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ABSTRACT 
 

Drilling in Arctic offshore conditions is a very challenging for the oil industry. With an 

increase in drilling operations in these harsh environments, drilling riser requirements and limits 

have become more critical due to uncertainties involved in response prediction. 

Hence, during planning phase, a riser assessment should be performed with the objective 

of selecting the right riser in terms of size, material type and grade. The main purposes of the 

riser analysis are to define an operational window with regards to the environmental and applied 

loadings that a riser can tolerate without being failed. 

This Master thesis is dedicated to the assessment and analysis of the drilling riser for the 

application in the Kara Sea region. 

The riser is assessed in accordance with ISO 13624, API RP 16Q and DNV-OS-F201 

standards, whose comparison and main features are also described in the thesis. 

The analysis consists of two different design loadings - static and dynamic. The design 

environmental loads include the wind, sea currents, and waves which are combined with the 

drilling rig heave, pitch, roll motions for connected (drilling) and disconnected (non-drilling) 

design cases to ensure that the implemented riser design is capable to withstand the most severe 

loads and is reliable to be used for the drilling in the Kara Sea particularly. 

The dynamic and static simulations of various riser configurations are carried out by 

means of OrcaFlex and ANSYS software respectively. During simulations in OrcaFlex, diverse 

loading scenarios are considered, varying the design wave height and their corresponding 

periods. The analysis is also conducted with regard to several different densities of the drilling 

fluid. Drilling risers are analyzed and compared based on API and ISO requirements for 

allowable limits of the Von-Mises stress, effective tension, and maximum upper and lower 

flex/ball joint angles.  

After gaining an understanding of risers’ behavior in dynamic conditions, numerical 

modeling is established. A finite-element analysis in ANSYS 15.0 software is used to simulate 

and analyze two operational scenarios namely, normal and extreme (worst-case) conditions in 

the Kara Sea. 

Based on the results of the analysis, this thesis work provides conclusions of the acquired 

findings, reasonable recommendations for the drilling riser design in arctic conditions of the 

Kara Sea and also indicate a potential future research areas. 
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NOMENCLATURE 
 

Latin characters 

Ae   external cross-section of the riser segment/ cylinder/ facility;  

Ai   internal cross-section of the riser segment/ cylinder; 

Bn   net positive buoyancy (lift force); 

C   damping matrix; 

CD  drag coefficient; 

CM  mass or inertia coefficient; 

D   outer diameter of the riser; 

DL  dogleg severity;  

Do   outer diameter of the pipe; 

Di k/c  internal diameter of the kill/choke line; 

Di mb  internal diameter of the mud booster line; 

dm  density of the drilling mud; 

dw  density of the sea water; 

E  Young’s modulus or the Modulus of Elasticity; 

Exponent  Power Law exponent; 

Fa  applied axial load; 

fbt   buoyancy loss and tolerance factor;  

fD  drag force; 

fH  hydrodynamic force; 

fI  inertia force; 

fu  tensile strength;  

fu,temp   temperature reduction factor for the tensile strength; 

fwt   submerged weight tolerance factor; 

fy  yield stress; 

fy,temp   temperature reduction factor for the yield stress;  

g  gravity acceleration; 

h  height of the internal fluid column; 

HLMRP+BOP height of LMRP + BOP Stack; 

Hm  height of the drilling mud column; 

Hsw   sea water depth; 

HS+T  height of storm surge + tide; 

x 
 



Hwh  height of the wellhead; 

Hw  height of the sea water column; 

hRKB-MSL distance from RKB to mean sea level; 

hRKB-ML  distance from RKB to mud line; 

hTR-MSL  distance from tensioner ring to mean sea level; 

I  second moment of the area; 

K    global stiffness matrix; 

Lr  riser length; 

Lr.sub  submerged riser length; 

M   bending moment/mass matrix; 

Mk  plastic bending moment resistance; 

m   mass of a unit length of the riser; 

mA  additional mass; 

N  number of tensioners supporting the riser; 

n  number of tensioners subjected to failure; 

P   function of external loads; 

pa = pi   internal pressure in the cylinder;  

pb = pe  external pressure in the cylinder; 

pb  burst resistance; 

pd   maximum design pressure at the surface during normal operations; 

pc  collapse resistance;  

pld  local internal design pressure; 

pli  local incidental pressure;  

pmin  minimum internal pressure; 

pe   external pressure; 

pi  internal pressure; 

R  radius of curvature; 

Rf  reduction factor to account for fleet angle and mechanical efficiency,  

r  inner radius of the cylinder; 

fS   current velocity at the sea surface; 

bS   current velocity at the sea bottom; 

T  applied torque; 

Te    effective tension; 

Tk  plastic axial force resistance; 
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TSRmin  minimum slip ring tension;  

Tmin  minimum required top tension; 

Ttrue  true tension; 

Ttw   axial tension on the riser segment; 

t  thickness of the wall;  

t1  wall thickness of the riser excluding allowance for fabrication and corrosion; 

u  velocity of the fluid particle past the riser; 

u    constant acceleration of the fluid; 

Ws   submerged weight of the riser without contents; 

wa  apparent weight/ equivalent system weight; 

we   weight of the displaced fluid; 

wi   weight of the internal fluid; 

wt  weight of the immersed riser segment; 

x   displacement; 

x    velocity; 

x    acceleration; 

y  distance to the center of the pipe; 

fZ   water surface level; 

bZ   the sea bottom level. 

 

Greek characters 

αc   parameter taking into account strain hardening and wall thinning; 

αU   material strength factor; 

γm   resistance factor of material; 

γSC    safety class resistance factor; 

η   uniform factor for combined loading; 

ρ  density of the fluid; 

ρi   density of the internal fluid; 

ρm  weight density of the drilling fluid; 

ρsteel  steel density; 

ρw  weight density of the sea water; 

τ  shear stress; 

σa  axial stress; 

σb   bending stress; 
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σr  radial stress; 

σθ  tangential stress; 

σvme  Von-Mises stress. 

 

Abbreviations 

ALS  Accidental Limit State; 

ASTM  American Society for Testing and Materials; 

API  American Petroleum Institute; 

BOP  Blow-Out Preventer; 

DNV  Det Norske Veritas; 

DTL  Dynamic Tension Limit; 

FLS  Fatigue Limit State; 

HSE   Health Safety and Environment; 

ISO  International Organization for Standardization; 

LF  Low Frequency; 

LFJ  Lower Flex Joint; 

LMRP  Lower Marine Riser Package; 

MODU Mobile Drilling Unit; 

MSL  Mean Sea Level; 

NORSOK Norsk Sokkels Konkuranseposisjon; 

RAO  Response Amplitude Operator; 

RKB  Rotary Kelly Bushing; 

SLS  Serviceability Limit State; 

SMYS  Specific Minimum Yield Stress; 

SMTS  Specific Minimum Tensile Strength; 

SSDR  Semisubmersible Drilling Rig; 

ULS  Ultimate Limit State; 

UFJ  Upper Flex Joint;  

VIV  Vortex-Induced Vibrations; 

WF  Wave Frequency. 
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1. INTRODUCTION 
 

Currently the number of offshore wells around the world is increasing. Therefore, the 

drilling operations require the use of a drilling riser in the system. The drilling riser system is 

exposed to the sea waves and currents, which apply load on the riser as well. 

Understanding the loadings is the main engineering task in order to have the Mechanical 

Structural Integrity. Thoroughly designed and analyzed systems with all possible loading 

scenarios during the whole lifetime of the well are very important. Thus, the risk of Health 

Safety and Environment (HSE) issues can be mitigated and unnecessary expenditures are 

reduced.  

The offshore field development tends to move into the deep waters of more than 10.000 

feet and also into arctic fields development with harsh environments. Hence, a Subsea Drilling 

System has to be reliable for the entire cycle of drilling operation in these challenging 

conditions. 

This thesis presents the simulation-based studies of the drilling riser with regard to the 

Kara Sea. The simulation was performed using a well-known software such as OrcaFlex and 

ANSYS. During simulation, several loading scenario have considered in order to investigate the 

response of riser.   

 

1.1. Background and Problem Statement 
 

During offshore drilling operations, the drilling riser is used to connect the surface 

equipment on the Mobile Drilling Unit with a subsea well. This key component of the system is 

subjected to various loadings as a result of the internal and external pressures, vibrations, 

tensions, temperatures, and many others. 

Internal and external pressure loads are generally caused by hydrostatic pressures of the 

drilling fluid and sea water respectively. [1] 

Risers, in large water depths and strong current environments, are prone to vibrations 

created by the vortices shed from the structure. This Vortex-Induced Vibrations (VIV) may 

damage the riser and limit its fatigue life, with the potential to cause costly and environmentally 

damaging. It is an important design consideration when drilling in high current environments.  

  

1 
 



 
Figure 1-1. Loads on the drilling riser system  

(DNV, 2011) 

In the worst-case scenario, the wellhead fatigue and problems with the riser can lead to a 

severe damage. Therefore, it is a great importance to assess the mechanics of the riser system 

under several loading scenarios before the construction.  

This thesis addresses issues such as: 

• Effect of the wave height on the effective tension with regard to various drilling fluids 

• Effect of the wave height on the Von-Mises stress with regard to various drilling fluid 

densities 

• Effect of the wave height on the maximum upper flex ball/joint angle with respect to 

various drilling fluid densities 
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• Effect of the wave height on the maximum lower flex ball/joint angle with respect to 

various drilling fluid densities 

 

1.2. Thesis Objectives 
 

The scope of the thesis is limited to analytical and numerical study of the drilling riser. The 

main objective of the thesis is to do assessment of the drilling riser. However, the subtasks can 

be divided into the following: 

 

• Literature studies on the drilling riser (riser types and structures, and the theory on 

collapse/tensile/burst/elongation etc.); 

• Revision of various drilling systems with application of riser and specification; 

• Revision of standards and regulations used to select and analyze  riser systems: 

• Studying the mechanics of the drilling riser under various loading scenario 

(hydrostatic/current/sea wave etc.); 

• Performing numerical simulation studies of drilling risers based on various operational 

conditions in the Kara Sea; 

• Implementation of sensitivity analysis with respect to material properties, dimension, 

drilling fluid densities. 
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2. STANDARDS AND REGULATIONS 
 

 Offshore equipment should be designed and operated according to the regulations and 

rules. These are developed based on fundamental principles and the generalized offshore 

experience of manufacturers, contractors, and operators. Therefore, the selection, design, 

maintenance and operation of marine drilling riser system for mobile offshore drilling units are 

specified in the international standards, such as ISO 13624, API RP 16Q and DNV-OS-F201. 

However, the specifications and rules have to be adjusted and continuously improved for the 

diverse operating conditions, which can vary, for instance, from deep-water areas to the 

extremely challenging and harsh arctic environments. 

 

2.1. API RP 16Q 
 

 The API PR 16Q standard is released in different versions covering all aspects related to 

design, fabrication and operation of the drilling riser and its components.[1] The following API 

recommended guidelines and specifications are applicable to the drilling riser system: 

 

- API PR 16Q – “Recommended Practice for Design, Selection, Operation and 

Maintenance of Marine Drilling Riser Systems” 

- API SPEC 16F – “Specification for Marine Drilling Riser Equipment” 

- API SPEC 16R – “Specification for Marine Drilling Riser Couplings” 

- API RP 2RD – “Design of Risers for Floating Production Systems (FPSs) and Tension-

Leg Platforms (TLPs)”  

- API Technical Report 16TR1 

 

In addition, this standard has been served as the premise for the ISO 13624 standard.  

 

2.2. ISO 13624 
 

 ISO 13624 has been developed under the title “Petroleum and natural gas industries – 

Drilling and production equipment” and comprises the following two parts [2]: 

- ISO 13624-1 – “Design and operation of marine drilling riser equipment” – the first part 

provide with the description of main components used to assemble the riser system as 
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well as the limiting and operational conditions that should be satisfied for the marine 

drilling riser system. 

- ISO 13624-2 – “Deepwater drilling riser methodologies, operations, and integrity 

(Technical Report)” – the second part is developed with intention to supplement a 

content of the first part, and comprises additional methodologies, worked examples and 

specifications for the riser assessment. 

 

The drilling riser system in ISO 13624 comprises the tensioning system, excluding the 

diverter, and all riser equipment between the upper flex joint (UFJ) and the bottom of wellhead 

welded on the outer part of conductor casing. Moreover, the application of the first part of 

ISO 13624 is constrained by operations with a subsea BOP stack installed on the sea bottom. [2] 

 

2.3. COMPARISON of API RP 16Q and ISO 13624 STANDARDS 
 

In general, the standards are very similar as ISO 13624 is based on API RP 16Q. The 

design of the drilling riser in API PR 16Q and ISO 13624-1 standards is recommended to be 

performed for three operational modes, which the riser can experience throughout drilling 

operations. The riser can be operated in drilling, non-drilling and riser disconnected mode. The 

modes are dependent of the loads on the system and operating conditions. In the thesis, the 

analysis of the drilling riser is implemented regarding normal and worst case conditions, i.e. the 

drilling and non-drilling modes. [1, 2] 

 

Table 2-1. Comparison of design specifications for marine drilling riser in  

API RP 16Q and ISO 13624 [1, 2] 

Design 
parameter 

Riser connected Riser 
disconnected Drilling Non-drilling API PR 16Q ISO 13624 

Mean upper 
flex/ball jt. angle 2,0˚ 1˚ to 1,5˚ N/A N/A 

Max. upper 
flex/ball jt. angle 4,0˚ 5,0˚ 

90% available 
(or contact with 
moonpool edge) 

90% available 
(or contact with 
moonpool edge) 

Mean lower 
flex/ball jt. angle 2,0˚ 2,0˚ N/A N/A 

Max. lower 
flex/ball jt. angle 4,0˚ 5,0˚ 90% available N/A 

Stress criteria: 
- Method “A” – 0,40 σy 0,40 σy 0,67 σy 0,67 σy 
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allowable stress 
- Method “B” – 
allowable stress 0,67 σy 0,67 σy 0,67 σy 0,67 σy 

- Sign. dyn. stress range: 
@ SAF < 1,5 69 MPa (10 ksi) 69 MPa (10 ksi) N/A N/A 
@ SAF > 1,5 15/ SAF 15/ SAF N/A N/A 
Minimum top 

tension  Tmin Tmin Tmin N/A 

Dynamic tension 
limit DTL DTL DTL N/A 

Maximum 
tension setting 90% DTL 90% DTL 90% DTL N/A 

 

In Table 2-1, the most evident difference in design specifications is the limitations for 

upper and lower flex joint angles. This is specified to reduce the risk of the joint’s wear and riser 

failure. In addition, the clearance in the moonpool area should be considered for the upper ball 

joint angle when using ISO 13624-1. [2] 

The maximum allowable stress is determined for most of water depths by a method A as 

40% and 67% of yield stress, for the drilling mode and for the non-drilling mode respectively. 

However, for deep-water areas the method B should be applied, where the maximum allowable 

stress is 67% of yield stress for both of the considering modes. These should be done to 

investigate that the system is robust to undergo all the maximum design loadings while 

maintaining the maximum lower the allowed stress. [1, 2] 

The standards are based upon the Von-Mises failure criteria, which is discussed in 

Chapter 4.4.  

According to the guidelines, the riser should be kept under a minimum tension, ensuring 

the stability of the riser string. The top tension is required to be set so that to preclude buckling 

of the riser even at the failure of some tensioners. For calculation of minimum top tension, 

exactly the same formula is used in API PR 16Q and ISO 13624-1. [1, 2] 

 

( )nNR
NT

T
f

SR

−
= min

min      (2.1) 

where 

( )wwmmibtnwtsSR HdHdAfBfWT −+−=min    (2.2) 

TSRmin  minimum slip ring tension; 

N  number of tensioners supporting the riser; 

Rf  reduction factor to account for fleet angle and mechanical efficiency,  

  (0.95 for drilling and 0.9 for non-drilling); 
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n  number of tensioners subjected to failure (at least equal to one); 

Ws   submerged weight of the riser without contents; 

fwt   submerged weight tolerance factor, minimum is 1.05 unless accurately weighed; 

Bn   net positive buoyancy (lift force); 

fbt   buoyancy loss and tolerance factor, maximum is 0.96 unless  

  accurately measured; 

Ai  internal cross sectional area of riser, including auxiliary lines; 

dm  density of drilling mud; 

Hm  height of drilling mud column; 

dw  density of sea water; 

Hw  height of sea water column; 

This is important to outline that ISO standard recommends to maintain the top tension at 

a reliable level above the minimum tension calculated by API in normal operations to account 

for the changes in dynamic tension that may lead to reduction of the riser tension below the 

minimum required value. 

As the drilling riser system comprises many various components, which are made from 

diverse materials, there are some other codes and regulations to be mentioned for the riser 

design.  

 

2.4. DNV-OS-F201 
 

Det Norske Veritas (DNV) has developed DNV-OS-F201, DNV-OSS-302 and DNV-RP-

F206 specifications that can be applied to design and analyze the dynamic riser systems.  

DNV-OS-F201 is discussed in this sub-chapter, as it is relevant for pipes with ratio of  

t/D < 45 and drilling risers fall into this classification. [3] 

According to the specification, the drilling riser should be designed to withstand any 

overpressure of internal and external fluids. As discussed in Chapter 4.4, the overpressure of 

internal fluid may lead to burst and overpressure of external fluid may cause collapse of the riser. 

For these purposes the burst and collapse criteria are established.  

 

Burst criteria [3]: 

( ) ( )
SCm

b
eli

tp
pp

γγ
1≤−      (2.3) 

where 
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pb(t1)    burst resistance; 

pli    local incidental pressure;  

pe      external pressure; 

γm     resistance factor of material; 

γSC      safety class resistance factor; 

pd     maximum design pressure at the surface during normal operations; 

ρi     density of the internal fluid; 

h    height of the internal fluid column; 

g    gravity acceleration; 

D     outer diameter of the riser; 

t1    wall thickness of the riser excluding allowance for fabrication and  

    corrosion; 

fy = (SMYS - fy,temp)αU  yield stress; 

fu = (SMTS - fu,temp)αU  tensile strength; 

SMYS    specific minimum yield stress; 

fy,temp     temperature reduction factor for the yield stress; 

SMTS     specific minimum tensile strength; 

fu,temp     temperature reduction factor for the tensile strength; 

αU     material strength factor (0.96 for normal condition, or 1.0 if  

additional requirement ensuring increased confidence in material  

strength is satisfied); 

 

In Table 2-2, values for γm and γSC are specified. ULS, ALS, SLS, and FLS are 

abbreviations of Ultimate, Accidental, Serviceability, and Fatigue Limit State, accordingly. [3] 

  

8 
 



Material resistance factor ym Safety class resistance factor ySC 

ULS&ALS SLS&FLS Low Normal High 

1.15 1.0 1.04 1.14 1.26 

Table 2-2. Resistance factors of material and class resistance. [3] 

 

Collapse criteria [3]: 

( ) ( )
SCm

c
e

tp
pp

γγ
1

min ≤−      (2.7) 

where 

pmin  minimum internal pressure; 

pc(t1)  collapse resistance, which can be determined from the equation: 

  

       ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
t
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22 =−−    (2.8) 

 

Working stress design (WSD) criterion [3]: 

 

DNV-OS-F201 is based on the Working Stress Design criterion for combined loading 

which can be utilized for risers with t/D < 30. The uniform factor is used herein instead of 

previous load effect and resistance factors. The criteria is subdivided into two options, for risers 

exposed to net internal overpressure [3]: 
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and for risers exposed to net overpressure of the external fluid, it should fulfill: 
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where 

M     bending moment; 

Mk = fy αc(D – t2)2   plastic bending moment resistance; 
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pld = pd +ρigh   local internal design pressure; 

Te      effective tension; 

Tk = fy αc π(D – t2) t2  plastic axial force resistance; 

η     uniform factor for combined loading; 

αc  parameter taking into account strain hardening and wall thinning, 

defined as: 

( )
y

u
c f

f
a ββ +−= 1      (2.11) 
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Table 2-3 and Table 2-4 present the uniform factor for WSD criterion and the 

specification for the respective safety class.  

 

Low Normal High 

0.83 0.79 0.75 

Table 2-3. Uniform factor. [3] 

 
Safety Class Definition 

Low The failure supposes low probability of human injury and minor 
environmental and economic impact. 

Normal For conditions where failure implies probability of human injury, high 
environmental pollution or very significant economic or political impact. 

 
High 

 

For operational conditions where failure implies high probability of human 
injury, high environmental pollution or very significant economic or 
political impact. 

Table 2-4. Specification of safety classes. [3] 
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3. DESCRIPTION OF DRILLING SYSTEM 
  

In this chapter, a standard drilling system with a marine riser is described. This gives a 

general review of the drilling operations and key elements of the drilling riser system. Drilling an 

offshore well is performed in several stages. Initially, drilling operation is commenced by 

running a temporary guide base to the sea floor. Then a 36” hole opener is run to drill a 36” 

wellbore which returns cuttings to the seabed. The first casing string, called as the conductor, is 

cemented in place. The permanent guide structure is run with the conductor. Afterwards a 26” 

hole is drilled for the 20” surface casing and the wellhead housing is run. The riser with the BOP 

stack at the end is connected to the wellhead. The drilling continues by means of the drilling 

riser, as the subsequent operation requires mud return to the rig. There are three main stages in 

the well construction and during production phases [4]:  

- Drilling 

- Completion 

- Workover 

A standard drilling system with a marine riser is presented in Figure 3-1. 

 

 
Figure 3-1. Standard drilling system with the marine riser [5] 

Upper Flex Joint (UFJ) 
Drill Floor 

Kill Hose 

Conductor 

Lower Flex Joint (LFJ) LMRP 
BOP 
Wellhead 

Surface Casing 

Choke Hose 

Tensioners 

Slick and Buoyant Joints 

Telescopic Joint Outer Barrel 

Tension Ring 
Telescopic Joint Inner Barrel 
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3.1. Surface Equipment of Riser Drilling System  
 

3.1.1. Motion-compensating equipment 
 

The motion-compensating equipment (Figure 3-2) is a main component of floating 

drilling rigs compensating for the rig’s pitch/heave and other motions. The equipment comprises 

riser, and guideline and pod-line tensioners as well as the drill string compensator. [6] 

The drill string compensator, placed between the 12elly bushing and travelling block, 

allows to keep constant weight on the bit while the rig moves axially. [6] 

 

 
Figure 3-2. Motion-compensating equipment [6] 

a – downward facing riser tensioning system, b – upward facing riser tensioning 
system, c – deepwater development system, d – active compensation system. 

 

3.1.2. Tensioning system 
 

A slip joint, or also called as a telescopic joint, is designed to compensate vertical 

movements, rolling and pitching of rig. It comprises an outer pipe with manifold lines, the inner 

tube, and a sealing assembly consisting of a working and emergency seal and an adapter serving 

to connect the inner pipe to the diverter block. 

Riser tensioners are attached to the outer pipe of the telescopic joint with a wire rope 

cable. The cables help to maintain a constant tension on the riser, preventing it from buckling, 

during heave movements of a drilling rig.  

  

a) b) c) 

 
d) 
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3.2. Drilling Riser 
 

3.2.1. Low-pressure Drilling Riser 
 

A standard drilling riser, or a low-pressure drilling riser, is a large diameter conduit 

composed of several pipes with a diameter of 400-500 mm. Its main function is to connect 

surface equipment with a subsea well. It has an atmospheric pressure inside the central tube as 

open at the top end. Therefore, the internal pressure cannot surpass due to the drilling mud 

weight. [7] 

 The standard drilling riser is shown in Figure 3, which consists of the following elements: 

The spider is a tool, which is installed in the rotary table on the drill deck to keep the riser 

during running operations. [6] 

The gimbal is a tool that is placed in the rotary table under the spider. It smoothly 

distributes the loadings induced by pitch/roll motions of the drilling rig, on the riser system.  

A flex joint is used under the riser telescopic connection in order to reduce tension in the 

riser. In some cases, they may be mounted at the top of the riser between the drill deck and 

telescopic joint to reduce the loads transmitted to the riser while rig’s movements. [6] 

 
Figure 3-3. Main components of the drilling riser [6] 
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Riser joints (Figure 3-4) are the major components used to build up the riser. The joints 

includes a central pipe with the diameter of 21 in. which are welded to the nipple elements 

having a locking device for connecting the sections together, as well as sealing elements for 

sealing the joint sections. The pipe flange is mounted at the nipple-end to support the riser in the 

installation operations. A typical riser joint has a length of 9.14 – 15.24 m. (30 – 50 ft.). The 

section can be 75 ft. long for the purpose of more efficient operations. [6] 

 

 
Figure 3-4. Complete riser joint [6] 

 

3.2.2. Buoyancy Modules 
 

The buoyancy equipment is connected to the drilling riser to reduce the weight of the 

riser system. The riser can be covered over the whole length by buoyancy modules. The modules 

are filled with a syntactic foam. A small section of the riser near the surface is usually not 

equipped with buoyancy modules to reduce hydrodynamic impact of loads in the area with 

prevailing great wave forces. At the bottom, the riser is also not covered with buoyancy joints as 

it increases the cost of foam due to increasing its density with depth. [6] 

Air-containers have sometimes been used in the foretime. These had the certain 

advantages because the buoyancy could be controlled and optimized prior to each drilling 

operation, but the process of installation was more complex.  

 

3.2.3. Kill/Choke, Booster and Hydraulic lines 
 

A kill and choke lines are external pipes, which are installed on the outside of the riser. 

These are used to circulate fluid into and out of the wellbore in case of a gas kick, respectively. 

These manifold lines are typically fabricated to withstand a pressure of 15 ksi. [6] 

A booster line is attached to the outer surface of the main riser pipe to inject the fluid just 

above the Lower Marine Riser Package (LMRP) for better cuttings evacuation.  

A small-diameter hydraulic line is used for hydraulic supply to the Blow-Out Preventer 

(BOP). [6] 
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3.3. Lower Riser Stack 
 

3.3.1. Lower Marine Riser Package (LMRP) 
 

The Lower Marine Riser Package is an equipment used to connect the drilling riser with 

the BOP stack, and comprises control pods, a riser adapter, and the Lower Flex Joint (LFJ). The 

LMRP allows disconnection of the riser from the BOP in the event of an emergency. 

 

3.3.2. Blow-Out Preventer (BOP) 
 

The BOP stack enables pressure well control. In the event of the primary barrier failure 

(mud column), a formation influx takes place during drilling, one or more BOPs are activated to 

seal off the annulus, or wellbore, in order to “shut-in” the well. Afterwards a heavier mud is 

pumped into the wellbore to re-install primary well control. Mud is pumped down the drill string, 

up the annulus, through the choke line at the base of the BOP stack, and then up the high-

pressure manifold lines on the riser and out the choke manifold until the well pressure is 

controlled and the inflow of formation fluids is circulated out of the well. Once the well is filled 

with a “kill mud” from the bottom to the top, the well is back in balance and has been “killed.” 

Operations may proceed with the integrity of the well re-established. [8] 

A typical stack arrangement, as shown in Figure 3-5, has various ram preventers in the lower 

part and the annular preventers in the top assembly. The configuration of the stack preventers has 

to be chosen so that to provide maximum pressure integrity, safety and flexibility in case of an 

emergency. [9] 

- Variable Bore (Pipe) Rams enable to seal off around the drill pipe, preventing annular 

flow between the outside of the drill string and the borehole, but do not restrict flow 

inside the drill pipe. 

- Blind Rams (also called as sealing rams) allow closing and sealing off the well in the 

absence of the drill string. 

- Shear Rams are designed with intention to shear through the casing or drill string with 

steel blades. 

- Blind Shear Rams (also called as shear seal rams) are high-pressure activated rams used 

to cut through the drill string and close off the well. 
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Figure 3-5. Complete BOP stack [10] 
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4. FUNDAMENTAL MECHANICS OF RISER 
 

 In this chapter, the basic mechanics of drilling riser is outlined. This is a significant 

prerequisite for the analysis to be performed in Chapter 6 of the thesis.  

 

4.1. Influence of Pressure, Tension, and Weight on the System 
 

 Riser system is exposed to pressure, tension and weight variations as it extends from the 

seafloor to the mobile drilling unit where it is attached to the motion-compensating equipment 

and tensioning system. Therefore, various technical factors, which may have impact on buckling 

and failure of the riser, should be taken into account prior to modeling of loads. The following 

sub-chapters describe the loads associated with the tension calculation. [7] 

 
4.1.1. Internal Forces in a Submerged Body 

 
 In the assessment of the internal forces acting on a submerged part of body, the issue is to 

take into consideration is the pressure field. Figure 4-1 presents a part of an immersed facility 

with the acting forces. [7] 

 

 
Figure 4-1. Forces acting on an immersed facility [7] 

 

The external forces acting on the downside of the body cannot be calculated by means of 

Archimedes’ Law. In spite of this, the superposition principle enables the internal pressure field 

to be found easily. Archimedes’ Law is utilized in order to avoid complex calculations. The 

enclosed pressure field acting on the displaced fluid is established for Archimedes’ Law 
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application, the middle picture in Figure 4-1. It is then possible to subtract all these forces from 

the forces acting on the facility, thus eliminating the pressure filed on the downside of the fluid 

segment. However, the counteracting force peAe should be remained due to the pressure field 

acting on the body segment. A right-hand picture in Figure 4-1 presents the equal system of 

acting forces and moments as a result of the superposition application. The shear force F and the 

moment M are identical for the body segment as for the equivalent system. The effective tension 

is associated with the internal tension, known as the true tension, as following [7]: 

 

Te = Ttrue – (– peAe) = Ttrue + peAe     (4.1) 

 

where 

Te  effective tension; 

Ttrue true tension; 

pe pressure in the fluid; 

Ae cross-section of the facility; 

 

The apparent weight Wa can be defined as the weight of the immersed body, also known 

as the true weight, minus the weight of the displaced fluid, written as the next equation: 

 

Wa = Wt – Wf      (4.2) 

 

The previous conclusions can be reconsidered with respect to the riser under pressure 

conditions. There is no contact of the fluid at the ends of the riser, i.e. the closed state of the 

pressure field is not satisfied according to Archimedes’ Law. If a curved section of a riser is 

presented with the internal pressure of fluid pi and external pressure of fluid pe. The moments and 

shear forces have been exclude out of the system for simplification, but the previous arguments 

are not influenced by that. A curved riser segment with length of δs will be under the true tension 

Ttw in the riser wall, riser weight, and the internal and external fluid pressure. [7] 

The closed pressure field acts on the inside fluid in balance with the weight of the fluid 

inside riser. The pressures acting around the riser wall are in equilibrium with the internal 

pressure field of the fluid but acting in opposite to them direction. Therefore, the axial pressures 

are omitted adding the two force systems and using the principle of superposition. Nevertheless, 

the axial force in the fluid inside the riser is remained. Thus, the equations of the effective 

tension and apparent weight can be written as follows [7]:  

Te = Ttw + (– piAi)     (4.3) 
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  wa = wt – wi       (4.4) 

 

where 

Te effective tension; 

Ttw true tension in the riser wall; 

pi pressure from the fluid inside the riser; 

Ai cross-section of the riser segment; 

wa apparent weight; 

wt weight of the immersed riser segment; 

wi  weight of the internal fluid; 

  

 The same method can be applied when external pressure is known, as present in Figure 4-

2. All side-pressures are excluded adding the systems of forces acting on the riser segment and 

the fluid inside the riser and then subtracting the system of forces acting on the displaced fluid. 

[7] 

 
Figure 4-2. Internal and external forces acting on a riser segment [7] 

 

The final equations for the effective tension and apparent weight are the following: 

 

   Te = Ttw + (– piAi) – (– peAe)    (4.5) 

 

  wa = wt – wi – we      (4.6) 

where  

Te effective tension; 

Ttw  axial tension on the riser segment; 
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pi  pressure from the fluid inside the riser;  

Ai  internal cross-section of the riser segment; 

pe  pressure from the fluid outside the riser; 

Ae  external cross-section of the riser segment;  

wa weight of the equivalent system; 

wt  weight of the immersed riser segment; 

wi  weight of the internal fluid; 

we  weight of the displaced fluid; 

 

 Assume an element with length of δs and the angles approach zero, reconsideration of 

forces in the vertical direction becomes: 

 

a
ee

a
e

w
dx
dT

ds
dT

w
ds

dT

==

⋅= ψcos
     (4.7) 

Based on the previous derived arguments, the general concept for calculation the 

effective tension and apparent weight of more complicated riser systems can be defined. 

However, the equations in this concept are reconsidered with condition of static equilibrium for 

each constituent element systems. Thus, there is no need for the circular cross-sectional area of 

the pipe, constant density of the material and its elasticity as well as angle deflections of the 

riser. This tends to consider the equations in more generic conditions. The equations for the 

effective tension and apparent weight and their physical definition are transformed into the 

following [7]: 

  

Te = ∑Ttw +∑ (– piAi) –∑ (– peAe)    (4.8) 

 

Wa = ∑wt –∑ wi – ∑we     (4.9) 

 

The physical definition of the effective tension can then be concluded as: “Effective 

tension is the sum of the vertical force in the riser system, comprising inner fluids, less the 

vertical force in a column of the displaced fluid (tension is positive)”. [7] 

  

 Therefore, these important conclusions allow calculations of more complex riser systems 

with nonstandard shape patterns, combination of pipes with fluid inside in movement and so on. 
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4.2. Stresses in Riser 
 

 This chapter presents the various stress fields occurring in the internally and externally 

pressurized riser under the tension.  

  

4.2.1. Radial, Hoop and Axial Stresses  
 

 The pipe, shown in Figure 4-3, is pressurized with internal pressure Pi and with external 

pressure Po.  The inner radius of the pipe is r and wall thickness is t. There is also axially applied 

load F. The right-hand sketch shows a segment of pipe showing the generated stress due to the 

loadings, namely, σx, σy, and σz forming the triaxial stress field.  

 

 
Figure 4-3. Tri-axial stress field 

 

Consider a uniform pressure is applied to a circular thick-walled pipe. In order to 

consider this as a thick wall cylinder the criterion should satisfy that t > 0.1∙ r. Figure 4-4 

presents the stress fields over the wall of the pipe in three directions. The stresses are known as 

the tangential stress στ acting circumferentially of the pipe, the axial stress σa acting in axial 

direction to the pipe, and the radial stress σr acting normally to the pipe wall. The knowledge of 

these stresses is necessary in order to perform design safe operational limits. [4] 
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Figure 4-4. Stresses over the segment of thick walled cylinder [4] 

 

The solutions of stress fields  distribution over the segment can be derived by combining 

the following conditions, namely the equation of equilibrium (Newton Law), compatibility 

relations (geometrical relationship), constitutive relation of the stress-strain-temperature 

(Hooke’s Law) and taking into account suitable boundary condition. These equations are named 

after a French engineer, Lame’, who solved the problem. 

 

Radial stress [11] 
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Hoop stress [11] 
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Axial stress [11] 

 

If the axial force is applied to the pipe the force (tension or compression) causes the axial 

stress. When the tubing is under the tension, the axial stress is equal to the axial force over the 

cross-sectional area of the pipe. [11] Figure 4-5 illustrates the stress distribution across the wall 

of the cylinder, which is loaded with inner pressure, Pa greater than the outer pressure Pb. 
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where 

pa = pi   internal pressure in the cylinder;  

a = Ai   internal cross-sectional area of the cylinder; 

pb = pe  external pressure in the cylinder; 

b = Ae   external cross-sectional area of the cylinder;  

Fa  applied axial load; 

r  inner radius of the cylinder; 

 

 
Figure 4-5. Stress distribution across the wall of the cylinder 

 
4.2.2. Shear stress 

 

For the thin walled cylinder with applied torque, the induced shear is approximated as 

[12]:  

   
tr

T
22 ⋅

=
π

τ       (4.13) 

 

where 

T applied torque; 

r internal radius of the cylinder; 

t thickness of the wall;  

σa 
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σr 
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4.2.3. Bending stress 
 

Drilling doglegs and buckling can generate the bending stress field in the riser. The riser 

is exposed to a bending moment as well. Both effects are important to take into account during 

analysis. In order to derive the expression for the bending stress the theory of a beam is used. 

The maximum bending stress (σb) caused by the dogleg and is occurred at the outer diameter of 

the pipe.    

  

      y
I

M
=bσ       (4.14) 

where 

M bending moment; 

I second moment of the area; 

y distance to the center of the pipe; 

 

 
Figure 4-6. Bending moment acting on an elementary segment  
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DL ⋅⋅⋅⋅±=±== πσσ     (4.15) 

 

where  

E Young’s modulus or the Modulus of Elasticity; 

DL dogleg severity, degree/100ft;  

R radius of curvature; 

Do  outer diameter of the pipe; 

+  pipe in tensile (on the outside of the bend); 
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–    pipe in compression (on the inside of the bend); 

 

Adding bending stress to the equation of the axial stress the maximum axial stress 

becomes: 

 

         DLaa σσσ +=max      (4.16) 

 

The minimum axial stress can be calculated as follows:  
 

         
DLaa σσσ −=min

     (4.17) 

 

4.3. Von-Mises Failure Criteria 
 

The combined stresses may cause yielding of a material. Thus, the stresses in the walls of 

a riser needs to be computed in order to assess the condition of riser, whether the loading cause 

failure or not. Nowadays the most accurate and practical criterion for ductile materials is derived 

based on the maximum distortion energy criterion, which is also known as Von – Mises failure 

criteria. The combination of the three major stresses (axial, radial, and hoop stress) and the shear 

stress induced by applied moment is based on the initial yield limit. In general form for triaxial 

stresses the Von – Mises criteria is presented as [11]: 

 

     ( ) ( ) ( ){ } 2222 3  ---
2
1 τσσσσσσσ θθ +++= aarrVME   (4.18) 

where 

σvme Von-Mises stress; 

σθ tangential stress; 

σr radial stress; 

σa axial stress; 

τ shear stress; 

 It is worth to note that the shear stress can be neglected in the equation if there is no 

applied torque. [11] 

 

( ) ( ) ( ){ }222   ---
2
1

θθ σσσσσσσ aarrVME ++=    (4.19) 
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Yielding occurs once the Von-Mises stress is equal to the yield strength of the riser 

material. Therefore, the limited conditions of yielding for riser are determined by setting the 

Von-Mises stress to the yield stress for the material.  According to the API RP 16Q and ISO 13624 

[1, 2], the 67% of yield stress will be taken into account during design.   

The riser will be in reality subjected to moments that causes the bending stress. This 

should be included in the axial stresses while calculating the Von-Mises stress. The criterion is 

required to be verified at the outer surface with the maximum bending stress and at the inner 

surface, where the bending occurs at its minimum. The fundamental criterion will be then 

rewritten including the bending stress, σb. 

 

   ( ) ( )( ) ( )( ){ } 2222 3  ---
2
1 τσσσσσσσσσ θθ +++++= babarrVME   (4.20) 

 

4.4. Design Limits 
 

For designing purpose, the following condition should be considered: 
 

       outer
VME

inner
VME

Design
VME σσσ ;max=     (4.21) 

 
The tri-axial stress intensity design factor is given by [28] 
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There are four loads, which determine the combined stress limits in tubing, such as the 

internal and external pressure, the real axial force, and the torque. For simplification the 

presentation of the limits, the pressure difference (Pi – Po) is calculated. A positive differential 

pressure represents a “Burst” mode. A negative differential pressure represents a “Collapse” 

mode. 

The limits curve calculated by the Von-Misses yield condition represents where the tube 

would begin to yield.  
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Figure 4-7. Von-Mises failure envelope for various Design Factors in 2D plane 

 

4.5. Hydrodynamic Loads 
 

The hydrodynamic actions of waves and currents on the drilling riser needs to be discuss 

prior to simulation in OrcaFlex and ANSYS software.  

The waves and currents generate loads on the entire riser system below the water surface. 

The impact of these loads and load values can be determined by means of statistical analysis, 

using the potential size of the wave and extrapolating to the design waves.  

The offshore drilling in deep water conditions is particularly influenced by current effects 

and therefore measurement of currents is required for having clear picture of operational 

conditions of the riser. In addition, the currents influence the riser by the drag force. Hence, the 

riser must withstand the impact of large currents at the same time as large waves occur. [13] 

The Petroleum Safety Authority has developed a standard that all sea structures should 

satisfy the requirement of 100-year wave + 100-year wind + 10-year current. A 100-year wave 

means that there is one percent probability of surpass per annum. [13] 

 

4.5.1. Currents 
 

External forces induced by currents along the whole length of the riser below the sea line 

can significantly change the deflection of the riser system and influence the riser tension and 

optimum position of drilling vessel to minimize deterioration from rotating of the drill string. 

The curvature of the riser is dependent of the distribution of internal fluid weight, the top 

Collapse 

Burst 

Compression Tension 
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position of the riser with respect to horizontal position of the bottom, the riser tension, and the 

greatness and direction of the drag and lift forces lengthwise the riser. In general, the current 

forces may change direction and magnitude with depth irregularly. Moreover, the actual 

drag/mass coefficients and function of induced force can only be determined representing a very 

complicated structural loading scenario. As a result, it is extremely challenging task to calculate 

the precise shape of the riser deflection even though the current profile is investigated. 

Nevertheless, practical experience has indicated that the riser deflects usually near the top and 

bottom of the riser string at the maximum angle, which is measured by the top and bottom 

installed angle-measurement devices.  

If the profile is necessary to be calculated over the length of the riser string for 

engineering purposes, computer software as Orca Flex, which includes an algorithm for building 

the riser and current profiles, can be used. The riser and current profiles can be valuable for 

initial position of the dynamic positioning system on the floating drilling rig, as suitable position 

reference can be restricted in deep-water areas. In addition, the effect of inertia increases the time 

for the riser to achieve a new steady-state quasi-static form after a change in vessel position. This 

is observed in deep-waters when the bottom angle of the riser is utilized as a position reference 

signal. [14] 

 
  

4.5.2. Vortex Induced Vibrations (VIV) 
 

 The vortex-induced vibrations or VIV are motions caused anytime on a blunt body, 

which is subjected to an external flow of fluid producing vortices around this body at its natural 

frequency. Vibrations caused by the periodic distribution of vortices are the most frequently 

found in the practice of construction engineering. The external flow around a bluff cylinder can 

be explained perfectly utilizing the theory of potential flow at low spread of the Reynolds 

number. However, the potential theory is not applicable in case of increased the Reynolds 

number, as boundary layers get detached from the walls of the cylinder. The main reason of this 

effect is that the fluid around the pipe creates the boundary layers, where viscous forces occur in 

the area of separation of the boundary layer flow and the layer of fluid next to the hard surface of 

the pipe. 

The risers are particularly sensitive to VIV in deep-water applications comparing to the 

use in shallow-water areas due to the following factors: 
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- currents in deep-waters are in general more strong than in shallow-water areas; 

- the natural frequency of the riser is lowered with increasing its length and therefore a 

required magnitude of flow to initiate vortex shedding is  reduced   as well; 

- there are no structures on the drilling platform adjoining to the riser to which it could 

be attached as the mobile drilling units utilized in deep-water drilling are floating type 

of platforms; 

 

Substantial currents excite a natural mode of the bending, which is much greater than the 

basic bending mode of the riser in deep water drilling operations. The velocity (and direction) of 

currents in deep-water areas changes in general with depth, so there is a possibility that 

numerous modes of the drilling riser can be provoked into vortex vibrations. Hence, the 

prediction of the riser behavior concerning VIV becomes more complicated opposed to the short 

riser systems used in shallow waters. 

 

4.5.2.1. Flow Regimes 
 

Various flow regimes of fluid around the circular cylinder are presented in the Figure 4-8. 

As shown on Figure, at very small Reynolds number, Re < 5, inertial effects are insignificant and 

the pressures, behind the cylinder at the end of the stream, recover almost to the same initial 

conditions. Hence, the fluid flow can be described by the theory of potential flow and initiation 

of vortex shedding is not observed at these values of Reynolds number. A couple of stable 

vortices are induced immediately at the right side of the cylinder with increased number of 

Reynolds. With further increase of the Reynolds number, the vortices extend while one of the 

vortices detaches away and a periodically fluctuated vortex path is generated. The laminar flow 

of vortex path is occurring up to Re values of 150, and gets into turbulent flow if the Re values 

equal or higher than 300. Afterwards the vortex path transforms into a fully turbulent state at the 

distance of approximately 50 diameters of the cylinder downstream. The Re numbers in the 

diapason of 300 to 3∙105 is known as a subcritical range, since it is occurred before initiation of 

the turbulent boundary layer at Re of 3∙105. However, the vortices path is occurred in turbulent 

mode with established frequency for subcritical diapason. [15-17] 

Vortex shedding happens at a much lower point downstream of the cylinder, at the 

laminar-turbulent transition range. Vortex shedding forms disarranged flow and the drag declines 

quickly. The vortex street is recovered only at supercritical values of the Re > 3∙105, as boundary 

layer gets into turbulent mode over again. 
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Figure 4-8. Flow regimes of fluid over cylinder [18] 

 

4.5.2.2. VIV Mitigation Techniques 
 

The riser for deep-water application can fail to satisfy the fatigue requirements due to 

inadequate design for vortex-induced vibrations. Mitigation VIV is therefore becomes the main 

task to prevent destruction of the riser and high-costly expenditures. There are many diverse 

methods in order to reduce VIV oscillation of the riser. The most widely used techniques are: 

[19] 

 

1. Increasing structural damping. 

This approach enables to increase the structural damping or mass of the riser so that the 

hazardous oscillations of the riser system will be gradually diminished. Increase of damping can 

be obtained by different means, as: 
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- Attachment of external dampers. 

- Use of materials with sufficiently high damping such as rubber, sand, wood, etc. 

- Composite materials like concrete can be included in place of steel constructions. 

 

2. Preventing resonance. 

VIV can be suppressed if we ensure the natural frequency not matching the frequency of 

vortex shedding of the structure. This can be achieved by using wires or braces to increase the 

structural stiffness of the riser. However, the technique becomes impractical solution when it is 

applied for either complex or large structures. 

 

3. Installation of suppression devices. 

The use of vortex suppression devices is the most practical option to be chosen for VIV 

mitigation. Nevertheless, it is a challenging task to design, test and analyze the suitable device.    

M.M. Zdravkovich subdivided suppression devices into three main groups [20]:  

 

- Surface Protrusions 

They influence the separation of shear layers and separated lines. The typical examples of 

this device are studs, fins, strakes, wires, etc. They can be further split into two types: 

a) Omni-Directional Devices are the type with no preferred direction as the expression 

“omni-directional” indicates. Helical strakes represent the most used VIV suppression devices in 

the group of omnidirectional devices. 

  b) Uni-Directional Devices. The devices in this group are very effective at one optimal 

direction but less effective at others. 

 

- Shrouds 

Shrouds mitigate VIV by interacting with the entrainment layers. These devices are 

attached completely around the riser. Axial rods, perforated rods, gauze, and axial slats are the 

best examples of this type.  

Marine fairings are classified into this category. 

 

- Near-wake Stabilizers 

For the group the best examples can serve the devices, such as guiding, splitter, and saw-

tooth plates, slits cut, base-bleed, vanes along the riser etc. 
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Figure 4-9. Hydrodynamic and aerodynamic devices for reduction the vortices shedding 

[20] 

 

4.5.3. Morison’s Equation 
 

 The Morison’s equation can be used to find the combined impact of wave and current 

loads on the structures with a cylindrical shape like the drilling riser. It has been deemed 

contentious for many years due to a non-linear drag term in the equation. The equation allows 

the hydrodynamic forces to be calculated with reasonable precision, considering the diameter of 

the riser smaller as opposed to the length of waves. The trip theory is applied for calculation 

forces per unit length of the riser in a two-dimensional plane. The hydrodynamic force in the 

Morison’s formula combines two components – a drag force, due to the fluid flow velocity, and 

an inertia force, because of the flow acceleration. [7] 

 

IfDfHf +=      (4.23)
 

where 

fH hydrodynamic force; 

fD drag force; 

fI inertia force; 
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 The laboratory experiments have investigated for the flow in a steady state the drag term 

changes with the square of the fluid flow past the riser. For the drilling riser, exposed to the flow 

in normal direction to its axis, the drag force per unit length of the riser can be approximated 

with the following expression [7]: 

 

     uuDСDf D ⋅⋅⋅⋅⋅= ρ
2
1      (4.24) 

where 

ρ density of the fluid; 

CD non-dimensional drag coefficient determined from the experiments; 

D outer diameter of the riser; 

u velocity of the fluid particle past the riser; 

 If the riser moves laterally with a velocity v under acting forces, it should be taken into 

account in the determination of the drag force. It is done by including the relative velocity in the 

expression for the drag force calculation [7]: 

 

 ( ) vuvuDСDf D −⋅−⋅⋅⋅⋅= ρ
2
1     (4.25) 

 

The laboratory tests have also been performed to examine the lifting force. This force is 

caused by the fact that the velocity of fluid particles in the eddy currents is higher on the 

downstream side compared to the upstream side. Hence, the pressure is a minimum on the 

downstream side, which resulting in a lifting force in the current direction. The approximate 

expression for the lift force per unit length of the riser can be written as [7]: 

 

uuDСLf L ⋅⋅⋅⋅⋅= ρ
2
1     (4.26) 

 

where CL is the dimensionless lifting coefficient determined from the tests and the other 

components are the same as in the expression of the drag force.  

 For the risers which satisfy the requirement D/L < 1/5 = 0.2, the fluid nearby the riser will 

be dragged along the flow. Therefore, we get an additional mass, which is accelerated. The 

resulting mass force per unit length of the riser can be expressed as [13]: 
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where 









⋅=

4

2Dm πρ   mass of a unit length of the riser; 

mA    additional mass; 

ρ    density of the fluid; 

D    outer diameter of the riser;  

CM = CI = (1+mA/m)  non-dimensional mass or inertia coefficient; 

u     constant acceleration of the fluid; 

 

For the riser under the action of waves, a combined effect of acceleration and velocities 

should be taken into consideration. If the acceleration is assumed constant over the riser, i.e. D/L 

< 1/5, the Morison’s equation can be presented in the form as follows [13]: 

uuDСuCD
DfMftzf DM ⋅⋅⋅⋅⋅+⋅⋅
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4
),(

2

   (4.28) 

 
Figure 4-10. Immersed cylindrical pipe under wave action [13] 

  

This is worth to mention that this force is the sum of the drag force and the mass force. 

However, the total force from waves on the whole riser system is: 
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 The coefficients of drag and mass should be defined for each particular case. The drag 

coefficient is a function of several parameters, such as, roughness of the riser surface and 

Reynolds number for the fluid flow. That means that the higher roughness on the surface, the 

greater the drag coefficient will be and hence greater force on the riser. Since it also is much 

dependent on the Reynolds number (which in turn a function of velocity), the coefficient will 

vary with the water depth as the velocity changes. The figure below shows the drag coefficient as 

a function of Reynolds number for various structural shapes. [13] 

 

 
Figure 4-11. Drag coefficient as a function of Reynolds Number for spheres, transverse 

cylinders, and face-on discs [13] 
 

The mass coefficient is also a dimensionless number and is dependent on the relation 

D/L, where D is the diameter of the riser and L is the wavelength. Note the Morison criteria D/L 

< 0.2. The figure below shows the mass coefficient as a function of D/L. 

 
Figure 4-12. Mass coefficient as a function of D/L [21] 
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There are various standards to find values for the drag coefficient based on different 

requirements, for instance, NORSOK Standard N-003.  

 

“For surface piercing framed structures consisting of tubular slender members extreme 

hydrodynamic actions on unshielded circular cylinders are calculated by Morison’s equation on 

the basis of drag and inertia coefficients equal to  

  CD = 0.65 and CM = 1.6 for smooth members 

CD = 1.05 and CM = 1.2 for rough members 

 

These values are applicable for (umax · Ti)/D >30 

where  

umax the maximum horizontal particle velocity at storm mean water level under   

 the wave crest; 

Ti the intrinsic wave period;  

D the leg diameter at the storm mean water level;   

 NORSOK Standard N-003” 

 

However, the drag coefficient can be assumed constant over the entire riser structure, 

which may result in higher loads than realistic. Following coefficients can be taken for 

calculation of the total force acting on the riser: 

 

- If the drag term mainly dominate, the drag coefficient is equal to CD = 1. 

- If the mass term will dominate, the mass coefficient is equal to CM = 2. 

- If both of the forces are considered, the drag coefficient is CD = 1.05 and the mass 

coefficient is CM = 1.20. 

 

4.6. Sea Ice Impact 
 

The ice presents significantly dangerous threat to the mobile drilling unit. [1] 

Ice at sea may be originally formed on either land (glacier) or at the sea. In general, ice 

formed on land exists as floating pieces of ice whereas ice formed at sea may be in the form of 

drifting ice floes. Additionally, ice is also classified by age and by thickness, size, surface area, 

and elevation above water (Bowditch, 1977). 
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If possible, operations should be avoided in the presence of sea ice as drifting ice floes 

may induce severe loads on the MODU and its dynamic position-keeping system. Moreover, 

moving ice chunks are hazardous in particular because they can come near the vessel undetected 

by radar due to their small sizes.  

A drillship’s hull can protect the riser against the action of small broken-up pieces of the 

ice. However, ice may be pushed under the vessel by a sufficient combined impact of the wave, 

current and/or wind. An “ice ledges” around the moon pool can deflect ice from entering the 

moon pool and affecting the riser. [1] 

In general, the drilling risers installed on semisubmersibles are less protected against the 

ice at sea. Special skirts or round-shaped columns, which extend below the ice zone, can 

effectively protect the riser. [1] 
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CHAPTER 5. ENVIRONMENTAL CONDITIONS IN THE 
KARA SEA 

 

5.1. Geographical Location 
 

 The Kara Sea is situated at the margin of the Arctic Ocean Basin in the northern part, 

bordering on the Barents Sea (Yugorsky Shar, Karskie Vorota (Kara Gate) and Matochkin Shar 

Straits, and between the northern end of Novaya Zemlya and Franz Josef Land Archipelago) in 

the west and the Laptev Sea (Vikitsky, Shokalsky and Krasnaya Armya (Red Army) Straits) in 

the east. [22] 

The western border of the Kara Sea starts from Kolzat Cape (81° 08’ N 65° 13’ E) to 

Cape Zhelaniya (76° 57’ N 68° 36’ E), hereinafter passing the eastern shores of the Novaya 

Zemlya islands, the western border of the Matochkin Shar Strait, from the Serebryany Cape 

(Silver Cape) to Stolbovoy Cape, the western border of the Kara Gate Strait, from Kusov Noss 

Cape to Rogaty Cape, along the eastern shore of the Vaigach Island, and the western boundary of 

the Yugorsky Shar Strait from Bely Noss Cape (White Nose) up to Greben Cape; the northern 

border of the sea extends from the Kolzat Cape to Arctic Cape (81° 16’ N 95° 43’ E) Severnaya 

Zemlya Island, the Komsomolsky Island; the eastern boundary runs along the northwestern coast 

of the Severnaya Zemlya Island and the eastern borders of the Krasnaya Armya, Shokalsky, and 

Vilkitsky Straits; the southern border – mainland coast from the Bely Noss Cape to Pronchishev 

Cape. [23] 

 
Figure 5-1. Map of the Kara Sea regions and boundaries [22] 
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The largest bays that form a strongly irregular coastline and get deeply to the shore of 

mainland are Baidaratskaya, Gydanskaya, Ob Bays and the Yenisey Gulf. According to the 

oceanographic conditions, the Kara Sea is usually subdivided into two parts, northeastern and 

southwestern. The dashed line passing from Zhelaniya Cape to Dikson Island is a border of the 

Kara Sea regions as shown in Figure 5-1. [24] 

The total area of the Kara Sea is approximately 883 000 km2, with a mean water depth of 

111 m and the maximum depth reaches 600 m in the Svyataya Anna Trough and Voronin 

Trough. The Kara Sea has less than one percent of the total area occupied by the deep-water 

regions (deeper than 500 m). The sea water volume is 98 000 km3. The Kara Sea is roughly 1500 

kilometers long and 800 kilometers wide in the northern part of the sea. [24] 

 

 
Figure 5-2. Depth distribution in the Kara Sea [23] 

 

5.2. Climate 
 

 The arctic climate is prevailing in the Kara Sea region with a cold and dry air. The air 

masses are drier and colder in winter whereas they are relatively warmer in summer time. The air 

temperature in the region keeps constant below 0 °C for 9 – 10 months in the north and for 7 – 8 

months a year in the south. The period from December to March is considered as the coldest 

with the average monthly temperature of -14 – (-28) °C. The minimum observed temperature 
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during winter is -48 °C. The summer is short and lasts from June to September, with mean air 

temperature is not higher than 7 °C. During the summer the temperature in the region may 

approach up to 16 °C. [24] 

Also, during the summer time fogs are often observed. 

 

5.3. Wind 
 

 The very fast Bora wind blowing with speed of up to 40 m/s is formed on the Novaya 

Zemlya, Severnaya Zemlya and Franz Josef Land Archipelago. [24] 

Strong storms are often accompanied by blizzards in winter and snow squalls in summer. 

The western part of the sea is mostly exposed to the storms impact. [23] 

 

5.4. Hydrological Conditions 
 

5.4.1. Waves 
 

 The Kara Sea region is opened to very fast and frequent winds which lead to developing 

significantly high waves. Besides that, the size of waves is dependent of the wind speed and its 

duration. The amount of ice at the sea also influences the wave size as it defines the length of the 

wind fetch. Therefore, the most powerful waves are registered in the time with small amount of 

sea ice during the end of summer to the beginning of autumn. [25] 

The most frequently occurred waves have the mean height of 1,5 to 2,5 m. The Kara Sea 

is not characterized by very high waves, which exceed 3 m, but the maximum observed wave 

height is approximately 8 to 10 m. The most severe waves occur in the areas that are usually not 

covered with ice, such as northwestern and southwestern parts of the sea. In general, the shallow-

water areas in the center of the sea are described by smaller waves, which become more steep 

and short in storms. The wave heights are reduced by sea ice in the northern parts. [22, 24]  

 

5.4.2. Currents 
 

 The system of currents in the Kara Sea is comparatively stable with surface and deep 

water movements. These sea water movements are associated with the river runoff, water 

exchange with the Barents Sea and Laptev Sea, and water circulation in the Arctic Basin. The 

river runoff does not affect the speed of currents but keeps the water flow steady. As it can be 
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seen in Figure 5-3, there are two main cycles moving counterclockwise along northeastern and 

southwestern regions of the sea. [22] 

 

 
Figure 5-3. Surface currents distribution in the Kara Sea [22] 

 

In general, the currents driven with the wind prevail in the shallow-water areas. The 

speed and direction of sea currents vary with depth. The water movement is considered to be 

stable in the summer period. As a result, it forms a cyclic movement in the southwestern region 

of the sea including a comparably cold East-Novozemelsky Current flowing southward along the 

east coasts of Novaya Zemlya and a comparatively warm Yamal Current flowing northeastward 

from the Kara Gate Strait. [22] 

The speed of currents is rather small but can increase significantly with strong and long 

lasting winds. Near surface maximum speed of current vary from 80 to 100 cm/s. [24] 

 

5.4.3. Water Temperature 
 

Since the Kara Sea is located in the high latitudes and covered by ice almost the whole 

year, it is heated up poorly and this leads to a low water temperatures. The surface temperature 

of water decreases from the south-west part to the north-east part of the sea. The sea surface 

temperature gradually increases only in the southern regions. [25] 

In winter, the water layer under the ice has the temperature similar to the freezing point of 

water. In the shallow-water areas, the water masses become almost homogeneous from the 

seabed up to the surface, reaching the temperature of -1,8 °С. [23] 

In summer (in the beginning of July), the sea water is warmed up slowly. The 

temperature of water reaches its maximum by the end of August when the sea becomes free of 
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ice. In the coastal areas, the surface temperature of water rises up to 6 °С to 8 °С. In the central 

region of the sea, the surface water temperature is about 2 °С to 4 °С whereas in the western sea 

region, the water temperature at the sea is approximately 2 °С. [24] 

5.5. Sea Ice Conditions and Icebergs  
 

The ice covers 7/10 to 9/10 of the total area of the Kara Sea for 8 to 10 months a year. 

Generally, an early formation of ice starts in October in the southern areas of the sea and in 

September in the north. The ice covers almost the entire sea from October to May. The coastal 

areas are considered as the fast zones of ice formation. In these zones the land-fast ice splits up 

into separate floes in the summer time. The sea is completely free of ice typically in the 

southwestern part and in the coastal northeastern regions of the sea during the summer. [24] 

The ice distribution during the summer, autumn, winter and spring season is dependent of 

the winds. The ways of ice movement is principally from north-east to south-west. [25] 

It is worth to note that the ice cover consist of various types and ages of the sea ice. In the 

north of the sea, a thickness of a multi-year ice reaches about 2,5 m, thickness of a first-year ice 

approaches up to 1,8 m and young-ice up to 0,3 m covering fissures. [24] 

The ice types in the Kara Sea can also be divided by the way of ice cover development as 

following [25]: 

- Primary Ice (forming as a first one); 

- Secondary Ice (forming under the Primary Ice); 

- Overlying Ice (forming at the top of the ice cover); 

- Agglomerated or Broken-up Ice. 

Icebergs usually drift near the west coast of the Severnaya Zemlya and the northeast coast 

of Novaya Zemlya Archipelago. A map of the annual probability of encountering an iceberg with 

a grid cell resolution of 100×100 km is presented in the Figure 5-4. In the southern coastal 

regions icebergs have not been observed as it can be seen from the picture. [24] 

 
Figure 5-4. Probability (%) of occurrence an iceberg within a year [26] 
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CHAPTER 6. SIMULATION TOOLS AND ANALYSIS OF 
DRILLING RISER 

 

The analysis and assessment of the drilling riser for application in the Kara Sea will be 

performed by means of computer software, such as OrcaFlex and ANSYS. These are powerful 

tools, which can design and simulate a desired riser systems along with loadings. In this thesis 

work, the selected riser will be assessed in accordance with ISO 13624, API RP 16Q and DNV-

OS-F201 standards by taking into account operational conditions and all possible loading 

scenarios. 

 

6.1. Simulation in OrcaFlex Software  
 
 

In this work of the riser assessment, OrcaFlex is considered as the basic program used to 

simulate the drilling riser behavior at the conditions of the Kara Sea. This chapter presents 

description of the theory behind the program and modeling of the mobile drilling unit with the 

riser system. The latest version 9.8a of OrcaFlex Manual is used in a great extent to write this 

chapter.  

According to OrcaFlex Manual, the software can be used for analysis of various marine 

systems, in particular the drilling risers, at static and dynamic conditions.  The software is based 

on fundamental methods of three-dimensional (3D) finite element with concentrated mass to 

make calculations more effective and facilitate a mathematical formulation. [27] 

The modeling process can be split into few steps. A model of the mobile drilling vessel 

with the marine riser system is created at first. A full and precise model will be described in the 

further chapters. Then environmental conditions should be specified, such as wind, waves, 

current, water temperature, and many others. Afterwards a preferred analysis is chosen and the 

simulation is run. As a result of the simulation, a suitable data can be extracted for a subsequent 

analysis. [27] 

In the next sub-chapters the basic principle, which is behind OrcaFlex, as well as static 

and dynamic tools will be discussed. 
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6.1.1. Coordinate Systems 
 

First and foremost it is worth to note that the different types of coordinate systems are 

used in OrcaFlex software.  

As illustrated on Figure 6-1, the global system of axes GXYZ has the directions GX, GY 

and GZ, where the Z-axis should have positive direction upwards. The system reference is 

typically arranged at the water surface in the vessel and riser modeling although the position can 

be changed by the user. [27] 

Each object in the model has its own local system of axes, which usually denoted by 

Lxyz. The reference of the local coordinate system is placed at the chosen fixed point but it 

changes the space orientation depending on the position of object. The origin and local axes are 

also specified for the sea bottom to define its shape. [27] 

 

 
Figure 6-1. Coordinate systems in OrcaFlex [27] 

 

In OrcaFlex the directions and headings are defined by using the azimuth angle of the 

direction, measured from the x-axis to the y-axis anticlockwise, as presented in the Figure 6-2.  
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Figure 6-2. Directions with regard to global axes [27] 

 

 The propagation of waves, current and wind is defined by using their directions of 

progression with regard to global axes. The direction of the vessel Vx-axis is used to specify 

vessel headings. For instance, if the vessel heading is in the direction of Vx-axis in Figure 6-2, a 

wave direction of 0˚ implies that the wave is propagating from stern towards bow. 

 

6.1.2. Discretized Model of Line 
 

An actual drilling riser is represented in OrcaFlex as a line model that can be used in 

program calculations. The discretized line model is comprised of massless segments with 

torsional and axial properties as well as nodes, which model the properties of actual riser 

segments such as weight, mass, buoyancy, drag forces and many others.  [27] 

 

 
Figure 6-3. Model of the actual riser and discretized model of the line [27] 
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As shown in Figure 6-3, the nodes are modeled as short rods with properties, which are 

calculated as the properties of half-length segments at both of the sides of the node. Forces and 

moments are also applied at the nodes. 

 Figure 6-4 gives more detailed representation of the line model, including three various 

types of spring-damper systems that actually model the line properties. [27] 

The axial spring-damper at the center of each segment is used to model the axial stiffness 

and damping of the line. It also applies an opposite and equal effective tension to the nodes at 

either side of the segment. [27] 

The rotational spring-damper system is placed at both of the sides of the node to represent 

the bending properties of the line. This system allows modeling with various bending stiffness 

along the length of the line model. [27] 

Besides two described systems the damping and torsional stiffness of the line are 

represented by the torsional spring-damper system if torsion is considered in the model. 

Otherwise, if torsion is not considered then this system is not included at the middle of the 

segment and the halves of the segment are twisted freely with regard to each other. [27] 

 

 
Figure 6-4. Illustration of various types of the spring-damper systems [27] 

 

6.1.3. Static and Dynamic Analysis  
 

 A large part in the analysis of the riser system is devoted to the calculations of forces and 

moments. These calculations are carried out in five steps as follows [27]:  

- Tension forces; 

- Bending moments; 
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- Shear forces; 

- Torsion moments (if included); 

- Finally total load. 

The analysis can be run once the model is built up and the correct environmental 

conditions are specified in the model. In OrcaFlex the analysis is comprised of two main parts, a 

static analysis and a subsequent dynamic analysis.  

 

6.1.3.1. Static Analysis 
 

The static analysis is carried out to find the position of the drilling riser when it is in an 

equilibrium state with loads acting from the riser system itself such as mass, buoyancy, weight 

etc. The equilibrium position is calculated by an iteration method from the initial point of the 

riser system, which is defined by the input parameters. It is assumed that the line ends are fixed 

in order to calculate the position of each line. Then the resultant force and moment from the 

system is determined. A new position of the entire riser system can be found afterwards. This 

process is repeated until the resultant force is equal to zero. The equilibrium configuration of the 

system is then used as an initial position for the dynamic simulation/analysis. This is important 

to note that the analysis takes into account the loads acting from the wind and current but not 

loads acting from the waves. [27]   

 

6.1.3.2. Dynamic Analysis 
 

The dynamic analysis enables simulation of the system movements over a particular 

period of time. The movement can be further used in finding the forces, moments and 

displacements in the system under the specified load. For smooth transition from static to full 

dynamic motion there is a build-up time when the wave and vessel movements are ramped up 

from zero to the full level. Once the simulation is completed a tool called View Profile allows 

having a quick look on how the system behaves over the specified period. [27] 

The dynamic analysis in OrcaFlex is based on solving a basic equation of motion, which 

is given as [27]: 

          PKxxCxM =++       (6.1)
 where 

M  mass matrix; 

C  damping matrix; 

K   global stiffness matrix; 
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P  function of external loads; 

xxx ,,   acceleration, velocity, and displacement, respectively. 

The calculation of the equation can be done by two different schemes. The explicit 

integration and implicit integration scheme work in the same principle, computing the new 

geometry of the system at every time step. [27] 

The explicit scheme applies forward Euler with a constant time. Once the initial positions 

are found from the static analysis all forces and moments that act on each node and body in the 

system, are calculated. Then the results are used to compute the special local equation of motion 

for each node and body in the line model. [27] 

 

KxxCPxM −−=       (6.2) 

 

The equation is further solved for the acceleration at the start of the time step. Then the 

configuration of the nodes and free bodies are found at the end of the time step, using forward 

Euler method of integration. This process is repeated over the simulation time. [27] 

 The implicit scheme of integration performs the calculation of moments and forces etc. in 

the same principle as the previous scheme. However, it applies the “generalized-α” method of 

integration so that the basic equation of motion is solved at the end of the time step. [27] 

 

6.2. Modeling 
 

Modeling of the drilling riser is performed so that the simulation of the reality is 

implemented as accurate as possible in the program. However, the modeling requires particular 

limitations associated with assumptions and simplifications in order to carry out the calculations; 

hence, it will affect the reality in the model. Therefore, it is a particularly worth to note that the 

physical properties of the riser and environmental conditions should be transferred accurately in 

the transition from the reality to program model. 

The drilling riser model is built up as a vertical beam subjected to waves and sea currents, 

from a modeling point of view. The upper boundary conditions of the riser are motions of the 

drilling platform. The rig motions are dependent of the rig design, wind and wave impact. In this 

thesis the model of the riser system is created on the basis of the drilling riser that can be used in 

the conditions of the Kara Sea. Therefore, a semi-submersible drilling rig of Transocean, called 

“GSF Development Driller II”, is chosen to be used in the analysis. In the next sub-chapters the 

model of drilling platform with the riser system will be described. 
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6.2.1. Drilling Rig Modeling 
 

6.2.1.1. SSDR “GSF Development Driller II” Specification. General Description. 
 

The “GSF Development Driller II” is a semi-submersible drilling rig capable to perform 

operations in ultra-deep water and harsh environments. The rig’s design can be configured to 

keep the vessel at the station by either Dynamic Positioning or by Anchoring. The deck areas and 

variable deck load capacities provide significant flexibility for exploration drilling or for subsea 

development projects. Station keeping in the dynamic positioning mode is achieved by eight 

efficient, variable speed, fixed blade thrusters. The general description of specification is 

presented in table 6-1. 

 

Parameter  Description 
 Dimensions 

Length 114 m (375 feet) 
Width  88 m (288 feet) 
Height 8,5 m (28 feet) 

Maximum Water Depth 2286 m (7.500 feet) 
Maximum Drilling Depth 11430 m (37.500 feet) 

 Drilling Equipment 
Derrick Height  70 m (228 feet) 
Derrick Length 16 m (52 feet) 

Base Width  17 m (57 feet) 
Hookload Capacity  

(maximum rated static hook load) 907000 kg (2.000.000 lbs) 

 BOP & Subsea Equipment 

BOP Rams 
Hydril Compact 18-3/4 inch, 

 103, 4 MPa (15.000 psi) pressure capability;  
6 x ram preventer; (2 x doubles + 2 x singles). 

BOP Annulars 2 x Hydril GX 18-3/4 inch, 
 10.000 psi pressure capability annular preventer 

Marine Riser Kvaerner Clip 21 in., min yield 36.000 psi,  
22,8 m (75 feet) long per joint. 

Moonpool Length 40,2 m (132 feet) 
Moonpool Width 7,6 m (25 feet) 

 Station Keeping / Propulsion System 
DP System Konsberg Simrad SDPM DP-2+ 

Thrusters 8 x ABB Compact Azipod 4.300 hp, azimuthing 
nozzled fixed blade thruster (2 x per corner) 

Mooring System 

8 Bodewes electric 1.150 hp drum winches with  
8 x Bridon Dyform mooring lines consisting of  

3200 m (10.500 feet) of 3.5 inch wire-line  
and 8 x 3.240 ft. of 3.25 inch stud link chain,  

with 8 x 14.75 ft. Vryhof Stevpris MK5 anchors. 
Table 6-1. Specification of SSDR “GSF Development Driller II” 
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Figure 6-5. Front and top view of SSDR “GSF Development Driller II” 
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6.2.1.2. Model Creation 
 

The mobile drilling unit is modeled by using tool called Vessel, which enables modeling 

of the MODU’s motion on the basis of RAO, QTF and other diffraction parameters. The 

modeling of floating drilling rig demands a lot of data to specify its properties. The Vessel data 

form is used to specify a particular data, such as the position of the drilling rig and the method of 

rig’s motions calculation. [27] All data used for platform dimensions is taken from the website of 

Transocean and rig’s specification described in the previous chapter. 

 

Reference System and Platform Drawing 

 

The position of drilling platform is defined with regard to a right-handed local system of 

coordinates Vxyz, which was discussed in the chapter 6.1.1.   

The origin in the model is chosen at the center of the rig. However, it can be specified at 

the bow on the keel or at any other place, as it is simply the starting point on the platform to 

which all the type data refer. [27] 

A surge, sway and heave for the platform must be defined in the directions of Vx, Vy and 

Vz axes, respectively. It is important to note that the RAOs direction must therefore be applied to 

these directions as well. [27] 

The connection point of the drilling riser on the platform is then defined relative to these 

local axes. Hence, this point moves with those axes as the platform rotates and moves with 

regard to the global axes, and OrcaFlex computes these movements automatically. [27] 

 

 
Figure 6-6. Model illustration [27] 

 
The drilling rig is built up as a wire frame of specified vertices and edges. First, the 

positions of vertices are defined by specifying their coordinates with regard to the platform axes 

Vxyz. Then each pair of vertices is connected by the lines that form the edges.  
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The derrick on the drilling rig is drawn by setting the specified diameter to the derrick’s 

edges in order to build-up a frame structure consisting of the cylinders or bars. It is worth to 

notice that if the edge diameter is set to ‘~’ then the derrick will be built as a filled in shape. 

 A crane, catwalk, helideck, and other equipment that are specific to the rig are drawn in 

the same principle as discussed before. Therefore, it is possible to draw any rig-specific wire 

frame, using vertices, edges and pen (possible in a different color) that you specify on the 

vessel’s data form. 

 

Shaded Drawing 

 

The drilling rig is shown, by default, in a shade 3D views of the model using a solid, 

filled-in shape on the basis of the vertices and edges. A solid surface for the shaded graphics 

representation is generated from the wire frame data. The 3D drawing enable to perform a simple 

visual check of the rig structure, and it can also be utilized to check the interference between 

lines in the model. [27] As with all points on the rig, the drawing coordinates are defined with 

regard to the local platform axes Vxyz, presented in Figure 6-6 above. 

 
Motions Setup 

 
The floating drilling rig is exposed to various types of motion that can be categorized into 

two groups – the motions with a low frequency (LF), also called as slow drift motions, which 

occur due to waves or due to rig thrusters, and motions with a wave frequency (WF) which occur 

due to response to wave loads. In OrcaFlex two vessel motions, such as Primary Motion and 

Superimposed Motion, exist to enable a separate modeling of these motions in some case. When 

both of the motions are present they are applied simultaneously, with the wave frequency motion 

being superimposed on the low frequency motion. [27] 

As an example, consider a rig being driven under power along a specified course. 

Primary motion will be used for the case when the rig moves steadily along its course in the 

absence of waves. However, the primary motion is enhanced by wave-generated motion when 

waves are present. That would be modeled in OrcaFlex as the superimposed motion defined by 

displacement RAOs. OrcaFlex superimposes this latter motion on the primary motion in order to 

get the total combined motion of the rig. [27] 

When a new vessel type is created, it is defined by initial default data, which corresponds 

to a particular vessel with a length of 103 m. This data should be replaced with a real data for the 

drilling rig we are modeling. However, due to luck of the data for rig modeling it is possible to 
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use the default data set of the vessel. As the drilling rig is similar to the default data setting so 

OrcaFlex automatically scales the vessel type data to specified rig length.  

The results of the modeling of SSDR “GSF Development Driller II” are shown in the 

following Figures 6-7 to 6-14. 

 
Figure 6-7. Front view to SSDR “GSF Development Driller II” 

 
Figure 6-8. Side view to SSDR “GSF Development Driller II” 
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Figure 6-9. Top view to SSDR “GSF Development Driller II” 

 
Figure 6-10. 3D view to SSDR “GSF Development Driller II” 
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Figure 6-11. Front view to SSDR “GSF Development Driller II” 

 
Figure 6-12. Side view to SSDR “GSF Development Driller II” 
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Figure 6-13. Top view to SSDR “GSF Development Driller II”

 
Figure 6-14. 3D view to SSDR “GSF Development Driller II” 
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6.2.2. Drilling Riser System Modeling 
 
 

From a structural point of view, the model of a typical drilling riser is presented as a 

beam with the applied tension force at its top end and which is approximately straight at all 

times. The drilling riser is free to move in the vertical direction at the top end as the upper 

boundary conditions are not fixed. However, in this thesis the riser model, comprising of the top 

tensioning equipment, auxiliary lines, LMRP, and BOP stack installed at the wellhead, is 

therefore becomes more complicated. 

The various components of the riser system will be modeled as either a flexible body or a 

rigid body. It is very important to note that the weight of components should be calculated in air 

and water, and the correct values should be taken for the riser modeling. The drag and mass 

coefficients as well as the corresponding drag diameter for the bare riser joints will be included 

in the model during the dynamic analysis. The model creation and input data used for the drilling 

riser system in the analysis will be described in this chapter. 

In this work the drilling riser simulation will be carried out for two different risers. A 

conventional drilling riser with the diameter of 21 inch will be used in the first configuration of 

the riser system whereas the second configuration will include a slim riser with the diameter of 

16 inch. Both of the riser system configurations will be analyzed for application in the identical 

conditions of the Kara Sea, i.e. at the water depth of 100 m, all possible wave heights, and in the 

presence of constant sea current and wind. Moreover, the modeling of each riser configuration 

will be conducted for different materials, which can be used for the riser manufacturing, such as 

steel and aluminum. Configurations of the riser systems used in the analysis will be presented in 

the following sub-chapters. 

 

6.2.2.1. 21 inch Drilling Riser Configuration 
 

The main aim of the 21 inch riser analysis is to choose the riser configuration which will 

be reliable and safe, i.e. within the limits for the stress and flex/ball joint angle (as well as other 

criteria described in Chapter 2), in order to implement the drilling operations in arctic conditions 

of the Kara Sea. 

The drilling riser used in the model is considered for application at the water depth of 100 

m according to the mean water depth in the Kara Sea region, which was described in the chapter 

5.1. The riser system is kept in tension by the tensioners installed on the semi-submersible 

drilling rig of Transocean, “GSF Development Driller II”, which the modeling and the 

description of specification are presented in the chapter 6.2.1. The maximum available 
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tensioners’ capacity on the rig is 1360 tons (3.000 kips) at a full stroke of 15 m. The elevation of 

upper flex/ball joint above the mean sea level is approximately 27.5 m. 

 The drilling operations are assumed to be executed with a drilling mud of different 

densities, such as 8.55 ppg (1.025 s.g.), 12 ppg (1.438 s.g.), 14 ppg (1.678 s.g.), and the heaviest 

one is 17 ppg (2.037 s.g.). As the heavy density fluid may create a significant internal 

overpressure a new riser, designed for application in arctic conditions, should be checked for the 

burst failure, which is described according to DNV-OS-F201 in Chapter 2.4. 

The configuration of the conventional 21 inch riser shown in Figure 6-15 is supposed to 

consist of 4 riser joints, each of them with length of 75 feet. The assembly comprises only bare 

riser joints without any installed buoyancy modules since the water depth in the area is not deep. 

This is also done with intention to reduce cost of operations due to expensive syntactic foam 

used in the buoyancy modules as well as to reduce the hydrodynamic impact of waves and 

current forces, which are maximum at the top section of the riser system (the wave and current 

velocity profiles will be presented later). Moreover, the use of bare riser joints over the whole 

length of the riser makes an on-site installation process less complicated and therefore more 

efficient. 

The total length of the riser system, which stretches from the connection of the UFJ to the 

seabed, can be adjusted by changing the length of the telescopic joint. The top connection of the 

riser assembly is attached to bottom end of telescopic joint outer barrel and lower end of the riser 

system is connected to the LMRP at the height of approximately 10 m above sea floor (this is 

roughly considered as the total height of LMRP with BOP stack installed at the wellhead). 

The drilling riser with its auxiliary lines may have some rotations since the upper flex 

joint has a nonlinear rotational stiffness that will therefore lower the bending moment of the top 

end of the assembly as opposed to a fixed end connection of the riser. The lower flex/ball joint 

works with the same properties of the rotational stiffness as applied to the upper flex joint. The 

data used for properties of UFJ and LFJ is obtained from the previous works on the riser 

simulation in Orcaflex. 

The grade of the riser material to be used is ASTM A36 steel alloy, which has a 

minimum tensile stress of 400 Mpa (58 ksi) and a minimum yield strength of 250 Mpa (36 ksi) 

as specified in ASTM standard for pipe with grade A36 steel (on the basis of ASTM 

Specification). The second option is to choose aluminum alloy as the material for the 21 inch 

riser and to perform the analysis in the same order as for the steel riser. The minimum yield 

strength of aluminum is 90 Mpa (13 ksi). In order to be within the Von-Mises stress limit the 

wall thickness for the riser is calculated according to the requirement on burst check in DNV 

accounting for the drilling mud of 17 ppg inside the riser. The main pipe of the riser has a wall 
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thickness of 22.2 mm (0.875 in). The properties of the riser joints and auxiliary lines are obtained 

from rig’s specifications and presented in Tables 6-2, 6-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-15. The configuration of the 21 inch riser (on the left) and the model in OrcaFlex 
program (on the right) 
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Parameter Dimension Description 
Riser Type - 75 ft bare riser 

Outer Diameter in/ m 21/ 0.533 
Inner Diameter in/ m 19.25/ 0.489 
Wall Thickness in/ m 0.875/ 0.022 
Length per Joint m 22.86 

Dry Weight ton 6.33 
Table 6-2. Specification for the 21 inch riser joint (steel and aluminum)  

 

Auxiliary Line Type 
Outer 

Diameter 
(in/ m) 

Inner 
Diameter 

(in/ m) 

Wall 
Thickness 

(in/ m) 

Number of 
Lines 

Choke Line  6.5/ 0.165 4.5/ 0.1143 1/ 0.0254 1 
Kill Line 6.5/ 0.165 4.5/ 0.1143 1/ 0.0254 1 

Hydraulic Line 2.88/ 0.0073 2.32/ 0.059 0.28/ 0.007 1 
Booster Line 5/ 0.127 4/ 0.1016 0.5/ 0.0127 1 

Table 6-3. Specification for auxiliary lines of 21 inch riser (steel and aluminum) 

 

It should be taken into account that the auxiliary lines such as hydraulic, choke & kill 

lines, and booster line add an additional weight to the main riser pipe.  

 

6.2.2.2. 16 inch Drilling Riser Configuration 
 

 The configuration of 16 inch drilling riser is considered to be operated in the Kara 

Sea at the same water depth of 100 m. The analysis of the riser is performed by using the semi-

submersible drilling rig “GSF Development Driller II” with the same capability of the tensioning 

system that was mentioned in the previous sub-chapter but the required minimum top tension 

should be recalculated in this case.  

The range of drilling mud densities is taken the same as used for drilling operations with 

21 inch riser. The burst failure check of the riser should also be carried out with the heaviest 

density of the drilling fluid. 

As illustrated in Figure 6-16 the configuration of the 16 inch slim riser to be analyzed is 

similar to the previous conventional riser configuration since it is comprised of 4 bare riser 

joints, with length of 75 feet each. 

So far as the connection of the drilling rig’s telescopic joint fit for the 21” conventional 

riser a conical adapter should be in reality installed at the top end of the 16” slim riser in order to 

connect the riser assembly with the bottom end of telescopic joint outer barrel. However, as the 

16” riser properties are considered to be weaker it is possible to make an assumption that the top 
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connection of the riser will be suitable to the connection at the bottom end of telescopic joint 

outer barrel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16. The configuration of the 16 inch riser (on the left) and the model in OrcaFlex 
program (on the right) 
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riser pipe is assumed to be equal to 19 mm (0.75 in) based on the rig’s specification and 

requirement of DNV burst check using the drilling mud of 17 ppg, same as for the conventional 

riser.  

For analysis of the 16 inch riser the same properties of nonlinear rotational stiffness for 

the upper flex/ball joint and lower flex/ball joint are retained from the 21 inch riser analysis. 

Two options for the riser material are considered to be used in the analysis of slim riser 

such as ASTM A36 steel alloy and aluminum. Both of the material is kept the same properties as 

in the analysis of 21 inch riser previously. 

The detailed description of properties of riser joints and auxiliary lines is taken from the 

specifications and given in Table 6-4, 6-5. 

 

Parameter Dimension Description 
Riser Type - 75 ft bare riser 

Outer Diameter in/ m 16/ 0.406 
Inner Diameter in/ m 14.5/ 0.368 
Wall Thickness in/ m 0.75/ 0.019 
Length per Joint m 22.86 

Dry Weight ton 4.14 
Table 6-4. Specification for the 16 inch riser joint (steel and aluminum)  

 

Auxiliary Line Type 
Outer 

Diameter 
(in/ m) 

Inner 
Diameter 

(in/ m) 

Wall 
Thickness 

(in/ m) 

Number of 
Lines 

Choke Line  5/ 0.127 3.75/ 0.095 0.625/ 0.016 1 
Kill Line 5/ 0.127 3.75/ 0.095 0.625/ 0.016 1 

Hydraulic Line 3.5/ 0.089 3/ 0.076 0.25/ 0.0065 1 
Booster Line 4/ 0.102 3.25/ 0.083 0.375/0.0095 1 

Table 6-5. Specification for auxiliary lines of 16 inch riser (steel and aluminum) 

 

6.2.3. Input Data for Environmental Conditions 
 

The environmental data of the area, where the riser is supposed to be operated, should be 

carefully examined prior to the modeling and analysis of the riser since it is a critical factor 

affecting the hydrodynamic forces acting on the riser system. It is more preferable to obtain all 

data of environmental conditions from respectful and trustful sources such as environmental and 

meteorological institutes which perform detailed surveys and observations of a particular area of 

interest.  

As discussed in the previous chapters of the thesis the drilling riser should be assessed 

and chosen with regard to the Kara Sea conditions. A set of the environmental data for this work 
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was found after thorough studies of some international standards, observations of a research 

institute and books, which can be a reliable source of information on the Kara Sea area. 

Drilling operations are assumed to be performed in the presence of wind with a speed of 

approximately 40 m/s that is taken as the fastest observed wind velocity. The wind direction is 

assumed to be from the bow to stern of the rig. [24] 

The current profile is obtained by means of the Power Law in OrcaFlex using the 

maximum speed at surface as 1.0 m/s and the current speed at sea bottom as 0.2 m/s. [24, 27] 

The Power Law equation used in calculations and table of current velocities with respect to water 

depth are presented in Appendix E. The current speed profile, which is shown in Figure 6-17, 

will be used during simulation of both 21 inch and 16 inch riser. The movement of current does 

not vary with water depth and it is applied in one direction from the bow to stern of the drilling 

rig, i.e. 180˚ according to the direction relative to global axes. A tide of the sea is also supposed 

to be included in the current profile used for simulation. 

 

 
Figure 6-17. Distribution of the current velocity over the sea water depth 

 

A set of data for waves will also be established to be applied in the model. Since the real 

data were not found for the wave conditions it was considered to apply a guideline from 

NORSOK N-003, which mentions a simplified method to define a design wave. The suitable 

wave height H100, which corresponds to a 100 year wave (i.e. an annual probability of 

exceedance is equal to 10-2), can be defined as a significant wave height Hs multiplied by 1.9 

(NORSOK, 2007). Also, according to the method mentioned in the standard the wave period is 

varied within the range: 
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To simulate the loading scenarios, a set of design wave periods can now be calculated by 

using the previously described method from NORSOK N-003. (see Appendix E2) A range of 

design wave heights is set due to an insufficient data for significant wave heights in the area of 

the Kara Sea. As a result, the wave conditions can be simulated to represent the operational 

conditions of the drilling riser. 

The propagation direction of waves is assumed to be in the same direction as the sea 

current and wind, contemporaneously (i.e. 180o direction relative to global axes).  

Hence, the input data for waves is established to simulate a satisfactory representation of 

sea conditions for the riser analysis and results are presented in Table 6-6. 

 

Wave Height, H 
(m) 

T1 
(s) 

T2 

(s) 
1 3 - 
2 5 - 
3 5 - 
4 6 - 
5 6 7 
6 7 - 
7 7 - 
8 8 9 
9 8 - 
10 9 10 

Table 6-6. Design wave heights with associated periods 

 

6.2.4. Additional Considerations and Assumptions 
 

The drilling riser analysis is performed with regard to operational and worst-case 

scenarios, i.e. the drilling and non-drilling modes. 

According to ISO 13624-1 and API RP16Q standards the riser should always be kept 

under the minimum required top tension during the simulation, ensuring the riser system 

stability. Moreover, the tension should accommodate for dynamic effects by setting slightly 

higher values for tensioners. The minimum top tension is calculated and applied for four 

tensioners as modeled in the program. For simplification purposes each tensioner in the model 

represents three real tensioners on board of the drilling rig.  The tension is varied for each 

drilling riser configuration being a function of weight, internal and external pressure of fluid at 

the bottom of the riser. The calculations according to standards (see Chapter 2) are given in 

detail in Appendix D and the results are presented in Table 6-7. 
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Riser Configuration 
Drilling Fluid 

Density 
(kg/m3) 

Total 
Tension 

(N) 

Number of 
Tensioners 

Tensioner 
Setting 

(N) 

21 inch steel riser 

1025 533153.9 

4 

133288.5 
1438 648725 162181.3 
1678 715885 178971.3 
2037 816345.2 204086.3 

16 inch steel riser 

1025 315317.9 78829.5 
1438 382187.5 95546.9 
1678 421046.4 105261.6 
2037 479172.8 119793.2 

21 inch aluminum riser 

1025 182377.7 45594.4 
1438 297948.9 74487.2 
1678 365108.9 91277.2 
2037 465569 116392.3 

16 inch aluminum riser 

1025 107277.6 26819.4 
1438 174147.2 43536.8 
1678 213006.1 53251.5 
2037 271132.5 67783.1 

Table 6-7. Tensioner settings 

 

In order to simplify the simulation, the drilling rig is assumed to be kept without any 

movement by anchors neglecting the drift-off and drive-off of the rig. 

The total simulation is run for 30 seconds that enables to account for one wave period in 

build-up stage. This is also implemented to reduce the transient effects since at least one wave 

period for the build-up stage is required in the OrcaFlex program. The wave development is 

verified for this specific sea state. The rest of wave periods for main simulation time are 

considered to be sufficient for this project to get into a steady state condition for simulations 

taking a regular wave as an option. The time step is selected to vary with a time of 0.1 second.  
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6.3. Analysis Results and Discussions 
 

The modelled riser configurations discussed in Chapter 6.2.2 was performed to examine 

the response and performance of 21 inch and 16 inch riser during drilling operations at arctic 

conditions of the Kara Sea. The limitations of meteorological and oceanographic conditions for 

each drilling riser were obtained by simulation of several different design wave heights. This is 

also done with intention to investigate what are the capabilities of various risers to implement 

operations in a safe and efficient manner at the specified water depth of 100 m. 

 In this chapter, the simulation results of 21 inch conventional and 16 inch slim riser will 

be described in terms of design parameters such as the effective tension, maximum upper and 

lower flex/ball joint angles, and Von-Mises stress. In addition, these parameters will be 

considered with regard to risers of diverse materials such as steel and aluminum. All decisions 

and recommendations for the operation will be defined according to limitation criterions from 

API RP 16Q, ISO 13624-1 and DNV-OS-F201 standards which are described in Chapter 2 of the 

thesis. 

 For comparison of risers the drilling mud weight density will be used with range from the 

lightest one of 8.55 ppg (i.e. seawater with density of 1025 kg/m3) to the heaviest density of 17 

ppg (2037 kg/m3). 

 The drilling riser will always be exposed to an internal overpressure, even if the seawater 

is used as the drilling fluid, due to the fact that the height of the drilling fluid column inside the 

riser is higher than the seawater column outside (the top connection of the riser is located at 27.5 

m above the mean sea level for this particular case). According to DNV-OS-F201 the burst 

check calculations, which are presented in Appendix A, were performed for all risers. All riser 

configurations with different material properties are designed without any risk for the burst of 

the main riser pipe since the minimum required wall thickness is much lower than the proposed 

thickness of the riser wall taken from specifications. 

 The analysis results are shown through Figures 6-18 to 6-31 and the remaining outcomes 

can be found in Appendix F. From all factors that were mentioned previously it can be noticed at 

once that drilling fluid densities and riser materials have great influence on all parameters that 

should be fulfilled  according to guidelines in the analysis of the drilling riser. 

 The 21 inch conventional riser has shown better capabilities as opposed to the 16 inch 

slim drilling riser and therefore the 21 inch riser gives competitive advantages during drilling in 

the Kara Sea.  
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6.3.1. Effect of the wave height on the effective tension with regard to various drilling fluids 
 

The effective top tension results are presented in Figure 6-18 and Figure 6-19 since 

tensile limits for all configurations of the drilling riser have great values it is not shown in these 

Figures. However, the calculation results of allowable limits for the effective tension are 

presented in Table 6-8.  

 

Riser Configuration Tensile Limit 
(kN) 

21 inch steel riser 5915,7 
16 inch steel riser 3883 

21 inch aluminum riser 2130 
16 inch aluminum riser 1398 

Table 6-8. Allowable limits for the effective tension of various riser configurations 

 

As it can be observed that the effective tension is dependent of the wave height, and 

increasing with increasing wave heights during simulation. Moreover, the effective top tension 

depends on the drilling fluid density used in operations. The tension is lower with light drilling 

fluid and gets higher when utilizing heavy drilling fluid.  

The top tension will always be applied to the drilling riser. For reduction of large angles 

at the flex/ball joints the top tension can be set higher provided that the effective tensile doesn’t 

cross the tensile limit and also the Von-Mises stress doesn’t cross the stress limit. The applied 

top tension also in turn will lead to increase in the bottom effective tension and axial stress. 

In addition, it should be noticed that the apparent weight of LMRP and BOP stack was 

not specified in the model. In reality the variations in the bottom effective tension will be 

transferred to the lower flex/ball joint initially, then to LMRP/BOP stack, and to wellhead 

finally. The wellhead will therefore be exposed to tension which can be very high depending on 

the bottom effective tension. Thus, this dynamic loading can cause the wellhead fatigue and 

assessment may need to be carried out prior to operations. 
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Figure 6-18. Maximum Effective Top Tension for 16 inch and 21 inch steel risers 

 

 
Figure 6-19. Maximum Effective Top Tension for 16 inch and 21 inch aluminum risers 

 

6.3.2. Effect of the wave height on the Von-Mises stress with regard to various drilling fluid 
densities 

 

The results of the Von-Mises stress in risers for various drilling fluid densities are 

depicted from Figure 6-20 until Figure 6-23. It is worth to note that the Von-Mises stress is 

significantly increasing for 16 inch and 21 inch steel risers during simulation of waves with 

height of 6 and 7 m. Upon discussions with my scientific supervisor and people with a great 

expertise in OrcaFlex software we came to know that this effect is occurred due to a resonance of 

the drilling riser.  

As it has already been noted the 21 inch conventional riser has better mechanical 

properties (e.g. moment of inertia for bending and cross-sectional area for tension) than the 16 

inch slim riser, despite that both have the same pipe grade A36 steel alloy in the first option and 
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aluminum alloy as the second option of the riser material, and as a result the conventional riser 

has lower stresses for all types of the drilling fluid. As it can be seen from the Figures, the 

combined effect of stresses (Von-Mises stress) in steel risers are already crossing the allowed 

limit for stresses when simulating the wave height of 6 to 7 m and using drilling fluids with 

density of 12 to 17 ppg. The Von-Mises stress in aluminum risers are crossing the allowable 

limit during simulating the wave height of 4 to 5 m and using drilling fluids with density of 8.55 

to 17 ppg. Therefore this is not an auspicious option to increase the top tension due to large 

angles of the drilling riser. As described in Chapter 4.3 the Von Mises stress is the fundamental 

criteria combining the axial, radial, and hoop stress. The drilling operations performed with 

heavy drilling fluid in deep-water areas tend to induce hoop stress in the risers. Thus, keeping the 

rig offsets under control is thought to be more favorable option for reduction of riser angles. 

However, if the mentioned methods do not give any positive changes and the situation gets into 

the worst case scenario, the riser must be disconnected.  

 

 
Figure 6-20. Maximum Von-Mises Stress (1025 kg/m3) 
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Figure 6-21. Maximum Von-Mises Stress (1438 kg/m3) 

 

 
Figure 6-22. Maximum Von-Mises Stress (1678 kg/m3) 

 

 
Figure 6-23. Maximum Von-Mises Stress (2037 kg/m3) 
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6.3.3. Effect of the wave height on the maximum upper flex ball/joint angle with regard to 
various drilling fluid densities 

 

 From Figure 6-24 to Figure 6-27, it can be noticed that the maximum angles for upper 

flex/ball joint give the satisfactory outcomes since the riser angles fulfill the API and ISO 

requirements for allowable inclinations of the riser. However, the 16 inch aluminum riser with 

heavy drilling fluids (12, 14 and 17 ppg) is not capable to operate in extreme conditions with 

wave heights of 9 to 10 m. Also, it is clear that maximum upper flex/ball joint angle is increasing 

with increasing wave height. 

 

 
Figure 6-24. Maximum Upper Flex Ball/Joint Angle (1025 kg/m3) 

 

 
Figure 6-25. Maximum Upper Flex Ball/Joint Angle (1438 kg/m3) 
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Figure 6-26. Maximum Upper Flex Ball/Joint Angle (1678 kg/m3) 

 

 
Figure 6-27. Maximum Upper Flex Ball/Joint Angle (2037 kg/m3) 

 

6.3.4. Effect of the wave height on the maximum lower flex ball/joint angle with regard to 
various drilling fluid densities 

 

 The maximum angles for lower flex/ball joint of various riser systems are shown in 

Figure 6-24 to Figure 6-27. It can be seen from these Figures that the results are satisfactory 

since angles of the riser inclination fulfill the requirements of  API and ISO standards. Only the 

16 inch aluminium riser with light drilling fluids (8.55 and 12 ppg) is not suitable for operations 

in extreme conditions with wave heights of 9 to 10 m as in case of maximum upper flex/ball 

joint angle. However, the 16 inch aluminium riser becomes more stable as expected when using 

the heavier drilling fluid (14 and 17 ppg) and the maximum angle of lower flex/ball joint gets 

lower so that its value does not cross the allowable API limit. 
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 Figure 6-28. Maximum Lower Flex Ball/Joint Angle (1025 kg/m3) 

 

 
Figure 6-29. Maximum Lower Flex Ball/Joint Angle (1438 kg/m3) 

 

 
Figure 6-30. Maximum Lower Flex Ball/Joint Angle (1678 kg/m3) 
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Figure 6-31. Maximum Lower Flex Ball/Joint Angle (2037 kg/m3) 
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6.4. Simulation in ANSYS Software 
 

The ANSYS program is considered to be utilized in the thesis with a main purpose to 

study static loads acting on the drilling riser. As described in Chapter 6.1.3.1 OrcaFlex does not 

enable to include wave forces during static simulation ANSYS is used to apply all possible loads 

simultaneously taking into account wave forces. ANSYS Workbench 15.0 has a powerful tool 

which is called Static Structural Analysis and which allows rapid solving of challenging 

engineering tasks. This tool may also provide with relevant data on stresses and deformations in 

the drilling riser as results of simulation.  

The ANSYS tools are based on a well-known finite element method to model the 

behavior of the drilling riser under the action of specified wave, current and tension forces.  

The modeling procedure can be subdivided into several stages. A simplified model of the 

drilling riser is created initially. A full description of the model creation will be presented in the 

following chapter. Then ambient environment should be specified as similar as possible to the 

conditions of the Kara Sea area. Afterwards all loads are calculated manually and applied to the 

riser. Finally, the simulation can be run to examine the response of the riser and stresses and 

deformations caused by loads.  

 

6.4.1. General Description 
 

The model in ANSYS is established describing step-by-step each element in the scheme 

as shown in Figure 6-31. 

 
Figure 6-32. Scheme of the Static Structural Analysis 

 

Engineering Data – the data base of materials is used at this stage in order to specify the 

properties of the riser material in the model.  

Geometry – a 3D element structure is created representing the drilling riser. 
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Model – the most complicated part of the Finite Element Analysis, involving the materials 

assignment for the riser; creation of the mesh and its adjustment; description of loads, boundary 

conditions and environment; and finally solution and evaluation of results. 

Therefore, prior to the analysis of outcomes, each section in the scheme of Static 

Structural Analysis should be optimized and implemented according to a maximum accuracy of 

calculations and computational capabilities of the ANSYS software. 

 

6.4.2. Engineering Data 
 

Materials used for the drilling riser should correspond to the design requirements when 

specifying their properties in the program. As describe in Chapter 6.2.2 two types of material 

such as A36 structural steel and aluminum alloy are considered for the drilling riser. Thus, 

materials are determined in ANSYS by the stress-strain data, density, and other properties. 

 

 
Figure 6-33. Materials Set-up at Engineering Data section 

 

6.4.3. Input Data for Environmental Conditions 

 

The input data for the environment used in ANSYS model is presented in Table 6-9.  

 

Parameter Value Dimension 
Air density 1 kg/m3 

Water density 1025 kg/m3 
Kinematic viscosity 1.35 ∙ 10-6 m2/s 
Water temperature 2 ̊ C 

Table 6-9. Input data for the environment 

 

The environmental conditions were specified in the model similar to the Kara Sea region 

for the summer period since drilling operations can only be carried out during the open water 

season. 
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6.4.3. Model Setup 
6.4.3.1. Geometry of Model 

 

The modeling of the riser structure in ANSYS was performed on the basis of a detailed 

three-dimensional (3D) element model. The 3D model was created in the software called 

Autodesk Inventor Professional and was imported into the Geometry section of the project 

afterwards. 

For simplification purposes the riser model was built as a beam or pipe which is 

approximately vertical at all times. In order to study the only behavior of the main riser pipe the 

auxiliary lines were neglected. All dimensions for various riser configurations were taken the 

same as describe as in OrcaFlex software (see Chapter 6.2.2). 

Finally, two different models were established since 16 inch and 21 inch riser 

configurations were examined and assessed in the previous Chapter 6.1.  

Figure 6-33 shows an example of the 21 inch drilling riser model in Autodesk Inventor 

and ANSYS software. 

  
Figure 6-34. The 21 inch drilling riser model in Autodesk Inventor (on the left) and a 

partially shown 3D model with created mesh in ANSYS (on the right) 
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Figure 6-35. Illustration of the top view to the 21 inch drilling riser 

 

6.4.3.2. Meshing 
 

The mesh was applied to the riser model with length of 1 m each cell for all riser 

configurations. As a result the model is comprised of 1600 elements on the basis of 11280 nodes’ 

coordinates. The relevance of meshing is chosen to be equal -100 for simulation since a higher 

resolution is not available in an academic version of ANSYS. 

 

6.4.4. Description of Loads  
 

This section is devoted to thorough description of loads’ calculations caused by current 

and waves. The calculations are based on the theory discussed in Chapter 4.5.3.  

In this part of the thesis it is suggested to consider two options for waves’ height. The 

first option is the wave with height of 2.5 m since this wave height is the most frequently 

occurred in the Kara Sea. The second option is proposed to be the wave with height of 8 m as the 

maximum observed wave height in the Kara Sea region. 

The configuration of the 21 inch drilling riser operated at the wave height of 2.5 m is 

taken as an example for calculations of wave and current forces. 
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Input Data 

 

Parameter Designation Value Dimension 
Wave height H 2.5 m 

Wave amplitude ξ0 1.25 m 
Period T 5 s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.533 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  
Mass coefficient CM 1.2  

 

Calculations 

 

1. Wave amplitude: 

mH 25.1
20 ==ξ                  (6.4)

 
 

2. Wave length: 

mTgL 1.39
2

2

=
⋅

=
π

                 (6.5)
 

 

3. Angular velocity: 

13.12 −== s
T
πω                  (6.6)

 
 

4. 161.02
==

L
k π

                 (6.7) 

 

5. Checking deep water criterion: 

area water deep -5.055.2 >=
L
d

               (6.8)
 

 

6. Checking conditions for Morison’s equation: 

 

2.0014.0 <=
L
D

               (6.9)
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 weavesbreaking-non -14.0064.0 ≤=
L
H

         (6.10)
 

11.02.0 <→< a
D
a

         
    (6.11)

 

Assuming that the motion amplitude (a) for the drilling riser is negligible the 

Morison equation can be used safely to calculate the forces. 

 

7. Calculating the Keulegan-Carpenter number to check which term will dominate in

 the Morison equation: 

ππ 7.4=
⋅

=
D

HN KC             (6.12)
 

Hence, both the drag and mass term will be taken into account in the equation. 

 

8. The Morison equation can be written as follows: 

   uuDСuCD
DfMftzf DM ⋅⋅⋅⋅⋅+⋅⋅
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2ξ ξ

ρπρ
d d

DM dzuuDСdzuCDtF    (6.15)
 

 

The maximum force in the mass term is found at maximum acceleration but the 

maximum force in the drag term is found at maximum velocity. These maximum values 

cannot be added together since the velocity is based on a sinus function and the 

acceleration is based on a cosines function. That means that they are out of phase (90 

degrees) and it is not possible to have the maximum velocity and maximum acceleration 

simultaneously. The equation can be solved using a graphical method when each 

contributing term is plotted on a timeline and the maximum force is found graphically. 

 

9. For deep water zone the horizontal velocity and acceleration can be presented as the

 following: 

 

    ( ),sin0 te
gk

u kz ω
ω

ξ
⋅=

 
( )tgkeu kz ωξ cos0 ⋅=    (6.16) (6.17) 
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Therefore 
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Finally, the expression for the total force calculation can be presented in the next form: 

( ) ( ) ( )[ ]+−⋅⋅⋅





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10.  All derived expressions can now be plotted for a 5.5 s (and 10.5 s for illustration) 

 wave period and the maximum force impact can be found afterwards.  

It is important to notice that the integration is performed up to ξ0. This is a 

conservative simplification because in reality the maximum force occurs in a place 

between the wave crest and still water level for a given time period. That implies that to 

be theoretically correct the equation have to be solved for maximum force with variable 

upper-integration limit, varying from 0 to ξ0. 
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11.  

 
Figure 6-36. Drag, Mass and Total Force of wave 

 

 The drag, mass and total forces are shown in Figure 6-35 as a function of time. It 

can be observed from Figure the forces express negative values as well but the only 

positive values should be taken into account. 

FTotal = 4500 N is at the maximum when t ≈ 0.7 s. 

 

12.  However, the maximum total force should also be defined and plotted as a 

function of the water depth. The water depth (z) varies from the top point at the wave 

crest (ξ0 = 1.25 m) to the depth at which the maximum total force has any observed 

impact (FTotal (t = 0.7 s) is approximately equal to 0). The step of depth variation is 

chosen to be equal to 1 m since the size of the cell in the ANSYS model is specified as 1 

m. 
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Figure 6-37. Distribution of Drag, Mass and Total Force of wave over the water depth 

 

For remaining riser configurations and various wave heights the detailed calculations of 

forces are presented in Appendix G and Excel file on DVD. 

 

 Since the drilling riser is also exposed to the sea current therefore current forces should 

be determined in order to apply them on the riser structure in the ANSYS model. For calculation 

of forces acting on the riser at a constant current the only drag term is taken into consideration in 

the Morison equation. The distribution of the current velocity over the water depth can be found 

by the Power Law equation used in OrcaFlex (see Appendix E and Chapter 6.2.3). 

Input Data 

 

Parameter Designation Value Dimension 
Current velocity at 

the surface  S0 1 m/s 

Current velocity at 
the sea bottom Sb 0.2 m/s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.533 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  

Power Law 
Exponent Exponent 0.3  
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Calculations 

 

1. Current velocity: 

( ) ( ) ( )( ) ( ) Exponent
bfbbfb zzzzSSSzS /1/ −−×−+=          (6.22) 

where z varies from 0 to 90 m as the bottom end of the riser is located 10 m above the 

seabed. 

2. Average velocity of the current: 

2
1++

= nn
average

SS
S              (6.23) 

3. Finally the drag force can be calculated using the following equation: 

( ) zuDСdzuuDСdztzfFF D
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D

z
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DDTotal ∆⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=== ∫∫

∆−∆−

2
'

'

'

' 2
1

2
1, ρρ      (6.24) 

 where u = Saverage 

 The step of the water depth variation (∆z) is equal to 1 m due to the cell length    

(1 m) in the mesh created on the riser structure. 

 

4. The calculation results are presented in Table 6-10. 

 

Water Depth, 
z ∆z Current Velocity,  

S(z) 

Average 
Velocity of the Current, 

Saverage 

Drag Force, 
FD 

m m m/s m/s N 
0 - 1,000 - - 
-1 1 0,974 0,987 279 
-2 1 0,948 0,961 265 
-3 1 0,923 0,935 251 
-4 1 0,898 0,910 238 
-5 1 0,874 0,886 225 
-6 1 0,851 0,863 213 
-7 1 0,828 0,840 202 
-8 1 0,806 0,817 191 
-9 1 0,784 0,795 181 
-10 1 0,763 0,774 172 
-11 1 0,742 0,753 163 
-12 1 0,722 0,732 154 
-13 1 0,703 0,713 146 
-14 1 0,684 0,693 138 
-15 1 0,665 0,675 131 
-16 1 0,647 0,656 124 
-17 1 0,630 0,639 117 
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-18 1 0,613 0,621 111 
-19 1 0,596 0,605 105 
-20 1 0,580 0,588 99 
-21 1 0,565 0,572 94 
-22 1 0,549 0,557 89 
-23 1 0,535 0,542 84 
-24 1 0,520 0,528 80 
-25 1 0,507 0,514 76 
-26 1 0,493 0,500 72 
-27 1 0,480 0,487 68 
-28 1 0,468 0,474 64 
-29 1 0,455 0,462 61 
-30 1 0,444 0,450 58 
-31 1 0,432 0,438 55 
-32 1 0,421 0,427 52 
-33 1 0,411 0,416 50 
-34 1 0,400 0,405 47 
-35 1 0,390 0,395 45 
-36 1 0,381 0,386 43 
-37 1 0,371 0,376 41 
-38 1 0,363 0,367 39 
-39 1 0,354 0,358 37 
-40 1 0,346 0,350 35 
-41 1 0,338 0,342 34 
-42 1 0,330 0,334 32 
-43 1 0,323 0,327 31 
-44 1 0,316 0,319 29 
-45 1 0,309 0,312 28 
-46 1 0,303 0,306 27 
-47 1 0,296 0,299 26 
-48 1 0,290 0,293 25 
-49 1 0,285 0,288 24 
-50 1 0,279 0,282 23 
-51 1 0,274 0,277 22 
-52 1 0,269 0,272 21 
-53 1 0,265 0,267 20 
-54 1 0,260 0,262 20 
-55 1 0,256 0,258 19 
-56 1 0,252 0,254 18 
-57 1 0,248 0,250 18 
-58 1 0,244 0,246 17 
-59 1 0,241 0,243 17 
-60 1 0,238 0,239 16 
-61 1 0,235 0,236 16 
-62 1 0,232 0,233 16 
-63 1 0,229 0,230 15 
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-64 1 0,227 0,228 15 
-65 1 0,224 0,225 15 
-66 1 0,222 0,223 14 
-67 1 0,220 0,221 14 
-68 1 0,218 0,219 14 
-69 1 0,216 0,217 14 
-70 1 0,214 0,215 13 
-71 1 0,213 0,214 13 
-72 1 0,211 0,212 13 
-73 1 0,210 0,211 13 
-74 1 0,209 0,210 13 
-75 1 0,208 0,208 12 
-76 1 0,207 0,207 12 
-77 1 0,206 0,206 12 
-78 1 0,205 0,206 12 
-79 1 0,204 0,205 12 
-80 1 0,204 0,204 12 
-81 1 0,203 0,203 12 
-82 1 0,203 0,203 12 
-83 1 0,202 0,202 12 
-84 1 0,202 0,202 12 
-85 1 0,201 0,202 12 
-86 1 0,201 0,201 12 
-87 1 0,201 0,201 12 
-88 1 0,201 0,201 12 
-89 1 0,201 0,201 12 
-90 1 0,200 0,200 12 

Table 6-10. Drag force calculations 

 

 
Figure 6-38. Average velocity of the current over the water depth 
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Figure 6-39. Distribution of the Drag Force over the water depth 

 

The detailed calculations of the drag force for the case of 16 inch riser can be 

found in Appendix G and Excel file on DVD. 

Therefore, all forces acting on the drilling riser are calculated and can be applied 

to the riser structure in ANSYS.  First wave forces are applied to a middle of each cell 

along the length of the riser and then current forces are applied in the same principle. In 

order to investigate the maximum impact of loads on the riser all forces are chosen to act 

in the same direction (in positive direction of the x-axis). 

The effect of wind forces on the drilling riser is not taken into account in the 

model since it has given a negligible impact during simulation in OrcaFlex. 

The pressure exerted by the drilling fluid inside the riser should be taken into 

consideration. Thus, it was decided to choose the heaviest drilling fluid with the density 

of 2037 kg/m3 (17 ppg) because it may induce large hoop stresses in the riser walls.  

The external pressure acting on the drilling riser was also included in the model. 

Since the riser is submerged by 90 m into the water the pressure of external fluid is 

applied to a 90 m part of the riser out of the whole its length. 

The top tension for various riser configurations is taken based on calculations of 

the minimum required top tension, which are described in detail in Appendix D and 

Chapter 6.2.4. 

The top boundary condition for the drilling riser is taken as the rig displacement, 

which is equal to 0 since the drift off and drive off motions were assumed to be 

negligible. As describe in Chapter 6.2.2 the riser is connected to the LMRP by Lower 

Flex Joint; therefore, the bottom boundary condition of the riser model is fixed in all 

directions. 
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6.4.5. Analysis Results and Discussions 
 

Two configurations of the drilling riser were simulated in ANSYS to examine the 

performance and behavior of both 16 inch and 21 inch riser at static conditions. The design wave 

heights were selected to represent normal (2.5 m) and extreme (8m) operational conditions. By 

applying different materials it will be ascertained what are the limiting properties for the riser 

material to perform operations safely at the designed water depth of 100 m. 

The results of simulations are shown in Figures 6-39 through 6-46.  

The fundamental Von-Mises stress of the 16 inch and 21 inch riser is compared since it 

gives a clear picture of stresses caused by loads on the drilling riser. In the first option both 16 

inch and 21 inch riser have the same grade of the material as A36 structural steel; however, the 

16 inch slim riser has higher stresses in all situations, as anticipated. The same conclusion as in 

the previous case can be made for the option of 16 inch and 21 inch aluminum risers. The 16 

inch and 21 inch aluminum risers are not safe to be operated in the presence of waves with 

height of 8 m as the maximum anticipated Von-Mises stress for these riser configurations is 

higher than the allowable limit (60.3 MPa) for the stresses. However, if the situation tends to 

reach the worst-case scenario (non-drilling mode) the riser can be disconnected and drilling rig 

can be moved to a safe location. 

All steel risers have performed well during simulations and appear more robust than 

aluminum riser configurations. From the thesis concern and economical point of view the 16 

inch steel riser is suggested for drilling operations in the Kara Sea. 

It is also important to emphasize that simulations were carried out at static conditions in 

ANSYS software and at dynamic conditions in OrcaFlex. Therefore, analysis results obtained 

from ANSYS cannot be compared directly with outcomes gained out of analysis after 

simulations in OrcaFlex. 
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Figure 6-40. Von-Mises stress distribution in the 21 inch steel riser at the wave height of 2.5 

m 
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Figure 6-41. Von-Mises stress distribution in the 21 inch steel riser at the wave height of 8 

m 
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Figure 6-42. Von-Mises stress distribution in the 21 inch aluminum riser at the wave height 

of 2.5 m 

91 
 



 
Figure 6-43. Von-Mises stress distribution in the 21 inch aluminum riser at the wave height 

of 8 m 
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Figure 6-44. Von-Mises stress distribution in the 16 inch steel riser at the wave height of 2.5 

m 
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Figure 6-45. Von-Mises stress distribution in the 16 inch steel riser at the wave height of 8 

m 
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Figure 6-46. Von-Mises stress distribution in the 16 inch aluminum riser at the wave height 

of 2.5 m 
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Figure 6-47. Von-Mises stress distribution in the 16 inch aluminum riser at the wave height 

of 8 m 
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7. SUMMARY AND CONCLUSIONS 
 

The assessment and analysis of 16 inch and 21 inch risers were performed to examine 

their response and performance during drilling operations relevant to the arctic conditions of the 

Kara Sea. 

The assessment of drilling risers and recommendations are based on limitation criterions 

from API RP 16Q, ISO 13624-1 and DNV-OS-F201 standards, which are described in Chapter 2 

of the thesis. 

The analysis results have shown that for all of the criteria, that need to be fulfilled, riser 

angles and stresses are the most critical technical requirements since they are limiting the 

operation of both risers, and especially the 16 inch riser. The density of the drilling fluid also 

becomes a limiting factor in the presence of extreme waves. 

The burst check calculations were carried out for all risers according to DNV-OS-F201, 

by taking the drilling fluid with the heaviest density of 2037 kg/m3 (17 ppg). As a result, it was 

verified that all riser configurations with different material properties are designed without any 

risk for the burst of the main riser pipe. 

Therefore, summary of results and main conclusions of the Master thesis are the 

following: 

• Effect of the wave height on the effective tension 

The effective tension is dependent of the wave height, and increasing with increasing 

wave heights during simulation. Moreover, the effective top tension depends on the drilling fluid 

density. The tension is lower with light drilling fluid and gets higher when using heavy drilling 

fluid.  

• Effect of the wave height on the Von-Mises stress 

16 inch, 21 inch steel and 21 inch aluminum risers show satisfactory results except for the 

design wave height of 6 and 7 m. These wave heights led to anomalous behavior and produce 

inacceptable stresses in the risers due to the resonance effect. The response of steel risers also 

allows to conclude that careful assessment and design should be performed previous to the 

drilling operations, especially in challenging arctic conditions, with high safety margin 

requirements. 

As expected, the conventional 21 inch riser has lower stresses for all types of the drilling 

fluid at all design wave heights. 
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• Effect of the wave height on the maximum upper flex ball/joint angle 

 The maximum angles for upper flex/ball joint of risers fulfilled the API and ISO 

requirements for allowable inclinations of the riser. However, the 16 inch aluminum riser with 

heavy drilling fluids (12, 14 and 17 ppg) is not capable to withstand the wave heights of 9 to 10 

m, which are considered extreme conditions. Also, it is clear that maximum upper flex/ball joint 

angle is increasing with increasing wave height. 

• Effect of the wave height on the maximum lower flex ball/joint angle 

The maximum lower flex ball/joint angle of various risers fulfilled the requirements of  

API and ISO standards. Only the 16 inch aluminium riser with light drilling fluids (8.55 and 12 

ppg) is not suitable for operations in extreme conditions with wave heights of 9 to 10 m. 

However, the 16 inch aluminium riser can be used when using the heavier drilling fluid (14 and 

17 ppg) since it then becomes more stable and the maximum lower flex/ball joint angle gets 

within the  allowable API limit. 

The static analysis was performed in ANSYS Workbench 15.0. Riser configurations for 

modeling in ANSYS software are the same as used for the simulations in OrcaFlex. On the basis 

of analysis results it was conclude that the 16 inch and 21 inch steel risers have performed well 

in comparison with the 16 inch and 21 inch aluminum risers. However, aluminum risers can also 

be used for drilling operations in the Kara Sea since the disconnection mode can be activated 

during the worst-case scenario. 

Since the dynamic analysis has shown the existence of the anomaly region for stresses in 

drilling risers OrcaFlex software can be highly recommended for the use during riser assessment. 

However, ANSYS software based on the well-known finite element method is also 

recommended to examine the distribution of stresses in riser walls and is considered to be a 

powerful tool giving precise and trustful results. 

 

Recommendations and suggestions for the future research  
 

The models built in ANSYS and OrcaFlex can be used as a basis for further research, 

preferably with real data for waves and sea current profile.  

Further the soil and lower stack should be modeled in more detail since the apparent 

weight of LMRP and BOP stack was not specified during the modeling in OrcaFlex. In reality 

the variations in the bottom effective tension will be transferred to the lower flex/ball joint 
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initially, then to LMRP/BOP stack, and to wellhead finally. The wellhead will therefore be 

exposed to tension which can be very high depending on the bottom effective tension. Thus, this 

dynamic loading can cause the wellhead fatigue and assessment may need to be carried out prior 

to operations. 
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APPENDIX A 
 

BURST DNV-OS-F201 (2010) – 21 INCH STEEL RISER 

 

Calculation Input Data 

Outer Diameter, D = 21 in = 533,4 mm 
Specific Minimum Yield Stress, SMYS = 250 MPa = 36259,4 Psi 

Specific Minimum Tensile Strength, SMTS = 400 MPa = 58015,1 Psi 
Yield stress temperature derating factor, fy, temp = 0 MPa = 0 Psi 

Tensile strength temperature derating factor, fu, temp = 0 MPa = 0 Psi 
Material strength factor, au = 0,96     

Material resistance factor, mγ  = 1,15     
Safety class resistance factor, SCγ  = 1,26     

Water depth, d = 100 m = 328,1 ft 
Starting elevation of internal fluid, h0 = 27,5 m = 90,2 ft 

Internal fluid density, iρ  = 17 ppg = 2036,6 kg/m3 

Seawater density, eρ  = 8,555 ppg  1025 kg/m3 

Maximum surface design pressure, pd = 0 MPa = 0 Psi 
 

Calculation Output Data 

Yield stress, fy = (SMYS-fy,temp) · αu = 240 MPa = 34809,1 Psi 
Tensile Strength, fu = (SMTS-fu,temp) · αu = 384 MPa = 55694,5 Psi 

Height of internal fluid column, h = d + h0 = 27,5 m = 418,3 ft 

Local internal design pressure, Pld = pd + hgi ⋅⋅ρ   = 2,55 MPa = 369,5 Psi 

Local incidental pressure, pli = pld + 0.1· pd = 2,55 MPa = 369,5 Psi 

Local external pressure, pe = hge ⋅⋅ρ  = 1,28 MPa = 185,9 Psi 
 

Minimum required wall 
thickness without allowance 

and tolerances, 

 
t1 

 
= 

( ) 115.1
;min

3
4

+
−









⋅
eliSCm

u
y

pp

ff

D

γγ
 

 
= 

 
1,76 

 
mm 

 
= 

 
0,07 

 
in 
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BURST DNV-OS-F201 (2010) – 16 INCH STEEL RISER 

 

Calculation Input Data 

Outer Diameter, D = 16 in = 406,4 mm 
Specific Minimum Yield Stress, SMYS = 250 MPa = 36259,4 Psi 

Specific Minimum Tensile Strength, SMTS = 400 MPa = 58015,1 Psi 
Yield stress temperature derating factor, fy, temp = 0 MPa = 0 Psi 

Tensile strength temperature derating factor, fu, temp = 0 MPa = 0 Psi 
Material strength factor, au = 0,96     

Material resistance factor, mγ  = 1,15     
Safety class resistance factor, SCγ  = 1,26     

Water depth, d = 100 m = 328,1 ft 
Starting elevation of internal fluid, h0 = 27,5 m = 90,2 ft 

Internal fluid density, iρ  = 17 ppg = 2036,6 kg/m3 

Seawater density, eρ  = 8,555 ppg  1025 kg/m3 

Maximum surface design pressure, pd = 0 MPa = 0 Psi 
 

Calculation Output Data 

Yield stress, fy = (SMYS-fy,temp) · αu = 240 MPa = 34809,1 Psi 
Tensile Strength, fu = (SMTS-fu,temp) · αu = 384 MPa = 55694,5 Psi 

Height of internal fluid column, h = d + h0 = 27,5 m = 418,3 ft 

Local internal design pressure, Pld = pd + hgi ⋅⋅ρ   = 2,55 MPa = 369,5 Psi 

Local incidental pressure, pli = pld + 0.1· pd = 2,55 MPa = 369,5 Psi 

Local external pressure, pe = hge ⋅⋅ρ  = 1,28 MPa = 185,9 Psi 
 

Minimum required wall 
thickness without allowance 

and tolerances, 

 
t1 

 
= 

( ) 115.1
;min

3
4

+
−









⋅
eliSCm

u
y

pp

f
f

D

γγ
 

 
= 

 
1,34 

 
mm 

 
= 

 
0,05 

 
in 
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APPENDIX B 
 

MAIN RISER PIPE PROPERTIES CALCULATION – 21 INCH STEEL RISER 
 

Calculation Input Data 

Pipe outer diameter, Do = 0,533 m = 21 in 
Pipe inner diameter, Di = 0,489 m = 19,3 in 

Modulus of elasticity, E = 207 GPa 
   Poisson ratio, v = 0,293 

     

Calculation Output Data 
 

Wall thickness, 
 
WT 

 
= 2

io DD −
 

 
= 

 
0,02200 

 
m 

 
= 

 
0,866 

 
in 

 
Cross-sectional area, 

 
Az 

 
= ( )22

4 io DD −
π

 
 

= 
 

0,03530 
 
m2 

  

  
Moment of inertia, 

 
Ix 

 
= ( )44

64 io DD −
π

 
 

= 
 

0,00115 
 
m4 

  

  
 

Modulus of rigidity, G 
 

= ( )υ+12
E

  
= 

 
80,05 

 
  GPa 

    
 

Polar moment of inertia, 

 
 
Jzz 

 
 

= 

 

( )44

32 io DD −
π

 

 
 

= 

 
 

0,00231 

 
 
m4 

   

 
Bending stiffness, 

 
= xIE ⋅  = 238,9     103 kN· m2 

   
Axial stiffness, 

 
= zAE ⋅  = 7,307     106 kN 

    
Torsional stiffness, 

 
= zzJG ⋅  = 184,8     103 kN· m2 
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MAIN RISER PIPE PROPERTIES CALCULATION – 16 INCH STEEL RISER 

 

Calculation Input Data 

 

Pipe outer diameter, Do = 0,406 m = 16 in 
Pipe inner diameter, Di = 0,368 m = 14,5 in 

Modulus of elasticity, E = 207 GPa 
   Poisson ratio, v = 0,293 

     

Calculation Output Data 
 

Wall thickness, 
 
WT 

 
= 2

io DD −
 

 
= 

 
0,01900 

 
m 

 
= 

 
0,748 

 
in 

 
Cross-sectional area, 

 
Az 

 
= ( )22

4 io DD −
π

 
 

= 
 

0,02309 
 
m2 

  

  
Moment of inertia, 

 
Ix 

 
= ( )44

64 io DD −
π

 
 

= 
 

0,00043 
 
m4 

  

  
 

Modulus of rigidity, G 
 

= ( )υ+12
E

  
= 

 
80,05 

 
  GPa 

    
 

Polar moment of inertia, 

 
 
Jzz 

 
 

= 

 

( )44

32 io DD −
π

 

 
 

= 

 
 

0,00087 

 
 
m4 

   

 
Bending stiffness, 

 
= xIE ⋅  = 89,7 103 kN· m2 

   
Axial stiffness, 

 
= zAE ⋅  = 4,779 106 kN 

    
Torsional stiffness, 

 
= zzJG ⋅  = 69,4 103 kN· m2 
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MAIN RISER PIPE PROPERTIES CALCULATION – 21 INCH ALUMINIUM RISER 

 

Calculation Input Data 

Pipe outer diameter, Do = 0,533 m = 21 in 
Pipe inner diameter, Di = 0,489 m = 19,3 in 

Modulus of elasticity, E = 70 GPa 
   Poisson ratio, v = 0,334 

     

Calculation Output Data 
 

Wall thickness, 
 
WT 

 
= 2

io DD −
 

 
= 

 
0,02200 

 
m 

 
= 

 
0,866 

 
in 

 
Cross-sectional area, 

 
Az 

 
= ( )22

4 io DD −
π

 
 

= 
 

0,03530 
 
m2 

  

  
Moment of inertia, 

 
Ix 

 
= ( )44

64 io DD −
π

 
 

= 
 

0,00115 
 
m4 

  

  
 

Modulus of rigidity, G 
 

= ( )υ+12
E

  
= 

 
26,24 

 
  GPa 

    
 

Polar moment of inertia, 

 
 
Jzz 

 
 

= 

 

( )44

32 io DD −
π

 

 
 

= 

 
 

0,00231 

 
 
m4 

   

 
Bending stiffness, 

 
= xIE ⋅  = 80,8     103 kN· m2 

   
Axial stiffness, 

 
= zAE ⋅  = 2,471     106 kN 

    
Torsional stiffness, 

 
= zzJG ⋅  = 60,6     103 kN· m2 
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MAIN RISER PIPE PROPERTIES CALCULATION – 16 INCH ALUMINIUM RISER 

 

Calculation Input Data 

 

Pipe outer diameter, Do = 0,406 m = 16 in 
Pipe inner diameter, Di = 0,368 m = 14,5 in 

Modulus of elasticity, E = 70 GPa 
   Poisson ratio, v = 0,334 

     

Calculation Output Data 
 

Wall thickness, 
 
WT 

 
= 2

io DD −
 

 
= 

 
0,01900 

 
m 

 
= 

 
0,748 

 
in 

 
Cross-sectional area, 

 
Az 

 
= ( )22

4 io DD −
π

 
 

= 
 

0,02309 
 
m2 

  

  
Moment of inertia, 

 
Ix 

 
= ( )44

64 io DD −
π

 
 

= 
 

0,00043 
 
m4 

  

  
 

Modulus of rigidity, G 
 

= ( )υ+12
E

  
= 

 
26,24 

 
  GPa 

    
 

Polar moment of inertia, 

 
 
Jzz 

 
 

= 

 

( )44

32 io DD −
π

 

 
 

= 

 
 

0,00087 

 
 
 m4 

   

 
Bending stiffness, 

 
= xIE ⋅  = 89,7    103 kN· m2 

   
Axial stiffness, 

 
= zAE ⋅  = 1,616    106 kN 

    
Torsional stiffness, 

 
= zzJG ⋅  = 22,7    103 kN· m2 
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APPENDIX D 
 

MINIMUM TOP TENSION CALCULATION by API RP 16Q – 21 INCH STEEL RISER 

 

Parameter Description Value 

mρ , kg/m3 Drilling Fluid Weight Density 1025 1438 1678 2037 

wρ , kg/m3 Sea Water Weight Density 1025 1025 1025 1025 

Hm, m Drilling Fluid Column to point of consideration 119,3 119,3 119,3 119,3 

Hw, m Sea Water Column to point of consideration 
including storm surge and  tide 93,8 93,8 93,8 93,8 

Hsw, m Sea Water Depth 100 100 100 100 
HLMRP+BOP, m Height of LMRP + BOP Stack 8,5 8,5 8,5 8,5 

Hwh, m Height of the Wellhead 1,5 1,5 1,5 1,5 

hTR-MSL, m Distance from Tensioner Ring to Mean Sea Level 10 10 10 10 
HS+T, m Height of Storm Surge +Tide 3,8 3,8 3,8 3,8 

hRKB-MSL, m Distance from RKB to Mean Sea Level 27,5 27,5 27,5 27,5 

hRKB-ML, m Distance from RKB to Mud Line 2 2 2 2 

Lr, m Length of the Riser 100 100 100 100 
Lr.sub, m Submerged Riser Length  90 90 90 90 

steelρ , kg/m3 Riser material density 7850 7850 7850 7850 

Dir, m Internal Diameter of the Riser 0,489 0,489 0,489 0,489 
Dor, m External Diameter of the Riser 0,533 0,533 0,533 0,533 

Di k/c, m Internal Diameter of the Kill/Choke Line 0,1143 0,1143 0,1143 0,1143 
Di mb, m Internal Diameter of the Mud Booster Line 0 0 0 0 
Ar, m2 Cross Sectional Area of Riser 0,035 0,035 0,035 0,035 

Ai, m2 Internal Cross Sectional Area of the Riser including 
auxiliary lines 0,208 0,208 0,208 0,208 

fwt 
Submerged Weight Tolerance Factor (minimum 
value = 1.05 unless accurately weighed) 1,05 1,05 1,05 1,05 

Bn 
Net Lift of Buoyancy Material above the point of 
consideration 0 0 0 0 

fbt 

Buoyancy Loss and Tolerance Factor resulting in 
elastic compression, long term water absorption, 
and manufacturing tolerance. (Maximum value = 
0.96 unless accurately known by submerged 
weighing under compression at rated depth) 

0,96 0,96 0,96 0,96 

Rf 

Reduction Factor Relating Vertical Tension at the 
Slip Ring to Tensioner Setting to account for fleet 
angle and mechanical efficiency (usually 0,9-0,95; 
0,9 - non-drilling; 0,95 - drilling) 

0,95 0,95 0,95 0,95 

N Number of Tensioners Supporting the Riser 12 12 12 12 
n Number of Tensioners Subject to Sudden Failure 1 1 1 1 

Ws 
Submerged Riser Weight with auxiliary lines above 
the point of consideration 39891,1 39891,1 39891,1 39891,1 

TSRmin, N Minimum Slip Ring Tension 464288,2 564931,4 623416,6 710900,6 

Tmin, N Minimum Required Top Tension 533153,9 648725,0 715885,0 816345,2 
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MINIMUM TOP TENSION CALCULATION by API RP 16Q – 16 INCH STEEL RISER 

 

Parameter Description Value 

mρ , kg/m3 Drilling Fluid Weight Density 1025 1438 1678 2037 

wρ , kg/m3 Sea Water Weight Density 1025 1025 1025 1025 

Hm, m Drilling Fluid Column to point of consideration 119,3 119,3 119,3 119,3 

Hw, m Sea Water Column to point of consideration 
including storm surge and  tide 93,8 93,8 93,8 93,8 

Hsw, m Sea Water Depth 100 100 100 100 

HLMRP+BOP, m Height of LMRP + BOP Stack 8,5 8,5 8,5 8,5 

Hwh, m Height of the Wellhead 1,5 1,5 1,5 1,5 

hTR-MSL, m Distance from Tensioner Ring to Mean Sea 
Level 10 10 10 10 

HS+T, m Height of Storm Surge +Tide 3,8 3,8 3,8 3,8 
hRKB-MSL, m Distance from RKB to Mean Sea Level 27,5 27,5 27,5 27,5 

hRKB-ML, m Distance from RKB to Mud Line 2 2 2 2 

Lr, m Length of the Riser 100 100 100 100 
Lr.sub, m Submerged Riser Length  90 90 90 90 

steelρ , kg/m3 Riser material density 7850 7850 7850 7850 

Dir, m Internal Diameter of the Riser 0,368 0,368 0,368 0,368 
Dor, m External Diameter of the Riser 0,406 0,406 0,406 0,406 

Di k/c, m Internal Diameter of the Kill/Choke Line 0,095 0,095 0,095 0,095 
Di mb, m Internal Diameter of the Mud Booster Line 0 0 0 0 
Ar, m2 Cross Sectional Area of Riser 0,023 0,046 0,046 0,046 

Ai, m2 Internal Cross Sectional Area of the Riser 
including auxiliary lines 0,120 0,120 0,120 0,120 

fwt 
Submerged Weight Tolerance Factor (minimum 
value = 1.05 unless accurately weighed) 1,05 1,05 1,05 1,05 

Bn 
Net Lift of Buoyancy Material above the point 
of consideration 0 0 0 0 

fbt 

Buoyancy Loss and Tolerance Factor resulting 
in elastic compression, long term water 
absorption, and manufacturing tolerance. 
(Maximum value = 0.96 unless accurately 
known by submerged weighing under 
compression at rated depth) 

0,96 0,96 0,96 0,96 

Rf 

Reduction Factor Relating Vertical Tension at 
the Slip Ring to Tensioner Setting to account 
for fleet angle and mechanical efficiency 
(usually 0,9-0,95; 0,9 - non-drilling; 0,95 - 
drilling) 

0,95 0,95 0,95 0,95 

N Number of Tensioners Supporting the Riser 12 12 12 12 

n Number of Tensioners Subject to Sudden 
Failure 1 1 1 1 

Ws 
Submerged Riser Weight with auxiliary lines 
above the point of consideration 23658,8 23658,8 23658,8 23658,8 

TSRmin, N Minimum Slip Ring Tension 274589,3 332821,6 366661,2 417279,6 

Tmin, N Minimum Required Top Tension 315317,9 382187,5 421046,4 479172,8 
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MINIMUM TOP TENSION CALCULATION by API RP 16Q – 21 INCH ALUMINIUM 

RISER 

 

Parameter Description Value 

mρ , kg/m3 Drilling Fluid Weight Density 1025 1438 1678 2037 

wρ , kg/m3 Sea Water Weight Density 1025 1025 1025 1025 

Hm, m Drilling Fluid Column to point of consideration 119,3 119,3 119,3 119,3 

Hw, m Sea Water Column to point of consideration 
including storm surge and  tide 93,8 93,8 93,8 93,8 

Hsw, m Sea Water Depth 100 100 100 100 

HLMRP+BOP, m Height of LMRP + BOP Stack 8,5 8,5 8,5 8,5 

Hwh, m Height of the Wellhead 1,5 1,5 1,5 1,5 

hTR-MSL, m Distance from Tensioner Ring to Mean Sea Level 10 10 10 10 
HS+T, m Height of Storm Surge +Tide 3,8 3,8 3,8 3,8 

hRKB-MSL, m Distance from RKB to Mean Sea Level 27,5 27,5 27,5 27,5 

hRKB-ML, m Distance from RKB to Mud Line 2 2 2 2 

Lr, m Length of the Riser 100 100 100 100 
Lr.sub, m Submerged Riser Length  90 90 90 90 

minaluρ , 
kg/m3 

Riser material density 2700 2700 2700 2700 

Dir, m Internal Diameter of the Riser 0,489 0,489 0,489 0,489 
Dor, m External Diameter of the Riser 0,533 0,533 0,533 0,533 

Di k/c, m Internal Diameter of the Kill/Choke Line 0,114 0,114 0,114 0,114 
Di mb, m Internal Diameter of the Mud Booster Line 0 0 0 0 
Ar, m2 Cross Sectional Area of Riser 0,035 0,035 0,035 0,035 

Ai, m2 Internal Cross Sectional Area of the Riser including 
auxiliary lines 0,208 0,208 0,208 0,208 

fwt 
Submerged Weight Tolerance Factor (minimum 
value = 1.05 unless accurately weighed) 1,05 1,05 1,05 1,05 

Bn 
Net Lift of Buoyancy Material above the point of 
consideration 0 0 0 0 

fbt 

Buoyancy Loss and Tolerance Factor resulting in 
elastic compression, long term water absorption, 
and manufacturing tolerance. (Maximum value = 
0.96 unless accurately known by submerged 
weighing under compression at rated depth) 

0,96 0,96 0,96 0,96 

Rf 

Reduction Factor Relating Vertical Tension at the 
Slip Ring to Tensioner Setting to account for fleet 
angle and mechanical efficiency (usually 0,9-0,95; 
0,9 - non-drilling; 0,95 - drilling) 

0,95 0,95 0,95 0,95 

N Number of Tensioners Supporting the Riser 12 12 12 12 
n Number of Tensioners Subject to Sudden Failure 1 1 1 1 

Ws 
Submerged Riser Weight with auxiliary lines above 
the point of consideration 10235,5 10235,5 10235,5 10235,5 

TSRmin, N Minimum Slip Ring Tension 158820,6 259463,8 317949,0 405433,0 

Tmin, N Minimum Required Top Tension 182377,7 297948,9 365108,9 465569,0 
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MINIMUM TOP TENSION CALCULATION by API RP 16Q – 16 INCH ALUMINIUM 

RISER 

 

Parameter Description Value 

mρ , kg/m3 Drilling Fluid Weight Density 1025 1438 1678 2037 

wρ , kg/m3 Sea Water Weight Density 1025 1025 1025 1025 

Hm, m Drilling Fluid Column to point of consideration 119,3 119,3 119,3 119,3 

Hw, m Sea Water Column to point of consideration 
including storm surge and  tide 93,8 93,8 93,8 93,8 

Hsw, m Sea Water Depth 100 100 100 100 
HLMRP+BOP, m Height of LMRP + BOP Stack 8,5 8,5 8,5 8,5 

Hwh, m Height of the Wellhead 1,5 1,5 1,5 1,5 

hTR-MSL, m Distance from Tensioner Ring to Mean Sea Level 10 10 10 10 
HS+T, m Height of Storm Surge +Tide 3,8 3,8 3,8 3,8 

hRKB-MSL, m Distance from RKB to Mean Sea Level 27,5 27,5 27,5 27,5 

hRKB-ML, m Distance from RKB to Mud Line 2 2 2 2 

Lr, m Length of the Riser 100 100 100 100 
Lr.sub, m Submerged Riser Length  90 90 90 90 

minaluρ ,, 
kg/m3 

Riser material density 2700 2700 2700 2700 

Dir, m Internal Diameter of the Riser 0,368 0,368 0,368 0,368 
Dor, m External Diameter of the Riser 0,406 0,406 0,406 0,406 

Di k/c, m Internal Diameter of the Kill/Choke Line 0,095 0,095 0,095 0,095 
Di mb, m Internal Diameter of the Mud Booster Line 0 0 0 0 
Ar, m2 Cross Sectional Area of Riser 0,023 0,046 0,046 0,046 

Ai, m2 Internal Cross Sectional Area of the Riser including 
auxiliary lines 0,120 0,120 0,120 0,120 

fwt 
Submerged Weight Tolerance Factor (minimum 
value = 1.05 unless accurately weighed) 1,05 1,05 1,05 1,05 

Bn 
Net Lift of Buoyancy Material above the point of 
consideration 0 0 0 0 

fbt 

Buoyancy Loss and Tolerance Factor resulting in 
elastic compression, long term water absorption, 
and manufacturing tolerance. (Maximum value = 
0.96 unless accurately known by submerged 
weighing under compression at rated depth) 

0,96 0,96 0,96 0,96 

Rf 

Reduction Factor Relating Vertical Tension at the 
Slip Ring to Tensioner Setting to account for fleet 
angle and mechanical efficiency (usually 0,9-0,95; 
0,9 - non-drilling; 0,95 - drilling) 

0,95 0,95 0,95 0,95 

N Number of Tensioners Supporting the Riser 12 12 12 12 
n Number of Tensioners Subject to Sudden Failure 1 1 1 1 

Ws 
Submerged Riser Weight with auxiliary lines above 
the point of consideration 6070,5 6070,5 6070,5 6070,5 

TSRmin, N Minimum Slip Ring Tension 93420,9 151653,2 185492,8 236111,2 

Tmin, N Minimum Required Top Tension 107277,6 174147,2 213006,1 271132,5 
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APPENDIX E 

E1. Current Profile 
 

Since there is no any real data available on the current velocity in the Kara Sea therefore 

the current profile is chosen. The calculation of current velocities in OrcaFlex is carried out by 

employing the Power Law method that can be written as the following equation: 

 

( ) ( )( ) ( ) Exponent
bfbbfb ZZZZSSSS /1/ −−×−+=    (E1.1)

 
where 

fS  current velocity at the sea surface; 

bS  current velocity at the sea bottom; 

fZ  water surface Z level; 

bZ  Z level of the sea bottom directly below (X, Y); 

Exponent is the power law exponent. 

 The current velocity varying over the sea water depth is shown in Table E-1. The 

maximum values of current velocity at the surface and sea bottom are taken from ISO 19906 

standard. [24] 

 

Depth 
(m) 

Velocity 
(m/s) 

0 1.0 
20 0.58 
40 0.346 
60 0.238 
80 0.204 
100 0.2 

Table E-1. Distribution of current velocity over the sea water depth 

 

E2. Design of Waves 
 

 
According to the method described in the NORSOK-003 standard the wave period is 

varied within the range: 

 

      100100 115.6 HTH ≤≤      (E2.2) 
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The wave heights were proposed due to an insufficient data on significant wave height 

and values are shown in Table E-2. 

 

Wave Height, H100 
(m) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Table E-2. Proposed wave heights 

 

Thus,   

1. 100,11100,1 115.6 HTH ⋅≤≤⋅     →    11115.6 1 ⋅≤≤⋅ T   →   2.35.2 1 ≤≤ T    →    31 =T  

2. 100,22100,2 115.6 HTH ⋅≤≤⋅   →  21125.6 2 ⋅≤≤⋅ T   →   56.3 2 ≤≤ T      →    52 =T  

3. 100,33100,3 115.6 HTH ⋅≤≤⋅    →  31135.6 3 ⋅≤≤⋅ T    →   7.54.4 3 ≤≤ T    →   53 =T  

4. 100,44100,4 115.6 HTH ⋅≤≤⋅   →  41145.6 4 ⋅≤≤⋅ T    →  6.61.5 4 ≤≤ T    →   64 =T  

5. 100,55100,5 115.6 HTH ⋅≤≤⋅   →  51155.6 5 ⋅≤≤⋅ T     →   4.77.5 5 ≤≤ T   →   65 =T  

6. 100,66100,6 115.6 HTH ⋅≤≤⋅   →  61165.6 6 ⋅≤≤⋅ T    →   1.82.6 6 ≤≤ T    →   76 =T  

7. 100,77100,7 115.6 HTH ⋅≤≤⋅   →  71175.6 7 ⋅≤≤⋅ T   →    8.87.6 7 ≤≤ T    →  77 =T  

8. 100,88100,8 115.6 HTH ⋅≤≤⋅    →  81185.6 8 ⋅≤≤⋅ T    →    4.92.7 8 ≤≤ T   →   88 =T  

9. 100,99100,9 115.6 HTH ⋅≤≤⋅    →  91195.6 9 ⋅≤≤⋅ T    →    106.7 9 ≤≤ T    →   89 =T  

10. 100,1010100,10 115.6 HTH ⋅≤≤⋅ → 1011105.6 10 ⋅≤≤⋅ T  →  5.108 10 ≤≤ T   → 1010 =T  

 

Hence, the input data for waves is established to simulate a satisfactory representation of 

sea conditions for the riser analysis and results are presented in Table E-3. 
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Wave Height, Hs 
(m) 

T1 
(s) 

T2 

(s) 
1 3 - 
2 5 - 
3 5 - 
4 6 - 
5 6 7 
6 7 - 
7 7 - 
8 8 9 
9 8 - 
10 9 10 

Table E-3. Design wave heights with associated periods 
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APPENDIX F 
 

 
Figure F-1. Effective tension of steel risers at the wave height of 1 m and period of 3 s 

 

 
Figure F-2. Effective tension of steel risers at the wave height of 2 m and period of 5 s 

 

 
Figure F-3. Effective tension of steel risers at the wave height of 3 m and period of 5 s 
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Figure F-4. Effective tension of steel risers at the wave height of 4 m and period of 6 s 

 

 
Figure F-5. Effective tension of steel risers at the wave height of 5 m and period of 6 s 

 

 
Figure F-6. Effective tension of steel risers at the wave height of 5 m and period of 7 s 

0
50

100
150
200
250
300
350
400
450
500

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

0

100

200

300

400

500

600

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension (Steel Riser)
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

118 
 



 
Figure F-7. Effective tension of steel risers at the wave height of 6 m and period of 7 s 

 

 
Figure F-8. Effective tension of steel risers at the wave height of 7 m and period of 7 s 

 

 
Figure F-9. Effective tension of steel risers at the wave height of 8 m and period of 8 s 
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Figure F-10. Effective tension of steel risers at the wave height of 8 m and period of 9 s 

 

 
Figure F-11. Effective tension of steel risers at the wave height of 9 m and period of 8 s 

 

 
Figure F-12. Effective tension of steel risers at the wave height of 10 m and period of 9 s 
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Figure F-13. Effective tension of aluminum risers at the wave height of 1 m and period of 3 

s 
 

 
Figure F-14. Effective tension of aluminum risers at the wave height of 2 m and period of 5 

s 
 

 
Figure F-15. Effective tension of aluminum risers at the wave height of 3 m and period of 5 

s 
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Figure F-16. Effective tension of aluminum risers at the wave height of 4 m and period of 6 

s 
 

 
Figure F-17. Effective tension of aluminum risers at the wave height of 5 m and period of 6 

s 
 

 
Figure F-18. Effective tension of aluminum risers at the wave height of 5 m and period of 7 

s 

0

50

100

150

200

250

300

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension (Aluminium Riser)
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

0

50

100

150

200

250

300

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension (Aluminium Riser)
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

0

50

100

150

200

250

300

0 20 40 60 80 100

E
ff

ec
tiv

e 
T

en
si

on
, k

N

Riser Length,  m

Effective Tension (Aluminium Riser)
21 inch riser, 1025 kg/m^3

21 inch riser, 1438 kg/m^3

21 inch riser, 1678 kg/m^3

21 inch riser, 2037 kg/m^3

16 inch riser, 1025 kg/m^3

16 inch riser, 1438 kg/m^3

16 inch riser, 1678 kg/m^3

16 inch riser, 2037 kg/m^3

122 
 



 
Figure F-19. Effective tension of aluminum risers at the wave height of 6 m and period of 7 

s 
 

 
Figure F-20. Effective tension of aluminum risers at the wave height of 7 m and period of 7 

s 

 
Figure F-21. Effective tension of aluminum risers at the wave height of 8 m and period of 8 

s 
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Figure F-22. Effective tension of aluminum risers at the wave height of 8 m and period of 9 

s 
 

 
Figure F-23. Effective tension of aluminum risers at the wave height of 9 m and period of 8 

s 
 

 
Figure F-24. Effective tension of aluminum risers at the wave height of 10 m and period of 

9 s 
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Figure F-25. Von-Mises stress of steel risers at the wave height of 1 m and period of 3 s 

(API and ISO limit is at 167500 kPa) 

 
Figure F-26. Von-Mises stress of steel risers at the wave height of 2 m and period of 5 s 

(API and ISO limit is at 167500 kPa) 

 

 
Figure F-27. Von-Mises stress of steel risers at the wave height of 3 m and period of 5 s 

(API and ISO limit is at 167500 kPa) 
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Figure F-28. Von-Mises stress of steel risers at the wave height of 4 m and period of 6 s 

(API and ISO limit is at 167500 kPa) 

 

 
Figure F-29. Von-Mises stress of steel risers at the wave height of 5 m and period of 6 s 

(API and ISO limit is at 167500 kPa) 

 

 
Figure F-30. Von-Mises stress of steel risers at the wave height of 5 m and period of 7 s 
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Figure F-31. Von-Mises stress of steel risers at the wave height of 6 m and period of 7 s 

 

 
Figure F-32. Von-Mises stress of steel risers at the wave height of 7 m and period of 7 s 

 

 
Figure F-33. Von-Mises stress of steel risers at the wave height of 8 m and period of 8 s 
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Figure F-34. Von-Mises stress of steel risers at the wave height of 8 m and period of 9 s 

(API and ISO limit is at 167500 kPa) 

 

 
Figure F-35. Von-Mises stress of steel risers at the wave height of 9 m and period of 8 s 

 

 
Figure F-36. Von-Mises stress of steel risers at the wave height of 10 m and period of 9 s 
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Figure F-37. Von-Mises stress of aluminum risers at the wave height of 1 m and period of 3 

s 
(API and ISO limit is at 60300 kPa) 

 
Figure F-38. Von-Mises stress of aluminum risers at the wave height of 2 m and period of 5 

s 
 

 
Figure F-39. Von-Mises stress of aluminum risers at the wave height of 3 m and period of 5 

s 
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Figure F-40. Von-Mises stress of aluminum risers at the wave height of 4 m and period of 6 

s 
 

 
Figure F-41. Von-Mises stress of aluminum risers at the wave height of 5 m and period of 6 

s 
 

 
Figure F-42. Von-Mises stress of aluminum risers at the wave height of 5 m and period of 7 

s 
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Figure F-43. Von-Mises stress of aluminum risers at the wave height of 6 m and period of 7 

s 
 

 
Figure F-44. Von-Mises stress of aluminum risers at the wave height of 7 m and period of 7 

s 
 

 
Figure F-45. Von-Mises stress of aluminum risers at the wave height of 8 m and period of 8 

s 
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Figure F-46. Von-Mises stress of aluminum risers at the wave height of 8 m and period of 9 

s 
 

 
Figure F-47. Von-Mises stress of aluminum risers at the wave height of 9 m and period of 8 

s 
 

 
Figure F-48. Von-Mises stress of aluminum risers at the wave height of 10 m and period of 

9 s 
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APPENDIX G 
 

A detailed description of loads’ calculations caused by current and waves are presented 

for various riser configurations in this Appendix. The calculations are based on the theory 

discussed in Chapter 4.5.3.  

 

G1. Load calculations for 21 inch riser at the conditions of waves 
with height of 8 m 

 
Input Data 

 

Parameter Designation Value Dimension 
Wave height H 8 m 

Wave amplitude ξ0 4 m 
Period T 8 s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.533 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  
Mass coefficient CM 1.2  

 

Calculations 

 

1. Wave amplitude: 

mH 4
20 ==ξ

 

 

2. Wave length: 

mTgL 100
2

2

=
⋅

=
π  

 

3. Angular velocity: 

18.02 −== s
T
πω
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4. 063.02
==

L
k π

 

5. Checking deep water criterion: 

area water deep -5.01>=
L
d

 

 

6. Checking conditions for Morison’s equation: 

2.0005.0 <=
L
D

 

 weavesbreaking-non -14.008.0 ≤=
L
H

 

11.02.0 <→< a
D
a

 

Assuming that the motion amplitude (a) for the drilling riser is negligible the 

Morison equation can be used safely to calculate the forces. 

 

7. Calculating the Keulegan-Carpenter number to check which term will dominate in 

the Morison equation: 

ππ 15=
⋅

=
D

HN KC  

Hence, the drag term will be dominating in the equation. 

 

8. The Morison equation can be written as follows: 

∫ ∫
− −

⋅⋅⋅⋅⋅+⋅⋅







⋅=

0 0

2
1

4
)(

2ξ ξ

ρπρ
d d

DM dzuuDСdzuCDtF   

The equation can be solved using a graphical method when each contributing term 

is plotted on a timeline and the maximum force is found graphically. 

 

9. For deep water zone the horizontal velocity and acceleration can be presented as the 

following: 

    ( ),sin0 te
gk

u kz ω
ω

ξ
⋅=

 
( )tgkeu kz ωξ cos0 ⋅=  

Therefore 

( )∫∫
−−

=⋅⋅⋅







⋅=⋅⋅








⋅=

00

cos
44

)( 0

22 ξξ

ωξπρπρ
d

kz
M

d
MM dztgkeCDdzuCDtF 
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( ) =







⋅⋅⋅








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−

0

cos
4 0

2 ξ

ωξπρ
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M eetgCD −−⋅⋅⋅
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2
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Finally, the expression for the total force calculation can be presented in the next form: 

( ) ( ) ( )[ ]+−⋅⋅⋅







⋅=+= −kdk
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4

)( 0
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ξωξπρ
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2
0 0sinsin

4
1 −−⋅






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ω
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10.  All derived expressions can now be plotted for a 2 s (and 10 s for illustration) 

wave period and the maximum force impact can be found afterwards.  

It is important to notice that the integration is performed up to ξ0. This is a 

conservative simplification because in reality the maximum force occurs in a place 

between the wave crest and still water level for a given time period. That implies that to 

be theoretically correct the equation have to be solved for maximum force with variable 

upper-integration limit, varying from 0 to ξ0. 
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11.  

 
Figure G-1. Drag, Mass and Total Force of wave 

 

The drag, mass and total forces are shown in Figure G-1 as a function of time. It 

can be observed from Figure the forces express negative values as well but the only 

positive values should be taken into account. 

FTotal = 39 000 N is at the maximum when t ≈ 1.9 s. 

 

12.  However, the maximum total force should also be defined and plotted as a 

function of the water depth. The water depth (z) varies from the top point at the wave 

crest (ξ0 = 4 m) to the depth at which the maximum total force has any observed impact 

(FTotal (t = 1.9 s) is approximately equal to 0). The step of depth variation is chosen to be 

equal to 1 m since the size of the cell in the ANSYS model is specified as 1 m. 
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13.  

 
Figure G-2. Distribution of Drag, Mass and Total Force of wave over the water depth 

 

The detailed calculations of forces are presented in Excel file on DVD. 

 

 Since the drilling riser is also exposed to the sea current therefore current forces should 

be determined in order to apply them on the riser structure in the ANSYS model. For calculation 

of forces acting on the riser at a constant current the only drag term is taken into consideration in 

the Morison equation. The distribution of the current velocity over the water depth can be found 

by the Power Law equation used in OrcaFlex (see Appendix E and Chapter 6.2.3). 

 

Input Data 

Parameter Designation Value Dimension 
Current velocity at 

the surface  S0 1 m/s 

Current velocity at 
the sea bottom Sb 0.2 m/s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.533 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  

Power Law 
Exponent Exponent 0.3  
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Calculations 

 

1. Current velocity: 

( ) ( ) ( )( ) ( ) Exponent
bfbbfb zzzzSSSzS /1/ −−×−+=  

where z varies from 0 to 90 m as the bottom end of the riser is located 10 m above the 

seabed. 

2. Average velocity of the current: 

2
1++

= nn
average

SS
S  

3. Finally the drag force can be calculated using the following equation: 

( ) zuDСdzuuDСdztzfFF D

z

zz
D

z

zz
DDTotal ∆⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=== ∫∫

∆−∆−

2
'

'

'

' 2
1

2
1, ρρ  

 where u = Saverage 

 The step of the water depth variation (∆z) is equal to 1 m due to the cell length    

(1 m) in the mesh created on the riser structure. 

 

4. The calculation results are presented in Table G-1. 

Water Depth, 
z ∆z Current Velocity,  

S(z) 

Average 
Velocity of the Current, 

Saverage 

Drag Force, 
FD 

m m m/s m/s N 
0 - 1,000 - - 
-1 1 0,974 0,987 279 
-2 1 0,948 0,961 265 
-3 1 0,923 0,935 251 
-4 1 0,898 0,910 238 
-5 1 0,874 0,886 225 
-6 1 0,851 0,863 213 
-7 1 0,828 0,840 202 
-8 1 0,806 0,817 191 
-9 1 0,784 0,795 181 
-10 1 0,763 0,774 172 
-11 1 0,742 0,753 163 
-12 1 0,722 0,732 154 
-13 1 0,703 0,713 146 
-14 1 0,684 0,693 138 
-15 1 0,665 0,675 131 
-16 1 0,647 0,656 124 
-17 1 0,630 0,639 117 
-18 1 0,613 0,621 111 
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-19 1 0,596 0,605 105 
-20 1 0,580 0,588 99 
-21 1 0,565 0,572 94 
-22 1 0,549 0,557 89 
-23 1 0,535 0,542 84 
-24 1 0,520 0,528 80 
-25 1 0,507 0,514 76 
-26 1 0,493 0,500 72 
-27 1 0,480 0,487 68 
-28 1 0,468 0,474 64 
-29 1 0,455 0,462 61 
-30 1 0,444 0,450 58 
-31 1 0,432 0,438 55 
-32 1 0,421 0,427 52 
-33 1 0,411 0,416 50 
-34 1 0,400 0,405 47 
-35 1 0,390 0,395 45 
-36 1 0,381 0,386 43 
-37 1 0,371 0,376 41 
-38 1 0,363 0,367 39 
-39 1 0,354 0,358 37 
-40 1 0,346 0,350 35 
-41 1 0,338 0,342 34 
-42 1 0,330 0,334 32 
-43 1 0,323 0,327 31 
-44 1 0,316 0,319 29 
-45 1 0,309 0,312 28 
-46 1 0,303 0,306 27 
-47 1 0,296 0,299 26 
-48 1 0,290 0,293 25 
-49 1 0,285 0,288 24 
-50 1 0,279 0,282 23 
-51 1 0,274 0,277 22 
-52 1 0,269 0,272 21 
-53 1 0,265 0,267 20 
-54 1 0,260 0,262 20 
-55 1 0,256 0,258 19 
-56 1 0,252 0,254 18 
-57 1 0,248 0,250 18 
-58 1 0,244 0,246 17 
-59 1 0,241 0,243 17 
-60 1 0,238 0,239 16 
-61 1 0,235 0,236 16 
-62 1 0,232 0,233 16 
-63 1 0,229 0,230 15 
-64 1 0,227 0,228 15 

139 
 



-65 1 0,224 0,225 15 
-66 1 0,222 0,223 14 
-67 1 0,220 0,221 14 
-68 1 0,218 0,219 14 
-69 1 0,216 0,217 14 
-70 1 0,214 0,215 13 
-71 1 0,213 0,214 13 
-72 1 0,211 0,212 13 
-73 1 0,210 0,211 13 
-74 1 0,209 0,210 13 
-75 1 0,208 0,208 12 
-76 1 0,207 0,207 12 
-77 1 0,206 0,206 12 
-78 1 0,205 0,206 12 
-79 1 0,204 0,205 12 
-80 1 0,204 0,204 12 
-81 1 0,203 0,203 12 
-82 1 0,203 0,203 12 
-83 1 0,202 0,202 12 
-84 1 0,202 0,202 12 
-85 1 0,201 0,202 12 
-86 1 0,201 0,201 12 
-87 1 0,201 0,201 12 
-88 1 0,201 0,201 12 
-89 1 0,201 0,201 12 
-90 1 0,200 0,200 12 

Table G-1. Drag force calculations 

 

 
Figure G-3. Average velocity of the current over the water depth 
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Figure G-4. Distribution of the Drag Force over the water depth 

 

The detailed calculations of the drag force for the case of the 21 inch riser can be 

found in Excel file on DVD. 
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G2. Load calculations for 16 inch riser at the conditions of waves 
with height of 2.5 m 

 

Input Data 

 

Parameter Designation Value Dimension 
Wave height H 2.5 m 

Wave amplitude ξ0 1.25 m 
Period T 5 s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.406 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  
Mass coefficient CM 1.2  

 

Calculations 

 

1. Wave amplitude: 

mH 25.1
20 ==ξ

 

 

2. Wave length: 

mTgL 03.39
2

2

=
⋅

=
π  

 

3. Angular velocity: 

13.12 −== s
T
πω  

4. 161.02
==

L
k π

 

 

5. Checking deep water criterion: 

area water deep -5.0561.2 >=
L
d
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6. Checking conditions for Morison’s equation: 

2.001.0 <=
L
D

 

 weavesbreaking-non -14.0064.0 ≤=
L
H

 

08.02.0 <→< a
D
a

 

Assuming that the motion amplitude (a) for the drilling riser is negligible the 

Morison equation can be used safely to calculate the forces. 

 

7. Calculating the Keulegan-Carpenter number to check which term will dominate in 

the Morison equation: 

ππ 6=
⋅

=
D

HN KC  

Hence, the both the drag and mass term will be presented in the equation. 

 

8. The Morison equation can be written as follows: 

∫ ∫
− −

⋅⋅⋅⋅⋅+⋅⋅







⋅=

0 0

2
1

4
)(

2ξ ξ

ρπρ
d d

DM dzuuDСdzuCDtF   

The equation can be solved using the graphical method when each contributing 

term is plotted on the timeline and the maximum force is found graphically. 

 

9. For deep water zone the horizontal velocity and acceleration can be presented as the 

following: 

    ( ),sin0 te
gk

u kz ω
ω

ξ
⋅=

 
( )tgkeu kz ωξ cos0 ⋅=  

Therefore 
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Finally, the expression for the total force calculation can be presented in the next form: 

( ) ( ) ( )[ ]+−⋅⋅⋅







⋅=+= −kdk

MDMTotal eetgCDtFtFtF 0cos
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)( 0

2
ξωξπρ

( ) ( )[ ]kdk
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2
0 0sinsin

4
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




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10.  All derived expressions can now be plotted for a 6 s (and 11 s for illustration) 

wave period and the maximum force impact can be found afterwards.  

It is important to notice that the integration is performed up to ξ0. This is a 

conservative simplification because in reality the maximum force occurs in a place 

between the wave crest and still water level for a given time period. That implies that to 

be theoretically correct the equation have to be solved for maximum force with variable 

upper-integration limit, varying from 0 to ξ0. 
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11.  

 Figure G-5. Drag, Mass and Total Force of wave 

 

The drag, mass and total forces are shown in Figure G-5 as a function of time. It 

can be observed from Figure the forces express negative values as well but the only 

positive values should be taken into account. 

FTotal = 3100 N is at the maximum when t ≈ 0.9 s. 

 

12.  However, the maximum total force should also be defined and plotted as a 

function of the water depth. The water depth (z) varies from the top point at the wave 

crest (ξ0 = 1.25 m) to the depth at which the maximum total force has any observed 

impact (FTotal (t = 0.9 s) is approximately equal to 0). The step of depth variation is 

chosen to be equal to 1 m since the size of the cell in the ANSYS model is specified as 1 

m. 
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13.  

 
Figure G-6. Distribution of Drag, Mass and Total Force of wave over the water depth 

 

The detailed calculations of forces are presented in Excel file on DVD. 

 Since the drilling riser is also exposed to the sea current therefore current forces should 

be determined in order to apply them on the riser structure in the ANSYS model. For calculation 

of forces acting on the riser at a constant current the only drag term is taken into consideration in 

the Morison equation. The distribution of the current velocity over the water depth can be found 

by the Power Law equation used in OrcaFlex (see Appendix E and Chapter 6.2.3). 

 

Input Data 

 

Parameter Designation Value Dimension 
Current velocity at 

the surface  S0 1 m/s 

Current velocity at 
the sea bottom Sb 0.2 m/s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.406 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  

Power Law 
Exponent Exponent 0.3  
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Calculations 

 

1. Current velocity: 

( ) ( ) ( )( ) ( ) Exponent
bfbbfb zzzzSSSzS /1/ −−×−+=  

where z varies from 0 to 90 m as the bottom end of the riser is located 10 m above the 

seabed. 

2. Average velocity of the current: 

2
1++

= nn
average

SS
S  

3. Finally the drag force can be calculated using the following equation: 

( ) zuDСdzuuDСdztzfFF D

z

zz
D

z

zz
DDTotal ∆⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=== ∫∫

∆−∆−

2
'

'

'

' 2
1

2
1, ρρ  

 where u = Saverage 

 The step of the water depth variation (∆z) is equal to 1 m due to the cell length    

(1 m) in the mesh created on the riser structure. 

 

4. The calculation results are presented in Table G-2. 

Water Depth, 
z ∆z Current Velocity,  

S(z) 

Average 
Velocity of the Current, 

Saverage 

Drag Force, 
FD 

m m m/s m/s N 
0 - 1,000 - - 
-1 1 0,974 0,987 213 
-2 1 0,948 0,961 202 
-3 1 0,923 0,935 191 
-4 1 0,898 0,910 181 
-5 1 0,874 0,886 172 
-6 1 0,851 0,863 163 
-7 1 0,828 0,840 154 
-8 1 0,806 0,817 146 
-9 1 0,784 0,795 138 
-10 1 0,763 0,774 131 
-11 1 0,742 0,753 124 
-12 1 0,722 0,732 117 
-13 1 0,703 0,713 111 
-14 1 0,684 0,693 105 
-15 1 0,665 0,675 99 
-16 1 0,647 0,656 94 
-17 1 0,630 0,639 89 
-18 1 0,613 0,621 84 
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-19 1 0,596 0,605 80 
-20 1 0,580 0,588 76 
-21 1 0,565 0,572 72 
-22 1 0,549 0,557 68 
-23 1 0,535 0,542 64 
-24 1 0,520 0,528 61 
-25 1 0,507 0,514 58 
-26 1 0,493 0,500 55 
-27 1 0,480 0,487 52 
-28 1 0,468 0,474 49 
-29 1 0,455 0,462 47 
-30 1 0,444 0,450 44 
-31 1 0,432 0,438 42 
-32 1 0,421 0,427 40 
-33 1 0,411 0,416 38 
-34 1 0,400 0,405 36 
-35 1 0,390 0,395 34 
-36 1 0,381 0,386 32 
-37 1 0,371 0,376 31 
-38 1 0,363 0,367 29 
-39 1 0,354 0,358 28 
-40 1 0,346 0,350 27 
-41 1 0,338 0,342 26 
-42 1 0,330 0,334 24 
-43 1 0,323 0,327 23 
-44 1 0,316 0,319 22 
-45 1 0,309 0,312 21 
-46 1 0,303 0,306 20 
-47 1 0,296 0,299 20 
-48 1 0,290 0,293 19 
-49 1 0,285 0,288 18 
-50 1 0,279 0,282 17 
-51 1 0,274 0,277 17 
-52 1 0,269 0,272 16 
-53 1 0,265 0,267 16 
-54 1 0,260 0,262 15 
-55 1 0,256 0,258 15 
-56 1 0,252 0,254 14 
-57 1 0,248 0,250 14 
-58 1 0,244 0,246 13 
-59 1 0,241 0,243 13 
-60 1 0,238 0,239 13 
-61 1 0,235 0,236 12 
-62 1 0,232 0,233 12 
-63 1 0,229 0,230 12 
-64 1 0,227 0,228 11 
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-65 1 0,224 0,225 11 
-66 1 0,222 0,223 11 
-67 1 0,220 0,221 11 
-68 1 0,218 0,219 10 
-69 1 0,216 0,217 10 
-70 1 0,214 0,215 10 
-71 1 0,213 0,214 10 
-72 1 0,211 0,212 10 
-73 1 0,210 0,211 10 
-74 1 0,209 0,210 10 
-75 1 0,208 0,208 9 
-76 1 0,207 0,207 9 
-77 1 0,206 0,206 9 
-78 1 0,205 0,206 9 
-79 1 0,204 0,205 9 
-80 1 0,204 0,204 9 
-81 1 0,203 0,203 9 
-82 1 0,203 0,203 9 
-83 1 0,202 0,202 9 
-84 1 0,202 0,202 9 
-85 1 0,201 0,202 9 
-86 1 0,201 0,201 9 
-87 1 0,201 0,201 9 
-88 1 0,201 0,201 9 
-89 1 0,201 0,201 9 
-90 1 0,200 0,200 9 

Table G-2. Drag force calculations 

 

 
Figure G-7. Average velocity of the current over the water depth 

 

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
0,0 0,2 0,4 0,6 0,8 1,0

W
at

er
 D

ep
th

, m

Velocity, m/s

Average Velocity of Current

149 
 



 
Figure G-8. Distribution of the Drag Force over the water depth 

 

The detailed calculations of the drag force for the case of the 16 inch riser can be 

found in Excel file on DVD. 
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G3. Load calculations for 16 inch riser at the conditions of waves 
with height of 8 m 

 

Input Data 

 

Parameter Designation Value Dimension 
Wave height H 8 m 

Wave amplitude ξ0 4 m 
Period T 8 s 

Water depth d 100 m 
Outer diameter of 

the riser D 0.406 m 

Water density ρ  1025 kg/m3 
Standard gravity g 9.81 m/s2 

Drag coefficient CD 1.05  
Mass coefficient CM 1.2  

 

Calculations 

 

1. Wave amplitude: 

 

 

2. Wave length: 

 

 

3. Angular velocity: 

18.02 −== s
T
πω  

4. 063.02
==

L
k π

 

 

5. Checking deep water criterion: 

area water deep -5.01>=
L
d

 

 

 

 

mH 4
20 ==ξ

mTgL 100
2

2

=
⋅

=
π
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6. Checking conditions for Morison’s equation: 

2.0004.0 <=
L
D

 

 weavesbreaking-non -14.008.0 ≤=
L
H

 

08.02.0 <→< a
D
a

 

Assuming that the motion amplitude (a) for the drilling riser is negligible the 

Morison equation can be used safely to calculate the forces. 

 

7. Calculating the Keulegan-Carpenter number to check which term will dominate in 

the Morison equation: 

ππ 7.19=
⋅

=
D

HN KC  

Hence, the drag will be dominating in the equation. 

 

8. The Morison equation can be written as follows: 

∫ ∫
− −

⋅⋅⋅⋅⋅+⋅⋅







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0 0
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)(

2ξ ξ

ρπρ
d d

DM dzuuDСdzuCDtF   

The equation can be solved using the graphical method when each contributing 

term is plotted on the timeline and the maximum force is found graphically. 

 

9. For deep water zone the horizontal velocity and acceleration can be presented as the 

following: 
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Finally, the expression for the total force calculation can be presented in the next form: 
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10.  All derived expressions can now be plotted for a 2 s (and 10 s for illustration) 

wave period and the maximum force impact can be found afterwards.  

It is important to notice that the integration is performed up to ξ0. This is a 

conservative simplification because in reality the maximum force occurs in a place 

between the wave crest and still water level for a given time period. That implies that to 

be theoretically correct the equation have to be solved for maximum force with variable 

upper-integration limit, varying from 0 to ξ0. 
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11.  

 
Figure G-9. Drag, Mass and Total Force of wave 

 

The drag, mass and total forces are shown in Figure G-9 as a function of time. It 

can be observed from Figure the forces express negative values as well but the only 

positive values should be taken into account. 

FTotal = 29 000 N is at the maximum when t ≈ 1.9 s. 

 

12.  However, the maximum total force should also be defined and plotted as a 

function of the water depth. The water depth (z) varies from the top point at the wave 

crest (ξ0 = 4 m) to the depth at which the maximum total force has any observed impact 

(FTotal (t = 1.9 s) is approximately equal to 0). The step of depth variation is chosen to be 

equal to 1 m since the size of the cell in the ANSYS model is specified as 1 m. 
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13.  

 
Figure G-10. Distribution of Drag, Mass and Total Force of wave over the water depth 

 

The detailed calculations of forces are presented in Excel file on DVD. 

 Since the drilling riser is also exposed to the sea current therefore current forces should 

be determined in order to apply them on the riser structure in the ANSYS model. The drag forces 

in case of 16 inch riser operated in the presence of waves with height of 8 m are the same as in 

the previous Appendix G-2. 
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