎𝑓𝑤. As seen, the curves of the first day and the tenth day 

are almost identical. Figure 4.20 displays the percentage change of the thermal and chemical 

effect. As mentioned, the change is not very significant. As illustrated in figure 4.20, the change 

ranges from 0,4-0,9% when 𝑎𝑑𝑓 < 𝑎𝑓𝑤 and from 0,3-0,8% when 𝑎𝑑𝑓 > 𝑎𝑓𝑤. 
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FIGURE 4.19: THERMAL AND CHEMICAL EFFECT ON 

THE COLLAPSE PRESSURE AFTER ONE AND TEN DAYS 

FIGURE 4.20: PERCENTAGE CHANGE OF 

THERMAL AND CHEMICAL EFFECT FROM 

THE FIRST TO THE TENTH DAY 
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4.2 Heidrun Field Simulation with Stassi D’Alia 

The following simulation is based on the Stassi d’Alia failure criterion, modeled in section 3.1.  

4.2.1 Steady State Chemical and Thermal Effects  

In this section, only the effect of the activity of the drilling fluid is considered. Table 4.4 

displays the input parameters. This simulation will illustrate the effects of changing the value 

of the drilling fluid activity from 0,8 to 0,91, while the shale formation water activity is held 

constant at 0,91.  Figure 4. 21 illustrates the change of the collapse pressure due to thermal and 

chemical effects. As seen, from figure 4.22, the change ranges from -22,6% to -2,1% when 

𝑎𝑑𝑓 < 𝑎𝑓𝑤, and from 0,9% to 13,2% when 𝑎𝑑𝑓 > 𝑎𝑓𝑤. Hence, the collapse pressure decreases 

when 𝑎𝑑𝑓 < 𝑎𝑓𝑤 and increases when 𝑎𝑑𝑓 > 𝑎𝑓𝑤.  Figure 4.23 displays the wellbore pressures 

to the bottom of the well when thermal and chemical effects are influencing on the collapse 

pressure. 

TABLE 4.4: INPUT PARAMETERS 

Parameters Ref. Input values 

Activity of drilling fluid, adf 0,8 0,95 

Activity of formation water, afw  0,91 - 

Poisson’s ratio, ν 0,32 - 

S= 0,502941 - 

Biot’s coefficient, αBiot 0,95 - 

Temperature Tw, deg C 350 - 
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FIGURE 4.23: WELLBORE PRESSURES 
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4.2.2 Transient State Chemical and Thermal Effects 

The transient effect is derived as in section 3.3. This section considers the combination of 

transient effect with thermal and chemical effect after one day. The input parameters are as 

defined in Table 4.4.  Figure 4.24 displays how the pressures are affected by the thermal, 

chemical and transient effect. As illustrated in Figure 4.25, the change is most visible from 

1000-1700 meters. At this interval, it shows a change of 1,41- 1,53% when  𝑎𝑑𝑓 < 𝑎𝑓𝑤 and 

1,43-1,59% when 𝑎𝑑𝑓 > 𝑎𝑓𝑤. Figure 4.26 illustrates the changes in the collapse pressure due 

to the combination of the transient, thermal and chemical effects. 

 

TABLE 4.5: INPUT PARAMETERS 

Parameters Ref. Input values 

Activity of drilling fluid, adf 0,8 0,95 

Activity of formation water, afw 0,91  

Poisson’s ratio, ν 0,32 - 

S= 0,502941 - 

Biot’s coefficient, αBiot 0,95 - 

Temperature Tw, deg C 350 - 
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FIGURE 4.24: CHANGES IN THE COLLAPSE PRESSURE 

COMPARED TO REFERENCE POINT 

 

FIGURE 4.25: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE DUE TO TRANSIENT, 

CHEMICAL AND THERMAL EFFECTS 
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FIGURE 4.26: WELLBORE PRESSURES 

 

4.3 Norne Field Simulation with Stassi D’Alia Model 

The analyses for the Norne case study were based on the Stassi d’Alia model derived in section 
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4.3.1 Norne Field 

Norne is an oil field located approximately 80 km north of the Heidrun field in the Norwegian 

Sea, as seen in Figure 4.27. It was discovered in December 1991 and is located in the blocks 

6608/10 and 6508/1 (NPD Facts Norne, 2015).The field was developed with a production and 

storage vessel, “Norne FPSO”, connected to seven subsea templates, as seen in Figure 4.28 

(NPD Facts Norne, 2015). A flexible riser to the vessel carries the well stream, which are 

anchored to the sea floor. A processing plant is located on the deck of the ship, while the vessel 

has storage tanks for stabilized oil.  

 

 
FIGURE 4.27: THE LOCATION OF THE NORNE FIELD (PTIL/PSA, U.D.) 

 

 

FIGURE 4.28: NORNE FIELD (NPD, U.D.) 
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At the point of discovery, the estimated recoverable oil reserves were 450 million barrels.  The 

water depth is approximately 380 meters. The reservoir is located at 2500 meters below the 

seabed and consists of sandstone of the Åre, Tilje, Tofte, Ile, Not and Garn formations. The 

field is operated from Harstad by Statoil ASA and its partners (Eni Norge AS and Petoro) 

(Adlam, 1995). 

In August 1996, the development drilling commenced, while oil production began November 

1997 (NPD Facts Norne, 2015). The oil is produced by water injection. Since the gas injection 

was stopped in 2005, all of the gas is now exported. The field consists of two oil compartments; 

the North-East Segment (Norne G-segment) and the Norne Main Structure (Norne C-,D- and 

E-segment) (NPD Facts Norne, 2015). 

The given well program for this case study is 6608/10-K-2 H pilot (see Figure 4.29) (NPD Facts 

Norne, 2015). The reason for choosing exactly this field and well program is because there is 

shale all the way from the seabed down to the reservoir, which makes the simulation more 

precise. The well 6608/10-2 was originally the first wildcat well at the field. It was entered 28th 

of October 1991 and completed on January 29th 1992. The current status of the well is plugged 

and abandoned (NPD Facts Norne, 2015). However, the well from the given wellbore program, 

6608/10-K-2, was drilled for observational purposes. By 2010 a total of 50 wells had been 

drilled in the field where 33 were producers, 10 water injectors and 7 were observation wells 

(NPD Facts Norne, 2015). 
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FIGURE 4.29: DRILLING PROGRAM FOR NORNE (STATOIL ASA, 2010)  
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4.3.2 Steady State Parameter Sensitivity Studies 

The following sensitivity studies were performed by using Excel spreadsheets. The data from 

the Norne well program (figure 4.29) was digitized and the Stassi d’Alia model was applied.  

As seen from earlier simulations, not all parameters display significant changes caused by 

thermal, chemical or transient effects. Because of this, the results of the simulation of only two 

parameters are presented in the following sections. However, the activity of the drilling fluid 

has demonstrated significant effects, but as it has been simulated several times, it will not be 

presented again in this section. 

4.3.2.1 Effect of Poisson’s Ratio  

Table 4.6 displays the input parameters for this simulation. This simulation will illustrate the 

effects of changing the Poisson’s ratio from 0,32 to 0,30 and 0,34. Figure 4.30 shows the change 

in the collapse pressure due to different values of the Poisson’s ratio. As seen from figure 4.31, 

when the Poisson’s ratio is increased 6,3% (𝜈 = 0,34)  the collapse pressure increases with an 

average of 8%. When the Poisson’s ratio is decreased 6,3% (𝜈 = 0,32), the collapse pressure 

decreases with an average of 4,9%. Figure 4.32 illustrates the wellbore pressures with the effect 

of Poisson’s ratio. 

  TABLE 4.6: INPUT PARAMETERS 

Parameters Ref. Input values 

Poisson’s ratio, ν 0,32 0,3 0,34 

Activity of drilling fluid, adf 0,9 - - 

Activity of formation water, afw 0,9 - - 

S= 0,52941 - - 

Biot’s coefficient, αBiot 0,96 - - 

Temperature Tw, deg C 0 - - 
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FIGURE 4.30: CHANGE IN COLLAPSE PRESSURE 

 

FIGURE 4.31: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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FIGURE 4.32: WELLBORE PRESSURES 
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4.3.2.2 Effect of Biot’s Coefficient 

Table 4.7 displays the input parameters for this simulation. This simulation will illustrate the 

effects of changing the of Biot’s coefficient from 0,96 to 0,86 and 1,0. Figure 4.33 displays the 

changes in the collapse pressure due to the effect of Biot’s coefficient. As seen from figure 4.34, 

when the Biot’s coefficient is increased by 4,2% (𝛼 = 1,0), the collapse pressure decreases with 

an average of 1,5%. When the Biot’s coefficient is decreased by 10,4% (𝛼 = 0,86), the collapse 

pressure increases by 6,4%. Figure 4.35 displays the wellbore pressures with the effect of Biot’s 

coefficient. 

TABLE 4.7: INPUT PARAMETERS 

Parameters Ref. Input values 

Biot’s coefficient, αBiot 0,96 0,86 1,0 

Poisson’s ratio, ν 0,32   

Activity of drilling fluid, adf 0,9 - - 

Activity of formation water, afw 0,9 - - 

S= 0,52941 - - 

Temperature Tw, deg C 0 - - 
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FIGURE 4.33: CHANGE IN COLLAPSE PRESSURE DUE 

TO BIOT’S COEFFICIENT  

 

FIGURE 4.34:PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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FIGURE 4.35: WELLBORE PRESSURES 
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combination of the effects are not simulated in this section. The only parameters considered for 

the transient effect are time (1 and 10 days) and the uniaxial compressive strength, 𝐶0.  

 

 

FIGURE 4.36: TRANSIENT EFFECT  
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As seen from figure 4.36, the uniaxial compressive strength decreases by 15,7% after one day, 

and after ten days it decreases by 39,7% from its original value. Figure 4.37 displays the 

transient effect on the collapse pressure. By observing the figure, it is obvious that the collapse 

pressure increases with time. Figure 4.38 illustrates the percentage change in collapse pressure. 

As seen, after one day, the collapse pressure changes the most in the interval 1200-2400 meters 

(1,5 -1,9 %). After ten days, the collapse pressure changes the most in the interval 1000-2400 

meters (2,4 - 4,9%). 
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FIGURE 4.37: CHANGE IN COLLAPSE PRESSURE DUE TO 

TRANSIENT EFFECT 

 

FIGURE 4.38: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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5 Discussion 

 

In the following sections, the steady and transient state effects of the simulated parameters are 

discussed and compared. A few comparisons between the two well collapse models are also 

given. 

It should be noted that the simulations would be more accurate if sonic-log data were available 

for the two well programs of Heidrun and Norne. Also, if the parameters varied downwards the 

well instead of maintaining a constant value, the simulations and the models would be more 

precise . However, the best effort was made in choosing parameters in the most realistic ranges. 

5.1 Heidrun with the Mohr-Coulomb Model 

5.1.1 Steady State 

From the simulation results it is seen that the 3 % increase in Poisson’s ratio changed the 

collapse pressure by an average value of 0,8%. Although this change is not very high, it is 

definitely noticeable compared to other simulated effects of changing parameters. 

The results of changing the Biot’s coefficient demonstrated rather visible changes compared to 

Poisson’s ratio. When the Biot’s coefficient was altered by 1%, the collapse pressure increased 

with an average of 0,9%, which is approximately 3 times more than the effect of Poisson’s ratio. 

The simulation results demonstrated that the water activity of the drilling fluid is the most 

sensitive parameter during steady state simulation with the Mohr-Coulomb model. When the 

water activity of the drilling fluid is 13,8% lower than the activity of the shale formation, the 

collapse pressure changes from a minimum of -22,9% to a maximum of 17,6%. When the water 

activity of the drilling fluid is 4,2% higher than the activity of the shale formation, the collapse 

pressure changes with a minimum of 3,1% to a maximum of 28,6 %. 

5.1.2 Transient State 

As seen when plotting the UCS with depth, considering no other effects than in-situ stresses, 

the UCS decreases in time. After one day, it decreases 15,7 % and after ten days it decreases 

39,8%. Hence, the change is most severe after the first day. Furthermore, the effect of UCS on 
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the collapse pressure varies a lot down the well. The effect is the most prominent in the middle 

section of the well (around 1500 meters) when only in-situ stresses are acting. Considering the 

combined effect (transient, chemical and thermal), the collapse pressure increases when 𝑎𝑑𝑓 >

𝑎𝑓𝑤 and decreases when 𝑎𝑑𝑓 < 𝑎𝑓𝑤. The combined effect is the most visible in the upper part 

and in the middle part of the well. It should be noted that the change is not very visible from 

the first to the tenth day, but very visible from the reference point to the first day and from the 

reference point to the tenth day. The combined effect is due to the hydration of the shale, which 

evolves as time passes, and weakens the uniaxial compressive strength. 

5.2 Heidrun with the Stassi D’Alia Model 

5.2.1 Steady State 

As the activity of the drilling fluid demonstrated the most significant effect from the simulation 

with the Mohr-Coulomb model, only this parameter was presented for the Stassi d’Alia 

simulation. When 𝑎𝑑𝑓 < 𝑎𝑓𝑤  the collapse pressure decreases, and when 𝑎𝑑𝑓 > 𝑎𝑑𝑓  the 

collapse pressure increases as for the Mohr-Coulomb model. 

Changing the 𝑎𝑑𝑓 to a value of ca. 14% lower than the 𝑎𝑓𝑤, and also to a value of ca. 4% lower 

than the 𝑎𝑓𝑤, was presented similarly for the two models. Hence, it is easy to compare the two 

models and see the difference. When 𝑎𝑑𝑓  was 14% lower than the 𝑎𝑓𝑤  the Mohr-Coulomb 

showed changes in the range of -22,9% to 17,6%, while the Stassi d’Alia demonstrated in the 

range of -22,6% to -2,2%. Comparisons between the two models indicated that the water 

activity was more sensitive when applying the Mohr-Coulomb model than when applying the 

Stassi d’Alia model. 

5.2.2 Transient State with Combined Effect 

The combined effect after the first day, when the 𝑎𝑑𝑓 was ca. 1,4% lower than the 𝑎𝑓𝑤 and 

when 𝑎𝑑𝑓 was ca. 4% higher than the 𝑎𝑓𝑤 displayed the most visible changes in the middle 

section of the well (1000-1700 meters). In this section the changes ranged from 1,41-1,5% when 

𝑎𝑑𝑓 < 𝑎𝑓𝑤  and 1,43-1,59% when 𝑎𝑑𝑓 > 𝑎𝑓𝑤 . Hence, the combined effect seems to have a 

lower percentage impact than the single effect, when considering the drilling fluid activity. 



86 
 

5.3 Norne with the Stassi D’Alia Model 

5.3.1 Steady State  

When Poisson’s ratio increases by 6,3%, the collapse pressure increases by an average of 8%. 

When Poisson’s ratio is decreased by 6,3%, the collapse pressure decreases with an average of 

4,9%. This implies that the Poisson’s ratio is not as sensitive for the Stassi d’Alia model as it is 

for the Mohr-Coulomb model (when increased by 0,8% it gave an average increase of the 

collapse pressure by 3%). 

When Biot’s coefficient was increased by 4,2% the collapse pressure decreased by an average 

of 1,5%. When decreased by 10,4% the collapse pressure increased by 6,4%. This implies that 

when the Biot’s coefficient’s effect is simulated the Stassi d’Alia model works in an opposite 

way, than how the Mohr-Coulomb model works. 

5.3.2 Transient State 

When only in-situ stresses are considered, the UCS decreases by 15,7% after one day and 39,7% 

after ten days, the same as for the Mohr-Coulomb model. After one day the collapse pressure 

changes the most in the middle section of the well (1000-1400 meters) in the range of 1,5-1,9%. 

After ten days the collapse pressure changes the most in the same section, but in the range of 

2,4-4,9%. This is approximately the same change as when applying the Mohr-Coulomb model. 

Both models gave approximately 1,5% change after one day, and both models displayed the 

most significant change in the middle section of the well. 
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6 Conclusion  

The following conclusion is based on the overall simulation results obtained from the two 

derived models, Stassi d’Alia and Mohr-Coulomb. By analyzing the results, it can be seen that 

the chemical effects has a significant impact on the collapse curve. By changing the activity of 

the drilling fluid, the direction of the fluid flow may be controlled. The drilling fluid activity 

must therefore be carefully adjusted by adding different solutes during the design phase of the 

well program. 

 The temperature effects were not very visible, and the results were therefore not 

discussed, but rather put in the appendix. Hence, the case studies showed that chemical 

effects were far more dominating than the thermal effects for the given Norne and 

Heidrun well programs.  

 The transient effects were most visible after day one and the UCS had a great impact on 

the collapse pressure. Hence, it is important to include the continuous changes in 

collapse pressure in time, when designing the well program. 

 Observing the simulations for the steady state conditions, the most sensitive parameter 

is the activity of the drilling fluid, followed by the Biot’s coefficient, and then the 

Poisson’s ratio. 

 Observing the simulations for transient state, it was found that cohesive strength and 

time are the most sensitive parameters. 

 Comparing the two models, the Mohr-Coulomb model displayed more noticeable 

effects when the parameters were changed. However, this does not imply that Stassi 

d’Alia is a more precise model. 

 Overall, the chemical, thermal and transient effects, all have an immense impact on the 

collapse strength, and must be considered during the designing of the mud weight 

program. 

A recommendation of further work is to simulate by using sonic log data, derive collapse 

models based on Mogi-Coulomb and Ewy failure criteria. 
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Appendix A: Heidrun Mohr-Coulomb Simulation 
 

A. Effect of the Internal Friction Angle 
 

The internal friction angle is an important parameter that describes the angle in which sliding 

takes place on the rock surface without any external load applied. Table A:1 shows the 

simulation input parameters. In the first column are the reference parameters, with φ = 32°. 

 

TABLE A: 1 INPUT PARAMETERS 

Parameters Ref. Input values 

Internal friction angle, φ , deg 32 35 38 

Biot’s coefficient, αBiot 0,86 - - 

Poisson’s ratio, ν 0,22 - - 

MC= 0,62 - - 

Failure angle, βMC, deg 61 62,5 64 

 

Figure A1 shows the simulation result. As seen from figure A2, when the internal friction angle 

increases by 9,4%, the collapse pressure increases by an average of  -1,3%. 
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FIGURE A 1: PRESSURE RESULTS FOR CHANGES IN 

INTERNAL FRICTION ANGLE 

 

FIGURE A 2: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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B. Effect of temperature  
 

Table B:1 shows the simulation input parameters. In the first column are the reference 

parameters. 

TABLE B: 1 

Parameters Ref. Input values 

Temperature, deg C Tw 10% increase 10% decrease 

Internal friction angle, φ , deg 32 - - 

Poisson’s ratio, ν 0,22 - - 

Biot’s coefficient, αBiot 0,86 - - 

MC= 0,62 - - 

Failure angle, βMC, deg 61 - - 

E-modulus 6895 - - 

Thermal conductivity, k 8,633x10-6 - - 

 

 

Figure B1 shows the simulation result. As seen from figure B2, when the temperature increases 

by 10%, the collapse pressure increases by an average of 2,5%. When the temperature decreases 

by 10% the collapse pressure increases by an average of 1,6%. It should be noted that the 

changes are more visible further up the well. 
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FIGURE B. 1: PRESSURE RESULTS FOR CHANGES IN 

TEMPERATURE 

FIGURE B .2: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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C. Effect of E-Modulus 

Table C:1 shows the simulation input parameters. In the first column are the reference 

parameters. The second column displays the values for a 10% increase in E-modulus, and the 

third column shows the values for a 10% decrease. 

 

TABLE C: 1 : INPUT PARAMETERS 

Parameters Ref. Input values 

E-modulus 6895 7584,5 6205 

Temperature, deg C Tw - - 

Internal friction angle, φ , deg 32 - - 

Poisson’s ratio, ν 0,22 - - 

Biot’s coefficient, αBiot 0,86 - - 

MC= 0,62 - - 

Failure angle, βMC, deg 61 - - 

Thermal conductivity, k 8,633x10-6 - - 

 

 

Figure C1 shows the simulation result. As seen from figure C2, when the E-modulus increases 

by 10%, the collapse pressure increase by an average of 2,2%. When the E-modulus decreases 

by 10%, the collapse pressure decreases by an average of 1,8% . It should be noted that the 

changes are more visible further up the well. 
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FIGURE C 1: PRESSURE RESULTS FOR CHANGES IN E-

MODULUS 

FIGURE C 2: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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D. Effect of Thermal Conductivity 
 

Table D.1 shows the simulation input parameters. In the first column are the reference 

parameters. The second column shows the values for a 10% increase in thermal conductivity, 

and the third column shows the values of a 10% decrease. 

 

TABLE D.1: INPUT PARAMETERS 

Parameters Ref. Input values 

Thermal conductivity, k 8,633x10-6 7,769x10-6 9,496x10-6 

E-modulus 6895 - - 

Temperature, deg C Tw - - 

Internal friction angle, φ , deg 32 - - 

Biot’s coefficient, αBiot 0,86 - - 

Poisson’s ratio, ν 0,22 - - 

MC= 0,62 - - 

Failure angle, βMC, deg 61 - - 

 

Figure D1 shows the simulation result. As seen from figure D2, when the thermal conductivity 

increases by 10%, the collapse pressure increases by an average of 2%. When the thermal 

conductivity decreases by 10%, the collapse pressure decreases by an average of 2,4%. 
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FIGURE D 1: PRESSURE RESULTS FOR CHANGES IN 

THERMAL CONDUCTIVITY 

 

FIGURE D 2: PERCENTAGE CHANGE IN 

COLLAPSE PRESSURE 
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