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ABSTRACT 
 

A total of six techniques are developed to model ROP for a new well. The techniques attain 

coefficients or specific values from a close-by already drilled well. Using these and drilling 

parameters, the proposed method predicts ROP for the new well. The techniques are mainly 

developed and influenced by Bourgoyne & Young’s model, d-exponent model and MSE model.  

 

The techniques are tested by comparison with six wells; three close-by wells from the Ormen 

Lange field, and three close-by wells from the Morvin field. Thereby each well may be tested 

with each technique with coefficients or values from two different close-by wells. The results 

display both the actual ROP and modelled ROP plots for comparison. In order to thoroughly 

assess the validity of the techniques an analysis of the results is also performed.  
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1 INTRODUCTION 
 

1.1 Background  
 

Drilling after hydrocarbon resources generally occur deep down in the ground through various 

layers of rocks. The essentials in drilling are breakage, crushing and cutting of fragments out 

of the rock surface to reach deeper into the ground. Rotary drilling is the standard penetration 

method for oil and gas wells. Teale [1] described rotary drilling as a combination of two actions: 

cutting and indention. The rotating movement cuts the rock, simultaneously as it pushes into 

the rock to indent. The work done or required energy to excavate a unit volume of rock was 

introduced by Teale as specific energy or mechanical specific energy (MSE) [1]. The speed of 

the drilling process is given in rate of penetration (ROP), presenting the drilling in feet drilled 

per hour.  

 

The petroleum industry is a high grossing industry, but also a high cost industry. Therefore, 

there has always been a focus on cutting costs and increasing efficiency. Given the recent 

unexpected drop in oil prices and the subsequent rise in uncertainty related to future price levels, 

the focus on cost reduction and efficiency considerations have increased dramatically. One of 

the most costly aspect of the industry is exploration and drilling, and therefore has a lot of 

potential for optimization and reducing costs. Planning and predicting future drilling operations 

based on controllable variables will be essential in order to realize these efficiency gains. This 

may be aided by ROP modelling and analysis. 

 

1.2 Problem formulation 
 

Drilling operations have significant potential for optimizing and reducing costs. This thesis 

aims to develop new techniques in modelling ROP more accurately, and to improve the 

prediction of ROP for new wells. These techniques can be utilized to better plan and optimize 

drilling expenses. This thesis is going to address issues such as: 

 How field data may be used to analyze and develop ROP models for new nearby wells 

 How literature documented models can be modified with the idea of coupling 

operational parameters 
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 How d-exponent and MSE data obtained from an old well can be utilized for a new 

nearby well      

 

1.3 Objective 
 

The objective of this thesis comprises the following: 

 Literature study on bits and ROP models and methods 

 Develop new techniques to model the ROP  

 Test the new techniques on three wells from 6305/7 and three wells from 6506/11 

 Analyze the results to identify the validity and performance of the techniques. 

 Analyze the results to identify the best technique to model ROP 
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2 LITERATURE STUDY  
 

2.1 Drill bits   
 

The drill bit is the main tool of the drilling process, positioned at the end of the drill string. Its 

rotation cuts and the weight on bit indents, resulting in penetration of the formation. Drilling 

fluid circulates through the bit to decrease bit wear by cooling, and to help the penetration rate 

by removing cuttings. There is a great selection of bits available, where rotary drilling has two 

main groups of bits in which we find numerous varieties of bit designs. These are roller-cone 

bits and fixed-cutter or diamond bits.   

 

2.1.1 Bit optimization  
 

The most important factor affecting the drilling rate is considered by the industry to be the bit 

selection [6]. Importance of the drill bit in the overall drilling cost is seen in the cost equation 

2.1, which expresses the significance of drill bit optimization. During the planning phase, the 

primary analysis is drill bit optimization [2].   

𝐶𝑓 =  
(𝑡𝑟+𝑡𝑡+𝑡𝑐)𝐶𝑟+𝑡𝑟𝐶𝑚+𝐶𝑏

∆𝐷
     (2.1) 

Where Cf is drilling cost [$/ft], tr: the drilling time [hr], tt: the trip time [hr], tc: the connection 

time [hr], Cr: the rig cost [$/hr], Cm: the downhole motor cost [$/hr], Cb: the cost of bit [hr], and 

ΔD is the formation drilled, in [ft].   

 

Drill bits have been continuously developed and improved since the introduction of the drill 

bit. They are designed and optimized to produce low cost drilling, increase operational time of 

the bit to minimize tripping, and to provide stable and safe operations. All these aspects result 

in lower drilling costs, in accordance with cost equation 2.1 and minimizing drilling risks.   

 

The selection of bit is foremost dependent on the formation type being drilled [5]. There are 

many operating factors affecting the performance of the drill bit, mainly the WOB, RPM, mud 

properties, hydraulic efficiency and formation properties [3][7]. The drill bit elements affecting 



4 
 

the drilling rate are bit diameter, bit weight, bit wear and bit hydraulic [4]. Bit selection for 

specific conditions are often based on mathematical predictions from models, rule of thumb, 

trial and error, or a combination of these [8]. While roller-cone bits have a more complex 

geometry than diamond bits, the diamond bits have a very wide selection in bit and cutter design 

[17]. The result is a much greater variation of bit performance for diamond bits [9].   

        

2.1.2 Roller-Cone Bits 

 

Roller-cone bits can be categorized by insert or milled tooth. Insert bits have a cutting structure 

consisting of a sequence of inserts pressed into the cone. Milled tooth bits have a cutting 

structure of teeth milled out of the cone. Tooth design and bearing types vary greatly for roller-

cone bits, making them applicable for several formation types. Milled tooth bits are usually 

used in soft formations. Insert bits are appropriate for a wider variety of formations, including 

hard formations.   

 

Three cones and legs of similar size, connected to a pin, normally make up roller-cone bits. The 

cones are mounted on each of their bearings, and able to rotate with respect to the bit body. 

Connection to the drill string is provided by the pin section. Drilling fluid is pumped down the 

drill string and through the nozzles of the bit. Openings by the legs provide fluid circulation, 

and give the possibility to achieve high pressure jetting through the nozzles of the bit. A 

representation of a typical roller-cone bit is provided below in Figure 1 [10] (with alterations).  
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Figure 1: Roller-cone bit (inserts) [10] 

 

Roller-cone bits are made of steel, which requires sufficient hardenability, yield strength, heat 

treatment, machinability, and impact resistance. Design of the bit has generally four focus areas: 

geometry and type of cutting structure, hydraulic requirements, material selection, and 

mechanical operating requirements. The bit design is chosen based on how it will operate and 

in what conditions it will operate in. Operating factors influencing the bit design are primarily 

weight on bit, rotary speed and hydraulics. Operating conditions such as formation, depth, 

drilling fluid, and hole deviation are also important parts considered when designing a bit. The 

geometry and type of cutting structure is the significant design area of the bit for providing an 

efficient penetration. Wear-resistance is also important during the selection of geometry and 

type of cutting structure. Cutter shape and grade is normally differentiated by its placement on 

the cone for insert teeth. There is a number of available geometries, sizes and grades for cutters 

to be optimized depending on the cutters location and conditions.  
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2.1.3 Diamond Bits  
 

Diamond bits can be regarded as fixed-cutter bits, as the bits have no separately moving parts. 

Diamond is the hardest readily available material, thus using it as material provides superior 

hardness. Both rotating as one piece and using diamond material gives a long bit life. The 

diamond bits are mainly used in soft to moderate formation. In hard formations, the bit has 

limitations regardless of recent developments [15]. Limitations such as low ROP and high wear 

is also a result for deep continental gas developments [16]. Two categories of diamond bits are 

currently on the marked: Polycrystalline Diamond Compact Bits and Natural Diamond Bits. 

The Polycrystalline Diamond Compact (PDC) Bit is the most common diamond bit, relatively 

equal in popularity as the roller-cone bit. PDC bits uses inexpensive, fabricated diamonds. Their 

long bit life and capability of maintaining a high ROP has resulted in wide popularity. Fixed-

cutters induce a shearing action more effective than the crushing of the inserts or teeth on the 

cones of the roller-cone bit [11-14].  A PDC bit is designed based on four considerations: 

materials, formation properties, hydraulic conditions, and mechanical parameters. There are 

four different types of blade profiles for a PDC bit: 

 

1. Flat profile – for hard and non-abrasive formations 

2. Short parabolic – for hard and medium abrasive formations 

3. Medium parabolic – for medium/hard and abrasive formations 

4. Long parabolic – for soft and abrasive formations   

 

 

Figure 2: PDC bit profiles [18] 
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Figure 2 [18] shows various PDC bit profiles, broken into five zones: cone, nose, taper, 

shoulder, gauge (from center). The profile or shape of the bit is dependent on cutter placements, 

cutter geometry, cutter density, hydraulics, well geometry, and formation. All elements need to 

be considered to design a bit capable of high ROP and low bit wear. The shape will have a 

direct influence on steerability, stability, ROP, durability, fluid circulation, and cutter density.             

 

2.2 ROP models 
 

The two leading drilling optimization methods are rate of penetration (ROP) and mechanical 

specific energy (MSE) models. Both models optimize by considering the important variables 

during the drilling operation. These variables can affect the models in a complex way. Many 

ROP and MSE models have been developed and modified, with mathematically or 

experimentally derived relationships among the variables. [19]  

 

ROP models may be used to calculate formation drillability including the effects of drilling 

variables. Optimizing the drilling operation by use of ROP models is managed by varying the 

drilling variables to achieve the ideal drilling situation during the entire bit run. Mechanical 

specific energy models may detect changes in drilling efficiency during drilling operations, 

providing a tool to enhance instantaneous ROP by optimizing the drilling variables similarly as 

the ROP model. [19]          

 

2.2.1 MSE  

 

In “The Concept of Specific Energy in Rock Drilling” [1] from 1965, Teale discusses the 

fundamental problems and implications in rock working or mining operations. We can relate 

this work on rock excavation to drilling. The paper focuses on the applied energy for crushing, 

as this was accepted as a significant factor and there had been several attempts to relate it to 

drilling [20]. Besides the work of Walker and Shaw [21], no identified work has been done on 

the relationship between energy and crushing by drilling and indention. Walker and Shaw 

managed to calculate the energy needed to grind different sizes of steel and rock.  
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Teale was certain such a relationship had to have a vital part in understanding the rock 

excavating processes. The factor introduced was ‘specific energy’, work done to excavate a unit 

volume of rock. In other words, the work/energy required to drill a certain amount of rock. In 

order to drill a certain amount of rock, it was obvious to Teale that there had to be a theoretical 

minimum energy required.  

 

For a rotary non-percussive drilling process, Teale proposed that work is done by the thrust (F) 

and torque (T) because of the indention and rotation actions. Then the total work performed 

within one minute could be derived by including the rotation speed (N) and the rate of 

penetration (u) to give F u + 2πN T (in.lb). With the area of excavation or hole (A) the amount 

of rock drilled is Au (in3). By dividing work with volume (Au), specific energy (e) is given as:  

 

𝑒 =  
𝐹

𝐴
+

2𝜋

𝐴
 
𝑁𝑇

𝑢
   (2.2) 

or  

𝑀𝑆𝐸 =
𝑊𝑂𝐵

𝐴𝐵
+

120𝜋𝑁𝑇

𝐴𝐵𝑅𝑂𝑃
   (2.3) 

 

These equations are the original formulas of what has become mechanical specific energy 

(MSE), a concept introduced and formulated by Teale originally as ‘specific energy’. Since 

then MSE has been further researched and the model has been modified several times. MSE 

can be monitored to ensure drilling efficiency by detecting when it changes [22]. An increase 

in MSE results in a higher demand of work to drill and thereby a lower drilling efficiency.  

Pessier and Fear [23] introduced a formulation of torque into the MSE equation in 1992. 

Measurements-while-drilling (MWD) measured torque; however, the majority of field data was 

given in the form of WOB, RPM and ROP measurements. Therefore a method to compute more 

reliable torque values, by using a bit specific coefficient of sliding friction (µ), bit diameter and 

WOB was added to give:  

 

𝑇 = 𝜇
𝑑𝐵 𝑊𝑂𝐵

36
   (2.4)  

 

By use of this formulation of torque, Pessier and Fear modelled MSE as:  

 

  𝑀𝑆𝐸 = 𝑊𝑂𝐵 (
1

𝐴𝐵
+

13,33 𝜇 𝑁

𝑑𝐵 𝑅𝑂𝑃
)  (2.5)  
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2.2.2 Bourgoyne & Young 

 

Initial drilling models proposed for drilling optimization were largely established upon limited 

data and imprecise results. Bourgoyne & Young [4] introduced an ROP model that is considered 

the most suitable for real-time drilling optimization and an essential optimization method as it 

is based on statistical past drilling values [24]. The modeling is done by a multiple regression 

analysis of the past drilling data, including effects of variables, to produce the rate of 

penetration. Effects on ROP included in the model are formation strength, formation depth, 

formation compaction, pressure differential (bottom hole), bit weight and diameter, rotary 

speed, bit wear, and bit hydraulics.  

 

This rate of penetration model predicts the effect of the included eight drilling variables (xj) on 

the penetration rate (dD/dt). In a given formation, the modeling is done by determining the eight 

constants (aj). The model is mathematically given by:  

 

𝑑𝐷

𝑑𝑡
 = exp (𝑎1 + ∑ 𝑎𝑗𝑥𝑗

8

𝑗=2
)   (2.6)  

 

The model can also be expressed clearer, with the exponential function integrated:  

 

𝑅𝑂𝑃 = 𝑓1 ∗  𝑓2 ∗  𝑓3 ∗  𝑓4 ∗  𝑓5 ∗  𝑓6 ∗  𝑓7 ∗  𝑓8 (2.7)  

where 𝑓1−8 represents the various normalized effects on ROP [19].   

 

Effect of formation strength or rock drillability is represented by the a1 constant and x1, or 

𝑓1 = exp(2.303 𝑎1). Constant a1 is proportional to the inversed natural logarithm of the squared 

drillability strength parameter mentioned by Maurer [25]. 

    

Effect of formation depth (D [ft]) is denoted by the a2 constant, where x2 is given by: 

 

x2 = 10000,0 − D (2.8) 

 

𝑓2 = exp(2.303 𝑎2(10000 − 𝐷)). Therefore in a normal compacted formation, the ROP 

decreases exponentially with depth. This trend was found in Murray’s [26] micro-bit and field 

data, as well as Combs’ [27] field data. 
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Effect of formation compaction or pore pressure is represented by the a3 constant and x3. The 

ROP is assumed to exponentially increase with the pore pressure gradient of the formation (gp 

[lb/gal]). The effect of under-compaction on ROP was suggested by compaction theory, thus x3 

is defined by equation 2.9 and 𝑓3 = 𝑒2.303 𝑎3𝐷0,69(𝑔𝑝−9).  

 

x3 = D0,69(gp − 9,0) (2.9) 

 

Effect of differential pressure is represented by constant a4 and x4. It is assumed an exponential 

decrease in ROP with increasing bottom-hole-pressure, based on indications from field data 

[27] [28] and laboratory data [29] [30]. Therefore, the x4 is given by: 

 

x4 = D(gp − ρc) (2.10) 

 

Here ρc is the ECD at the bottom of the hole [lb/gal]. Whereas 𝑓4 = 𝑒2.303 𝑎4𝐷(𝑔𝑝−𝑃𝑐).    

 

Effect of bit diameter (d [in]) and bit weight (w [lb]) (w/d) is expressed by constant a5 and x5. 

Indications from several sources [27] [31-35] assume the ROP as directly proportional to the 

term (
W

d
)a5. The normalized ea5x5 term is equal to 1.0 for 4000 lb/in bit. Consequently, x5 is 

determined by:  

 

x5 = ln (

w

d
−(

w

d
)

t

4.0−(
w

d
)

t

) (2.11) 

 

 Drill-off tests are used to estimate threshold bit weight (
𝑊

𝑑
)

𝑡
. Bit weight exponent values 

have been reported ranging from 0.6 – 2.0. 𝑓5 = (

w

d
−(

w

d
)

t

4.0−(
w

d
)

t

)𝑎5 .  

 

Effect of rotary speed (N) is represented by constant a6 and x6. Sources [27] [31-35] indicate 

that the ROP should be assumed directly proportional to Na6. The normalized ea6x6 term is 

equal to 1.0 for 100 RPM, giving x6 as:  
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x6 = ln (
N

100
) (2.12) 

 

Rotary speed exponent values have been reported ranging from 0.4 – 0.9 (from very hard 

formations to very soft formations) [35]. The f6 term is: 𝑓6 = (
𝑁

60
)𝑎6.  

 

Effect of tooth wear (h) is represented by constant a7 and x7. Tooth wear has been modeled by 

various sources [31] [32] with complex terms. However, for multiple regression a simpler 

approach is more suitable. Fractional worn away tooth height (h) is used to determine x7 in 

equation 2.13. While 𝑓7 = 𝑒−𝑎7∗ℎ.   

 

x7 = −h  (2.13) 

 

Effect of bit hydraulics is denoted by the constant a8 and x8, and based on Eckel’s [36] microbit 

experiments. Eckel discovered that the ROP was proportional to Reynolds number group 

(
ρq

μ dn
)0,5. Here ρ is mud density [lb/gal], q is flow rate [gal/min], μ is the apparent viscosity 

[cp], and dn is the bit nozzle diameter [in]. Giving x8 by equation 2.14.  

 

x8 =
ρq

350 μdn
  (2.14) 

 

Apparent viscosity is not measured regularly and therefore estimated by: μ = μp +
τy

20
 .  

The f8 term with jet impact force (𝐹𝑗 [klbf]) is 𝑓8 = (
𝐹𝑗

1000
)𝑎8.  

 

2.2.3 Warren 

 

Warren developed models to predict the rate of penetration for soft formation bits. The models 

are generated from laboratory work, by combining rotary speed, bit type, bit size, rock strength 

and weight on bit to calculate the rate of penetration. A large-scale drilling rig was used to 

obtain experimental data. The main intention of the models is to describe the relationship 

between the variables that control the rate of penetration. The initial model assumes perfect 

cleaning conditions. Warren then modified his own model to account for more realistic, 

imperfect cleaning conditions.   
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Development of new models for soft formations was needed, as there was a lack of an adequate 

existing model. Galle and Woods [37] had at the time the most commonly used model for soft 

formation drilling. However, Randall and Estes [38] explains the inadequacy of that model, 

where applying the model in real conditions violates an assumption of the model. Maurer’s [25] 

‘perfect cleaning’ model was found not applicable in general for soft formation bits. Deviation 

occurred constantly in the results from experimental data in soft-formation conditions used with 

the Maurer model.   

 

Warren presented the perfect-cleaning model in 1981 [39]. In the “Drilling Model for Soft-

Formation Bits” paper, it is described that developing the drilling model was done with 

dimensional analysis and generalized response curves. A model by Wardlaw [40] was modified 

to better comply with experimental data acquired from a laboratory test. The model modified 

to best comply with the experimental data is given by equation 2.15.  

 

ROP = (
aS2d3

NbWOB2 +
c

Nd
)−1 (2.15) 

 

The first term describes the maximum rate that a bit can crush rock into cuttings by (
𝑎𝑆2𝑑𝑏

3

𝑁𝑏𝑊𝑂𝐵2). 

The second term considers the applied WOB to more teeth, and as the WOB increases, the teeth 

penetrate deeper into the rock. Here a, b and c are bit constants in the penetration model. The 

bit constants do not need to change when the variables alter to retain adequate ROP prediction. 

Extensive field tests were performed, where the model’s prediction ability was investigated by 

drilling with several variable changes. The relatively small difference between predicted and 

measured ROP in the tests are perhaps a result of changes in hydraulics, as there is no correction 

for this in the model.      

 

In 1987, Warren presented the imperfect cleaning model [8]. To simplify the complex modeling 

required to give a good ROP prediction, Warren understood that a basic model had to be 

developed first. The perfect cleaning model is this basic model, the starting point. Refining the 

basic model is done by adding new terms. If the physics of the process is controlled correctly, 

the new terms will not dismiss the initial model.   
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Warren explained that under steady state conditions, the cuttings removal rate from the bit is 

equivalent to the rate new chips forms. This infers that the rate of penetration is affected by 

cuttings generation process or cuttings removal process, or a combination of them both. As the 

basic model does not account for cuttings removal, this term had to be added. To account for 

cuttings removal, Warren used dimensional analysis to isolate variables consisting of the impact 

force and mud properties. These were incorporated into equation 2.15 to express the imperfect 

cleaning model by:  

 

ROP = (
aS2db

3

N WOB2
+

b

Ndb
+

cdbγfμ

Fjm
)−1  (2.16) 

 

Here Fjm is the modified impact force that removes variation in impact pressure and is given by 

 𝐹𝑗𝑚 = (1 − 𝐴𝑣
−0,122)𝐹𝑗  where  𝐴𝑣 =

𝑣𝑛

𝑣𝑓
=

0,15𝑑𝑏
2

3𝑑𝑛
2   and  𝐹𝑗 = 0,000516𝜌𝑞𝑣𝑛.   

  

2.2.4 Modified Warren 

 

Work continued in modifying Warren’s model, by adding new conditions that affect the ROP. 

There are numerous actions and processes going on during drilling and resulting in penetration. 

It is not likely that it would be possible to completely model the penetration process, at least 

not with all inputs known. However, work continued to build on the basic model Warren started 

to strengthen the model’s precision, as more quantifiable conditions are included. [8]  

 

In 1993, Hareland and Hoberock [41] introduced a modified Warren model. It was known that 

“chip hold down effects” has an important impact on the rate of penetration [42] [43]. However, 

it was not included in Warren’s models. Hareland and Hoberock defined the effect with fc(Pe), 

given by: 

 

fc(Pe) = cc + ac(Pe − 120)bc (2.17) 

 

Here ac, bc and cc constants are dependent on the lithology and Pe is differential pressure [44]. 

This equation gave the most reasonable fit to the data tested using a varied bottom hole pressure, 
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and for different lithologies. The modified equation including “chip hold down effect” resulted 

as:   

 

ROP = [fc(Pe) (
aS2dbit

3

RPM∗WOB2 +
b

RPM∗dbit
) +

cdbitρμ

Im
]

−1

 (2.18) 

 

Another essential effect missing in this equation is bit wear. It was known that bit wear impaired 

the rate of penetration; however, there were no available published rate of penetration models 

for dull bits. Hareland and Hoberock [41] noticed equation 2.18 experienced problems when 

the bit was dull, by wear or missing teeth. Therefore, a wear term was introduced and 

represented by Wf, given by equation 2.19.   

 

Wf = 1 −
∆BG

8
  (2.19) 

 

Where  ∆BG represent the bit wear change and is given as  ∆BG = Wc ∑ WOBi ∗ RPM ∗A
i=1

Arabrj ∗ Si. Here S is rock compressive strength which is a function of lithology and confining 

pressure, calculated by  S = So(1 + asPe
bs).  

 

Bit wear Wf included in the ROP model gives the following final equation:   

 

ROP = Wf [fc(Pe) (
aS2dbit

3

RPM∗WOB2 +
b

RPM∗dbit
) +

cdbitρμ

Im
]

−1

  (2.20)  

 

2.2.5 Diamond bit model  

 

Unlike the Warren and Warren modified models produced for roller-cone bits, the following 

model is designed to be applied when drilling with diamond bits. The model relates the ROP to 

the quantity removed by the scraping action of a diamond bit [45]. Bit types that can use the 

model includes Polycrystalline Diamond Compact Bits, Natural Diamond Bits and any Geoset 

Bits [9]. Useful application areas for the model are in planning drilling operations, during 

drilling, drilling optimization and post drilling analysis.  
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Several models have previously been developed for diamond bits. Appl and Rowley [46] 

introduced one of the initial models, assuming “a plastic coulomb rock failure with Mohr circle 

failure criteria” [9] back in 1968. In 1976, Peterson [47] used the equivalent blade concept and 

a static loading condition to produce a model. Neither of the models were applicable in normal 

drilling scenarios. A time consuming and often inaccurate model was developed by Warren and 

Sinor [48] [17] in 1986-1987. The model required detailed information and was not considered 

practical. No models were developed on the performance of geoset bits.  

 

Hareland and Rampersad’s [9] diamond bit model presented here uses cutter geometries, cutter 

wear, bit design parameters, formation properties and operating conditions. The principle of the 

model is based on that a weight applied on the bit will cause each cutter (diamond) to penetrate 

a certain depth depending on the number of cutters, cutter size and rock strength. Rotating the 

bit will additionally scrape the rock away. The model developed for a Natural Diamond Bit is:  

 

ROP =  
14,14 NsRPM

DB
 [(

ds

2
)

2

cos−1 (1 −
4Wmech

Nsds
2πσc

) − (
2Wmech

Nsπσc
−

4Wmech
2

(Nsdsπσ)2)

1

2
(

ds

2
−

2Wmech

Nsπσcds
)]   

(2.21)  

 

For a Natural Diamond Core Bit model is:  

 

ROP =  14,14 NsRPM (
√Do

2+Di
2

Do
2+Di

2 ) [(
ds

2
)

2

cos−1 (1 −
4Wmech

Nsds
2πσc

) − (
2Wmech

Nsπσc
−

4Wmech
2

(Nsdsπσ)2)

1

2
(

ds

2
−

2Wmech

Nsπσcds
)]   (2.22) 

 

Anomalies from the complexity in the rock bit interaction gave the need for a lithology 

correction factor, COR. The factor can be calculated with lab data or a drill-off test [49], and is 

given by COR = a/(RPMb x WOBc). Where a, b, and c are cutter geometry correction factors. 

With this correction factor the ROP can be calculated by equation 2.23 [46].  

 

ROP =
14,14 Ns RPM (AV−AVw) COR

Dbit
  (2.23)  
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Where AV is the projected front area of each cutter and AVw is the projected worn area of a 

cutter, given by 𝐴𝑉 = (
𝑑𝑠

2
)

2

𝑐𝑜𝑠−1 (1 −
2𝑃

𝑑𝑠
) − √𝑑𝑠 𝑃 − 𝑃2 (

𝑑𝑠

2
− 𝑃) and 𝐴𝑉𝑤 =

(
𝑑𝑠

2
)

2

𝑐𝑜𝑠−1 (1 −
2𝑃𝑤

𝑑𝑠
) − √𝑑𝑠 𝑃𝑤 − 𝑃𝑤

2 (
𝑑𝑠

2
− 𝑃𝑤) .  

 

Here P is the penetration of each cutter and Pw is penetration loss due to wear of cutter, given 

by  𝑃 =
2

𝜋 𝑑𝑠
(

𝑊𝑂𝐵𝑚𝑒𝑐ℎ

𝑆 𝑁𝑠
−

𝜋𝑃𝑤𝑑𝑠

2
) and  𝑃𝑤 = √

2 𝑉𝐷

𝜋 𝑑𝑠
 . The volume each cutter has worn down per 

rotation, VD, is calculated by  𝑉𝐷 = 𝐶𝑎   ∑
𝑊𝑂𝐵𝑚𝑒𝑐ℎ 𝑅𝑃𝑀 𝑆 𝐴𝑟𝑎𝑏𝑟

𝑁𝑠 𝑅𝑒

𝑛

𝑖=1
 . Where Re is introduced, the 

equivalent bit radius given by 𝑅𝑒 =
𝐷𝑏𝑖𝑡

2√2
 . WOBmech is mechanical WOB and is defined by 

𝑊𝑂𝐵𝑚𝑒𝑐ℎ = 𝑊𝑂𝐵𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − ∆𝑝𝐴𝑝 . Here WOBapplied is the applied WOB and ∆𝑝𝐴𝑝 is the 

pump-off force on the bit face, where ∆𝑝 is calculated by  ∆𝑝 =
𝐺𝑃𝑀2𝜌

12031(𝐾𝐴)2 . KA is the apparent 

nozzle area of the bit.  

 

2.2.6 Real-Time Bit Wear Model 
 

Rashidi, Hareland and Nygaard [19] based a model on two past approaches for drilling 

optimization: Mechanical specific energy (MSE) and Borgouyne and Young’s inverted ROP 

model. As mentioned earlier in this paper, MSE can be used to optimize drilling variables and 

ROP instantaneously during drilling. ROP models vary drilling parameters to optimize for an 

entire bit run. The advantage of the ROP model is that drillability, bit wear and the effect of 

changing mud weight is included, while the advantage of the MSE model is that it is applicable 

in real-time. A combination of these two approaches was modified to be used for real-time bit 

wear estimation.  

 

A new model for MSE was proposed to give a relationship between drillability from the ROP 

model and MSE, introduced by equation 2.24.    

 

𝑀𝑆𝐸 = 𝐾1 (
1

𝑓1
)

𝐾2

    (2.24) 
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Here 𝑓1 is the formation drillability term in the Burgouyne and Young ROP model, and is related 

to the model by equation 2.25.  

 

𝑓1 =
𝑅𝑂𝑃

𝑓2∗𝑓3∗𝑓4∗𝑓5∗𝑓6∗𝑓7∗𝑓8 
  (2.25)   

 

Where the bit wear h in function 𝑓7 is altered, and given by ℎ =
(𝐷𝑒𝑝𝑡ℎ𝐶𝑢𝑟𝑟𝑒𝑛𝑡−𝐷𝑒𝑝𝑡ℎ𝐼𝑛)

(𝐷𝑒𝑝𝑡ℎ𝑂𝑢𝑡−𝐷𝑒𝑝𝑡ℎ𝐼𝑛)
∗

𝐷𝐺

8
 . 

Here DG is the dull grade value between 0-8 (IADC).    

 

The K1 constant from equation 2.24 is used for real-time estimation of the wear function. A 

normalized inversion of K1 is introduced to compensate for trends of K1 and bit wear against 

depth, given as equation 2.26.  

 

𝑁𝑜𝑟𝑚 (
1

𝐾1
) = 1 − 𝐴 ∗ ℎ𝐵  (2.26)   

 

Constant B here was obtained most accurately by regressive software. Equation for the constant 

is  𝐵 = 5,6392 ∗ ℎ + 0,4212 . The proposed model showed encouraging results with data, and 

has become an important initial model for further real-time analysis [50].   

 

2.3 Factors affecting ROP 
 

The drilling factors can be divided into two groups as dependent and independent variables 

(Barr and Brown 1983) (Ambrose 1987) (Shah 1992). The dependent variables are determined 

by the drilling conditions and independent variables. Whereas the independent variables may 

be controlled and changed before and during drilling [51]. A similar dividing can be to classify 

by controllable and environmental variables, where also formation related factors are included 

[4].  
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The controllable variables are like the independent variables directly and instantly adjustable. 

These include: 

- Weight on bit (WOB) 

- Rotations per minute (RPM) 

- Bit type  

- Hydraulics 

 

The environmental variables are similarly to the dependent variables not controllable; however 

also include the formation factors. Although the drilling fluid may be directly changed, it is 

included as an environmental variable as it is dependent on the drilling conditions and there is 

a certain fluid required for the drilling operation [4]. The environmental variables include:  

- Drilling fluid 

- Torque  

- Formation properties  

 

Additionally Equivalent Circulating Density (ECD) and cuttings transport affects the ROP [24]. 

Observations indicate that the ROP increases with decreased ECD. Ozbayoglu et al. [52] 

analyzed effects of cuttings transport on drilling parameters. Efficient hole cleaning is essential 

during drilling, this is controlled by a number of factors:  

 Hole angle 

 Fluid velocity 

 Fluid properties (rheological properties and density) 

 Cuttings size, shape, and concentration 

 Annular size 

 Rate of pipe rotation and pipe eccentricity 

 Fluid flow regime (laminar or turbulent) 

 

2.4 Principles of multiple regression 
 

A multiple regression model is a regression model with two or more regression variables [53]. 

Multivariate analysis characterizes an observation factor by several variables [54]. This method 

takes into account changes of several properties simultaneously. The multiple regression 
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equation of Y on X1, X2… is commonly given by Y = b0 + b1 X1 + b2 X2 + … [55]. Where b0 

is the intercept and b1, b2… are analogues to the slope in linear regression equation, also called 

regression coefficients [55]. This flexible method of data analysis can be applicable when a 

quantitative variable is to be examined in relation to other factors [56].  

 

2.5 Least square parameter   
 

The least squares method minimizes the square sum of residual between observed output and 

predicted output [57]. The least square sum is minimized to attain parameter estimates, 

mathematically expressed by equation 2.27.  

 

𝑄 = ∑ [𝑦𝑖 − 𝑓(𝑥𝑖; 𝑏)]2𝑛
𝑖=1  (2.27)  

 

Where unknown parameters of 𝑏 is in the regression function f(x; 𝛽) estimated by minimizing 

the squared sum deviation [57]. The x values are coefficients.  Observed output is represented 

by 𝑦𝑖 here, while predicted output is 𝑓(𝑥𝑖; 𝑏). Q is then the sum of the error squared.    

 

2.6 Dillability d-exponent  
 

The drillability d-exponent normalizes the ROP by removing effects of external drilling 

parameters such as pressure and rock strength. This exponent increases with depth in normally 

pressured formations, proportionally to the rock strength. When drilling into abnormally 

pressured shale however, the exponent will decreases with depth. Here the drilling experiences 

an under-compacted section, where the decreased density and increased porosity results in a 

more drillable formation. If all other drilling parameters stay unchanged, the rate of penetration 

will increase in this section. ROP also increases by having less pressure differential between 

drilling fluid and pore pressure. These abnormal pressure zones are detected far earlier by a bit 

with no wear, than a worn down bit. A dull bit may be far into the abnormally pressured zone 

before the transition is detected. A projected plot of the d-exponent is in figure 3. [58] [59]  
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Figure 3: D-exponent plot example [59] 

 

Using changes of ROP values by themselves as indicator of abnormal pressure is not ideal. 

Therefore, the drillability exponent is used to normalize or correct the drilling rate. This gives 

a more effective indicator of pore pressure and abnormally pressured zones. The basic 

drillability exponent (d) originates from work by Bingham (1965) and Jordan and Shirley 

(1967) [60], and the mathematical formulation of the d-exponent is given as equation 2.28.  

 

𝑑 =
log (

𝑅𝑂𝑃

60 𝑅𝑃𝑀
)

𝑙𝑜𝑔(
12 𝑊𝑂𝐵

106 𝑑𝐵
)
  (2.28) 

 

This equation tries to correct the rate of penetration for changes in WOB, RPM and hole size. 

In 1971, Rehm et al. [61] produced a corrected d-exponent for changes in mud weight. The 

corrected d-exponent (dc) is given by equation 2.29.   

 

𝑑𝑐 = 𝑑 (
𝑁𝑃𝑃

𝐸𝐶𝐷
)  (2.29) 
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Here NPP is normal pore pressure gradient, and ECD is equivalent circulating density. This 

correction is universally used as it makes the exponent more sensitive to mud weight changes 

and increasing pore pressure, yet it is without a thorough theoretical basis [58].  

 

Three limitation of the drillability exponent have been expressed [58]:   

- The drillability exponent requires clean shale or clean argillaceous limestone 

- Large increase in mud weight results in lower values of the corrected drillability 

exponent (dc) 

- The corrected drillability exponent (dc) is affected by lithology, type of bit, bit wear, 

poor hydraulics, unconformities, and motor or turbine runs.  

 

2.7 Well-to-well correlation 
 

It is already a policy to use survey data from nearby drilled wells or exploration wells in the 

planning of other adjacent wells [62], although well-to-well correlation is not exact. The reason 

we may do so is because the formation properties within an area generally changes only with 

depth, not horizontally [63]. Most sediments deposit in layers [64]. Thereby when drilling two 

vertical holes close-by, they will most likely go through the same formation properties and 

pressure regimes at approximately the same depths. Correlating formations can help engineers 

in designing close-by wells and help identifying drilling risks [65]. The pressure regime is 

especially of importance, with respect to selecting drilling fluid design and equipment [66].      
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3 ROP MODELLING 
 

Rate of penetration modelling in this thesis is done by using multiple formulas and techniques 

on relevant drilling data in order to give a good estimate of the ROP. Drilling data from the 

Norwegian Sea is used to ensure realistic testing of the models. The data is processed to be 

compatible with the use of Microsoft Excel. In this thesis, the modelling of ROP is based on 

using coefficients or certain values from neighboring wells to predict the ROP and comparing 

these with actual data. Thereby attempting to improve the ability to predict the ROP for wells 

to be drilled close-by an already drilled well. These coefficients and values are attained by use 

of the models and/or techniques described in this paper.  

 

Drilling data from two fields in the Norwegian Sea is used to verify the accuracy of the models 

presented in this thesis. Each field is represented by three close-by wells. The drilling data was 

provided by the Norwegian Petroleum Directorate in the form of “Final Well Report” mud log 

reports for each well in portable document format (PDF). With the exception of ECD, all the 

pertinent data are listed for every 5-meter depth. ECD data are derived from its plotted values. 

The data is processed with Nitro Pro 9 software to Microsoft Excel format. Further structural 

editing of the data was required to make it compatible for processing with in Microsoft Excel.   

 

Three of the wells are from block 6305/7, better known as part of the Ormen Lange field. 

Located 120 kilometers north-west of Kristiansund, Ormen Lange is Europe’s third largest gas 

field [67]. The three wells used in this thesis are from the D-template of the Shell operated 

development, wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H. These wells were drilled 

in 2010/2011 at a water depth of 853.8 m MSL, the total depth varied from 2889.8 m to 2896.1 

m TVD.  

 

The Statoil operated Morvin field is the location of the other three wells, in block 6506/11. 

Morvin is a subsea satellite located 200 kilometers offshore from the approximately middle of 

Norway [68]. The wells used in this thesis are 6506/11-A-1 H, 6506/11-A-2 H and 6506/11-A-

3 H, from Template A. These wells were drilled in 2009-2011 with a total depth varying 4466.3 

m – 4696.7 m TVD.  
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Having two areas with three neighboring wells each provides several possibilities for testing 

the presented methods of predicting ROP. Six wells may each undergo an ROP prediction by 

each presented method with two separate sets of data by close-by wells. Including two separate 

locations of well data that will increase the legitimacy of the results.  

 

The method of implementing the techniques and models to predict rates of penetration in this 

thesis is largely based on the well-to-well correlation procedure. Together with drilling data, 

coefficients are used to obtain the ROP for a well. These same coefficients are then used 

together with “planned” drilling data for a close-by well to predict the ROP of this well. It is 

assumed the neighbor well will experience similar effects from drilling parameters on the ROP. 

Several techniques are tested in this thesis to determine these coefficients. Multiple regression 

technique and least square technique are both presented in this thesis to obtain coefficients (3.1 

and 3.2). Both the techniques are also tested with the Bourgoyne & Young model (3.3 and 3.4). 

Two models have been altered to similarly be used to correlate well-to-well. Instead of using a 

selection of coefficients, a specific value is calculated based on well data and ROP. This value 

is then used in the same model for a close-by well to calculate the ROP. This procedure is done 

with a drillability d-exponent model (3.5) and a MSE model (3.6).   

 

3.1 Multiple regression 
 

Multivariate analysis characterizes an observation factor by several variables, taking into 

account changes of several properties simultaneously. In this thesis, the observation factor (Y) 

is the rate of penetration. Relevant drilling factors make up the regression variables (X1-7). 

These data are processed with a regression data analysis in Microsoft Excel. From this analysis, 

the required coefficients (b0-7) are computed. With these coefficients, it is possible to compute 

values for the observation factor.  

 

Relevant drilling data for each well is uploaded in each their Microsoft Excel file. The data used 

for the multiple regression analysis in this thesis is RPM, flow rate, mud weight, formation 

pressure, bit diameter, WOB and torque, together with the observation factor ROP. Performing 

the regression data analysis in Microsoft Excel (Figure 4), ROP is input as the Y-area. The 

remaining data is selected as the X-area. Depth is included only as a reference and is not selected 
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as part of the analysis. The analysis then provides output data it has computed, where the 

coefficients are of interest. The first value of coefficients is the intercept (b0). The following 

coefficients (b1-7 or “X-variable 1-7”) are to be multiplied with the regression variables 

according to their order (Figure 5). ROP is modelled by equation 3.1. 

 

𝑌 = 𝑏0 + 𝑏1 𝑋1 + 𝑏2 𝑋2 + 𝑏3 𝑋3 + 𝑏4 𝑋4 + 𝑏5 𝑋5 + 𝑏6 𝑋6 + 𝑏7 𝑋7  (3.1) 

 

Where the equation becomes as equation 3.2 with Y and X1-7 assigned.  

 

𝑅𝑂𝑃 = 𝑏0 + 𝑏1 𝑅𝑃𝑀 + 𝑏2 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 + 𝑏3 𝑀𝑢𝑑𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏4 𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 +

𝑏5 𝐵𝑖𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝑏6 𝑊𝑂𝐵 + 𝑏7 𝑇𝑜𝑟𝑞𝑢𝑒  (3.2) 

 

 

Figure 4: Multiple regression data analysis (Microsoft Excel) 
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Figure 5: Equation 3.1 applied in Microsoft Excel 

 

In Microsoft Excel, equation 3.3 is used for row two of drilling data. The coefficients are listed 

from cell Q18 to Q25 and are denoted by a $ sign to keep their value constant for the whole 

procedure. Cell columns B, C, D, E, F, G and H contain the regression variables, varying with 

depth intervals by rows. The equation computes the modelled ROP for each row by changing 

the row reference number.  

 

= $𝑀$18 + $𝑀$19 ∗ 𝐵2 + $𝑀$20 ∗ 𝐶2 + $𝑀$21 ∗ 𝐷2 + $𝑀$22 ∗ 𝐸2 + $𝑀$23 ∗ 𝐹2 + $𝑀$24 ∗

𝐺2 + $𝑀$25 ∗ 𝐻2  (3.3) 

 

This multiple regression procedure (Figure 6) is done for each well, providing each with a set 

of coefficients. Each set of well coefficients is then applied in the model to produce ROP values 

for the two neighboring wells. With this method, it is possible to predict ROP values of the 

neighboring wells. All wells are tested with two sets of coefficients, from the two close-by 

wells. This is accomplished simply by replacing the well’s own coefficients with coefficients 

of a neighbor well. Equation 3.2 can be used with the replaced coefficients to predict the ROP 

values for the well.  
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Figure 6: Multiple regression procedure flowchart 

 

3.2 Least square  
 

Least square analysis minimizes the sum of error between an observed factor and a predicted 

factor by estimating parameters. In this thesis the parameters are the relevant drilling variables 

available while coefficients are altered to minimize the sum of error between observed and 

predicted factor. The observed factor (yi) and the factor to be predicted is the rate of penetration. 

With the altered coefficients, it is possible to compute the predicted ROP.  

 

The same data used for multiple regression analysis is used in the least square analysis. Error 

squared between the actual ROP and predicted ROP is conducted for each row of the set of data 

(figure 7). These are then summed up to give the sum of error squared (figure 8), given by 
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equation 3.4. The predicted ROP is computed by the equation 3.6, where the coefficients (b0-7) 

are designed to minimize the sum of error squared. This is done by using Solver Add-inn in 

Microsoft Excel, to minimize the calculated sum of error squared value, by changing the 

coefficients.  

 

𝑄 = ∑ [𝑦𝑖 − 𝑓(𝑥𝑖; 𝑏)]2𝑛
𝑖=1   (3.4) 

 

The equation can be expressed as equation 3.5 with yi and f(xi;b) assigned.  

 

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 =  ∑ [𝑅𝑂𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑]
2𝑛

𝑖=1  (3.5) 

 

Where 𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is modelled by equation 3.6.  

 

𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑏0 + 𝑏1 𝑅𝑃𝑀 + 𝑏2 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 + 𝑏3 𝑀𝑢𝑑𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏4 𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 +

𝑏5 𝐵𝑖𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝑏6 𝑊𝑂𝐵 + 𝑏7 𝑇𝑜𝑟𝑞𝑢𝑒    (3.6) 

 

 

Figure 7: Error squared of least square method 
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Figure 8: Sum of error squared in least square method 

 

 

Figure 9: Solver Add-inn in Microsoft Excel 

 

When the new coefficients are computed with the Solver Add-inn (figure 9) to minimize the 

sum of error squared, they are implemented in equation 3.6 to compute the ROP. This procedure 

(figure 10) is tested for each of the six well data sets, with the belonging two neighboring wells’ 

least square coefficients.   
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Figure 10: Least square procedure flowchart 

 

3.3 Multiple Regression and Least Square with Bourgoyne & Young model 

 
This rate of penetration model predicts the influence of seven drilling effects (x2-8) on the ROP. 

In a given formation, this is done by determining eight coefficients (a1-8). The seven drilling 

effects are given by equations 2.8 through 2.14. These drilling effects together with the 

coefficients make up the model as equation 2.6. By computing the seven drilling effects and 

then performing a multiple regression analysis, eight coefficients are achieved with one as an 

intercept. Bourgoyne & Young’s model is given by equation 2.6, used with multiple regression 
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technique. In the least square technique, the coefficients used in equation 2.6 are designed to 

minimize the error squared between observed ROP and predicted ROP.   

 

The drilling data available and used for the particular modelling in this thesis is depth, RPM, 

flow rate, mud weight, formation pressure, bit diameter, WOB, ECD, torque and observed ROP. 

Depth is converted to feet and flow rate into gallons per minute. Mud weight, formation 

pressure and ECD are converted to pounds per gallon. These converted values are then ready 

to be implemented in the equations to determine drilling effects x1-8, as seen in figure 11. The 

natural logarithm is applied on both sides of the equation to give equation 3.7.  

 

ln 𝑅𝑂𝑃 = 𝑎1 + 𝑎2 ∗ 𝑥2 + 𝑎3 ∗ 𝑥3+ 𝑎4 ∗ 𝑥4+ 𝑎5 ∗ 𝑥5+ 𝑎6 ∗ 𝑥6 + 𝑎7 ∗ 𝑥7+ 𝑎8 ∗ 𝑥8  (3.7) 

 

 

Figure 11: Bourgoyne & Young's model drilling effects calculated in Microsoft Excel 

 

With drilling data obtained from the wells it is possible to compute most of the drilling effects 

(x1-8). However, alterations are necessary as not all data required was available. Drilling effects 

x1-3 and x6 are calculated without alterations. Only one of the two groups of wells has sufficient 

ECD values available needed to compute x4. The other group of wells have to simply discard 

this effect. Effect of bit diameter and bit weight (x5) was altered to only be an effect of bit 

diameter with equation 3.8. The effect of tooth wear (x7) was not available. X8 is simplified to 

equation 3.9, removing the apparent viscosity and bit nozzle diameter as the data was not 

available.  
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𝑥5 = 𝑑𝑏𝑖𝑡  (3.8) 

 

𝑥8 = ρq  (3.9) 

 

With the drilling effects computed as accurately as possible, the belonging coefficients can be 

calculated. For the multiple regression method, this is done by regression data analysis, where 

the X-area input is the drilling effects x1-8. Y-area is the natural logarithm of observed ROP. 

The coefficients are then applied to the drilling effects of neighboring wells with equation 3.7 

to predict the natural logarithm of ROP (figure 12). By applying the exponential on the natural 

logarithm of ROP, the ROP is found. For the least square method, the coefficients are designed 

by use of Solver Add-inn to minimize the sum of error squared found by equation 3.5. These 

coefficients are also so implemented in equation 3.7 for neighboring well data, to predict the 

ROP. Both overall procedures are shown in figure 13.  

 

 

Figure 12: Applying coefficients to the drilling effects to produce ROP with equation 3.7 
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Figure 13: Multiple regression and least square with Bourgoyne & Young's model procedure flowcharts 
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3.4 D-exponent  
 

The d-exponent normalizes the ROP by taking into account the effects of drillability on the 

drilling parameters. This drillability d-exponent is given by equation 2.28. A corrected d-

exponent value can also be utilized, established by equation 2.29. This corrected d-exponent 

requires ECD values, which are not available for all wells analyzed in this thesis. Additionally 

the correction is allegedly without a thorough theoretical basis [58]. Therefore, the normal d-

exponent is further developed in this thesis to predict ROP values.   

With equation 2.28 as the basis, a technique is developed in this thesis to use the d-exponents 

of a close-by well to compute ROP. It is assumed that the drillability is correlative within close-

by wells. D-exponent values are calculated for a well, with the use of equation 2.28 (figure 14). 

These d-exponent values are then implemented and used in the close-by wells. Equation 2.28 

is developed into equation 3.10, to be able to produce ROP values from d-exponent values from 

neighboring wells (figure 15). The procedure for this technique is shown in figure 16.     

 

Equation 2.28             𝑙𝑜𝑔 (
𝑅

60𝑁
) = 𝑑 ∗ log (

12𝑊𝑂𝐵

1000𝑑𝐵
)   

     log 𝑅 − log 60𝑁 = 𝑑 ∗ 𝑙𝑜𝑔 (
12𝑊𝑂𝐵

1000𝑑𝐵
)          log 𝑅 = 𝑑 ∗ 𝑙𝑜𝑔 (

12𝑊𝑂𝐵

1000𝑑𝐵
) + log(60𝑁)      

  𝑅 = 10
𝑑∗log(

12𝑊𝑂𝐵

1000𝑑𝐵
)+log (60𝑁)

 (3.10) 

 

 

Figure 14: D-exponents calculated in Microsoft Excel 
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Figure 15: ROP calculated by d-exponents in Microsoft Excel 

 

 

Figure 16: D-exponent model procedure flowchart 

 

  



35 
 

3.5 MSE 
 

MSE is the work or energy required to drill a certain amount of rock. This factor was introduced 

by Teale and can be expressed by equation 3.11. The MSE model is further developed in this 

thesis to be able to produce ROP values.  

 

𝑀𝑆𝐸 =  
4 𝑊𝑂𝐵

1000 𝜋 𝐷2 +
480 𝑅𝑃𝑀 𝑇

1000 𝑅𝑂𝑃 𝐷2  (3.11) 

Where MSE: Mechanical specific energy [Kpsi], WOB: Weight on bit [lbs], D: Bit diameter 

[in] and T: Torque [ft-lb]. 

Equation 3.11 is used as the basis to develop a technique in this thesis to use MSE values from 

a close-by well to compute ROP. It is assumed that the work or energy required to drill a certain 

amount of rock is correlative within close-by wells. The MSE values are calculated for a well, 

with the use of equation 3.11 as shown in figure 17. These MSE values are then implemented 

and used in the close-by wells. Equation 3.11 is developed into equation 3.12, to be able to 

produce ROP values from MSE computed values from neighboring wells as shown in figure 

18. The MSE technique procedure is shown in figure 19.  

 

Equation 3.11               𝑀𝑆𝐸 ∗ 1000 𝐷2 =
4 𝑊𝑂𝐵

𝜋
+

480 𝑅𝑃𝑀 𝑇

𝑅𝑂𝑃
 

       
480 𝑅𝑃𝑀 𝑇

𝑅𝑂𝑃
= 𝑀𝑆𝐸 1000 𝐷2 −

4 𝑊𝑂𝐵

𝜋
              

1

𝑅𝑂𝑃
=

𝑀𝑆𝐸 1000 𝐷2−
4 𝑊𝑂𝐵

𝜋

480 𝑅𝑃𝑀 𝑇
                   

𝑅𝑂𝑃 = [
𝑀𝑆𝐸 1000 𝐷2−

4 𝑊𝑂𝐵

𝜋

480 𝑅𝑃𝑀 𝑇
]

−1

  (3.12) 
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Figure 17: MSE calculated in Microsoft Excel 

 

 

Figure 18: ROP calculated by MSE in Microsoft Excel 

 

 

Figure 19: MSE model procedure flowchart 
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4 ROP MODELLING ANALYSIS 
 

Analysis of the rate of penetration modelling done is conducted in this thesis to better evaluate 

the results. Using methods within Microsoft Excel, a valid analysis of the results has been 

successfully produced. The analysis focuses on how well the modelling of ROP correlates with 

the actual ROP. Two analytical methods are developed in this thesis. With the collaboration of 

these, it may be possible to select the preferable modelling of the ROP. 

 

The data used in this analysis originates only from the results in this thesis. Only the values of 

observed and predicted ROP, in addition to the measured depth is implemented in the analysis. 

By use of statistical essentials such as average and percentages, the analysis provides a clear 

overview of the results. Comparable overall results are presented, where each method has one 

average result from all the wells for statistical purposes. This organization is shown in figure 

20. Every well has different sets of two neighboring well coefficients applied for the different 

implemented methods. These results are therefore sorted by the specific method used, and are 

the analysis of that method with coefficients. In figure 20, “Multiple Regression Coefficients” 

is the average analysis result of multiple regression technique with the use of coefficients from 

neighboring wells applied for all wells. “Least Square Coefficients” is the same for least square 

technique. Both are also presented with the inclusion of Bourgoyne and Young model as “Least 

Square B&Y Coefficients” and “Multiple Regression B&Y Coefficients”. These methods are 

also included where the coefficients are used on the originating well. For these results, they are 

only denoted with the method name and are color-coded yellow. The remaining “D-EXP” and 

“MSE” are averaged results of drillability d-exponent model technique and MSE model 

technique implemented in all wells.  
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Figure 20: Analysis organization (by field) 

 

4.1 Plot comparison 
 

The analysis by plot comparison aims to identify how well the predicted ROP plot corresponds 

to the plot of observed ROP. Producing identical plots is highly unlikely, however within a 

specific margin is achievable. A method is therefore implemented to identify how much of the 

predicted ROP plot retains within certain margins of the observed plot. Two appropriate 

margins are selected and used to give a practical analysis.  

 

The selected margins in this thesis are 5 % and 10 % deviation of the observed ROP plot. A 

margin of 5 % is chosen as it may be considered as very close and a statistical insignificant 

difference. Values within a deviation of 0 to +/- 5 % are included in this margin. A second 

margin is introduced to identify plots that are still comparable, but may lack the utmost similar 

values. This margin is stretched to include 0 to +/- 10 % deviation of the observed ROP plot. 

Figure (21) presents an example of 5 % and 10 % deviation margins around a target plot. 

Although the “ROP modelled” plot stays near the “ROP” plot, only limited parts of it manages 

to plot within the margins. This demonstrates how demanding the margins selected are.  
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Figure 21: Plot showing 5% and 10% deviation limits 

 

In order to identify the amount of a plot that is within a margin, a method is introduced. This 

method gives the percentages of the plot within the margin. An increase in the percent of a plot 

within the margins increases the validity of the method used to generate that plot. To attain the 

percentages of the plot within the margins, equation 4.1 is created. The equation is applied on 

all ROP modelled data plots. The equation generates “1” values if the ROP predicted plot is 

within the given boundaries, and “0” values if not. Finding the average of the resulting values 

will generate the percentage of plot within the margins, as shown in figure 23. Figure 22 shows 

how equation 4.1 may be implemented for boundaries of 5 %. Equation 4.1 simply states that 

if the predicted ROP is between –X % ROP and +X % ROP a value of “1” is generated, if not 

“0” is generated. In figure 22 “HVIS” is used as this is the Norwegian equivalent to “IF”.   

 

𝐼𝐹((𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑀𝐸𝐷𝐼𝐴𝑁((𝑅𝑂𝑃−𝑋%): (𝑅𝑂𝑃+𝑋%)); 1; 0   .......................................... (4.1) 
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Figure 22: Equation 4.1 applied in Microsoft Excel 

 

 

Figure 23: Finding the average percentage of plot within 5/10 % of ROP in Microsoft Excel 

 

This process is applied for all generated plots of the ROP in each well. The data is first grouped 

by each well, and then wells are grouped by their field. Figure 24 presents the organization of 
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data with the wells grouped together within a field. Here it is easy to view the performance of 

each set of coefficients on each neighboring well. Additionally, the combined performance of 

each set of coefficients and methods can be organized as shown in figure 25.  

 

Figure 24: Plot analysis organization (by well) 

 

 

Figure 25: Plot analysis organization (by coefficient set) 
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Finally, all results with corresponding margins are organized by the method. Where the results 

of coefficients applied in neighboring wells from the same method are combined. First within 

each field as in figure 26, then all wells together as in figure 27.   

 

 

Figure 26: Plot nalysis organization (by each field) 
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Figure 27: Plot analysis organization (overall) 

4.2 Time comparison 
 

The analysis by time comparison aims to investigate how well the total drilling time of the 

estimated ROP compares with the actual drilling time derived from the observed ROP. This 

analysis promotes methods that might not estimate ROP plots well, but can still determine a 

good overall drilling time estimate. Results of this analysis simply state the amount and 

percentages of time deviation of the predicted ROP time.  

 

ROP modelling results are given as rate of penetration in feet per hour. As the amount of feet 

or depth drilled is also available, it is simple to derive the time or hours drilled by equation 4.2. 

Initially all predicted ROP results are averaged for each method tested on each well, as in figure 

28. These ROP values are then used in the equation 4.2 together with the depth interval for the 

ROP values. As a result, predicted time for each method is revealed (figure 29).  

 

𝑡𝑖𝑚𝑒𝑑𝑟𝑖𝑙𝑙𝑒𝑑 =
𝑑𝑒𝑝𝑡ℎ𝑑𝑟𝑖𝑙𝑙𝑒𝑑

𝑅𝑂𝑃
  (4.2) 
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Figure 28: Predicted ROP averaged in Microsoft Excel 
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Figure 29: Equation 4.2 applied in Microsoft Excel 

 

These data are then organized with the wells grouped by their field as shown in figure 30. Here 

the deviation from the actual drilling time is also computed. Further to this the combined 

estimates of each method and sets of coefficients within the wells of each field are organized 

as presented in figure 31. By organizing the data in such ways, it is easier to determine if the 

method’s results are consistent. One method may have six results giving just a satisfactory 

average result, when in fact it has five very good results and one unfortunate weak. Further 

investigation may strengthen the reliability of such a method.    
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Figure 30: Time analysis organization (by well) 

 

 

Figure 31: Time analysis organization (by coefficient set) 
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Finally, all results are averaged by the method. Where the results of coefficients applied in 

neighboring wells are combined to one average for each method. First within each field as in 

figure 32, then all wells together as in figure 33. In the final results also the percentages 

deviation from the actual drilling time is calculated. This gives a more realistic and comparable 

evaluation of the results.  

  

 

Figure 32: Time analysis organization (by field) 
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Figure 33: Time analysis organization (overall) 
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5 RESULTS & DISCUSSION 

 
This part presents the results and discussion. The results are presented by plots of the modelled 

ROP. The plots of the modelled ROP by use of neighboring well coefficients or values are 

colored grey. In all the plots, the actual ROP plot accompanies the modelled ROP plot. This 

actual ROP is considered the reference plot and colored blue. For all plots in this thesis, the y-

axis has ROP values in feet per hour and the x-axis represents depth in meters. Interpreting the 

coefficients by themselves is determined unnecessary, because there is limited correlation 

between the sets of coefficients within the same field area. If anything, the coefficient sets differ 

vastly from each other. The hypothesis is however that the coefficient sets will be applicable in 

the close-by wells.   

 

Sections 5.1-5.4 are results derived from obtaining and implementing coefficients from 

neighboring wells to determine a prediction for the ROP. The resulting ROP prediction by use 

of these coefficients are available on the following pages. The first resulting plots are from 

testing the coefficients in their originating well. These modelled ROP plots are colored orange. 

Further on the main results are displayed, where the coefficients are implemented for their 

neighboring wells.  

 

Sections 5.5 and 5.6 are the results from application of specific values from neighboring wells 

to determine a prediction for the ROP. These specific values are first compared with the 

corresponding values in the well they are to be used in. The hypothesis is that these close-by 

wells will have correlating values. The resulting ROP predictions by use of the specific 

neighboring values are then calculated. Also here the modelled ROP plot is colored grey, while 

the actual ROP is colored blue.     

 

Outcomes from the analysis of the results are presented in sections 5.7 and 5.8. Both plot 

compared and time compared analysis of the results are displayed in percentages. This provides 

relatable and comparable results for determining the validity of the different methods. Analysis 

of the results from each method from each well applied on each of its neighboring wells is 

provided.       
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5.1 Multiple Regression  
 

The results from using the multiple regression technique are available in this section. Calculated 

coefficients of each of the six wells are presented in tables 1 to 6.   

 

         

                                      1                                                  2                                                   3 

         

                                      4                                                  5                                                   6 

  

6305-7-D-1 Coefficients

Intercept -87,8750911

X-variabel 1 -0,2997981

X-variabel 2 0,02531424

X-variabel 3 -82,0078713

X-variabel 4 315,856596

X-variabel 5 -5,0084196

X-variabel 6 0,00121308

X-variabel 7 -0,00305867

6305-7-D-2 Coefficients

Intercept 18,2763422

X-variabel 1 -0,65968705

X-variabel 2 -0,00296188

X-variabel 3 168,446659

X-variabel 4 86,3563993

X-variabel 5 0,38438467

X-variabel 6 0,00205784

X-variabel 7 -0,01081484

6305-7-D-3 Coefficients

Intercept 2288,2085

X-variabel 1 -3,23373879

X-variabel 2 0,05697566

X-variabel 3 -1095,01162

X-variabel 4 448,861118

X-variabel 5 -52,8164771

X-variabel 6 0,00323162

X-variabel 7 -0,03220143

6506-11-A-1 Coefficients

Intercept 670,362834

X-variabel 1 0,76194104

X-variabel 2 -0,00792429

X-variabel 3 -241,033258

X-variabel 4 110,6011

X-variabel 5 -14,1680233

X-variabel 6 -0,00147219

X-variabel 7 -0,0096805

6506-11-A-2 Coeffiscents

Intercept -789,452774

X-variabel 1 0,31511465

X-variabel 2 0,10800635

X-variabel 3 71,970428

X-variabel 4 272,192212

X-variabel 5 3,45475488

X-variabel 6 -0,00254154

X-variabel 7 0,00341641

6506-11-A-3 Coefficients

Intercept -6,35211543

X-variabel 1 0,02780985

X-variabel 2 0,06638021

X-variabel 3 -212,639471

X-variabel 4 278,840407

X-variabel 5 -7,76867542

X-variabel 6 -0,00140094

X-variabel 7 0,00183274
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Figures 34 to 39 show the resulting ROP plots from implementing the coefficients in their 

originating well. The Ormen Lange wells are presented in figures 34 through 36. Overall the 

method seems to compute the ROP well. Well 6305/7-D-1 is clearly the most accurate, while 

well 6305/7-D-3 appear to poorly compare in several sections of its plot.  

 

 

Figure 34: Multiple regression method in well 6305/7-D-1 

 

 

Figure 35: Multiple regression method in well 6305/7-D-2 

 

 

Figure 36: Multiple regression method in well 6305/7-D-3 
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Figures 37 to 39 are the Morvin field wells. Like the Ormen Lange wells, the method models 

the ROP fairly well. Results vary also here between the wells. Wells 6506/11-A-1 and 6506/11-

A-3 appear as the most accurate, and do very well in computing the ROP. Well 6506/11-A-2 

result is noticeably poorer, but the plots seem to correlate well in some sections.  

 

 

Figure 37: Multiple regression method in well 6506/11-A-1 

 

 

Figure 38: Multiple regression method in well 6506/11-A-2 

 

 

Figure 39: Multiple regression method in well 6506/11-A-3 
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The following plots are those of most interest for this thesis. Shown here is the plotted results 

of ROP predicted by coefficients applied from close-by wells. The Ormen Lange wells are first 

presented. Well 6305/7-D-1 plots are shown in figures 40 and 41. Figure 40 has the predicted 

ROP by use of coefficients from well 6305/7-D-2. The predicted ROP here seems relatively 

well modelled, although it deviates in a few sections. In figure 41, the ROP is modelled by 

coefficients from well 6305/7-D-3. Here the ROP clearly looks poorly modelled. The predicted 

plot is parallel with the actual ROP in most of the plot, but deviates significantly.    

 

 

Figure 40: Multiple regression - 6305/7-D-1 with coefficients from 6305/7-D-2 

 

 

Figure 41: Multiple regression - 6305/7-D-1 with coefficients from 6305/7-D-3 
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Well 6305/7-D-2 with coefficients applied from neighboring wells is presented in figures 42 

and 43. Figure 42 show the plot of ROP predicted by well 6305/7-D-1 coefficients. Well 

6305/7-D-1 coefficients appear to produce a good ROP prediction plot. The modelled ROP plot 

deviates to some degree over large parts, but appears to stay parallel with the actual ROP. ROP 

modelled by well 6305/7-D-3 coefficients is displayed in figure 43. Again, coefficients from 

well 6305/7-D-3 produces a clearly deviating ROP prediction. Similar is the large deviation 

over the same area, as well as managing to maintain parallel with the actual ROP in large 

sections.  

 

 

Figure 42: Multiple regression - 6305/7-D-2 with coefficients from 6305/7-D-1 

 

 

Figure 43: Multiple regression - 6305/7-D-2 with coefficients from 6305/7-D-3 
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Figures 44 and 45 presents well 6305/7-D-3 with coefficients applied from neighboring wells. 

Coefficients from well 6305/7-D-1 is used to model the ROP in figure 44. In figure 45, the ROP 

is modelled with coefficients from well 6305/7-D-2. In both figures, the ROP looks poorly 

modelled and they deviate similarly. 

 

 

Figure 44: Multiple regression - 6305/7-D-3 with coefficients from 6305/7-D-1 

 

Figure 45: Multiple regression - 6305/7-D-3 with coefficients from 6305/7-D-2 
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The following figures show plots from the Morvin field wells. ROP plots of well 6506/11-A-1 

with neighboring coefficients applied are displayed in figures 46 and 47. Figure 46 plots ROP 

modelled by well 6506/11-A-2 coefficients. In figure 47, the ROP is modelled by well 6506/11-

A-3 coefficients. The results appear similar for both sets of coefficients, both in deviation and 

form. However, the coefficients from well 6506/11-A-3 seem to give better results. The 

predicting plots show weakness particularly around 2200 to 3200 meters depth. 

 

 

Figure 46: Multiple regression - 6506/11-A-1 with coefficients from 6506/11-A-2 

 

 

Figure 47: Multiple regression - 6506/11-A-1 with coefficients from 6506/11-A-3 
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Well 6305/7-D-2 with coefficients applied from neighboring wells is presented in figures 48 

and 49. Figure 48 shows the plot of the ROP predicted by well 6506/11-A-1 coefficients. The 

plot of the ROP predicted by well 6506/11-A-3 coefficients is displayed in figure 49. Both plots 

provide similar looking results. The vast deviations are around 2300 to 3600 meters and from 

5200 meters depths. ROP prediction by coefficients from well 6506/11-A-3 provides seemingly 

better results than from well 6506/11-A-1. The deviation from the reference plot looks lesser, 

and parts of the plots appear impressively correlative.  

 

 

Figure 48: Multiple regression - 6506/11-A-2 with coefficients from 6506/11-A-1 

 

 

Figure 49: Multiple regression - 6506/11-A-2 with coefficients from 6506/11-A-3 
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To complete the results of the multiple regression technique in this thesis are the 6506/11-A-3 

plots of modelled ROP from coefficients of close-by wells shown below. Figure 50 shows the 

ROP predicted from well 6506/11-A-1 coefficients. The overall plot appears very good and 

only has a few places where the plot deviates noticeably. Impressively, the plot of ROP 

predicted by well 6506/11-A-2 coefficients in figure 51 seems even better. This plot looks 

correlative to the actual ROP, with very small areas of minor deviation.  

 

Figure 50: Multiple regression - 6506/11-A-3 with coefficients from 6506/11-A-1 

 

 

Figure 51: Multiple regression - 6506/11-A-3 with coefficients from 6506/11-A-2 
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5.2 Least Square  
 

The results from using the least square technique are available in this section. Calculated 

coefficients of each of the six wells are presented in tables 7 to 12.   

 

         

                                     7                                                   8                                                  9 

         

                                    10                                                 11                                                12 

  

6305-7-D-1 Coefficients

Intercept 0

X-variabel 1 0

X-variabel 2 0,01531515

X-variabel 3 0

X-variabel 4 74,55941

X-variabel 5 0

X-variabel 6 0

X-variabel 7 0

6305-7-D-2 Coefficients

Intercept 0

X-variabel 1 0

X-variabel 2 0,02782357

X-variabel 3 0

X-variabel 4 0

X-variabel 5 0,19918447

X-variabel 6 0,0006707

X-variabel 7 0

6305-7-D-3 Coefficients

Intercept 0

X-variabel 1 0

X-variabel 2 0

X-variabel 3 0

X-variabel 4 113,612045

X-variabel 5 0

X-variabel 6 0

X-variabel 7 0

6506-11-A-1 Coefficients

Intercept 1,12082582

X-variabel 1 0,25031291

X-variabel 2 4,3756E-05

X-variabel 3 0

X-variabel 4 35,3949705

X-variabel 5 1,99406704

X-variabel 6 0

X-variabel 7 0

6506-11-A-2 Coefficients

Intercept 0

X-variabel 1 0

X-variabel 2 0

X-variabel 3 0

X-variabel 4 116,425757

X-variabel 5 0

X-variabel 6 0

X-variabel 7 0

6506-11-A-3 Coefficients

Intercept 0

X-variabel 1 0

X-variabel 2 0,0119807

X-variabel 3 0

X-variabel 4 57,3868209

X-variabel 5 0

X-variabel 6 0

X-variabel 7 0
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Figures 52 to 57 show resulting ROP plots from implementing the coefficients in their 

originating well. The Ormen Lange wells are presented in figures 52 to 54. Wells 6305/7-D-1 

and 6305/7-D-2 appears to have good results, where maybe the most accurate results are found 

with well 6305/7-D-1. Well 6305/7-D-3 results seems to suffer from having a large variation in 

the actual ROP. As the least square attempts to minimize the difference between the actual and 

predicted values, often a levelled prediction is computed. Especially when the actual values 

varies vastly.  

 

 

Figure 52: Least square method in well 6305/7-D-1 

 

 

Figure 53: Least square method in well 6305/7-D-2 

 

 

Figure 54: Least square method in well 6305/7-D-3 
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Figures 55 to 57 are the Morvin field wells. The results for the Morvin field wells appears not 

as good as in the Ormen Lange field wells. All the wells here compute good-looking results for 

most of the first 2000 meters. Well 6506/11-A-1 seems to correlates particularly well with its 

modelled ROP in this area. As all the predicted plots then maintain fairly levelled, the varying 

actual ROP values results in clear deviations.  

 

 

Figure 55: Least square method in well 6506/11-A-1 

 

 

Figure 56: Least square method in well 6506/11-A-2 

 

 

Figure 57: Least square method in well 6506/11-A-3  
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On the following pages, the plotted results of ROP predicted by coefficients applied from close-

by wells are shown. The Ormen Lange wells are first presented. Well 6305/7-D-1 plots are 

shown in figures 58 and 59. Figure 58 has the predicted ROP by use of coefficients from well 

6305/7-D-2. In figure 59, the ROP is modelled by coefficients from well 6305/7-D-3. Both 

modelled plots appear like adequate results. Well 6305/7-D-3 plots better around the middle of 

the plot, while well 6305/7-D-2 coefficients correlates better to the actual ROP at the end.   

 

 

Figure 58: Least square - 6305/7-D-1 with coefficients from 6305/7-D-2 

 

 

Figure 59: Least square - 6305/7-D-1 with coefficients from 6305/7-D-3 
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Well 6305/7-D-2 with coefficients applied from neighboring wells is presented in figures 60 

and 61. Figure 60 shows the plot of ROP predicted by well 6305/7-D-1 coefficients. This plot 

manages to stay in proximity of the actual values, but does not look ideal. ROP modelled by 

well 6305/7-D-3 coefficients is displayed in figure 61. This plot appears to correlate very well 

for the most parts.  

 

 

Figure 60: Least square - 6305/7-D-2 with coefficients from 6305/7-D-1 

 

 

Figure 61: Least square - 6305/7-D-2 with coefficients from 6305/7-D-3 

 

  



64 
 

Figures 62 and 63 presents well 6305/7-D-3 with coefficients applied from neighboring wells. 

Coefficients from well 6305/7-D-1 are used to model ROP as shown in figure 62. In figure 63, 

ROP is modelled with coefficients from well 6305/7-D-2. In both figures, the ROP does not 

look well modelled and they deviate similarly. The coefficients from the neighboring wells 

produce similar results as the coefficients from the well, seen in figure 54. They are not very 

different from the results from the multiple regression technique in figures 62 and 63.  

 

 

Figure 62: Least square - 6305/7-D-3 with coefficients from 6305/7-D-1 

 

 

Figure 63: Least square - 6305/7-D-3 with coefficients from 6305/7-D-2 
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The following figures are plots from the Morvin field wells. ROP plots of well 6506/11-A-1 

with neighboring coefficients applied are displayed in figures 64 and 65. Figure 64 plots the 

ROP modelled by well 6506/11-A-2 coefficients. This plot appears initially good, but deviates 

more with depth. In figure 65, the ROP is modelled by well 6506/11-A-3 coefficients. The 

modelled ROP plot by the well’s own coefficients is also included here. It shows how closely 

the predicted ROP plots are, and thereby how correlative the use of coefficients can be. Even 

though the coefficients by themselves are not comparable.  

 

 

Figure 64: Least square - 6506/11-A-1 with coefficients from 6506/11-A-2 

 

 

Figure 65: Least square - 6506/11-A-1 with coefficients from 6506/11-A-3 
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Well 6506/11-A-2 with coefficients applied from neighboring wells is presented in figures 66 

and 67. Figure 66 show the plot of ROP predicted by well 6506/11-A-1 coefficients. Plot of 

ROP predicted by well 6506/11-A-3 coefficients is displayed in figure 67. Both of these wells 

also have the plot by coefficients originating from the actual wells. In these wells, the coefficient 

sets appear to produce almost identical plots. The result of the plots seems on the other hand 

only adequate. There is an especially large deviation in the middle of the plot, where the actual 

ROP experienced high values.  

 

 

Figure 66: Least square - 6506/11-A-2 with coefficients from 6506/11-A-1 

 

 

Figure 67: Least square - 6506/11-A-2 with coefficients from 6506/11-A-3 
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To complete the results from the least square technique in this thesis is the 6506/11-A-3 plots 

of modelled ROP from coefficients of close-by wells. Figure 68 shows the ROP predicted from 

well 6506/11-A-1 coefficients. This plot looks fairly level and stays in proximity of the actual 

plot in the first half of the plot. The last half of the plot has significant deviations of the results. 

ROP predicted from well 6506/11-A-2 coefficients in figure 69 appears to show better results. 

This plot manages to correlate quite well until it deviates vastly towards the end of the plot. 

Actual ROP values vary frequently and by large values, making it challenging to evaluate the 

predicted plot.  

 

 

Figure 68: Least square - 6506/11-A-3 with coefficients from 6506/11-A-1 

 

 

Figure 69: Least square - 6506/11-A-3 with coefficients from 6506/11-A-2 
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5.3 Multiple Regression with Bourgoyne & Young’s Model 
 

The results from using the multiple regression technique with Bourgoyne and Young’s model 

are available in this section. Calculated coefficients of each of the six wells are presented in 

tables 13 to 18. These coefficients are the first sets to be close to comparable. Still, the main 

reason why all sets within each field have zero for the same coefficients is that the values they 

are to interact with are constant.   

 

         

                             13                                         14                                        15 

         

                             16                                         17                                        18 

  

6305-7-D-1 Coefficients

Intercept 1,04726151

X-variabel 1 0,00040102

X-variabel 2 0,00251851

X-variabel 3 -0,00012836

X-variabel 4 -0,03233096

X-variabel 5 0,038008

X-variabel 6 0

X-variabel 7 6,4984E-05

6305-7-D-2 Coefficients

Intercept 4,69687645

X-variabel 1 0,00020906

X-variabel 2 0,00040947

X-variabel 3 -1,6252E-05

X-variabel 4 0,00362551

X-variabel 5 0,519272

X-variabel 6 0

X-variabel 7 -6,7247E-05

6305-7-D-3 Coefficients

Intercept 8,01596241

X-variabel 1 0,0004574

X-variabel 2 0,00047156

X-variabel 3 4,857E-06

X-variabel 4 -0,20741642

X-variabel 5 -0,98914419

X-variabel 6 0

X-variabel 7 -7,3597E-05

6506-11-A-1 Coefficients

Intercept 7,66199056

X-variabel 1 0,00032889

X-variabel 2 0,00040226

X-variabel 3 0

X-variabel 4 -0,17022179

X-variabel 5 0,24352929

X-variabel 6 0

X-variabel 7 -9,9799E-05

6506-11-A-2 Coefficients

Intercept 5,70009583

X-variabel 1 5,1787E-05

X-variabel 2 0,0002469

X-variabel 3 0

X-variabel 4 -0,06616008

X-variabel 5 0,58949979

X-variabel 6 0

X-variabel 7 -4,6391E-05

6506-11-A-3 Coefficients

Intercept 6,79545902

X-variabel 1 0,00034113

X-variabel 2 0,00057759

X-variabel 3 0

X-variabel 4 -0,14899919

X-variabel 5 1,17436476

X-variabel 6 0

X-variabel 7 -8,8636E-05
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Figures 70 to 75 show the resulting ROP plots from implementing the coefficients in their 

originating well. The Ormen Lange wells are presented in figures 70 to 72. Wells 6305/7-D-1 

and 6305/7-D-2 appear to give good results as in the plain multiple regression method. In well 

6305/7-D -3 however, the coefficients seem to correlate far better with the actual ROP.   

 

 

Figure 70: Multiple regression with Bourgoyne & Young's model in well 6305/7-D-1 

 

 

Figure 71: Multiple regression with Bourgoyne & Young's model in well 6305/7-D-2 

 

 

Figure 72: Multiple regression with Bourgoyne & Young's model in well 6305/7-D-3 
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Figures 73 to 75 are the Morvin field wells. Well 6506/11-A-2 is the only plot that noticeably 

seem to improve compared to the plain multiple regression results. Still, all the results appear 

to model the ROP very well.  

 

 

Figure 73: Multiple regression with Bourgoyne & Young's model in well 6506/11-A-1 

 

 

Figure 74: Multiple regression with Bourgoyne & Young's model in well 6506/11-A-2 

 

 

Figure 75: Multiple regression with Bourgoyne & Young's model in well 6506/11-A-3 
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Shown here are the plotted results of the ROP predicted by coefficients applied from close-by 

wells. The Ormen Lange wells are first presented. Well 6305/7-D-1 plots are shown in figures 

76 and 77. Figure 76 has the predicted ROP by use of coefficients from well 6305/7-D-2. In 

figure 77, the ROP is modelled by coefficients from well 6305/7-D-3. The ROP predicted by 

coefficients from well 6305/7-D-3 appears to have massive improvements by using the 

Bourgoyne & Young’s model in computing coefficients with multiple regression. See figure 41 

for reference.  

 

 

Figure 76: Multiple regression with Bourgoyne & Young's model - 6305/7-D-1 with coefficients from 6305/7-D-2 

 

 

Figure 77: Multiple regression with Bourgoyne & Young's model - 6305/7-D-1 with coefficients from 6305/7-D-3 
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Well 6305/7-D-2 with coefficients applied from neighboring wells is presented in figures 78 

and 79. Figure 78 shows the plot of ROP predicted by well 6305/7-D-1 coefficients. ROP 

modelled by well 6305/7-D-3 coefficients is displayed in figure 79. The results vary with the 

two sets of coefficients used in this well. Use of coefficients from well 6305/7-D-1 produce 

largely deviating results, unlike in the plain multiple regression method for this well. However, 

where the well 6305/7-D-3 coefficients are applied the results are significantly better.    

 

 

Figure 78: Multiple regression with Bourgoyne & Young's model - 6305/7-D-2 with coefficients from 6305/7-D-1 

 

 

Figure 79: Multiple regression with Bourgoyne & Young's model - 6305/7-D-2 with coefficients from 6305/7-D-3 
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Figures 80 and 81 present well 6305/7-D-3 with coefficients applied from neighboring wells. 

Coefficients from well 6305/7-D-1 are used to model ROP in figure 80. In figure 81, the ROP 

is modelled with coefficients from well 6305/7-D-2. Similarly as in the plain multiple 

regression, the modelled ROP does not provide good results for coefficients applied in this well. 

 

 

Figure 80: Multiple regression with Bourgoyne & Young's model - 6305/7-D-3 with coefficients from 6305/7-D-1 

 

 

Figure 81: Multiple regression with Bourgoyne & Young's model - 6305/7-D-3 with coefficients from 6305/7-D-2 
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The following figures are plots from the Morvin field wells. ROP modelled plots of well 

6506/11-A-1 with neighboring coefficients applied are displayed in figures 82 and 83. Figure 

82 plots ROP modelled by well 6506/11-A-2 coefficients. In figure 83, the ROP is modelled by 

well 6506/11-A-3 coefficients. Results from this well appear neither better nor worse than the 

results by use of only multiple regression. Both sets of results seem adequate, with the results 

from well 6506/11-A-3 coefficients looking more correlative to the actual ROP.   

 

 

Figure 82: Multiple regression with Bourgoyne & Young's model - 6506/11-A-1 with coefficients from 6506/11-A-2 

 

 

Figure 83: Multiple regression with Bourgoyne & Young's model - 6506/11-A-1 with coefficients from 6506/11-A-3 
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Well 6506/11-A-2 with coefficients applied from neighboring wells is presented in figures 84 

and 85. Figure 84 shows the plot of the ROP predicted by well 6506/11-A-1 coefficients. The 

plot of the ROP predicted by well 6506/11-A-3 coefficients is displayed in figure 85. These 

plots appear by far as the most deviating results.  

 

 

Figure 84: Multiple regression with Bourgoyne & Young's model - 6506/11-A-2 with coefficients from 6506/11-A-1 

 

 

Figure 85: Multiple regression with Bourgoyne & Young's model - 6506/11-A-2 with coefficients from 6506/11-A-3 
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To complete the results of the multiple regression technique with Bourgoyne & Young’s model 

in this thesis the 6506/11-A-3 plots of ROP modelled from coefficients of close-by wells are 

presented here. Figure 86 show the ROP predicted from well 6506/11-A-1 coefficients. This 

plot correlates well with the actual ROP. Well 6506/11-A-2 coefficients are displayed in figure 

87. This plot appear to have worsen from the use of plain multiple regressions, by noticeably 

deviating over large parts of the plot.  

 

 

Figure 86: Multiple regression with Bourgoyne & Young's model - 6506/11-A-3 with coefficients from 6506/11-A-1 

 

 

Figure 87: Multiple regression with Bourgoyne & Young's model - 6506/11-A-3 with coefficients from 6506/11-A-2 
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5.4 Least Square with Bourgoyne & Young’s Model 
 

The results from using the least square technique with Bourgoyne and Young’s model are 

available in this section. Calculated coefficients for each of the six wells are presented in tables 

19 to 24.    

 

         

                                    19                                                 20                                                21 

         

                                    22                                                23                                                 24 

 

  

6305-7-D-1 Coefficients

Intercept 2,16186292

X-variabel 1 9,4388E-05

X-variabel 2 0,00043157

X-variabel 3 0

X-variabel 4 0

X-variabel 5 0,25840718

X-variabel 6 2,25218612

X-variabel 7 8,0918E-06

6305-7-D-2 Coefficients

Intercept 4,45334395

X-variabel 1 0,0001293

X-variabel 2 0,00012888

X-variabel 3 0

X-variabel 4 0

X-variabel 5 0,36318188

X-variabel 6 0

X-variabel 7 0

6305-7-D-3 Coefficients

Intercept 0,04883496

X-variabel 1 0,00013349

X-variabel 2 0,00037065

X-variabel 3 0

X-variabel 4 0

X-variabel 5 0,48274846

X-variabel 6 4,18560799

X-variabel 7 0

6506-11-A-1 Coefficients

Intercept 0,04289576

X-variabel 1 0,00013918

X-variabel 2 0,00025041

X-variabel 3 0,00102158

X-variabel 4 0

X-variabel 5 0,30624914

X-variabel 6 3,11749218

X-variabel 7 7,7026E-05

6506-11-A-2 Coefficients

Intercept 1,36523342

X-variabel 1 7,2948E-05

X-variabel 2 0,00069895

X-variabel 3 0,00037711

X-variabel 4 0

X-variabel 5 0,24184414

X-variabel 6 1,36523637

X-variabel 7 0,00011708

6506-11-A-3 Coefficients

Intercept 0,09219548

X-variabel 1 0,00019387

X-variabel 2 0,00080278

X-variabel 3 0,00038018

X-variabel 4 0

X-variabel 5 0,32045484

X-variabel 6 2,09057107

X-variabel 7 0,00010949
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Figures 88 to 93 show the resulting ROP plots from implementing the coefficients in their 

originating well. The Ormen Lange wells are presented in figures 88 to 90. Wells 6305/7-D-1 

and 6305/7-D-2 has good results, and as with the previous methods well 6305/7-D-3 has far 

less accurate predicting results. Well 6305/7-D-1 prediction appears to correlates very well with 

the actual ROP.  

 

 

Figure 88: Least square with Bourgoyne & Young's model in well 6305/7-D-1 

 

 

Figure 89: Least square with Bourgoyne & Young's model in well 6305/7-D-2 

 

 

Figure 90: Least square with Bourgoyne & Young's model in well 6305/7-D-3 
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Figures 91 to 93 are the Morvin field wells. Well 6506/11-A-1 prediction does not differ much 

from the plain least square prediction in figure 55. Wells 6506/11-A-2 and 6506/11-A-3 

predictions however have a clear and impressive improvement with the Bourgoyne and 

Young’s model. These plots are far more correlative with the actual ROP.   

 

 

Figure 91: Least square with Bourgoyne & Young's model in well 6506/11-A-1 

 

 

Figure 92: Least square with Bourgoyne & Young's model in well 6506/11-A-2 

 

 

Figure 93: Least square with Bourgoyne & Young's model in well 6506/11-A-3 
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Shown here are the plotted results of ROP predicted by coefficients applied from close-by wells. 

The Ormen Lange wells are first presented. Well 6305/7-D-1 plots are shown in figures 94 and 

95. Figure 94 has the predicted ROP by use of coefficients from well 6305/7-D-2. In figure 95, 

the ROP is modelled by coefficients from well 6305/7-D-3. Both predicted plots have fairly 

low deviation from the actual ROP. Coefficients from well 6305/7-D-3 appear more correlating.  

 

 

Figure 94: Least square with Bourgoyne & Young's model - 6305/7-D-1 with coefficients from 6305/7-D-2 

 

 

Figure 95: Least square with Bourgoyne & Young's model - 6305/7-D-1 with coefficients from 6305/7-D-3 
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Well 6305/7-D-2 with coefficients applied from neighboring wells are presented in figures 96 

and 97. Figure 96 shows the plot of ROP predicted by well 6305/7-D-1 coefficients. The ROP 

modelled by well 6305/7-D-3 coefficients is displayed in figure 97. Both plots seem to correlate 

very well, though the one based on coefficients from well 6305/7-D-1 displays more deviation.    

 

 

Figure 96: Least square with Bourgoyne & Young's model - 6305/7-D-2 with coefficients from 6305/7-D-1 

 

 

Figure 97: Least square with Bourgoyne & Young's model - 6305/7-D-2 with coefficients from 6305/7-D-3 
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Figures 98 and 99 presents well 6305/7-D-3 with coefficients applied from neighboring wells. 

Coefficients from well 6305/7-D-1 are used to model ROP in figure 98. In figure 99, ROP is 

modelled with coefficients from well 6305/7-D-2. These results are, as with the previous 

method, the weakest. However, there seems to be slight improvements with this method. 

Especially the coefficients from well 6305/7-D-1 are correlating far better.   

 

 

Figure 98: Least square with Bourgoyne & Young's model - 6305/7-D-3 with coefficients from 6305/7-D-1 

 

 

Figure 99: Least square with Bourgoyne & Young's model - 6305/7-D-3 with coefficients from 6305/7-D-2 
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The following figures are plots from the Morvin field wells. ROP plots of well 6506/11-A-1 

with neighboring coefficients applied are displayed in figures 100 and 101. Figure 100 plots 

ROP modelled by well 6506/11-A-2 coefficients. In figure 101 the ROP is modelled by well 

6506/11-A-3 coefficients. Although well 6506/11-A-2 coefficients give less deviation in the 

middle, well 6506/11-A-3 coefficients correlate far better towards the end of the plot.    

 

 

Figure 100: Least square with Bourgoyne & Young's model - 6506/11-A-1 with coefficients from 6506/11-A-2 

 

 

Figure 101: Least square with Bourgoyne & Young's model - 6506/11-A-1 with coefficients from 6506/11-A-3 
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Well 6506/11-A-2 with coefficients applied from neighboring wells is presented in figures 102 

and 103. Figure 102 show the plot of ROP predicted by well 6506/11-A-1 coefficients. Plot of 

ROP predicted by well 6506/11-A-3 coefficients is displayed in figure 103.  Both predicted 

plots seem to decline throughout to match the beginning and end of the actual plot. The Well 

6506/11-A-3 coefficients plot additionally manages to correlate partly during the middle 

elevated actual ROP values. This plot correlates well before the elevated part of the actual ROP.   

 

 

Figure 102: Least square with Bourgoyne & Young's model - 6506/11-A-2 with coefficients from 6506/11-A-1 

 

 

Figure 103: Least square with Bourgoyne & Young's model - 6506/11-A-2 with coefficients from 6506/11-A-3 
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To complete the testing results of the least square technique with Bourgoyne & Young’s model 

in this thesis are the 6506/11-A-3 plots of modelled ROP from coefficients of close-by wells. 

Figure 104 shows the ROP predicted from well 6506/11-A-1 coefficients. Well 6506/11-A-2 

coefficients displayed in figure 105. The two sets of coefficients applied in well 6506/11-A-3 

seem to produce vastly different results. Neither of the results are bad, but the coefficients from 

well 6506/11-A-2 appear more accurate.      

 

 

Figure 104: Least square with Bourgoyne & Young's model - 6506/11-A-3 with coefficients from 6506/11-A-1 

 

 

Figure 105: Least square with Bourgoyne & Young's model - 6506/11-A-3 with coefficients from 6506/11-A-2 
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5.5 D-Exponent  
 

The results from using the D-Exponent method are available in this section. Results from using 

the D-Exponent method between wells 6305/7-D-1 and 6305/7-D-2 are presented in figures 

106 to 108. In figure 106 the D-Exponents from the wells are compared. The plots are similar 

but several deviations occur. Results produced by the D-Exponent method in these wells are 

partly adequate. The deviations in figures 107 and 108 appear correlative to the deviations 

between the D-Exponents in figure 106. There is a clear difference of the magnitude between 

these deviations. These observations are also detected for all other wells.   

 

 

Figure 106: 6305/7-D-1 and 6305/7-D-2 d-exponents compared 

 

 

Figure 107: 6305/7-D-1 with d-exponent from 6305/7-D-2 

 

 

Figure 108: 6305/7-D-2 with d-exponent from 6305/7-D-1 
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Results from using the D-Exponent method between wells 6305/7-D-1 and 6305/7-D-3 are 

presented in figures 109 to 11. The compared D-Exponents correlate over large parts of the plot 

in figure 109.   

 

 

Figure 109: 6305/7-D-1 and 6305/7-D-3 d-exponents compared 

 

 

Figure 110: 6305/7-D-1 with d-exponent from 6305/7-D-3 

 

 

Figure 111: 6305/7-D-3 with d-exponent from 6305/7-D-1 
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Results from using the D-Exponent method between wells 6305/7-D-2 and 6305/7-D-3 are 

presented in figures 112 to 114. When compared the D-Exponent plots appear very close, but 

only partly completely correlate in figure 112.     

 

 

Figure 112: 6305/7-D-2 and 6305/7-D-3 d-exponents compared 

 

 

Figure 113: 6305/7-D-2 with d-exponent from 6305/7-D-3 

 

 

Figure 114: 6305/7-D-3 with d-exponent from 6305/7-D-2 
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Results from using the D-Exponent method between wells 6506/11-A-1 and 6506/11-A-2 are 

presented in figures 115 to 117. The D-Exponents compared show close similarity, though 

deviation seems to slowly increase with increasing depth.   

 

 

Figure 115: 6506/11-A-1 and 6506/11-A-2 d-exponents compared 

 

 

Figure 116: 6506/11-A-1 with d-exponent from 6506/11-A-2 

 

 

Figure 117: 6506/11-A-2 with d-exponent from 6506/11-A-1 
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Results from using the D-Exponent method between wells 6506/11-A-1 and 6506/11-A-3 are 

presented in figures 118 to 120. The D-Exponents compared are quite similar, and only a few 

visible deviations occur. Although there seems to be minimal deviation between the D-

Exponents, there is a massive deviation of the predicted ROP in figure 119.  

 

 

Figure 118: 6506/11-A-1 and 6506/11-A-3 d-exponents compared 

 

 

Figure 119: 6506/11-A-1 with d-exponent from 6506/11-A-3 

 

 

Figure 120: 6506/11-A-3 with d-exponent from 6506/11-A-1 
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Results from using the D-Exponent method between wells 6506-11-A-2 and 6506-11-A-3 are 

presented in figures 121 to 123. Again, the compared D-Exponents shows very little visible 

deviation. Also well 6506-11-A-2 has a high elevation of predicted ROP from the D-Exponents 

from well 6506-11-A-3. These elevations appear to be in the same location as in figure 119. 

The predicted ROP plot in figure 123 seems to be impressively correlating with the actual ROP.  

 

 

Figure 121: 6506/11-A-2 and 6506/11-A-3 d-exponents compared 

 

 

Figure 122: 6506/11-A-2 with d-exponent from 6506/11-A-3 

 

 

Figure 123: 6506/11-A-3 with d-exponent from 6506/11-A-2 
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5.6 MSE  
 

The results from using the MSE method are available in this section. Comparing MSE is 

challenging, as the values may vary from one to over one thousand. This result in plots lacking 

the detail needed to see the correlation between the lower MSE values. The pattern is that the 

MSE compared values appear close for the lower depth lower MSE values, and then tend to 

deviate more with depth.  

Results from using the MSE method between wells 6305/7-D-1 and 6305/7-D-2 are presented 

in figures 124 to 126. In figure 124 the MSE from the wells are compared. Results here correlate 

well with the actual ROP, with some clear deviations. 

 

 

Figure 124: 6305/7-D-1 and 6305/7-D-2 MSE compared 

 

 

Figure 125: 6305/7-D-1 with MSE from 6305/7-D-2 

 

Figure 126: 6305/7-D-2 with MSE from 6305/7-D-1 
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Results from using the MSE method between wells 6305/7-D-1 and 6305/7-D-3 are presented 

in figures 127 to 129. The largest deviation between the MSE compared appear to be around 

the deeper depths of the plot. However, the largest deviations of the modelled ROP plots from 

these MSE values seem to be in the middle or beginning of the plots. This appears to be the 

case for the other wells as well. If anything, the modelled ROP seems to correlate well with the 

actual ROP in the deepest depths for the wells.  Results for wells 6305/7-D-1 and 6305/7-D-3 

are not terrible, but do have a lot of clear deviation from the actual ROP.  

 

 

Figure 127: 6305/7-D-1 and 6305/7-D-3 MSE compared 

 

 

Figure 128: 6305/7-D-1 with MSE from 6305/7-D-3 

 

 

Figure 129: 6305/7-D-3 with MSE from 6305/7-D-1 
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Results from using the MSE method between wells 6305/7-D-2 and 6305/7-D-3 are presented 

in figures 130 to 132. Results here appear similar to the ones for wells 6305/7-D-1 and 6305/7-

D-3.  

 

 

Figure 130: 6305/7-D-2 and 6305/7-D-3 MSE compared 

 

 

Figure 131: 6305/7-D-2 with MSE from 6305/7-D-3 

 

 

Figure 132: 6305/7-D-3 with MSE from 6305/7-D-2 
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Results from using the MSE method between wells 6506/11-A-1 and 6506/11-A-2 are 

presented in figures 133 to 135. In these wells the modelled ROP correlates better in the middle 

section of the plot than for previous wells. The lower depths however show significant 

deviation.      

 

 

Figure 133: 6506/11-A-1 and 6506/11-A-2 MSE compared 

 

 

Figure 134: 6506/11-A-1 with MSE from 6506/11-A-2 

 

 

Figure 135: 6506/11-A-2 with MSE from 6506/11-A-1 
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Results from using the MSE method between wells 6506/11-A-1 and 6506/11-A-3 are 

presented in figures 136 to 138. The results for these wells appear very promising. The plots 

seem to correlate well, with only a few exceptions.  

 

 

Figure 136: 6506/11-A-1 and 6506/11-A-3 MSE compared 

 

 

Figure 137: 6506/11-A-1 with MSE from 6506/11-A-3 

 

 

Figure 138: 6506/11-A-3 with MSE from 6506/11-A-1 
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Results from using the MSE method between wells 6506/11-A-2 and 6506/11-A-3 are 

presented in figures 139 to 141. Here the results look similar to the ones from 6506/11-A-1 and 

6506/11-A-2. The modelled ROP correlates quite well from the middle of the plots, but is poor 

at the beginning of the plot.    

 

 

Figure 139: 6506/11-A-2 and 6506/11-A-3 MSE compared 

 

 

Figure 140: 6506/11-A-2 with MSE from 6506/11-A-3 

 

 

Figure 141: 6506/11-A-3 with MSE from 6506/11-A-2 
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5.7 Analysis: Plot comparison  
 

The results from the analysis by plot comparison is available in this section. These results are 

presented by how much of the modelled ROP plot is within five or ten percent of the actual 

ROP, for each field location. Results of plot percentage within five percent from the Ormen 

Lange field wells is displayed in table 25. Percentage within ten percent of the actual ROP is 

available in table 26 for the same field. Table 27 presents plot percentage within five percent 

for the Morvin field wells. In table 28 the percentage of plot within ten percent is shown for the 

Morvin field.  

 

The methods’ results by use of coefficients in their originating well generally compares better 

to the actual ROP, as is expected. However, coefficients applied from the neighboring wells 

have occasionally produced results close to and even better than the original coefficients. The 

results from each method differ vastly depending on the well the coefficients or values are 

originated from, and the well they are implemented in. By organizing the results as in tables 25 

to 28, it is possible to detect abnormalities. Abnormalities here may be that one of the several 

results from each method, deviates significantly from the others of same method. An 

abnormality found in table 25 is in the result of multiple regression with Bourgoyne & Young’s 

model (“B&Y Mult. Regr”) coefficients. Here the results vary from 5.50 % to 11.26 %, with 

one exception. For well -1 (6305/7-D-1) coefficients applied in well 6305/7-D-2, the result is a 

mere 0.52 %. This result lowers the average result of that method drastically, and may need to 

be investigated further. The same abnormality is visible in figure 143 where the result has only 

increased to 1.05 %, compared to the other results that are from 9.95 % to 21.99 % within 10 

% of the actual ROP. In tables 27 and 28, there are no clear abnormalities. However, results 

within the methods frequently vary vastly. The best result of coefficients or values implemented 

in neighboring wells is 26.96 % of the plot within 10 % of the actual ROP. The prediction is 

computed by least square with Bourgoyne & Young’s model (“B&Y Least Square”) 

coefficients from well 6305/7-D-3 in well 6305/7-D-2.   

       



99 
 

 

25 

Within 5%

Method 6305-7-D-1 6305-7-D-2 6305-7-D-3

Multiple 

Regression
13,35 % 13,09 % 11,78 %

Mult. Regression

well-1 coefficients
8,90 % 6,81 %

Mult. Regression

well-2 coefficients
7,07 % 6,28 %

Mult. Regression

well-3 coefficients
2,09 % 2,88 %

Least Square
16,49 % 13,61 % 7,85 %

Least Square        

well-1 coefficients
11,52 % 7,85 %

Least Square        

well-2 coefficients
10,21 % 5,76 %

Least Square        

well-3 coefficients
12,57 % 11,78 %

B&Y Multiple 

Regression
17,28 % 11,26 % 16,49 %

B&Y Mult. Regr.  

well-1 coefficients 
0,52 % 6,02 %

B&Y Mult. Regr.  

well-2 coefficients 
7,33 % 11,26 %

B&Y Mult. Regr.  

well-3 coefficients 
5,50 % 8,64 %

B&Y Least Square
16,49 % 13,87 % 8,12 %

B&Y Least Square 

well-1 coefficients
12,30 % 11,52 %

B&Y Least Square 

well-2 coefficients
10,21 % 10,21 %

B&Y Least Square 

well-3 coefficients
10,21 % 12,83 %

D Exp                       

well-1 D-Exp
5,76 % 5,76 %

D Exp                       

well-2 D-Exp
5,24 % 5,24 %

D Exp                       

well-3 D-Exp
3,14 % 3,40 %

MSE                         

well-1 MSE
10,73 % 6,28 %

MSE                         

well-2 MSE
10,47 % 7,07 %

MSE                         

well-3 MSE
6,28 % 7,07 %

Well
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26 

Within 10%

Method 6305-7-D-1 6305-7-D-2 6305-7-D-3

Multiple 

Regression
30,89 % 27,75 % 20,94 %

Mult. Regression

well-1 coefficients
17,54 % 13,61 %

Mult. Regression

well-2 coefficients
14,92 % 12,30 %

Mult. Regression

well-3 coefficients
4,19 % 6,02 %

Least Square
31,94 % 25,92 % 14,40 %

Least Square        

well-1 coefficients
21,47 % 16,49 %

Least Square        

well-2 coefficients
18,06 % 14,66 %

Least Square        

well-3 coefficients
25,65 % 20,68 %

B&Y Multiple 

Regression
33,51 % 27,49 % 30,89 %

B&Y Mult. Regr.  

well-1 coefficients 
1,05 % 10,73 %

B&Y Mult. Regr.  

well-2 coefficients 
15,97 % 21,99 %

B&Y Mult. Regr.  

well-3 coefficients 
9,95 % 15,18 %

B&Y Least Square
32,46 % 25,39 % 14,92 %

B&Y Least Square 

well-1 coefficients
20,42 % 18,59 %

B&Y Least Square 

well-2 coefficients
18,32 % 16,75 %

B&Y Least Square 

well-3 coefficients
19,37 % 26,96 %

D Exp                       

well-1 D-Exp
8,38 % 12,57 %

D Exp                       

well-2 D-Exp
10,21 % 9,69 %

D Exp                       

well-3 D-Exp
6,81 % 6,81 %

MSE                         

well-1 MSE
19,63 % 11,78 %

MSE                         

well-2 MSE
21,47 % 14,14 %

MSE                         

well-3 MSE
12,04 % 14,40 %

Well



101 
 

 

27 

Within 5%

Method 6506-11-A-1 6506-11-A-2 6506-11-A-3

Multiple 

Regression
9,31 % 8,39 % 8,74 %

Mult. Regression

well-1 coefficients
4,25 % 6,09 %

Mult. Regression

well-2 coefficients
4,94 % 6,55 %

Mult. Regression

well-3 coefficients
6,90 % 7,01 %

Least Square
7,47 % 6,78 % 5,40 %

Least Square        

well-1 coefficients
8,62 % 5,98 %

Least Square        

well-2 coefficients
10,23 % 7,93 %

Least Square        

well-3 coefficients
5,86 % 8,62 %

B&Y Multiple 

Regression
11,03 % 12,53 % 12,30 %

B&Y Mult. Regr.  

well-1 coefficients 
2,76 % 9,77 %

B&Y Mult. Regr.  

well-2 coefficients 
6,67 % 6,32 %

B&Y Mult. Regr.  

well-3 coefficients 
9,89 % 4,02 %

B&Y Least Square
7,01 % 13,33 % 10,19 %

B&Y Least Square 

well-1 coefficients
2,53 % 7,15 %

B&Y Least Square 

well-2 coefficients
4,25 % 5,94 %

B&Y Least Square 

well-3 coefficients
7,01 % 5,29 %

D Exp                       

well-1 D-Exp
0,94 % 9,19 %

D Exp                       

well-2 D-Exp
2,87 % 4,18 %

D Exp                       

well-3 D-Exp
4,56 % 3,64 %

MSE                         

well-1 MSE
4,49 % 8,41 %

MSE                         

well-2 MSE
3,63 % 5,94 %

MSE                         

well-3 MSE
8,52 % 4,65 %

Well
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28 

Within 10%

Method 6506-11-A-1 6506-11-A-2 6506-11-A-3

Multiple 

Regression
16,78 % 15,63 % 19,20 %

Mult. Regression

well-1 coefficients
9,89 % 12,18 %

Mult. Regression

well-2 coefficients
9,77 % 14,02 %

Mult. Regression

well-3 coefficients
14,02 % 14,02 %

Least Square
12,99 % 12,37 % 12,41 %

Least Square        

well-1 coefficients
17,82 % 11,49 %

Least Square        

well-2 coefficients
19,20 % 15,06 %

Least Square        

well-3 coefficients
11,95 % 17,47 %

B&Y Multiple 

Regression
21,38 % 24,71 % 24,71 %

B&Y Mult. Regr.  

well-1 coefficients 
5,63 % 19,66 %

B&Y Mult. Regr.  

well-2 coefficients 
15,17 % 13,91 %

B&Y Mult. Regr.  

well-3 coefficients 
19,20 % 7,82 %

B&Y Least Square
16,73 % 28,16 % 19,66 %

B&Y Least Square 

well-1 coefficients
4,94 % 14,20 %

B&Y Least Square 

well-2 coefficients
8,30 % 12,86 %

B&Y Least Square 

well-3 coefficients
14,41 % 9,77 %

D Exp                       

well-1 D-Exp
1,29 % 21,80 %

D Exp                       

well-2 D-Exp
7,13 % 9,78 %

D Exp                       

well-3 D-Exp
9,39 % 7,29 %

MSE                         

well-1 MSE
8,92 % 16,41 %

MSE                         

well-2 MSE
7,44 % 9,73 %

MSE                         

well-3 MSE
16,04 % 10,18 %

Well
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5.8 Analysis: Time comparison  
 

The results obtained from the analysis by time comparison is available in this section. These 

results are presented by percent of estimated time deviating from the actual drilling time, for 

each field location. The results of time comparison from the Ormen Lange field wells is 

displayed in table 29. Table 30 presents the time comparison for the Morvin field wells.  

 

The methods’ result by use of coefficients in their originating well is generally significantly 

closer to the actual drilling time, compared to applying them in neighboring wells. Still, there 

are results of coefficients or values applied in neighboring wells only deviating a few percent. 

The variations of results within methods are very significant. In table 29 for multiple regression 

(“Mult. Regression”) coefficients, the results vary from 8.47 % to 209.74 % predicted time 

deviation. In table 30 for MSE values, results estimate times from 0.97 % to 33.30 % below 

actual drilling time. It is visible in table 30 that the multiple regression method applied in well 

6506/11-A-3 has managed to estimate a time prediction with a 0.00 % deviation. Closer 

inspection reveals that the time estimate is off by 13 seconds for a 128.64-hour drilling 

operation. The best resulting prediction of coefficients or values implemented in neighboring 

wells is only 0.48 % below. This prediction is computed by multiple regression with Bourgoyne 

& Young’s model (“B&Y Mult. Regr”) coefficients from well 6506/11-A-3 in well 6506/11-

A-2. Only 30.9 minutes below the correct 107.14-hour drilling operation.   
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29 

Method 6305-7-D-1 6305-7-D-2 6305-7-D-3

Multiple 

Regression
-0,38 % 0,65 % -0,66 %

Mult. Regression

well-1 coefficients
-13,32 % -21,31 %

Mult. Regression

well-2 coefficients
8,47 % -23,14 %

Mult. Regression

well-3 coefficients
209,74 % 176,50 %

Least Square
-0,44 % 4,42 % -1,32 %

Least Square        

well-1 coefficients
-10,61 % -14,81 %

Least Square        

well-2 coefficients
16,10 % -4,28 %

Least Square        

well-3 coefficients
14,21 % 2,55 %

B&Y Multiple 

Regression 3,92 % 4,22 % 4,14 %

B&Y Mult. Regr.  

well-1 coefficients 
-40,50 % -32,28 %

B&Y Mult. Regr.  

well-2 coefficients 
20,16 % 7,92 %

B&Y Mult. Regr.  

well-3 coefficients 
9,08 % 9,56 %

B&Y Least Square
4,19 % 4,78 % 9,36 %

B&Y Least Square 

well-1 coefficients
-9,36 % -8,52 %

B&Y Least Square 

well-2 coefficients
17,28 % 3,23 %

B&Y Least Square 

well-3 coefficients
23,27 % 7,05 %

D Exp                       

well-1 D-Exp
-18,87 % -29,86 %

D Exp                       

well-2 D-Exp
8,70 % -21,73 %

D Exp                       

well-3 D-Exp
70,76 % 31,93 %

MSE                         

well-1 MSE
-21,43 % -7,58 %

MSE                         

well-2 MSE
20,59 % 12,37 %

MSE                         

well-3 MSE
0,64 % -16,90 %

Well
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30 

Method 6506-11-A-1 6506-11-A-2 6506-11-A-3

Multiple 

Regression
0,40 % 6,73 % 0,00 %

Mult. Regression

well-1 coefficients
32,01 % 9,56 %

Mult. Regression

well-2 coefficients
14,07 % -3,00 %

Mult. Regression

well-3 coefficients
24,25 % 27,01 %

Least Square
-0,01 % -1,50 % -2,13 %

Least Square        

well-1 coefficients
27,46 % 6,15 %

Least Square        

well-2 coefficients
-21,38 % -23,16 %

Least Square        

well-3 coefficients
-2,78 % 20,70 %

B&Y Multiple 

Regression 2,23 % 5,37 % 4,57 %

B&Y Mult. Regr.  

well-1 coefficients 
-10,42 % -11,27 %

B&Y Mult. Regr.  

well-2 coefficients 
-5,34 % -15,24 %

B&Y Mult. Regr.  

well-3 coefficients 
6,44 % -0,48 %

B&Y Least Square
10,48 % 6,48 % 6,80 %

B&Y Least Square 

well-1 coefficients
24,67 % 10,40 %

B&Y Least Square 

well-2 coefficients
-6,35 % -21,28 %

B&Y Least Square 

well-3 coefficients
30,73 % 44,29 %

D Exp                       

well-1 D-Exp
-52,21 % -6,40 %

D Exp                       

well-2 D-Exp
-8,37 % -17,57 %

D Exp                       

well-3 D-Exp
57,74 % 61,68 %

MSE                         

well-1 MSE
-22,76 % 21,89 %

MSE                         

well-2 MSE
-0,97 % 26,35 %

MSE                         

well-3 MSE
-21,32 % -33,30 %

Well
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6 CONCLUSION 
 

Similar lithology and conditions make it possible to correlate with respect to computing the 

ROP with close-by wells. As formation properties has a major impact on drillability, MSE and 

drilling variables effects, it also affects the ROP. The use of coefficients and values from close-

by wells with the techniques introduced in this thesis to give a predicted ROP has produced 

promising results. Most of the modelled ROP plots appear to correlate close to the actual ROP. 

That said these are still modelled predictions and in some cases deviate significantly from the 

actual data.  

 

Well 6305/7-D-3 results appear to have most frequently produced poor results. This is also 

apparent in figure 146 showing the overall time deviation for the predicted ROP. Well 6305/7-

D-3 results have the three clearly most deviating results. For multiple regression, the time 

deviation is no less than 209.74 % and 176.50 % when applying the neighboring well 

coefficients. Additionally for the d-exponent method, the deviation is 70.76 % from one of the 

close-by well coefficients. One possible reason for this has been remarked in the final well 

report, from where the data for the tests were retrieved, where it states “To maintain template 

orientation and level restrictions all 30” conductors and 20” surface casings on 3 wells were 

installed. The wells were drilled in batch mode. The 3 wells where 20” surface casing were 

installed include: 6305/7-D-3 H, 6305/7-D-6 H, 6305/7-D-7 H pilot hole and 6305/7-D-7 AH.” 

This suggests that well 6305/7-D-3 drilling may have been conducted differently, providing 

discrepancy in the data when they later returned to re-enter and complete the well. Another 

reason may be that the actual ROP varies more than for other wells.     

 

The other results that may be regarded as failing to predict ROP, due to significant deviation is 

well 6506/11-A-2 with neighboring coefficients. For the Morvin field wells, wells 6506/11-A-

1 and 6506/11-A-3 seem to correspond the best. Also for these wells, a possible answer is in 

the final well report. While both 6506/11-A-1 and 6506/11-A-3 wells were drilled with 36”, 

26”, 17 ½” and 12 ¼” sections, the 6506/11-A-2 well was drilled with 36”, 26”, 17 ½”x20”, 12 

¼”x17 ½” and 12 ¼” sections. Therefore, also here it seems the differences may be a result of 

conducting the drilling process differently.   
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A conclusion over the validity and performance of the techniques may be derived from the 

overall results displayed in tables 31 and 32. Within 5 % deviation of the actual ROP, the least 

square technique with and without the Bourgoyne & Young’s model clearly performs the best. 

The outcome is similar for within 10 % deviation of the actual ROP. Here the least square 

method is noticeably the strongest performer. The least square technique has good results for 

time deviation results, only the technique of multiple regression with Bourgoyne & Young’s 

model has better results here.  

 

 

31 

 

32 

6305/7-D wells MULT.REG

MULTIPLE 

REGRESSION 

COEFF. LEAST SQR

LEAST 

SQUARE 

COEFF.

LEAST 

SQR B&Y

LEAST SQR 

B&Y    

COEFF. D-EXP MSE 

MULT.REG 

B&Y    

COEFF. 

MULT. 

REG. 

B&Y 

6305/7 average within 5%: 0,1274 0,056719023 0,12653 0,0994764 0,12827 0,1121291 0,0475567 0,079843 0,065445 0,15009

6506/11-A wells

6506/11 average within 5%: 0,08812 0,059578544 0,06552 0,0787356 0,1018 0,0536189 0,0422993 0,0594 0,0657088 0,11954

10,78 % 5,81 % 9,60 % 8,91 % 11,50 % 8,29 % 4,49 % 6,96 % 6,56 % 13,48 %

6305/7-D wells MULT.REG

MULTIPLE 

REGRESSION 

COEFF. LEAST SQR

LEAST 

SQUARE 

COEFF.

LEAST 

SQR B&Y

LEAST SQR 

B&Y    

COEFF. D-EXP MSE 

MULT.REG 

B&Y    

COEFF. 

MULT. 

REG. 

B&Y 

6305/7 average within 10%: 0,26527 0,114310646 0,24084 0,1950262 0,24258 0,2006981 0,0907504 0,155759 0,1247818 0,30628

6506/11-A wells

6506/11  average within 10%: 0,17203 0,123180077 0,1259 0,1549808 0,21516 0,1074773 0,0944594 0,114537 0,1356322 0,23602

21,87 % 11,87 % 18,34 % 17,50 % 22,89 % 15,41 % 9,26 % 13,51 % 13,02 % 27,11 %
TOTAL WELLS AVERAGE 

WITHIN 10%: 

TOTAL WELLS AVERAGE 

WITHIN 5%: 

6305
Multiple 

Regression

Multiple 

Regression 

Coefficients

Least 

Square

Least 

Square 

Coefficients

Least 

Square 

B&Y 

Least 

Square B&Y 

Coefficients D-EXP MSE 

Multiple 

Regression 

B&Y    

Coefficients

Multiple 

Regression 

B&Y

6305 average deviation: 0,24965864 32,0351397 0,9116 4,49119828 2,7225 4,8450791 13,0865 4,60699 8,76445803 1,7891056

% deviation: 0,00571511 0,73333823 0,0209 0,10281108 0,0623 0,11091201 0,29957 0,10546 0,20063318 0,0409556

6506

6506 average deviation: 2,58155442 21,8574419 1,4546 20,325637 9,9485 27,4529755 40,3584 25,3668 10,2813329 4,8817354

% deviation: 0,0208834 0,17681508 0,0118 0,1644236 0,0805 0,22207997 0,32648 0,2052 0,08317052 0,0394906

ALL Total average deviation 1,41560653 26,9462908 1,1831 12,4084176 6,3355 16,1490273 26,7224 14,9869 9,52289546 3,3354205

% deviation: 1,69 % 32,21 % 1,41 % 14,83 % 7,57 % 19,31 % 31,95 % 17,92 % 11,38 % 3,99 %
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The final conclusion is that the results in general appear to correlate closely with the actual 

ROP, and many techniques show promise. The least square technique may be considered the 

overall best technique to predict the ROP from the data sets used in this thesis. With more 

available data and development of the techniques, it is believed that the results may improve 

and become more accurate. The techniques may then possibly be used to optimize planning for 

operations and expenses. From the experience in this thesis, it is recommended that the 

techniques be implemented for wells that are to be drilled with a similar procedure as the 

reference well, as this has been shown to be a possible cause of deviation.  

 

 

  



109 
 

REFERENCES  
 

[1] Teale, R., “The Concept of Specific Energy in Rock Drilling”,(1965), Int. J. Rock Mechanic 

Mining Science 

[2] Macini, P., SPE, “Bit Performance Evaluation Revisited by Means of Bit Index and 

Formation Drillability Catalogue”, SPE/IADC 107536, (2007) 

[3] Dr. Kök M. V., “Drilling optimization”, Middle East Technical University, Dept. of 

Petroleum & Natural Gas Engineering, retrieved from 

https://www.metu.edu.tr/~kok/pete424/PETE424_CHAPTER2.pdf, 24.02.2015   

[4] Borgouyne & Young, 1974 // A multiple regression approach to optimal drilling and 

abnormal pressure detection // SPE J. 14 (4): 371-384    

[5] Morton, E.K. and Clements, W.R., “The Role of Bit Type and Drilling Fluid Type in Drilling 

Performance”, SPE 14073, (1986) 

[6] Bourgoyne A.T. Jr., Millheim K.K., Chenevert M.E., and Young F.S., "Applied Drilling 

Engineering", Society of Petroleum Engineers Text Book Series, Vol.1, Richardson, TX, 1986)   

[7] Warren, T.M., and Armagost, W.K., SPE, Amoco Production Co., “Laboratory Drilling 

Performance of PDC Bits”, SPE 15617, (June 1988)  

[8] T.M. Warren, SPE, Amoco Production Co. (1987), Penetration-Rate Performance of Roller-

Cone Bits   

[9] Hareland, G. and Rampersad, P.R., Drag - Bit Model Including Wear; paper SPE 26957 

presented at the SPE Latin America/ Caribbean Petroleum Engineering Conference, Buenos 

Aires, Argentina, 27-29 April 1994.      

[10] Singh et al., “Cutting Structure for Roller Cone Bits”, United States Patent, United States 

Patent and Trademark Office, Patent #: US006374930, Sheet 2 of 8, http://www.uspto.gov/, 

(23. April, 2002)  

[11] WISE J.L., GROSSMAN, J.W., WRIGHT, E.K., GRONEWALD, P.J., BERTAGNOLLI, 

K. and COOLEY, C.H., Latest Results of Parameter Studies on PDC Drag Cutters for Hard 

Rock Drilling; GRC Transactions, Vol. 29, 2005. 

[12] Swenson , D.V., Wesenberg , D.L. and Jones , A.K., Analytical and Experimental 

Investigations of Rock Cutting Using Polycrystalline Diamond Compact Drag Cutters; paper 

https://www.metu.edu.tr/~kok/pete424/PETE424_CHAPTER2.pdf
http://www.uspto.gov/


110 
 

SPE 10150 presented at the SPE Annual Technical Conference and Exhibition, San Antonio, 

TX, 4-7 October 1981. 

[13] Warren , T.M. and Armagost , W.K., Laboratory Drilling Performance of PDC Bits; SPE 

Drilling Engineering, Vol. 3, No. 2, pp. 125-135, June 1988. 

[14] Zeuch , D.H. and Finger , J.T., Rock Breakage Mechanisms with a PDC Cutter; paper SPE 

14219 presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, NV, 22-

26 September 1985. 

[15] Brett , J.F., Warren , T.M. and Behr , S.M., Bit Whirl: A New Theory of PDC Bit Failure; 

paper SPE 19571 presented at the SPE Annual Technical Conference and Exhibition, San 

Antonio, TX, 8-11 October 1989. 

[16] Hareland, G, et.al, “Cutting Efficiency of a Single PDC Cutter on Hard Rock” (2007)  

[17] Warren, T.M and Sinor, A., Amoco Production Co.,.: “Drag Bit Performance Modeling”, 

(October 1986), SPE 15618  

[18] “PDC bit profile”, PetroWiki by SPE International, http://petrowiki.org/, Created Aug 29, 

2012, Retrieved April 3, 2015, from PetroWiki by SPE International, http://petrowiki.org/, 

Copyrights by Smith Bits, 

http://petrowiki.org/File%3ADevol2_1102final_Page_247_Image_0001.png 

[19] B. Rashidi, G. Hareland, R. Nygaard, ‘Real-Time Drill Bit Wear Prediction by Combining 

Rock Energy and Drilling Strength Concepts’, paper for presentation at the Abu Dhabi 

International Petroleum Conference and Exhibition, Abu Dhabi, UAE [3rd – 6th November 

2008] 

[20] D.S.I.R. Crushing and Grinding; a Bibliography. H.M.S.O., London (1958) 

[21] WALKER D. R. and SHAW M.C. Mining Engng 6, 313-20 0954 

[22] SPE/IADC 92194, Dupriest, F.E., “Maximizing Drill Rates with Real-Time Surveillance 

of Mechanical Specific Energy”, 2005 

[23] Pessier, R.C and Fear, M.J., “Quantifying Common Drilling Problems with Mechanical 

Specific Energy and Bit-Specific Coefficient of Sliding Friction”, IADC/SPE 24584, (1992) 

[24] Eren, T., “Real-Time-Optimization of Drilling Parameters During Drilling Operations”, 

(2010) 

http://petrowiki.org/
http://petrowiki.org/
http://petrowiki.org/File%3ADevol2_1102final_Page_247_Image_0001.png


111 
 

[25] Maurer, W. C.: “The ‘Perfect Cleaning’ Theory of Rotary Drilling”, J. Pet. Tech. (Nov. 

1962) 1270-1274; Trans., AIME, Vol. 225. 

[26] Murray A. S., and Cunningham, R. A.: “The Effect of Mud Column Pressure on Drilling 

Rates”, Trans., AIME (1955) Vol. 204, 196-204. 

[27] Combs, G. D.: “Prediction of Pore Pressure From Penetration Rate”, Proc., Second 

Symposium on Abnormal Subsurface Pore Pressure, Baton Rouge, La. (Jan. 1970) 

[28] Vidrine, D. J., and Denit, E. J.: "Field Verification of the Effect of Differential Pressure on 

Drilling Rate,"]. Pet. Tech. (July 1968) 676-682. 

[29] Cunningham, A. J., and Eenink, J. G.: "Laboratory Study of Effect of Overburden, 

Formation and Mud Column Pressure on Drilling Rate of Permeable Formations," Trans., 

AIME (1959) Vol. 216, 9-17. 

[30] Garnier, A. J., and van Lingen, N. H.: "Phenomena Affecting Drilling Rates at Depth," 

Trans., AIME (1959) Vol. 216, 232-239. 

[31] Edwards, J. H.: “Engineering Design of Drilling Operations”, Drill. and Prod.  Prac. API 

(1964) 39. 

[32] Galle, E. M., and Woods, A. B.: “Best Constant Weight and Rotary Speed for Rotary Rock 

Bits”, Drill. and Prod. Prac. API (1963) 48. 

[33] Graham, J. W., and Muench, N. L.: “Analytical Determination of Optimum Bit Weight 

and Rotary Speed Combinations”, paper SPE 1349-G presented at SPE-AIME 34th Annual Fall 

Meeting, Dallas, Oct. 4-7, 1959. 

[34] Jorden, J. R., and Shirley, O. J.: “Application of Drilling Performance Data to Overpressure 

Detection”, J. Pet. Tech. (Nov. 1966) 1387-1394. 

[35] Maratier, J.: “Optimum Rotary Speed and Bit Weight for Rotary Drilling”, MS thesis, 

Louisiana State U., Baton Rouge (June 1971). 

[36] Eckel, J. J.: “Microbit Studies of the Effect of Fluid Properties and Hydraulics on Drilling 

Rate”, J. Pet. Tech. (April 1967) 541-546; Trans. AIME, Vol. 240. 

[37] Galle, E. M. and Woods, H.B.: "Variable Weight and Rotary Speed for Lowest Drilling 

Cost," paper presented at the AAODC Annual Meeting, New Orleans, Sept. 27, 1960   



112 
 

[38] Estes, Jack C. and Randall, B.V.: "Practical Application of Optimized Drilling 

Operations," paper presented at the IADC Drilling Technology Conf., New Orleans, March 16-

18, 1977 

[39] Warren, T.M.: "Drilling Model for Soft-Formation Bits," JPT, (June 1981) 963-70. 

[40] (Wardlaw, H.W.R.: "Optimization of Rotary Drilling Parameters," PhD dissertation, U. of 

Texas, Austin (Aug. 1971))    

[41] Hareland, G., and Hoberock, L.L.: “Use of Drilling Parameters to Predict In-Situ Stress 

Bounds,” SPE paper 25727, presented at the 1993 SPE/ IADC Drilling Conference, 

Amsterdam, The Netherlands, February 23-25, 1993 

[42] Darley, H. C., "Designing Fast Drilling Fluids", Journal of Petroleum Technology, April, 

1965, 465-470 

[43] Cheatham, J. B., "Tooth Penetration Into Dry Rock at Confming Pressures of 0 to 5000 

psi", Texas Conference on Drilling and Rock Mechanics, Austin Texas, Jan. 20-21,1965 

[44] Hunt, E., Hoberock, L. L., and Hareland, G., "Investigation of an In-Situ Stress Profile 

Model Using Drilling Parameters", Topical Report, Sept., 1992, Contract 5091-221-2229, Gas 

Research Institute, 8600 West Bryn Mawr, Chicago, IL, 60631 

[45] P. R. Rampersad, G. Hareland, P. Boonyapaluk, “Drilling Optimization Using Drilling 

Data and Available Technology”, SPE paper 27034, presented at the 3rd Latin 

American/Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina, 

April 27-29, 1994    

[46] Appl, F. C. and Rowley, D. S.: "Analysis of the cutting Action of a Single Diamond" Soc. 

of Pet Eng. J. (Sept 1968), 269-280 

[47] Peterson, J. L.: "Diamond Drilling Model Verified in Field and Laboratory Tests" Journal 

of Petr Tech. (Feb. 1976), 213-223   

[48] Warren, T. M. and Sinor, L. A.: "Drag Bit Wear Model" SPE Paper No. 16699, Presented 

at the 62nd SPE Annual Technical Conference and Exhibition, Dallas, TX (Sept. 1987) 

[49] Millheim, K. K and Higgins, R. L.: "The Engineering Simulator for Drilling (Part 2) paper 

SPE 12075 presented at the 1983 SPE Annual Technical Conference and Exhibition, San 

Francisco, Oct. 5-8  



113 
 

[50] “New Approach in Real-Time Bit Wear Prediction” Behrad Rashidi (University of 

Calgary) | Geir Hareland (U. of Calgary) | Andrew Wu (University of Calgary), SPE-136008-

MS, (2010) 

[51] Fasheloum, M.: ”INVESTIGATION OF DRILLING PARAMETERS INDICATORS”, 

(April 1997), The University of Nottingham, department of mineral resources engineering 

[52] Ozbayoglu M.E., Miska S.Z., Reed T., and Takach N., “Analysis of the Effects of Major 

Drilling Parameters on Cuttings Transport Efficiency for High-Angle Wells in Coiled Tubing 

Drilling Operations,” SPE 89334, SPE/IcoTA CT Conf. and Exhb., Houston, TX, March 2004 

[53] Montgomery D.C., and Runger G.C., “Applied Statistics and Probability for Engineers” 

Third Edition, John Wiley & Sons, Inc, USA, 2003, pp 482) 

[54] Davis J.C., “Statistics and Data Analysis in Geology” Third Edition, John 

Wiley & Sons, USA, Inc, 2002, pp 461)  

[55] Explorable.com (Jun 18, 2009). Multiple Regression Analysis. Retrieved Feb 20, 2015 

from Explorable.com: https://explorable.com/multiple-regression-analysis  

[56] Dale E. Berger “Introduction to Multiple Regression”, (2003), Claremont Graduate 

University   

[57] Engineering Statistics Handbook, 4.4.3.1 Least Squares. Retrieved April 12, 2015 from 

http://www.itl.nist.gov, http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm  

[58] Rabia H., Entrac Consulting, “Well Engineering & Construction”, p. 26-29, (2002), ISBN: 

0954108701. Retrieved April 12, 2015 from http://faculty.ksu.edu.sa, 

http://faculty.ksu.edu.sa/shokir/PGE472/Textbook%20and%20References/RABIA%20-

%20WELL%20ENGINEERING%20%20CONSTRUCTION.pdf   

[59] Ablard P., et al., “The Expanding Role of Mud Logging”, Oilfield Review Spring 2012: 

24, no. 1., p. 31-32, (2012), Copyright Schlumberger  

[60] Jordan J.R and Shirley O.J (1966)"Application of drilling performance data to overpressure 

detection" JPT  

[61] Rehm B and McClendon R (1971) "Measurement of formation pressures from drilling 

data" SPE 3601, AIME Annual Fall Meeting, New Orleans. 

https://explorable.com/multiple-regression-analysis
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm
http://faculty.ksu.edu.sa/shokir/PGE472/Textbook%20and%20References/RABIA%20-%20WELL%20ENGINEERING%20%20CONSTRUCTION.pdf
http://faculty.ksu.edu.sa/shokir/PGE472/Textbook%20and%20References/RABIA%20-%20WELL%20ENGINEERING%20%20CONSTRUCTION.pdf


114 
 

[62] Rider M. and Kennedy M., “The Geological Interpretation of Well Logs”, 3rd edition, p. 

401, (2011)   

[63] Bjørlykke K., «Sedimentologi og petroleumsgeologi», p. 177, (2001)  

[64] Bjørlykke K., «Sedimentologi og petroleumsgeologi», p. 40 (2001) 

[65] Aadnøy, B. S., “Mordern Well Design”, 2nd edition, (2010)  

[66] Schlumberger Oilfield Glossary, “wildcat”. Retrieved April 16, 2015, from 

http://www.glossary.oilfield.slb.com,    

http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&filter=wildcat 

[67] SUBSEAIQ, “Ormen Lange”. Retrieved May 5, 2015, from http://www.subseaiq.com/, 

http://www.subseaiq.com/data/PrintProject.aspx?project_id=222&AspxAutoDetectCookieSu

pport=1   

[68] SUBSEAIQ, “Morvin”. Retrieved May 5, 2015, from http://www.subseaiq.com/ 

http://subseaiq.com/data/Project.aspx?project_id=360&AspxAutoDetectCookieSupport=1  

  

 

http://www.glossary.oilfield.slb.com/
http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&filter=wildcat
http://www.subseaiq.com/
http://www.subseaiq.com/data/PrintProject.aspx?project_id=222&AspxAutoDetectCookieSupport=1
http://www.subseaiq.com/data/PrintProject.aspx?project_id=222&AspxAutoDetectCookieSupport=1
http://www.subseaiq.com/
http://subseaiq.com/data/Project.aspx?project_id=360&AspxAutoDetectCookieSupport=1

