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Abstract

Permanent downhole gauges (PDG) that are installed in modern wells are
capable of recording pressure and temperature data during well operations.
These data in combination with flow rate measurements may be utilized
for Pressure Transient Analysis (PTA) or its time-lapse version - time-lapse
PTA. Unlike traditional PTA which would mainly interprets data from shut-
in periods, time-lapse PTA is applied to sequential pressure transients and
both flowing and shut-in periods to evaluate well-reservoir parameters that
may vary with time. A PTA workflow may be divided into several steps.
In this study, we mainly focus on the step of transient identification based
on pressure measurements, which is crucial for time-lapse PTA and keeps
being a challenge especially when the data are very noisy. Another step
- denoising is also carried out and discussed in the part of computational
experiments.

Previous work in the area of the transient identification has been studied
before developing and testing of own algorithms to address this problem.
Seven approaches have been reviewed, compared and summarized in the
thesis.

In this master thesis, the transient identification problem is considered as
a two-stage process consisting of two identification tasks: 1) splitting the
data set into shut-in and flowing periods; 2) task 1 + detecting multi-
rate break points in flowing periods. Three methods based on pressure
derivative, tangent of pressure data and pattern recognition were proposed
and studied and a workflow to implement these methods was designed.

Through a number of computational experiments, the derivative-based method
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provided the best result for the task 1, while tangent-based method - best
results for the task 2. In the comparison section, we discussed the results of
testing of these methods taking an insight into performance of the break-
point detection in the different tasks.

The thesis is finalized by establishing an easy-to-use web application, where
the users could experiment with different methods using own data sets. The
web-app provides a friendly user interface to upload and test different data
sets and download results of the break-point detection.
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Chapter 1

Introduction

1.1 Background

Since 1990, a great number of wells have been equipped with permanent
down-hole gauges (PDG) which record real-time data, including pressure
measurements and temperature measurements, which are usually called
Bottom Hole Pressure (BHP) and Temperature (BHT). Especially with the
steadily falling of the cost for the installation and the rise of the reliability,
there has been a significant growth in the number of PDG systems that
had been installed in oil and gas well worldwide. Thus, it become crucially
important to utilize these real time data not only to monitor the reservoir
characterizations, but also to improve field development and performance.
One of the most important tools to utilize the PDG data is time-lapse
Pressure Transient Analysis (PTA) which mainly focus on interpretation of
BHP.

PTA had been investigated for decades, which is even earlier than the emer-
gence of PDG. Ramey et al.[1] described the usage of PTA in diagnosing
well condition. It took the pressure measurements and flow data set as in-
put and involved matching a model of the reservoir to the data. Through
PTA, some information and parameter of the reservoir will be obtained
and estimated, e.g., the reservoir transmissivity (kh), skin factor, the initial
reservoir pressure, permeability, etc.
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1.1 Background

Many researchers, e.g. Allain et al.(1988) [2], Ershaghi et al.(1993) [3], Sinha
and Panda(1996) [4], AlMaraghi and El-Banbi (2015) [5], etc., contributed
to this tool.

Traditional PTA only interpret pressure data in shut-in periods, time-lapse
PTA is applied to both flowing shut-in periods. Certain data proecessing
and transient identification are needed before the application of time-lapse
PTA [6]. In 2002, Athichanagorn et al.[7] proposed a seven-step workflow
to address the problem.

1. Outlier removal

2. Denoising

3. Transient identification / break point detection

4. Data reduction

5. Flow history reconstruction

6. Aberrant segment filtering

7. Transient analysis on moving windows

A brief description of each step is given below for a better understanding.

Outlier Removal Outliers are data points which locate far from the reg-
ular trend of pressure response due to unpredicted environment, significant
disturbances at the down-hole, temporary sensor failure, unstable transmit-
ter and etc. Wavelet-based methods were recommended by Athichanagorn
(1999) [8] and Ribeiro et al. (2006) [9]. Olsen et al. (2005) [10] demon-
strated that median filter is more efficient comparing with wavelet-based
methods.

Denosing The target of denoising is to smooth the fluctuations caused
by noise and keep the information of data set as much as possible. Wavelet
filtering (Donoho et al.,1994[11]) is proven to be one of the most effective
approaches. Haar wavelet combined with soft-thresholding was suggested
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1.1 Background

by Kikani et al.(1998)[12]. More denosing technique will be discussed in
other chapters of this thesis.

Transient identification Pressure measurements response when the flow
rate change. The abrupt change of pressure measurements will occur due
to the sudden change of flow rate. By recognizing these abrupt changes of
pressure measurement, the distinct flow periods will be separated. Since it
is the main objective of this study, further demonstration will be made in
the following chapters.

Data reduction Numerous data are recorded by PDG. To speed up the
processing time, data reduction techniques are developed to reduce the
number of data points while keeping the features carried by the data set.
Athichanagorn (1999) [8] suggested a hybird method of pressure threshold-
ing combined with time thresholding.

Flow history reconstruction The flow rate sometimes are fail to be
recorded by PDG. The flow history could be reconstructed based on pressure
and temperature measurements. Various methods are proposed by many
researchers, Athichanagorn (1999) [8] used the nonlinear regression method.
McCracken et al.(2006) [13] use pressure data to allocate the rate period.
A feature-based machine learning approach was developed by Tian et al.
(2015) [14].

Aberrant segment filtering The aberrant segments which do not follow
the regular trend of pressure response must be removed before interpreting
these data. The variance between the data and the model response could
be utilized to distinguish these segments.

Transient analysis on moving windows This step is to analyse the
reservoir behavior in order to determine reservoir properties based on the
moving average window.
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1.2 Problem statement

Figure 1.1: Schematic for the relationship between of change of pressure and the
change of production flow or injection flow[15].

1.2 Problem statement

Among the seven steps that we discussed above, this study will mainly
focus on the third step, transient identification, a.k.a. breakpoint detection,
which is crucial for further analysis and interpretation of the PDG data. In
addition, some denosing techniques also will be discussed and utilized to
improve the accuracy.

1.2.1 The definition of pressure transient & break point

The term ‘pressure transient’ can be referred to any circumstance in which
pressure is changing with time[15]. These pressure changes are usually
caused by a change of flow rate which is usually measured at well tubing
head (top of the well) with flow-meters. The flow rate can be either a
production flow or injection flow, shown in Fig. 1.1. The start point of a
pressure transient is called a ‘break point’.

1.2.2 The pressure & flow data sets

Two most relevant data sets to our study are pressure data and flow rate
data. Both data sets will be inputted into our implemented models, how-
ever, the identification is only based on pressure data. The flow rate data,
which are usually indications of true break points, are used to evaluate the

4



1.2 Problem statement

performance of the implemented model. There are some characteristics for
these two data types.

• For pressure data, various sampling rates at low and high frequen-
cies depend on the system setup. Normally, it is recorded at several
seconds interval. One year of data may consists of over three million
measurements.

• For flow rate data, sometimes they will be measured only once a week
or once a month while there are unmeasured rate changes in between.

• Both two types of data have noise because of different reasons. A
number of outliers or zero values exist due to erroneous recording.

• An important relationship between flow rate and pressure is that the
change of flow rate will produce the change of pressure. However
the pressure and flow rate might be measured at different location-
s/gauges, which causes issues like synchronization, different sampling
rate etc.

The more we know about the data, the better solution we will develop for
the design of methods and the workflow. For instance, the large number
of points will require a strategy to reduce the number before these points
is about to go through a computational cheap module if it exists. And the
unevenness of data sampling also needs to be taken into consideration.

1.2.3 The objective

The objective of this study is to explore some novel methods for the transient
identification problem. A work flow will be designed to integrate these
methods. The final model is expected to be:

• highly accurate

• minimum user interaction

• universal criteria
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1.2 Problem statement

Figure 1.2: Schematic of break points identification objective[15]. Task 1 : sep-
arate flowing and shut-in periods. Task 2 : Task 1 + multi-rate break points
detection in flowing periods.

• tolerant to noise

• computational cheap

We model this problem as two-stage pipeline of sequence identification tasks,
illustrated below:

• Task 1: Automated breakpoints identification which separate flowing
and shut-in periods.

As shown in Figure 1.2, the pressure measurements need to be splitted
into shut-in flowing periods.

Points(annotated by purple ellipse), which are the start points of dif-
ferent periods must be identified.

• Task 2: Task 1 + Automated breakpoints identification for multi-rate
flowing periods with dominating transient.

Points, annotated by grey circles in Figure 1.2, indicate the major
multi-rate transients in flowing period.
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1.3 Thesis outline

1.3 Thesis outline

This thesis proceeds as follows.

Chapter 2 reviews seven approaches proposed in last two decades. The
detecting theories are introduced, experiments results are also discussed.
The comparisons of these methods are made in the aspects of: main idea,
pros, cons and user input.

Chapter 3 designs the methods based on the derivative values of the pres-
sure measurements. We propose two algorithms, named as RangeFOD and
DeltaFOD. Two other useful approaches which could help with transient
identification are also introduced.

Chapter 4 illustrates tangent method for detection. The theory is intro-
duced first. Then an algorithm name as DeltaTangent is suggested.

Chapter 5 implements an approach of pattern recognition. A new idea
about how to learn the patterns is demonstrated. Two tuning methods,
named as Percentile Tuning and Fine Tuning are suggested to improve the
learned patterns.

Chapter 6 proposes a new workflow to solve this two-tasks problem of this
study. After that experiments with various combination of different meth-
ods are carried out.The results are compared and analyzed. The discussion
of methods and patterns of break points are made at the end of this chapter.

Chapter 7 deploys the model which embeds these designed methods and
workflow in this study.

Chapter 8 concludes major outcomes of this study and gives suggestions for
the future work.
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Chapter 2

Previous work

In last two decades, many methods for transient identification were sug-
gested. The thorough research of previous work will help to form a solid
foundation to develop our own methods. We will do a comparative analysis
to seven approaches in this chapter. The summarization will be made at
the end of this chapter.

2.1 Spline wavelet decomposition

A spline wavelet decomposition method was discussed by Athichanagorn[8]
in his doctoral dissertation in 1999. Wavelet analysis has the capability
of analysing data at multiple levels of resolution. The spline wavelets use
the concept of wavelet modulus maxima which are suitable for singularity
detection to determine the breakpoints.

• At high level, the signal singularities for detecting the beginning of
transients are group as a single singularity.

• At low level, signal singularities and noise singularities both present.

• At intermediate level, only signal singularities present. Thus, it is
difficult to distinguish signal singularities in both high level and low
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2.2 Pattern-recognition approach

level. We make use of intermediate level to detect the transients.

One thing needs to note is that two criteria should be determined first before
applying this method, listed as follows:

• ∆tmin : the length of shortest transient to be detected.

The intermediate level for different data sets may vary. In order to
determine which level is the most suitable for an arbitrary spacing,
the length of the shortest transient to be detected ∆tmin should be
chosen at first.

• Threshold: to determine which change is actually a singularity.

The rule of thumb in choosing the threshold is to determine how
much pressure difference between two data points is considered as the
beginning of a new transient.

The detailed detecting steps were also discussed by the author in his paper[8].

The author did many experiments towards different data sets including raw
data and denoised data.

Through these experiments, the author reached the conclusions that denois-
ing would benefit the transient detection towards the noisy data. However,
it might produce the problem of over smoothing when the associated noise
is minimal.

2.2 Pattern-recognition approach

As shown in the discussion of the previous section that the spline wavelet
decomposition has the demerits as requirements for expert use and large
computation. Olsen et al.[10] proposed a pattern recognition method to
identify the pressure transients.

There are two ways to determine the pattern used in this method.
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2.2 Pattern-recognition approach

• To predefine a pattern.

• To use a system learning process, like neural networks, to train the
system for pattern recognition.

The author illustrated the first way in his paper. He predefined two patterns
for transients, one for build-up transients, one for draw-down transients as
shown in Figure 2.1 and Figure 2.2.

Figure 2.1: Pattern recognition for build-up transients[10].

Figure 2.2: Pattern recognition for draw-down transients[10].

When the entire transient image falls in the range of the predefined transient
pattern, it will be identified as a transient.

There are three prerequisites for apply this method:

• Outliers must be removed.

• Denoising is recommended especially when the noise level is large.

• Not to use a noise filter that will seriously over smooth the transients.
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2.3 Three approaches by Rai

The author also proposed a complementary measure to remove the small-
est transient pattern by adding some statistical validation criteria, which
will miss some smallest transients, but also decrease the number of false
detections.

The experiment result carried by the author showed the false detection was
fairly reduced while approximately 10% of transients were missed because
of small amplitude.

2.3 Three approaches by Rai

In 2005, Rai[16] investigated the limitations of spline wavelet-based ap-
proach and proposed four algorithms as follows.

• Haar wavelet (Stationary wavelet)

• Savitzky-Golay FIR smoothing filters

• Segmentation method

• A variant of segmentation method

Through author’s experiments with real field data, the first approach, which
used one of the orthogonal wavelet transformation, did not show any signif-
icant improvements comparing with spline wavelet-based (non-orthogonal)
approach. The other three however made a considerable improvement in
accuracy and reliability.

In this section, we will mainly discuss the latter three approaches.

2.3.1 Savitzky-Golay FIR smoothing filters

The basic idea of this method is to apply the Savitzky-Golay smooth filter
to the pressure data, then analyze the first and higher order derivative of
the smoothed pressure measurements to obtain the break points.
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2.3 Three approaches by Rai

The derivatives of pressure data exhibit a peak when there is a sudden
change in the data. Hence the peaks in first and other higher derivatives
indicate the vicinity of the break point location. For an abrupt change in
the data, the first and second derivative peaks will be closer to the actual
break point location in the data, while for a smoothly changing data, the
higher derivatives namely third and fourth will be closer to the break point
location.

According to the above theory, the detecting procedure designed by Rai
could be concluded as the following two steps. Firstly, to find the peaks of
first order derivative of pressure measurements above a certain low thresh-
old, then search peaks in the second, third and fourth derivatives of the
data. All these positions of the peaks indicate the possibility of break
points. Secondly, to check the slopes between each pair of locations to see if
they are above a certain threshold which is set as the average noise variance
estimated from the data. Thus, the interpolation between these locations
could be finally carried out.

The window size of Savitzky-Golay smooth filter plays a crucial role in the
performance, thus should be carefully determined. The author provided a
example to show how to decide the window size.

Figure 2.3 and Figure 2.4 show the derivative plots for window size of 21
and 51 respectively. By comparing these two figures, both of them could
clearly show the positions of break points through the first order derivative.
However the higher order derivative are still very noisy for window size 21.
For the data set used in this example, obviously the window 51 performs
much better and thus should be chosen.

The author also did experiments to compare the results obtain from spline
wavelet and S-G smoothing filter and draw conclusion that the latter per-
formed much better than the former.

2.3.2 Segmentation method

In order to achieve a full automation, the minimum user inputs are de-
sired. Segmentation method just require one user input parameter for the
breakpoints identification. This parameter’s value can be obtained by the
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2.3 Three approaches by Rai

Figure 2.3: S-G smoothing and derivative calculation for window size of 21[16].

Figure 2.4: S-G smoothing and derivative calculation for window size of 51[16].
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2.3 Three approaches by Rai

knowledge of the resolution of the instrument or from an estimation of the
noise level of the data. Another advantage for this approach is that no
denoising techniques are required.

The algorithm involves the following three steps.

• The first step is to collect a set of strategic points, by solving a se-
quence of maximum orthogonal (Euclidean) distance problems.

To begin with, the first and the last points in the dataset are marked
as two strategic points, see Figure 2.5. Then another point is se-
lected whose orthogonal distance from the line segment joining the
two strategic points is greatest. This third point joins the collection
of strategic points and, in turn, becomes an end point for two new
line segments, see Figure 2.6 and 2.7.

This iterative numerical scheme is performed until the greatest or-
thogonal distance of data point from the associated line segments
falls below a prescribed tolerance τ . This tolerance can be estimated
statistically from the dataset itself. Also the selection of these points
does not require equally spaced data in time.

• The second step is to calculate the area under each strategic point by
considering the two other strategic points to its either side.

The area can be approximated numerically through a trapezoidal rule
or polygon method. The small or false break points are then deflated
using a very small area cutoff which is taken as a very small fraction
of the highest area in the dataset.

• The third step is to screen further by checking the forward and back-
ward slope.

As a rule of thumb, if the forward slope is less then half the backward
slope, the point is discarded. The slopes were obtained by least square
fitting.

From the above description of steps we could know that the tolerance τ will
affect the number of detected points. As suggested by the author, the lower
bound for the tolerance τ can be considered as an estimate of noise in the
data. The estimated denoising threshold in the data are denote as σ. The
author utilized an algorithm proposed by Khong [17] to determine σ.
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2.3 Three approaches by Rai

Figure 2.5: The first and the last point in the dataset marked as two strategic
points.[16].

Figure 2.6: Point with maximum orthogonal distance from the line segment
joining the first two strategic points selected[16].

The author tested two data sets with various values of the tolerance τ
ranging from 4σ to 40σ. When the value of τ increase from 4σ to 40σ,
for the first data set, the detected break points decreased from 13 to 11,
while for second data set, it decreased from 16 to 13. The author reached
conclusions that i) this method is reliable since all the significant break
points have been identified for a wide range of the τ ; ii) for a wide range of
tolerance τ the number of detected break points do not vary significantly;
iii) with the increase of τ , only a small number of minor break points will
be missed.

2.3.3 Variant of segmentation method

Most of the time only pressure data are measured from permanent downhole
gauges. However, if simultaneously measured flow rate is also available along
with the pressure data, then it is possible to use this additional information
to aid the detection break points.
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2.3 Three approaches by Rai

Figure 2.7: Points with maximum orthogonal distance from the line segment
joining each consecutive pair of strategic points selected[16].

This section describes an algorithm suggest by Rai, which uses a concept
similar to the segmentation method and can be called a variant of the seg-
mentation method. However the variant also use the flow rate data to aid
the detection. This variant can be used either independently, to determine
the significant break points, or in conjunction with other methods, to vali-
date and screen smaller or false break points.

The detection includes the following two steps.

• The first step is to identify the beginning and end of the time period
when the liquid rate data is zero.

Because when the well is closed for build up, the liquid rate will go to
zero after some time and when the well is again opened, the liquid rate
will increase from zero to some finite value. The time axis values of
the strategic points obtained in the liquid rate data can be transferred
onto the pressure data.

• The second step is to use the concept of the segmentation method
and look for points, which derived from step 1, in the pressure data
having maximum or minimum orthogonal distance from the time axis,
between a pair of strategic points.

The point with minimum orthogonal distance will be the break point
corresponding to the beginning of a drawdown, while the point with
maximum orthogonal distance will be the break point corresponding
to the beginning of a buildup.

The author also tested this approach with two field data sets, where both
pressure and flow rate data are simultaneous recorded. For both two data
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2.4 Data smoothing technique

sets, only one correct point is missed and one break point is false detected.

2.4 Data smoothing technique

Nomura[18] proposed a data smoothing techniques, in which the identifica-
tion problem was treated as a pressure fitting problem. Then the problem
becomes finding the break points in the pressure signal with the nonlinear
smoother.

The detecting procedure was divided into two stages: insertion stage and
deletion stage, shown as Figure 2.8. The wavelet processing results are
taken as the initial guess. The basic idea of the inserting stage is to in-
sert additional break points by the iterative procedure of pressure fitting,
checking GCV score and residual trend. The deletion stage is to delete the
break points by the iterative procedure of pressure fitting, checking GCV
score and effective flow rate. The final results will be chosen according to
the minimum GCV score.

Figure 2.8: Nomura’s procedure for the transient identification.[18].
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2.4 Data smoothing technique

Nomura also tested his approach using computational experiments and il-
lustrated in details how he applied his method in practice, shown as Figure
2.9. For the testing data that used by Nomura, the initial guess obtained
from wavelet method was 18, while the number of true break points was 57.
In the insertion stage, the GCV score kept decreasing with the insertion of
break points. After the GCV score reached its lowest value (see the blue
arrow in Figure 2.9). The increase of break point will raise the GCV score,
indicating the over fitting. Then the deletion stage began to work, and the
GCV score was reduced further, and the lowest GCV score in the deletion
stage was observed at the position pointed by red arrow in Figure 2.9, which
was selected as the final result shown as Figure 2.10.

Figure 2.9: The GCV score and the number of break points[18]. Blue arrow &
red arrow: indicate the lowest value of GCV score in insertion stage and deletion
stage respectively.

Normura concluded that the break points detection was successful with this
algorithm, however there are several difficulties.

The first difficulty is that the insertion and deletion scheme is not guar-
anteed to produce the best result. The second difficulty is the GCV min-
imization is not guaranteed to always produce a reasonable model due to
the lack of local information.

Based on the results obtain from the experiments and lacking a better esti-
mator, the author adopted the sequential GCV minimization and claimed
resulting estimates were all reasonable in practice.
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2.5 Filter convolution technique

Figure 2.10: The estimated break points location. Upper: estimated location of
the break points. Lower: location of the true break points[18].

2.5 Filter convolution technique

Suzuki et. al[19] proposed a detection method using filter convolution. The
filter is designed to detect a paritcular pattern of pressure response rather
than just detecting a frequency change. Also, it can be combined with
noise-removal filters, thus enhancing the tolerance to noise.

Suzuki et. al observed that for a noise free pressure data, the positions of
break points usually locate at where i)the sign of pressure derivative(dp/dt)
switch from negative to positive or positive to negative; ii) or the absolute
pressure derivative changed from a close to zero value to a relatively large
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2.5 Filter convolution technique

value, shown as Figure 2.11. Suzuki et. al used the Equation 2.1 and 2.2
to depict these patterns.

Figure 2.11: Schematic of pressure response[19].

Start of buildup:
dp

dt

∣∣∣∣
t=t0,bu−ε

< 0,
dp

dt
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t=t0,bu+ε

> 0

and/or:
dp

dt

∣∣∣∣
t=t0,bu−ε

≈ 0,
dp

dt

∣∣∣∣
t=t0,bu+ε

≫ 1
(2.1)

Start of drawdown:
dp

dt
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t=t0,dd−ε

> 0,
dp

dt

∣∣∣∣
t=t0,dd+ε

< 0

and/or:
dp

dt

∣∣∣∣
t=t0,dd−ε

≈ 0,
dp
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∣∣∣∣
t=t0,dd+ε

≪ −1
(2.2)

In Equation 2.1 and 2.2, ε denotes a positive infinitesimal time interval.
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2.5 Filter convolution technique

t0,dd denotes the draw-down break point in time. t0,bu denotes the build-up
break point in time.

In order to detect the position where the switch of the sign of dp/dt occurs,
Suzuki et. al use the filter convolution method, shown in Figure 2.12.

Figure 2.12: Example of buildup detection through filter convolution applied to
synthetic pressure data[19].

The main idea of this method is to convolve the pressure derivative indicator
function fbu(t) (see Figure 2.12 (c)) or fdd(t) with filter function g(t) (see
Figure 2.13), and the peak above a certain threshold α will indicate the
position of break point. The indicator functions for build-up pattern and
draw-down pattern are defined in Equation 2.3 and Equation 2.4.

Figure 2.13: Filter function for detecting the start of buildup/drawdown[19].
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2.6 Comparison

fbu(t) =

{
1, if dp

dt > 0

0, otherwise
(2.3)

fdd(t) =

{
1, if dp

dt < 0

0, otherwise
(2.4)

Suzuki et. al applied this approach both to oil well and gas well without
data denosing. This method achieved a perfect result for oil well, however
poorly performed for gas well. After that the author applied moving average
filter and dp/dt thresholding to the gas pressure data and finally achieved
a satisfactory result.

In 2018, Suzuki improved the performance of this method significantly by
replacing the moving average filter with Hampel filter (Hampel, 1971 [20];
Hampel, 1974 [21]) for pre-processing pressure data [22].

2.6 Comparison

The approaches we investigated have different detecting schemes, merits
and demerits, different requirements for user inputs/ criteria. Table 2.1
made the comparison.

2.7 Summarization

Figure 2.14 summarized methods discussed in this chapter from another
view. These methods can be divided into two categories: (i) method need
denosing techniques, (ii) method with no requirement for denosing tech-
niques. All methods, except Segmentation and its variant, require denosing
technique for a better performance.

Three denoising techniques utilized by these methods are: moving aver-
age, Savitzky-Golay smoothing filter and Hampel filter. In some methods,
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2.7 Summarization

Table 2.1: Comparison between different approaches for transients detection

Main idea Pros Cons User
input

Spline
wavelet

• Use the conceptofwavelet
modulus maxima which
aresuitable for singularity
detectiontodeterminethe
breakpoints.

• Effectively detect significant
breakpoints

• Difficult to define universal cri-
teria

• Many false break pointswere de-
tected

• Require expert use
• Impossible for real time analysis

• ∆tmin

• Slope
thresh-
old

Pattern
recog-
nition

• When the entire transient
image falls in the range
ofthepredefinedtransient
pattern, it will be identi-
fied as a transient.

• Most of major transients are
correctly detected.

• Faulty detection is rare.
• Require minimum user inter-

action.

• Require data preprocessing, e.g.
outliers removal&denoising,be-
fore identification

• Additional requirement for not
touseanoisefilterwhichwillover
smooth the transients

• Miss the transients with too
small magnitude.

• Prede-
fined
pattern

S-G
smooth-
ing
filter

• First and higher deriva-
tives of the signal, calcu-
latedinanefficientwayus-
ing the S-G filters.

• perform better than the
wavelet based approaches.

• Screen out false break points
in high noisy data.

• Had difficulty in screening
smaller transients.

•
Window
size

Segmen-
tation
method

• Reducestheentiredataset
into strategic points.

• Smaller and false break
points were further
screened out by using the
area, calculated under a
transient.

• perform better than the
wavelet based approaches.

• effective in identifying all the
significant break points.

• The performance of this
method is not sensitive to the
valueofstoppingcriteria(tol-
erance τ).

• Had difficulty in screening
smaller transients.

•
Tolerance
τ

Segmen-
tation
method
variant

• Identifies the zeros in the
flow rate.

• Between two consecutive
zeros finds the peak us-
ing the segmentation ap-
proach.

• perform as well as segmenta-
tion method.

• Easy to implement.

• Both pressure and rate data are
required.

• Faulty detections are likely
to happen when some points
have smaller orthogonal dis-
tance than breakpoints.

•
Tolerance
τ

Data
smooth-
ing

• Usewavelet processing re-
sult as initial guess.

• Insert and delete points
through iterative proce-
dure, get the final results
until the stopping criteria
meet.

• An improvement to wavelet
decomposition approach.

• Data driven and less subjec-
tive.

• GCV score and minimization
are not guaranteed to produce a
good result of detection.

• Need wavelet processed results
as prerequisite.

• The procedure is complex.

• ∆tmin

• Slope
thresh-
old

Filter
convo-
lution

• Convolve a fliter function
with the indicator func-
tion of the slope of pres-
sure data. Breakpoints
are identified by location
the maximum value of the
convolution.

• Tolerant to noise to some ex-
tent.

• Perfect accuracy for oil well.
• About 80% accuracy for gas

well.

• Difficult to define universal cri-
teria

• Need denosing techniques com-
bined to achieve better results

• Need 3-5 iteration to determine
the slope threshold criteria.

• 2ω
• Slope

thresh-
old
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2.7 Summarization

the noise are filtered further by slope threasholding (Spline wavelet, Data
smoothing & Filter convolution). Theoretically, any of these three denoising
techniques (puple dashed reactange in Figure 2.14) can be combined with
any of the transients identification approaches (orange dashed reactange in
Figure 2.14).

To extend further, any method which involves the calculation of derivatives
of signal data, need to denoise the data especially when existing severe
noise. The first order derivative of pressure data (dp/dt) for some points
with severe noise will be as large as the true break point, thus causing the
false detection.

Figure 2.14: Summarization of methods discussed in section 2-8.
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Chapter 3

Methods based on derivative

Derivatives values of pressure measurements are fairly important metrics
utilized by many researchers for the transients identification task. However
derivative is fairly sensitive to noise. The derivative methods will easily
detect false points because of noise if the algorithm is not well designed.

Through careful research as well as experiment based analysis, we design
our own algorithms based on derivative.

3.1 Theory description

As illustrated by in Chapter 2.5, for a noise free pressure data, the positions
of break points usually locate at where i)the sign of pressure derivative(dp/dt)
switch from negative to positive or positive to negative; ii) or the absolute
pressure derivative changed from a close to zero value to a relatively large
value.

The above two statements are true for synthetic data set which is noise-free.
However it is not the case for real field data set which is usually full of noise.
We would like to provide two examples to show how derivative of pressure
measurements will behave for real field data. Figure 3.1 is the first 60 hours
of the testing data that will be used for our computation experiment for
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3.1 Theory description

Figure 3.1: A example of pressure response and dp/dt of real field data.

Figure 3.2: A example of pressure response and dp/dt of real field data[19].

this thesis. Figure 3.2 is from Suzuki et. al [19]. From both of these two
examples, we will see derivative values fluctuate greatly because of noise.
And the change of the derivative’s sign seems not to be a good criterion
for break points detection. It has also been proved by the computational
experiments that we carried out, although the procedure and results of these
experiments are not shown in this thesis.

Thus, we try to develop algorithms according to the second statement.
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3.2 Algorithm design

3.2 Algorithm design

3.2.1 Algorithm for RangeFOD

The algorithm according to the second statement can be designed as follows:
for a break point, at the left side, the dp/dt is prone to zero, while at the
right side, it will have a significant jump. To resist the severe noise further,
we will use a window for both sides, applying the criteria to the average value
of dp/dt in two windows, as shown in Algorithm 1 (named as RangeFOD).

Algorithm 1 RangeFOD
1: {p1,..., pn} ▷ pressure measurements for n points
2: dpi/dt ▷ first order derivative(FOD) of pi
3: std ▷ standard deviation of {dp1/dt,..., dpn/dt}
4: m ▷ point window
5: τ1 ▷ a positive number close to zero
6: τ2 ▷ tuning paramter, a positive float

7: while i <= n−m and i >= m do ▷ for all valid points in data set
8: avgleft = average({dpi−m/dt,..., dpi/dt}) ▷ average FOD of left m points
9: avgright = average({dpi/dt,..., dpi+m/dt}) ▷ average FOD of right m points

10: if abs(avgleft) < τ1 and avgright > τ2 × std then
11: point i is buildup breakpoint
12: else if abs(avgleft) < τ1 and avgright < −τ2 × std then
13: point i is drawdown breakpoint
14: end if
15: end while

3.2.2 Algorithm for DeltaFOD

The experiments based on algorithm 1 show that algorithm 1 works well for
the synthetic data. Nevertheless, when it applied to the real field data, the
absolute avgleft values for true break points sometimes are even larger than
the one which is not break points. It is quite difficult to use a threshold of
avgleft to screen out break points.

Thus, a variation of Algorithm 1 is designed, see Algorithm 2. In which,
when the difference between avgleft and avgright reach a certain theshold,
the point will be determined as buildUp or drawDown.
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3.3 MaxFOD and MinFOD

Algorithm 2 DeltaFOD
1: {p1,..., pn} ▷ pressure measurements for n points
2: dpi/dt ▷ first order derivative(FOD) of pi
3: std ▷ standard deviation of dp1/dt,..., dpn/dt
4: m ▷ point window
5: τ ▷ tuning paramter, a positive float

6: while i <= n−m and i >= m do ▷ for all valid points in data set
7: avgleft = average({dpi−m/dt,..., dpi/dt}) ▷ average FOD of left m points
8: avgright = average({dpi/dt,..., dpi+m/dt}) ▷ average FOD of right m points
9: ∆FODi = avgright − avgleft

10: if ∆FODi >= τ × std and avgright > 0 then
11: point i is a buildup breakpoint
12: else if ∆FODi <= −τ × std and avgright < 0 then
13: point i is a drawdown breakpoint
14: end if
15: end while

3.3 MaxFOD and MinFOD

As we discussed the value of derivative brings the signal of the change. The
other two approaches based on the value of derivative are also used to aid
the identification task. We name them as MaxFOD and MinFOD.

MinFOD For points whose absolute first order derivative are smaller than
a certain threshold, we consider the derivative is caused by noise other than
by the change of flow rate. These points could be removed before inputted
into the identification algorithm (e.g Algorithm 2) which consumes a large
portion of the running time of whole system.

MaxFOD In a point/time window, the point with maximum absolute
first order derivative will be more likely to be a break point than other
points in this window.

These two approaches are not used as main detection methods, however
they can be used to optimize the detection, as we did in the experiments
workflow, which will be discussed later.
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Chapter 4

Method based on tangent

4.1 Theory description

Tangent has information which reflects the trend of points. We observe
two points in Figure 4.1. For point A, tangent_left and tangent_right
are very close, then ∆tangent is relatively small. For point B, ∆tangent is
obviously larger. By setting a reasonable threshold for ∆tangent, a break
point could be identified.

Figure 4.1: Schematic of tangents of pressure measurements. Red points: pres-
sure measurements. Blue line: left tangent of point B. Purple line: right tangent
of point B.

To calculate the tangents, we analyse the left m points (left window) and
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4.2 Algorithm design

right m points (right window), find two fitted curves for both left window
and right window. Then tangent of every points could be calculated, as
illustrated in Figure 4.2.

For instance, a three - degree polynomial fitting curve for left window is

f(x) = ax3 + bx2 + cx+ d (4.1)

Then,
f

′
(x) = 3ax2 + 2bx+ c (4.2)

For a point (x0, y0) in left window,

tangent = f
′
(x0) = 3ax20 + 2bx0 + c (4.3)

Figure 4.2: A example of tangents calculation for point C. Point window=5. Red
lines: tangents for points in left window. Blue lines: tangents for points in right
window.Yellow curves: fitting curves.

4.2 Algorithm design

The algorithm designed in this section use ∆tangent (see Figure 4.1) as
a separating criterion. However, because of the noise, similar as Chapter
3.2.1 which use average derivative, we use average tangent instead of a single
tangent as a tangent representative of a point.
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4.2 Algorithm design

In Figure 4.2, at Point C, the intersection of blue tangent line and red
tangent line is large. If we use this intersection value as the criterion, the
Point C will be classified as a break point. In fact, the Point C deviates its
route because of noise and should not be detected as a break point. From
this observation, we use average of all the tangents in left window (all 5
red lines, when the point window=5) as the left representative tangent of
Point C, same for right window. Comparing with the single tangent, the
average tangent performs much better, its experiment results will be shown
and discussed in Chapter 6.

Algorithm 3 DeltaTangent
1: {point1,..., pointn} ▷ n points
2: ti ▷ tangent of point i
3: m ▷ point window
4: τ ▷ threshold, a positive number

5: while i <= n−m and i >= m do ▷ for all valid points in data set
6: avgleft = average({ti−m,..., ti}) ▷ average tangent of left m points
7: avgright = average({t′i,..., ti+m}) ▷ average tangent of right m points
8: ∆ti = avgright − avgleft
9: if ∆ti >= τ and avgright > 0 then

10: point i is a buildup breakpoint
11: else if ∆ti <= −τ and avgright < 0 then
12: point i is a drawdown breakpoint
13: end if
14: end while
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Chapter 5

Method based on pattern
recognition

5.1 Theory description

In Chapter 2.2, we reviewed a pattern recognition method proposed by
Olsen et al.(2005)[10]. As mentioned by Olsen et al., there are two ways to
determine the patterns used in this approach.

• To predefine a pattern.

• To use a system learning process to train the system for pattern recog-
nition.

Olsen et al. implemented the first way. The predefined two patterns for
transients identification are shown in Figure 2.1 (for build-up transient)
and Figure 2.2 (for draw-down transient). To determine whether a point is
a break point, they will selected several points both before and after this
point. If all these points fall into the shaded region of the pattern image.
Then the point is considered as a break point accordingly.

Olsen et al. also utilize some statistics approach to aid the transient iden-
tification. For the case of denoised data, if the standard deviation of the
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5.2 Implementation

points which are selected for identification is less than a factor of the total
signal standard deviation, then it will not be considered as a transient. For
the raw data, use the standard deviation of signal noise level instead of
total signal. It should be noted that, the factors for these two scenarios are
not the same.

In this chapter, we design our own way to learn patterns from ground-truth
break points. And we will also adjust the criterion for determining the
break points for noisy data.

In the following section, we will demonstrate our methods about how to
learn patterns and predict using learned patterns in details.

5.2 Implementation

5.2.1 Learn from ground truth

Learning procedure

Unlike Olsen et al. used the predefined patterns, this study designs a learn-
ing procedure to learn patterns from the ground truth break points. The
two patterns will be learned accordingly from buildup break points and
drawdown break points.

Figure 5.1 demonstrated the learning procedure for draw-down pattern,
which can be concluded as following steps.

1. For a ground truth drawdown break point, we select left m points(left
window) to that point, then find a fitting curve for this window.

2. For n ground truth points, we will get n curves for the left side.

3. Find two borders to contain all these n curves.

4. Repeat step 1 ∼ 3 to the right side of each ground truth point. An-
other two borders will be obtained.

5. These 4 borders that we learned will be the pattern for identification.
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5.2 Implementation

Figure 5.1: Schematic of learning drawdown pattern. Yellow lines represent
fitting curves for every ground truth drawdown break points. Green lines represent
learned pattern.

The build-up pattern also can be learned from ground-truth build-up break
points by repeating above 5 steps.

Figure 5.2: Learned buildup pattern from the ground truth of synthetic data.

Learned patterns

We tested the implementation with both synthetic and real case data. Fig-
ure 5.2 and Figure 5.3 show the learned patterns from the ground truth
of synthetic transients. Figure 5.4 and Figure 5.5 show the learned pat-
terns from the ground truth of real field transients. From these figures,
we could observe that the slope of left borders of the pattern learned from
synthetic data are more prone to zero. This could be easy to comprehend
since synthetic pressure measurements is noise free.
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5.2 Implementation

Figure 5.3: Learned drawdown pattern from the ground truth of synthetic data.

Figure 5.4: Learned buildup pattern from the ground truth of real field data.

5.2.2 Predict break points

In Olsen et al.’s paper, only when all points in left window and right window
of a certain point fall into the pattern image, then that point will be clas-
sified as a break point. This criterion works well in many cases. However
we had observed some false detection with this criterion when testing with
our real field data set.

In Figure 5.6, points, annotated by green ellipse, do not fall into the draw-
down pattern. However this point should be classified as a draw-down
break point. Thus, in order to tolerant the imperfect learned pattern and
the noise, we adjust the criterion as: if more than 80% of the total points
fall into the pattern region, then it will be identified as a break point.
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5.3 Improve Patterns

Figure 5.5: Learned drawdown pattern from the ground truth of real field data.

Figure 5.6: Point 26656 should classified as drawdown break point. Although
the points, annotated by green ellipse, do not fall into the pattern.

5.3 Improve Patterns

The patterns we learned will affect the accuracy of detection dramatically.
It requires us to improve the patterns as much as we can.

During the implementation and experiments, we observe some possible rea-
sons which might compromise the learned patterns. Two main reasons will
be discussed here.

• During the learning process, if there are many outliers and severe noise
in the learning window, then it will increase the learned pattern area.
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5.3 Improve Patterns

Thus, many minor changes or even false points will be detected.

• The fitting curve method used in the learning procedure has a nature
to smooth data, thus some subtle information are lost during the
learning process.

We designed two schemes to address the above problems, named as Per-
centile Tuning and Fine Tuning, as illustrated in Figure 5.7.

Percentile Tuning Percentile is a statistics concept. In learning process,
we could choose to only learn from curves which are in a certain range of
percentile, e.g., 10 ∼ 90 percentile. The curves below the lower bound and
above the upper bound, which are quite likely the outliers and points caused
by severe noise, will be removed and not be learnt. The two yellow curves
pointed by blue arrows (in Figure 5.7) are removed by percentile tuning.

Fine Tuning To compensate the information lost by the fitted curve, we
could multiply the pressure measurements of learning points with a factor
(larger than 1) when calculating the borders. Then the pattern area learned
will be enlarged, indicated by the red arrows (in Figure 5.7).

Learn from more ground-truth points Besides tuning the learned
pattern, another effective way to improve the patterns is to learn from
more ground truth points from different data sets. However, to obtain the
ground truth requires quite some experts’ work.
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Figure 5.7: A example of zoom-in plot for the learned pattern after applying the
percentile tuning and fine tuning. Green lines are learned borders, yellow lines are
fitted curves of ground truth transient.
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Chapter 6

Computational experiments
and discussion

6.1 Experiment setup

6.1.1 Load & analyze data sets

There are two data sets for testing in this study, one is synthetic (noise
free) data, the other is real field data from Shchipanov et al.(2017)[23]. The
synthetic data is used to test the implementation is correct or not. The real
case data is used to adjust the implementation to tolerate noise.

Figure 6.1 and 6.2 give an overview of synthetic and real field data used
in this study. Both synthetic and real field data have pressure data & flow
rate data that are not evenly distributed in time axis. And in some period,
the flow rate data are absent.

One thing should be noted is that although both pressure data & flow rate
data are inputted into the model, only pressure data are used to identify
the break points. The flow rate are also plotted as a reference for the
positions of the break points. However the break points positions that flow
rate measurements indicate is not guaranteed to be ground-truth due to the
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6.1 Experiment setup

Figure 6.1: Overview of synthetic data used in this study.

Figure 6.2: Overview of real field data used in this study.
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6.1 Experiment setup

asynchronization between the flow rate data and pressure data.

Synthetic data The pressure data have 3519 points, while rate data have
much less points, only 95 points. The data set last roughly 6059 hours.

Real field data The pressure data have 29813 points, while rate data
have much less points, 10191 points only. The time duration is roughly
4076 hours.

While all synthetic data and real field data are loaded and tested with our
model, in the following chapters, we will only display and discuss the results
produced by the real field data provided by Shchipanov et al. because of
the limitation of chapters. Since the model targets to deal with real case
data eventually.

6.1.2 The manual interpreted break points

The knowledge of the true break points in a data set is a prerequisite to
verify the implemented methods. In our testing real field data, we consider
the break points manual interpreted by Shchipanov et al.(2017)[23] as the
ground truth. By comparing the detected results with these manual inter-
preted break points, we can reach a conclusion which method achieve the
highest accuracy for the testing data sets.

As demonstrated in Chapter 1.2.3, the transients identification problem is
modelled as two sequential tasks, denoted as Task 1 and Task 2. In Task 1,
which is going to separate the flowing periods and shut-in periods, we get 31
flowing periods and 30 shut-in periods through the manual interpretation.
The detailed plot is attached as Appendix B1. However, in Task 2, the
criterion of the major multi-rate break points in flowing periods varies in
different user cases, depending on the system requirements of sensitivity
to the change of pressure measurements. The number of multi-rate break

1This appendix is a sliced version. The link of the full version is provided in Appendix
F.
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points is not fixed. The statistics for the manual interpreted break points
is listed in Table 6.1.

Table 6.1: The manual break points of real field data set provided by Shchipanov
et al.

Real field data
Flowing Shut-in

Task 1 31 30
Multi-rate break points

Task 2 varied
Notes: The break points identification in shut-in period is not in the
scope of this study.

6.2 The workflow

We design a workflow for the two tasks of this study, see Figure 6.3. Raw
pressure data are inputted into the model, then the denoised pressure mea-
surements go through the coarse Filtering module which removes the points
that are quite likely not break points. The remaining points will be inputted
into methods pipeline and clustering representing modules. The methods
we developed(DeltaTangent, DeltaFOD, PatternRecogntion) will be
used individually or in a combination in the methods pipeline module. After
that, all detected break points candidates will be handled by Task 1 pro-
cessing module, the flowing periods and shut-in periods will be screen out
in this step. Both breakpoints candidates and flowing & shut-in periods are
inputted into Task 2 processing module, major break points in all flowing
periods will be obtained.

6.2.1 Denoising

Denoising techniques play an crucial role for transient identification utilizing
the derivative of pressure measurements, as discussed in Chapter 2.7. For
many other methods, it will also help to improve the performance.

Our real field testing data set is fairly noisy especially at the beginning. The
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6.2 The workflow

Figure 6.3: Workflow for transients identification model.

43



6.2 The workflow

Figure 6.4: The pressure response of first 25 hours of raw data set from
Shchipanov et al.(2017)[23] and denoised with Savitzky-Golay FIR smoothing fil-
ters.

pressure measurements in the red dashed rectangle (Figure 6.4) fluctuated
greatly because of noise. The pressure response is smoothed after being
denoised as the gold curve indicates (Figure 6.4). The Savitzky-Golay FIR
filters are chosen in this study to perform the denosing.

Comparing of the raw and denoised / filtered pressure data sets revealed
some periods, where pressure data were over-smoothed, resulted in shift of
break-points causing potential issues for further break-point identification.
It was however decided to use these denoised / filtered pressure dataset in
further testing of the transient identification methods to study their perfor-
mance in a more complicated environment.

6.2.2 Coarse filtering

As we discussed in Chapter 3, derivatives contain the signal that how the
pressure measurements change, which are caused either by noise, or by the
change of flow rate measures, or because of both of them. Large absolute
value of derivatives usually indicate the sharp change of pressure measure-
ments. Although for the whole data set, the min value is smaller than
-1000, and max value is approximately 1500 (see Figure 6.5), we observe
that a large fraction of first order derivative are close to zero (see Figure
6.6), which is likely to be caused by noise. For this reason, filtering the
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6.2 The workflow

points by setting a derivative threshold is a generic approach utilized by
many researchers in the break points identification problem. The demerit
is that the threshold value is varied for different data sets and requires
experimental trials to determine a reasonable value.

In this study, we use the statistics percentile to filter the data set. The
value of percentile is much more universal comparing with threshold values.
Since we are not interested in the multi-rate breakpoints in shut-in period,
in which the derivatives are usually negative, we keep most of points with
positive derivatives but remove most of the points with negative derivatives.
We set the upper bound of percentile to be 50, and lower bound to be 10.
Thus, the number of points flowing to next module are reduced by 40%.
The executing time for one run of the whole system will be decrease as well.
The reason why we set 50,10 as the upper and lower bound for pencentile
will be further explained in Chapter 6.5.1

Figure 6.5: Statistics of first order derivative of denoised pressure measurements
of Real field data.

6.2.3 Detect all break points candidates

This step contains two sub-modules: i) Methods pipeline; ii) Cluster repre-
senting.

Methods pipeline Methods pipeline can be a single method or a com-
bination of multiple methods. The methods that could be used in this sub-
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6.2 The workflow

Figure 6.6: Histogram of first order derivative of denoised pressure measurements
of Real field data.

module include: i) DeltaTangent, ii) DeltaFOD, iii) PatternRecogn-
tion. After the denoised and filtered pressure measurements flow through
this sub-module, all possible break points are detected, labelled as “buildUp”
or “drawDown”.

Cluster Representing For methods, especially those use the average
algorithm, (e.g. average derivative, average tangent, etc.), the neighbour
points of the true break points will also be detected since they are likely to
have similar average values. Thus, it is necessary to find a representative
in the cluster which contains both detected neighbouring points and true
break points. And we want the representatives are close to true break points
as much as possible.

We explored two strategies for finding such representative: i) choose the
one with maximum FOD (first order derivatives). ii) choose the first point
of this cluster. We choose the second strategy, since it meets derivative
patterns for a large portion of break points, which will be further discussed
in Chapter 6.5. The experiment results also verify this statement.
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6.2 The workflow

6.2.4 Produce results for Task 1

Task 1 processing module targets screening out all flowing periods and shut-
in periods. We design a two-step procedure as follows.

1. Screen out all possible flowing periods and shut-in periods.

Figure 6.7 shows a segmentation of detected break points candidates,
which is a most common scenario when the pressure measurements
change from flowing period to shut-in period.

Based on the observation of this kind of scenario, we search the start
point of flowing period and shut-in period in the following way:

• If there are multiple “drawDown”s between two adjacent “buildUp”s,
the one with minimum negative derivative (indicated by blue el-
lipse in Figure 6.7) is determined to be start point of a shut-in.

• The “buildUp” break point right after this chosen “drawDown”
(indicated by purple ellipse in Figure 6.7) is labelled as start
point of next flowing period.

2. Remove the minor periods.

Between the periods distinguished by step 1, there maybe exists some
minor ones which need to be removed. Three examples are shown
in Figure 6.8. Those in purple ellipses are minor transients which
should be removed. We set a condition shown as Equation 6.1. The
period meets this condition will be determined as a minor transient
and removed.

stdtransient ≤ α× stddataset (6.1)

where, stdtransient is the standard deviation of pressure measurements
of a certain period/transient; α is a positive number smaller than 1;
stddataset is the standard deviation of pressure measurements of the
whole data set.

6.2.5 Produce results for Task 2

As shown in Figure 6.3, both all detected break point candidates and de-
termined periods are inputted into this module. This module uses a same
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6.2 The workflow

Figure 6.7: A segmentation of detected break points candidates. Top figure:
pressure response. Middle figure: flow rate measurements. Bottom figure: first
order derivative of pressure response. The point in blue ellipse should be chosen
as start break point for a shut-in. The point in purple ellipse should be chosen as
start break point for a flowing period.

criterion to remove the minor transients as Task 1 except the value of the
tuning number α is different. The corresponding steps are listed as below.

1. For a certain flowing period, group all the break points that fall into
that period, see Figure 6.9.

2. For all transients in the group obtained from step 1, remove the minor
one, the same condition (see Equation 6.1) is used.

3. Repeat step 1 and step 2 for every flowing period.
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6.3 Discussion of experiment results

Figure 6.8: a), b), c): Three segmentations of pressure measurements with their
detected shut-in periods. Those in purple ellipses are minor transients which
should be removed.

6.3 Discussion of experiment results

6.3.1 Experiment results

We carried out a great number of experiments and listed some of the results
in Table 6.2.
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6.3 Discussion of experiment results

Figure 6.9: A example of a group of break points in a flowing period, annotated
by purple ellipses.

6.3.2 The performance of three methods for two tasks

In this section, we will discuss the experiments results both for Task 1 and
Task 2. It should be noted here that, when we discuss the results for Task
1, only shut-in periods are discussed in the following chapters. Since the
start point of a shut-in is the end point of a flowing period, the end point of
a shut-in is the start point of a flowing period. Once the shut-in periods are
detected, the flowing periods are detected as well. It is redundant work to
discuss all of them. Thus in Table 6.2 we only list the numbers of detected
shut-in periods, due to the limitation of space. And the detailed plots for the
best results of Task 1 and Task 2 are attached as Appendix C and Appendix
D respectively. It should be noted that both these two appendices are sliced
versions, the links for the full versions are provided in Appendix F.

Task 1 The number of manual interpreted shut-in periods is 30. However,
for real case data, sometimes it might be difficult to get rid of all false
detections.
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Table 6.2: The results of experiments

Methods User Input BreakPoints
Candidate Task 1 Task 2

PRα

Point
Window Learned Pattern BuildUp Draw-

Down

ShutIn
Thresh-

old

Filtered
ShutIns

Multi-rate
Threshold

Multi-
rate

Points

15 borderγ coefficients 578 185 0.02 31 0.03 119

DeltaFOD
Point

Window Tuning parameter BuildUp Draw-
Down

ShutIn
Thresh-

old

Filtered
ShutIns

Multi-rate
Threshold

Multi-
rate

Points

15 0.1 755 96 0.02 31δ 0.03 171

DeltaFOD
+
DeltaTanβ

Point
Window

Tuning
parame-

ter

Tangent
Thresh-

old
BuildUp Draw-

Down

ShutIn
Thresh-

old

Filtered
ShutIns

Multi-rate
Threshold

Multi-
rate

Points

15 0.1 20 327 69 0.02 31 0.03 117

DeltaTan

Point
Window

Polyno-
mial

Order

Tangent
Thresh-

old
BuildUp Draw-

Down

ShutIn
Thresh-

old

Filtered
ShutIns

Multi-rate
Threshold

Multi-
rate

Points

1 392 87 0.02 31 0.03 142ϵ

3
20

544 102 0.028 31 0.03 159

1 327 76 0.02 31 0.03 127

3
30

465 88 0.028 31 0.03 152

1
40

273 70 0.02 31 0.03 118

10

3 402 83 0.02 33 0.03 141
α PatternRecognition. β DeltaTangent. γ See Appendix A. δ Best result for Task 1, see Appendix C.
ϵ Best result for Task 2, see Appendix D.
Pink colored rows indicate successful detections of all shut-ins.

The results colored with pink(see Table 6.2) contain same 31 transients
although the positions of detected points might have tiny deviations from
those manual interpreted points. The overview plot is shown as Figure
6.10a). Comparing with the manual interpreted results, we would see that
the period annotated by purple ellipse is the one which is false detected, a
zoom-in plot is shown as Figure 6.10c).

However, we would like to argue that for real case data, this kind of false
detection sometimes is difficult to avoid. Green ellipse in Figure 6.10 anno-
tate a correctly detected period, a zoom-in plot is shown as Figure 6.10b).
Comparing b) and c), the standard deviation and decreased pressure mea-
sures of c) is even large than b), if we want to remove c), the correctly
detected period b) will be removed also. Thus, even through we detected
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6.3 Discussion of experiment results

one more period than the manual interpreted results, we still consider the
detection achieve a good performance.

The shut-ins in uncolored rows contain some false transients and miss some
true break points even though some of them still detect 31 shut-ins.

Figure 6.10: a) Overview plot of result for Task 1 ; b) Period correctly identified;
c) Period falsely identified.

Among these correct identifications, DeltaFOD ( purple cell in Table 6.2)
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6.3 Discussion of experiment results

has the best result, whose detected positions deviate least from the posi-
tions of manual interpreted break points. The position deviation will be
illustrated in details in Chapter 6.3.3.

Task 2 In this task, DeltaTangent(green cell in Table 6.2) performs the
best since its detected positions have least drift with an overall evaluation,
while DeltaFOD has worst performance.

6.3.3 The deviation of detected break point’s position

As we illustrated in last section, our detected positions of break points might
deviate a little bit from true break points.

Through analysing the whole detecting procedure, we conclude two possible
reasons for the position deviations.

The first reason is the average algorithm used in our methods and Clus-
ter representing sub-module of the workflow. The neighbour points will have
similar values as a consequence of the average algorithm. Thus we need to
elect only one representative between these neighbour points without taking
all of them as break points. Otherwise too many points will be detected at
almost the same position.

Cluster representing sub-module are designed to do this job. As we dis-
cussed in Chapter 6.2.3, we choose the first point of a cluster as the rep-
resentative. A large portion of true points could be selected in this way,
however there still exists some points that do not fall into this pattern.
When the first point of a cluster is not a true point, the deviation is derived
in this way.

The second reason is the Task 1 processing module. In this step, we
need to choose one draw-down point out of multiple draw-down points as a
start point of shut-in period. The deviation will be produced if we do not
select the correct one.
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Figure 6.11 shows five segmentations a) ∼ e), which are the pressure mea-
surements input of the Task 1 processing module. For each segmentation,
only one point should be seleted as the start point of a shut-in after pro-
cessed by Task 1 processing module. In segmentaion a), b), d), e), the first
point should be identified as start point of a shut-in, while in segmentation
c), it should be the third point. The left side of each segmentaion show
the pressure measurements plot. The right side shows the value of different
metrics for detected points.

We experiment with three criteria to choose the correct start points for
shut-in: i) Minimum Derivative, ii) Minimum Delta Tangent, iii) Minimum
of absolute value of Left Tangent, corresponding black i) ∼ iii) rectangles in
Figure 6.11.

In Figure 6.11, green rectangles represent the point that should be chosen.
The ellipses in yellow, purple and red color annotate the actual points se-
lected by three different criteria. If the ellipse overlaps the rectangle, then
it is a correct identification.

It could be seen from Figure 6.11, if we use the Minimum of absolute value of
Left Tangent(black rectangle i) as criterion, only segmentation e) is correctly
detected. If we use Minimum Delta Tangent(black rectangle ii), all segmen-
tations except d) are correctly detected. For Minimum Derivative(black
rectangle iii), all segmentations except e) are correctly detected. Thus, we
could draw an conclusion that: no matter which criterion we choose, the
deviation is inevitable.

Through a number of experiments with the whole real field data set, Mini-
mum Derivative shows itself as a best criterion.
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6.4 Discussion of methods

Figure 6.11: a) ∼ e): segmentations of draw-down points detected by the third
step of workflow. i) Use criterion Minimum of absolute value of Left Tangent ;
ii) Use criterion Minimum Delta Tangent ; iii) Use criterion Minimum Derivative.
Green rectangles represent the point that should be chosen. The ellipses in yellow,
purple and red color indicate that the actual points selected by corresponding
criterion. The overlap of rectangle and ellipse means a correct identification.

6.4 Discussion of methods

In this section, we will discuss the methods in the following five aspects.

• Algorithms

• Accuracy
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• Tolerance

• User input/parameters

• Model running time

6.4.1 Two underlying principles for transients identification’s
algorithms developed in this study

• To observe data points in windows

In this study, we experimented various algorithms. At first, only two
adjacent points are analysed, the experiment results deviated a great
deal from the manual interpreted break points. After that, we try to
analyze a certain point in a window. We observed that the identifica-
tion will be more accurate when both left window and right window
of a certain point are taken into consideration. A sudden jump of a
certain metrics (e.g. derivative, tangent, etc) between two adjacent
points may be caused by noise. The sudden jump of two windows will
be more reliable to indicate a real break point.

• To take the average of the windows

The average algorithm have a good performance to resist the changes
caused by noise. We have ever implemented two algorithms for tan-
gent methods, one is to use the left tangent and right tangent of a
certain point, the other is to use the average left tangent and av-
erage right tangent of a certain point. The former detected many
false points, thus was discarded. The latter achieve a good result, see
Algorithm 3.

The demerit is that the positions of the detected points might drift
from the manual interpreted break points. The reason is that the
neighbour points will have similar values as a consequence of the av-
erage algorithm, thus will be elected as break points. In the Clus-
ter representing sub-module of the workflow, one point out of these
neighbour points should be selected as a representative. The drifts
are derived if the selection is not correct.

For our testing data set, the detected positions of violet cell and green
cell(see Table 6.2) drift least from the manual interpreted break points,
thus be considered as the best results.
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In Table 6.2, we experiment with Point Window. The left n points
and right n points are extracted. However, for a severely uneven
distributed data set, it might be better to use Time Window : points
in left time interval and right time interval will be analysed. Both
point window and time window are implemented in our deployed web
app which will be introduced in Chapter 7.

6.4.2 Accuracy

With the 5-steps workflow, all the methods that we implemented detected
these 31 “shut-in”s with reasonable parameters and thresholds, and also
performed good for identifying the multi-rate transients.

For Task 1, DeltaFOD obtains the best result(violet cell in Table 6.2) :
the positions of the detected break points have smallest deviation from the
manual interpreted break points among these methods.

For Task 2, DeltaTangent obtains the best result(green cell in Table 6.2) :
detected most multi-rate transients in flowing periods among these methods.

The definition of “best result” are demonstrated in Chapter 6.4.1.

6.4.3 Tolerance

This 5-steps workflow tolerates the threshold setting, especially when they
are set at low level. The low threshold will increase the number of break
points candidate, however the minor transients will be removed by Task 1
and Task 2 modules. For instance, the DeltaFOD detected 755 buildUps,
Task 1 only selected 31 of them. Task 2 only selected roughly 1/5 of the
them.

Many trials and errors will be required to determine a proper threshold
when using the methods alone. Only a couple of times iterations needed
when using this workflow.

When using the PatternRecognition method, the learned pattern nor-
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mally have a significant influence to the detected results. With this 5-steps
workflow, the imperfect patterns still obtain relatively good results.

6.4.4 User input

Different methods require different user inputs. PatternRecognition re-
quires least user inputs. For a certain method, if we increase the number
of user inputs/criterion, we may get more precise results at the cost of re-
ducing the automation of the model and increase the complexity of the
implementation. Thus trade-offs should be made.

Among these user inputs, learned pattern, Point Window and Polynomial
Order are universal ones that the values normally do not need to be changed
for different data sets.

Point Window is 10 or 15 will not make big difference to the results for our
test data set. As a rule of thumb, when the size of point window decrease,
the sensitive to minor changes rise; when the size of point window increase,
the deviation of the position for the detected points from the manual points
rise, as well as the resistance to the noise.

Polynomial Order is user input for DeltaTangent, which defines the high-
est order for polynomial fitting, see Equation 4.1. In our user case, a rea-
sonable setting for Polynomial Order is an positive integer no larger than
3. Polynomial Order 1 is the same as the linear regression which has a
good resistance to the noise, while Polynomial Order 3 is more sensitive to
minor changes of the pressure measures, as well as the threshold. As shown
in the Table 6.2, for the same Tangent Threshold 30, Polynomial Order 1
still identified the correct shut-ins. We would recommend using Polynomial
Order 1 for most cases.

Tuning Parameter is used to define the threshold for DeltaFOD, the
smaller theshold indicates the more break points candidates detected.

Shut-in Threshold & Multi-rate Threshold are parameters used in all the
methods. The former is used to screen out the shut-ins. The latter is used
to remove minor transients in flowing period. The module could detect more
multi-rate breakpoints by reducing this threshold. A example is shown in
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Figure 6.12: Multi-rate Threshold=0.01, all blue lines will be detected. Multi-
rate Threshold=0.02, all blue lines except those in green ellipses will be detected.

Figure 6.12. When we set 0.01 and 0.02 as Multi-rate Threshold, the former
one will detect 4 more points than the latter.

6.4.5 Model running time

The algorithms that we use require the extractions of the pressure mea-
sures in the left window and right window, which is a good approach to
resist noise. The disadvantage is that the amount of computation has been
greatly increased. For instance, when Point Window is 10, the amount of
computation will be increased (10 + 10− 1) times.

PatternRecognition comsumes more time than other two methods, while
DeltaFOD consumes the least. The running time for DeltaTangent in-
creases when the Polynomial Order rises.

6.5 Discussion of patterns for break points

To design a good algorithm for our task, we need to have a good under-
standing about which kind of “patterns” represent a break point. Through
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Figure 6.13: A segmentation of testing data set with detected breakpoints.

errors and trials, we have more and more insights about these “patterns”,
thus enable us keep improving our algorithms and workflow. We feel it is
worthy to discuss them using an independent section.

It should be noted that the word “pattern” here does not have same meaning
with the word “pattern” in Chapter 5 about the method of PatternRecog-
nition, in which the “pattern” is similar to “shape”. The “pattern” here is
more similar to “feature”. The features discussed in this section could pro-
vide some hints for a feature-based machine learning methods which is not
able to be implemented in this study due to time limitation.

In this section, we try to use statistics approaches to reveal some “facts”
about the “patterns” of the true break points based on derivative and tan-
gent. The value of tangent and derivative in this section are based on our
real field testing data. The tangent calculation use Polynomial Order 1 and
Point Window 10.

6.5.1 Pattern for first order derivative

Hints from derivative plot

By observing the derivative plot, we could get some hints about the deriva-
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tive patterns. As shown in Figure 6.13, the pattern for build-up break points
is different from for draw-down break points.

For draw-down, the pattern is more similar to synthetic data. It is fairly
likely that a narrow sharp peak indicate the beginning for a draw-down
transient (see yellow lines in Figure 6.13), although exceptions still exist.
Among 30 manual interpreted start points for shut-in periods, 23 points have
minimum negative first order derivative comparing with their neighbour
points.

For build-up, it becomes more complex. A cluster of points with relatively
large positive first order derivative shows the start of build-up transient.
The build-up break point usually locates at the first position of this clus-
ter(see purple rectangles in Figure 6.13). It is not necessarily true that the
first order derivative of the first point is the maximum one in this clus-
ter. For start points of flowing periods (build-up transients), it is normal
to have a smaller positive first order derivative values than their following
neighbour points. Among 30 manual points, only 5 points have a larger
first order derivatives comparing with their neighbour points.

Hints from statistics plots of manual interpreted points

The statistics for first order derivative values of the manual interpreted
points could give us a quantitative view about the characteristics demon-
strated above. Shown as the third row of figure 6.14, we could see first order
derivatives of start points for flowing periods are more concentrated, most
points are in the range of (-50,75), first order derivatives of start points for
shut-in periods are roughly distributed over range (-900,-50).

Comparing two figures in the third row, we could conclude that: i) most
of the absolute values of first order derivative for start points of flowing
are much smaller than them of shut-in; ii) the distribution for the values
of first order derivative for start points of flowings are much concentrated
than them of shut-ins.

Combing these knowledge with the statistics of the whole data set (see
Figure 6.15), we conclude that 40% of negative first order derivative values
could be safely dropped while most of positive first order derivative values
have to been retained during the coarse filtering step of the workflow. Thus
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the percentile range for the coarse filtering are set to be (10,50) in Chapter
6.2.2.

6.5.2 Pattern for tangent

From the histogram of left tangent and delta tangent, as shown in the first
and second row of Figure 6.14, we observe similar distribution pattern as
derivative. The distribution of the left tangent values and delta tangent
values for start points of flowing periods are more concentrated than them
of shut-in periods.

Start points of flowing periods.

• For delta tangent, approximately 90% points are in the range of (0,70).

• For left tangent, approximately 90% points are in the range of (-20,50).

Start points of shut-in periods.

• For delta tangent, as shown in first row, the values are distributed
over a wide range (-700,200), approximately 75% points are in the
range of (-250,0).

• For left tangent, half of the points are in the range (-50,0). Never-
theless, quite some points have relatively large absolute left tangent
values. It proves the conclusion that we draw in Chapter 6.3.3, when
choosing the criterion for selecting start points of shut-in periods,
Minimum of absolute value of Left Tangent has worst performance
among three criteria, since the manual interpreted points often have
large absolute value of Left Tangent.
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Figure 6.14: The histogram of delta tangent, left tangent, first order derivatives
for start points of flowing periods & shut-in periods.
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Figure 6.15: The statistics of first order derivatives, left tangent, right tangent,
delta tangent based on whole data set.

6.5.3 Summarization

The discussion about patterns of derivative and tangent could lead to the
following conclusions.

1. The distribution of these three metrics(delta tangent, left tangent,
derivative) for start points of flowing periods are different from them
of shut-in periods.

According to this conclusion, two different separating thresholds should
be applied to flowing and shut-in periods for a better detection. How-
ever to reduce the number of input parameters, we only use single
threshold for both two periods, as we did in DeltaTangent method.
This leads to a large number of detected break points candidate. A
selection step will be required further to deal with these candidates,
thus initiating us to design the forth and fifth step of the work flow.

2. A combination of different metrics is a must to identify start points
for two periods.

Take delta tangent for example, as shown in 6.14, the values of delta
tangent for start points of shut-in periods are distributed in a rela-
tively wide range which is approximately (-700,200). And if we com-
bine the knowledge of delta tangent statistics of the whole data set,
we could see there are a great number of points have delta tangent in
this range. Thus, another metric will be needed to pick up the true
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points from the candidates produced by DeltaTangent method. As
we did in the forth step of workflow, we use the maximum derivative
to choose the start points for shut-in.

These insight to the metrics(derivative & tangent) patterns really helps
when we design our algorithm, workflow, as well as choosing the parameters
and thresholds.

65



Chapter 7

Model deployment

7.1 Web App scheme

For our web app, our initial scheme is to use Python Flask (back-end),
Javascript (front-end) and Rest API. However we finally gave up this scheme
and turn to a python library Streamlit1.

Streamlit is an open-source app framework that could easily turn data
scripts into web apps. Streamlit makes life much easier and is much more
light weighted than a typical web app solution. All scripts are in Python.
It is extremely suitable for web app in machine learning and data science.

The app was deployed in Streamlit Cloud and can be visited here2.

The scripts were pushed to a GitHub repository3.
1https://streamlit.io/
2https://share.streamlit.io/juneciel510/transient_identification/main/app.py
3https://github.com/juneciel510/transient_identification
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7.2 User interface

Figure 7.1: User interface: introduction.

7.2 User interface

The user interface use one-page frame consisting of four parts: i)intro, ii)
data upload & preview, iii) select method and parameters, iv) results.

7.2.1 Intro

This part briefly introduces the web app and the outcomes that will be
produced, see Figure 7.1.

7.2.2 Upload & preview

Sample pressure file and rate file are provided to show the format for the
files to be uploaded, see red arrows in Figure 7.2. The head of the uploaded
files can be previewed in the preview field, see red rectangle in Figure 7.3.

7.2.3 Select method & parameters

The users can experiment with different methods and adjust the param-
eters according to their data sets. The parameter field (see rectangle in
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Figure 7.2: User interface: Upload & Preview. Red arrows: sample files show
the format for uploaded files.

Figure 7.3: User interface: Upload & Preview. Red rectangle: preview field
shows the head of the uploaded file.
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Figure 7.4: User interface: Select method & Parameters. Red rectangle: param-
eter field will vary corresponding to different methods.

Figure 7.4) will vary according to different methods. The learned patterns
for PatternRecognition method are embedded in web app and are used
for predictions. The window can switch between point window and time
window. The corresponding fields will change according to users’ choices.

7.2.4 Show results

This web app generates two types of results and could be downloaded by
clicking the downloading button, see Figure 7.5.

1. The parameters chosen by user and detected points indices for Task
1 and Task 2 could be downloaded as csv, txt and json files. A json
example is Appendix E.

Line 2 ∼ 8 corresponds to the chosen method and parameters.
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Figure 7.5: User interface: results.

Line 9 ∼ 10 shows the number of detected shut-in Periods and flowing
periods respectively.

Line 11 ∼ 12 shows the number of all detected build-up break points
and draw-down break points.

Line 13 ∼ 45 specifies the start point and end point for every shut-in
period.

Line 46 ∼ 197 specifies the start point and end point for every flowing
period and all the build-up points included in corresponding period.

2. The visualizations for Task 1 and Task 2 are saved as PDF files for
downloading. The whole data set is plotted in one row in Overview
Plot. The whole data set are divided into multiple rows to show details
of the testing data set in Zoom-in Plot. The number of rows could be
specified by user with the inputted parameter: The number of rows
for a detail plot. Examples for Zoom-in Plot of Task 1 and Task 2
are Appendix C and Appendix D respectively.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The novelty of this study lies in its newly developed methodologies for
transient identification and a 5-steps workflow. And a web app is also
deployed to integrate all these methods and workflow.

Three methods In this study, we developed three methods based on
derivative, tangent and pattern recognition, named as DeltaFOD, DeltaTan-
gent and PatternRecognition. Two new algorithms were designed: DeltaFOD
(Algorithm 2) and DeltaTangent(Algorithm 3). For PatternRecognition,
a new learning process to learn patterns was suggested. The conclusions
drawn from these 3 methods are listed below:

1. The study brings an new idea of the transient identification method-
ology, which is taking average of a certain metric (tangent, derivative,
etc) of a window. This methodology is effective for a noisy data set.

2. The average algorithm sometimes will cause small position deviation
of the detected position when comparing with the ground truth. How-
ever the results are still satisfactory.
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3. For a severely uneven-distributed data set, it would recommend to use
a time window rather than a point window. Both of these two ways
are implemented in web app.

A five-step workflow In this study, we consider the transient identifi-
cation problem as two-stage pipeline of sequence identification tasks: i) to
split the data set into shut-in and flowing periods; ii) to detect multi-rate
break points in flowing periods.

To address this problem, a new workflow was designed. It consists of 5
steps: i) Denoising; ii) Coarse Filtering; iii) Methods pipeline & Cluster
representing; iv) Task 1 processing; v) Task 2 processing. The three meth-
ods(DeltaFOD, DeltaTangent and PatternRecognition) will be em-
bedded in methods pipeline sub-module individually or in a combination.
The conclusions drawn from this 5-steps workflow are listed below:

1. This 5-steps workflow achieves a satisfactory results for the two-stages
transients identification task.

2. All the methods have a good performance in Task 1. Nevertheless,
DeltaFOD obtains best result for Task 1. DeltaTangent performs
the best for Task 2.

3. This workflow has a good tolerance to the noise and parameters set-
ting.

4. More multi-rate break points could be identified by decreasing the
multi-rate threshold.

User-friendly web app We use the Streamlit library to build a web app
to integrate the three methods and the workflow that we designed. The web
app is easy to use, and provides the downloading for the detection results.

8.2 Future work

1. Experiment with different denoising techniques discussed in this study(e.g.
Moving average, Hampel filter, etc), to see if a better performance will
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8.2 Future work

be achieved.

2. Experiment with more possible combinations of our designed methods.

3. To improve the learned patterns for PatternRecognition method.

4. To optimize the scripts to decrease the model running time.

5. To develop an un-supervised machine learning approach for the tran-
sients identfication tasks.

6. To test the designed methods and workflow when more data sets are
available.
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Appendix A

The learned patterns
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build-up pattern 

 

 

 

draw-down pattern 

 

 

Note:  

The green curves indicate the learned patters. 

The orange curves indicate the learning process. 



Appendix B

The manual interpreted result
of Task 1 (sliced version)
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Appendix C

The best result of Task 1
(sliced version)
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Appendix D

The best result of Task 2
(sliced version)

95



400 420 440 460 480 500 520
Time (hr)

3800

4000

4200

4400

4600

4800

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

400 420 440 460 480 500 520
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

400 420 440 460 480 500 520
Time (hr)

600

400

200

0

200

400

600

Fi
rs

t_
or

de
r_

de
riv

at
iv

e

buildUp
drawDown

400 420 440 460 480 500 520
Time (hr)

100000

50000

0

50000

100000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 3

The best result of Task 2 (sliced version)

96



700 750 800 850 900
Time (hr)

4800

5000

5200

5400

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

700 750 800 850 900
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

700 750 800 850 900
Time (hr)

400

200

0

200

400

600

Fi
rs

t_
or

de
r_

de
riv

at
iv

e

buildUp
drawDown

700 750 800 850 900
Time (hr)

100000

50000

0

50000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 5

The best result of Task 2 (sliced version)

97



1200 1220 1240 1260 1280
Time (hr)

4600

4800

5000

5200

5400

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

1200 1220 1240 1260 1280
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

1200 1220 1240 1260 1280
Time (hr)

600

400

200

0

200

400

600

Fi
rs

t_
or

de
r_

de
riv

at
iv

e

buildUp
drawDown

1200 1220 1240 1260 1280
Time (hr)

100000

50000

0

50000

100000

150000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 7

The best result of Task 2 (sliced version)

98



1420 1430 1440 1450 1460 1470 1480 1490
Time (hr)

4400

4600

4800

5000

5200

5400

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

1420 1430 1440 1450 1460 1470 1480 1490
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

1420 1430 1440 1450 1460 1470 1480 1490
Time (hr)

600

400

200

0

200

400

600

Fi
rs

t_
or

de
r_

de
riv

at
iv

e buildUp
drawDown

1420 1430 1440 1450 1460 1470 1480 1490
Time (hr)

150000

100000

50000

0

50000

100000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 9

The best result of Task 2 (sliced version)

99



2400 2420 2440 2460 2480 2500 2520
Time (hr)

6200

6400

6600

6800

7000

7200

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

2400 2420 2440 2460 2480 2500 2520
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

2400 2420 2440 2460 2480 2500 2520
Time (hr)

1000

500

0

500

1000

Fi
rs

t_
or

de
r_

de
riv

at
iv

e

buildUp
drawDown

2400 2420 2440 2460 2480 2500 2520
Time (hr)

100000

50000

0

50000

100000

150000

200000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 17

The best result of Task 2 (sliced version)

100



3350 3400 3450 3500 3550 3600 3650 3700
Time (hr)

7200

7400

7600

7800

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

3350 3400 3450 3500 3550 3600 3650 3700
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

3350 3400 3450 3500 3550 3600 3650 3700
Time (hr)

1000

500

0

500

1000

Fi
rs

t_
or

de
r_

de
riv

at
iv

e buildUp
drawDown

3350 3400 3450 3500 3550 3600 3650 3700
Time (hr)

100000

0

100000

200000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 23

The best result of Task 2 (sliced version)

101



3720 3740 3760 3780 3800 3820 3840 3860
Time (hr)

7300

7400

7500

7600

7700

7800

Pr
es

su
re

 (p
sia

)

buildUp
drawDown

3720 3740 3760 3780 3800 3820 3840 3860
Time (hr)

20000

15000

10000

5000

0

Liq
ui

d 
ra

te
 (S

TB
/D

)

buildUp
drawDown

3720 3740 3760 3780 3800 3820 3840 3860
Time (hr)

750

500

250

0

250

500

750

Fi
rs

t_
or

de
r_

de
riv

at
iv

e

buildUp
drawDown

3720 3740 3760 3780 3800 3820 3840 3860
Time (hr)

150000

100000

50000

0

50000

100000

150000

Se
co

nd
_o

rd
er

_d
er

iv
at

iv
e

buildUp
drawDown

Order_1_TanThre_20_shutTr_0.02_flowTr_0.03--Row 24

The best result of Task 2 (sliced version)

102



Appendix E

A example of json file for the
parameters and detected
points indices

1 {
2 "Methods": "DeltaTangent",
3 "Denoise": "Yes",
4 "Point Window": 10,
5 "Polynomial Order": 1,
6 "DeltaTangent Threshold": 20.0,
7 "Minor Shut-in Threshold": 0.02,
8 "Minor Flowing Threshold": 0.02,
9 "Number of Shut-in": 31,

10 "Number of Flowing": 32,
11 "Number of All Build-up Points": 191,
12 "Number of All Draw-down Points": 31,
13 "Shut-in Periods": [
14 [2248, 2477],
15 [2804, 2891],
16 [3095, 3594],
17 [4009, 4228],
18 [4750, 4899],
19 [5304, 5445],
20 [5985, 6543],
21 [7284, 7551],
22 [8003, 8368],
23 [9024, 9606],
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A example of json file for the parameters and detected points
indices

24 [10149, 10224],
25 [10527, 10800],
26 [11340, 11480],
27 [12362, 13038],
28 [13909, 14089],
29 [14477, 14575],
30 [14774, 15345],
31 [16096, 16583],
32 [17589, 18433],
33 [19642, 19761],
34 [20035, 20344],
35 [20700, 21034],
36 [21974, 22189],
37 [22728, 23230],
38 [24215, 24679],
39 [25750, 26000],
40 [26708, 26767],
41 [27043, 27324],
42 [27799, 27969],
43 [28290, 28493],
44 [28876, 29112]
45 ],
46 "Flowing Period & Breakpoints in Flowing": [
47 {
48 "Flowing Period": [0, 2248],
49 "Breakpoints in Flowing Period": [
50 55, 434, 604, 820, 1033, 1358, 1811, 2111
51 ]
52 },
53 {
54 "Flowing Period": [2477, 2804],
55 "Breakpoints in Flowing Period": [2539, 2601, 2658]
56 },
57 {
58 "Flowing Period": [2891, 3095],
59 "Breakpoints in Flowing Period": [2950, 3022]
60 },
61 {
62 "Flowing Period": [3594, 4009],
63 "Breakpoints in Flowing Period": [3646, 3689, 3901]
64 },
65 {
66 "Flowing Period": [4228, 4750],
67 "Breakpoints in Flowing Period": [4305, 4392, 4491]
68 },
69 { "Flowing Period": [4899, 5304], "Breakpoints in ...

Flowing Period": [4981] },
70 {
71 "Flowing Period": [5445, 5985],
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A example of json file for the parameters and detected points
indices

72 "Breakpoints in Flowing Period": [5498, 5555, 5833, ...
5943]

73 },
74 {
75 "Flowing Period": [6543, 7284],
76 "Breakpoints in Flowing Period": [6771, 6865, 7038, ...

7137]
77 },
78 {
79 "Flowing Period": [7551, 8003],
80 "Breakpoints in Flowing Period": [7621, 7682, 7773, ...

7845]
81 },
82 {
83 "Flowing Period": [8368, 9024],
84 "Breakpoints in Flowing Period": [8426, 8599, 8660, ...

8774, 8867]
85 },
86 {
87 "Flowing Period": [9606, 10149],
88 "Breakpoints in Flowing Period": [9663, 9709, 10064]
89 },
90 {
91 "Flowing Period": [10224, 10527],
92 "Breakpoints in Flowing Period": [10330, 10464]
93 },
94 {
95 "Flowing Period": [10800, 11340],
96 "Breakpoints in Flowing Period": [10870, 10946, ...

10998, 11081]
97 },
98 {
99 "Flowing Period": [11480, 12362],

100 "Breakpoints in Flowing Period": [11589, 11668, ...
11744, 12240]

101 },
102 {
103 "Flowing Period": [13038, 13909],
104 "Breakpoints in Flowing Period": [
105 13100, 13147, 13190, 13268, 13331, 13395, 13526, ...

13600, 13666, 13774
106 ]
107 },
108 {
109 "Flowing Period": [14089, 14477],
110 "Breakpoints in Flowing Period": [14143, 14184, 14236]
111 },
112 {
113 "Flowing Period": [14575, 14774],
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A example of json file for the parameters and detected points
indices

114 "Breakpoints in Flowing Period": [14662]
115 },
116 {
117 "Flowing Period": [15345, 16096],
118 "Breakpoints in Flowing Period": [
119 15401, 15460, 15573, 15738, 15865, 15938, 16007
120 ]
121 },
122 {
123 "Flowing Period": [16583, 17589],
124 "Breakpoints in Flowing Period": [
125 16638, 16697, 16750, 16804, 16901, 17063, 17127, ...

17244, 17341, 17462
126 ]
127 },
128 {
129 "Flowing Period": [18433, 19642],
130 "Breakpoints in Flowing Period": [
131 18480, 18523, 18588, 18642, 18715, 18775, 18809, ...

18858, 18892, 18944,
132 19028, 19071, 19147, 19204, 19457, 19556
133 ]
134 },
135 {
136 "Flowing Period": [19761, 20035],
137 "Breakpoints in Flowing Period": [19854, 19904]
138 },
139 {
140 "Flowing Period": [20344, 20700],
141 "Breakpoints in Flowing Period": [20410, 20457, 20524]
142 },
143 {
144 "Flowing Period": [21034, 21974],
145 "Breakpoints in Flowing Period": [
146 21085, 21114, 21171, 21213, 21420, 21513, 21649
147 ]
148 },
149 {
150 "Flowing Period": [22189, 22728],
151 "Breakpoints in Flowing Period": [
152 22273, 22329, 22406, 22488, 22555, 22620
153 ]
154 },
155 {
156 "Flowing Period": [23230, 24215],
157 "Breakpoints in Flowing Period": [
158 23283, 23312, 23354, 23393, 23564, 23638, 23771, ...

23923, 23979, 24068,
159 24161

106



A example of json file for the parameters and detected points
indices

160 ]
161 },
162 {
163 "Flowing Period": [24679, 25750],
164 "Breakpoints in Flowing Period": [
165 24754, 24792, 24872, 24956, 25099, 25196, 25272, 25342
166 ]
167 },
168 {
169 "Flowing Period": [26000, 26708],
170 "Breakpoints in Flowing Period": [
171 26052, 26078, 26121, 26177, 26289, 26540
172 ]
173 },
174 {
175 "Flowing Period": [26767, 27043],
176 "Breakpoints in Flowing Period": [26810, 26834, 26921]
177 },
178 {
179 "Flowing Period": [27324, 27799],
180 "Breakpoints in Flowing Period": [27376, 27414, ...

27462, 27546]
181 },
182 {
183 "Flowing Period": [27969, 28290],
184 "Breakpoints in Flowing Period": [28033, 28073, ...

28138, 28227]
185 },
186 {
187 "Flowing Period": [28493, 28876],
188 "Breakpoints in Flowing Period": [28594, 28653, 28784]
189 },
190 {
191 "Flowing Period": [29112, 29784],
192 "Breakpoints in Flowing Period": [
193 29162, 29222, 29299, 29364, 29477, 29715
194 ]
195 }
196 ]
197 }
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Appendix F

The links for the outcomes
produced but not included in
this thesis

The deployed app: click here.

The GitHub repository of the scripts: click here.

Full version of manual interpreted result of Task 1: click here.

Full version of best result of Task 1: click here.

Full version of best result of Task 2: click here.
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https://share.streamlit.io/juneciel510/transient_identification/main/app.py
https://github.com/juneciel510/transient_identification
https://github.com/juneciel510/transient_identification/blob/main/Full_version__groundTruth_Anton_task1_details.pdf
https://github.com/juneciel510/transient_identification/blob/main/Full_version__Task1_deltaAvgFOD_0.1_shutTr_0.02_flowTr_0.03_details.pdf
https://github.com/juneciel510/transient_identification/blob/main/Full_version__Task2_Order_1_TanThre_20_shutTr_0.02_flowTr_0.03_details.pdf
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