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Abstract

High or even prohibitive computational cost is one of the key limitations of robust optimization
using the Ensemble-based Optimization (EnOpt) approach, especially when a computationally
demanding forward model is involved (e.g., a reservoir simulation model). It is because, in
EnOpt, many realizations of the forward model are considered to represent uncertainty, and
many runs of forward modeling need to be performed to estimate gradients for optimization.
This work aims to develop, investigate, and discuss an approach, named EnOpt-ML in the
thesis, of utilizing machine learning (ML) methods for speeding up EnOpt, particularly for the
gradient estimation in the EnOpt method.

The significance of any deviations is investigated on three different optimization test functions:
Himmelblau, Bukin function number 6 and Rosenbrock for their different characteristics. A
thousand simulations are performed for each configuration setting to do the analyses, compare
means and standard deviations of the ensembles. Singled out cases are shown as examples of
gradient learning curves differences between EnOpt and EnOpt-ML, and the spread of their

samples over the test function.
Obijectives:

Objectivel: Building of a code with a main function that would allow easy configurations and
tweaking of parameters of EnOpt, Machine learning (ML) algorithms and test function or
objective functions in general (with two variables). Codes necessary for test functions, ML

algorithms, plotting and simulation data saving files are defined outside of that main function.
The code is attached in the Appendix.

Objective2: Testing and analysis of results to detect any special improvement with EnOpt-ML
compared to EnOpt. The use of Himmelblau as a primary test function was with a modification
of specific parameters, one at a time, starting with a base configuration case for possible
comparisons. After gathering traits of effects of those configurations, an example where the
improvement could show interesting were presented and then applied to the other two test
functions and analyzed.

The main objective then has been to reduce the number of times the objective function is

evaluated while not considerably reducing the optimization quality.



EnOpt-ML yielded slightly better results when compared to EnOpt under the same conditions
when fixing a maximum objective function evaluations through the number of samples and the

iteration at which this number is reduced.



Chapter 1: Introduction

Background and motivation:

Companies in different sectors implement optimization solutions to make informed decisions
to increase profitability, improve efficiency and reduce costs. The purpose of optimization is
to find the “best available” solution(s) of an objective function using a set of properties that are

held constant throughout an analysis (i.e., control variables).

There are two approaches to optimization: gradient free and gradient based. The gradient free
optimization approach has slower convergence but is capable of finding a global optimum
whereas the gradient based approaches have a fast convergence, but the optimum can be either

local or global. This thesis work will consider a gradient based optimization.

When the optimization problem at hand contains uncertain data, we should consider this
incertitude. Robust optimization (RO) is a field of optimization theory that deals with
optimization problems and accounts for uncertainty that can be represented as deterministic
variability in the value of the parameters of the problem or its solution (Fonseca et al. 2017).
RO used by Essen et al. (2009) on water flooding optimization with an adjoint-based method,
for example, required access to reservoir simulator codes (usually inaccessible) and proved
computationally intensive. A method independent of the simulator that is easier to implement
is the Ensemble-based Optimization (EnOpt), it was proposed by Lorentzen et al. (2006) and
Nwaozo (2006). EnOpt was then used by Chen et al. (2009) for RO where the gradient is
approximated between the randomly perturbed control variables (random samples) and their

objective function values.

The accuracy of EnOpt estimation relies on the sample size of the perturbed controls and the
covariance matrix that generates those samples. The perturbed controls are commonly
generated with a multivariate normal distribution with a pre-defined mean vector and
covariance matrix. As one objective function evaluation needs to be performed for each set of
perturbed controls, the number of objective function evaluations and the computational

intensiveness of optimization increases with the number of sampled sets of perturbed controls.

This thesis aims to develop, investigate, and discuss an approach, named EnOpt-ML in the
thesis, of utilizing machine learning (ML) methods for speeding up the EnOpt method. In
EnOpt-ML, sets of perturbed controls and their corresponding objective values are used to train

a ML model, and then the trained ML model is used for gradient estimation.



For investigating the performance of EnOpt-ML, various objective functions, configurations
of EnOpt-ML, and ML algorithms are experimented. The main objective of the experiments is
to identify an optimal combination of an EnOpt-ML configuration and ML algorithm that can

reduce the number of objective function evaluations and computational cost.

Novelty of the work:

The key novelty of the thesis work is that the EnOpt-ML approach is proposed to incorporate
ML in EnOpt for enhancing gradient estimation and speeding up optimization, and the
approach is tested and discussed under various settings. To the best of the author’s knowledge,

this approach has not been addressed specifically in the literature.

Outline of the thesis:

The rest of the thesis is structured as follows:

e Chapter 2 presents key concepts/theories, equations/algorithms, and models used for
the thesis work.

e Chapter 3 introduces the workflows of various experiments on EnOpt-ML and analyses
the experiments results.

e Chapter 4 tests the optimal EnOpt-ML setting, determined based on the analysis in
Chapter 3, on three objective functions.

e Chapter 5 summarizes the thesis work with a general discussion and conclusions.



Chapter 2: Concepts and approaches

In this chapter, principal concepts and components of the algorithm used throughout this thesis

are presented.

Robust optimization (RO):
Material uncertainties should be considered for achieving high-quality decision making. The

optimal values of control (or decision) variables for a risk-neutral decision maker are those that
optimize the mean (or expected value) of the decision maker's objective function over the
uncertainty. The optimal control variables are expected to be robust to any possible realization
of the uncertainties, and thus optimizing the mean of the objective function under uncertainty

is also referred to as Robust Optimization (RO).

Ensemble optimization (EnOpt):

Ensemble optimization (EnOpt) is a stochastic optimization method that uses an ensemble of
realizations sampled via Monte Carlo simulation to account for and express uncertainties. Its
goal is to maximize or minimize the mean of the objective function across the ensemble. It is
a robust optimization (RO) strategy that is both simple and practical to implement (Hong et al.
2017).

As a gradient-based optimization algorithm, EnOpt requires a starting point (initial mean ) and
a covariance matrix to define the search area for gradient estimation. In EnOpt, the values of
control variables are updated/improved iteratively towards their optimal values. In each
iteration, an ensemble of perturbed controls is generated and evaluated (i.e., the objective value
corresponding to one combination of the values of control variables is calculated), then the
gradient is estimated based on the perturbed controls and their corresponding objective values,
and finally the estimated gradient is used to update the values of the control variables. The
iteration of search for the optimum continues until some stopping criteria are met. EnOpt is a
promising RO approach, but when based on rich grid-based reservoir models with hundreds of

realizations for example, it is computationally demanding (Hong et al 2017).

EnOpt can be sensitive to the user-defined starting point (i.e., the choice of initial mean) when
there are several local optima, and it may not lead to the global optimum. The covariance matrix
in EnOpt specifies a search area — changing the covariance matrix allows to widen/shrink the
search area— which corresponds to a more global/local search strategy (Fonseca et. al. 2014).
Despite its cheap computing cost, previous research has demonstrated that the EnOpt can

efficiently and satisfactorily improve the objective function (Chen et al., 2009; Chen and



Oliver, 2010, 2012). However, EnOpt may not yield appropriate findings, for various
geological models for example, unless the variation in the ensemble models is small enough,

according to Fonseca et al. (2017).

Stochastic gradient descent:

Stochastic gradient descent (SGD) is a widely used algorithm for optimization . The basic idea
of SGD is that it, in each iteration, searches for a smaller value of an objective function in a
search direction with a certain learning rate (step size at each iteration), and such iteration
repeats for smaller and smaller objective values to approach an unknown minimal (usually,
near minimal) objective value until a certain criterion or criteria are fulfilled for stopping the

iteration.

Machine learning algorithms:

The algorithms for the three ML regressors used in this thesis were made available by Sklearn.
Sklearn (Pedregosa et al. 2011) is a free software machine learning library for the Python
programming language that includes a number of tools for machine learning and statistical

modeling.

Gradient Boosting Regressor:

Gradient boosting (GBR) is a machine learning approach for prediction studies that generates
a model in the form of an ensemble. For optimizing the different levels of stages, GBR
simplifies the random differences of loss function. Later, the gradient boosting algorithm was
developed to optimize the cost function and iteratively select function points in the negative
gradient direction (Friedman 2001). Gradient boosting combines weak “learners” (ML
algorithms that perform slightly better than a random guess) into a single strong learner (models
with good accuracy) in an iterative fashion.

There are two types of Gradient boosting: classifier and regressor. It is a regressor in this thesis

because we are predicting continuous values.

Adaptive Boosting (AdaBoost) Regressor:

Adaptive boosting Regressor is similar to GBR with the distinction being that the AdaBoost
is, as its name suggest, adaptively adjusting to errors on weak hypotheses (hypotheses
concentrating on a specific feature) (Freund et.al. 1995). AdaBoost does not need prior

knowledge of the accuracies of the weak hypotheses as it adapts to them and generates a



weighted majority hypothesis in which the weight of each weak hypothesis is a function of its

accuracy (Freund et.al. 1995).

Random Forest:

Random Forest is an ensemble of decision trees in which the outputs of all trees are aggregated
to give one final prediction, which is, in regression , the average of the individual tree
predictions (Svetnik et al. 2003). While growing the trees, Random Forest adds more

randomization to the model.

EnOpt-ML:

EnOpt-ML is a modified EnOpt method that uses machine learning algorithms to reduce the
computational cost of EnOpt. It trains the ML model on the samples from the real objective
function and predicts more samples that are also used in the gradient estimation. EnOpt-ML
method is explained through the diagram in figure 1 :
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Figure 1Workflow chart of EnOpt-ML




Optimization test functions:
Presented in the following are the three optimization test functions used in this thesis:

Himmelblau, Rosenbrock and Bukin function number 6. Himmelblau is used in chapters 3 and

4 while Rosenbrock and Bukin function number 6 are only used in chapter 4.

y) = x2 + vy - 112 + (x + y2 -7

Himmelblau: f(x,
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Figure 2 Himmelblau. Test function for optimization

The Himmelblau function was chosen for the challenges that different minima would present:

four identical local minima at different (X, y) locations:
f(x,y) =0at (x,y) =(3,2)

f(x,y) = 0 at (x,y) =(-2.805118, 3.283186)

f(x,y) = 0 at (x,y) =(-3.779310, —3.283186)

f(x,y) = 0 at (x,y) = (3.584458, —1.848126)

- Evaluated on the rectangle x € [-5, 5], y € [-5, 5].
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Figure 3 Bukin function number 6. Test function for optimization

Bukin’s function # 6: f(x,y) =100 /|y - 0.01 x| +0.01|x+10|
The Bukin function number 6 has been chosen to test the optimization on an example for

function with a ridge region.

Some Characteristics of the Bukin function number 6:

- One global minimum:
f(x,y) = 0 at (x,y) = (-10, 1)

- Numerous local minima all of which are located in a ridge.

- Evaluated on the rectangle x € [-15, -5], y € [-3, 3].

Rosenbrock: f(x, y) = (x - 1)2+ 10(y -x?)?
(also known as: Rosenbrock's valley or Rosenbrock's banana function)
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Figure 4 Rosenbrock. Test function for optimization (evaluated in the interval x € [-2.048, 2.048],y € [-2.048, 2.048])
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Figure 5 Rosenbrock. test function for optimization (evaluated in the interval x €[-5, 10],y € [-5, 10])



The Rosenbrock function has been chosen to test the optimization on an example for function
with a valley-like region.

Some Characteristics of the Rosenbrock function:

- One global minimum:
f(xy)=0at(xy) =(1,1)
- The function is unimodal, with a narrow, parabolic valley as the global minimum.
Despite the ease with which this valley can be found, convergence to the minimum is
not easy (Picheny et al., 2012)
- Evaluated on the rectangle x € [-5, 10], y € [-5, 10]



Chapter 3: Experiments on EnOpt-ML

Introduction:

The main goal of this chapter is to investigate the impact of machine learning algorithms on

stochastic gradient descent (SGD). The Himmelblau function is used for optimization testing

in the present chapter. The algorithms that were written in the Python programming language

(version 3.8.8) and are available in Appendix A. A function called “run(.)”, in the thesis Python

code, has been created to facilitate the change in parameters for testing of EnOpt and EnOpt-

ML. As long as a result in optimization is less than 10% of the range of the function, it is

considered “good enough” in these chapters.

Workflow:

1. Definition of the starting point (initial mean) and initial covariance matrix that the

optimization needs to start from,

2. In the function run(.) defined in Appendix A, several parameters are varied for testing

different EnOpt and EnOpt-ML configurations. Those parameters are:

Mean (mu) and covariance ( C): are mandatory fields where mu is the starting
point and C is the initial covariance matrix.

Initial sample size (init_N)

Reduced sample size (reduced_N): in case of reduction of sample size, this
parameter defines the number of samples used at a defined iteration and in the
following iterations. in the case that reduced_N= 0, No more evaluations on the
original objective function are performed.

Number of samples predicted by the machine learning model (Nml)

The objective function used (of)

The maximum number of iterations (max_iter) as a stopping criterion, for the
optimization

Train iteration (train_iter): the number of iterations after which the ML model
starts the learning process and being used.

Reduce at iteration (reduce_at_iter): iteration at which the number of samples
is reduced (i.e., when ‘reduced N’ is used)

Machine learning algorithm (ML): the machine learning algorithm that will be
used.

Note: run(.) is not the only function used in the process, but it is the main
function for optimization with EnOpt and EnOpt-ML in this thesis work. Other



functions specify, for instance, the test functions and the machine learning
algorithms needed/used. In addition, there is a sequence of for loops, outside of
run(.) that goes through different configurations and simulations on this main
function(see Appendix A).

- Other configurations that have to be specified for the different simulations:
» seed: the seed() method in Python is used to get the random
number generator started, this method needs a starting val