

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
M. Sc. In Computational Engineering

The spring semester, 2022

Open / Confidential
Author: Nidaa Raji

…………………………………………

(signature author)

Course coordinator:

Supervisor(s):
Aojie Hong (UiS)
Kurt Petvipusit (Equinor)

Thesis title:

Utilizing machine learning algorithms in the ensemble-based optimization (EnOpt)
method for enhancing gradient estimation.

Credits (ECTS): 30

Keywords:
Gradient
Optimization
Ensemble optimization
EnOpt
Machine Learning

 Pages:100

 + appendix: 14

 Stavanger, 15 June/2022.

Table of Contents

Acknowledgment .. 11

Abstract ... 12

Chapter 1: Introduction .. 14

Background and motivation:... 14

Novelty of the work: ... 15

Machine learning algorithms: ... 17

Gradient Boosting Regressor: ... 17

Adaptive Boosting (AdaBoost) Regressor: .. 17

Random Forest: ... 18

Optimization test functions: ... 20

Chapter 3: Experiments on EnOpt-ML .. 24

Introduction: ... 24

Workflow: ... 24

Base case configuration: ... 26

Changing the starting point .. 32

Starting point [-5 2]: ... 32

Starting point [3 -1]: ... 37

Changing initial covariance matrix .. 42

Initial covariance matrix: 0.2I .. 42

Initial covariance matrix: 0.4I .. 42

Changing the sample size N .. 48

N = 5 .. 48

N = 100 .. 48

Changing the Number of the predicted samples by the machine learning model 55

Nml = 2 .. 55

Nml = 1000 .. 55

Different training iterations .. 61

Reduction of sample size N throughout the iterations ... 63

Reduced sample size N used at iteration 4 (after 3rd iteration)to N=5 ... 63

Reduced sample size N used at iteration 4 (after 3rd iteration) to N=10 63

Machine learning algorithms .. 75

Adaptive boosting regressor: .. 75

Random Forest: ... 75

Chapter 4: Improvement example .. 81

On Himmelblau ... 81

On Buckin function number 6 ... 86

On Rosenbrock .. 91

Chapter 5: Final remarks and Conclusions .. 96

Observations/ remarks: .. 96

Conclusion: .. 97

Appendix ... 99

EnOpt and EnOpt-ML codes .. 99

Objective Functions for test: ... 99

Machine Learning algorithms ... 100

Function for testing (EnOpt and EnOpt-ML) .. 100

Testing with different configurations On test functions .. 104

Compute F means and prepare data for plotting ... 106

PLOT simulation means ... 106

MEANS of different simulations (SEPARATE PLOTS for EnOpt and EnOpt-ML) 107

min and max values for plots .. 108

Plotting Gradient ... 108

Plotting samples .. 109

MSE for EnOpt-ML : ML predicted samples (Nml) ... 110

Create output files .. 110

Creating excel file with summary table (useful when doing multiple simulations with numerous simulations)

 .. 111

References: ... 113

List of Tables

Table 1 Optimization results for base configuration case (single simulation)......................... 28

Table 2 Base case configuration summary output values (1000 simulations) 30

Table 3 Optimization results for case starting point [-5 2] (single simulation) 33

Table 4 Case starting point [-5 2] : summary output values (1000 simulations) 35

Table 5 Optimization results for Starting point [3 -1] (single simulation) 38

Table 6 Case starting point [3 -1]: summary output values (1000 simulations) 40

Table 7 Optimization results for case: covariance 0.2I (single simulation) 43

Table 8 Optimization results for case: covariance 0.4I (single simulation) 43

Table 9 Case: covariance 0.2I : summary output values (1000 simulations) 46

Table 10 Case: covariance 0.4I : summary output values (1000 simulations) 46

Table 11 Optimization results for case N=5: (single simulation) ... 49

Table 12 Optimization results for case N=100 single simulation): .. 49

Table 13 Case N=5: summary output values (1000 simulations) ... 52

Table 14 Case N=100: summary output values (1000 simulations) 52

Table 15 Optimization results for case Nml = 20 (single simulation) 56

Table 16 Optimization results for case Nml = 1000 (single simulation) 56

Table 17 Case Nml = 20: summary output values (1000 simulations) 59

Table 18 Case Nml = 1000: summary output values (1000 simulations) 59

Table 19 Optimization results for Reduced sample size N = 5 used at iteration 4 (single

simulation) ... 64

Table 20 Optimization results for Reduced sample size N = 10 used at iteration 4 (single

simulation) ... 64

Table 21 Reduced sample size N = 5 used at iteration 4 summary output values (1000

simulations) .. 67

Table 22 Reduced sample size N = 10 used at iteration 4 summary output values (1000

simulations) .. 67

Table 23 Optimization results for case reduced sample size N = 0 used at iteration 4 (single

simulation) .. 70

Table 24 Optimization results for case reduced sample size N = 0 used at iteration 5 (single

simulation) ... 70

Table 25 Case reduced sample size N = 0 used at iteration 4 : summary output values (1000

simulations) .. 73

Table 26 Case reduced sample size N = 0 used at iteration 5 : summary output values (1000

simulations) .. 73

Table 27 Optimization results for AdaBoost case (single simulation) 76

Table 28 Optimization results for Random Forest case (single simulation) 76

Table 29 AdaBoost case: summary output values (1000 simulations) 78

Table 30 Random Forest case: summary output values (1000 simulations) 78

Table 31 Optimization results for improvement example (single simulation) 83

Table 32 Improvement example: summary output values (1000 simulations) 84

Table 33 Optimization results for Bukin function 6 (single simulation) 87

Table 34 Bukin function 6 : summary output values (1000 simulations) 89

Table 35 Optimization results for Rosenbrock (single simulation) 92

Table 36 Rosenbrock: summary output values (1000 simulations) 94

List of Figures

Figure 1Workflow chart of EnOpt-ML... 19

Figure 2 Himmelblau. Test function for optimization .. 20

Figure 3 Bukin function number 6. Test function for optimization .. 21

Figure 4 Rosenbrock. Test function for optimization (evaluated in the interval x ∈ [-2.048,

2.048], y ∈ [-2.048, 2.048]) ... 22

Figure 5 Rosenbrock. test function for optimization (evaluated in the interval x ∈ [-5, 10], y ∈

 [-5, 10]) ... 22

Figure 6 Base configuration gradient (single simulation) ... 27

Figure 7 Base configuration EnOpt and EnOpt-ML samples and ML model predicted samples

.. 27

- Figure 8 Base confirmation cases objective function optimization results (1000

simulations) .. 29

- Figure 9 Base configuration case: EnOpt and EnOpt-ML means of simulations 29

Figure 10Base configuration case: Boxplot of optimized objective function......................... 30

Figure 11 Base case simulations' results of EnOpt and EnOpt-ML with respect to true

minimum values ... 31

Figure 12 case starting point [-5 2] gradient (single simulation) .. 32

Figure 13 Case starting point [-5 2] , EnOpt and EnOpt-ML samples and ML model predicted

samples ... 33

Figure 14 Case starting point [-5 2] : objective function optimization (1000 simulations) .. 34

Figure 15 case starting point [-5 2] : EnOpt and EnOpt-ML means of simulations 34

Figure 16 Case starting point [-5 2] : Boxplot of optimized objective function 35

Figure 17 Case starting point [-5 2] : simulations' results of EnOpt and EnOpt-ML with

respect to true minimum values ... 36

Figure 18 Case - Starting point [3 -1]: gradient (single simulation) 37

Figure 19 Starting point [3 -1]: EnOpt and EnOpt-ML samples and ML model predicted

samples ... 38

Figure 20 Case starting point [3 -1]: objective function optimization (1000 simulations) ... 39

Figure 21 Case starting point [3 -1]: EnOpt and EnOpt-ML means of simulations 39

Figure 22 Case starting point [3 -1]: : Boxplot of optimized objective function 40

Figure 23 Case starting point [3 -1]: simulations' results of EnOpt and EnOpt-ML with respect

to true minimum values ... 41

Figure 24 Case: covariance 0.2I : gradient (single simulation) ... 42

Figure 25 Case: covariance 0.2I : EnOpt and EnOpt-ML samples and ML model predicted

samples ... 42

Figure 26 Case: covariance 0.4I : gradient (single simulation) .. 42

Figure 27 Case: covariance 0.4I : EnOpt and EnOpt-ML samples and ML model predicted

samples .. 42

Figure 28 Case: covariance 0.2I : objective function optimization results (1000 simulations)

.. 44

Figure 29 Case: covariance 0.4I : objective function optimization results (1000 simulations)

.. 44

Figure 30 Case: covariance 0.2I : EnOpt and EnOpt-ML means of simulations 44

Figure 31 Case: covariance 0.4I : EnOpt and EnOpt-ML means of simulations 44

Figure 32 Case: covariance 0.2I : Boxplot of optimized objective function 45

Figure 33 Case: covariance 0.4I : Boxplot of optimized objective function 45

Figure 34 Case: covariance 0.2I : simulations' results of EnOpt and EnOpt-ML with respect

to true minimum values ... 47

Figure 35 Case: covariance 0.4I : simulations' results of EnOpt and EnOpt-ML with respect

to true minimum values ... 47

Figure 36 Case N=5: gradient (single simulation) ... 48

Figure 37 Case N=5: EnOpt and EnOpt-ML samples and ML model predicted samples 48

Figure 38 Case N=100: gradient (single simulation) ... 48

Figure 39 Case N=100: EnOpt and EnOpt-ML samples and ML model predicted samples . 48

Figure 40 Case N=5: objective function optimization results (1000 simulations) 50

Figure 41 Case N=100: objective function optimization results (1000 simulations) 50

Figure 42 Case N=5: EnOpt and EnOpt-ML means of simulations 50

Figure 43 Case N=100: EnOpt and EnOpt-ML means of simulations 50

Figure 44 Case N=5: Boxplot of optimized objective function ... 51

Figure 45 Case N=100: Boxplot of optimized objective function ... 51

Figure 46 Case N=5: simulations' results of EnOpt and EnOpt-ML with respect to true

minimum .. 53

Figure 47 Case N=100: simulations' results of EnOpt and EnOpt-ML with respect to true . 54

Figure 48 Case Nml = 20: gradient (single simulation) ... 55

Figure 49 Case Nml = 20: EnOpt and EnOpt-ML samples and ML model predicted samples

.. 55

Figure 50 Case Nml = 1000: gradient (single simulation) .. 55

Figure 51 Case Nml = 1000 EnOpt and EnOpt-ML samples and ML model predicted samples

.. 55

Figure 52 Case Nml = 20: (top-right), case Nml = 1000(bottom right), EnOpt (left): objective

function optimization results (1000 simulations) .. 57

Figure 53 Case Nml = 20: (top-right), case Nml = 1000(bottom right): EnOpt and EnOpt-ML

means of simulations.. 57

Figure 54 Case Nml = 20: Boxplot of optimized objective function 58

Figure 55 Case Nml = 1000: Boxplot of optimized objective function 58

Figure 56 Case Nml = 20: simulations' results of EnOpt and EnOpt-ML with respect to true

minimum values ... 60

Figure 57 Case Nml = 1000: simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values.. 60

Figure 58 Objective function means over 1000 simulations for EnOpt, and EnOpt-ML with

ML model trained at different iterations .. 61

Figure 59 means of 1000 simulations for EnOpt and EnOpt-ML with ML model trained at

different iterations .. 62

Figure 60 Reduced sample size N = 5 used at iteration 4 gradient (single simulation) 63

Figure 61 Reduced sample size N = 5 used at iteration 4 EnOpt and EnOpt-ML samples and

ML model predicted samples ... 63

Figure 62 Reduced sample size N = 10 used at iteration 4 gradient (single simulation) 63

Figure 63 Reduced sample size N = 10 used at iteration 4 EnOpt and EnOpt-ML samples and

ML model predicted samples ... 63

Figure 64 Reduced sample size N = 5 used at iteration 4 objective function optimization

results (1000 simulations) .. 65

Figure 65 Reduced sample size N = 10 used at iteration 4 objective function optimization

results (1000 simulations) .. 65

Figure 66 Reduced sample size N = 5(left)/N=10(right) used at iteration 4 EnOpt and EnOpt-

ML means of simulations... 65

Figure 67 Reduced sample size N = 5 used at iteration 4 Boxplot of optimized objective

function .. 66

Figure 68 Reduced sample size N = 10 used at iteration 4 Boxplot of optimized objective

function .. 66

Figure 69 Reduced sample size N = 5 used at iteration 4 : simulations' results of EnOpt and

EnOpt-ML with respect to true minimum values .. 68

Figure 70 Reduced sample size N = 10 used at iteration 4 : simulations' results of EnOpt and

EnOpt-ML with respect to true minimum values .. 68

Figure 71 Case reduced sample size N = 0 used at iteration 4 gradient (single simulation): 69

Figure 72 Case reduced sample size N = 0 used at iteration 4 EnOpt and EnOpt-ML samples

and ML model predicted samples .. 69

Figure 73 case reduced sample size N = 0 used at iteration 5: gradient (single simulation) . 69

Figure 74 Case reduced sample size N = 0 used at iteration 5 : EnOpt and EnOpt-ML samples

and ML model predicted samples .. 69

Figure 75 Case reduced sample size N = 0 used at iteration 4 : objective function optimization

results (1000 simulations) .. 71

Figure 76 Case reduced sample size N = 0 used at iteration 5 : objective function optimization

results (1000 simulations) .. 71

Figure 77 Case reduced sample size N = 0 used at iteration 4 : EnOpt and EnOpt-ML means

of simulations ... 72

Figure 78 Case reduced sample size N = 0 used at iteration 5 : EnOpt and EnOpt-ML means

of simulations ... 72

Figure 79 Case reduced sample size N = 0 used at iteration 4 : Boxplot of optimized objective

function .. 72

Figure 80 Case reduced sample size N = 0 used at iteration 5 : Boxplot of optimized objective

function .. 73

Figure 81 Case reduced sample size N = 0 used at iteration 4 : simulations' results of EnOpt

and EnOpt-ML with respect to true minimum values ... 74

Figure 82 Case reduced sample size N = 0 used at iteration 5 : simulations' results of EnOpt

and EnOpt-ML with respect to true minimum values ... 74

Figure 83 AdaBoost case: gradient (single simulation) ... 75

Figure 84 AdaBoost case: EnOpt and EnOpt-ML samples and ML model predicted samples

.. 75

Figure 85 Random Forest case: gradient (single simulation) .. 75

Figure 86 Random Forest case: EnOpt and EnOpt-ML samples and ML model predicted

samples ... 75

Figure 87 AdaBoost case: objective function optimization results (1000 simulations) 76

Figure 88 Random Forest case: objective function optimization results (1000 simulations)

.. 77

Figure 89 AdaBoost case: EnOpt and EnOpt-ML means of simulations 77

Figure 90 Random Forest case: EnOpt and EnOpt-ML means of simulations 77

Figure 91 AdaBoost case: Boxplot of optimized objective function 78

Figure 92 Random forest case : Boxplot of optimized objective function 78

Figure 93 AdaBoost case: simulations' results of EnOpt and EnOpt-ML with respect to true

minimum values ... 79

Figure 94 Random Forest case: simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values.. 80

Figure 95 Improvement example: gradient (single simulation) ... 81

Figure 96 Improvement example EnOpt and EnOpt-ML samples and ML model predicted

samples ... 82

Figure 97 Improvement example objective function optimization results (1000 simulations)

.. 83

Figure 98 Improvement example EnOpt and EnOpt-ML means of simulations 83

Figure 99 improvement example Boxplot of optimized objective function 84

Figure 100 Improvement example simulations' results of EnOpt and EnOpt-ML with respect

to true minimum values ... 85

Figure 101 Bukin function 6: gradient (single simulation) ... 86

Figure 102 Bukin function 6: EnOpt and EnOpt-ML samples and ML model predicted samples

.. 87

Figure 103 Bukin function 6 objective function optimization results (1000 simulations) 88

Figure 104 Bukin function 6 EnOpt and EnOpt-ML means of simulations 88

Figure 105 Bukin function 6 Boxplot of optimized objective function 89

Figure 106 Bukin function 6 : simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values.. 90

Figure 107 Rosenbrock: gradient (single simulation) .. 91

Figure 108 Rosenbrock: EnOpt and EnOpt-ML samples and ML model predicted samples

.. 92

Figure 109 Rosenbrock: objective function optimization results (1000 simulations) 93

Figure 110 Rosenbrock: : EnOpt and EnOpt-ML means of simulations 93

Figure 111 Rosenbrock: Boxplot of optimized objective function 94

Figure 112 Rosenbrock: simulations' results of EnOpt and EnOpt-ML with respect to true

minimum values ... 95

Acknowledgment

This master thesis is part of the requirements to fulfill the degree in the Master of Science in

Computational Engineering at the University of Stavanger.

Above all, I want to express my gratitude to my parents, Fatima and Abdessamad, as well as

my sister, Lamyae, for their constant encouragements.

I'd like to express my gratitude to both Prof. Aojie Hong, my internal supervisor, for

his insightful suggestions, feedback and guidance and Kurt Petvipusit, my External

supervisor from Equinor, for sharing some of his valuable time and expertise.

I'd also like to thank my wonderful friends, especially Vitalijus , for their continuous moral

support.

Last but not least, I'd like to extend my appreciation to everyone who contributed, whether

near or far, to my education at the University of Stavanger, especially my professors.

Abstract

High or even prohibitive computational cost is one of the key limitations of robust optimization

using the Ensemble-based Optimization (EnOpt) approach, especially when a computationally

demanding forward model is involved (e.g., a reservoir simulation model). It is because, in

EnOpt, many realizations of the forward model are considered to represent uncertainty, and

many runs of forward modeling need to be performed to estimate gradients for optimization.

This work aims to develop, investigate, and discuss an approach, named EnOpt-ML in the

thesis, of utilizing machine learning (ML) methods for speeding up EnOpt, particularly for the

gradient estimation in the EnOpt method.

The significance of any deviations is investigated on three different optimization test functions:

Himmelblau, Bukin function number 6 and Rosenbrock for their different characteristics. A

thousand simulations are performed for each configuration setting to do the analyses, compare

means and standard deviations of the ensembles. Singled out cases are shown as examples of

gradient learning curves differences between EnOpt and EnOpt-ML, and the spread of their

samples over the test function.

Objectives:

Objective1: Building of a code with a main function that would allow easy configurations and

tweaking of parameters of EnOpt, Machine learning (ML) algorithms and test function or

objective functions in general (with two variables). Codes necessary for test functions, ML

algorithms, plotting and simulation data saving files are defined outside of that main function.

The code is attached in the Appendix.

Objective2: Testing and analysis of results to detect any special improvement with EnOpt-ML

compared to EnOpt. The use of Himmelblau as a primary test function was with a modification

of specific parameters, one at a time, starting with a base configuration case for possible

comparisons. After gathering traits of effects of those configurations, an example where the

improvement could show interesting were presented and then applied to the other two test

functions and analyzed.

The main objective then has been to reduce the number of times the objective function is

evaluated while not considerably reducing the optimization quality.

EnOpt-ML yielded slightly better results when compared to EnOpt under the same conditions

when fixing a maximum objective function evaluations through the number of samples and the

iteration at which this number is reduced.

Chapter 1: Introduction

Background and motivation:

Companies in different sectors implement optimization solutions to make informed decisions

to increase profitability, improve efficiency and reduce costs. The purpose of optimization is

to find the “best available” solution(s) of an objective function using a set of properties that are

held constant throughout an analysis (i.e., control variables).

There are two approaches to optimization: gradient free and gradient based. The gradient free

optimization approach has slower convergence but is capable of finding a global optimum

whereas the gradient based approaches have a fast convergence, but the optimum can be either

local or global. This thesis work will consider a gradient based optimization.

When the optimization problem at hand contains uncertain data, we should consider this

incertitude. Robust optimization (RO) is a field of optimization theory that deals with

optimization problems and accounts for uncertainty that can be represented as deterministic

variability in the value of the parameters of the problem or its solution (Fonseca et al. 2017).

RO used by Essen et al. (2009) on water flooding optimization with an adjoint-based method,

for example, required access to reservoir simulator codes (usually inaccessible) and proved

computationally intensive. A method independent of the simulator that is easier to implement

is the Ensemble-based Optimization (EnOpt), it was proposed by Lorentzen et al. (2006) and

Nwaozo (2006). EnOpt was then used by Chen et al. (2009) for RO where the gradient is

approximated between the randomly perturbed control variables (random samples) and their

objective function values.

The accuracy of EnOpt estimation relies on the sample size of the perturbed controls and the

covariance matrix that generates those samples. The perturbed controls are commonly

generated with a multivariate normal distribution with a pre-defined mean vector and

covariance matrix. As one objective function evaluation needs to be performed for each set of

perturbed controls, the number of objective function evaluations and the computational

intensiveness of optimization increases with the number of sampled sets of perturbed controls.

This thesis aims to develop, investigate, and discuss an approach, named EnOpt-ML in the

thesis, of utilizing machine learning (ML) methods for speeding up the EnOpt method. In

EnOpt-ML, sets of perturbed controls and their corresponding objective values are used to train

a ML model, and then the trained ML model is used for gradient estimation.

For investigating the performance of EnOpt-ML, various objective functions, configurations

of EnOpt-ML, and ML algorithms are experimented. The main objective of the experiments is

to identify an optimal combination of an EnOpt-ML configuration and ML algorithm that can

reduce the number of objective function evaluations and computational cost.

Novelty of the work:

The key novelty of the thesis work is that the EnOpt-ML approach is proposed to incorporate

ML in EnOpt for enhancing gradient estimation and speeding up optimization, and the

approach is tested and discussed under various settings. To the best of the author’s knowledge,

this approach has not been addressed specifically in the literature.

Outline of the thesis:

The rest of the thesis is structured as follows:

● Chapter 2 presents key concepts/theories, equations/algorithms, and models used for

the thesis work.

● Chapter 3 introduces the workflows of various experiments on EnOpt-ML and analyses

the experiments results.

● Chapter 4 tests the optimal EnOpt-ML setting, determined based on the analysis in

Chapter 3, on three objective functions.

● Chapter 5 summarizes the thesis work with a general discussion and conclusions.

Chapter 2: Concepts and approaches

In this chapter, principal concepts and components of the algorithm used throughout this thesis

are presented.

Robust optimization (RO):

Material uncertainties should be considered for achieving high-quality decision making. The

optimal values of control (or decision) variables for a risk-neutral decision maker are those that

optimize the mean (or expected value) of the decision maker's objective function over the

uncertainty. The optimal control variables are expected to be robust to any possible realization

of the uncertainties, and thus optimizing the mean of the objective function under uncertainty

is also referred to as Robust Optimization (RO).

Ensemble optimization (EnOpt):

Ensemble optimization (EnOpt) is a stochastic optimization method that uses an ensemble of

realizations sampled via Monte Carlo simulation to account for and express uncertainties. Its

goal is to maximize or minimize the mean of the objective function across the ensemble. It is

a robust optimization (RO) strategy that is both simple and practical to implement (Hong et al.

2017).

As a gradient-based optimization algorithm, EnOpt requires a starting point (initial mean) and

a covariance matrix to define the search area for gradient estimation. In EnOpt, the values of

control variables are updated/improved iteratively towards their optimal values. In each

iteration, an ensemble of perturbed controls is generated and evaluated (i.e., the objective value

corresponding to one combination of the values of control variables is calculated), then the

gradient is estimated based on the perturbed controls and their corresponding objective values,

and finally the estimated gradient is used to update the values of the control variables. The

iteration of search for the optimum continues until some stopping criteria are met. EnOpt is a

promising RO approach, but when based on rich grid-based reservoir models with hundreds of

realizations for example, it is computationally demanding (Hong et al 2017).

EnOpt can be sensitive to the user-defined starting point (i.e., the choice of initial mean) when

there are several local optima, and it may not lead to the global optimum. The covariance matrix

in EnOpt specifies a search area – changing the covariance matrix allows to widen/shrink the

search area– which corresponds to a more global/local search strategy (Fonseca et. al. 2014).

Despite its cheap computing cost, previous research has demonstrated that the EnOpt can

efficiently and satisfactorily improve the objective function (Chen et al., 2009; Chen and

Oliver, 2010, 2012). However, EnOpt may not yield appropriate findings, for various

geological models for example, unless the variation in the ensemble models is small enough,

according to Fonseca et al. (2017).

Stochastic gradient descent:

Stochastic gradient descent (SGD) is a widely used algorithm for optimization . The basic idea

of SGD is that it, in each iteration, searches for a smaller value of an objective function in a

search direction with a certain learning rate (step size at each iteration), and such iteration

repeats for smaller and smaller objective values to approach an unknown minimal (usually,

near minimal) objective value until a certain criterion or criteria are fulfilled for stopping the

iteration.

Machine learning algorithms:

The algorithms for the three ML regressors used in this thesis were made available by Sklearn.

Sklearn (Pedregosa et al. 2011) is a free software machine learning library for the Python

programming language that includes a number of tools for machine learning and statistical

modeling.

Gradient Boosting Regressor:

Gradient boosting (GBR) is a machine learning approach for prediction studies that generates

a model in the form of an ensemble. For optimizing the different levels of stages, GBR

simplifies the random differences of loss function. Later, the gradient boosting algorithm was

developed to optimize the cost function and iteratively select function points in the negative

gradient direction (Friedman 2001). Gradient boosting combines weak “learners” (ML

algorithms that perform slightly better than a random guess) into a single strong learner (models

with good accuracy) in an iterative fashion.

There are two types of Gradient boosting: classifier and regressor. It is a regressor in this thesis

because we are predicting continuous values.

Adaptive Boosting (AdaBoost) Regressor:

Adaptive boosting Regressor is similar to GBR with the distinction being that the AdaBoost

is, as its name suggest, adaptively adjusting to errors on weak hypotheses (hypotheses

concentrating on a specific feature) (Freund et.al. 1995). AdaBoost does not need prior

knowledge of the accuracies of the weak hypotheses as it adapts to them and generates a

weighted majority hypothesis in which the weight of each weak hypothesis is a function of its

accuracy (Freund et.al. 1995).

Random Forest:

Random Forest is an ensemble of decision trees in which the outputs of all trees are aggregated

to give one final prediction, which is, in regression , the average of the individual tree

predictions (Svetnik et al. 2003). While growing the trees, Random Forest adds more

randomization to the model.

EnOpt-ML:

EnOpt-ML is a modified EnOpt method that uses machine learning algorithms to reduce the

computational cost of EnOpt. It trains the ML model on the samples from the real objective

function and predicts more samples that are also used in the gradient estimation. EnOpt-ML

method is explained through the diagram in figure 1 :

Figure 1Workflow chart of EnOpt-ML

Optimization test functions:

Presented in the following are the three optimization test functions used in this thesis:

Himmelblau, Rosenbrock and Bukin function number 6. Himmelblau is used in chapters 3 and

4 while Rosenbrock and Bukin function number 6 are only used in chapter 4.

Himmelblau: f(x, y) = (x2 + y – 11)2 + (x + y2 -7)

Figure 2 Himmelblau. Test function for optimization

The Himmelblau function was chosen for the challenges that different minima would present:

- four identical local minima at different (x, y) locations:

f(x,y) = 0 at (x,y) = (3, 2)

f(x,y) = 0 at (x,y) = (−2.805118, 3.283186)

f(x,y) = 0 at (x,y) = (−3.779310, −3.283186)

f(x,y) = 0 at (x,y) = (3.584458, −1.848126)

- Evaluated on the rectangle x ∈ [-5, 5], y ∈ [-5, 5].

Figure 3 Bukin function number 6. Test function for optimization

Bukin’s function # 6: f(x, y) = 100 √ | y - 0.01 x2| +0.01|x+10|

The Bukin function number 6 has been chosen to test the optimization on an example for

function with a ridge region.

Some Characteristics of the Bukin function number 6:

- One global minimum:

f(x,y) = 0 at (x,y) = (-10, 1)

- Numerous local minima all of which are located in a ridge.

- Evaluated on the rectangle x ∈ [-15, -5], y ∈ [-3, 3].

Rosenbrock: f(x, y) = (x - 1)2 + 10(y -x2)2

(also known as: Rosenbrock's valley or Rosenbrock's banana function)

Figure 4 Rosenbrock. Test function for optimization (evaluated in the interval x ∈ [-2.048, 2.048], y ∈ [-2.048, 2.048])

Figure 5 Rosenbrock. test function for optimization (evaluated in the interval x ∈ [-5, 10], y ∈ [-5, 10])

The Rosenbrock function has been chosen to test the optimization on an example for function

with a valley-like region.

Some Characteristics of the Rosenbrock function:

- One global minimum:

f(x,y) = 0 at (x,y) = (1, 1)

- The function is unimodal, with a narrow, parabolic valley as the global minimum.

Despite the ease with which this valley can be found, convergence to the minimum is

not easy (Picheny et al., 2012)

- Evaluated on the rectangle x ∈ [-5, 10], y ∈ [-5, 10]

Chapter 3: Experiments on EnOpt-ML

Introduction:

The main goal of this chapter is to investigate the impact of machine learning algorithms on

stochastic gradient descent (SGD). The Himmelblau function is used for optimization testing

in the present chapter. The algorithms that were written in the Python programming language

(version 3.8.8) and are available in Appendix A. A function called “run(.)”, in the thesis Python

code, has been created to facilitate the change in parameters for testing of EnOpt and EnOpt-

ML. As long as a result in optimization is less than 10% of the range of the function, it is

considered “good enough” in these chapters.

Workflow:

1. Definition of the starting point (initial mean) and initial covariance matrix that the

optimization needs to start from,

2. In the function run(.) defined in Appendix A, several parameters are varied for testing

different EnOpt and EnOpt-ML configurations. Those parameters are:

- Mean (mu) and covariance (C): are mandatory fields where mu is the starting

point and C is the initial covariance matrix.

- Initial sample size (init_N)

- Reduced sample size (reduced_N): in case of reduction of sample size, this

parameter defines the number of samples used at a defined iteration and in the

following iterations. in the case that reduced_N= 0, No more evaluations on the

original objective function are performed.

- Number of samples predicted by the machine learning model (Nml)

- The objective function used (of)

- The maximum number of iterations (max_iter) as a stopping criterion, for the

optimization

- Train iteration (train_iter): the number of iterations after which the ML model

starts the learning process and being used.

- Reduce at iteration (reduce_at_iter): iteration at which the number of samples

is reduced (i.e., when ‘reduced_N’ is used)

- Machine learning algorithm (ML): the machine learning algorithm that will be

used.

Note: run(.) is not the only function used in the process, but it is the main

function for optimization with EnOpt and EnOpt-ML in this thesis work. Other

functions specify, for instance, the test functions and the machine learning

algorithms needed/used. In addition, there is a sequence of for loops, outside of

run(.) that goes through different configurations and simulations on this main

function(see Appendix A).

- Other configurations that have to be specified for the different simulations:

» seed: the seed() method in Python is used to get the random

number generator started, this method needs a starting value

which we specify with this configuration. If the seed value is

specified and unchanged, we will always get the same values of

the optimizations so long as the other parameters are

unchanged. If the seed = None, it will indicate that we are

getting different samples (because of the unfixed seed) at each

rerun of the function. The latter is useful when we need to

perform multiple simulations for more robust results.

» sims: the number of simulations performed on the function.

When sims >1, the seed has to be set to None

3. Analysis of results and recommended practices of using EnOpt-ML.

Base case configuration:

In the base configuration -configuration from which sensitivity analyses are going to be

derived- the optimization test function is Himmelblau on which it is applied both EnOpt and

EnOpt-ML with the use of machine learning based perturbed sample evaluation approach on

the gradient. The latter will be referred to in this thesis as EnOpt-ML. the GBR is used in this

configuration case as a ML technique.

The initial mean is at (0, 0) , the initial covariance matrix is [0.1 0 0 0.1], and the rest of the

configuration is as follows:

config_sims = 1

 (config_sims= 1 for a single simulation. config_sims>1 for simulations repeated a number

config_sims with different generated samples)

config_init_N = [20]

config_reduced_N = [5]

config_max_iter = [100]

config_train_iter = [999, 1]

(config_train_iter = 999 for EnOpt (never reaching train iteration for ML), and config_train_iter = 1

is for the use of ML at 2nd iteration)

config_reduce_at_iter = [999]

(config_reduce_at_iter =999 is so that config_reduced_N is not used/reached)

config_seed = 1000

 (the seed = 1000 (randomly chosen value) is set for single simulation cases for comparison purposes

with other configurations. When seed = None, the simulations are repeated with different seeds

(generating different samples) for multiple simulations.

After running the base configuration for optimization, the following results are obtained:

- for a single simulation:

Figure 6 Base configuration gradient (single simulation)

Figure 7 Base configuration EnOpt and EnOpt-ML samples and ML model predicted samples

Mean square error (MSE): 34.39

MSE of EnOpt-ML refers to the mean square error between the trained ML model predictions

of the objective function and the actual objective function. It will be abbreviated as MSE in the

rest of this thesis’ following chapters.

The MSE of the GBR shows a relatively small value. A small value of MSE indicates a good

fit between the model predicted samples and the test function.

in (fig. 6) EnOpt_ML gradient moved in the same way as EnOpt gradient for the first 5

iterations. After the 5th iteration, EnOpt-ML gradient continued in a linear-like trajectory while

EnOpt gradient was zigzagging. This EnOpt-ML behavior could be due to that, in EnOpt-ML,

the samples used to predict the ML samples are collected from all previous iterations and, after

a number of iterations, new samples will have less effect on the training of the ML model.

The samples of both methods have the distribution of samples shown in (fig. 7), it offers a

picture of the change in covariance matrix and its effect on the sampling as the covariance

matrix decreases in size. Because of this, In the last iterations, (earlier in EnOpt-ML than with

EnOpt) the samples are distributed in narrower trajectory (fig.7).

In this simulation, EnOpt has performed one extra iteration compared to EnOpt_ML (the latter

evaluated 40 fewer objective function). Both the optimal control vectors and the optimized

objective functions were very close in value both to each other (table 1) and to the local minima

(optimal vector being [3 2] and optimal objective function equal to 0).

Table 1 Optimization results for base configuration case (single simulation)

- 1000 simulations:

-

- Figure 8 Base confirmation cases objective function optimization results (1000 simulations)

-

- Figure 9 Base configuration case: EnOpt and EnOpt-ML means of simulations

For the 1000 simulations case, EnOpt-ML resulted in a slightly higher objective function mean

and standard deviation through the simulations in average(table 2). EnOpt on the other hand

performed an average number of objective function evaluations 8% higher than EnOpt-ML.

the simulations of EnOpt and EnOpt-ML show very close values throughout the iterations (fig.

9). Figure 8 shows all the different 1000 simulations (in gray) in each method, where we can

appreciate .that the standard deviation between the simulations of EnOpt and EnOpt-ML are

not very different ; 9.24for EnOpt and 10.77 for EnOpt-ML (table 2). The mean of EnOpt and

EnOpt-ML objective functions are very similar along the iterations (fig. 9) and the results show

a slightly better but almost half the value of optimization in EnOpt than EnOpt-ML (table 2)

The quartiles from the boxplot (fig. 10) show that the maximum, minimum, 25% and 50%

quartiles in the objective function values obtained are very close to one another, but the 75%

quartile is double the value in EnOpt-ML with respect to EnOpt.

In (table 2), we see that the number of objective function evaluation is very close with 8%

higher value for EnOpt compared to EnOpt-ML.

Figure 10Base configuration case: Boxplot of optimized objective function

Table 2 Base case configuration summary output values (1000 simulations)

As introduced in Chapter 2, the Himmelblau test function has four local minima. The

simulations with both EnOpt and EnOpt-ML with an initial vector [0 0], yielded values that

mostly fall in the lower-right quadrant of (fig. 11). Few simulations produced values closer to

the minima in the top-right quadrant and even fewer values were close to the lower-left one.

No values were close to the minimum on the top-left area of (fig. 11).

Another observation is that the blue dots, representing EnOpt gradient optimization values,

land closer to the top-right minima, while the red dots, EnOpt-ML gradient optimization values,

are mostly stuck on the slope leading to that minimum.

More EnOpt-ML simulations got closer to the lower-left minima than EnOpt-ML.

The distribution of EnOpt and EnOpt-ML simulation (fig. 11) plot of results shows that

EnOpt and EnOpt-ML can end up on distinct optimal values.

Figure 11 Base case simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Changing the starting point

The initial point is known to affect the EnOpt results. The choice of the initial point is made to

get an example of starting on a steep region versus a starting on a flat region.

Starting at [-5 2] is for the case of steep region start, while starting at [3 -1] is for the flat

region start case.

Note: all other configurations are kept unchanged.

Starting point [-5 2]:

- Single simulation:

Figure 12 case starting point [-5 2] gradient (single simulation)

MSE: 44.77

The MSE is small, this mean that the errors on the ML model are small.

When we start at [-5 2] on this simulation, The objective function optimization stops after two

iterations for both EnOpt and EnOpt-ML (fig. 12). The closest of the four minima of the

Himmelblau is not approached enough and this is due to the flatter region on the final iteration.

Figure 13 Case starting point [-5 2] , EnOpt and EnOpt-ML samples and ML model predicted samples

Figure 13 shows the distribution of the samples of EnOpt and EnOpt ML. we see a linear-like

distribution of samples after the second as the covariance matrix became smaller faster. The

covariance did not allow the samples to be taken from a wider area and it was then not possible

for the gradient to go closer to the closest local minimum.

Very few iterations were performed due to the fact that the tolerance set as stopping criterion

is 10-3 was reach early on the iteration process.

Table 3 Optimization results for case starting point [-5 2] (single simulation)

A slight improvement is seen when using EnOpt-ML In comparison with EnOpt (table 3).

EnOpt yielded 91.14 while EnOpt-ML yielded 86.83 as an optimal value. Both values are high

compared to the actual minimum that is zero and to the base configuration case (≈ 3 for both

EnOpt and EnOpt-ML (table 1)).

The same number of objective function evaluations were performed on both methods (120

times for EnOpt and EnOpt-ML, table 3)

- 1000 simulations:

Figure 14 Case starting point [-5 2] : objective function optimization (1000 simulations)

Figure 15 case starting point [-5 2] : EnOpt and EnOpt-ML means of simulations

F
i
g
u
r
e
S
E

When the simulation is repeated 1000 times with different random seeds, the means of

objective functions are showing a better optimization with EnOpt compared to EnOpt.-ML (fig.

15). EnOpt gave in average 36.47 while EnOpt-ML gave 48.31 which is approximately 20%

higher. They both have almost the same standard deviation (33.58 EnOpt versus 33 for EnOpt-

ML, table 4). The optimized objective functions also show a higher mode (50% quartile, figure

22). 25% quartile value (fig22) is also closer to the minimum on the boxplot for EnOpt than it

is for EnOpt-ML.

In (fig. 14) we see the mean of the different simulations tend to stop iterating in earlier iterations

in EnOpt-ML compared to EnOpt.

42 more objective function evaluations were obtained, in average, with EnOpt compared to

EnOpt ML (table 4).

Figure 16 Case starting point [-5 2] : Boxplot of optimized objective function

Table 4 Case starting point [-5 2] : summary output values (1000 simulations)

In summary, we can say that we got 20% less objective function evaluations in EnOpt-ML than

in EnOpt, but the Optimizations results are 20% higher in EnOpt-ML compared to EnOpt.

The plot of 1000 simulations results (fig. 17) show that, with this starting point [-5 2], none of

the optimizations (be it with EnOpt or EnOpt-ML) have landed in any other minima than the

one on the top-right quadrant of this figure.

Figure 17 Case starting point [-5 2] : simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Starting point [3 -1]:

Single simulation:

Figure 18 Case - Starting point [3 -1]: gradient (single simulation)

MSE: 6.17

MSE is very low which shows a good ML model prediction.

Almost the same behavior in this case with starting point [3 -1](fig. 18) as the previous case

as we are again in a relatively flat region. But since we started on a lower slope, the simulations

gave better optimization results , EnOpt -ML(3.81) and EnOpt (4.71).

Figure 19 Starting point [3 -1]: EnOpt and EnOpt-ML samples and ML model predicted samples

The number of objective function evaluations is clearly lower in EnOpt-ML than in EnOpt by

80 times (table 5). This makes EnOpt-ML as the difference is very small in the optimization

results between the two methods.

Table 5 Optimization results for Starting point [3 -1] (single simulation)

- 1000 simulations:

Figure 20 Case starting point [3 -1]: objective function optimization (1000 simulations)

Figure 21 Case starting point [3 -1]: EnOpt and EnOpt-ML means of simulations

There are 10 times smaller standard deviations in the simulations with the starting point being

in a flatter area compared to starting on a higher steep slope in the previous case (Enopt (2.55

in current case versus 33.5 in the previous one) EnOpt-ML (2.5 in current case versus 33 in

previous case)). The mean over the simulation means (fig. 21) shows lower EnOpt values

which is better than EnOpt-ML results, but this difference is very small (last optimal objective

function means on EnOpt 5.21 in comparison EnOpt-ML resulted in 5.59 (table 6).

Figure 22 Case starting point [3 -1]: : Boxplot of optimized objective function

Table 6 Case starting point [3 -1]: summary output values (1000 simulations)

Both optimizations run a same proportion of objective functions when starting in an already

flat region, as in this case. The difference is that EnOpt-maximum ML's number of iterations

was reduced by two, as seen in the table 6.

The quartiles on (fig. 22) show a higher maximum value of the objective function in EnOpt

than in EnOpt-ML. (fig. 22) also shows that the EnOpt-ML has a higher 25% quartile value

optimization, EnOpt-ML tends then to have higher objective function in these simulations than

EnOpt but with a mode that is very close between the two methods (5.47 in EnOpt versus 5.95

in EnOpt-ML, table 6). The objective function evaluation mean over the simulations

Figure 23 Case starting point [3 -1]: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

The simulations yielded optimization results (fig. 23) on the same area as the minima on the

lower-left quadrant in all the 1000 simulations.

Changing initial covariance matrix

Initial covariance matrix: 0.2I

Figure 24 Case: covariance 0.2I : gradient (single simulation)

Figure 25 Case: covariance 0.2I : EnOpt and EnOpt-ML samples

and ML model predicted samples

MSE: 63.65

Initial covariance matrix: 0.4I

Figure 26 Case: covariance 0.4I : gradient (single simulation)

Figure 27 Case: covariance 0.4I : EnOpt and EnOpt-ML samples

and ML model predicted samples

MSE: 178.77

The MSE is more than double the deviation for I×0.4 than I×0.2 covariance matrices and has

led to an optimum that is 5.58 when I×0.2 EnOpt-ML lead to 2.06 which is slightly better in

this case.

We also observe that, in this configuration, the EnOpt-ML for I×0.4 performed in more

iterations than EnOpt (13 versus 7) while the EnOpt-ML for I×0.2 performed in fewer iterations

than EnOpt (6 versus 12). The base configuration case had 11 iterations in EnOpt and 10 for

EnOpt-ML, which are only one iteration difference (tables 7 and 8).

Figures 24 and 26 show the difference in spread of function sampling, we can observe that in

the case where the covariance is higher, the EnOpt-ML and EnOpt samples are taken in the

later iterations on the same narrow region which is not what we have seen with the base case

configuration or in the case where the covariance is 0.2I where the show parallel narrow

scattering.

Table 7 Optimization results for case: covariance 0.2I (single simulation)

Table 8 Optimization results for case: covariance 0.4I (single simulation)

The number of objective function evaluation increased in EnOpt from the configuration with a

Covariance matrix of 0.1 I (440, table 1) to a covariance of 0.2I (480, table 7), but then it

decreased in the case of a covariance matrix of 0.4I (280, table 8). On the other hand, for EnOpt-

ML, the number of objective function evaluation only kept decreasing with higher covariances

(400 to 360 to 260 in covariances 0.1I, 0.2I and 0.4I respectively, tables 1, 7 and 8). The optimal

values of the objective function on all covariances are not very different between the base case

configuration and the covariance of 0.2I (approximately 3 with covariance 0.1I, and

approximately 2 with covariance 0.4I). for the case where the covariance is 0.4I, the value is

four times higher in the result of EnOpt-ML in comparison with EnOpt (1.12 in EnOpt versus

5.58 in EnOpt-ML, tables 1, 7 and 8)

- 1000 simulations:

Figure 28 Case: covariance 0.2I : objective function optimization results (1000 simulations)

Figure 29 Case: covariance 0.4I : objective function optimization results (1000 simulations)

Figure 30 Case: covariance 0.2I : EnOpt and EnOpt-ML means of simulations

Figure 31 Case: covariance 0.4I : EnOpt and EnOpt-ML means of simulations

The means gathered from the 1000 simulations show very close optimization values throughout

the iterations with respect to the methods (EnOpt or EnOpt-ML) and with respect to the

covariances (0.1I and 0.4I),(fig. 30 and 31). The iterations mean is around 8 for all cases which

indicates that there is not much difference in the number of times the objective function has

been evaluated.

Figure 32 Case: covariance 0.2I : Boxplot of optimized objective function

Figure 33 Case: covariance 0.4I : Boxplot of optimized objective function

In figures 32 and 33, the quartiles look very close to each other for the two present configuration

cases as well as EnOpt and EnOpt-ML with the only visible overall difference of EnOpt-ML

computed with a covariance matrix equal to 0.4I, where the maximum value obtained through

all simulations is lower.

When comparing the EnOpt to EnOpt-ML of I×0.4 in those simulations, we get about one third

less on the value of EnOpt-ML results with slightly fewer evaluations of the objective function

from the EnOpt evaluations (tables 9 and 10). For I×0.2, same observation, but with smaller

difference on the optimized objective values and the number of objective function evaluation.

The standard deviation of the different simulations is higher on the 0.4I covariance for both

optimal values and objective function number of evaluation (tables 9 and 10).

Comparing to the base case configuration, the EnOpt-ML overperforms EnOpt when the initial

covariance is greater. However, for EnOpt-ML, I×0.2 did best in terms of objective function

optimization both on the means and the standard deviation of the simulations in comparison

with both covariances I×0.4 and I×0.1. (tables 2, 9 and 10).

In summary, the values obtained on the means for both present cases show that EnOpt-ML

performed better with larger covariance matrix (see also fig. 32 and 33). And on the contrary,

the objective function had more evaluations in EnOpt-ML than in EnOpt where the covariance

is 0.4I in comparison with the 0.2 covariance matrix case (tables 9 and 10).

Table 9 Case: covariance 0.2I : summary output values (1000 simulations)

Table 10 Case: covariance 0.4I : summary output values (1000 simulations)

Figures 34 and 35, show that with a higher covariance matrix, there are more chances that the

EnOpt/ EnOpt-ML can fall into other minima. These two examples also have a concentration

of simulation results on the lower-right minimum of the figure, few on the top – right minimum,

one outlier for covariance equal to 0.4I and none for the rest of the minima. Of course, the

wider the covariance matrix the more possibilities it is to sample from areas that may lead to

different directions.

Figure 34 Case: covariance 0.2I : simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Figure 35 Case: covariance 0.4I : simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Changing the sample size N

In EnOpt, The number of samples N is very important to the performance of the optimizations,

but also, it is a factor in the objective function number of evaluations, meaning, it is best to

generate high number of samples for finding better near optimal values, but it also means that

the computational time is going to increase. In this subchapter, EnOpt-ML is going to be

performed to explore its impact

- Single simulation

N = 5

Figure 36 Case N=5: gradient (single simulation)

Figure 37 Case N=5: EnOpt and EnOpt-ML samples

and ML model predicted samples

MSE: 40.86

N = 100

Figure 38 Case N=100: gradient (single simulation)

Figure 39 Case N=100: EnOpt and EnOpt-ML samples

and ML model predicted samples

MSE: 19.42

The base configuration with a lower number of samples N = 5, compared to a higher number

of samples N = 100, has more wiggly gradients both with EnOpt and EnOpt-ML(fig. 36 and

38). The increase of N number of samples also improves the MSE as the machine learning

algorithm also benefits from the data it is training on.The samples on figures 37 and 39 also

show that a smaller number of samples would fail to collect features in the function if it had

some data that would have redirected the gradient to a different slope.

Table 11 Optimization results for case N=5: (single simulation)

Table 12 Optimization results for case N=100 single simulation):

The objective function is clearly evaluating more times in N=100 than N= 5, but curiously in

this simulation (and contrary of most simulations See table 11), in the case where the sample

size is 5, EnOpt performed better than in the case where the sample size was 100 (0.3 for N

equal to 5 versus 3.29 for N equal to 100, tables 11 and 12). EnOpt-ML evaluated more times

the objective function than EnOpt, but it computed 200 fewer times than EnOpt when N=100

. when N= 100, EnOpt-ML yielded a value a slightly smaller than EnOpt on the same

configuration.

Compared to the base case with a single simulation, N=20, EnOpt yielded very close values to

the case with N=100 while we obtained slightly better value with EnOpt-ML where the sample

size are higher (3.18 with N=5, 2.99 with N=20 and 1.99 with N=100). But since the difference

is small between the results with N=20 and N=100 considering we need a lot more objective

function evaluations, we can say that N=20 did best on EnOpt-ML front.

- 1000 simulations:

Figure 40 Case N=5: objective function optimization results (1000 simulations)

Figure 41 Case N=100: objective function optimization results (1000 simulations)

Figure 42 Case N=5: EnOpt and EnOpt-ML means of simulations

Figure 43 Case N=100: EnOpt and EnOpt-ML means of simulations

For both cases discussed in this subchapter, EnOpt-ML has, in average, fewer objective

function evaluations than EnOpt with optimization results that are fairly close to each other

although closer for the case where N = 100.

The main objective is to observe the part that machine learning algorithm model plays when

used on the gradient. EnOpt-ML grants around 222 fewer evaluations of the objective function

(tables 13 and 14) when using higher number of samples (N = 100), while being still pretty

close to the value obtained with EnOpt. In addition, it appears that the bigger the sample size

the closest are the results of EnOpt and EnOpt-ML.

Figure 44 Case N=5: Boxplot of optimized objective function

Figure 45 Case N=100: Boxplot of optimized objective function

The quartiles (figures 44 and 45) show how the case of higher number of samples (N=100), the

mean of the optimized objective functions of the simulations is way better than where the

sample size is very small. The highest optimized objective function obtained was EnOpt-ML

where N=5 (15.35 which is about 5 times higher than where N=100, tables 13 and 14)

Table 13 Case N=5: summary output values (1000 simulations)

Table 14 Case N=100: summary output values (1000 simulations)

We can deduce the same thing for EnOpt-ML comparison on all sample size cases as we can

for single simulations: because the difference between the results with N=20 and N=100, where

we need a much higher number of objective function evaluations (1548.75, table 14), we can

say that the N=20 case with EnOpt-ML method is good enough.

The same can be said about EnOpt as, in fact, it was better with more samples but the

counterpart of computational intensity, and since the difference is small in optimized value. we

can say that the sample size of 20 is good enough and best of the three cases (9.33 for N=5,

3.64 for N=20 and 2.33 for N=100, tables 2, 13 and 14) for the purpose of balancing

optimization results with reduction of the objective function evaluation.

In Figure 46, the simulations performed with N=5 landed mostly on the true minimum on the

lower-right quadrant but also on the top-right and the lower-left quadrants' true minima (and

some in between those three) with more EnOpt-ML optima on the lower-left true minimum

quadrant than EnOpt and more EnOpt optima on the top-right true minimum than EnOpt-ML

optima. none of the optimizations' simulations landed on the top-left true minimum.

 In figure 47, the simulations performed with N=100 landed all on the same true minimum on

the lower right quadrant.

We notice that, when compared to the base case (fig.11), the larger the sample size, the more

simulations end up on the same minimum.

Figure 46 Case N=5: simulations' results of EnOpt and EnOpt-ML with respect to true minimum

Figure 47 Case N=100: simulations' results of EnOpt and EnOpt-ML with respect to true

Changing the Number of the predicted samples by the machine learning model

The predicted samples from the ML model can also affect the optimization of EnOpt-ML due

to the errors they can present. In this subchapter, the number of those predicted samples is

changed from Nml=100 (base configuration case) to Nml = 20 and Nml=1000 to explore the

effect it can have on the EnOpt-ML method.

- Single simulation

Nml = 2

Figure 48 Case Nml = 20: gradient (single simulation)

Figure 49 Case Nml = 20: EnOpt and EnOpt-ML

samples and ML model predicted samples

Nml = 1000

Figure 50 Case Nml = 1000: gradient (single

simulation)

Figure 51 Case Nml = 1000 EnOpt and EnOpt-ML

samples and ML model predicted samples

MSE : 95.05 MSE : 85.99

When changing the number of samples predicted by the machine learning model, we can see

that with smaller Nml , we get better optimization value (for this single simulation) compared

to the base case configuration. In fact , with even higher number of predicted samples used we

ended up with a declined performance (34.98 for Nml= 1000 versus 0.9 for Nml=20, tables 15

and 16) . This is due to that the Nml samples do not necessarily fall in the Himmelblau surface.

The MSE (Mean Square Error) is higher on Nml=20 case than the Nml=1000 case which may

be misleading, but this is the effect of the very different number of samples used to calculate

the MSE.

Table 15 Optimization results for case Nml = 20 (single simulation)

Table 16 Optimization results for case Nml = 1000 (single simulation)

In EnOpt-ML, the difference in the number of times the objective function was evaluated has

dropped with the use of Nml=1000 by 160 times compared to Nml=20 case (tables 15 and 16),

while both cases of Nml= 20 and the base configuration case of Nml=100 evaluated the

objective function an equal number of times.

- 1000 simulations

Figure 52 Case Nml = 20: (top-right), case Nml = 1000(bottom right), EnOpt (left): objective function optimization results

(1000 simulations)

Figure 53 Case Nml = 20: (top-right), case Nml = 1000(bottom right): EnOpt and EnOpt-ML means of simulations

The deviations between the different cases’ simulations are almost the same. The EnOpt result

does not change since its algorithm does not include the use of Nml, so the tables included are

only for EnOpt-ML. for the different Nml.

The mean of the simulations means lead to very close values with slightly lower value for

Nml=1000. This is contrary of the single simulation where the difference was pronounced with

Nml=1000’s result being higher (tables 16 and 18).

The EnOpt in both cases performed only very slightly better than EnOpt-ML (3.64 versus

6.82 and 5.31). The results between Nml= 20 and Nml=1000 led to very similar results with

just a little higher 75% quartile value on Nml=20 case configuration (fig. 54 and 55, table).

Figure 54 Case Nml = 20: Boxplot of optimized objective function

Figure 55 Case Nml = 1000: Boxplot of optimized objective function

The average number of objective function evaluation has doubled with an Nml=1000 compared

with the case of Nml=20 while the optimization results’ mean over the simulations are not so

different (tables 17 and 18).

Table 17 Case Nml = 20: summary output values (1000 simulations)

Table 18 Case Nml = 1000: summary output values (1000 simulations)

In comparison with the base configuration case, Nml=100, the average of simulations of

optimization results are very close to the ones with Nml= 20 (tables 2 and 17)

The distribution of EnOpt and EnOpt-ML simulation (fig. 56 and 57) plot of results shows that

EnOpt and EnOpt-ML can end up on distinct optimal values. The majority of them for both

plots (fig. 56 and 57) are in the lower-right quadrant of the figures 56 and 57. Few simulations

produced values that were closer to the top-right quadrant's true minimum, and even fewer

were close to the lower-left quadrant's true minimum (in Nml= 20 ,it was barely approached).

No optimization approached the true minima in the top-left corner of the figures (fig. 56 and

57).

Figure 56 Case Nml = 20: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Figure 57 Case Nml = 1000: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Different training iterations

In the process of using machine learning model on the gradient to observe its contribution/

effect on the optimization, we need to decide which data will be included in the model

prediction samples. Here it is discussed whether it has an impact and if it does, how important

of an impact it has on the optimization.

The following figures(fig 58) present the different iterations at which machine learning started

being included in the algorithm (including the predicted samples in the gradient calculations).

Figure 58 Objective function means over 1000 simulations for EnOpt, and EnOpt-ML with ML model trained at different

iterations

When it is trained at first iteration (fig. 58), we can see that there is smaller deviation for the

ensemble of simulations, but it has on the rest of the cases a shape (envelope of the simulations

standard deviation) that start looking almost unchanged overall.

Figure 59 means of 1000 simulations for EnOpt and EnOpt-ML with ML model trained at different iterations

Comparing all the simulations’ means on different trained iterations (fig. 59), we can observe

that:

1. EnOpt lead to the lowest objective function in comparison with all the EnOpt-ML

versions

2. The training at later iterations (5 and 6 here) led to better results compared to training

at earlier stages.

3. The test function optimizations with all the different start training iteration cases are

very close to one another .

Reduction of sample size N throughout the iterations

Reduced sample size N used at iteration 4 (after 3rd

iteration)to N=5

- Single simulation

Figure 60 Reduced sample size N = 5 used at iteration 4 gradient (single

simulation)

Figure 61 Reduced sample size N = 5 used at iteration 4 EnOpt and

EnOpt-ML samples and ML model predicted samples

MSE: 52.55

Reduced sample size N used at iteration 4 (after 3rd

iteration) to N=10

- Single simulation

Figure 62 Reduced sample size N = 10 used at iteration 4 gradient

(single simulation)

Figure 63 Reduced sample size N = 10 used at iteration 4 EnOpt and

EnOpt-ML samples and ML model predicted samples

MSE: 35.49

In an attempt to reduce the number of the objective function evaluations, the sample size is

reduced to check if it is possible to get a near-optimum value while at the same time running

fewer objective function evaluations. The goal is also to observe if EnOpt-ML gives better

result than EnOpt when the sampling on the original function is reduced or stopped.

In the case of a single simulations presented here, comparing the reduction to N=5 and N=10

we can see that the performance is better where the sample size is only reduced to 10 (fig. 60

and 62). There is a small difference between the EnOpt and EnOpt-ML results; in the reduction

of sample size to N=5 , we get slightly better optimization on the EnOpt-ML front(4.99 in

EnOpt-ML versus 6.26 in EnOpt, table 19). With the sample size reduced only to N=10, EnOpt

had better optimization results than EnOpt-ML(0.39 in EnOpt compared 2.31to EnOpt-ML).

The comparison of EnOpt-ML in the two cases, shows a double value of the optimized function

when N=5 but with 50 fewer objective function evaluations (table 20) which is a good tradeoff

between number of objective function evaluations and the optimal value.

Table 19 Optimization results for Reduced sample size N = 5 used at iteration 4 (single simulation)

Table 20 Optimization results for Reduced sample size N = 10 used at iteration 4 (single simulation)

- 1000 simulations:

Figure 64 Reduced sample size N = 5 used at iteration 4 objective function optimization results (1000 simulations)

Figure 65 Reduced sample size N = 10 used at iteration 4 objective function optimization results (1000 simulations)

Figure 66 Reduced sample size N = 5(left)/N=10(right) used at iteration 4 EnOpt and EnOpt-ML means of simulations

From figures 61 and 63, we can see from the distribution of the different simulations (in gray),

that more simulations of EnOpt and EnOpt-ML optimizations have stopped earlier than for the

base configuration case.

The means (fig. 66) show that EnOpt had gotten slightly better value of optimization than

EnOpt in both configurations.

At the fourth iteration, we have fewer function evaluations (see tables 21 and 22)when the

sample size N has been reduced to 5 (168 for EnOpt and 161 for EnOpt-ML) and a smaller

deviation (21 for EnOpt and 17 for EnOpt-ML). When N is reduced to 10 at the 4th iteration,

the objective function is evaluated a greater number of times (226 for EnOpt and 208 for

EnOpt-ML) with higher standard deviations too (37 for EnOpt and 32 for EnOpt-ML). The

optimization value is, on the other hand, not significantly different on the means or standard

deviations between the simulations on both cases of configuration.

Figure 67 Reduced sample size N = 5 used at iteration 4 Boxplot of optimized objective function

Figure 68 Reduced sample size N = 10 used at iteration 4 Boxplot of optimized objective function

The (fig 67 and 68) show that the variability is a little higher in EnOpt-ML values of the

optimized objective function than on EnOpt for both of the cases where the 50% quartile is

centered for EnOpt-ML but is very close to the 25% quartile for EnOpt.

Table 21 Reduced sample size N = 5 used at iteration 4 summary output values (1000 simulations)

Table 22 Reduced sample size N = 10 used at iteration 4 summary output values (1000 simulations)

Figures 69 and 70 do not show any interesting differences compared to each other and to the

base case configuration.

Figure 69 Reduced sample size N = 5 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to true

minimum values

Figure 70 Reduced sample size N = 10 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values

Since the results of the reduction of sample size are interesting from the number of objective

function evaluations point of view, a comparison with change in at what iteration we reduce N

number of samples and the reduction to N=0 (i.e., sampling from the objective function is

stopped) for both the cases involved is made in the following comparison:

- Reduced sample size N used at iteration 4 (after

3rd iteration) to N=0

- Single simulation:

Figure 71 Case reduced sample size N = 0 used at iteration 4 gradient

(single simulation):

Figure 72 Case reduced sample size N = 0 used at iteration 4 EnOpt

and EnOpt-ML samples and ML model predicted samples

MSE: 629.65

- Reduced sample size N used at iteration 5

(after 4th iteration) to N=0

- Single simulation:

Figure 73 case reduced sample size N = 0 used at iteration 5: gradient

(single simulation)

Figure 74 Case reduced sample size N = 0 used at iteration 5 : EnOpt

and EnOpt-ML samples and ML model predicted samples

MSE: 709.66

The MSE in these configurations is much higher than we obtained in previous cases. It is due

to that the ML model is predicting on the same samples since the stopping of objective

function sampling.

Table 23 Optimization results for case reduced sample size N = 0 used at iteration 4 (single simulation)

Table 24 Optimization results for case reduced sample size N = 0 used at iteration 5 (single simulation)

The 1st case (N = 0 from Iteration 4) shows that EnOpt-ML led to better optimization value in

comparison with EnOpt (tables 23 and 24) and so happened also for the 2nd case (N = 0 from

Iteration 5). The second case has better optimization as it gathers more data from the extra

iteration compared to where we stop sampling from the objective function at the previous

iteration. For this simulation we can say that the optimization of reduced N at iteration 4 to

N=0 yielded good enough optimization result (6.47 for EnOpt-ML) for EnOpt-ML if we

compare it to the case where EnOpt run all the simulation on N=20 from the base configuration

(3.21 for EnOpt and 2.99 for EnOpt-ML).

Reduced sample number to N=0 is equivalent to stopping all sampling from the objective

function which would limit the number of objective function evaluations.

- 1000 simulations:

Figure 75 Case reduced sample size N = 0 used at iteration 4 : objective function optimization results (1000 simulations)

Figure 76 Case reduced sample size N = 0 used at iteration 5 : objective function optimization results (1000 simulations)

When stopping the sampling at 4th iteration, the mean on EnOpt-ML is not far from where it

stopped at EnOpt (18.73 in EnOpt-ML versus 29.59 in EnOpt in average and the standard

deviation are not very different tables 25 and 26). The optimizations are again not much

dissimilar in value for all the cases.

In the case where we stop sampling at 5th iteration, the optimizations in EnOpt and EnOpt-ML

are not very different (12.63 for EnOpt-ML versus 17.09 EnOpt, tables 25 and 26)

From the comparison of the mean values over the simulations’ means, the EnOpt-ML is slightly

better for the reason that we stop gathering EnOpt samples and so EnOpt does not improve

after that(fig. 77 and 78). The boxplots(fig. 79 and 80) the 25% quartile of EnOpt in the case

of stopping the sampling at the 4th iteration is higher than the 50% quartiles of EnOpt-

Figure 77 Case reduced sample size N = 0 used at iteration 4 : EnOpt and EnOpt-ML means of simulations

 Figure 78 Case reduced sample size N = 0 used at iteration 5 : EnOpt and EnOpt-ML means of simulations

Figure 79 Case reduced sample size N = 0 used at iteration 4 : Boxplot of optimized objective function

Figure 80 Case reduced sample size N = 0 used at iteration 5 : Boxplot of optimized objective function

ML of the same case and it is also higher than the 50% quartile of EnOpt and EnOpt-ML of

the case where we stop the sampling at 5th iteration. This is showing that EnOpt in that case is

poorly performing (fig. 81 and 82)

Table 25 Case reduced sample size N = 0 used at iteration 4 : summary output values (1000 simulations)

Table 26 Case reduced sample size N = 0 used at iteration 5 : summary output values (1000 simulations)

In Figures 81 and 82 we can appreciate a move towards the middle of the lower right quadrant

of the figure from stopping at iteration 4 to stopping at iteration 5 for EnOpt minimums

obtained in the multiple simulations. We do not appreciate that translation as much when it

comes to EnOpt-ML.

Figure 81 Case reduced sample size N = 0 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values

Figure 82 Case reduced sample size N = 0 used at iteration 5 : simulations' results of EnOpt and EnOpt-ML with respect to

true minimum values

Machine learning algorithms

 There are various machine learning algorithms that could improve the performance of the

gradient in EnOpt. As introduced in chapter 2, in this chapter two ML algorithms are used.

AdaBoost and Random Forest

Adaptive boosting regressor:

- Single simulation:

Figure 83 AdaBoost case: gradient (single simulation)

Figure 84 AdaBoost case: EnOpt and EnOpt-ML samples and ML

model predicted samples

MSE: 56.4

Random Forest:

- Single simulation:

Figure 85 Random Forest case: gradient (single simulation)

Figure 86 Random Forest case: EnOpt and EnOpt-ML samples

and ML model predicted samples

MSE: 368.46

EnOpt-ML with Random forest stopped iterating early in the optimization and on an optimized

value that is pretty high (39.44 table 28) compared to both AdaBoost (0.03, table 27) and GBR

(2.99 table 1).

The AdaBoost Regressor performed best compared to the base configuration with GBR and

the Random Forest regressor which performed the worst and got stuck pretty early along the

slope. The AdaBoost regressor actually performed even better than EnOpt for this single

simulation.

The MSE of the Random Forest shows it cannot fit the training data well as the MSE 368.46,

in the contrary of MSE of AdaBoost 56.4 and the MSE of GBR with 34.39.

Table 27 Optimization results for AdaBoost case (single simulation)

Table 28 Optimization results for Random Forest case (single simulation)

- 1000 simulations:

Figure 87 AdaBoost case: objective function optimization results (1000 simulations)

Figure 88 Random Forest case: objective function optimization results (1000 simulations)

Figure 89 AdaBoost case: EnOpt and EnOpt-ML means of simulations

Figure 90 Random Forest case: EnOpt and EnOpt-ML means of simulations

Most of the simulations on Random Forest end earlier in the iteration process (an average of 5

iterations) while the means are around 38.21(table 30). For AdaBoost on the other hand, the

optimum mean is almost 5 times lower and ends in average around the 7th iteration. The

AdaBoost regressors results are much closer to the GBR (6.38 for GBR versus 8.19 for

AdaBoost, tables 2 and 29)from the simulations obtained here.

Figure 91 AdaBoost case: Boxplot of optimized objective function

Figure 92 Random forest case : Boxplot of optimized objective function

Table 29 AdaBoost case: summary output values (1000 simulations)

Table 30 Random Forest case: summary output values (1000 simulations)

From the figures 91 and 92 are an illustration of how poor is the efficacy of Random Forest

regressor in this case in comparison with GradBoost regressor, AdaBoost regressor and EnOpt.

as we can see that EnOpt-ML with Random Forest has very large quartiles compared to EnOpt-

ML with AdaBoost and also with EnOpt.

From figure 93, we see that the AdaBoost regressor as an ML used for EnOpt-ML has the

simulations’ optima’s distributed very similarly to when GBR was used. Figure 94, on the other

hand, shows that Random forest’s EnOpt-ML simulations yielded in general poor results that

only very few simulations led to optimizations that are closer to one of the minima.

Figure 93 AdaBoost case: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Figure 94 Random Forest case: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Chapter 4: Improvement example

Based on the previous cases observations, a collection of ‘best’ performers is applied to

Himmelblau, Rosenbrock and Bukin function number 6 for optimization testing. Some

interconnections in terms of optimizing through the reduction of time the objective function

has been evaluated and the overall average of performed iterations are taken into account.

These two latter functions will be an example to observe the possibility of generalization for

the use of ML algorithms to improve the gradient estimation when also at a given iteration, we

reduce the number of samples added.

 The “best” configuration is as the following:

- Number of samples N = 20,

- Initial Covariance matrix [0.2 0 0 0.2],

- Machine learning model, GBR trained at 2nd iteration,

- Reduced N = 0 (stop sampling from objective function) reduced at 5th iteration.

- Nml = 500

On Himmelblau

Figure 95 Improvement example: gradient (single simulation)

Figure 96 Improvement example EnOpt and EnOpt-ML samples and ML model predicted samples

MSE: 454.9

In this case, a simulation with 20 samples in each iteration has been performed until the 4th

iteration and at the 5th iteration there were no new samples used. The relatively large number

of model-predicted samples Nml in combination with the stopping of sample collection at 5th

iteration explains the MSE obtained (454.9) because the ML model is not learning on any new

data, hence the errors between the predicted samples and the actual test function become more

pronounced.

This case is a recollection of what was observed in the previous chapter and could improve the

optimization to get a ‘good enough’ result with smaller number of evaluations of the objective

function (because of fewer iterations) through the optimization.

There are, of course, many other configurations that could give even better results. Here in this

thesis, this case will mainly serve as an example to what could be done with respect to reducing

the objective function evaluations by using machine learning algorithms on the gradient

estimation.

The total number of iterations specified for reducing the sample size to zero, is doubled (for

evaluating upon update) then multiplied by the number of samples used up to that point, is

usually the objective function run total. It is not always the case, as the optimization may stop

before the iteration, at which point we put N=0. This means that by determining the setting, we

can determine the maximum number of times the function will be executed ahead of time.

Table 31 Optimization results for improvement example (single simulation)

After stopping the sampling, EnOpt-ML improved the results of the gradient by more than 1.5

times(table 31). The result obtained by EnOpt at that stop iteration.

- 1000 simulations:

Figure 97 Improvement example objective function optimization results (1000 simulations)

Figure 98 Improvement example EnOpt and EnOpt-ML means of simulations

The 1000 simulation in this configuration has shown an improvement in the optimization with

the use of the EnOpt-ML (mean of 8.09 compared to 14.99 for EnOpt, table 32) even when

reducing/stopping the sampling. The mean resulted from these simulations is satisfactory

especially that the function run only 160 times which is fewer than what we observed in the

base case configuration (333.65 as average from EnOpt and 307.42 from EnOpt-ML, table 2)

without

Figure 99 shows medians with close values in the EnOpt and EnOpt-ML boxplots, with the

EnOpt boxplot skewed towards the 25% quartile while having a 75% quartile that is

significantly higher than the EnOpt-ML boxplot.

Figure 99 improvement example Boxplot of optimized objective function

Table 32 Improvement example: summary output values (1000 simulations)

The

plot (fig. 100) shows that most simulations yield optimized values that are around the true

minimum on the lower-right of the figure.

Figure 100 Improvement example simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

On Buckin function number 6

The configuration here has been deviated from the Himmelblau in the previous subchapter

configuration by:

▪ test function : Bukin function number 6,

▪ starting point [-12 , 2].

- Single simulation

Figure 101 Bukin function 6: gradient (single simulation)

Figure 102 Bukin function 6: EnOpt and EnOpt-ML samples and ML model predicted samples

MSE: 64.62

MSE of the ML model (64.62) is lower than the one obtained with Himmelblau (454.9); this is

due to the shape of Bukin function number 6.

The Buckin function n6 is characterized by many local minima and one global one. We can see

that the two algorithms lead to different minima. Here, EnOpt-ML fell into a lower minimum

(3.16, table 33) than EnOpt-ML (7.23, table 33). The objective function evaluations are set to

result in 160 evaluations.

Since there are many local minima, neither EnOpt nor EnOpt-ML approached the global

minima (fig. 101).

Table 33 Optimization results for Bukin function 6 (single simulation)

- 1000 simulations:

Figure 103 Bukin function 6 objective function optimization results (1000 simulations)

Figure 104 Bukin function 6 EnOpt and EnOpt-ML means of simulations

The simulations show a slight improvement on the results with the use of EnOpt-ML compared

to the use of EnOpt both in terms of means and standard deviation of the ensemble of

simulations(fig. 103 and 104). The minimum number of iterations (lower than 160 in average

for both EnOpt and EnOpt ML, table 34) suggest that the reduction in N could be applied even

sooner with a possibility to reduce the number of objective function evaluations and still be

able to get a ‘good’ enough optimization results. If the objective function is expensive to

calculate, it may be more difficult to choose the iteration at which we can stop or reduce the N

number of samples to still be able to get a good optimization result.

Figure 105 shows that the median of simulations from EnOpt method (15, table 34)results is

higher than the 75% quartile of the simulations with EnOpt-ML method (13.4, table 34).

In figure 106 we can see that there were some simulations with EnOpt and EnOpt-ML that

were getting closer to the global minimum. The figure also shows that simulations led to

different local minima as they are very close and on the same ridge.

Figure 105 Bukin function 6 Boxplot of optimized objective function

Table 34 Bukin function 6 : summary output values (1000 simulations)

Figure 106 Bukin function 6 : simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

On Rosenbrock

The configuration here has been deviated from the Himmelblau in the previous subchapter

configuration by:

▪ test function : Rosenbrock,

▪ starting point [8, -2].

- Single simulation

Figure 107 Rosenbrock: gradient (single simulation)

Figure 108 Rosenbrock: EnOpt and EnOpt-ML samples and ML model predicted samples

MSE: 5197560.11

The MSE is high for the higher scale (compared to the other two test functions) and the different

function shape. The Rosenbrock function has a very high maxima in the chosen interval of

evaluation. The chosen starting point is at almost 45000. At this scale (global minimum being

0), a 1714.56 (in EnOpt-ML, table 35)is not a bad optimization result for this specific

simulation in comparison with the other test functions used in this thesis. EnOpt on the other

hand did poorly (4520, table 35) which means that using the ML model with the gradient

helped getting better optimization value.

Table 35 Optimization results for Rosenbrock (single simulation)

- 1000 simulations:

Figure 109 Rosenbrock: objective function optimization results (1000 simulations)

Figure 110 Rosenbrock: : EnOpt and EnOpt-ML means of simulations

EnOpt-ML performed better than EnOpt (it is still only slightly better scale-wise) knowing

that there are no more samplings on the true objective function after the 4th iteration for both

methods.

Figure 111 shows how much all simulations with EnOpt-ML yielded better optimized values

of the objective function for all quartiles compared to EnOpt simulations with medians of

683.02 for EnOpt-ML compared to 3923.13 for EnOpt (table 36).

Figure 111 Rosenbrock: Boxplot of optimized objective function

Table 36 Rosenbrock: summary output values (1000 simulations)

When plotting the simulations’ results for both EnOpt and EnOpt-ML (fig. 112), we can see

that few EnOpt-ML simulations results approached pretty much the global minimum while all

EnOpt simulations optimizations stayed behind all EnOpt-ML simulations’ optimized values

Figure 112 Rosenbrock: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values

Chapter 5: Final remarks and Conclusions

The objective of this thesis work is to investigate whether using ML to include all information

from previous iterations for gradient estimation in StoSAG can improve the computational

efficiency for optimization. Throughout the thesis, the EnOpt-ML approach, where a ML

model is trained using control vectors and objective values from all previous StoSAG iterations

and used for gradient estimation, has been developed and applied for optimization. The

optimization results of EnOpt-ML and that of EnOpt are compared and discussed, under

various configurations and on challenging objective functions.

Observations/ remarks:

1. For Himmelblau test function:

● The starting point of the optimization effects both EnOpt and EnOpt-ML although

they may land on different minima.

● Increasing the sample size improves both EnOpt and EnOpt-ML, the latter requires

fewer evaluations on the objective function and has good enough results.

● Increasing the Nml (number of samples created through the predictions of the

machine learning algorithms used) does not yield significant improvement on the

optimization results.

● Increase in the initial covariance matrix gave slightly better means (smaller means

for minimization) and smaller standard deviations on the side of EnOpt-ML

compared to EnOpt.

● Training ML model at later iterations gives even better results than if it is trained

from the start.

● We can reduce the number of samples N at certain iteration level for both EnOpt

and EnOpt-ML and that reduces the objective function evaluations for both and does

result in fairly good optimization results for EnOpt-ML compared to EnOpt. The

later we reduce the sample size N, the better the optimization results are, but the

specified value of N gives us an upper hand over the maximum number of function

evaluation we are willing to run. Note: reducing N to 0 is not equivalent to stopping

the iterations at the given step for EnOpt-ML (only in EnOpt) as the iterations

continue with the Nml predicted samples.

● EnOpt-ML requires fewer objective function evaluations than EnOpt, in average.

Especially with higher covariance matrix values.

● Among the three machine learning algorithms used in this thesis, Gradient Boosting

regressor and Ada Boosting regressor achieve significantly better optimization

results than Random Forest regressor.

2. For Bukin function number 6: (a ridge function)

● EnOpt-ML achieved faintly better optimization results than EnOpt in the 1000

simulations as average.

● This function has many local minima which lie along a ridge, and EnOpt and EnOpt-

ML did not land at the same minimum.

3. For Rosenbrock test function: (valley function)

● The function has a global minimum lying in a narrow parabolic valley. it descends

very slowly on its way to it compared to at the side of the function.

● EnOpt-ML achieved better results than EnOpt.

● None of the two optimization results were very satisfying, but this can also be

attributed to the fact that the function has a much higher values in the chosen

evaluation interval in comparison with the two other test functions in this thesis.

Conclusion:

As the objective, this thesis work has developed, implemented, investigated, and discussed an

approach – EnOpt-ML – of using ML in the stochastic gradient descent for improving the

computational efficiency of gradient estimation and optimization. For some specific cases,

EnOpt-ML does improve the computational efficiency in terms of fewer objective function

evaluations and achievement of a near-optimum, compared to EnOpt. However, the experiment

results do not provide clear evidence on that EnOpt-ML overperforms EnOpt in general. The

use of fewer samples from EnOpt means feeding fewer data to the training of machine learning

models. Thus, although the reduction in the number of samples reduces the number of objective

function evaluations, it also negatively impacts the training of ML in EnOpt-ML, as the more

training data, the more accurate a trained ML model will be. The increase in sample size N has

led, on average (in the examples studied), to fewer objective function evaluations with EnOpt-

ML than objective function evaluations with EnOpt.

We can control the maximum number of objective function evaluations we want to perform

(and then the objective value will be predicted using the trained ML model) to reduce the

computational intensiveness. However, we should keep in mind that the earlier we reduce the

sample size or stop sampling, the less “optimal” the results might be.

In conclusion, this thesis work has set up the stage for utilizing ML in SGD for speeding up

optimization. However, more analysis and further research should be conducted to investigate

the effect of ML and better utilize it. Recommendations for future works are, for example,

testing more different configurations of EnOpt-ML, using other ML algorithms, modifying the

way ML is used, test on more computational demanding objective functions (e.g., reservoir

simulation models), and include uncertainty (i.e., robust optimization).

Appendix

EnOpt and EnOpt-ML codes

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as ss

from numpy.random import multivariate_normal as multinormal

from numpy.linalg import eig

import statistics

from numpy import random

from pandas import DataFrame

import timeit

from mpl_toolkits import mplot3d

from mpl_toolkits.mplot3d import Axes3D

import math

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import AdaBoostRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.metrics import mean_squared_error

Objective Functions for test:

def of_HimmelBlau(M1, M2):

 truth = [3, 2] # (or an other depending on starting mu)

 x = M1

 y = M2#M[1]

 return (x**2 + y - 11)**2 + (x + y**2 - 7)**2

def of_Rosenbrock(M1, M2):

 x = M1

 y = M2#M[1]

 b = 10 #choice b=10 .

 return (x-1)**2 + b*(y-x**2)**2

def of_BukinFunc6(M1, M2): #Bukin function N.6

 x = M1

 y = M2#M[1]

 return 100*(abs(y-0.01*x**2)**(1/2))+ 0.01*abs(x+10)

Machine Learning algorithms

def ML_GradBoostReg(Xs, Ys):

 param = {'n_estimators': 100,'max_depth': 1, 'learning_rate': 0.1, 'criterion': 'mse'}

 model = GradientBoostingRegressor(**param)

 model.fit(Xs, Ys)

 return model

def ML_RandForest(Xs, Ys):

 param = {'n_estimators': 100,'max_depth': 1}

 model = RandomForestRegressor(**param)

 model.fit(Xs, Ys) #reshape(-1, 1)

 return model

def ML_AdaBoostReg(Xs, Ys):

 param = {'n_estimators': 100,'random_state':0}

 model = AdaBoostRegressor(**param)

 model.fit(Xs, Ys) #.reshape(-1, 1)

 return model

Function for testing (EnOpt and EnOpt-ML)

def run(mu, C, init_N=20, reduced_N=5, Nml=100, of=None, max_iter=100,

 train_iter=2, reduce_at_iter=100, ML=None, seed=None, show_plot=False,

 show_results= False, plot_func=None, minx=-6, maxx=6, miny=-6, maxy=6):

 current_iter = 0

 converged = 0

 model = None

 tol = 10**(-3) # Tolerance

 stepMu = 1 # Stepsize for the mean (mu)

 stepC = 0.1 # Stepsize for the covariance matrix

(C)

 Fold = of(mu[0], mu[1]) # Objective function at initial point

mu

 if seed != None:

 np.random.seed(seed) # seed: which seed or random seed?

 X1s = np.array([])

 X2s = np.array([])

 Fs = np.array([])

 X1sML = np.array([])

 X2sML = np.array([])

 XsML = np.array([])

 FsML = np.array([])

 of_runs = 0

 histMu = []

 # add initial mu

 histMu.append(mu.copy())

 while converged == 0:

 force_stop = 1 # force stop gradient calculation

 #when N=0 in non-MLsimulation

 # Run objective function

 if current_iter < reduce_at_iter:

 N = init_N

 else:

 if reduced_N > 0:

 N = reduced_N

 if current_iter < reduce_at_iter or reduced_N > 0:

 force_stop = 0

 of_runs += N

 X = multinormal(mu, C, N) # N: Number of control samples

 X1s = np.concatenate((X1s, X[:,0].copy())) # history X1

 X2s = np.concatenate((X2s, X[:,1].copy())) # history X2

 Xs = np.array([X1s, X2s])

 F = list(map(lambda x:of(x[0], x[1]), X))

 Fs = np.concatenate((Fs, F)) # history F

 if current_iter >= train_iter:

 force_stop = 0

 N = Nml

 # Use data for prediction

 if current_iter < reduce_at_iter or reduced_N > 0:

 model = ML(Xs.T, Fs) # Training model

 X = multinormal(mu, C, Nml)

 # Nml: Number of control samples added for ML

 F = model.predict(X)

 # separate variables for ML history

 X1sML = np.concatenate((X1sML, X[:,0].copy())) # history X1_ML

 X2sML = np.concatenate((X2sML, X[:,1].copy())) # history X2_ML

 XsML = np.array([X1sML, X2sML])

 FsML = np.concatenate((FsML, F))

 If force_stop == 0

Gradient calculation

 gradMu = np.mean([[i - Fold for i in F][i] * (X-mu)[i] for i in

range(N)], 0)

 gradMu /= np.linalg.norm(gradMu) #normalize gradient

 gradC = np.zeros((2,2))

 for k in np.arange(0, N):

 # updating covariance gradient

 gradC += (F[k] - Fold) * (np.matmul((np.asmatrix(X[k] - mu)),

(np.asmatrix(X[k] - mu)).T) - C) / N

 gradC /= np.linalg.norm(gradC) # normalize gradient

 muNew = mu - stepMu * gradMu # updating the mean ((-)

since we are minimizing)

 Cnew = C - stepC * gradC # updating the covariance

 # Must have positive definite covariance C:

 E = np.linalg.eigvals(Cnew) # eigenvalues of the new

covariance matrix

 if (min(E)) <= 0:

 Cnew = Cnew + np.dot(np.abs(min(E))+ 10**(-6), (np.eye(2)))

 # Checking if the F new point has reduced the objective:

 Fnew = of(muNew[0], muNew[1])

 delta = Fold - Fnew

 # Gradient descent

 while delta < 0:

 stepMu = 0.5 * stepMu

 muNew = mu - stepMu * gradMu

 Fnew = of(muNew[0],muNew[1])

 delta = Fold - Fnew

 # New values:

 mu = muNew

 C = Cnew

 Fold = Fnew

 histMu.append(mu.copy())

 # End of iteration

 current_iter += 1

 if current_iter >= max_iter or delta<tol or force_stop == 1:

 converged = 1

 #diff_Truth = of(mu[0], mu[1])-of(truth[0], truth[1])

 # the above would be used if the true minimum is different than 0

 # Prepare data for plotting

 histFlatMu = np.array(histMu)

 histObjectiveMu = of(np.array(histFlatMu)[:,0], np.array(histFlatMu)[:,1])

 x = np.linspace(minx, maxx, 200)

 y = np.linspace(miny, maxy, 200)

 meshX, meshY = np.meshgrid(x, y)

 Z = of(meshX, meshY)

 # Plot

 if show_plot:

 fig = plt.figure(figsize =(12, 12))

 ax = plt.axes(projection ='3d')

 ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy')

 ax.plot(histFlatMu[:,0], histFlatMu[:,1], of(histFlatMu.T[0],

histFlatMu.T[1]), color ='purple')

 ax.scatter(np.array(histFlatMu)[:,0], np.array(histFlatMu)[:,1],

histObjectiveMu, color ='red')

 plt.show()

 # Show results

 if show_results:

 print('Finished at itereration number: \n', current_iter)

 print("The mean at last point of iteration: \n", np.round(mu, 6))

 print("Objective function at the mean at last point of iteration: \n",

round(of(mu[0], mu[1]), 6) , '\n')

 #print('The difference to the true value is: \n', round(diff_Truth, 6))

 # this would only be used if the true minimum is not 0 so to compare

 # Initialize learning step

 stepMu = 1

 return {

 "train_iter": train_iter,

 "iterations": current_iter,

 "init_N": init_N,

 "reduced_N": reduced_N,

 "reduce_at_iter": reduce_at_iter,

 "Nml": Nml,

 "max_iter": max_iter,

 "The mean at last iteration": np.round(mu, 6),

 "Number of times the objective function run": of_runs,

 "Optimized objective function": round(of(mu[0], mu[1]), 6),

 "X": Xs,

 "F": Fs,

 "Mu": histFlatMu,

 "XsML": XsML,

 "FsML": FsML

 }

Testing with different configurations On test functions

%matplotlib qt

import time

config_mu = [0, 0] # Different starting means:

 # [0, 0], [-5,2], [3, -1] for himmelblau,

 # [-6,-2], [-12,2] for bukin fct 6

 # [-6,-2], [8,-2] for rosenbrok

config_C = 0.1 * np.eye(2) # initial covariance matrix

config_sims = 1000 # number of simulations [1, 1000]

config_init_N = [20] # number of samples (or samples before

 reduction if it applies)

config_reduced_N = [0] # reduced sample size used with

'config_reduce_at_iter'

config_of = [of_HimmelBlau] # [of_HimmelBlau, of_Rosenbrock ,of_BukinFunc6]

config_max_iter = [100] # 100 as stopping criteria

config_train_iter = [999, 1] # the iterations ML starts training its model on.

 999 when ML algorithm is not used

config_reduce_at_iter = [999] # the iteration at which 'config_reduced_N'

 is used. 999 when 'config_reduced_N' not used

config_ML = [ML_GradBoostReg] # [ML_GradBoostReg, ML_RandForest,

ML_AdaBoostReg]

config_seed = None # None for random; 1000 for base

 configuration case

stats = []

for init_N in config_init_N:

 for reduced_N in config_reduced_N:

 for of in config_of: # of = objective funct.

 = optimization test function

 for max_iter in config_max_iter:

 for train_iter in config_train_iter:

 for reduce_at_iter in config_reduce_at_iter:

 for ML in config_ML:

 for s in range(0, config_sims):

 # for simulating with different random seeds

 start_time = time.time()

 run_stats = run(

 mu = config_mu,

 C = config_C,

 init_N = init_N,

 reduced_N = reduced_N,

 of = of,

 max_iter = max_iter,

 train_iter = train_iter,

 reduce_at_iter = reduce_at_iter,

 ML = ML,

 seed = config_seed,

 Nml = 500,

 #minx =-10, #-15, # change when changing

test function

 #maxx = 50, #-5, # change when changing

test function

 #miny =-10, #-3, # change when changing

test function

 #maxy = 50, # 3, # change when changing

test function

 show_plot = False,

 show_results = False)

 run_time = time.time() - start_time

 run_stats["run_time"] = run_time

 run_stats["Sim"] = s

 stats.append(run_stats)

COMPUTE F MEANS AND PREPARE DATA FOR PLOTTING

set colors in desired order (for simulation means to show, basically)

colors = ['blue', 'orange','red', 'green' ,'yellow', 'cyan', 'purple']

fill missing values due to different end iterations to be able to compute the means

def fill_list_with_last_element(x, n):

 temp = x.tolist()

 while len(temp) < n:

 temp.append(temp[-1])

 return np.array(temp)

find longest running simulation (max iterations)

iters = []

for s in stats:

 iters.append(s['iterations'])

f_max_len = np.max(iters) + 1

f_sims = []

f_sims_filled = []

f_means = []

compute means over simulations

for i in range(len(config_train_iter)): # [999, 1, 2, 3, 4]

 #

 f_sims.append([])

 f_sims_filled.append([])

 for j in range(config_sims):

 k = config_sims*i+j # find sim index

 f = of(stats[k]['Mu'][:,0], stats[k]['Mu'][:,1]) # calculate Obj.Funct.from MUs

 f_filled = fill_list_with_last_element(f, f_max_len) # fill list

 f_sims[i].append(f)

 f_sims_filled[i].append(f_filled)

 f_means.append(np.mean(f_sims_filled[i], axis=0)) # append means

PLOT simulation means

fig, ax = plt.subplots()

for i in range(len(f_means)):

 Y = f_means[i]

 X = range(0, len(Y))

 if config_train_iter[i] == 999:

 plot_label = f"EnOpt "

 else:

 plot_label = f"EnOpt-ML, ML model trained at iteration number:

{config_train_iter[i]+1}"

 plt.plot(X, Y, label=plot_label,color=colors[i])

plt.xlabel('Number of iterations')

plt.ylabel('Objective function ')

plt.title(f"Objective function means over {config_sims} simulation(s)")

plt.legend()

plt.show()

MEANS of different simulations (SEPARATE PLOTS for EnOpt and EnOpt-ML)

fig, ax = plt.subplots(1, 2)

axs = ax.ravel()

for i in range(len(f_means)):

 Y = f_means[i]

 X = range(0, len(Y))

 if config_train_iter[i] == 999:

 plot_label = f"Mean of EnOpt simulations "

 else:

 plot_label = f"Mean of EnOpt-ML simulations, \nML model trained at iteration

number: {config_train_iter[i]+1} "

 for j in range(len(f_sims[i])):

 axs[i].plot(range(0, len(f_sims[i][j])), f_sims[i][j], color="gray")

 axs[i].plot(X, Y, label=plot_label, color=colors[i])

 axs[i].set_xlabel('Number of iterations')

 axs[i].set_ylabel('Objective function')

 axs[i].set_title(f"Objective function means over {config_sims} simulation(s) ")

 axs[i].legend()

plt.show()

min and max values for plots

RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML

if len(stats) == 2:

 # min and max values

 X1_s = [*stats[0]['X'][0], *stats[1]['XsML'][0]] # concat X1s from all simulations

 X2_s = [*stats[0]['X'][1], *stats[1]['XsML'][1]] # concat X2s from all simulations

 X1min = np.min(X1_s) * 1.1

 X2min = np.min(X2_s) * 1.1

 X1max = np.max(X1_s) * 1.1

 X2max = np.max(X2_s) * 1.1

Plotting Gradient

RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML

if len(stats) == 2:

 #Show Mu's

 stats0 = stats[0]

 stats1 = stats[1]

 x = np.linspace(X1min, X1max, 50)

 y = np.linspace(X2min, X2max, 50)

 meshX, meshY = np.meshgrid(x, y)

 Z = of(meshX, meshY)

 #

 fig = plt.figure(figsize =(20, 20))

 ax = plt.axes(projection ='3d')

 ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy')

 #Gradient with Enopt

 EO_Grad_curve = ax.plot(stats0['Mu'][:,0], stats0['Mu'][:,1],

 of(stats0['Mu'].T[0], stats0['Mu'].T[1]), color ='cyan')

 EO_Grad_Mu = ax.scatter(np.array(stats0['Mu'])[:,0], np.array(stats0['Mu'])[:,1],

 of(np.array(stats0['Mu'])[:,0], np.array(stats0['Mu'])[:,1]),

color ='blue')

 #Gradient with EnOpt+ML

 EO_ML_Grad_curve= ax.plot(stats1['Mu'][:,0], stats1['Mu'][:,1],

 of(stats1['Mu'].T[0], stats1['Mu'].T[1]), color ='orange')

 EO_ML_Grad_Mu = ax.scatter(np.array(stats1['Mu'])[:,0], np.array(stats1['Mu'])[:,1],

 of(np.array(stats1['Mu'])[:,0], np.array(stats1['Mu'])[:,1]),

color ='red')

Plotting the minima for reference:

 minima1 = ax.scatter(3, 2, of(3, 2), color = '#274e13',marker='x') # minimum 1

 for Himmelblau

 #minima2 = ax.scatter(-2.805118, 3.283186, of(-2.805118, 3.283186), color =

'#274e13',marker='x')# minimum 2 for Himmelblau

 #minima3 = ax.scatter(-3.779310,-3.283186, of(-3.779310,-3.283186), color =

'#274e13',marker='x')# minimum 3 for Himmelblau

 #minima4 = ax.scatter(3.584458,-1.848126, of(3.584458,-1.848126), color =

'#274e13',marker='x')# minimum 4 for Himmelblau

 #minima5 = ax.scatter(1 , 1 , of(1 , 1), color =

'#274e13',marker='x')# global minimum of Rosenbrok

 #minima6 = ax.scatter(-10 , 1 , of(-10 , 1), color =

'#274e13',marker='x')# global minimum of Bukin function N#6

 plt.legend((EO_Grad_Mu, EO_ML_Grad_Mu, minima1), # minima 1,2,3,4,5 or 6

 depending on function

 ('Gradient Mu with EnOpt', 'Gradient Mu with EnOpt-ML', 'Minima'),

 markerscale=2, fontsize=20)

 plt.xlabel('X')

 plt.ylabel('Y')

 plt.show()

Plotting samples

RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML

if len(stats) == 2:

 # X's and F's

 fig = plt.figure(figsize =(15, 15))

 ax = plt.axes(projection ='3d')

 ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy')

 # EnOpt Samples

 EO_samples = ax.scatter(stats0['X'][0], stats0['X'][1],

 stats0['F'], color ='blue',marker='o')

 # EnOpt-ML Samples

 EO_ML_samples = ax.scatter(stats1['X'][0], stats1['X'][1],

 stats1['F'], color ='red', marker='o')

 # Samples from ML model prediction

 ML_samples = ax.scatter(stats1['XsML'][0],

 stats1['XsML'][1], stats1['FsML'], color ='green',

marker='.')

 plt.legend((EO_ML_samples, EO_samples, ML_samples) ,

 ('(Enopt-ML) samples', 'EnOpt samples','ML model prediction samples Nml'),

 markerscale=3, fontsize=20)

 plt.xlabel('X')

 plt.ylabel('Y')

 plt.show()

MSE for EnOpt-ML : ML predicted samples (Nml)

(N.B: for EnOpt only, no predictions since it is mapped on the objective function)

RUN ONLY WITH 2 SIMULATONS:

if len(stats) == 2:

 # Given values

 Y_true2 = of(stats1['XsML'][0], stats1['XsML'][1]) # objective function on the X and

 Y used in model prediction by ML

 # calculated values

 Y_pred2 = stats1['FsML'] # ML predicted

 # Calculation of Mean Squared Error (MSE)

 # https://www.geeksforgeeks.org/python-mean-squared-error/

 MSE = mean_squared_error(Y_true2,Y_pred2)

 stats1['MSE'] = MSE # Append MSE to the stats

 print('MSE: ', round(MSE, 2))

Create output files

from tabulate import tabulate

header = stats[0].keys()

rows = [x.values() for x in stats]

#print(tabulate(rows, header, tablefmt="tsv"))

content = tabulate(rows, header, tablefmt="csv")

text_file = open("output.csv","w")

text_file.write(content)

text_file.close()

Creating excel file with summary table (useful when doing multiple simulations with numerous simulations)

import pandas as pd

import subprocess

from datetime import datetime

if len(stats) == 2:

 df = pd.DataFrame(data=stats)

 now = datetime.now()

 current_time = now.strftime("%y_%m_%d_%H_%M_%S")

 file_name = f'stats_{current_time}.xlsx'

 df.to_excel(file_name)

 df = df.drop(['train_iter', 'init_N', 'Nml', 'max_iter'], axis=1)

 # dropping unnecessary summary columns

else:

 now = datetime.now()

 current_time = now.strftime("%y_%m_%d_%H_%M_%S")

 # all stats

 file_name = f'stats_all.xlsx'

 df = pd.DataFrame(data=stats)

 df.to_excel(file_name)

 # df0 for EnOpt

 df0 = pd.DataFrame(data=stats[0:config_sims-1])

 now = datetime.now()

 current_time = now.strftime("%y_%m_%d_%H_%M_%S")

 file_name = f'stats_{current_time}.xlsx'

 file_name_summary = f'stats0_{current_time}_summary.xlsx'

 df.to_excel(file_name)

 df0 = df0.drop(['train_iter', 'init_N', 'Nml', 'max_iter', 'reduced_N',

'reduce_at_iter', 'Sim'], axis=1) # dropping unnecessary summary columns

 df0_summary = df0.describe()

 df0_summary = df0_summary.drop(index=('count')) # drop rows

 df0_summary.to_excel(file_name_summary)

 # df1 for EnOpt-ML

 df1 = pd.DataFrame(data=stats[config_sims: 2*config_sims-1])

 current_time = now.strftime("%y_%m_%d_%H_%M_%S")

 file_name_summary = f'stats1_{current_time}_summary.xlsx'

 df1.to_excel(file_name)

 df1 = df1.drop(['train_iter', 'init_N', 'Nml', 'max_iter', 'reduced_N',

'reduce_at_iter', 'Sim'], axis=1)

 df1_summary = df1.describe()

 df1_summary = df1_summary.drop(index=('count'))

 df1_summary.to_excel(file_name_summary)

References:

Anzar. (2021). Forecasting of Daily Demand’s Order Using Gradient Boosting Regressor. In Progress in

Advanced Computing and Intelligent Engineering (pp. 177–186). Springer Singapore.

https://doi.org/10.1007/978-981-33-4299-6_15

Bagalkot, Keprate, & Orderløkken. (2021). Combining Computational Fluid Dynamics and Gradient Boosting

Regressor for Predicting Force Distribution on Horizontal Axis Wind Turbine.

https://doi.org/https://doi.org/10.3390/vibration4010017

Chen, Y., Oliver, D. S., and Zhang, D. (2009). Efficient ensemble-based closed-loop production optimization.

SPE J. 14, 634–645. doi: 10.2118/112873-PA

Chen, Y., and Oliver, D. S. (2010). Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv.

Eval. Eng. 13, 56–71. doi: 10.2118/118926-PA

Chen, Y., and Oliver, D. S. (2012). Localization of ensemble-based control-setting updates for production

optimization. SPE J. 17, 122–136. doi: 10.2118/125042-PA

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David

Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay (2011). Scikit-learn: Machine Learning in

Python. 12(85):2825−2830. Journal of Machine Learning Research (2011).

https://doi.org/10.48550/arXiv.1201.0490

 Fonseca RM, Kahrobaei S, Van Gastel LJT, Leeuwenburgh O, Jansen J.D (2015). Quantification of the impact

of ensemble size on the quality of an ensemble gradient using principles of hypothesis testing. Paper 173236-MS

presented at the 2015 SPE Reservoir Simulation Symposium, Houston, USA; 22-25 February 2015.

Fonseca, Chen, B., Jansen, J. D., & Reynolds, A. (2016). A Stochastic Simplex Approximate Gradient (StoSAG)

for optimization under uncertainty. International Journal for Numerical Methods in Engineering, 109(13), 1756–

1776. https://doi.org/10.1002/nme.5342

Friedman J. H. (2001) Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29

(5), 1189–1232.

J.E. Nwaozo.Dynamic Optimization of a Water Flood Reservoir. University of Oklahoma (2006)

Li, Li, W., & Xu, Y. (2018). Human Age Prediction Based on DNA Methylation Using a Gradient Boosting

Regressor. Genes, 9(9), 424. https://doi.org/10.3390/genes9090424

Picheny, V., Wagner, T., & Ginsbourger, D. (2012). A benchmark of kriging-based infill criteria for noisy

optimization.

R.J. Lorentzen, A.M. Berg, G. Naevdal, E.H. Vefring. A new approach for dynamic optimization of waterflooding

problems. Amsterdam, Netherlands Proceedings of the SPE Intelligent Energy Conference and Exhibition (2006)

Apr. 11–13, No. SPE 99690

Svetnik, Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random Forest:  A

Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical

Information and Computer Sciences, 43(6), 1947–1958. https://doi.org/10.1021/ci034160g

van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D (2009).: Robust

waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009)

https://doi.org/https:/doi.org/10.3390/vibration4010017
https://doi.org/10.1002/nme.5342
https://doi.org/10.3390/genes9090424

