
Front page for master thesis 

Faculty of Science and Technology 

Decision made by the Dean October 30th 2009 
 

 

 
 

Faculty of Science and Technology 

 

MASTER’S THESIS 

 

Study program/ Specialization: 

 

Petroleum Engineering / Reservoir 

Engineering 

 

Spring semester, 2015 

 

 

Open  

 

Writer:  

Inger Karin Dirdal 

 

………………………………………… 
(Writer’s signature) 

Faculty supervisor: 

 

Steinar Evje 

 

 

Thesis title: 

 

A mathematical model for flow of gas-liquid mixture in a vertical pipe  

 

 

 

Credits (ECTS):  

30 

Key words: 

 Two-phase flow 

 Mathematical model 

 Numerical solution 

 Taylor bubble 

 Ascend velocity 

 

 

 

 

 

         Pages: 97 

     

     + enclosure: 6 

 

 

         Stavanger, 15.06.2015 

       

 

 



University of Stavanger

The Faculty of Science and Technology

Master Thesis in Petroleum Engineering

A mathematical model for �ow of gas-liquid

mixture in a vertical pipe

by

Inger Karin Dirdal

Spring 2015





ABSTRACT

A one-dimensional mathematical model for the ascend velocity to a Taylor bubble con-

sisting of gas in a two-phase �ow of gas and liquid in vertical pipes is derived. This

model illustrates di�erent e�ects of two-phase �ow in pipes from a numerical approach.

The model is based on the conservation laws of mass and momentum for an initial gas

slug located on the closed of bottom in a pipe which is �lled with stagnant liquid. The

model is investigated at laboratory scale where assumptions as incompressible �uids, no

viscosity terms, no acceleration e�ects and equal phase pressure are made. By use of the

assumptions was the conservation of mass for liquid reduced to following expression.

∂tαl + ∂xh(αl) = 0

Where the sum of volume fractions are given as αg + αl = 1. The derivation lead to an

expression of the super�cial velocity of liquid depending on the liquid volume fraction

(αl), gravitational acceleration (g), density di�erence between liquid and gas (∆ρ) and

friction between �uids and wall (fg and fl) as well as interfacial tension (C), as the

expression below indicates.

h(αl) = uls = − α2
l (1− αl)2

α2
l fg + (1− αl)2fl + C

∆ρg

The numerical solutions are found by implementing the derived model of the super�cial

liquid velocity into a MATLAB script for computing the solution. The numerical solu-

tions is compared with an experimental case in addition to previous research on ascending

Taylor bubbles of gas in pipes with liquid. The model corresponds well with results from

previous experiments and observations made during performance of experiments. It gives

a good estimation of the ascend velocity of the Taylor bubble, pressure, di�erential pres-

sure and illustrate the characteristic nose shape of the Taylor bubble. The numerical

solution is seen to be sensitive to how the friction terms are de�ned. The model also re-

sponds well with the result from previous research regarding the velocity of the ascending

Taylor bubble independence of the gas layers length and shows good response on changes

in interfacial tension.
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1 INTRODUCTION 1

1 INTRODUCTION

1.1 Background

In two-phase �ows of gas and liquid, the �uids can distribute themselves in many dif-

ferent ways. How the �uids are distributed during �ow is a relevant mechanism in the

industry today. In the petroleum industry, one can �nd two-phase �ows in production

and transportation of hydrocarbons, down in the reservoir and in gas kicks during drilling

of wells. Gas kicks occurs when a well is drilled into a high-pressure zone containing gas.

Due to the lower pressure in the well, the gas will �ow in and rise upwards as a slug

�ow. This slug �ow is characterized by a large continuous bubble of gas, also known as

Taylor bubble. The Taylor bubble occupies large parts of the cross section of the pipe

and are bullet shaped with a �lm of liquid between the bubble and the wall [15]. When

the gas is detected in the well bore, the blow out preventer (BOP)must be closed and the

�ow controlled, either by circulate the gas out through a choke or by pumping �uid into

the well and force the gas into the formation. If the �ow is not controlled and BOP not

closed a blow-out may occur [11, 23]. Therefore it is necessary to know how the gas will

ascend and related e�ects to avoid hazardous e�ects as blow-out.

Two-phase slug �ow of ascending Taylor bubble of gas in liquid have been a widely studied

subject over the years, in order to get known with the di�erent e�ects of ascending

Taylor bubble and the related parameters. Laboratory experiments, modelling based on

fundamental �ow concepts and development of relationship between di�erent parameters

that a�ects the �ow from �tting of data from experiments, have all been used to study

the ascending Taylor bubble.

By laboratory experiments, several researchers have tried to �nd how di�erent parame-

ters a�ect the ascending Taylor bubble, and relate them to observed e�ects. Important

parameters that have been shown to a�ect the �ow are the inner diameter of pipe (D),

density and viscosity of liquid (ρl and µl), gravitational acceleration (g) and interfacial

tension (σgl) [15]. Relations for the velocities of the Taylor bubble based on experimental

data have been proposed by di�erent researchers [4, 5, 16]. While others have considered

the e�ect of thickness of the liquid �lm [15, 17]. Investigations of dimensionless ratios

of parameters relevant to �ow and development of relationships between them and the

e�ects from ascending Taylor bubble are also considered to get a full understanding of

ascending Taylor bubbles [24, 26]. Modelling of two-phase �ow of gas and liquid have

been experimented on to �nd out how di�erent e�ects of the ascending Taylor bubbles
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may be determined by an analytical approach [10, 13, 21, 27]

1.2 Objectives

• In this thesis is a mathematical model derived to describe an ascending Taylor

bubble of gas through stagnant liquid in a vertical conduit in one dimension. The

model of consideration is based on the mathematical model for two-phase �ow from

Evje and Flåtten [6], which has been designed based on fundamental laws for �ow

of �uids in pipes, the laws of conservation of mass and momentum. The model

is derived to investigate an ascending Taylor bubble at a laboratory scale and to

illustrate the observed e�ects during performance of the laboratory experiments on

ascending gas in a vertical pipe.

• A MATLAB code where the derived model is implemented computes the numerical

solution. The numerical solution needs to be tested to see how changes in di�erent

parameters a�ect the model in order to �nd the sensitivity of the di�erent terms

and parameters the model is based on. This creates the need of a Base case of the

model that can be compared with changes in di�erent parameters to get known

with the sensitivity. Especially, the sensitivity of changes in friction terms will be

considered.

• Observation of performed laboratory experiment and previous research are consid-

ered in section 3, to get the full impression of how an ascending Taylor bubble

behaves and important parameters that in�uence the ascending gas, to ensure that

the behaviour of the model corresponds with the theory. Also, the sensitivity of the

model to the di�erent terms will be compared with the results from the previous

research.
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2 FUNDAMENTALS

The mathematical model for �ow of two �uids are based on several general principles and

fundamental concepts as well as observed parameters from experiments. This section will

therefore consist of description of the general principles and fundamental concepts that

are relevant for this thesis.

2.1 Conservation

Physicals expressions that are related to �ow of �uids are fundamental in development

of analytical description of �uid �ow [25]. For almost all �uid �ow are there three fun-

damental laws of physics named conservation of mass, Newton's second law of motion

(also known as conservation of momentum) and Thermodynamics �rst law (conservation

of energy, which will not be considered in this thesis), that can be applied [25]. The most

important concepts in this thesis are the laws of conservation of mass and momentum,

which the two �uid �ow model in this thesis is based on.

2.1.1 Conservation of mass

The law of mass conservation states that mass cannot be created or destroyed [25]. There-

fore, the sum of the net �ux of mass, rate of accumulation of mass within the controlled

volume element and taking in consideration of injection or production as a source or sink

term respectively, will be equal to zero when summed up.

{rate of accumulation}+ {net flux}+ {source/sink} = 0

This can easily be illustrated by considering a one-dimensional �ow of a �uid in a pipe

with constant cross section as shown in �gure (2.1). The mass conservation for this type

of system will be as followed:

∂

∂t
ρ+

∂

∂x
(ρu) + Ω = 0

where ρ is mass density and u is velocity of the �uid. The �rst term is the rate of

accumulation, the second term is net �ux and the last term Ω is the source/sink term.

This is called the continuity equation. If there is no accumulation of mass, the mass that

�ows into the controlled volume element will be equal to the mass that �ows out of the

system.
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Figure 2.1: Illustration of �ow in a pipe with constant cross section

In this thesis is a two-phase �ow of gas and liquid in one-dimension considered. The

derivation of the mass conservation equation will stay the same, except there will be

a mass conservation equation for each of the two �uids. There will be no injection or

production of �uids, which excludes the source/sink term. Since a one-dimensional �ow is

considered, it is necessary to include the �uid phase fraction in the rate of accumulation

and net �ux for the �uid phase in the corresponding conservation of mass equation. In

addition a term that consist of rate of mass transfer to the �uid phase must be included

[2].
∂

∂t
(ρfαf ) +

∂

∂x
(ρfαfuf ) = βf

Here refers the subscript f to the �uid phase f, αf is the phase �uid fraction, while βf is

the rate of mass transfer to the �uid phase f.

Throughout this thesis, it is assumed that no mass transfer will occur between the two

phases and no source/sink term. This can be called an immiscible �ow of two �uids

and will lead to the equations (2.1) and (2.2) for conservation of mass for gas and liquid

respectively.

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgug) = 0 (2.1)

∂

∂t
(ρlαl) +

∂

∂x
(ρlαlul) = 0 (2.2)

2.1.2 Conservation of momentum

The other main concept is the conservation of momentum principle which is based on

Newton's second law of motions [25]. The conservation law of momentum states that the
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sum of the rate of accumulation of momentum and the rate of �ux of momentum within

a controlled volume element is equal the sum of forces acting on the controlled volume

element [2].

{sumof forces} = {net flux of momentum}+ {rate of accumulation of momentum}

The forces acting on the �uid in the controlled volume element are due to external forces,

friction forces on the control volume and the force on a �uid from the other �uid [2].

∂

∂t
(ρu) +

∂

∂x
(ρu2) = F

Where F is the net force in the controlled volume element.

The forces relevant throughout this thesis, the two phase �ow in vertical pipe as illustrated

in �gure (2.1), will be some gravitational forces that are relevant to the external force

mentioned above. There will also be friction on the control volume from the �uids on the

pipe wall. In addition are there some friction forces between the two �uids, which is an

interfacial drag force that represents the force interaction between the two �uid and some

viscous forces. As for the conservation of mass, requires the conservation of momentum

two equations, one for each of the �uids present.

∂t(nug) + ∂x(nu
2
g) + αg∂xPg = −fgug − C(ug − ul)− ng + ∂x(µg∂xug) (2.3)

∂t(mul) + ∂x(mu
2
l ) + αl∂xPl = −flul + C(ug − ul)−mg + ∂x(µl∂xul) (2.4)

Where n = αgρg and m = αlρl. ∂t(ρfαfuf ) represents the change in momentum,

∂x(ρfαfu
2
f ) is the change in kinetic energy (�ux), αf∂xPf is the change in �uid phase

pressure, ρfαfg is the gravitational force, ffuf is the friction force between the �uid and

the wall, C(ug − ul) is the interfacial tension between the two �uids and ∂x(µf∂xuf ) is

viscous forces. These formulations of the conservation of momentum for gas and liquid

are similar to the formulation by Prosperetti and Tryggvason [19].

2.2 Flow of gas-liquid in a pipe

When gas and liquid both are present in a pipe, the motion of �uids will be driven by

either buoyancy forces, external forces as a pressure gradient or a combination of these

forces [10]. If the gas is introduced at the bottom of a vertical pipe containing stagnant

liquid, it will start to rise up in the well due to density di�erences between gas and liquid,

buoyancy. How the gas and liquid are distributed in the pipe when the gas rises is called
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�ow regimes. The gas can be distributed as a layer, small bubbles, large bubbles or as

a column of gas with liquid around it. It is the time and space distribution of gas and

liquid �ow, in other words the �ow velocity that determines which �ow regimes that will

dominate the �ow [22].

2.2.1 Flow regimes

In addition to distinguish between laminar (layered �ow) and turbulent �ow (chaotic

�ow) as it is done in single phase �ows, it has to be distinguish between di�erent �ow

regimes when two phase �ow is considered [22]. There are di�erent �ow regimes for

horizontal �ow and vertical �ow. Only the latter one is relevant in this thesis. Figure

(2.2 a) illustrates the possible �ow regimes. They are slug �ow, churn �ow, dispersed

bubble �ow and annular �ow [22]. As seen from the �gure, the gas and liquid phase will

�ow more separately at low velocities, and becomes more mixed as velocity increase.

(a) Flow regimes [22] (b) Taylor

bubble [24]

Figure 2.2: Illustration of �ow regimes in a vertical two-phase �ow in addition to an

illustration of an ascending Taylor bubble of air in a pipe �lled with water

The �ow regime of gas and liquid �ow considered in this thesis is gas slug. According

to E. W. Liewellin et al can a gas slug also be called Taylor bubble or long bubble [15].

As the �gure (2.2 b) illustrates, the gas bubble will rises up and �ll a large part of the

inner cross section of the pipe, while the liquid will fall and form a �lm at the wall of

the pipe. There may be a tail of small bubbles, also called dispersed �ow, following the

large gas bubble. The Taylor bubble can be further divided into di�erent regions that
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are characteristics shape for this type of gas bubbles. At the front of the bubble is a

region called the bubble nose. The bubble nose will have a characteristic shape, which is

hemispherical. A large cylindrical part, which may �ll up large parts of the cross section

surrounded by a liquid �lm, follows the bubble nose. This region of the Taylor bubble can

be called the body. Behind the body region is the back of the bubble. This region may

vary in morphology. It can be �at, concave or hemispheroidal and it can have ripples. As

mentioned, may there be a liquid slug region that follows the Taylor bubble. It consist

of a gas emulsion which is created by turbulence at the bubble wake that creates small

gas bubbles by tearing up some parts of the Taylor bubble [15][23].

2.3 Concepts of multiphase �ow

As seen in the previous sections, there are several general concepts that are necessary to

describe multiphase �ows in pipes. The basics equations for conservation of mass (2.1)

and (2.2) in addition to the conservation of momentum (2.3) and (2.4) contains some

variables as �uid fractions, velocities, liquid �lm thickness, pressures and frictions, which

needs to be considered.

2.3.1 Fluid fractions

In two-phase �ow of gas and liquid are parts of the volume element �lled with gas while

the rest is �lled with liquid. As explained in section (2.2) the distribution of gas and

liquid can vary. It is useful to know the �uid phase fractions, α, during �ow of the �uids.

This is a ratio of the �uid phase amount and can be considered either as an volume, area

or line average [22]. The de�nition of �uid fraction as an area average is given in equation

(2.5).

αf =
Af
A

(2.5)

Where A the area of �ow and Af is the area containing �uid f . The sum of the phase

volume fractions will be equal to one.∑
f

αf = 1 (2.6)

The �gure (2.3) illustrates a cross section in a pipe containing a Taylor bubble at the

cylindrical body part in a slug �ow, where the inner cross section is �lled with gas and

the outer �lled with liquid. Based on �gure (2.3), the gas and liquid fraction can be
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Figure 2.3: Illustration of distribution of gas and liquid in a cross section of a pipe, with

radius of pipe (rpipe), radius upto gas-liquid interface (rgas) and thickness of the outer

liquid �lm (λ) indicated in the �gure

de�ned by area averages based on the de�nition given in equation (2.5). The resulting

area averages of gas and liquid is given in equations (2.7) and (2.8) respectively.

αg =
Ag
Apipe

=
Ag

Ag + Al
=

D2
g

D2
pipe

(2.7)

αl =
Al
Apipe

=
Al

Ag + Al
=
D2
pipe − (Dpipe −Dg)

2

D2
pipe

(2.8)

Where Dg and Dpipe are the diameter to the gas-liquid interface and pipe respectively.

Here it is assumed that the interface between gas and liquid is circular. By this two-phase

gas-liquid system equation (2.6) can be expressed as equation (2.9).

αg + αl = 1 (2.9)

It is easy being deceived when trying to estimate gas and liquid fractions during two-

phase �ow in pipes. As C. Brennen shows by �gure (2.4), a mixture of individual bubbles

that ascends as shown in the left picture will have a gas fraction at approximately 1%

but it seems to be much higher, and will increase to approximately 4, 5% and over 15%

for the photographs towards right [2]. By considering the case given in �gure (2.3), an

observation is that even with thin liquids �lm the liquid volume fraction will be higher

than expected. This is due to the liquid �lm surrounds the gas at a large radius, which

will give a large cross section of �uid. Figure (2.5) illustrate how the gas fraction is

a�ected by the thickness of the liquid �lm. The plot rises from the calculation of the

gas volume fraction (αg) by equation (2.7) at the given dimensionless thickness of the



2 FUNDAMENTALS 9

Figure 2.4: Illustration of air-water �ow in a pipe by C. Brennen [2]

liquid �lm (λ′) given by
Dpipe−Dg

Dpipe
2

. As seen from the �gure, the volume fraction of gas

will quickly decrease when the thickness of the liquid �lm is thin but increasing, but the

decrease in gas volume fraction will decline at thicker liquid �lms.
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Figure 2.5: Illustration of how the volume fraction of gas (αg) changes when the thickness

of liquid �lm (λ) increases

2.3.2 Velocities of the �uids

In multiphase �ows of �uids, there are several ways of expressing the velocities of the

�uids. The super�cial velocity of a �uid, ufs, is a relationship between the volumetric

�ow and the cross section of the pipe as given in equation (2.10). It is an expression of

the velocity to a �uid as if it was the only �uid present [22].

ufs =
qf
A

(2.10)

Where qf represents the volumetric �ow rate of a �uid. The real velocity of a �uid phase

is expressed with the fraction of the �owing phase area. This is referred to as phase
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velocity, uf , of a �owing �uid [22].

uf =
qf
Af

(2.11)

The super�cial and phase velocities can be related to each other through the �uid frac-

tions.

ufs = αfuf = αf
qf
Af

=
qf
A

(2.12)

The mixture velocity, umix, is achieved by adding the super�cial velocities of the �uids.

This gives an expression of the real average velocity the �ow of �uid inhibits [22]. If the

�uids present are gas and liquid, the expression of mixture velocity will be as given in

equation (2.13).

umix = ugs + uls (2.13)

The velocity of an ascending gas bubble in a pipe �lled with liquid is dependent on

several parameters, which will be considered in section (3.2) where previous research on

two-phase �ow of gas and liquid looked into.

2.3.3 Liquid �lm

In section (2.2) were falling liquid �lms introduced as phenomenon in two-phase slug

�ow. The �gure (2.3) illustrates a �lm of liquid surrounding gas where the thickness

of the liquid �lm de�ned as λ. A relation between the thickness of the liquid �lm and

radius of the pipe, rpipe, is shown in equation (2.14). This ratio is called the dimensionless

thickness of the liquid �lm, λ′.

λ′ =
λ

rpipe
(2.14)

As mentioned, the thickness of the liquid �lm will a�ect the volume fractions, �gure (2.5),

which will a�ect the velocities of the �uids, hence the thickness of the liquid �lm is an

important variable. In section 3.2.3, several theories from previous research are looked

into, where some models are proposed to determine the thickness of the falling liquid

�lm.

2.3.4 Pressure

In the conservation of momentum equations (2.3) and (2.4), the forces can be related to

the pressure drops that occurs during �ow of �uids in pipes. The total pressure gradient
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for �ow in pipes is given by equation (2.15) for a steady-state situation (independent of

time).

dp

dx
= (

dp

dx
)f + (

dp

dx
)h + (

dp

dx
)a (2.15)

Where ( dp
dx

)f is the frictional pressure gradient, ( dp
dx

)h is the hydrostatic pressure gra-

dient and ( dp
dx

)a is the acceleration pressure gradient [22]. The frictional pressure drop

depends on the �ow regime present and is related to the friction present in the �ow (the

frictions present in the �ow will be considered in section 2.3.5). While the hydrostatic

pressure is related to density of �uids, gravitational acceleration and height of �uid col-

umn Phydrostatic = ρgx. The hydrostatic pressure gradient in liquid is much higher than

in gas due to the low density in gases (ρg << ρl). The acceleration pressure gradient

depends on variation in velocity which may occur when there are changes in the cross

section of the pipe or changes in the density of gas [22].

2.3.5 Friction

As mentioned in section (2.1.2), forces related to friction will be present during �ow of

�uids in pipe, equations (2.3) and (2.4). Considering two phase �ow of gas and liquid in

pipes there will be friction between the two �uids (C), friction between gas and wall (fg)

and friction between liquid and wall (fl), which are given as force versus length.

The friction between the phases can be related to interfacial tension, which sometimes

can be referred to as surface tension, depending on if it is between phases or between the

vapour phase and its corresponding liquid respectively. It can be related to the di�erence

in molecular density in the di�erent phases [22], where the molecular density in gases are

much lower than in liquids which again are lower than in solids. The interfacial tension

has an e�ect of how the phases will distribute themselves when they are in contact with

each other and in�uence the velocities (�ow regimes). They are a�ected by temperature

and pressure [22]. The friction between �uids and wall are named shear stress. The wall

shear stress is due to a non-moving wall, which often is rough and will slow the velocity

of the �uid.

In addition to the tensions, the �uids contain an inner friction, an inner resistance against

�ow. This is known as viscosity of a �uid (µ). The viscosity of a liquid is larger than for

a gas due to the high molecular density in liquid, which will increase the inner friction.

The gas has a lower viscosity due to the low molecular density.
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2.4 Discretization of volume element and di�erential equations

The mass and momentum conservation equations are di�erential equations which needs

converted into linear equations in order to be solved numerically. This is achieved by dis-

cretization of the di�erential equations to make them algebraic, followed by linearization

of the algebraic equations to make them linear. The process will result in a large set of

linear equations to be solved [14]. This section is based on lecture notes and course com-

pendium from the course PET565:Core scale modelling and interpretation [9], in addition

to some con�rming theory from Ben-Artzi and Falcovitz and Kleppe [1, 14]

2.4.1 Grid

The �rst step in the discretization process is to discretize the volume element into a grid.

The volume element considered must be divided into blocks of equal length (∆x) with the

computational points as center in the block cells ({xi}Mi=1), this can be called a uniform

grid in space [1, 9, 14]. Figure (2.6) is an illustration of a one-dimensional uniform grid

in space. Since it is also of interest to see the changes in time, a discretization in time

Figure 2.6: Illustration of a one dimensional uniform grid in space in x-direction, based

on a �gure from the compendium by Kleppe [14]

is required. The time interval is divided into a number of timesteps (Nstep) with equal

length (∆t), which gives the discretization of time as {tn}Nn=1 [1, 9, 14]. Figure (2.7) is an

illustration of a one-dimensional uniform grid in space and time. The numerical solutions

will be computed at all the computational points located in the center of the grid blocks

and at each time step [14]. It is important to use appropriate size of grid during numerical

simulations and investigations. If the number of cells are very large, the simulation will

be very accurate but take long time. If the number of cells are to low the simulation will

be very fast but not accurate.
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Figure 2.7: Illustration of a uniform grid in space (x-direction) and time, based on the

�gure (2.6) but expanded to include the second dimension, time

2.4.2 Discrete scheme

The discretization procedure consist as indicated above of several steps. In this section

will discretization of a di�erential equation be illustrated, and the procedure is based on

the lecture notes and course compendium from the course PET565: Core scale modelling

and interpretation [9]. The equation (2.16) is a di�erential equation.

∂tε+ f(ε)x = 0 (2.16)

By restricting this di�erential equation to one grid block can the di�erential equation by

the use of discretization, be converted into one algebraic equation for each grid block.

∂

∂t
ε |xi,t +

∂

∂x
f(ε) |xi,t= 0 (2.17)

When the discrete form of equation (2.17) is to be found are the �gures (2.6) and (2.7)

useful to have in mind. The equation (2.18) is the discrete form of the di�erential equation

(2.16).

εn+1
i − εni

∆t
+
F n
i+ 1

2

− F n
i− 1

2

∆x
= 0, i = 1, .....,M and t ε [tn, tn+1] (2.18)
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Where Fi± 1
2
≈ f(xi± 1

2
). Since the variables are only known at the cell center needs the

terms Fi± 1
2
to be considered further. A central based �ux discretization is where the

two nearby cells is averaged, gives an unconditionally unstable scheme [9]. Therefore is

a correction term used together with the central based discretization terms to make it

conditionally stable [9].

F n
i+ 1

2
=
f(εni ) + f(εni+1)

2
)− a

2
(εni+1 − εni )

F n
i− 1

2
=
f(εni ) + f(εni−1)

2
− a

2
(εni − εni−1)

(2.19)

Where a is a parameter with conditions a > 0 and maxε|f ′(ε)| ≤ a, which makes the

parameter a an upper bound for the speed [9]. By this derivation will equation (2.20) be

the discretized form of the di�erential equation (2.16).

εn+1
i − εni

∆t
+

1

2

f(εni+1)− f(εni−1)

∆x
− a

2∆x
(εni+1 − 2εni + εni−1) = 0 (2.20)

Some rearranging of the discretized equation leads to:

εn+1
i = εni −

∆t

2∆x
{f(εni+1) + f(εni−1)− a(εni+1 − 2εni + εni−1)} (2.21)

The discretized equations can be solved either implicit or explicit. In the derivation above

is an explicit approach used. Since the discretized equations once the solution at time

step n is known, computes the solution at the next time step n + 1, are the explicit

schemes easiest to solve, due to it only contains one unknown, εn+1
i [14]. However, there

are stability problems, which gives rise of a stability condition. The implicit method

is the most complicated, but there is no stability condition [14]. A large set of linear

equations are needed in order to solve an implicit scheme.

For computation of the numerical solution is it necessary to de�ne the initial condition in

the considered element which is the values at all the computational points at the initial

time, (x, t = 0). In addition to the conditions at the boundary of the volume element,

(x = 0, t) and (x = M, t), needs to be speci�ed, as if there are in�ow or production at

the boundaries or if the boundaries are sealed o� [14].

2.4.3 Stability

There may be other parameters than the size of grid can cause stability problems that

will restrict the values of the parameters. As described, the di�erential equations will

be replaced by di�erence equations, which consist of algebraic approximations instead

of di�erential operators. Stability problems may exist in these types of equations. The
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computational error of the solution increases as the computations moves on, which may

give unphysical solutions that can exceed the boundaries [7]. As mentioned, explicit

solution procedure will exhibit stability problems. Therefore is a stability criterion as in

equation (2.22) needed [9].

0 ≤ a
∆t

∆x
≤ 1 (2.22)

2.5 Riemann problems

Some functions consist of one or more discontinuities (jumps) in their initial data. These

types of data can be referred to as Riemann data [1, 8]. A solution where the discontinuity

can be connected either by an continuous solution or a shock solution is desirable. In order

to illustrate a Riemann problem and its solution is the same function as in equation (2.16)

which is repeated in equation (2.23) where f(ε) = 1
2
ε2 and the function f is assumed to be

convex (a non-linear function). This function f is referred to as the "Burgers equation"

[1]. Two cases of initial states given in equations (2.24) and (2.29) are considered to

illustrate how respectively a solution of a decreasing and increasing discontinuity can be

obtained. As seen in both sets of initial data there are a discontinuity in the data around

x = 0. The solution procedures are based on lecture notes and course compendium

in the course PET565: Core scale modelling and interpretation [8] in addition to some

con�rming theory from Ben-Artiz and Falcovitz [1].

∂

∂t
ε+

∂

∂x
f(ε) = 0, f(ε) =

1

2
ε2, f ′(ε) = ε f ′′(ε) > 0 (2.23)

2.5.1 Shock wave solution

The initial condition given in equation (2.24) is an decreasing discontinuity where εl > εr.

ε(x, t = 0) = ε0(x) =

εl = 1, if x < 0

εr = 0, if x > 0
(2.24)

The characteristics that are associated with this function at x = 0 are

x = f ′(εl)t = f ′(1)t and x = f ′(εr)t = f ′(0)t (2.25)

which gives f ′(1) > f ′(0), the characteristics are crossing and will meet at some time.

The Rankine-Hugoniot jump condition (2.26), which is a relation for the speed of a

function at a discontinuity [1, 8].

s =
f(εl)− f(εr)

εl − εr
(2.26)
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For the conditions given in equation (2.24), will the Rankine-Hugoniot condition (2.26)

give a speed of s = 1
2
as seen from the derivation below.

s =
1
2
ε2
l − 1

2
ε2
r

εl − εr
=

1
2
− 0

1− 0
=

1

2

The Lax entropy condition (2.27), is a criterion for when a discontinuous solution (shock

solution) is the correct solution to a Riemann problem [1, 8].

f ′(εl) > s > f ′(εr) (2.27)

From the calculated Rankine-Hugoniot speed it is seen that Lax entropy condition is

ful�lled.

f ′(1) >
1

2
> f ′(0)

This leads to following solution of equation (2.23) with the initial condition as given in

equation (2.24)

ε(x, t) =

1, if x
t
≤ s = 1

2

0, if x
t
> s = 1

2

(2.28)

This jump solution, which satis�ed the Lax entropy condition can be referred to as shock

wave solution [1, 8].

2.5.2 Rarefaction wave solution

The initial condition in equation (2.29) gives an increasing discontinuity where εl < εr.

ε(x, t = 0) = ε0(x) =

0, if x < 0

1, if x > 0
(2.29)

The characteristics which are associated with this function at x = 0 are

x = f ′(εl)t = f ′(0)t and x = f ′(εr)t = f ′(1)t (2.30)

which gives f ′(1) > f ′(0). These characteristics can be referred to as spreading character-

istics and will not satisfy the Lax entropy condition (2.27). Therefore must a continuous

solution also known as a rarefaction wave solution be looked for [1, 8].

This is done by considering a solution similar to the function ε(x, t) and �nd conditions

where ε(x, t) is a solution. The similarity solution considered here depends on x
t
as
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shown in equation (2.31), which is the same as considered in the lecture notes and course

compendium in the course PET565: Core scale modelling and interpretation [8], where

a solution was derived.

ε(x, t) = ϕ(
x

t
) (2.31)

To be sure that the function ε(x, t) is a solution one has to express equation (2.23) with

the new similar function in equation (2.31).

∂

∂t
ε(x, t) =

∂

∂t
ϕ(
x

t
) = ϕ′(

x

t
)× (− x

t2
)

∂

∂x
ε(x, t) =

∂

∂x
ϕ(
x

t
) = ϕ′(

x

t
)× 1

t
∂

∂x
f(ε(x, t)) =

∂

∂x
f(ε(x, t))× ∂

∂x
ε(x, t) =

∂

∂x
f(ϕ(

x

t
))× ∂

∂x
ε = f ′(ϕ(

x

t
))× ϕ′(x

t
)× 1

t

(2.32)

By implementing the expressions in equation (2.32) into equation (2.23) give:

ϕ′(
x

t
)× (− x

t2
) + f ′(ϕ(

x

t
))× ϕ′(x

t
)× 1

t
= 0 (2.33)

The equation (2.33) gives two possible solutions as shown in equation (2.34).

f ′(ϕ(
x

t
)) =

x

t
and ϕ′(

x

t
) 6= 0

or

ϕ′(
x

t
) = 0

(2.34)

The second option is only possible when ϕ is constant, which is when νl = νr. As the

initial data (2.29) shows is this not the case here, which excludes that possibility. It can

be solved by rearrange the �rst expression in equation (2.34) for ϕ(x
t
).

ϕ(
x

t
) = (f ′)−1x

t
(2.35)

From the use of the characteristics in equation (2.30) on equation (2.35) one can �nd

ϕ(x
t
) for f ′(εl) ≤ x

t
≤ f ′(εr).

ϕ(
x

t
) = (f ′)−1(

x

t
) = (f ′)−1(f ′(εl)) = εl

ϕ(
x

t
) = (f ′)−1(

x

t
) = (f ′)−1(f ′(εr)) = εr

The solution of the function given in equation (2.23) with the initial condition given in

equation (2.29) is given in equation (2.36).

ε(x, t) = ϕ(
x

t
) =


εl = 0, if x

t
≤ f ′(εl)

(f ′)−1(x
t
), if f ′(εl) <

x
t
< f ′(εr)

εr = 1, if x
t
≥ f ′(ε)

(2.36)
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As seen from the solution, there will be a continuous transition for the data in between

f ′(εl) <
x
t
< f ′(x

t
), not a shock wave as for the solution in equation (2.28). This type of

solution is referred to as a rarefaction wave solution [1, 8].
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3 EXPERIMENTAL BACKGROUND

Much research has been done on ascending Taylor bubbles in pipes and according to

Flavia Viana et al, the research can be dated all the way back to Gibson in 1913 [24]. In

order to get known with the physical e�ects to make the mathematical model accurate,

are experiments performed by Herimonja Andrianifaliana Rabenja�manantsoa ("Benja")

at the University of Stavanger observed, in addition to some investigation of previous

research on two-phase slug �ow in pipes are considered.

3.1 Observations of experiments

Figure 3.1: Picture of

the bottom of the col-

umn used in Benja's

experiments

The experiments performed by Benja of ascending air in stagnant

liquid, are similar to the experiments performed by Thomas Paz

[18] and Kristine Høyland Tjelta and Ingeborg Elin Kvamme [23]

in their bachelor thesis. Experimental set-ups are illustrated in

�gures (3.1) and (3.2). The �rst �gure is a picture of the lower

part of the experimental equipment, while the second �gure is

an older illustration experimental set-up but it gives a better

overview with the indicated pressure measurement, air valve and

size of the experiment. One should notice that in the second

�gure, the columns are separated, while in the recent experiments

are a connection placed between them as seen in �gure (3.1).

The air is injected below the black valve in the right column in

�gure (3.1) and will form a layer separated from the liquid column

above (which is open to atmosphere), by a valve. Below the layer

of air is the pipe �lled with water. As the valve is opened, the

gas will start to ascend upwards driven by buoyancy. A quick

rise of the air-water surface at the top of the pipe was observed

in addition to some oscillation. The water will not have much

passage to pass by due to the cross section is occupied by air. This

leads to the observed quick rise of the air-water surface at the top

of the pipe. Another explanation may be due to rapid expansion

and compression of the air caused by pressure di�erence in air

and water phases, which may cause the rise and oscillation in the

air-water surface [18].
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Not long after the air starts to ascend, it will form into a Taylor bubble, and a passage

for the water in the form of a falling liquid �lm is created. The creation of the falling

water �lm slows down the rapid increase of the air-water surface at the top, but it will

still increase. This may be due to the volume of air in the Taylor bubble, which ascends

faster than the volume of water is being displaced by the liquid �lm. The rising of

the air-water surface continues but the instant the air bubble passes through the air-

water surface, will the surface decrease to a level below the initial water-air surface.

Figure 3.2: Illustration of ex-

perimental equipment from Paz

bachelor thesis [18]

The velocity of the ascending Taylor bubble will be high-

est in the center at the top of the bubble, due to the

friction forces by the liquid �lm, which �ows in oppo-

site direction at the edges of the bubble. As the Taylor

bubble ascends, a tail of dispersed small bubbles of air

will follow with decreasing bubble size. These bubbles

ascends with lower velocity. The velocity decreases as

the bubble size decreases. This tails grows as the Tay-

lor bubble ascends which can be explained by the exis-

tence of turbulence at the bubble wake which may form

smaller bubbles by the cost of tearing of some of the

Taylor bubble volume [23]. The length of the ascend-

ing Taylor bubble was much longer than the length of

the initial gas layer. The reason for this may be due to

the outer area occupied by the water �lm, in addition

to some expansion of the gas caused by decreasing pres-

sure as the bubble ascends. It seems like the length of

the bubble becomes shorter as it ascends, which may be

caused by the formation of the tail.

A mathematical model in one dimension relevant for the

experiments performed by Benja will be derived. The purpose of the model is to illustrate

the observed parameters during experiments, as the velocity of the ascending Taylor

bubble and saturation distribution in the pipe, which will give an impression of the shape

of the bubble as well as the tail of the dispersed gas and thickness of the liquid �lm

around the bubble. In addition, the pressure and pressure di�erences in the pipe as the

gas ascends will be considered.
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3.2 Previous research

Through research over the years have ascending slug �ows, especially Taylor bubbles,

been investigated by several researches. The ascend velocity is shown to be dependent

on the density (ρl) and viscosity of the liquid (µl), the interfacial tension between gas

and liquid (σgl), gravitational acceleration (g) and the internal diameter of the pipe (D).

These parameters have been related to the velocity through theory and often considered in

di�erent ratios by combining them into dimensionless groups [10, 12, 13, 15, 21, 24, 26, 27].

The most common dimensionless ratios are Froude number (Fr), Morton number (Mo)

and Eötvös number (Eo), but some researchers have also worked with the Inverse viscosity

number (Nf ), Weber number (We) and Reynolds bubble number (Reb). These ratios have

been de�ned di�erently by the previous researchers. The main di�erence between their

de�nitions have been due to the large di�erence in the density between gas and liquid,

which has either resulting in neglecting the ratio ρl−ρg
ρl

since it is approximately equal to

one. Kang et al showed through their research that the ratios ρl
ρg

and µl
µg

had small e�ect

on the dimensionless ratios [13]. These are most common forms and are shown in the

equations (3.1)-(3.6).

The Froude number is a ratio of inertial (where viscous and interfacial forces are of

less importance) and gravitational forces, which result in a dimensionless velocity [15].

The expression relates the velocity of the bubble (vb) to the gravitational acceleration,

diameter of the pipe in addition to the Froude number.

Fr =
vb√
gD

(3.1)

The gravitational acceleration, viscosity and density of the liquid and interfacial tension

are combined into a dimension less ratio called the Morton number. This is a ratio of

viscous and interfacial forces [15].

Mo =
gµ4

l

ρlσ3
gl

(3.2)

The ratio of buoyancy and interfacial tension forces is represented by the Eötvös number

[15].

Eo =
ρlgD

2

σgl
(3.3)

By combining the Eötvös and Morton number is a ratio called the dimensionless inverse

viscosity [15] or buoyancy Reynolds number found [10, 24].

Nf =
ρl
µl

√
gD3

pipe (3.4)
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The bubble Reynolds number is an ratio of inertial and viscous forces in the liquid [15]

Reb =
ρvbD

µ
(3.5)

The Weber number relates the inertial forces with the interfacial forces [13].

We =
ρv2

bD

σgl
(3.6)

3.2.1 Velocity by determine a constant value for the Froude number

Several constants has been suggested as constant value for Froude number in equation

(3.1) to �nd an expression of the velocity expressed by a constant, gravitational accelera-

tion and the inner diameter of the pipe. Dumitrescu suggested through his research 0, 351

[5, 15], as a value for the constant Froude number, equation (3.7). He used a theoretical

approach where it was assumed to be a hemispherical shape of the Taylor bubble nose

in addition to laminar �ow in the falling liquid �lm. In addition did Dumitrescu �nd

another value by an experimental approach to be 0, 346 [5, 15, 26].

vb = 0, 351×
√
gD (3.7)

Some years later, Davies and Taylor did experiments where they proposed a constant for

the Froude number in equation (3.1). They experimented with a pipe sealed at the top

and open to atmosphere at the bottom. The tube was �lled with water and they measured

the velocity of the ascending air bubble as the water were drained. They observed that the

constant for the Froude number rises a little with increased inner diameter of the pipe but

it was nearly constant. The three diameters they looked at where 1, 23cm, 2, 16cm and

7, 94cm and observed values for constant Froude numbers ranging between respectively

0, 283 − 0, 2899, 0, 316 − 0, 331 and 0, 33 − 0, 346 [4]. They assumed that variation was

due to viscosity, and explained their assumption with, when the inner diameter of pipes

increases will the Reynolds number increase, equation (3.5) [4]. With high Reynolds

number, they expected that viscosity e�ects could be negligible [4]. Davies and Taylor

also found a value of the constant Froude number by a theoretical approach that were

0, 328, equation (3.8), which is close to the observed constant during �ow in the pipe with

a diameter of 7, 94cm and a little lower than the value de�ned by Dumitrescu in equation

(3.7) [4].

vb = 0, 328×
√
gD (3.8)

Nicklin et al studied two-phase gas and liquid �ow in vertical pipes where they investigated

slug �ow in both stagnant and moving liquid [16]. They found that the ascend velocity to
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gas slug is relative to movement of liquid in front of the slug. If the liquid were stationary

they agreed with the constant proposed by Dumitrescus, given in equation (3.7), for the

ascend velocity of the gas slug. If the liquid were moving either upwards or downwards in

the tube, they needed to add a component to the equation. When there was movement

of liquid in an upwards direction they found that the component that needed to be added

were larger than the average velocity of the liquid. For liquid moving downwards, they

found it harder to �nd a constant for the component due to unsymmetrical bubble [16].

Rader et al studied experimentally the factors a�ecting ascending velocity of large bubble

through drilling �uid during gas kick by the use of laboratory models and a 1828, 8m deep

well [20]. The factors they found that a�ected the ascending velocity of a bubble where

the viscosity of liquid, density of liquid and gas, rate of gas expansion, liquid velocity,

angle of deviation from vertical orientation and inner and outer radius of annulus. While

factors with little or no e�ect on the ascending velocity of gas were the length of the

bubble, surface tension between the �uids and eccentricity of annulus [20].

3.2.2 Relations between the dimensionless ratios

Instead of �nding a constant for the Froude number to estimate the velocity several

researchers have made use of the dimensionless ratios given in the equations (3.1)-(3.6).

The dimensionless ratios are calculated from the results of their experiments and plotted

them against each other in logarithmic scale to �nd a trend in the data.

E. T. White and R. H. Beardmore did experiments on the rise velocity of air bubbles

in di�erent liquids in pipes and investigated of how several physical parameters a�ect

the ascend velocity of gas. From the experiments they did, as Davies and Taylor, �nd

diameter of the pipe to have an e�ect on the ascend velocity of the gas, especially in thin

pipes. In addition were the inclination of the pipe looked at where they observed that with

increased deviation from vertical increased the ascend velocity of gas. The angles they

investigated were from vertical upto 20◦ [26]. They also found the length of the bubble

to have no e�ect on the ascend velocity of the gas bubble. Their results showed that the

terminal velocity (a constant speed achieved when the bubble has stopped accelerating)

of the gas bubble was reached after less than 2 pipe diameters distance [26]. They also

found that the Froude number depends on the dimensionless inverse viscosity and the

Eötvös number, Fr(Nf , Eo), and noticed that either one or more of the e�ects of viscosity,

surface tension and inertial could be neglected within di�erent areas. For high Nf , Eo

and low Fr could the viscosity e�ect, surface tension and inertial e�ects respectively be
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neglected [26].

Viana et al used all available data from experiments from the literature (225) in addition

to new experiments at PDVSA Intevep (Petróleos de Venezuela, S.A.) (7) on the ascend

velocity of gas bubble in stagnant �uids in pipes [24]. They suggested that the ascend

velocities of Taylor bubbles are not a�ected by the length of the bubbles, as indicated

earlier [20, 24, 26]. Viana et al agreed with White and Beardmore that the Froude

number is a function of dimensionless inverse viscosity and Eötvös number [24, 26]. A

universal correlation for the ascend velocity of the gas was found by processing the data

into Froude numbers, dimensionless inverse viscosity and Eötvös number in log-log plots

and by double logistic dose curve �tting of data [24]. This universal correlation was found

to apply for all data within the range of Eo > 6 [24].

When Funada et al refers to the universal correlation, de�ned by Viana et al, as a solution

of the ascend velocity without understanding due to fact that it is not developed by the

fundamentals of �ow but by processing data [12]. Funada et al studied the ascend velocity

of Talyor bubbles by a theoretical approach. They derived a formula for the velocity of

an ascending ellipsoidal gas bubble in a tube containing viscous liquid, by assuming that

the liquids motion (the falling liquid �lm) is irrational/neglected. They �tted the derived

formula to the data of Viana et al where they found that the surface tension in�uenced

the shape of the nose on the ascending gas bubble, due to ratios from the �tting depended

more of the Eötvös than the dimensionless inverse viscosity [12].

From this previous research it is indicated that it is hard to �nd an expression of the ascend

velocity of Taylor bubbles in pipes based on fundamental �uid dynamics. However, it is

important to notice that the velocity of an ascending Taylor bubble depends on several

parameters [4, 5, 20, 24, 26].

• Diameter of the pipe

• Viscosity of the liquid

• Gravitational acceleration

• Density of the liquid

• Interfacial tension

There are some disagreement on the e�ects of viscosity and interfacial tension on the

ascend velocity of a Taylor bubble. As described there are some proposed regions where
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either one or more e�ects could be neglected to �nd the ascend velocity [24, 26]. If

the liquid in the pipe is �owing or not seems to in�uence the velocity of the ascending

Taylor bubble [16, 20]. While it seemed like the length of the ascending Taylor bubble

had no e�ect [20, 24, 26]. Expressions relating the ascend velocity of Taylor bubble with

diameter of pipe, gravitational acceleration and a constant Froude number were proposed

by Davies and Taylor and Dumitrescu. In the proposed constant Froude number, it

can be assumed that the viscosity and interfacial tension are indirectly included. The

relation between velocity of ascending gas bubble and Froude number, equation (3.1),

with proposed constants [4, 5], in addition to several measured results from previous

experiments [4, 18, 24] are later used to �nd a velocity to aim the numerical solution at.

3.2.3 Liquid �lm

As mentioned in section (2.2.1), a falling �lm of liquid will form at the wall around the

ascending Taylor bubble of gas. The thickness of this �lm is of interest in order to get a

more accurate mathematical model to illustrate the two-phase slug �ow in a pipe.

Nogueira et al investigated ascending Taylor bubbles in vertical tubes containing liquid

through laboratory experiments. They looked in to the �ow in the nose region in addition

to the annular �lm at both stagnant and �owing liquids [17]. They found that for higher

viscosities are the nose curvature lower and therefore stated that viscous forces in�uence

the shape of the nose region. When the �lm thickness decreased did the axial velocity of

the liquid increase, with maximum velocity at the gas-liquid interface. They found the

liquid �lm to be fully developed at a distance behind the nose. By looking into the shear

stress in the falling liquid �lm they found that by decreasing viscosity did also the shear

stress decrease and at higher liquid rates with low viscosity were the shear stress lower.

They concluded with that the nose shape, liquid �lm thickness and shear wall stress are

in�uenced by viscosity [17].

Taha and Cui investigated slug �ow in vertical tubes through a numerical study. They

found that the thickness of the liquid �lm decreases when the dimensionless inverse viscos-

ity is increased (Nf ). In addition, they observed that as the interfacial tension increased

did the thickness of the liquid �lm decrease, and found the shape of the bubble to be

related to viscosity of the liquid and interfacial tension [21].

Through computational �uid dynamics simulation did Zheng et al research slug �ows hy-

drodynamic characteristics, which as previous mentioned depends on viscous, interfacial

and inertial forces [27]. They found that when viscosity is the dominating force, which
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makes the inverse viscosity an important parameter. The thickness of the falling liquid

�lm decreases and the velocity in the liquid �lm increases as the dimensionless inverse

viscosity increases [27]. In addition, the thickness of the falling liquid �lm did decrease

as the dimensionless distance to the nose is increased. While in interfacial tension domi-

nated �ow, where the Eötvös number is an important parameter, an increase in interfacial

tension (lowered Eötvös number) gave a thicker falling liquid �lm and increased curva-

ture of the bubble nose. In inertia-dominated �ow where viscous and interfacial forces

are neglected, which will give a falling liquid �lm without interfacial shear. In such �ows

will the ascending Taylor bubble not be dependent on super�cial velocities and length of

the bubble and variation in the dimensionless thickness of the liquid �lm represented the

shape of the ascending Taylor bubble [27].

Numerical experiments performed by Feng on gas bubbles driven by buoyancy in a pipe

�lled with viscous liquid, gave results agreeing with Taha and Cui and Zheng that the

dimensionless inverse viscosity a�ects the thickness of the falling liquid �lm by decrease

in �lm thickness as the dimmensionless inverse viscosity increases [10].

Through a numerical study did Kang et al investigate Taylor bubble ascending through

stagnant liquids by tracking the interface explicitly with velocity of the front interpolated

from the regular �nite di�erence grid. This method is called the front tracking method

[13]. Kang et al found that both the density- and the viscosity ratio had small e�ects on

the shape of the ascending Taylor bubble, all the dimensionless ratios (bubble Reynolds

number, Weber number and Froude number), thickness of the falling liquid �lm and the

length of the wake. They found the squared dimensionless inverse viscosity (which they

refer to as Archimedes number, Ar), to a�ect the shape of the Taylor bubble, shear wall

stress and thickness of the liquid �lm which is in agreement with Taha and Cui [13, 21].

With an increase in the squared dimensionless inverse viscosity, they found a reduction

in the length in addition to an increase of the thickness of the Taylor bubble and the

shear wall stress was reduced. Due to the thicker Taylor bubble will the falling liquid

�lm reduce in the thickness. From these results, they found a correlation between the

dimensionless thickness of the �lm and dimensionless inverse viscosity [13].

λ

D
= 0, 32Ar−0,1 = 0, 32(N2

f )−0,1 (3.9)

E. W. Llewellin et al performed laboratory experiments where they looked into the thick-

ness of the falling liquid �lm around a Taylor bubble of gas to the quantify the physical

controls and proposed two models under the assumption of neglecting interfacial tension

between gas and liquid [15]. From the result of their experiments, they agreed with
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Nogueira et al and Feng that the dimensionless inverse viscosity can be related to the

thickness of the falling liquid �lm [10, 15, 17]. They saw a sigmoidal trend between the

dimensionless thickness of the �lm and the logarithm of the dimensionless inverse vis-

cosity. They found that the dimensionless thickness of the liquid �lm is independent of

the dimensionless inverse viscosity for Nf . 10 and Nf & 104 where the dimensionless

thickness of the �lm will be around λ′ ≈ 0, 33 and λ′ ≈ 0, 08 respectively [15]. In the

interval between these dimensionless inverse viscosity values, 10 . Nf . 104, will the di-

mensionless thickness of the �lm decrease as the dimensionless inverse viscosity increase

[15].

One of the models they proposed is an empirical model, equation (3.10), which is based

on their experimental data in combination with the data from Nogueira et al research

[17] and is valid for the dimensionless inverse viscosity in the range of 10−1 . Nf . 105

[15].

λ′ = a+ b× tanh(c− d× log10Nf ) (3.10)

Where a+b and a−b are expressions for the low-Nf and high-Nf asymptotic values of the

dimensionless thickness of the liquid �lm respectfully, transition between the asymptotes

is described by c while d gives an indication of how abrupt the transition between the

asymptotes is. The constants have following values a = 0, 204, b = 0, 123, c = 2, 66 and

d = 1, 15 [15].

The other model E. W. Llewellin proposed is based on analyses of theory from Brown,

Viana el al and Dukler and Bergelin [15]. They proposed for laminar �ow in �lm, which

corresponds to the dimensionless inverse viscosity, Nf < 1372 a relationship based on

analysis of Brown and Viana et al [15]. While the theory for larger dimensionless inverse

viscosity where the transition from laminar to turbulent �ow in the �lm occurs Nf > 1372

is based on Dukler and Bergelin theory on falling �lms. They adapted this theory to apply

for a falling thin �lm (which were concluded to only be valid for the dimensionless inverse

viscosity Nf > 200) around a Taylor bubble [15]. This model is valid in the range of

dimensionless inverse viscosity between 0, 1 < Nf < 20 000 [15].

Llewellin et al also did some research where interfacial tension not were neglegted. The

results from this research showed, in agreement with Taha and Cui, that the thickness of

the falling liquid �lm became thinner as the interfacial tension increased [15]

From this review of previous laboratory and numerical experiments, it is seen that the

thickness of the falling liquid �lm is dependent on:
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• Viscosity of the liquid [10, 13, 15, 17, 21, 27].

• Interfacial tension [15, 21, 27].

The thickness of the liquid �lm has been related to the dimensionless inverse viscosity,

equation (3.4), by increase in Nf will the thickness of the liquid �lm decrease [10, 13, 15,

21, 27]. The proposed correlations by Kang et al and Llewellin et al, equations (3.9) and

(3.10), will be used to estimate the aimed thickness of the falling liquid �lm in this thesis.

Interfacial tension has also some in�uence on the thickness of the falling liquid �lm, but

there are some disagreement in the a�ection. By Zheng et al will an increased interfacial

tension give an increase in the thickness of the liquid �lm [27], while for Llewellin et al

and Taha and Cui will an increase in interfacial tension give an decrease in the falling

liquid �lm [15, 21].

Based on these sections by observing performance of the experiments in addition to

considering previous laboratory and numerical experiment have an impression of what

the model should illustrate and important parameters been achieved.
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4 THE MATHEMATICAL MODEL

The mathematical model that will be considered in this thesis is derived from a general

model that has been studied before by several others [6]. It is a simpli�ed model based

on a basic one dimensional two-�uid model of gas (g) and liquid (l), for �ow in pipelines,

where mass conservation and momentum conservation equations are used as foundation

of the model. The model will be used to simulate an ascending Taylor bubble of gas in

a pipe �lled with stagnant liquid.

4.1 General model for two-phase �ow in pipes

As described in section 2.1, two mass conservation and two momentum conservation equa-

tions will be necessary to describe the two-phase �ow. The variables that are conserved,

mass densities (mg and ml) and mass �uxes (Ig and Il), are de�ned in equation (4.1),

which is the vector of conserved variables, U [6].

U =


ρgαg

ρlαl

ρgαgug

ρlαlul

 =


mg

ml

Ig

Il

 (4.1)

Here are ρf and uf �uid density and phase velocity respectively for phase f , and αf is

volume fraction of �uid phase f with the total volume fraction, as de�ned in equation

(2.6), equal to one as shown in equation (4.2).

αg + αl = 1 (4.2)

By rearranging equation (4.1) �uid phase velocities can be obtained, as de�ned in equation

(2.11).

ug =
U3

U1

, ul =
U4

U2

(4.3)

The conservation of mass equations (4.4) for gas and (4.5) liquid are identical to those

de�ned in section 2.1.1, equations (2.1) and (2.2).

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgug) = 0 (4.4)

∂

∂t
(ρlαl) +

∂

∂x
(ρlαlul) = 0 (4.5)
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While the conservation of momentum are given in equations (4.6) and (4.7) for gas and

liquid respectively [6].

∂

∂t
(ρgαgug) +

∂

∂x
(ρgαgu

2
g) + ∆p

∂

∂x
(αg) + αg

∂

∂x
(p) = Qg +MD

g (4.6)

∂

∂t
(ρlαlul) +

∂

∂x
(ρlαlu

2
l ) + ∆p

∂

∂x
(αl) + αl

∂

∂x
(p) = Ql +MD

l (4.7)

Where the source term due to gravity and friction e�ect is represented by Qf and MD
f

represent interfacial drag force for the �uid phase f . The total interfacial drag force is

zero as equation (4.8) outlines [6]. The capillary e�ects are represented by ∆p.

MD
g +MD

l = 0 (4.8)

It is also necessary to include some equations of states (EOS) for the gas and liquid phase

since the density of the phase will vary when there is a column of �uid due to the change

in pressure. These thermodynamic relations are simpli�ed and given by equation (4.9)

for gas and equation (4.10) for liquid [6].

ρg =
p

a2
g

(4.9)

ρl = ρl,0 +
p− p0

a2
l

(4.10)

Where p0 is atmospheric pressure, that is 1 bar = 105 Pa, and ag and al are sound

velocity in gas and liquid respectively. The values are approximately a2
g = 105 m2/s2 and

a2
l = 106m2/s2 [6]. An important observation to make here is that the pressure will not

in�uence the density to liquid as much as gas since the liquid density is most dependent

of the liquid density at atmospheric pressure.

The phase volume fractions can be related to conserved variable by relating equation

(4.1) with equation (4.2), and as seen from the equations (4.9) and (4.10) are densities

related to pressure as shown in [6].

mg

ρg(p)
+

ml

ρl(p)
= 1 (4.11)

In order to get rid of the fractions in equation (4.11), can it be multiplied with the

densities of gas and oil which leads to following equation.

mgρl(p) +mlρg(p) = ρg(p)ρl(p) (4.12)
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By inserting equations (4.9) and (4.10) into equation (4.12) pressure can be related to

mass densities, sound velocities, the density of liquid at atmospheric pressure and the

atmospheric pressure.

mg

(
ρl,0 +

p− p0

a2
l

)
+ml

p

a2
g

=
pρl,0
a2
g

+
p2 − pp0

(agal)2
(4.13)

Which can be rewritten to the following expression.

p2 + p(ρl,0a
2
l −mga

2
g −mla

2
l − p0) = mga

2
g(ρl,0a

2
l − p0) (4.14)

This means that pressure is a polynomial of second degree. The pressure is only a

function of the mass densities of gas and oil, p(mg,ml) due to ρl,0, ag, al and p0 are

de�ned constants for the speci�c gas, liquid and the known reference pressure. Hence the

equation be written as

p2 + pB(mg,ml) + C(mg) = 0 (4.15)

where B(mg,ml) = ρl,0a
2
l −mga

2
g−mla

2
l −p0 and C(mg) = mga

2
g(ρl,0a

2
l −p0). The pressure

di�erence (∆p) in the equations (4.6) and (4.7), is a term which is chosen in order to

make the model well de�ned [6].

4.2 Derivation of the simpli�ed model

The mathematical model described in the previous section can be simpli�ed to be used

on a smaller scale. The conservation of mass equations are as shown below the same as

in the general model, equations (4.4) and (4.5), which the equation below indicates.

∂t(n) + ∂x(nug) = 0 (4.16)

∂t(m) + ∂x(mul) = 0 (4.17)

Where n = αgρg and m = αlρl are the mass density of gas and liquid respectively. While

the conservation of momentum equations will di�er from the general model.

∂t(nug) + ∂x(nu
2
g) + αg∂xPg = −fgug − C(ug − ul)− ng + ∂x(µg∂xug) (4.18)

∂t(mul) + ∂x(mu
2
l ) + αl∂xPl = −flul + C(ug − ul)−mg + ∂x(µl∂xul) (4.19)

The di�erence with this model with respect to the conservation of momentum equations,

are that some choices have been made for the terms on the right hand side of the equations
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(4.6) and (4.7). Instead of having gravity and friction forces included in the sink/source

term (Qg and Ql) as in equations (4.6) and (4.7) they are separated in the new equation.

The gravitational forces are represented by the terms ng and mg, which indicates that

�ow in vertical direction is of consideration. While the friction terms are represented by

fg as friction between gas and pipe wall, fl as friction between liquid and pipe wall and C

as the interfacial tension between gas and liquid. In addition has the pressure di�erence

term (∆p) been removed from the expression and a viscosity term (∂x(µ∂xu)) has been

added.

As earlier, the sum of the volume fractions will be equal to one.

αl + αg = 1 (4.20)

4.2.1 Assumptions to simplify the model

In order to achieve a simpli�ed model are several assumptions made. The capillary

pressure between gas and liquid is assumed to be zero. This means that the pressure of

the gas phase will be equal to the pressure of the liquid phase.

Pl = Pg = P (4.21)

As in explained in the sections 2.3.4 and 4.1, are the phase densities dependent of pressure,

ρg = ρg(P ) and ρl = ρl(P ). In order to simplify this model when studying on laboratory-

scale with a vertical conduct approximately 5 meters high, it is assumed that the �uids

are incompressible and viscosity terms are zero. Incompressible �uids means no change in

density with respect to change in time or height. This assumption eliminates the densities

due to they are constant and common terms in the equations of conservation of mass,

(4.16) and (4.17), which will reduce the expressions as indicated below.

∂tαg + ∂x(αgug) = 0 (4.22)

∂tαl + ∂x(αlul) = 0 (4.23)

By adding the conservation of mass equations, (4.22) and (4.23), and use that the con-

straint that sum of volume fractions are equal to one, equation (4.20), a conservation of

mass equation for the whole system is achieved.

∂t(1) + ∂x(αgug + αlul) = ∂x(umix) = 0 (4.24)

This indicates that the mixture velocity (umix), de�ned in section 2.3.2, equation (2.13),

in other words the total velocity, is constant. By implementing the boundary condition
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of no �ow at the bottom of the pipe (at x = 0), will lead to the constant value of the

total velocity in the system is zero (umix = 0). Therefore can the super�cial velocity to

liquid be set to equal magnitude as the super�cial velocity to gas. However, the �ows

will be in opposite directions as the negative sign in front of the super�cial liquid velocity

indicates.

umix = 0, ugs = αgug = −αlul = −uls (4.25)

Remark 1 This indicates that the super�cial velocities are equal. As seen from equation

(2.12), will this only balance the �ow such that the amount gas ascending is balance with

the amount of liquid �owing downwards. Note that this does not mean that the phase

(real) velocities of gas and liquid are equal.

The conservation of momentum equations, (4.18) and (4.19), are also reduced by using

the following assumptions:

• Incompressible �uids, ρ(P ) = ρ

• Equal phase pressure (zero capillary pressure) Pg = Pl = P (Pc = Pg − Pl = 0)

• Viscosity term is ignored, which eliminates ∂x(µ∂x(u)) (Viscosity e�ects are ac-

counted for by the friction terms on the right hand side of the conservation of

momentum equations. This will be considered in section 4.2.5)

• No acceleration e�ects. This assumption eliminates the �ux of momentum (∂t(mu))

and the rate of accumulation of momentum (∂x(mu
2)), which is an reasonable

assumption since the terminal velocity is reached quickly after release [26].

Therefore can the conservation of momentum equations (4.18) and (4.19) be simpli�ed

to the following equations.

αg∂xP = −fgug − C(ug − ul)− ρgαgg (4.26)

αl∂xP = −flul + C(ug − ul)− ρlαlg (4.27)

4.2.2 Phase velocities and super�cial velocities

It is of interest to �nd expressions of phase velocities. A more detailed derivation is

included in Appendix 9.1. The equations (4.26) and (4.27) are solved for ug and ul
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respectively.

ug = −αg∂xP + ρgαgg − Cul
C + fg

(4.28)

ul = −αl∂xP + ρlαlg − Cug
C + fl

(4.29)

As seen from the expression does both of them consist of both velocity terms ug and ul.

Therefore is the expression of ul implemented into equation (4.28) and the expression of

ug inserted into equation (4.29), to achieve expressions of phase velocities that does not

depend on the velocity of the other phase.

ug = −
αg∂xP + ρgαgg + C αl∂xP+ρlαlg

C+fl

C + fg − C2

C+fl

(4.30)

ul = −
αl∂xP + ρlαlg + C αg∂xP+ρgαgg

C+fg

C + fl − C2

C+fg

(4.31)

As seen in the expressions above, they consist of two parts. One part that is dependent on

pressure and one gravity dependent part. By some rearranging and use of the constraint

of volume fractions, equation (4.20), can the equations (4.32) and (4.33) be achieved.

ug = − αgfl + C

Cfg + Cfl + fgfl
∂xP −

αgρgfl + (αlρl + αgρg)C

Cfg + Cfl + fgfl
g (4.32)

ul = − αlfg + C

Cfg + Cfl + fgfl
∂xP −

αlρlfg + (αlρl + αgρg)C

Cfg + Cfl + fgfl
g (4.33)

From these two equations can the super�cial phase velocities which are used in the con-

servation of mass equations, (4.22) and (4.23), be found by using the relation described

in section 2.3.2, equation (2.12).

ugs = −
α2
gfl + αgC

Cfg + Cfl + fgfl
∂xP −

α2
gfl + αgC

Cfg + Cfl + fgfl
ρgg −

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g (4.34)

uls = − α2
l fg + αlC

Cfg + Cfl + fgfl
∂xP −

α2
l fg + αlC

Cfg + Cfl + fgfl
ρlg +

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g (4.35)

4.2.3 Pressure

An expression for ∂xP is needed to eliminate the number of unknowns in the model. It can

be found by adding the super�cial velocities together and assuming that the total velocity
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is zero, umix = ugs + uls = 0 as indicated by equation (4.25). During the derivation it

is observed that the last terms in ugs and uls in equations (4.34) and (4.35) cancel each

other. A more detailed derivation is found in Appendix 9.2.

∂xP = −
α2
gFl+αgC

Cfg+Cfl+fgfl
ρg +

α2
l Fg+αlC

Cfg+Cfl+fgfl
ρl

α2
gfl+αgC

Cfg+Cfl+fgfl
+

α2
l fg+αlC

Cfg+Cfl+fgfl

g (4.36)

which can be rewritten to equation (4.37).

∂xP = −λgρg + λlρl
λg + λl

g = −λgρg + λlρl
λt

g (4.37)

where λg, λl and λt are de�ned as following:

λg =
α2
gFl + αgC

Cfg + Cfl + fgfl
(4.38)

λl =
α2
l Fg + αlC

Cfg + Cfl + fgfl
(4.39)

λt = λg + λl =
α2
gfl + α2

l fg + C

Cfg + Cfl + fgfl
(4.40)

It is also of interest to �nd the expression of pressure, P (x). This is obtained by consider

equation (4.37) and integrate over the section of consideration.∫ L

x

∂P = −
∫ L

x

λgρg + λlρl
λt

g∂x (4.41)

This leads to

P (x) = P (x = L) + g

∫ L

x

λgρg + λlρl
λt

dx (4.42)

where P (x = L) = 1 atm ≈ 105 Pa

4.2.4 Super�cial velocities

By implementing equation (4.37) into the super�cial velocity equation of gas and liquid,

equation (4.34) and (4.35) respectively, and using de�nitions of λg, λl and λt expressions

(4.38)-(4.40) in the super�cial velocities may the pressure dependency be eliminated. This

derivation will only be shown for the super�cial velocity of liquid since the derivation of

the super�cial velocity of gas will be the same and is shown in Appendix 9.3.

uls =
λgρg + λlρl

λt
λlg − λlρlg +

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g (4.43)
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By using the relation between λg, λl and λt in equation (4.40), the �rst fraction can be

rewritten by expressing λl with λg and λt.

uls =
λg(ρg − ρl) + λtρl

λt
λlg − λlρlg +

αlαg(ρl − ρg)C
Cfg + Cfl + fgfl

g (4.44)

This equation above can be reduced by de�ning ∆ρ = ρl − ρg, to following expression:

uls = −λlλg
λt

∆ρg +
αlαgC

Cfg + Cfl + fgfl
∆ρg (4.45)

By implementing the relations for λg, λl and λt de�ned in equation (4.38)-(4.40) in order

to reduce the expression further.

uls = −
(α2

l fg+αlC)(α2
gfl+αgC)

(Cfg+Cfl+fgfl)2

α2
l fg+α2

gfl+C

Cfg+Cfl+fgfl

∆ρg +
αlαgC

Cfg + Cfl + fgfl
∆ρg (4.46)

After some calculation where Cfg + Cfl + fgfl is observed to be a common term and

reduce the expression to one fraction is the equation (4.47), obtained.

uls = −
α2
l α

2
g

α2
l fg + α2

gfl + C
∆ρg (4.47)

By using the relationship between the phase volume fractions in equation (4.20), the

super�cial phase velocity of liquid may be expressed with only the volume fraction of

liquid.

uls = − α2
l (1− αl)2

α2
l fg + (1− αl)2fl + C

∆ρg (4.48)

As mentioned earlier is the derivation of the super�cial gas velocity, ugs, the same as for

the super�cial velocity of liquid, uls and the result is shown in equation (4.49).

ugs =
αg(1− αg)2

α2
l fg + α2

gfl + C
∆ρg (4.49)

Hence, the derivation led to expressions with reduced number of unknowns. The super�-

cial velocities expressed by friction parameters (fg, fl and C) and �uid volume fractions

(α).

4.2.5 Conclusion

The derivation from the conservation of mass equations (4.16) and (4.17), and conserva-

tion of momentum equations (4.18) and (4.19) for gas and liquid respectively, lead to by
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several assumptions, a simpli�ed model for velocities of gas and liquid �ows in vertical

pipes, equations (4.49) and (4.48), for gas and liquid respectively.

Some choices for the friction parameters (fg, fl and C) have to be made. The frictions are

assumed to be dependent of the viscosities (a �uids inner resistance against �ow), �uid

volume fractions and some constants that determines the strength of the frictions. The

proposed expressions for friction between the gas and wall (fg), friction between liquid

and wall (fl) and interfacial tension (C) are indicated below.

fg = Igµgαg = Igµg(1− αl) (4.50)

fl = Ilµlαl (4.51)

C = IIµlαl (4.52)

where Ig, Il and II are constants that determines the strength of the frictions.

Remark 2 As mentioned are the friction expression only proposed expressions. The �uid

volume fraction (α) is included to avoid friction of a phase when it is not present and

relate it to amount of the phase present. The previous research showed that the velocity

of ascending gas is related to the viscosity (µ), which make it reasonable to assume that

it should be included in the friction terms as it is a measure of the �uids inner friction

against �ow.

In addition, to simplify the expressions further are some gravity terms de�ned.

γg = ρgg, γl = ρlg, ∆γ = γl − γg (4.53)

As a result of the assumed expression of friction terms and the de�ned gravity terms,

are two functions de�ned. The function g(αg) is the super�cial velocity function for gas

and the function h(αl) is the super�cial velocity function for liquid, only expressed as a

function of the corresponding volume fraction.

g(αg) = ugs =
αg(1− αg)2

αg(1− αg)Ilµl + (1− αg)2Igµg + IIµg
∆γ (4.54)

h(αl) = uls = − αl(1− αl)2

αl(1− αl)Igµg + (1− αl)2Ilµl + IIµl
∆γ (4.55)

Which gives new expressions of the conservation of mass equations (4.22) and (4.23).

∂tαg + ∂xg(αg) = 0 (4.56)
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∂tαl + ∂xh(αl) = 0 (4.57)

The function h(αl), equation (4.55) is implemented into a MATLAB script for �nding a

numerical solution. As described in section 2.4, in order to �nd a solution is a discrete

scheme necessary to implement into MATLAB. The discrete scheme used in this thesis

is taken from the course PET565:Core scale modelling and interpretation, named "sol-

Central". This scheme was used to study a Buckley-Leverett model by a central based

discretization with a correction term included, equation (2.19) [9]. The only change that

had to be considered was that in this thesis are there no in�ow at the bottom of the pipe.
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5 THE BASE CASE

By use of the mathematical model derived in the previous section, equation (4.55), is a

slug �ow of two-phases, air as gas and water as liquid, in a vertical pipe of 5m height and

diameter of 0, 08m, simulated in MATLAB. Based on earlier research and observations

from experiments as considered in section 3, there are some indication of how the variables

should be determined to make the model as accurate as possible. In addition must the

parameters that de�nes the grid of the model be determined carefully to achieve stability

and accuracy as described in section 2.4. On this background is a Base case of the model

constructed.

5.1 Initial �uid distribution

The initial distribution of �uids in this simpli�ed gas-liquid model is a volume of gas

approximately at the bottom of the pipe with a little layer of liquid beneath it and a

large liquid column above. This layer of gas is chosen to be 0, 4m, which is large enough

to ensure that the physical properties occurring during the �ow will be observed in the

results. As shown in previous research does not the length of the Taylor bubble impact

the velocity of the ascending gas bubble signi�cantly [5, 16, 20, 24, 26]. The length of

the little layer of liquid beneath the gas and the large liquid column above the gas layer

are respectively 0, 05m and 3, 55m. The pipe is open to atmosphere at the top, and

therefore it will contain gas above the liquid column. The expression below, equation

(5.1), indicates mathematically the distribution of liquid initially in the pipe, where αl is

the liquid volume fraction and x is the height of pipe in meters.

αl(x, t = 0) = αl,0 =



1, if 0 < x < 0, 05

0, if 0, 05 ≤ x ≤ 0, 45

1, if 0, 45 < x ≤ 4, 0

0, if 4, 0 < x

(5.1)

This is also illustrated in �gure (5.1) where a graphical illustration of the initial �uid

distribution in the pipe is presented.

As seen from the �gure (5.1), the initial data will consist of three discontinuities, Rie-

mann problems. The discontinuities are located at the three gas-liquid surfaces at

0, 05m, 0, 45m and 4, 0m, and arises by the quick changes in saturation. Since the liquid

velocity function, h(αl), is not a typical convex function, cannot the theory for computing
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Figure 5.1: Initial saturation distribution of liquid (water), αl0, in the pipe

solution of Riemann problem as described in section 2.5, be used directly. When the nu-

merical solution of the model is simulated through MATLAB it will be observed if there

exist a rarefaction wave and/or shock wave solution for the discontinuities.

5.2 The behaviour of the ascending Taylor bubble

The Base case is constructed with the parameters de�ned in table (5.1). The numerical

solutions of the Base case at di�erent times (T = 4, 8 and 14 s) are shown in �gure (5.2).

The left �gures illustrate the liquid velocity function, h(αl), and are equal for all times

(time independent). While the right �gures give an impression of how the gas will ascend

by the changes in �uid saturation distribution in the pipe as the time passes by.

From the numerical solution, it is observed that a Taylor bubble of gas is formed very

quickly after the release of gas. This corresponds well with the performance of the

experiments by Benja, as the Taylor bubble was seen to form quickly after opening of the

valve. Figure (5.2 a), shows the numerical saturation distribution in the pipe four seconds

after the release of the gas. The gas slug is characterised by a sharp front (discontinuity)

where the liquid saturation (αl) decreases from 1 to approximately 0, 5 in almost no

di�erence in height of the pipe, which indicates a shock wave solution. The next part

of the function is more curved, and represents the nose of the Taylor bubble. Here it is

observed that the saturation of liquid gradually decreases from 0, 5 to approximately 0, 2

as one go further down in the pipe (from approximately 1, 6m to 1, 1m), which gives a

rarefaction wave solution. As �gure (2.2 b) shows corresponds this gradual decrease with
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Figure 5.2: Base Case, illustration of the saturation distribution at di�erent times
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Table 5.1: Variables for input in MATLAB for the Base case

Parameter description Unit Value

Number of cells N 2000

Length of pipe L m 5

Length of cells ∆xN=2000 m 0, 0025

Number of time step NSTEP 80

Length of timestep ∆tT=14 s 0, 175

Stability a 20

Density liquid ρl kg/m3 1000

Density gas ρg kg/m3 1

Gravity constant g m/s2 9, 81

Viscosity liquid µl Pa× s 1, 2× 10−3

Viscosity gas µg Pa× s 5× 10−5

Friction

constants

Il 60× 102

Ig 1/m2 60× 107

II 60× 104

the shape of the nose. The saturation distribution around the body of a Taylor bubble

should be almost constant as a fully developed liquid �lm from previous research was

found to be formed a distance behind the nose [17], but as seen in �gure (5.2 a) this is

not the case as the rarefaction wave solution continues to the bottom of the ascending

Taylor bubble. This means that the numerical solution shows the discontinuity at the top

of the gas layer given in the initial data at x = 0, 45m, will give an shock wave solution

followed by a rarefaction wave solution of the Riemann problem.

After the rarefaction wave follows a new shock wave at x ≈ 1, 1m. Here is there an in-

creasing jump in liquid saturation from 0, 2 to 0, 9. A rarefaction wave follows afterwards

which re�ects the tail of the gas slug that increases in the liquid saturation back to the

bottom of the pipe. This is the transition from the back of the Taylor bubble which

represents the discontinuity in the bottom of the gas layer located at 0, 05m in the initial

data, where the numerical solution will be a shock wave followed by a rarefaction wave.

The rarefaction wave that re�ects the tail corresponds well with the observation made

during the performance of the experiments by Benja, where gas bubbles with decreasing

size followed the Taylor bubble. These were observed to have decreasing velocity as the

size of the bubble decreased and were still ascending through the liquid column after

the Taylor bubble had passed through the system. This e�ect is also re�ected in the
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numerical solution. In �gure (5.2 c) which shows the saturation distribution in the pipe

after time T = 14 s, has the Taylor bubble passed through the system, but as observed

are there still gas present that decreases in saturation in the pipe down to x ≈ 1m. The

numerical solution also indicates that the length of the tail increases as the Taylor bubble

ascend. This e�ect can be explained by the shock wave at the back of the Taylor bubble

has a higher velocity than the rarefaction wave that follows, which means that the length

of the rarefaction wave increases.

Figure (5.2 b) shows the same trend in shock wave and rarefaction wave solution as

described for �gure (5.2 a) for the ascending Taylor bubble. The discontinuity at the top

of the pipe at x = 4, does not give a shock wave solution or a rarefaction wave solution.

This discontinuity will be considered in the next section, 5.3.

By investigation of the �gure (5.2 a,b) it is observed that the Taylor bubble increases

in length as it starts to ascends in the pipe compared with the initial length of the gas

layer. This is also con�rmed by the use of data cursor in MATLAB. Initially the gas

layer has a length of 0, 4m and after 4 and 8 s it has increased to approximately 0, 6m.

In addition there is a small increase between 4 and 8 s. The reason for this increase in

length is due to the falling liquid �lm around the bubble. In order to obtain the mass

conservation, the ascending gas must become longer as it becomes thinner. From the

experiments performed by Benja, it was also observed that the gas slug seemed to be

longer compared to the initial layer.

5.3 Gas-liquid surface at the top of the pipe

Based on the experiments performed by Benja it was expected that the gas-liquid surface

at the top of the pipe should rise quickly as the gas layer starts to ascend. In addition

to a slower rise after the gas bubble has formed and some oscillation, as described in

section 3.1. The numerical solution however, showed no rise in the discontinuity of the

gas-liquid surface at the top of the pipe, �gure (5.2 a,b). The loss of the quick increase

in the gas-liquid surface may be due to in the experiments, the gas layer was separated

from the liquid column by a valve, compared to in the numerical calculation is the gas in

the same system as the liquid column initially. This means that the liquid is not forced

to rise as the gas is set "free" to ascend. The e�ect of oscillation and the continued rise

after formation of the Taylor bubble may be lost by the assumption of constant densities

of the �uids made in the derivation of the model. Therefore, cannot the �uids expand

or contract themselves when densities are set to be incompressible, which will eliminate
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the oscillation. In the derivation was it seen that the total velocity, ut, in the system was

constant and equal to zero, due to the liquid beneath the gas layer stays still. Hence the

super�cial velocities of the �uids were equal to each other, equation (4.24). This leads to

elimination of the rise since the volume of displaced liquid is always balanced by volume

of ascending gas, as indicated in remark 1.

As expected, the height of water column in the pipe will sink with the same hight as the

initial gas layer had when it was introduced to the system, �gure (5.2 c). This is an e�ect

from the conservation of mass with the assumption of incompressible �uids. A reduction

in the gas-liquid surface at the top of the pipe was also observed in the experiments

performed by Benja.

5.4 Velocity

From the results of previous experiments on ascending gas bubbles in liquids, it is rea-

sonable to assume that the rise velocity to the gas in a pipe with a diameter of 0, 08m is

approximately ug ≈ 0, 3 m/s. In table (5.2) are ascend velocities of gas in pipes with di-

ameters close to 0, 08m �lled with liquid. These values are either measured and/or calcu-

lated by equation (3.1) based on a proposed constant Froude number, Fr [4, 5, 15, 18, 24].

Table 5.2: Velocity of acending gas slug based on measurements and proposed analytical

solution from previous experiments with pipe diameter close to 0, 08m

Researcher Diameter

[cm]

Froude

constant

Calculated

νb [m
s

] (3.1)

Measured

νb [m
s

]

Brown [3][13] 8, 00 0, 303 0, 268

Dumitrescu [5] 8, 00 0, 351 0, 311

Davies and Taylor [4] 7, 94 0, 328 0, 291 0, 291 −
0, 306

Paz [18] 8, 00 0, 299 −
0, 302

Viana et al [24] 7, 62 0, 282

Figure (5.3) illustrates the super�cial gas velocity (red line) and super�cial liquid velocity

(blue line) as a function of the liquid saturation for the Base case. As shown in the

derivation of the model, section 4.2, are the super�cial velocities of equal magnitude but
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�ows in opposite directions due to the constant total velocity that was found to be zero,

equation (4.24). Therefore are the super�cial velocities in �gure (5.3) symmetric around

the axis of liquid volume fraction, αl. The �ow of liquid is negative due to positive �ow

direction is de�ned to be upwards in the pipe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Liquid volume fraction, alpha
l

V
el

oc
ity

 fu
nc

tio
ns

 [m
/s

]

 

 

 h(alpha
l
)

g(alpha
g
)

Figure 5.3: Comparison of the super�cial gas velocity, g(αg), and super�cial liquid veloc-

ity, h(αl), for the Base case

In the model there are several methods to investigate the velocity of the gas slug and

there by check if it is correct according to the experimental data. This can be done by

either compare the position for the front of the gas slug at di�erent times or by use of

the Rankine-Hugoniot jump condition, equation (2.26), which gives the speed to a shock

wave solution. By the use of data cursor on the front of the gas slug at di�erent times in

�gure (5.2 a,b), is the front velocity of the ascending Taylor bubble estimated by the use

of fundamental velocity formula, νb = ∆x
∆t
. The front of the gas slug is evaluated at liquid

volume fractions of αl = 0, 9189 at time, T = 8 s, and αl = 0, 9151 at time, T = 4 s.

∆x

∆t
=

(2, 856− 1, 664)m

(8− 4) s
= 0, 298

m

s

By use of the Rankine-Hugoniot jump condition, equation (2.26), may the speed to the

front of the ascending Taylor bubble be calculated. The position of the shock wave is

indicated in the right �gure in (5.2 a), where αl jumps from 0, 502 to 1 at the positions

x ≈ 1, 624−1, 681. Investigation of the liquid velocity function, h(αl) from the left �gure

in (5.2 a), are the corresponding function values found to be h(αl = 0, 502) = −0, 1484

and h(αl = 1) = 0. This gives following speed of the front by Rankin-Hugoniot jump

condition:

s =
∆h(αl)

∆αl
=
−0, 1484− 0

0, 502− 1
= 0, 298

m

s
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The numbers are found by use of data cursor in MATLAB but some indication can also be

obtained by the use of �gure (5.2 a). The front velocity of the ascending Taylor bubble at

time T = 8 s is also calculated by the Rankin-Hugoniot jump condition, equation (2.26),

and is also found to be 0, 298 m
s
.

Due to the shock wave solution that is present both at the front and the bottom of the

ascending Taylor bubble, �gure (5.2 a,b), the velocity at the back of the ascending Taylor

bubble can be evaluated also at the di�erent times. The velocity at the back of the

Taylor bubble is also evaluated by use of the fundamental velocity formula, νb = ∆x
∆t
. The

calculations of the velocities are similar to those illustrated above and the results from

the calculations are implemented into table (5.3).

Table 5.3: Velocities of the ascending gas calculated based on positions of the front of the

bubble and Rankin-Hugoniot jump condition, equation (2.26)

Method Figure Positions, either (x, t) or (αl, h(αl)) Velocity [m
s

]

νb = ∆x
∆t

(5.2 a,b) (1, 664, 4, 000) and (2, 856, 8, 000) 0, 298

νb = ∆x
∆t

(5.2 a,b) (1, 084, 4, 000) and (2, 251, 8, 000) 0, 292

R-H speed s (5.2 a) (0, 502, −0, 1484) and (1, 000, 0, 000) 0, 298

R-H speed s (5.2 a) (0, 2144, −0, 2245) and (0, 9252, −0, 0182) 0, 290

R-H speed s (5.2 b) (0, 5194, −0, 1433) and (1, 000, 0, 000) 0, 298

R-H speed s (5.2 b) (0, 2725, −0, 212) and (0, 8813, −0, 03163) 0, 296

As seen from the table did all evaluations at the front of the Taylor bubble give the same

ascend velocity, 0, 298 m
s
. This value is very close to the results from previous experiments,

table (5.2). This makes the friction constant used for the Base case a reasonable estimate.

The evaluations at the back of the Taylor bubble gave results that did not vary much

from the front velocity, but all of them were a little lower than the front velocity. The

e�ect of higher velocity at the front of the ascending bubble compared with the back can

also be observed from the liquid velocity function in �gure (5.3). By drawing a straight

line between the liquid volume fractions (αl) at approximately 0, 5 − 1, 0 (for the front)

and 0, 2− 0, 9 (for the back), it is observed that the slope is higher for the front. By the

Rankin-Hugoniot jump condition, equation (2.26), this gives a higher speed of the shock

wave solutions at the front of the ascending Taylor bubble.
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5.5 Liquid �lm

Indication of the thickness of the liquid �lm are achieved by the empirical model, equation

(3.10), proposed by E. W. Liewellin et al [15] and the correlation proposed by Kang et

al, equation (3.9) [13]. In the numerical solution will indications of the thickness of the

liquid �lm, λ, be achieved by the distribution of the liquid volume fraction, αl, in the

pipe.

The dimensionless inverse viscosity is found by equation (3.4).

Nf =
1000

1, 2× 10−3

√
9, 81× 0, 083 = 59059, 292

Such high value of the dimensionless inverse viscosity will as described in the theory ear-

lier, section 3.2.1, make the thickness o� the liquid �lm independent of the dimensionless

inverse viscosity and will have a dimensionless thickness of the liquid �lm approximately

around λ′ = 0, 08 [15]. When the dimensionless inverse viscosity is implemented into

the empirical model (3.10) as the calculation below shows it gives out approximately

λ′ = 0, 08.

λ′ = 0, 204 + 0, 123× tanh(2, 66− 1, 15× log10(59059, 292) = 0, 082 ≈ 0, 08

Therefore the thickness of the liquid �lm can be calculated from the relationship shown

in equation (2.14).

λ = 0, 04× 0, 08 = 0, 32 cm

The relation in equation (2.7) gives the volume fraction of gas and liquid by the areas

occupied of liquid and gas. This gives a volume fraction of gas at,

αg =
(8− 2× 0, 32)2

82
= 0, 846

while the liquid volume fraction will be at αl = 0, 154 by equation (4.20).

The thickness of the falling liquid �lm by the correlation from Kang et al where the

dimensionless thickness of the �lm is related to the diameter of the pipe is expressed in

equation (3.9) [13].

λ′ = 0, 32(59059, 2922)−0,1 = 0, 036

This will give a �lm thickness of λ = λ′×D = 0, 036×0, 08 = 0, 288 cm. The gas volume

fraction will be at αg = 0, 861 and the liquid volume fraction at αl = 0, 139.

It is therefore reasonable to assume that the numerical solution should give the volume

fraction of gas at αg ≈ 0, 85, and the volume fraction of liquid at αl ≈ 0, 15. The �gure
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(5.2 a,b) shows that the liquid volume factor at the gas slug will increase as it moves

throughout the pipe, which means that the thickness of the liquid �lm will increase.

Previous research shows that ideally should the thickness of the liquid �lm stay constant

after the formation of the gas slug as it depends mainly on the viscosity of the liquid and

the interfacial tension between the �uids [10, 13, 15, 17, 21, 27]. However, due to the

formation of the tail consisting of dispersed gas bubbles and a small increase in length of

the gas slug as it moves upwards, will the liquid volume fraction increase at the body of

the gas slug in the numerical solution.

5.6 Accuracy of the numerical solution and stability

As mentioned in section 2.4, it is important to use appropriate size of grid during the

numerical simulations and investigations. In addition may stability problems occur from

when the stability condition in equation (2.22) is not ful�lled or other e�ects may cause

problems when the numerical solution is to be found.

5.6.1 Comparison of grid

The �gure (5.4) illustrates the importance of using appropriate grid during numerical

investigations. By comparing the grid of 500 cells (N = 500) with the grid of 2000 cells

(N = 2000) after four seconds it can be seen that the liquid saturation of the front is

lower and that the front is more smeared out, in addition to the simulation was very fast

with the grid of 500 cells. With the grid of 5000 cells (N = 5000) took the simulation long

time and by comparing with the grid of 2000 cells is little di�erence observed. Therefore

it is safe to use the number of 2000 cells in order to achieve accurate simulations and to

keep the computing time low.

5.6.2 Stability

A too steep liquid velocity function may, as the left image in �gure (5.5) illustrates, create

stability problems during calculation of the numerical solution of the saturation distri-

bution. From the simulation, it was seen that the numerical solution of the saturation

distribution immediately after start gave both unlikely and unphysical values through the

pipe. As seen from the right image in �gure (5.5) at the lower part of the pipe, does the

saturation distribution show a layer of gas with varying saturation instead of a Taylor
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Figure 5.4: Comparison of the number of grid cells, N , e�ects the simulation to make it

as accurate as possible
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bubble. At the upper part of the pipe gives an unphysical solution as it shows liquid

above the upper gas-liquid surface in the pipe, in addition to liquid saturations above

one and below zero. It is also observed that the gas-liquid surface at the top of the pipe

has raised upwards approximately the same distance as the layer of gas in the bottom

has raised.

0 0.2 0.4 0.6 0.8 1
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Liquid volume fraction, alpha
l

Li
qu

id
 v

el
oc

ity
 fu

nc
tio

n,
 h

(a
lp

ha
l) 

[m
/s

]

 

 

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Height of pipe, h [m]

Li
qu

id
 v

ol
um

e 
fr

ac
tio

n,
 a

lp
ha

l

 

 

Initial saturation

Saturation at T=1s with II=60*103h(alpha
l
)

Figure 5.5: Illustration of an unstable simulation due to steep liquid velocity function,

h(αl)

Stability problems may also occur when the variable a is set to low [7]. When the

parameter a is set to low will not the stability condition described earlier in equation

(2.22), be satis�ed. The right images in �gure (5.6 a,b) shows how a too low value of

parameter a will a�ect the numerical solution. The numerical solution in �gure (5.6 a) is

seen to be within the stability area. Here is the value of parameter a set to be 9. While

the numerical solution in �gure (5.6 b) shows an unphysical solution, where the liquid

volume fraction is above one and below zero in the pipe. That is for a parameter a at

8. In addition it is observed that the gas-liquid surface at the top of the pipe has moved

upwards, as it did with too steep velocity curve.

An important observation that was noticed during the simulations with variation in the

parameter a were that when a was low the computing time was also low, but when a was

high did also the computing time increase. It was therefore kept at a value of a = 20 in

the rest of the simulations to keep the simulation time low but still accurate.
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Figure 5.6: Illustration of stability problems during simulation regarding the value of

parameter a
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6 THE NUMERICAL SOLUTION

In the previous section was a Base case for the model constructed. In this section is

the sensitivity of the numerical solution investigated. The sensitivity is tested by how

changes in some of the parameters that are de�ned for the Base case will a�ect the

numerical solution. In addition the phase and super�cial velocities, the pressure and

pressure di�erences will be considered, as well as some new expression for the frictions

will also be considered as the friction terms are only proposed expression (remark 2).

6.1 Friction

As indicated in the derived expression of the super�cial velocity of liquid, equation (4.48),

the super�cial velocities will depend on several friction terms. The friction between

�uids and wall (fg and fl), in addition to the interfacial tension between the two �uids

(C). Relations for the friction terms are given in the equations (4.50)-(4.52), and as the

relations indicates they will depend on friction constants, Ig, Il and II. The size of the

friction terms will a�ect the shape of the liquid velocity function.

To determine the friction constants it has to be known how they a�ect the liquid velocity

function, h(αl). Based on the equation when the expressions of friction terms, equations

(4.50)-(4.52), are implemented into the super�cial liquid velocity function which gives

equation (4.55). The constant for the interfacial tension (II) can be assumed to be the

most controlling parameter at the high liquid volume fractions, due to the other terms

contain (1−αl). While at low liquid volume fractions it can be assumed that the constants

for interfacial tension (II) and the friction between the liquid and the wall (Il) are the

most controlling parameters since in the term of friction between the gas and wall (Ig)

contains αl, which will reduce its value.

In �gure (6.1) are the variation in friction constants illustrated, where one can observe

how a change in respectively one of the friction constants, either II, Il or Ig, while the

other two are held constant will a�ect the liquid velocity function, h(αl). In the �gure

represents the blue line the base case while the red line is with a lower value of friction

constant and the purple line is with a higher value of friction constant compared with the

base case. The values for the constants are included in the legends in each sub-�gure.

In the �gure (6.1 a), is the friction constant II varied, while the constants Il and Ig

are kept constant. As observed from the �gure does the friction constant II mainly
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Figure 6.1: Comparison of how the di�erent friction constants (II, Il and Ig) a�ects the

liquid velocity functions, h(αl)
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determine how steep the function will be at the low liquid volume fractions and at which

liquid saturation the function will turn and rise again. At lower values of II, the curve

will be very steep with the turn in the function at lower liquid volume fractions. While at

higher values, the curve will be less steep and the turn in the function will take place at

higher liquid volume fractions. In addition, the function at higher liquid volume fraction

is more curved for higher values of II. This is in agreement with the proposed determining

areas based on the expression of the liquid velocity function.

Variation in friction constant Il is illustrated in �gure (6.1 b), and has some similarity

with the trend shown in variation in the friction constant II. As the �gure indicates will

not a lower value of Il in�uence the shape of the curve. The reason for this may be due

to the value in base case is not high, which means the lowered value is not signi�cantly

lowered. At higher values of Il it is observed that the curve will be less steep than the

curve to the base case which was also observed for higher values of the friction constant

II. However, it will merge into the base case after the function has started to rise. One

can assume that the change in Il may only a�ect the velocity function at lower liquid

volume fractions, which is in agreement with the proposed e�ect based on the expression

of the super�cial liquid velocity.

While with varying the friction constant Ig as shown in �gure (6.1 c), has a trend that

di�ers from the others. The steepness of the curve at low liquid volume fractions seems

not to be a�ected by the change in Ig, but how low the function will go before it turns

seems to be a�ected. Therefore the steepness of the curve at higher liquid volume fractions

will be a�ected by change in Ig. As seen will a lower value of Ig lead to a steeper curve at

the higher liquid volume fractions, and the opposite applies for higher values of Ig. One

should also notice that the curves merge into another at a liquid volume fraction close

to zero and one. This indicates that the value of Ig does not a�ect the liquid velocity

function at values of liquid volume fractions close to zero and one, which is in agreement

with the suggested of impact based on the expression of the liquid velocity function.

As this section has illustrated, the shape of the liquid velocity function will be sensitive

to the changes in values of the friction constants II, Il and Ig. In section 5.4, was the

velocity of the ascending Taylor bubble calculated based on the Rankin-Hugoniot jump

condition, equation (2.26). It was seen that the slope of the liquid velocity function after

the turn in the function (at 0, 5 ≤ αl ≤ 1) was used to estimate the ascend velocity.

Therefore, it is important to choose values of the friction constant carefully to achieve

as accurate model as possible. It was seen in this section that the friction constants for

interfacial tension (II) and friction between the gas and wall (Ig) had the most in�uence
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on the slope of the velocity function. In addition, it is noticed that the liquid volume

fraction at the Taylor bubble is mostly dependent of the interfacial tension (II), but also

the friction between the liquid and the wall (Il) has some in�uence. This is in agreement

with the previous research where the interfacial forces is one of the parameters that a�ects

the ascend velocity of the Taylor bubble [24, 26].

6.2 The shape of the liquid velocity function

As mentioned, the velocity is calculated from the slope of the liquid velocity function at

the linear part after the turn in the function, and from the previous research is a velocity

at approximately 0, 3 m
s
of interest in a pipe with inner diameter at 0, 08m. Therefore is

an indication of how low the function should go before a turn based on the interested value

of the slope. If the liquid velocity function goes lower before it turn, the velocity of the

Taylor bubble will be higher, and the opposite applies for an earlier turn in the function.

In addition is the liquid volume fraction at the turn in the liquid velocity function an

indication of the liquid volume fraction to expect at the body of the Taylor bubble. From

the previous research it was seen that a liquid volume fraction at αl ≈ 0, 15, is of interest

to have at the body of the Taylor bubble. If the turn is located at higher liquid volume

fraction, the liquid fraction at the body will be higher. The opposite e�ect applies for

lower liquid volume fractions. As indicated in section 5.6.2, a too steep function will lead

to stability problems, (5.5), and thereby restrict the liquid volume fraction at the Taylor

bubble in this model. Some steeper function than Base case was investigated but all of

them had stability problems.

As previously indicated, a tail of dispersed gas bubbles will follow the Taylor bubble

as it ascends. This tail is created by the bend in the liquid velocity function, h(αl),

at the liquid volume fractions close to one. Two di�erent liquid velocity functions are

implemented in �gure (6.2 a). The blue line represents the Base case and the red line is

based on di�erent values of friction constants. It is observed that the function based on

the friction constants di�erent from the Base case is approximately linear from the turn

in the function and upto αl = 1. All the parameters in table (5.1) except the values of

friction constants for interfacial tension and friction between the liquid and the wall is

kept constant. The change in the friction constants are implemented into table (6.1).

The numerical solutions after four seconds for each of the liquid velocity functions are

illustrated in �gure (6.2 b,c). As observed, there is only a shock wave solution at the

back of the Taylor bubble for the case with the set of friction constant from table (6.1)
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(c) The liquid saturation distribution for the case without the tail e�ect

Figure 6.2: Illustration of how the tail e�ects the liquid velocity function, h(αl) and the

simulation after time, T = 4 s
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Table 6.1: Variation in the values of friction constant to illustrate the tail e�ect

Type of friction Friction constant Base case [ 1
m2 ] Without the tail e�ect [ 1

m2 ]

Interfacial tension II 60× 104 60× 102

Liquid and wall Il 60× 102 60× 104

Gas and wall Ig 60× 107 60× 107

compared with the Base case that has a rarefaction wave following the shock wave at the

back of the ascending Taylor bubble. The saturation jumps straight to a liquid volume

factor of one, and the continuous decrease observed at the Base case is not present.

By this, the tail e�ect of an ascending Taylor bubble can be related to the interfacial

tension as it determines the curvature in at the high liquid volume fractions, �gure (6.1).

High interfacial tension gives a larger tail while at low interfacial tension may the tail

e�ect disappear.

6.3 Pressure

The pressure changes as the gas slug ascends is of interest. A numerical solution is

therefore constructed to measure the pressure di�erence at some locations in the pipe.

The �rst measuring point is placed 1, 1m above the top of the gas column initially in

place. The second and third measuring points are placed above with 1m space between

all of the measuring points.

As the �gure (6.3) illustrates, the pressure di�erence at both locations before start of

simulation (time, T=0 s) are 9 810Pa and will stay at this value until the top of the gas

slug reaches the �rst pressure measuring point. This is due to the measuring points are

each placed 1m apart from each other and the pressure gradient in the liquid is 9 810 Pa
m

in water, as the following calculation indicates.

∆P

∆h
= ρg = 1000

kg

m3
9, 81

m

s2
= 9 810

Pa

m

When the gas slug reaches the �rst point where pressure is measured (red line), dropped

the pressure di�erence. The reason for this is due to the density of the gas is lower than

liquid, hence a lower pressure gradient. The pressure gradient in air is 9, 81 Pa
m

as the

calculation below illustrates.

∆P

∆h
= ρg = 1

kg

m3
9, 81

m

s2
= 9, 810

Pa

m



6 THE NUMERICAL SOLUTION 59

0 5 10 15 20 25 30 35 40 45
9350

9400

9450

9500

9550

9600

9650

9700

9750

9800

9850

Time, T [s]

P
re

s
s
u
re

 d
if
fe

re
n
c
e
, 
D

e
lt
a
 P

 [
P

a
]

 

 
Delta P

1
, Pressure difference between h=1,55m and 2,55m 

Delta P
2
, Pressure difference between h=2,55m and 3,55m 

Figure 6.3: Illustration of how the pressure di�erence (∆P1 and ∆P2) changes between

two measuring point placed 1m apart as the gas slug ascends up the pipe

The pressure di�erence dropped approximately 450Pa when the gas slug is in the mid-

dle of two measuring point. This corresponds well to the pressure drop of around

5mbar (500Pa) that Tjelta and Kvamme observed in their experiments of pressure log-

ging for pressure in the gas cap almost equal to pressure in the liquid column with

measuring points at the same distance [23]. After the top of the gas slug has passed the

second pressure point, the pressure di�erence between the two �rst measuring points will

start to increase again but it takes long time until it reaches its original value. This is

probably due to the tail of dispersed gas bubbles following the Taylor bubble.

Between the second and third measuring points is the same e�ect of the pressure di�erence

observed, but there are some di�erences that are important to consider. The drop of

pressure di�erence is not as low and it takes longer time to rise up original value. The

cause of this may be due to the growing tail of dispersed gas bubbles that follows the

Taylor bubble. This e�ect is also observed in the experimental data of Tjelta and Kvamme

experiments [23]. Figure (6.4) is the result from Tjelta and Kvamme experiments in

their bachelor thesis. As seen the plot in the left �gure illustrates the pressure di�erence

as the gas slug ascends. They did not release the gas until 8s after the start. The trend

in the curves are the same as in the numerical solution, �gure (6.3). The pressure drop

when the gas slug is between two measuring points is 5mbar.
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Figure 6.4: A plot of the di�erence pressure achieved in the bachelor thesis to Høyland

Tjelta and Kvamme [23]

The gauge pressure (P (i)− Patm) as a function of the height in the pipe is illustrated in

�gure (6.5). From the �gure it can be seen that the gauge pressure does not vary much in

gas phase (upper part of the pipe, x > 3, 6m). This is due to the low-pressure gradient

in gas. For the liquid phase increases the gauge pressure as one moves downwards in the

pipe through the liquid column. It has a constant slope, equal to the pressure gradient

in liquid (water).

6.4 Length of gas layer

From previous research it is assumed that the length of bubble should not a�ect the

velocity of ascending gas and therefore should not the length of initial gas layer a�ect

the ascending gas velocity [5, 16, 24, 26]. In �gure (6.6), the Base case which contain

a gas layer with length of 0, 4m is compared with gas layers of length 0, 2m and 0, 6m

simulated to see if the length of the gas layer will a�ect this mathematical model during

the simulation.

To investigate the velocity of the ascending Taylor bubbles from the numerical solutions

with di�erent length in the initial gas layer is the data cursor function in MATLAB used.
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Figure 6.5: Illustration of the gauge pressure (P (i)− Patm) as a function of the height of

the pipe

As described in section 5.4, the velocity is estimated by how far the front of the gas

slug has reached from start upto four seconds has passed by the fundamental velocity

formula, νb = ∆x
∆t
. The position of the fronts are investigated at the same liquid volume

fractions. The calculations for the Base case, shorter layer and longer layer are shown

below respectively.

νb,basecase =
1, 661− 0, 45

4− 0
= 0, 303

m

s

νb,shorter =
1, 461− 0, 25

4− 0
= 0, 303

m

s

νb,longer =
1, 861− 0, 65

4− 0
= 0, 303

m

s

These results shows that the length of the initial gas layer does not a�ect the velocity in

the numerical solution.

Since the initial data does not a�ect the liquid velocity function, h(αl), should not changes

in the initial length of the gas layer a�ect the ascending velocity of the Taylor bubble.

It is also important to notice how the liquid saturation at the gas slug changed when

the length of gas layer changed. This will not occur in laboratory experiments, and as

explained earlier the thickness of the liquid �lm will be dependent on mainly the viscosity

of the liquid and the interfacial tension between the �uids [10, 13, 15, 17, 21, 27]. The

reason for this e�ect in the numerical solution is probably due to the friction constant

(interfacial tension II), which created the tail e�ect and as explained earlier the tail will

be created by reduction of the saturation height of the Taylor bubble. As the �gure (6.6)
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Figure 6.6: Illustration of the saturation distribution at time T = 4 s with di�erent lengths

of the initial gas layer
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indicates are the tails equal for all the di�erent sets of initial data, which means that it

will reduce the liquid volume fraction at the smallest layer the most as it has less area to

reduce.

6.5 Comparison of phase velocities and super�cial velocities

As previously explained, the derivation of the model showed that super�cial velocity to

liquid and gas are of same magnitude but in opposite direction, equation (4.25). This

does not mean that the phase (real) velocity of liquid and gas are of equal magnitude, as

indicated in remark 1. Figures (6.7) and (6.8) illustrates the magnitude of the super�cial

and phase velocity as the gas slug passes through the pipe. Only the super�cial velocity

to liquid is shown in the �gure but the super�cial velocity of the gas will as mentioned

above be equal of magnitude.

The �rst �gure compare the velocities right after the gas layer is released (T = 0, 01s)

in addition to after it has moved a little up in the pipe (T = 4s). As the �gure (6.7 a)

illustrates, the liquid velocity will be quite high right after the gas layer is released, but

it is seen in the simulation that the liquid velocity will sink quickly as a Taylor bubble

is formed and starts to move upwards. The reason for such high liquid velocity in the

start is due to the little passage for liquid past the ascending gas immediately after the

release of gas. As remark 1 indicates, the �ow of falling liquid must compensate for the

�ow of ascending gas, which leads to the need of high liquid velocity in the thin passage.

The velocity of the gas and the super�cial velocity of the liquid is quite low as the gas

slug is released, but by studying �gure (6.7 a) are small increase in the velocities at the

gas-liquid surfaces detected. The increase at the top of the gas layer may be an indication

that the gas layer is about to start ascending. As seen, the peak at the top of the gas

layer is a little wider and decreases to zero a little below the surface. The peaks at the

other two gas-liquid surfaces may be caused by errors in the numerical solution when the

saturation goes from liquid saturated area to gas saturated area and opposite.

The second �gure (6.7 b) compares the velocities after 4s has passed by. The liquid

velocity does not sink as quickly as before, but it still sinks. This is due to the thickness

of the liquid �lm does not increase as quickly as when the gas was released. Meanwhile

the gas velocity and the super�cial velocities have stabilized at approximately 0, 3m/s

and 0, 2m/s respectively. A gas velocity of approximately 0, 3m/s is the value that the

model was aimed at. The liquid velocity is lower at the front of the slug and increasing

towards the back of the slug. This is logical since as mentioned earlier in section 5.3,
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the gas-liquid surface at the top of the pipe will not move at all as the gas slug ascends

upwards in the numerical solution. Since the liquid �lm is thinnest behind the nose of

the Taylor bubble, the liquid velocity must increase in order to be displaced fast enough

to avoid movement in the gas-liquid surface at the top. There is an opposite tendency

observed for the gas velocity. As seen from the �gures the gas velocity will be highest at

the nose of the Taylor bubble and decrease towards the back. This small decrease was

also detected during the estimation of the velocity at the back of the Taylor bubble by

Rankin-Hugoniot condition, section 5.4 table (5.3).

The tail of the dispersed gas bubbles is also present in the gas velocity curve. After

the Taylor bubble decreases the gas velocity back to the lower part of the pipe. This is

the velocity of the gas bubbles in the tail, and as indicated in section 5.2, the velocity

of the gas bubbles in the tail are highest for the larger gas bubbles right behind the

Taylor bubble, which corresponds well with the observations from performance of the

experiments. Also here, is an increase in the gas velocity at the gas-liquid surface at the

top of the pipe is detected in the numerical solution. As before may this increase be

caused by an error in the numerical solution when there is a transition in saturation from

liquid to gas saturated area.

The second �gure (6.8) compare the velocities when the gas slug has moved further up

the pipe (T = 8s) in addition to when it has passed through the pipe (T = 14s). By

comparing (6.7 b) with (6.8 a) it can be seen that the liquid velocity has decreased further

while the gas velocity and the super�cial velocity to the gas slug remains the same. The

reason to the continued decrease in the liquid velocity is due to the still continued increase

in liquid volume fraction in the Taylor bubble as previously mentioned. The thickness

on the liquid �lm increases as the Taylor bubble ascends, hence the liquid velocity at the

Taylor bubble must be lower in order to compensate for the rate of gas that displaces

the liquid. As previously mentioned, this increase of thickness in the falling liquid �lm

is not in agreement with previous research [10, 13, 15, 17, 21, 27]. It is also noticed that

the gas velocity still decreases from the back of the Taylor bubble and all the way to the

bottom of the pipe, due to the tail of dispersed gas bubbles.

When considering �gure (6.8 b) it is noticed that the Taylor bubble has passed through

the pipe, and the liquid velocity and the super�cial velocities has decreased to zero.

There is still a gas tail with a gas velocity that goes all the way back to the bottom of

the pipe which is in agreement with the observed dispersed �ow of gas bubbles under

the performance of the experiments that still ascended in the pipe for a while after the

Taylor bubble had passed through.
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Figure 6.7: Illustration of the saturation distribution in the pipe in addition to the super-

�cial and �uid phase velocities to gas and liquid in the pipe at di�erent times (T = 0−4s)
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Figure 6.8: Illustration of the saturation distribution in the pipe in addition to the super-

�cial and �uid phase velocities to gas and liquid in the pipe at di�erent times
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6.6 Friction terms with exponents on the volume fractions

As previously explained, remark 2, are the expression of the friction terms only a guess/estimate.

Therefore it is useful to also look at other expressions for the friction terms fg, fl and C.

6.6.1 Volume fraction of gas included in the interfacial tension term

The new expressions are quite similar to the previous ones in equations (4.50)-(4.52). The

di�erence is that the �uid volume fractions have exponents in addition to the gas volume

fraction, αg is included in the expression for interfacial tension. The new expressions are

listed in equations (6.1)-(6.3), where the relation between the �uid volume fraction in

equation (4.20) is used. To observe what the changes will be are the friction constants,

Ig, Il and II kept at the same value as for the base case (60 × 107 1
m2 , 60 × 102 1

m2 and

60× 104 1
m2 respectively).

fg = Igµgα
kg
g = Igµg(1− αl)kg (6.1)

fl = Ilµlα
kl
l (6.2)

C = IIµlα
kl
l α

kg
g = IIµlα

kl
l (1− αl)kg (6.3)

The result of the numerical solution where the liquid velocity function is simulated with

the new expressions for friction in addition to the Base case curve is seen in �gure (6.9).

As seen from this �gure varies the result quite much depending on the value of the

exponents.

From the �gure (6.9 a) it is seen that with the exponents in the new expression, equation

(6.1)-(6.3) equal to one (kl = kg = 1), the velocity curve is quite similar to the Base case.

Therefore one can assume that including the gas volume fraction in the expression for

friction between the two �uids does not a�ect the velocity function very much. However,

it is important to notice that there are some di�erence in the new curve. It is more linear

and does not bend o� at the top as the Base case curve does. As indicated earlier in

section 6.2, this will lead to disappearance of the tail following the Taylor bubble. When

the exponents are increased further, they di�er much from the Base case. As indicated

in section 6.2, these types of shapes will not be relevant for the ascending Taylor bubble

in this thesis.
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Figure 6.9: Comparison of the liquid velocity function the new expression for friction with

variation in the exponents against the base case (kl and kg) for the �uid volume fraction

with the Base case
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The case where both of the exponents are equal to two (kl = kg = 2) is shown in �gure

(6.9 a) to be a straight line. In order to understand this result the liquid velocity equation

(4.48) need to be considered by inserting the new expressions of friction constants.

uls = − (αl − α2
l )

2

α2
l fg + (1− αl)2fl + C

∆ρg (6.4)

By using the relation of the �uid volume fraction in equation (4.20) and implementing

the new expression for friction, equation (6.1)-(6.3).

uls = − α2
l (1− αl)2

α2
l (1− αl)kgIgµg + (1− αl)2αkll Ilµl + αkll (1− αl)kgIIµl

∆ρg (6.5)

If the values of the exponents are equal to kl = kg = 2

uls = − α2
l (1− αl)2

α2
l (1− αl)2Igµg + (1− αl)2α2

l Ilµl + α2
l (1− αl)2IIµl

∆ρg (6.6)

uls = − 1

Igµg + Ilµl + IIµl
∆ρg (6.7)

The derived expression, equation (6.7), gives an expression that only depends on param-

eters that are constant. This explains the straight line observed in the result of the curve

�gure (6.9 a).

The curves in �gure (6.9 b) are results from keeping one of the exponent in the equations

(6.1)-(6.3), below one and the other exponent above one. As the resulting curves indicates,

does this result also lead to very di�erent shape of the liquid velocity curve compared to

the Base case. These types of curves are not of interest in this thesis.

While the curves in �gure (6.9 c) are results from keeping both of the exponents in the

equations (6.1)-(6.3) below one (0 < kl, kg < 1). The curves have a similar shape of the

liquid velocity function as the Base case, but are little more curved both before and after

the turning point of the Base case function. From the result of these curves, one can

expect a larger tail due to the larger bend in the curve right before the liquid volume

fraction reaches one.

The curves in �gure (6.9) will not produce logical numerical solutions of the saturation

distribution in the pipe as the time passes by. Either there are problems that gives

errors from imaginary parts or one cannot observe the ascending gas passing through the

system even with the simulation time set very low, are problems that arises in MATLAB.

Therefore cannot the expression of frictions given in equation (6.1)-(6.3), be reasonable

expression in this model to calculate numerical solutions.
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6.6.2 Volume fraction of gas not included in the interfacial tension term

Since the curves produced from the expressions of frictions de�ned in equations (6.1)-

(6.3), containing exponents less than one have some similarity to the Base case but are

more curved are these of interest to investigate further. Some changes needs to be done

with the terms in order to get an appropriate numerical solution.

I want to compare the Base case with the expressions of frictions de�ned in equations

(6.8)-(6.10). The di�erence between these expressions and the expressions in equations

(6.1)-(6.3), are that the gas volume fraction with exponent is not introduced into the

interfacial tension term. These new expressions are equal to the expressions in the Base

case, equation (4.50)-(4.52), but with exponents kept on the volume fractions.

fg = Igµgα
kgfg
g = Igµg(1− αl)kgfg (6.8)

fl = Ilµlα
klfl
l (6.9)

C = IIµlα
klcl
l (6.10)

These expression of friction terms gives the super�cial velocity of liquid, equation (4.48),

following form:

uls = − α2
l (1− αl)2

α2
l (1− αl)kgfgIgµg + (1− αl)2α

klfl
l Ilµl + α

klfl
l IIµl

∆ρg (6.11)

The �gure (6.10) illustrates several quite interesting results. By using the expression

in equations (6.8)-(6.10), when the exponents klf l and kgfg are set equal to 0, 5 while

klc is set equal to one, the resulting curve did overlap with the Base case curve up to

approximately a liquid volume fraction of 0, 05. When it reached a liquid volume fraction

of approximately 0, 6, it started to overlap with the curve for all exponents set equal to

0, 5. The opposite e�ect where observed when the exponents klf l and kgfg are set equal

to one while klc is set to 0, 5. This curve will �rst overlap with the curve for the Base case

with all exponents equal to 0, 5 up to approximately a liquid volume fraction of 0, 05.

Afterwards it overlaps with the Base case from approximately liquid volume fraction of

0, 6.

It is of interest to test the same variation as illustrated for the exponent klc in �gure

(6.10) for variation in kgfg in addition to klf l. The resulting curves are shown in �gure

(6.11) respectively. The curves with variation in kgfg, �gure (6.11 a), show similar results
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Figure 6.10: Comparison of the liquid velocity function to the Base case with the liquid

velocity function where the expressions of friction is de�ned in equations (6.8)-(6.10).

The exponents klf l and kgfg are similar while klc is di�erent from the others

to the curves in �gure (6.10). The curves for the variation in klf l, �gure (6.11 b), show

that when kgfg and klc are equal to one and klf l is equal to 0, 5, the curve will overlap

with the Base case curve for all liquid volume factors. While for kgfg and klc equal to 0, 5

and klf l equal to one, the curve will overlap with the curve where all exponents (kflf , kgfg

and klc) are equal to 0, 5.

By this numerical solution it is seen which part of the curve each exponents kgfg, klf l

and klc determines the curvature of the liquid velocity curve. From the �gures (6.10 and

6.11) it seems like the exponent klc determines the curvature at the lower volume factors

since the curves always follows the Base case curve when the value of this exponent is

equal to one, while for the value of the exponent at 0, 5, it will follow the curve where all

exponents have values at 0, 5. The opposite e�ect applies for the exponent kgfg where the

curve will follow the Base case curve at high liquid volume factors when it has a value of

one, while it will follow the other curve which have all the exponents at a value of 0, 5 at

high liquid volume fractions when it has a value of 0, 5. While the values of the exponent,

klf l, does not seem to a�ect the curvature of the liquid velocity function.

It is of interest to see how the curvature of the liquid velocity function in �gure (6.10 and

6.11) a�ects the movement o� the gas slug. Figure (6.12) shows how the liquid saturation

with the exponents at values of klf l = kgfg = 0, 5 and klc = 1 is distributed at di�erent

times in the pipe. This is the curve which overlaps with the Base case at low liquid

volume fractions and at high liquid volume fraction it will overlap with the curve of all
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Figure 6.11: Comparison of the liquid velocity function to base case with the liquid ve-

locity function where the expressions of friction is de�ned in equations (6.8)-(6.10). The

exponents klf l and klc are similar while kgfg is di�erent from the others
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exponents at the value of 0, 5. When the liquid saturation distribution is compared with

the Base case, �gure (5.2) there are a lot of e�ects to investigate. The tail is larger and

the velocity of the gas slug is lower in �gure (6.12). This was expected based on the large

bend of the curve at high liquid volume fractions and the slopes of the curve indicated

that the velocity at the front of the Taylor bubble will slower (slope at the higher liquid

volume fractions), while the velocity at the bottom of the Taylor bubble (slope at the

transition between the two curves, �gure (6.10), will be larger than the front velocity.

Hence the Taylor will be dissolved as the shock wave at the bottom of the bubble catches

up with the front of the bubble, �gure (6.12). In addition it is seen that the curved part,

characteristic curve for the nose of the Taylor bubble, in �gure (5.2 a,b) is not present in

�gure (6.12 a,b) where a linear part connects the front and the bottom of the bubble.

Figure (6.13) illustrates the liquid saturation distribution at di�erent times when the

exponents have a value of klf l = kgfg = 1 and klc = 0, 5. This were the case in �gure

(6.10) where the curve overlapped with base case at high liquid volume fractions and

with the curve containing all exponents at the value of 0, 5 at low liquid volume fractions.

The numerical solution from this case gives a better estimate to the base case then the

numerical solution in �gure (6.12).

An important e�ect to observe is that the length of the bubble is increased in this case.

This increase in length is created from increase in the liquid volume fraction in the

Taylor bubble. As seen from the result of the simulation in �gure (6.13), the liquid

volume fraction at the Taylor bubble will as before, increase as the time passes by, but

it increases more than for the Base case, �gure (5.2), hence the increase in length. Since

the curvature of the liquid velocity function overlaps with the curve of the Base case

at high liquid volume fractions, �gure (6.10), is an equal size of the tail expected. The

numerical solution in �gure (6.13), shows that the tail corresponds to the tail in the

numerical solution of the Base case, �gure (5.2). The velocity of the ascending Taylor

bubble, �gure (6.13), is a little lower than for the Base case, �gure (5.2). This is caused

by the lower slope in the liquid velocity function as the turn in the function takes place,

�gure (6.10).

From these results it is seen that with the new expressions of friction terms, equations

(6.8)-(6.10), will not give as accurate model as the Base case. Either problems as to high

velocity at the bottom of the Taylor bubble or too much reduction of the gas volume

fraction at the Taylor bubble occurs.
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Figure 6.12: Illustration of the liquid saturation distribution at di�erent times when the

exponents de�ned in equation (6.11) holds the following values klf l = kgfg = 0, 5 and

klc = 1
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Figure 6.13: Illustration of the liquid saturation distribution at di�erent times when the

exponents de�ned in equation (6.11) holds the following values klf l = kgfg = 1 and

klc = 0, 5
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6.7 Diameter of the pipe

Previous research has shown that the velocity of the ascending Taylor bubble depends

strongly on the diameter of the pipe [4, 5, 26]. An expression relating the diameter of

the pipe is therefore included in the super�cial velocity of liquid, equation (4.48). Since

the Base case is designed with friction constants based on �ow in a pipe with diameter of

0, 08m, is the relation de�ned by Dumitrescu, equation (3.7), which has proven to give

good estimate of the ascending velocity of Taylor bubbles, used to relate the super�cial

velocity of liquid to pipes consisting of other diameters.

uls,new
uls,Basecase

=
ugs,new

ugs,Basecase
=

νb,new

αg

νb,basecase
αg

=
0, 351×

√
9, 81×Dnew

0, 351×
√

9, 81×D
=

√
Dnew

0, 08

The new expression of the super�cial liquid velocity is given by equation (6.12).

uls = − α2
l (1− αl)2

α2
l fg + (1− αl)2fl + C

∆ρg

√
Dnew

0, 08
(6.12)

From this expression is the numerical solution of the super�cial velocity function for liquid

found for pipes with diameter 0, 04m, 0, 06m, 0, 08m (The Base case) and 0, 10m, and

the results are shown in �gure (6.14). As the �gure illustrate, the shape of the di�erent

curves will be very similar. When the diameter is increased, the liquid velocity function

will be steeper at the low liquid volume fractions, which gives a steeper slope at the linear

part, hence larger velocity as the diameter of the pipe increases.

The same method as described in section 5.4, the slope of the function (∆h(αl)
∆αl

) de�ned

by the Rankin-Hugoniot jump condition, equation (2.26), is used to �nd the velocity of

ascending gas from �gure (6.14). The results are implemented into table (6.2), where also

the velocities calculated by the relation de�ned by Dumitrescu are included.

Table 6.2: Relationship between the diameter of the pipe and velocities of ascending Taylor

bubbles from Dumitrescu's relation in equation (3.7), and the velocity estimated from

the Rankin-Hugoniot jump condition, equation (2.26), on the slope of the liquid velocity

function in the numerical solution

Diameter of pipe [m] Velocity based on (3.7) [m
s

] Velocity from slope [m
s

]

0, 04 0, 220 0, 211

0, 6 0, 269 0, 258

0, 08 (Base case) 0, 311 0, 298

0, 10 0, 348 0, 333
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Figure 6.14: Illustration of how the liquid velocity function, h(αl), changes when diameter

of the tube is changed

As seen from the table (6.2) does this approach to �nd the ascend velocity of a Tay-

lor bubble in pipes of other diameter than the Base case give a good estimate. Other

relationship between the diameter and velocity may also be used and inserted into the

expression in the same way as Dumitrescu's relation is.
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7 CONCLUSION

A mathematical model for the ascend velocity of gas in a two-phase �ow in a vertical

pipe have been derived. The model is based on the fundamental conservation laws,

the conservation mass and momentum. In the introduction it was mentioned that the

ascending gas will depend on diameter, density and viscosity of the liquid, interfacial

tension and gravitational acceleration. Throughout this thesis this statement have been

proven to be correct. The model is investigated at laboratory scale where assumptions as

incompressible �uids, no viscous terms, no acceleration e�ects and equal phase pressure

are made. In addition, the total velocity (umix) was found to be constant and equal to

zero, which lead an equal super�cial velocity of liquid (uls) and gas (ugs). The derivation

lead to an expression of the super�cial velocity of liquid as indicated below where it

is dependent on liquid volume fraction (αl), friction terms between gas and wall and

between liquid and wall (fg and fl), interfacial tension (C), density di�erence between

liquid and gas (∆ρ) and gravitational acceleration (g).

h(αl) = uls = − α2
l (1− αl)2

α2
l fg + (1− αl)2fl + C

∆ρg

With the simpli�ed conservation of mass of liquid indicated in the following expression.

∂tαl + ∂xh(αl) = 0

The numerical solutions are found by implementing the derived model of the super�cial

velocity of liquid into a MATLAB script, with a layer of gas approximately at the bottom

of the pipe as given in the initial condition in equation (5.1). An ascending gas velocity

of approximately 0, 3 m
s
and a liquid volume fraction (αl) and gas volume fraction (αg) at

approximately 0, 15 and 0, 85 at the body of the Taylor bubble were aimed at respectively,

based on previous research on ascending gas in pipes with diameter at D = 0, 08m �lled

with liquid. A Base case was created, with input parameters as described in table (5.1)

and friction terms as equations (4.50)-(4.52).

The numerical solutions depends on choices made for the friction terms (fl, fg and C)

and the value set for the friction constants (Il, Ig and II). These choices determines the

shape of the super�cial liquid velocity function, which gives the phase- and super�cial

velocities of gas and liquid and the volume fraction distribution in the pipe as the gas

ascends. Based on the volume fraction distribution, an indication of thickness of falling

liquid �lm, the shape of the tail consisting of dispersed gas bubbles and the pressure

distribution in the pipe are achieved.
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The numerical solutions sensitivity to changes in friction terms were therefore investi-

gated, �gure (6.1) and the results showed:

• When the interfacial tension increased did the numerical solution give a lower ascend

velocity of the Taylor bubble (lower slope from αl ε [0, 5, 1]), a larger tail (given by

larger curvature at αl ≈ 1) and thicker falling liquid �lm around the bubble (the turn

in the function located at higher αl). This e�ect corresponds well with observations

from previous research by Zheng et al [27]

• The numerical solution showed that the friction between liquid and wall had an

in�uence on the thickness of the liquid �lm. Higher values of the friction gave

thicker liquid �lm.

• The friction between the gas and wall had an in�uence on the ascend velocity of

the Taylor bubble. The larger friction the slower ascend velocity.

Overall, the numerical solution of the model gives a good illustration of e�ects that are

observed during performance of laboratory experiments and corresponds well with the

previous research.

• A tail of dispersed gas bubble following the ascending Taylor bubble is clearly

indicated in the numerical solution.

• The length of the initial gas layer is observed to not a�ect the velocity of the

ascending Taylor bubble. This corresponds well with previous research [20, 24, 26].

However, the length of the initial gas layer has an e�ect on the thickness of the falling

liquid �lm. It is observed that shorter initial gas layer gave thicker liquid �lms and

vice versa. This is caused by the tail of dispersed gas bubbles that increases the

thickness of the liquid �lm.

• The di�erential pressure between pressure measuring points placed one meter apart

corresponds well with previous similar measurements of the di�erential pressure

[23].

The model shows excellent agreement with the phase velocity of gas at 0, 3 m
s
as the

numerical solution was aimed at, but as shown in section 6.7 it can also be related to

other pipe diameters by use of velocity relations. As previous research has shown will

the velocity of the ascending Taylor bubble decrease when the diameter of the pipe is

decreased.
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The main problem with the model is that the liquid volume fraction does not seem to

hold a constant value as the Taylor bubble ascends through the pipe, as shown to be the

case in laboratory experiments in previous research as it depends mainly on the viscosity

of the liquid and the interfacial tension between the �uids [10, 13, 15, 17, 21, 27].

Recommendation for further work

• Gas kicks often occur when there is �ow of liquid in the pipe during drilling, not

in stagnant liquid. A model with �ow of liquid is therefore of large interest in the

industry as research have shown that �ow in the liquid a�ect the ascend velocity of

the gas [16, 20].

• As the model in this thesis applies for laboratory-scale, is a model that applies for

�eld scale of interest. In �eld-scale models there may be temperature and pressure

changes that can a�ect the densities, viscosities and the friction forces. This will

give a more complicated model where several of the assumptions used to de�ne

this model needs to be neglected. A model that applies on �eld scale will be quite

relevant for the industry.

• The previous researchers have looked into di�erent regimes where the �ow may be

dominated by either viscous forces, interfacial tension, inertia or di�erent combina-

tions of them. The model developed in this thesis was the viscous terms neglected.

It may therefore be of interest to develop a model where the viscous terms are

included in the model.
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8 NOMENCLATURE

ρ Density, kg/m3

g Gravitational acceleration, m/s2

P Fluid phase pressure, Pa = kg/ms2

α Fluid volume fraction

u Phase velocity, m/s

us Super�cial phase velocity, m/s

umix Mixture velocity, m/s

q Volumetric �ow rate, m3/s

A Cross sectional area/area of �ow, m2

Af Area of �ow containing �uid f, m2

x Height, m

D Diameter, m

r Radius, m

µ Viscosity, Pa× s = kg/ms

λ Thickness of the falling liquid �lm, m

λ′ Dimensionless thickness of the falling liquid �lm

Ω Source/sink term, kg/m3s

β Rate of mass transfer to the �uid phase, kg/m3s

C or σgl Interfacial tension, kg/m3s

fl Friction between liquid and wall, kg/m3s

fg Friction between gas and wall, kg/m3s

II Friction constant for interfacial tension, 1/m2

Il Friction constant for friction between liquid and wall, 1/m2

Ig Friction constant for friction between gas and wall, 1/m2

a Sound velocity, m/s

Nf Inverse dimensionless viscosity

a, b, c, d Constants

Fr Froude number (dimensionless velocity)

Eo Eötvös number (ratio of buoyancy and interfacial tension forces),

Mo Morton number (ratio of viscous and interfacial tension forces),

Reb Reynolds bubble number (ratio of inertial and viscous forces)

Subscriptions:

t Total

l Liquid

g Gas

f Fluid phase f
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9 APPENDIX

DERIVATION OF THE SIMPLIFIED MODEL

The full derivation of the simpli�ed model is included to achieve full understanding of

how the simpli�ed model in section 4.2, is developed.

9.1 Derivation of phase velocities

The derivation in section 4.2.2, is described in more details in this section. Here are the

reduced momentum conservation equations, (4.26)and (4.27):

αg∂xP = −fgug − C(ug − ul)− ρgαgg

αl∂xP = −flul + C(ug − ul)− ρlαlg

Solving them for ug and ul respectively gives equations (4.28) and (4.29):

ug = −αg∂xP + ρgαgg − Cul
C + fg

ul = −αl∂xP + ρlαlg − Cug
C + fl

Inserting for ul and ug respectively to reduce the amount of unknowns:

ug = −
αg∂xP + ρgαgg + C αl∂xP+ρlαlg−Cug

C+fl

C + fg

ul = −
αl∂xP + ρlαlg + C αg∂xP+ρgαgg−Cul

C+fg

C + fl

Solve for ug and ul:

ug(1−
C2

(C + fl)(C + fg)
) = −

αg∂xP + ρgαgg + C αl∂xP+ρlαlg
C+fl

C + fg

ug = −
αg∂xP + ρgαgg + C αl∂xP+ρlαlg

C+fl

(C + fg)(1− C2

(C+fl)(C+fg)
)

Which gives equation (4.30):

ug = −
αg∂xP + ρgαgg + C αl∂xP+ρlαlg

C+fl

C + fg − C2

C+fl
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ul(1−
C2

(C + fl)(C + fg)
) = −

αl∂xP + ρlαlg + C αg∂xP+ρgαgg

C+fg

C + fl

ul = −
αl∂xP + ρlαlg + C αg∂xP+ρgαgg

C+fg

(C + fl)(1− C2

(C+fl)(C+fg)
)

As for the liquid gives equation (4.31):

ul = −
αl∂xP + ρlαlg + C αg∂xP+ρgαgg

C+fg

C + fl − C2

C+fg

As seen in the expressions above, they consist of two parts. One pressure dependent part

and one gravity dependent part.

ug = −
αg∂xP + Cαl∂xP

C+fl
+ ρgαgg + Cρlαlg

C+fl

C + fg − C2

C+fl

ul = −
αl∂xP + Cαg∂xP

C+fg
+ ρlαlg + Cρgαgg

C+fg

C + fl − C2

C+fg

Rearrange and reduce some of the fractions in the expression by multiplying with C+fl
C+fl

in ug and
C+fg
C+fg

in ul on the right hand side:

ug = −
(αg + Cαl

C+fl
)(C + fl)∂xP + (ρgαg + Cρlαl

C+fl
)(C + fl)g

(C + fg − C2

C+fl
)(C + fl)

ul = −
(αl + Cαg

C+fg
)(C + fg)∂xP + (ρlαl + Cρgαg

C+fg
)(C + fg)g

(C + fl − C2

C+fg
)(C + fg)

which gives:

ug = − [αg(C + fl) + Cαl]∂xP + [ρgαg(C + fl) + Cρlαl]g

C(C + fl) + fg(C + fl)− C2

ul = − [αl(C + fg) + Cαg]∂xP + [ρlαl(C + fg) + Cρgαg]g

C(C + fg) + fl(C + fg)− C2

Rearranging:

ug = − [αgfl + C(αg + αl)]∂xP + [ρgαgfl + C(ρlαl + ρgαg]g

Cfl + fgC + fgfl

ul = − [αlfg + C(αl + αg)]∂xP + [ρlαlfg) + C(ρgαg + ρlαl]g

Cfg + flC + fgfl

By use of the constraint αg + αl = 1 can it be rewritten to equations (4.32) and (4.33):

ug = − αgfl + C

Cfg + Cfl + fgfl
∂xP −

αgρgfl + (αlρl + αgρg)C

Cfg + Cfl + fgfl
g
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ul = − αlfg + C

Cfg + Cfl + fgfl
∂xP −

αlρlfg + (αlρl + αgρg)C

Cfg + Cfl + fgfl
g

The relation between the super�cial and phase velocity, ugs = ugαg and uls = ulαl gives:

ugs = αgug = − αgfl + C

Cfg + Cfl + fgfl
αg∂xP −

αgρgfl + (αlρl + αgρg)C

Cfg + Cfl + fgfl
αgg

uls = αlul = − αlfg + C

Cfg + Cfl + fgfl
αl∂xP −

αlρlfg + (αlρl + αgρg)C

Cfg + Cfl + fgfl
αlg

Which leads to:

ugs = −
α2
gfl + αgC

Cfg + Cfl + fgfl
∂xP −

α2
gρgfl + (αgαlρl + α2

gρg)C

Cfg + Cfl + fgfl
g

uls = − α2
l fg + αlC

Cfg + Cfl + fgfl
∂xP −

α2
l ρlfg + (α2

l ρl + αgαlρg)C

Cfg + Cfl + fgfl
ρlg

By again using the constraint αg + αl = 1 gives that:

α2
gρg = αg(1− αl)ρg = αgρg − αgαlρg

α2
l ρl = αl(1− αg)ρl = αlρl − αgαlρl

By inserting and some rearranging are equations (4.34) and (4.35) obtained:

ugs = −
α2
gfl + αgC

Cfg + Cfl + fgfl
∂xP −

α2
gfl + αgC

Cfg + Cfl + fgfl
ρgg −

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

uls = − α2
l fg + αlC

Cfg + Cfl + fgfl
∂xP −

α2
l fg + αlC

Cfg + Cfl + fgfl
ρlg +

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

9.2 Derivation of the pressure expression

An expression for ∂xP is found by adding the super�cial velocities together and assuming

that the total velocity is zero, ut = ugs + uls = 0:

ugs + uls = (−
α2
gfl + αgC

Cfg + Cfl + fgfl
∂xP −

α2
gfl + αgC

Cfg + Cfl + fgfl
ρgg −

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g)

+(− α2
l fg + αlC

Cfg + Cfl + fgfl
∂xP −

α2
l fg + αlC

Cfg + Cfl + fgfl
ρlg +

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g) = 0

Observe that the last term of ugs and uls cancel each other and put the pressure terms

on left side of the expression:

∂xP (
α2
gfl + αgC

Cfg + Cfl + fgfl
+

α2
l fg + αlC

Cfg + Cfl + fgfl
) = −

α2
gfl + αgC

Cfg + Cfl + fgfl
ρgg−−

α2
l fg + αlC

Cfg + Cfl + fgfl
ρlg
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By some rearranging is following expression, equation (4.36), achieved for pressure:

∂xP = −
α2
gfl+αgC

Cfg+Cfl+fgfl
ρg +

α2
l fg+αlC

Cfg+Cfl+fgfl
ρl

α2
gfl+αgC

Cfg+Cfl+fgfl
+

α2
l fg+αlC

Cfg+Cfl+fgfl

g

Which by de�ning some variables can be rewritten to equation (4.37):

∂xP = −λgρg + λlρl
λg + λl

g = −λgρg + λlρl
λt

g

where λg, λl and λt are de�ned respectively as, equations (4.38)-(4.40):

λg =
α2
gfl + αgC

Cfg + Cfl + fgfl

λl =
α2
l fg + αlC

Cfg + Cfl + fgfl

λt = λg + λl =
α2
gfl + α2

l fg + C

Cfg + Cfl + fgfl

9.3 Derivation of the super�cial velocities

By implementing the expressions for λg, λl and λt into the super�cial velocity expressions,

equation (4.34) and (4.35), are following achieved:

ugs = −λg∂xP − λgρgg −
αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

uls = λl∂xP − λlρlg +
αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

When implementing the expression for pressure, equation (4.37) are following expressions

obtained:

ugs =
λgρg + λlρl

λt
λgg − λgρgg −

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

uls =
λgρg + λlρl

λt
λlg − λlρlg +

αgαl(ρl − ρg)C
Cfg + Cfl + fgfl

g

which corresponds to (4.43). By using the relation between λg, λl and λt: λt = λg + λl

which means that:

λg = λt − λl

λl = λt − λg

Makes the expression rewritten to:

ugs =
(λt − λl)ρg + λlρl

λt
λgg − λgρgg −

αlαg(ρl − ρg)C
Cfg + Cfl + fgfl

g
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uls =
λgρg − (λt − λg)ρl

λt
λlg − gρlλl +

αlαg(ρl − ρg)C
Cfg + Cfl + fgfl

g

This can be reduced by take the part with λt out of the fraction, equation (4.44):

ugs =
λl(ρl − ρg)

λt
λgg + λgρgg − λgρgg −

αlαg(ρl − ρg)C
Cfg + Cfl + fgfl

g

uls =
λg(ρg − ρl)

λt
λlg + λlρlg − λlρlg +

αlαg(ρl − ρg)C
Cfg + Cfl + fgfl

g

Set ∆ρ = ρl − ρg, which leads to, equation (4.45):

ugs =
λlλg
λt

∆ρg − αlαgC

Cfg + Cfl + fgfl
∆ρ

uls = −λlλg
λt

∆ρg +
αlαgC

Cfg + Cfl + fgfl
∆ρg

By implementing the relations for λg, λl and λt in order to reduce the expression further,

equation (4.46).

ugs =

(α2
l fg+αlC)(α2

gfl+αgC)

(Cfg+Cfl+fgfl)2

α2
l fg+α2

gfl+C

Cfg+Cfl+fgfl

∆ρg − αlαgC

Cfg + Cfl + fgfl
∆ρg

uls = −
(α2

l fg+αlC)(α2
gfl+αgC)

(Cfg+Cfl+fgfl)2

α2
l fg+α2

gfl+C

Cfg+Cfl+fgfl

∆ρg +
αlαgC

Cfg + Cfl + fgfl
∆ρg

As seen is Cfg +Cfl + fgfl a common term in the �rst fraction reducing these equations

to:

ugs =
(α2

l fg + αlC)(α2
gfl + αgC)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg − αlαgC

Cfg + Cfl + fgfl
∆ρg

uls = −
(α2

l fg + αlC)(α2
gfl + αgC)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg +

αlαgC

Cfg + Cfl + fgfl
∆ρg

A common denominator for the fractions is seen to be (Cfg+Cfl+fgfl)(α
2
l fg+α2

gfl+C),

which is used to simplify the expressions:

ugs =
(α2

l fg + αlC)(α2
gfl + αgC)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg−

αlαgC(α2
l fg + α2

gfl + C)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

uls = −
(α2

l fg + αlC)(α2
gfl + αgC)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg+

αlαgC(α2
l fg + α2

gfl + C)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

leads to:

ugs =
α2
l α

2
gflfg + α2

l αgfgC + αlα
2
gflC + αlαgC

2

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg−

α3
l αgfgC + αlα

3
gflC + αlαgC

2

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

uls = −
α2
l α

2
gflfg + α2

l αgfgC + αlα
2
gflC + αlαgC

2

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg+

α3
l αgfgC + αlα

3
gflC + αlαgC

2

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg
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Rearrange the expression and see that αlαgC falls out.

ugs =
αlαg(αlαgflfg + αg(1− αg)flC + αl(1− αl)fgC

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

uls = −αlαg(αlαgflfg + αg(1− αg)flC + αl(1− αl)fgC
(Cfg + Cfl + fgfl)(α2

l fg + α2
gfl + C)

∆ρg

Again is the constrain of αl + αg = 1:

ugs =
α2
l α

2
g(Cfg + Cfl + fgfl)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

uls = −
α2
l α

2
g(Cfg + Cfl + fgfl)

(Cfg + Cfl + fgfl)(α2
l fg + α2

gfl + C)
∆ρg

Cfg + Cfl + fgfl is a common term gives equation (4.47):

ugs =
α2
l α

2
g

α2
l fg + α2

gfl + C
∆ρg

uls = −
α2
l α

2
g

α2
l fg + α2

gfl + C
∆ρg

By using the constrain of volume fractions again can the super�cial phase velocity be

expressed with only its own phase volume fraction, equations (4.48) and (4.49).

ugs =
α2
g(1− αg)2

(1− αg)2fg + α2
gfl + C

∆ρg

uls = − α2
l (1− αl)2

α2
l fg + (1− αl)2fl + C

∆ρg

Which may also be written as:

ugs =
(αg − α2

g)
2

(1− αg)2fg + α2
gfl + C

∆ρg

uls = − (αl − α2
l )

2

α2
l fg + (1− αl)2fl + C

∆ρg
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