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Abstract 

The purpose of the thesis was to examine if the material properties and/or the morphology of a 

martensitic ferritic stainless steel were altered if exposed to varying soaking times at two distinct 

hardening temperatures. The background for the thesis was the need to analyze and verify the 

optimality of the hardening processes currently performed at NOMAC – Norwegian Material Center 

of Expertise AS. The analyzed steel was hot-forged S165M (W. nr. 1.4418, X4CrNiMo 16-5-1). The two 

hardening temperatures were 1000 °C and 1030 °C. The soaking times analyzed were 1, 2, 5, 10 and 

20 hours, for both temperatures. Both as-quenched and tempered samples were examined. 

 

Standardized mechanical testing was performed, and included tensile stress testing, hardness Vickers 

testing and Charpy-V impact testing. The mechanical properties remained statistically consistent. 

Neither the as-quenched nor the tempered samples showed any indication that the soaking times 

directly altered said properties. The two different temperatures produced statistically equivalent 

results. The majority of the observed differences in properties between as-quenched and tempered 

samples were as expected. The gathered impact energy values did not differentiate between as-

quenched/tempered samples, leading to a debate regarding their validity. The general conclusion is 

that the mechanical properties are not correlated with longer/shorter soaking times. 

 

The material morphology was analyzed using optical light microscopy, and SEM (including EDS and 

EBSD analysis). The use of different temperatures had little to no effect on the final microstructure. 

Morphologically, the material experienced substantial changes when exposed to longer soaking 

times. Longer soaking times introduced the growth of the average martensitic (i.e. prior austenitic) 

grain diameters, where the growth exceeded 80 % after a soaking time of 20 hours. The longer 

soaking times also caused a reduced ferrite fraction for samples hardened at 1000 °C (the fraction of 

ferrite was 0.19 in sample soaked for 1 hour, 0.11 in samples soaked for 20 hours). This caused a 

subsequent increase in the martensite fraction. The general ferritic grain shapes were also affected 

with longer soaking times, transforming from lacy/vermicular grain shapes into globular grains. With 

regards to material properties, several of these changes counteract each other. It is therefore 

believed that the combination of the martensitic grain growth and the reduction of ferrite content 

yields approximately constant mechanical properties. How these morphological changes alter the 

mechanical properties when occurring individually is not examined. 

 

The results of the thesis indicate that S165M is a remarkably resistant alloy, producing consistent 

qualities regardless of the soaking time and/or the hardening temperature. 
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1. Introduction 
 

Norwegian Material Center of Expertise AS (NOMAC), formerly known as Scana Steel Stavanger AS, is 

a steel mill focusing on high alloyed forgings as well as low- and high-alloyed castings. The plant is 

located in Jørpeland, and has been an integral part of the community for over 100 years. High 

demands are set in terms of production execution, product documentation and quality. 

 

S165M (W. nr. 1.4418, X4CrNiMo 16-5-1) is one of the stainless steel alloys produced at NOMAC. It is 

a martensitic ferritic stainless steel, with excellent mechanical properties. Due to the high material 

strength and toughness, it is often used for the manufacturing of propellers, bolts and shafts. The 

steel displays excellent qualities and properties even at low temperatures. The weldability is good, 

due to the low carbon content. 

 

The alloy is – due to its martensitic structure – hardened and tempered before being manufactured 

into products or components. S165M is normally soaked at its hardening temperature (i.e. 1000 °C) 

for 1 hour, once a stable core temperature is reached. For NOMAC, this duration is not always the 

most feasible alternative due to logistics, and the alloy is therefore often hardened for longer 

durations. In addition, the choice of 1000 °C as the standard hardening temperature is based on 

empirical data. Its validity as the optimal hardening temperature has been brought into question.  

 

NOMAC wished to examine if the alloy is subject to mechanical and morphological changes if the 

soaking time at two hardening temperatures varied from the normally used 1 hour at 1000 °C. The 

different soaking times examined in this thesis were 1, 2, 5, 10 and 20 hours. The hardening 

temperatures examined were 1000 °C and 1030 °C. Thus, the thesis question is summarized as: 

 

 

How does a variation in soaking time at two different hardening temperatures affect the 

mechanical properties and morphology for the martensitic, ferritic stainless steel S165M? 

 

 

The thesis is clearly structured. There are separate sections for relevant theory, experimental 

methods, results, relevant discussion and conclusion. Sub-sections are applied where a more detailed 

description is necessary to fully enlighten the subject at hand.  
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2. Background theory 
 

2.1 Characteristics of common stainless steels 

 

Stainless steels have a wide array of applicable uses, from kitchenware such as knives, to structural 

components in corrosive environments. What separates stainless steels from common carbon steels 

is the formation of a chromium oxide layer on the material surface. This chromium oxide layer is a 

result of the chromium content in the alloy, which needs to be equal to or above 10.5 wt% in order 

to classify the steel as stainless (Callister & Rethwisch, 2011). The oxide layer is self-repairing, and 

prevents diffusion of oxygen to the surface of the steel – thus protecting from corrosion. 

 

However, stainless steels are not resistant to all forms of corrosion in all environments. The corrosion 

resistance of stainless steel will not be reduced if the material is subject to damage, deflection or 

deformation. The diffusion of oxygen is reduced even during high degrees of plastic deformation. 

However, the chromium oxide layer does not alter the diffusion rate of chloride ions. Thus, stainless 

steels are susceptible to corrosion in chloride-rich environments (Bhadeshia & Honeycombe, 2006). 

 

Examples of stainless steels include (but is not limited to) martensitic stainless steels, ferritic stainless 

steels, austenitic stainless steels and steels with a duplex structure (i.e. austenite and ferrite). Table 

2.1 illustrates the common alloy element concentration intervals for typical stainless steel allotropes 

(in wt%). Combinations of these allotropes can be achieved by altering the chemical composition. 

 

Table 2.1 – Concentration of alloy elements in common stainless steel allotropes 

(Davis, J. R.; A.I.H. Committee, 1994) 

 

Alloy type C Mn Si P Cr Ni Mo Others 

Martensitic 0.10 - 1.10 1.0 – 1.25 0.50 – 1.00 0.04 – 0.06 11.0 – 18.0 0.00 – 2.50 0.00 – 0.75 
Cu, N, 

S, V 

Austenitic 0.03 – 0.15 2.0 – 19.0 1.00 – 4.50 0.06 – 0.20 16.0 – 21.0 3.50 – 38.0 0.00 – 4.00 
Cu, N, 

Nb, S, Ti 

Ferritic 0.08 – 0.20 1.00 – 2.50 1.00 0.04 – 0.06 10.5 – 27.0 0.00 – 1.00 0.00 – 2.50 Cu, N 

Duplex 0.03 – 0.20 1.00 – 2.00 0.60 – 1.00 0.03 – 0.04 21.0 – 29.0 4.50 – 6.50 1.00 – 4.00 
Al, B, Cu, 

N, V, W 
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2.2 Phase-estimations in S165M during and after solidification 

 

The certificate for charge A19606 specifies the chemical composition of the delivered material (see 

Appendix B). The measured composition, along with the minimum and maximum allowable values, is 

presented in Table 2.2 below. The alloy element limits are found in the datasheet (see Appendix A). 

All values are in wt%. 

 

Table 2.2 – Alloying limits of S165M and true chemical composition of charge A19606 

 

 Alloy element 

 C Si Mn S P Cr Ni Mo N 

Min. allowable value - - - - - 15.00 4.50 0.80 0.020 

True composition 0.037 0.40 0.60 0.0001 0.024 16.11 4.94 0.97 0.033 

Max. allowable value 0.050 1.00 1.50 0.025 0.035 17.00 6.00 1.50 - 

 

 

2.2.1 Schaeffler-diagram 

 

In order to estimate the phases present in a steel alloy, one can utilize a Schaeffler-diagram. Such a 

diagram utilizes the concentration of alloy elements in order to estimate the phases present in the 

material. The Schaeffler-diagram was originally developed in order to analyze welds and weld beads. 

Therefore, the diagram attempts to describe the microstructure after melting and rapid cooling, i.e. 

equivalent to hardening and quenching (Callister & Rethwisch, 2011). 

By using a standardized set of equations, one calculates the coordinates of the material in the 

corresponding diagram. These coordinates are referred to as nickel- and chrome-equivalents (Nieq 

and Creq), respectively (Callister & Rethwisch, 2011): 

 

 𝑁𝑖𝑒𝑞 = 𝑁𝑖 + 30 ∙ 𝐶 + 0.5 ∙ 𝑀𝑛 

 𝐶𝑟𝑒𝑞 = 𝐶𝑟 + 𝑀𝑜 + 1.5 ∙ 𝑆𝑖 + 0.5 ∙ 𝑁𝑏 

(1) NiEq 

(2) CrEq

 

By utilizing the chemical composition presented of charge A19606 of S165M in Table 2.2, the 

coordinates can be calculated. From there, the diagram illustrates an estimate of the present phases. 
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Thus, using formulas (1) and (2) 

 

𝑁𝑖𝑒𝑞 = 4.94 + 30 ∙ 0.037 + 0.5 ∙ 0.60 = 𝟔. 𝟑𝟓 

𝐶𝑟𝑒𝑞 = 16.11 + 0.97 + 1.5 ∙ 0.40 + 0.5 ∙ 0 = 𝟏𝟕. 𝟔𝟖 

 

When plotted in a Schaeffler-diagram, you obtain results as shown in Figure 2.1 below. 

 

 

Figure 2.1 – Schaeffler diagram, with estimation of final microstructure (center of red circle) (Davis, J. R.; 

A.I.H. Committee, 1994) 

 

From Figure 2.1, one can see that charge A19606 of S165M – given the chemical composition from 

the certificate – is estimated to be located in the austenitic + martensitic + ferritic region, with 

approximately 20 % ferrite. The austenite present in as-quenched samples is suspected to be 

retained austenite. The austenite in tempered steel is suspected to be primarily reversed austenite. 

This is due to the hardenability of the material, and theory describing the formation of reversed 

austenite during tempering of martensitic steels (Song, Rong, & Li, 2011). The presence and 

morphology of austenite in this material will be further analyzed through the use of EBSD, the 

principles of which are described in more detail in section 2.6.2. 
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2.2.2 Thermo-Calc computations (phase diagram and Scheil-Gulliver solidification simulation) 

 

Using software such as Thermo-Calc, one can calculate estimations of phase diagrams using 

computational thermodynamics and diffusion-controlled simulations. As always, when evaluating 

phase diagrams, it is important to note that the diagrams are based on equilibrium reactions – i.e. 

extremely slow heating and/or cooling reactions. Since such reactions rarely occur in practice, one 

can never make draw definite conclusions of a material structure based on phase diagrams alone. 

 

Figure 2.2 shows an excerpt of a phase diagram, calculated at NOMAC using Thermo-Calc. The basis 

for the calculation was the given chemical composition of charge A19606. In equilibrium, S165M is 

fully in its liquid phase when exposed to temperatures above  ̴ 1480 °C. Once solidification begins, 

the BCC-structured phase δ-ferrite starts to form. At approximately 1400 °C, the structure is fully 

ferritic. This structure is maintained until 1350 °C, where the material experiences a transformation 

into austenite at the expense of the ferritic phase. At approximately 1100 °C, the structure is fully 

austenitic, and remains as such until re-ferritization at   ̴ 775 °C. The pink line in the diagram is 

related to M23C6 carbides. However, these are not believed to actually form until very high soaking 

times are used. 

 

 

Figure 2.2 – Phase diagram, calculated using Thermo-Calc software (NOMAC v/ Håkon Jørgensen, 2015) 
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Phase diagrams are accurate at predicting microstructure if the cooling rate is low enough to 

maintain the principle of equilibrium, i.e. ensuring a slow cooling to enable all diffusion and 

transformation processes to complete fully. In practice, however, equilibrium is rarely maintained. 

The field of solidification is vast and complex, and includes several different mathematical and 

metallurgical models and hypotheses. These are not covered in detail in this thesis, with the 

exclusion of the Scheil diagram. When a material experiences a transition from liquid to solid states, 

the morphology that forms the basis for the material is established. One can use the Scheil-Gulliver 

equation (or Scheil equation) in order to describe the solute redistribution during the solidification of 

an alloy (Porter & Easterling, 1992). The resulting Scheil diagram takes many factors into account – 

incl. diffusion and segregation processes – and visually indicates the resulting microstructure that is 

formed when crossing from a fully liquid to a fully solid state (Scheil, 1942). The diagram is more 

reliable than a phase diagram. Figure 2.3 shows the Scheil-diagram for S165M, computed by NOMAC. 

 

 

Figure 2.3 – Scheil diagram of S165M solidification (NOMAC, 2015) 

 

The software yields equal diagram with or without diffusion in the solid phase. The Scheil diagram 

illustrates that the first 0.9 mass fraction of formed solid is pure δ-ferrite. The final 0.1 mass fraction 

before full solidification is a mix of δ-ferrite and austenite. The usual microstructure of S165M 

contains substantially smaller ferrite fractions. It is therefore believed that the solid phase cooling 

time is sufficient to establish quasi-equilibrium, thus transforming the solidified ferrite into austenite. 

Once cooled even further, below MS, the austenite transforms into martensite. The resulting final 

microstructure is primarily martensitic, with varying levels of δ-ferrite.  
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2.2.3 Ferrite (α-iron) 

 

Ferrite is an allotrope of iron, with a BCC (Body Centered Cubic) lattice structure. See Figure 2.4 for 

an illustration of a BCC unit cell. The presence of this crystalline structure is what yields the magnetic 

properties found in steels and cast iron. It is thus a classic example of a ferromagnetic material. 

 

 

Figure 2.4 – BCC (Body Centered Cubic) unit cell (Callister & Rethwisch, 2011) 

 

All Fe-C alloys will contain some amount of ferrite, given that the material is allowed to stabilize at 

room-temperature. In the pure Fe-C alloy, ferrite is a stable phase below 910 °C. Above this 

temperature, a different iron allotrope – austenite, see section 2.2.4 – is stable. For alloys with a 

carbon content of 0.68 wt% and below, one can in theory differentiate between α-iron and β-iron at 

the Curie temperature of 771 °C, where β-iron exists between the Curie temperature and 910 °C. 

Although α- and β-iron theoretically are distinct phases, the term β-iron is seldom used, due to their 

identical crystallography and contiguous phase fields (Callister & Rethwisch, 2011). 

 

Carbon has a low solubility in α-iron, where the maximum solubility is approximately 0.02 wt% at 723 

°C, and 0.005 wt% at 0 °C. The poor solubility is due to the fact that carbon dissolves interstitially in 

iron. The interstitial space in a BCC unit cell is approximately half of the carbon atom diameter. This 

causes a strong local strain field localized to the interstitial placement of the carbon atom. Carbon is 

more soluble at higher temperatures, due to the occurrence of lattice parameter expansion – i.e. 

expansion in width, length and height – during heat exposure to the material. This creates more 

room for interstitially dissolved carbon. The material properties for pure ferrite are varied, although 

these values normally are inferior to those of pure martensitic steels. Ferritic stainless steels are 

more sensitive to crack formation at lower temperatures, thus proving to be an unfavorable choice 

for structures exposed to cold climates (Bhadeshia & Honeycombe, 2006). 
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2.2.4 Austenite (γ-iron) 

 

Austenite is a non-magnetic allotrope of iron. The lattice structure is a configuration of FCC (Face 

Centered Cubic) unit cells. See Figure 2.5 for an illustration of an FCC unit cell. In plain carbon steels, 

austenite is stable between the eutectoid temperature of 738 °C and 1495 °C. Some variations occur 

as a result of carbon concentration in the alloy (Bhadeshia & Honeycombe, 2006). 

 

 

Figure 2.5 – FCC (Face Centered Cubic) unit cell (Callister & Rethwisch, 2011) 

 

Austenite, like ferrite, is a soft and ductile iron allotrope. However, the solubility of carbon is far 

greater in austenite – up to 2.04 wt% at 1146 °C. This is due to the increased interstitial space found 

in the FCC unit cell, compared to the BCC unit cell (Callister & Rethwisch, 2011). 

 

As austenite slowly cools from the eutectoid temperature of 738 °C, it often transforms into a 

mixture of ferrite and cementite as the carbon diffuses from the lattice structure. Depending on the 

alloy composition and rate of cooling, pearlite may also form. The prerequisite for these 

transformations is an incremental lowering of the temperature, ensuring equilibrium. If the stable 

austenite is exposed to a very rapid rate of cooling, the lattice structure may experience a severe 

distortion. This distortion will induce strains, causing formation of the far harder phase martensite. 

The formation of martensite is not an equilibrium reaction, and is covered in more detail in section 

2.4. 
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2.2.5 Martensite 

 

Martensite refers normally to the very hard crystalline structure where the lattice structure consists 

of BCT (Body Centered Tetragonal) unit cells. See Figure 2.6 for an illustration of how two adjacent 

FCC-cells transform into the martensitic BCT-structure. Martensite is not found on traditional phase 

diagrams, as it is a metastable phase, i.e. not stable at an equilibrium. 

 

 

 

Figure 2.6 – (a) Adjacent FCC-cells; (b) the resulting BCT unit cell. Modeled after (Ahlers, 2004) 

 

Depending on the alloy carbon content, the crystal grain structure of martensite is lath- or plate-

shaped. The lath/plates stretch and cover the full area restricted by the pre-transformatic austenite 

grain boundaries. When the microstructure of a martensitic steel is viewed in a light-microscope, the 

structure is often incorrectly described as acicular, i.e. needle shaped. The acicular description stems 

from viewing a cross-section of very thin plates in tight formation. The resulting BCT cell is 

transformed from the adjacent FCC-cells, where the resulting highest lattice parameter is denoted c. 

The actual difference from the original FCC-parameter a is varying, but c is always > a. 

 

Martensitic steels have been known to achieve hardness values up to 700 HB. As-quenched 

martensite tends to be very brittle. Tempering of martensitic alloys increase the toughness, while the 

hardness is somewhat decreased. Martensite forms when austenite is cooled at a rate too fast to 

form phases stable at equilibrium. The processes of martensitic transformation and tempering of 

martensite are intricate and complex, and is therefore described separately in more detail in sections 

2.4 and 2.5.4. 
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2.2.6 δ-ferrite (δ-iron) 

 

In traditional Fe-C alloys with a carbon content below approx. 0.10 wt%, δ-ferrite is the most stable 

iron allotrope from the temperature region 1390 °C up to the melting point of 1539 °C. Without the 

addition of other alloy elements, δ-ferrite is only present in a very small partition of the Fe-C phase 

diagram (see Figure 2.7). 

 

 

Figure 2.7 – Traditional Fe-C phase diagram, with the only occurrence of δ-ferrite circled in red (Callister & 

Rethwisch, 2011) 

 

 

Morphologically, it is very difficult to differentiate between ordinary ferrite (α-ferrite) and δ-ferrite. 

They both exhibit a BCC-structure, and there are no known analysis techniques that have proven to 

display a morphological difference between the two. δ-ferrite has proven to be more susceptible to 

carbon saturation. Thus, it is implied that the two phases have a distinct chemical difference. This 

carbon saturation has proven to increase the relative global hardness of materials where the δ-ferrite 

content exceeds approx. 15 % (Wang, et al., 2014). It is worth to mention that no standardized 

benchmark formally differentiating the two phases on a chemical level has been internationally 

acknowledged. Metallurgists and material engineers at NOMAC validate that the ferrite present in 

S165M is primarily δ-ferritic.  
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2.3 The effects of alloying elements 
 
Added alloying elements affect both the thermodynamic and the kinetic (i.e. mechanical) properties 

of steels. Due to the sheer magnitude of alloying elements available and utilized, this section will 

focus on explaining the resulting addition effects from the elements commonly found in S165M: 

carbon, chromium, nickel, manganese, silicon and molybdenum. In commercially available alloy 

steels, which are multicomponent systems, alloying elements can be found (i) in their free states; (ii) 

as intermetallic compounds with iron or each other; (iii) as oxides, sulphides and other non-metallic 

inclusions; (iv) in the form of carbides; or (v) as a solid solution in iron (Maalekian, 2007). 

 

Carbon is the main alloying element in steels. The addition of carbon is done to ensure 

strengthening, as it prevents slip between the Fe-atoms in the lattice structure. Large additions of 

carbon to an alloy may have negative effects on the ductility and weldability of an material. 

 

Chromium is the main alloying element in a stainless steel. This is due to the chromium-oxide layer 

produced by adding amounts equal to or above 10.5 wt% chromium to an alloy. Chromium is also 

added to enhance the hardenability of steels, and very hardenable steels are often found to have a 

high chromium content. 

 

Nickel is a strong austenite former, thus ensuring that alloys with high levels often results in 

martensitic structures after quenching. Generally, the addition of nickel improves the properties of 

steels at low temperatures. A very high nickel content often suppresses the ferrite to such a degree 

that only austenite is formed. It is also an oxide-layer stabilizer, and is commonly found in stainless 

steels, along with molybdenum. 

 

Silicon is primarily a ferrite former, and has to a degree a hardening effect. Along with manganese, it 

is often found in steels as remnants of the production process. 

 

The combinations and quantities of alloying elements may produce other effects than what was 

intended. Several studies have been conducted in order to form a general baseline for the effects of 

alloy element combinations. For example, a level balance of carbide forming elements (i.e. Cr) and 

non-carbide forming elements (i.e. Ni) may produce microstructures with high amounts of 

precipitates, causing embrittlement (Maalekian, 2007). The optimal combination of element is often 

concluded on empirically. 
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2.4 Martensitic transformation in steels 

 

The process of martensitic transformation is diffusionless, and such a transformation may also go by 

the names of shear or displacive transformation. Simplifications of the martensitic transformation 

theory are found in the curriculum of common materials courses. The general theory expands upon 

the premise that austenite rapidly cooled from higher temperatures experiences an unexpected 

structure rigidity. Carbon atoms are locked in their interstitial lattice positions, and the increase of 

strain energy in the structure aids in the increase of material hardness and toughness (Callister & 

Rethwisch, 2011). As elegant as it may be, such an explanation is too simplified to fully explain the 

kinetics of the transformation of austenite (FCC) into martensite (BCT). 

 

The formation of martensite involves a complex and highly coordinated re-orientation of atoms in 

the lattice structure. Because austenite and martensite are intimately related phases, the martensitic 

transformation that occurs leads to an orientation relationship between the parent lattice and the 

product lattice, which is reproducible. The general transformation reaction is found to be virtually 

independent of any time factor. This is mathematically illustrated in the Koistinen and Marburger 

equation, shown below (Bhadeshia H. K., 2002): 

 

(3) Martensite fraction Vα’  

1 − 𝑉𝛼′ = 𝑒𝑥𝑝{𝛽(𝑀𝑆 − 𝑇)}            𝑤ℎ𝑒𝑟𝑒          𝛽 ≅  −0.011 

 

Vα’ is the fraction of formed martensite, and T is a temperature equal to or below MS, the martensite-

start temperature. Note that time does not feature in this equation. This implies that the fraction of 

formed martensite is only dependent on the amount of undercooling that occurs below MS. The time 

interval where the rapid nucleation and growth occurs is so small, that it can be viewed as negligible. 

 

As illustrated in Figure 2.6, adjacent FCC unit cells forms the foundation of the martensite lattice, 

which has a morphologic consistency with BCT unit cells. The pattern in which the atoms in the 

parent crystal are arranged – i.e. FCC – is deformed through strain into that appropriate for 

martensite. The crystal experiencing deformation undergoes a corresponding macroscopic shape 

change. In the α’/γ (martensite/austenite) interface, we find the dislocations responsible for said 
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deformation. Here, there are Burgers vectors1, so that the material experiences the change in crystal 

structure in addition to the deformation (Bhadeshia & Honeycombe, 2006). The transformation of 

austenite to martensite is a process that is dependent on the coherency in the transformation 

interface. The shape-change results in an invariant-line strain, where one line in the transformation 

interface is unrotated and undistorted. 

 

Although the invariant-line strain is necessary to deform the general crystal structure, it is not solely 

responsible for the change in lattice structure from FCC to BCT. An alternative strain was originally 

proposed by Bain in 1924. Such a strain helps alter the lattice parameters, and is known as Bain 

Strain (Bhadeshia H. K., 2002).  

 

Assume that two FCC-cells are adjacent; see Figure 2.6. Assume the lattice parameters are parallel to 

coordinate axes XYZ. During transformation into martensite, the adjacent FCC-cells combine into one 

BCT cell. In this scenario, the newly formed unit cell experiences a dynamic expansion along the Z-

axis. The X- and Y-axises experience no expansion. The deformation describing this Bain Strain is thus 

given by the following expression, found in (Bhadeshia H. K., 2002): 

 

(4) Bain Strain 

 

𝐵 = (
𝜖𝑋 0 0
0 𝜖𝑌 0
0 0 𝜖𝑍

)           𝑤ℎ𝑒𝑟𝑒        
𝜖𝑋 = 𝜖𝑌 = 0

𝜖𝑍 > 0
 

 

This is only valid for this orientation of the parent crystal structure. Another orientation may yield 

uniaxial deformation along the other two axises. This phenomenon is what makes it difficult to 

differentiate between BCC and BCT using electron backscatter diffraction, since the lattice distortion 

seems to be of a variable nature. This yields a tight structure with BCT cells oriented randomly 

relative to each other. The result is a structure where the BCT cells are oriented in a seemingly 

random order, causing a global semi-equality with BCC cells. The implication this may have on 

crystallographic analysis is covered in section 2.6.2. 

                                                           

1
 From physics, a Burgers vector – often denoted b – is a vector that represents the magnitude and the 

direction of a lattice distortion resulting from a dislocation in a crystal lattice (Callister & Rethwisch, 2011) 
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2.5 Heat treatment of metallic alloys 

 

Heat treatment is a collective term, covering industrial and metalworking processes. The goal of said 

processes is to alter the physical – and often even chemical – properties of a material. Metallurgy is 

the field where heat treatments are most commonly used, due to the versatility and obtainable 

results yielded by the process. 

 

What type of heat treatment to utilize depends on what abilities one wants the treated material to 

exhibit. Processes such as hardening and quenching increases material hardness, while tempering 

increases ductility (ASM International, 2006). It is worth noting that while several industrial 

metalworking processes generate heat, the term heat treatment is reserved for those processes that 

intentionally heat and cool materials in order to alter its properties. This section only covers heat 

treatment processes relevant for S165M, i.e. forging, hardening and quenching, and tempering. 

 

2.5.1 Forging 

 

Forging is a manufacturing process, and is utilized for metallic materials. In the forging process, the 

material is shaped using localized compressive forces. The material may be forged in a hot or cold 

state, and is thus classified as hot- or cold-forged, respectively. Iron and steel are almost exclusively 

hot-forged. Forging is a process that has existed for millennia, and was traditionally used for 

kitchenware, tools and blade weapons. During the Industrial Revolution, it became more common to 

utilize forging when manufacturing components or mechanisms that needed a high level of strength. 

 

The main advantage of forging is the production of a component that is stronger than when 

compared to an equivalent cast or machined part. When a part is forged, the internal grain structure 

deforms. The new grain structure becomes continuous, and follows the general shape of the part. 

Due to this continuous structure, the component normally exhibits improved material characteristics 

and strength. This continuous flow is not present in cast and/or machined parts (Callister & 

Rethwisch, 2011). See Figure 2.8 for an illustration of the grain structure in differently manufactured 

components. 
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Figure 2.8 – Grain flow in (a) cast component; (b) machined component; and (c) forged component, courtesy 

of (SIFCO, 2012) 

 

The material utilized in this thesis is hot-forged. Hot-forging is normally chosen for steels, as it 

diminishes – or completely eliminates – the presence of work-hardening that may arise in the cold-

forging process. Most forging operations use metal-forming dies, which must fulfill a great number of 

characteristics. This includes being able to withstand the forging temperature, and changes to its 

shape due to the received residual thermal energy from the forged material. 

 

2.5.2 Hardening and quenching 

 

Hardening is a physical-chemical process where the intention is to increase the hardness of a 

material. Other mechanical properties, such as yield strength/tensile strength are normally increased 

as well. The general process of hardening consists of two primary phases (ASM International, 2006): 

 

1. The material is slowly heated above its critical temperature, normally causing austenitizing of 

the steel. Said material is normally held for a sufficient amount of time, allowing 

precipitations to dissolve 

2. The material temperature is rapidly lowered, usually by quenching it in water and/or oil 

 

The rapid temperature decrease causes carbon atoms to be locked in interstitial positions in the 

lattice structure. As previously shown, this process causes martensite to form. The hardness – i.e. the 

material’s ability to resist plastic deformation – increases during this process (Bhadeshia & 

Honeycombe, 2006). Pure hardened steels are – while very hard – normally too brittle. Therefore, 

hardened steels are normally tempered before used for commercial purposes. See section 2.5.3 for a 

general introduction to the tempering process. 
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2.5.3 Tempering – General introduction 

 

Tempering is the process where a material is re-heated after hardening and quenching. The 

temperature used in this process is normally far below the critical temperature. The goal is not to 

repeat the hardening process, but to relieve stresses in the lattice structure, while simultaneously 

increasing the toughness and ductility of the material in question (Callister & Rethwisch, 2011). The 

tempering process will normally decrease the hardness of the material. Tempering usually consists of 

heating the material to a specified temperature, holding it at said temperature for a specified 

amount of time, and allowing it to fully cool in air to ambient temperature. The exact temperature 

used determines the resulting decrease in hardness, and depends on the desired properties of the 

finished product. As an example, machining tools are usually tempered at very low temperatures, 

while springs are tempered at much higher temperatures (Hibbeler, 2008).  

 

It is empirically proven that the tempering temperature and the duration of the tempering process 

have direct effects on mechanical properties such as hardness. First described in 1945, the most 

statistically proven relation between tempering temperature and resulting effects is known as the 

Hollomon-Jaffe Parameter (Hollomon & Jaffe, 1947): 

 

(5) Hollomon-Jaffe parameter 

𝐻𝑝 =
𝑇 ∙ [𝑐 + log(t)]

1000
 

 

where T = Temperature in Kelvin, c = Constant depending on alloy composition 

and t = tempering time in hours 

 

The material utilized in this thesis has a composition yielding a 

constant equal to c = 19.8 (Shlyakman, Tampolskii, & Ratushev, 

2010). Thus for a tempering temperature of 560 °C over 8 hours 

– parameters which are not varied throughout this thesis – the 

Hollomon-Jaffe parameter equals 17.25. An alteration of these 

parameters could yield far different material properties. Note that the 

tempering temperature has a more substantial impact than the time 

parameter.  

Figure 2.9 - The effect of tempering 

temperature and time on the hardness 

values (HV) of as-quenched 0.1 wt% 

steel (Irving & Pickering, 1960) 
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2.5.4 Tempering of martensite 

 

As shown, martensite in steels can be very hard, but at the same time very brittle. It is therefore 

often necessary to temper the martensite, in order improve its usability in structural and mechanical 

components. Tempered martensite provides one of the best combinations of strength and toughness 

obtainable in low carbon steels. The tempering process allows the microstructure to move 

incrementally towards an equilibrium, under the influence of thermal activation. Thus, the tempering 

ability of a material depends on the distance the microstructure has from its equilibrium state. 

 

Certain structures contain higher levers of stored free energy than others do. For example, for a 

typical alloy steel with a composition of Fe-0.2C-1.5Mn wt%, the reference (zero energy) state 

contains an equilibrium mix of ferrite, graphite and cementite. With a very miniscule increase in 

stored energy (70 J mol-1), the graphite is no longer present. The alloy steel has a phase mixture 

consisting of supersaturated ferrite at 1414 J mol-1, and pure martensite at 1714 J mol-1. Tempering a 

pure martensitic steel with said alloy composition can thus eventually alter the microstructure by 

releasing the free energy stored in it (Bhadeshia & Honeycombe, 2006). 

 

For pure martensitic steels, the tempering of martensite normally includes the diffusion of 

interstitially locked carbon. However, the substitutional solutes do not diffuse during this stage. If 

held at the tempering temperature for a sufficient amount of time, the structure can evolve into a 

dispersion of coarse carbides in a ferritic matrix, which bears little resemblance to the original 

martensitic structure. For martensitic ferritic steels, however, the quenching process yields a fully 

martensitic/ferritic structure. There is no indication that tempering induces the development of 

further ferritic content, or cementite. If tempering at temperatures above 550 °C, one can expect to 

see a development of austenite, finely dispersed in the martensitic structure (Song, Rong, & Li, 2011). 

This austenite is commonly referred to as reversed austenite, as it reverts to its pre-quenched form 

due to the reception of thermal energy. The effect this reversed austenite has on mechanical 

properties is proportional with ∆T (where ∆T is the difference in temperature between 550 °C and 

the actual temperature used in the tempering process). 
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2.6 Mathematical morphology analysis methods 

 

The word morphology has differing definitions, but the following definition is applied in this thesis: 

 

 

Morphology (noun), (môr-fŏl′ə-jē) 

 

 

The study and the analysis of geometrical  

structures, based on set   theory, lattice  

theory, topology and random functions 

 

Thus, the morphology of a material equals a sum of the information regarding its structure. There are 

several methods available – that with a high degree of accuracy – describe the morphology of a 

material. In the field of materials science, one is often interested in defining parameters of a 

material, such as lattice structure, dislocation density, grain size, chemical composition and 

crystallographic orientation. 

 

Information about the material morphology may aid in explaining why a certain material is exhibiting 

certain material properties. For example, the use of crystallographic orientation analysis has 

discovered that there is a correlation between the grain orientation and the pitting corrosion 

resistance in AISI 304L austenitic stainless steel, where the close-packed [101] direction proved most 

resistant to pitting corrosion (Krishnan, Dumbre, Bhatt, Akinlabi, & Ramalingam, 2013). 

 

The list of available analysis methods is long and complicated. Therefore, this thesis only focuses on 

describing the methods utilized to obtain usable results. This thesis used SEM – Scanning Electron 

Microscopy – to gauge the chemical composition and lattice structure of a selection of heat treated 

samples. The analysis methods used (and the intended goal of said analysis) is listed below: 

 

 EDS   Energy-dispersive X-ray Spectroscopy, to identify chemical composition of 

  phases 

 EBSD  Electron Backscatter Diffraction, to visually identify the lattice   

  structures of phase fields, using multi-color coding and image analysis 

 

 

The following section will briefly explain the physical principles that govern these analysis methods. 
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2.6.1 EDS (Energy-dispersive X-ray Spectroscopy) 

 

EDS is an analytical technique that is often used to define the chemical characterization of a sample. 

It relies on the physical principle that an X-ray excitation interacts with said sample, and that all 

elements have a unique atomic structure that allows unique set of peaks to appear on its X-ray 

emission spectrum. 

 

 

Figure 2.10 – An example of an EDS spectrum from S165M, illustrating the chemical composition of a sample 

(UiS v/ Ingunn Oddsen, 2015) 

 

A high-energy beam of charged particles – such as electrons – is focused into the sample being 

studied. The beam may excite an electron in an inner shell of an element, ejecting it from the shell 

and thus creating an electron hole. An electron from an outer, higher-energy shell then fills said hole, 

and the difference in energy between the higher and lower energy shells may be released in the form 

of an X-ray (Russ, 1984).  

 

The frequency of and the energy of the emitted X-rays are measured using an energy-dispersive 

spectrometer. Since the energies of the X-rays are characteristic for each element, and the number 

of X-rays an indicator of the amount of the element present, one can use EDS to chart the elemental 

composition of the sample (Russ, 1984). The different peaks in the EDS spectrum differentiate 

between the elements, and the height of the peaks is an indicator of the amount in the sample. 
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2.6.2 EBSD (Electron Backscatter Diffraction) 

 

EBSD is a technique that gives crystallographic information about the microstructure of a sample. It is 

often used to identify crystal systems, and is therefore well suited for morphology studies. In order to 

perform an EBSD scan, one needs to have a flat/polished sample mounted at a highly titled angle 

(approximately 70 ° from the horizontal) towards a diffraction camera. The high angle is necessary to 

ensure a sufficient amount of contrast in the resulting backscatter diffraction pattern. A phosphorous 

screen is mounted at a 90 ° angle relative to the electron beam. A CCD camera focuses the image on 

the screen, caused by backscattered electrons (Palizdar, Cochrane, Brydson, Leary, & Scott, 2010). 

 

Some of these backscattered electrons may exit 

the sample at the Bragg condition related to 

the spacing of the periodic atomic lattice planes 

of the crystalline structure and diffract. Some of 

these diffracted electrons may hit the 

phosphorous screen, causing it to fluoresce. An 

EBSP – Electron Backscatter Diffraction Pattern 

– is formed when many different planes in the 

sample diffract different electrons. This forms 

what is known as Kikuchi bands (Figure 2.11), 

which correspond to each of the lattice diffracting 

planes. 

  

Each of these bands can be indexed individually by the Miller indices2 of the diffraction plane that 

formed it. For most materials, it is only necessary to have three intercepting bands in order to 

describe a unique solution to the crystallographic orientation. Modern software utilizes databases 

containing known geometry in order to index the elements faster. 

 

  

                                                           

2
 The integers h, k and l determining a family of lattice planes 

 Figure 2.11 – Illustration of Kikuchi 

bands caused by diffracting electrons, 

courtesy of (Schwarzer, 2013) 

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.crystaltexture.com/ibp_1.htm&ei=QQVmVavwGOndywOU_4CgBQ&bvm=bv.93990622,d.bGQ&psig=AFQjCNHVwgcmKNT6fxV-zwhjmtf5o06EBw&ust=1432835771455913
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Normally, a sample is indexed before the results can be processed and analyzed. Depending on the 

software controlling the set-up, one often selects an area to be scanned. A set of parameters are set 

for the scan, including the scan area and the scan step size. The selected area is then indexed based 

on known crystallographic data. Thus – given that anything but scan area is ceteris paribus3 – a 

smaller area requires less scan time than a larger one (Palizdar, Cochrane, Brydson, Leary, & Scott, 

2010). 

 

Once a sample space is indexed, one can among other things identify the phases present in the 

material. It is worth to note that due to the very small difference in lattice parameters of BCC and 

BCT caused by martensitic transformation – more specifically Bain Strain, described in section 2.4 – 

most software can’t differentiate between martensite and ferrite during such a scan. However, it can 

easily detect the difference between austenite (FCC) and ferrite/martensite (BCC/BCT). For 

martensitic ferritic steel such as S165M, the technology may be used in order to identify retained or 

reversed austenite, due to its crystallographic difference from martensite/ferrite. 

  

                                                           

3
 Ceteris paribus = «Other things being equal or held constant» 
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3. Experimental methods 

 

The experimental work of the thesis consisted of 4 main phases: 

 

1. Rough machining of material into appropriate heat treatment samples 

2. Heat treatment (hardening, quenching and tempering) 

3. Detailed machining of test specimens, according to the established standards utilized for 

mechanical testing at NOMAC (ASTM A370, 2014) 

4. Mechanical testing and metallographic examination of said specimens, including: 

 

 Tensile stress testing 

 Charpy-V impact testing 

 Hardness testing 

 Microstructural analysis using optical light microscope 

 Chemical analysis of phases in SEM, using energy-dispersive X-ray spectroscopy (EDS) 

 Crystallographic verification of phases in SEM, using electron backscatter Kikuchi 

diffraction (EBSD) 

 

The goal of said tests were to obtain information regarding the material yield strength, tensile 

strength, modulus of elasticity, area reduction, elongation, absorbed impact energy, hardness, 

macrostructure, microstructure and chemical composition of the observed phases. 

 

This data were to form the foundation of further analysis.  
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3.1 Material specification 

 

The material used in this thesis is S165M, forged by NOMAC. All of the material used in this thesis 

came from a single charge, A19606. The chemical composition of the delivered material was 

measured by a Spectrolab M-10 spectrograph based on OES (Optical Emission Spectroscopy). The 

measured chemical composition is illustrated in Table 2.2, first presented on page 3.  

 

Reference material properties from charge A19606 is shown in Table 3.1 (collected from the material 

certificate, see Appendix B). Note that the properties are collected from transverse samples. This 

causes them to deviate from the experimental samples used in the thesis (as it is based on 

longitudinal samples). The properties were obtained after the material was hardened at 1000 °C, 

quenched in water and tempered at 560 °C for 6 hours. All tests were performed at 20 °C. Impact and 

hardness values are average values. 

 

Table 3.1 – Mechanical reference properties of charge A19606 

Material property Value 

Yield strength (Rp0.2) 841 MPa 

Tensile strength 996 MPa 

Elongation 18 % 

Reduction of area 45 % 

Impact value (average) 115 J 

Hardness Brinell (average) 293 

 

 

3.2 Rough machining 

 

The material delivered from NOMAC originated from a circular bar of Ø230 mm, with a forging ration 

of 5.9:1. Plates were cut in the longitudinal direction at ¼ of the thickness, also known as T/4. See 

Appendix H for the schematics of the test piece preparation. 

 

Two (2) different plate types were delivered, with the dimensions 120 mm x 180 mm x 20 mm and 

150 mm x 180 mm x 12 mm, respectively. The specimens had to be extracted from the center of the 
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plate and outwards, to ensure consistent mechanical properties. The specimens were to be prepared 

along the longitudinal axis. This is because transverse samples have a tendency to produce a larger 

scatter in ductility values. The use of longitudinal samples ensured a larger degree of consistency. 

 

The rough cutting yielded: 

 40 large rods with a square cross-section (measuring approximately 20 mm x 20 mm x 180 

mm). These rods would result in specimens used for tensile stress testing, hardness testing 

and examinations to the sample microstructure. 2 rods were used in each heat treatment set 

 20 small rods with a square cross-section (measuring approximately 12 mm x 12 mm x 180 

mm). These rods would yield 3 Charpy-V impact test specimens each. 1 rod was used in each 

heat treatment set 

 

Figure 3.1 illustrates a full set of specimens. All heat treatments were performed on sets as shown in 

illustration. 

 

 
Figure 3.1 – Set of heat treatment samples, where the material yielded (a) and (b) tensile stress 

test/microscopy specimens; (c) Charpy-V impact specimens.  

 

 

3.3 Heat treatments 

 

The normally used hardening temperature and soaking time at NOMAC is 1000 °C and 1 hour, 

respectively. There was need to develop an experiment where said soaking time was the key 

variable. The analyzed hardening temperatures were 1000 °C and 1030 °C. The soaking times were 1, 

2, 5, 10 and 20 hours, for both temperatures. Both as-quenched and tempered samples were 

prepared. The tempering temperature (560 °C) and duration (8 hours) remained constant. Table 3.2 
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illustrates the characteristics of the resulting 4 heat treatment groups. Every group yielded 5 sample 

sets, from soaking in 1, 2, 5, 10 and 20 hours (i.e. 20 sample sets in total). 

 
Table 3.2 – Characteristics of heat treatment groups 

 

Group no. Characteristics 

1 (denoted A) 
Hardened at 1000 °C, quenched in water, not 

tempered 

2 (denoted AT) 
Hardened at 1000 °C, quenched in water, 

followed by tempering at 560 °C for 8 hours 

3 (denoted H) 
Hardened at 1030 °C, quenched in water, not 

tempered 

4 (denoted HT) 
Hardened at 1030 °C, quenched in water, 

followed by tempering at 560 °C for 8 hours 

 

 

All heat treatments were performed in a programmable Nabertherm P300 furnace. All heat 

treatments were performed separately. The chamber temperature was monitored and controlled at 

all times. The specimens were consistently placed in the center of the furnace chamber, to reduce 

the effects of varying chamber temperatures. Prior to the insertion of specimens, the furnace was 

programmed to the needed temperature and allowed to stabilize for 24 hours. This was done for 

both the hardening and tempering treatments, yielding 30 heat treatments (i.e. 20 hardening 

processes and 10 tempering processes). 

 

All heat treatments were performed in parallel with a core temperature control set, consisting of 1 

large and 1 small rod, each with separate core-located thermocouples connected to temperature 

loggers. The core housing the thermocouple was air-sealed by spot welds. This was done to ensure 

the validity of the heating prior to the start of the actual hardening/tempering processes, and to 

quantify the time it took for the samples to reach a stable core temperature. 

 

Figure 3.2 illustrates the coding system used for the different heat treatments. The treatment code in 

the figure (A10T) illustrates a sample hardened at 1000 °C for 10 hours, quenched in water and then 

tempered. This nomenclature will be domineering throughout the thesis, and is used to identify the 

different treatments.  
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Figure 3.2 – Specimen coding system used for heat treatment identification 

 

Table 3.3illustrates an overview of the total number of heat treatments. 

Table 3.3 – Overview of performed heat treatments 

 

Treatment 
code/Sample ID 

Hardening 
temperature 

Soaking time at 
hardening temperature 

As-
quenched/tempered 

A1 

1000 °C 

1 hour 

As-quenched 

A2 2 hours 

A5 5 hours 

A10 10 hours 

A20 20 hours 

A1T 

1000 °C 

1 hour 

Tempered 

A2T 2 hours 

A5T 5 hours 

A10T 10 hours 

A20T 20 hours 

H1 

1030 °C 

1 hour 

As-quenched 

H2 2 hours 

H5 5 hours 

H10 10 hours 

H20 20 hours 

H1T 

1030 °C 

1 hour 

Tempered 

H2T 2 hours 

H5T 5 hours 

H10T 10 hours 

H20T 20 hours 
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3.4 Machining and testing of specimens 

 

All standardized specimen samples were machined according to standard ASTM A370. This standard 

specifies the necessary measurements, ratios and tolerances the test specimens must obtain in order 

to yield reliable results. Care was taken during machining to obtain as close to optimal 

measurements as possible.  

 

3.4.1 Tensile stress testing 

 

Post heat treatment, the total amount of base material to be used for tensile stress test specimens 

consisted of 40 rods, each measuring approximately 20 mm x 20 mm x 180 mm. These rods were 

machined into specimens with measurements and tolerances as illustrated in Figure 3.3. 

 

 

Figure 3.3 – Measurements and tolerances of tensile stress test specimens, machined according to standard 

(ASTM A370, 2014) 

 

 
Figure 3.4 illustrates a model of a finished tensile stress test specimen, machined according to ASTM 

A370. In order to be fastened correctly in the tensile stress tester, the rod length had to be increased. 

A threaded M16 x 2 connection on one end of the specimens was used. The threaded connector had 

a diameter of 30 mm and a length of 125 mm, with a 45 mm deep M16 x 2 internal thread. This 

allowed the specimens to be mounted correctly in the tensile stress testing device. The diameter of 

the bottom of the threads exceeded the diameter of the reduced section of the specimen. Any 
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potential effect this threaded connection may have had on the results is discussed in more detail in 

Appendix F.2. 

 

Figure 3.4 – Model of finished tensile stress test specimens (sans measurements) 

 

 

The tensile stress test specimens were tested in an Instron KPX Tensile Stress Tester. The machine 

had a connected AutoX750 Automatic extensiometer, and provided live data output to a computer 

running Bluehill test software. The results presented in section 4 are based on calculations extracted 

from the raw data, not the automatically calculated results provided by the software (which turned 

out to be erroneous in nature). 

 

3.4.2 Charpy-V impact testing 

 

Post heat treatment, the total amount of base material to be used for Charpy-V impact test 

specimens consisted of 20 rods, each measuring approximately 12 mm x 12 mm x 180 mm. Each of 

these rods consisted of enough material to yield 3 impact specimens each, i.e. 60 in total. These rods 

were to be machined into specimens with measurements and tolerances as illustrated in Figure 3.5. 

 

 

Figure 3.5 – Measurements and tolerances of Charpy-V impact test specimens, machined according to 

standard (ASTM, 2014) 
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The specimens were cooled to a temperature of -20 °C prior to testing. The specimens were 

submerged in ethanol holding said temperature for a minimum duration of 20 minutes prior to 

testing. The temperature of the ethanol was verified using a calibrated digital thermometer. As per 

ASTM A370 standard, the specimens were broken within 5 seconds of being removed from the 

cooling medium (ASTM, 2014).  

 

The impact testing was performed using a Charpy-V/Izod impact tester, which provided the 

measured value (i.e. absorbed impact energy) through a mechanical dial. The testing apparatus was 

connected to a calibrated digital readout, which allowed one to double check the result against the 

mechanical dial. 

 

3.4.3 Hardness testing/Metallographic examination 

 

The specimens used for hardness testing and metallographic examination were extracted from the 

end of the tensile stress test specimens. The specimens were therefore circular, with a diameter of 

approximately 18.5 mm. All heat treatments underwent these tests. 

 

All samples were grinded and polished before hardness testing, to eliminate possible data 

fluctuations due to surface roughness. The specimens were re-grinded and polished after hardness 

testing, before being etched and metallographically examined in a light microscope. All grinding and 

polishing was done in sets of 6 or 7 specimens. Grinding and polishing was performed using a Struers 

Planopol Pedemax-2 rotary grinder. Table 3.4 illustrates the grinding and polishing parameters used 

in this thesis (durations are approximations). 

 
Table 3.4 – Grinding and polishing parameters 

Grinding/Polishing Sheet type Duration Lubricant Comments 

Grinding 

120 grit (129 µm) 3 – 7 min 

Water 

Until plane specimens 

220 grit (69 µm) 4 min  

320 grit (51 µm) 4 min  

500 grit (29 µm) 4 min  

1000 grit (19 µm) 6 min Longer duration (fine grinding) 

2400 grit (9 µm) 6 min  

4000 grit (5 µm) 8 min  

Polishing 
MD Mol (3 µm) 10 min 

Struers DP-Blue 
DiaDuo-2 diamond suspension 

was used in lieu of conventional 
pure diamond spray 

MD Nap (1 µm) 10 min 
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The specimens were hardness tested using a Struers DuraScan hardness tester. The affixed testing 

head was a Vickers diamond pyramid. The applied load was 10 kg, which was held over 10 seconds. 

20 measurements were taken from each sample, spanning a 4 x 5 grid in the center of the circular 

sample. All measurements had a minimum 1000 µm distance from one another, in order to reduce 

effects caused by microscopic work hardening. This grid is illustrated in Figure 3.6, and was utilized 

for all 20 heat treatments. 

 

 

Figure 3.6 – Distribution of Hardness Vickers indentation points per sample. Hardness tested cross-section 

was re-grinded and used for microstructural analysis 

 

 

Prior to metallographic examination, the polished samples were etched using Marble’s etchant 

(consisting of 4 g CuSO4, 20 ml 67 % HCl and 20 ml H2O). The as-quenched specimens were etched for 

30 seconds. The tempered specimens were etched for 10 – 15 seconds. The difference in etching 

durations was a direct consequence of the etching characteristics of as-quenched vs. tempered 

martensite. No voltage was applied during etching. 

 

The specimens were viewed through a Reichert-Jung MeF3 optical light microscope, connected to a 

computer running ProgRes© CapturePro 2.8.8 from JENOPTIK. Pictures were taken at 10X, 20X and 

50X magnification. Micrographs at 20X magnification are presented in section 4.2. Micrographs at 

10X and 50X are presented in Appendix D. 
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3.4.5 Analysis using SEM (EDS and EBSD analysis) 

 

The same specimens that were used in metallographic examination/hardness testing were used for 

SEM analysis. The specimens were re-grinded, following the protocol presented in Table 3.4. Both 

the EDS and the EBSD analysis were performed using a Zeiss Supra 35VP, with a backscatter detector 

mounted for the EBSD analysis.  

 

EDS (Energy Dispersive Spectroscopy): 

The samples A1, A20T, H1 and H20T were analyzed using EDS. For the EDS analysis, the specimens 

were analyzed directly following polishing. The EDS analysis provided data regarding the chemical 

composition of the different phases in the steel. The applied acceleration voltage was 15 kV, and 

samples were tested at working distances ranging from 24.4 – 25.6 mm. A total of three – 3 – 

different sections were analyzed using EDS, namely: 

 

1. A general section, including all identifiable phases in the material 

2. A section suspected to be δ-ferritic 

3. A section suspected to be martensitic 

 

EBSD (Electron Backscatter Diffraction): 

The samples A1 and A20T were analyzed using EBSD. For the EBSD analysis, a thin wafer – 

approximately 2 mm thick – of the polished face was cut off. This polished wafer was then 

electropolished, using Struers A3 electrolyte (300 ml methanol, 180 ml 2n-butoxyethanol and 30 ml 

HClO4). The applied voltage was 20 V, and the polishing duration was 120 seconds.  

 

The EBSD analysis scanned a general section from both samples. The samples were scanned over an 

area measuring 300 µm by 300 µm. The step size was 0.20, with an accelerating voltage varying from 

7.9 to 18.5 kV. These parameters gave the best scan results. Using a database of known Kikuchi 

bands, the analysis software generated an image where different unit cells were identified using a 

color code, i.e. green for identified FCC cells and pink for identified BCC cells. The fractional 

difference in lattice height between BCC and BCT unit cells made it impossible to differentiate 

between δ-ferrite and martensite in the analysis (discussed in more detail in sections 2.6.2 and 4.4.2). 
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4. Results 

 

The results gathered in the experimental section consist of both qualitative and quantitative 

elements. The quantitative results are mainly the mechanical properties of the material, including 

but not limited to: 

 

 Yield strength4 

 Ultimate tensile strength 

 Elongation at fracture 

 Maximum contraction 

 Modulus of elasticity (i.e. Young’s modulus) 

 Hardness 

 Impact energy 

 

 

The quantitative results presented in this thesis are all average values of two to twenty 

measurements, depending on the type of measurement in question. The results are presented with 

upper and lower standard deviation boundaries, in addition to the average values. Graphical 

representations of the quantitative values do not include the upper and lower standard deviation 

boundaries. The graphical results are scaled to clearly illustrate the spread of the measurement data. 

 

The qualitative results mainly consist of microstructural and crystallographic analysis, stemming from 

the use of optical light microscopy and tests performed in the Scanning Electron Microscope (SEM). 

The SEM analysis included energy-dispersive X-ray spectroscopy (EDS) and electron backscatter 

Kikuchi diffraction (EBSD). 

                                                           

4
 The yield strengths presented in this thesis are based on the Rp0.2% principle. The as-quenched samples produced stress/strain curves with 

a kink in the elastic region, occurring at approximately 650 MPa. There is no consensus at NOMAC if whether or not this is the actual yield 

point, seeing as the curve continues in a linear manner after this anomaly. This thesis presents yield strengths as calculated from the point 

of transition from linearity to non-linearity in the stress/strain curves, and does not take the kink in the curves into account when 

calculating the 0.2 % yield strength 
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4.1 Summary of quantitative results (numerical table) 

 

All values are average values. All decimal values rounded to 3 significant figures, except those exceeding a factor of 103. Values are presented along with 

standard deviation values, where applicable. The data is presented graphically in later sections, along with correlation with soaking times. 

Table 4.1 – Summary of quantitative results for all specimen groups 

Treatment 
code 

Hardness 
Vickers [HV10 kg] 

Charpy-V impact 
energy [J] 

Yield strength 
[MPa] 

Ultimate tensile 
strength [MPa] 

Young’s modulus 
[GPa] 

Elongation 
 [%] 

Contraction 
[%] 

A1 346 ± 4 113 ± 9 1011 ± 4 1145 ± 6 197 18.6 60.1 

A2 346 ± 4 120 ± 2 1046 ± 12 1136 ± 1 196 21.3 62.5 

A5 346 ± 3 114 ± 4 1027 ± 6 1137 ± 1 197 22.1 65.9 

A10 346 ± 4 121 ± 6 1007 ± 4 1136 ± 1 194 22.0 65.0 

A20 350 ± 4 105 ± 5 1042 ± 5 1123 ± 2 192 21.8 64.0 

A1T 327 ± 7 121 ± 3 876 ± 3 952 ± 5 180 28.6 68.6 

A2T 328 ± 6 122 ± 4 880 ± 3 936 ± 2 181 29.5 69.5 

A5T 329 ± 7 124 ± 5 845 ± 4 921 ± 4 181 29.6 69.7 

A10T 321 ± 7 123 ± 7 865 ± 1 957 ± 5 182 28.5 68.2 

A20T 317 ± 4 121 ± 5 870 ± 4 935 ± 2 180 28.4 67.7 

H1 342 ± 3 125 ± 4 1026 ± 7 1141 ± 1 196 20.1 57.5 

H2 349 ± 4 125 ± 5 1008 ± 8 1130 ± 1 195 21.5 64.5 

H5 346 ± 5 127 ± 7 1002 ± 2 1151 ± 3 198 21.9 65.9 

H10 354 ± 4 121 ± 7 1000 ± 1 1136 ± 3 199 21.3 64.2 

H20 351 ± 4 132 ± 5 1042 ± 2 1130 ± 1 192 21.9 66.4 

H1T 320 ± 5 123 ± 5 860 ± 9 930 ± 6 182 29.3 69.5 

H2T 322 ± 6 127 ± 4 855 ± 8 931 ± 1 181 29.0 69.1 

H5T 319 ± 5 122 ± 5 872 ± 5 930 ± 9 181 29.0 69.3 

H10T 317 ± 4 121 ± 8 861 ± 4 930 ± 3 183 28.7 69.5 

H20T 318 ± 5 128 ± 1 864 ± 4 918 ± 1 179 28.9 69.3 
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4.2 Microstructure in optical light microscope 

 

The following section will present single, representative images from the microstructures of all 20 

heat treatments. See figures 4.2 through 4.5. All images are shown at 20X magnification. A selection 

of images is discussed in more detail in section 5.3, in terms of general structure development and 

any potential difference between the longitudinal and the transverse microstructure. 

 

The general coloring of the microstructure may appear to be fluctuating. However, this is a result of 

microscopy-images being collected at different times. The Reichert-Jung MeF3 optical light 

microscopy is adjustable in a number of ways, including filtering layers and aperture/contrast ratios. 

The adjustment that yielded the best resolution and contrast varied from sample to sample. This 

resulted in the varying degrees of blue/brown coloring. The images are presented in the original 

captured colors as opposed to black/white, due to the possibility of details going lost in the 

conversion. The coloring is therefore not a result of the microstructure, but the applied method. 

 

All of the images were collected from the same area of all samples. The images were captured from a 

cross section of the tensile stress rods, approximately 15 mm from one end. See Figure 4.1 for an 

illustration. 

 

 

Figure 4.1 – Optical microscopy specimen extraction from tensile stress test specimens. Cross sectional area 

(circled in red) was analyzed 
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4.2.1 As-quenched A-samples (1000 °C, A1 – A20) 
 

 
A1 

 

 
A2 

 
A5 

 
A10 

 

 
A20 

 
Figure 4.2 – Microstructures of A-samples (20X magnification)  
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4.2.2 Tempered A-samples (1000 °C, A1T – A20T) 
 

 
A1T 

 
A2T 

 

 
A5T 

 
A10T 

 

 
A20T 

 
Figure 4.3 – Microstructures of AT-samples (20X magnification)  
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4.2.3 As-quenched H-samples (1030 °C, H1 – H20) 
 

 
H1 

 
H2 

 

 
H5 

 
H10 

 

 
H20 

 
Figure 4.4 – Microstructures of H-samples (20X magnification)  
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4.2.4 Tempered H-samples (1030 °C, H1T – H20T) 
 

 
H1T 

 
H2T 

 

 
H5T 

 
H10T 

 

 
H20T 

 
Figure 4.5 – Microstructures of HT-samples (20X magnification)  
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4.3 Graphical presentations of data sets 

 

4.3.1 Yield strength 

 

The results presented in Figure 4.6 below are calculated using the raw data collected during tensile 

stress testing. The yield strength is calculated from the 0.2 % point, and is therefore compatible with 

Rp0.2%. 

 

 

Figure 4.6 – Yield strength (0.2 %) VS. Soaking time at hardening temperatures 

 

As expected, the data shows a clear difference between the as-quenched and tempered samples. 

There is some fluctuation in the data, but given the standard deviations in Table 4.1, there is no 

indication that there are any upwards- or downwards-pointing trends. The as-quenched yield 

strengths differ somewhat from NOMAC standards. This is discussed in further detail in section 5.2.  
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4.3.2 Ultimate tensile strength 

 

The results presented I Figure 4.7 below are those provided from the tensile stress testing software. 

The data was also verified with calculations performed using the raw data. 

 

 

Figure 4.7 – Ultimate tensile strength VS. Soaking time at hardening temperatures 

 

The ultimate tensile strength data is by far the most consistent data set. Although the tempered A-

sample shows the largest data variation (when compared to the other 3 sets), the variation is not 

unexpected due to the calculated standard deviations of the sample sets. It is worth to note that all 

of the sample sets show slightly lower values with increasing soaking times. The possible reasons for 

this are discussed in more detail in section 5.4. 
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4.3.3 Charpy-V impact energy 

 

All heat treatments were impact tested at -20 °C, as per NOMAC standards. All heat treatments 

yielded 3 Charpy-V impact specimens each, totaling 60 specimens. The data presented in Figure 4.8 

below are average values. 

 

 

Figure 4.8 – Charpy-V impact energy VS. Soaking time at hardening temperatures 

 

The data spans from 105.1 J (A20) to 132.1 J (H20). The impact values from the 20 heat treatments 

differed from what was expected. Most notably, the impact energy for S165M is expected to be 

higher for tempered samples than what this data suggests. Also, there is a stark alternation point in 

the data, located at 10 hours, suggesting that metallurgical differences with an effect on the impact 

energy occurs around this soaking time. This is discussed in more detail in section 5.2.  
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4.3.4 Hardness 

 

All of the separate 20 heat treatments were hardness tested. The results are presented below in 

Figure 4.9, where the data is plotted VS. the respective soaking times the samples underwent during 

hardening. The data presented in Figure 4.9 are average values. 

 

 

Figure 4.9 – Hardness Vickers VS. Soaking time at hardening temperatures 

 

As the data shows, there is a clear difference in hardness between the as-quenched and the 

tempered samples. On average, the as-quenched samples gave a measured hardness value 

approximately 22 – 25 HV higher than their tempered counterparts. Some sample sets seem to 

indicate an increasing hardness trend with increasing soaking times, and vice versa. However, the 

data change is not necessarily indicating any trends when the sample standard deviations are 

considered. The hardness data differentiates somewhat from NOMAC standards. This is discussed in 

further detail in section 5.2.  
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4.4 Morphology analysis 

 

From the analysis performed using Scanning Electron Microscopy, a vast array of data were collected. 

Most notably, detailed information regarding the chemical composition and crystallographic 

structure was obtained. The following sections present these results, along with general comments 

and inputs. The relevant results are discussed in more detail in section 5.4. 

 

4.4.1 EDS results 

 

4 separate heat treatment samples were analyzed using EDS: A1, A20T, H1 and H20T. The four  

samples were an adequate representation of the heat treatments, because: 

 

 The samples spanned the shortest and longest soaking time for both hardening temperatures 

 Both as-quenched and tempered samples from both temperatures were analyzed 

 

Results from all 4 samples are included in the following section (Figures 4.10 through 4.14), and 

present: 

 

 EDS spectrum and chemical composition of a general cross-section from the samples 

 Chemical composition of phases suspected to be martensite and ferrite 

 

The images showing where the scans were taken are for illustrational purposes only. Thus, these 

images are only included for sample A1 (Figures 4.10 and 4.11). Samples A20T, H1 and H20T are 

presented with the general EDS spectrum and the 3 separate EDS scans of the general cross-section, 

ferrite and martensite, respectively. 
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A1: 

 

 

 

Figure 4.10 – EDS scan of a general cross-section from sample A1, including EDS spectrum 
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Figure 4.11 – Chemical composition obtained from EDS scans of A1, from (a) ferrite and (b) martensite, 

respectively. The image displays the sections the scans were performed on 
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A20T: 

 
Figure 4.12 – EDS scan results of A20T, including (a) EDS spectrum of a general cross-section, plus chemical 

composition of (b) said cross-section, (c) martensite and (d) ferrite 

 
H1: 

 
Figure 4.13 – EDS scan results of H1, including (a) EDS spectrum of a general cross-section, plus chemical 

composition of (b) said cross-section, (c) martensite and (d) ferrite 
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H20T: 

 
Figure 4.14 – EDS scan results of H20T, including (a) EDS spectrum of a general cross-section, plus chemical 

composition of (b) said cross-section, (c) martensite and (d) ferrite 

 

 

These results from the general cross-section scans are consistent with the bulk material composition 

listed in the material certificate (see Appendix B). There are slight variations from sample to sample, 

but nothing that indicates any drastic changes in the alloy chemistry. 

 

EDS scans cannot be used independently to identify phases, since the chemical composition of 

phases is not a constant factor. However, due to the morphology effects of certain alloy elements, 

one can expect to see more of ferrite formers – and consequently less of austenite formers – in 

phases suspected to be ferrite, and vice versa. From the scans of the phases suspected to be 

martensitic (Figures 4.11 (b), 4.12 (c), 4.13 (c) and 4.14 (c)), we see a higher wt% of austenite formers 

such as Mn and Ni than in the suspected ferritic phase. Consequently, there are higher amounts of 

certain ferrite formers (i.e. Mo, Si and Cr) in the suspected ferritic phases (Figures 4.11 (a), 4.12 (d), 

4.13 (d) and 4.14 (d)) than in their martensitic counterparts.  
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4.4.2 EBSD crystallographic scan results 

 

Samples A1 and A20T were scanned using EBSD in order to properly identify the crystallographic 

structure of the phases present in the alloy. The suspected phases – i.e. ferrite and martensite – have 

differing crystallographic unit cells, and they are thus in theory possible to separate using such 

analysis. However, as discussed in section 2.6.2, the martensitic unit cells (BCT) are difficult for EBSD 

software to separate from ferritic unit cells (BCC), due to the fractional difference in the single lattice 

parameter (and the unknown orientation of the individual BCT cells). Therefore, the EBSD scan could 

not be used to identify martensite, but as a means to separate between martensite/ferrite and 

possible occurrences of austenite. This is a useful tool when evaluating if the structure contained any 

notable amounts of retained or reversed austenite. 

 

Figures 4.15 and 4.16 show the EBSD scans developed from the A1 and A20T samples, respectively. In 

the figures, (a) illustrates a micrographic view of the scan area, and (b) illustrates the identified unit 

cells in the sample, using color coding (see legend in figures). Some areas were not identifiable using 

the software, and were most likely physical or digital pollution caused by particles or code-error.  

 

Figure 4.16 shows the scan performed on the sample containing tempered martensite. As shown in 

the figure, the white areas differentiate from the darker, surrounding phase. The crystallographic 

analysis reveals the white areas to consist of solely BCC unit cells, which is consistent with ferritic 

structure. The surrounding martensite were identified to consist of BCC cells – in reality BCT cells, but 

the software was unable to differentiate between them – mixed with a fair amount of FCC-cells, i.e. 

austenite. This indicates that the tempered sample consists of ferrite and martensite, and where the 

martensitic structure also includes a fine dispersion of austenite. This is believed to be reversed 

austenite, seeing that the austenite content increases from hardened-as-quenched samples to those 

that have been tempered. The thermal energy exposed to the sample during the 8 hours of 

tempering was sufficient to revert some of the as-quenched martensite to the more stable phase of 

austenite. Se section 5.4 for discussion in more detail regarding the phase compositions.  
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Figure 4.15 – EBSD scan of A1, illustrating the identified unit cells in the material crystal structure 

(a) 

(b) 

As-quenched 
martensite, containing 
primarily BCT 
(identified as BCC) 
with small amounts of 
retained austenite 
(FCC) after quenching 
 

Corresponding phase, 
identifying the white 
(suspected ferritic) 
areas in the 
microstructure as 
having a purely BCC 
unit cell based 
structure 
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Figure 4.16 – EBSD scan of A20T, illustrating the identified unit cells in the material crystal structure 

Tempered martensite,  
illustrating that the 
martensitic region 
(BCT identified as BCC) 
contains finely 
dispersed austenite 
(FCC) after tempering 
(i.e. reversed 
austenite), in addition 
to the retained 
austenite found in the 
as-quenched samples 

Corresponding phase, 
identifying the white 
(suspected ferritic) 
areas in the 
microstructure as 
having a purely BCC 
unit cell based 
structure 

(a) 

(b) 
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4.4.3 Heat treatment effect on general grain size 

 

The use of EBSD is often applicable when estimating the average grain size of a polycrystalline 

sample. However, the method is far from usable when evaluating a material consisting fully or partly 

of martensitic or bainitic crystalline structures. The lathe shape and grain orientation of such 

structures infer a severe constraint on the use of such analysis, seeing as it is based on volume-based 

orientation; the plate-like structures of martensite and bainite cause this restriction in current 

analysis software. 

 

Therefore, traditional cross-section analysis was performed in order to create an estimate of average 

grain sizes. Given the contrast quality of Marble’s etch, one can separate martensite and ferrite from 

a general cross section. Marble’s etch causes one to be able to identify the previous γ-γ/γ-δsee footnote 5 

grain boundaries using general image analysis software. Thus, the change in martensitic grain size is 

determined by using the prior austenite grain boundaries. The change in grain size was evaluated 

from the AT-samples, given that hardening at 1000 °C followed by tempering is the standardized heat 

treatment used at NOMAC. 5 images – each measuring an area of 1.2 ∙ 105 µm2 – were used as the 

basis for this analysis, yielding a total analysis area of 6.0 ∙ 105 µm2. The image analysis software 

differentiated between the martensitic (dark) and ferritic (light) areas of the cross-section. The 

average grain size diameter was calculated manually, using the scale on the optical microscopy 

images. The use of an average diameter may yield low values for long, thin grains. Note that the grain 

size was evaluated using cross-sections; the true average grain sizes may differ from the results 

presented. A total mean for each sample was then calculated, and the results are presented 

numerically in Table 4.2, and graphically in Figure 4.17. 

 

Table 4.2 – Average martensitic/ferritic grain diameters in samples A1T, A2T A5T, A10T and A20T 
 
 

 Average grain diameters 

 Martensite Ferrite 

A1T 36.3 µm  18.2 µm 

A2T 36.9 µm 17.4 µm 

A5T 41.8 µm 17.1 µm 

A10T 52.7 µm 18.6 µm 

A20T 67.6 µm 19.4 µm 

                                                           

5
 γ = austenite (γ-iron) / δ = δ-ferrite (δ-iron) 
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Figure 4.17 – Graphical presentation of average martensitic (blue) and ferritic (red) grain diameters for AT-

samples 

 

The average grain diameters cannot be viewed as the definite true values, due to the use of two-

dimensional cross-sections. The average grain size for the martensitic grains appear to undergo an 

exponential rate of growth, proportional to the soaking time at hardening temperature. The average 

ferritic grain diameters appear to be unaffected by the heat treatment. However, the ferritic content 

seems to dominantly take the form of long, stretched grains, thus yielding low average diameter 

values.  

 

Figure 4.18 illustrates examples of how the 

different grains – i.e. δ-ferrite and prior 

austenite boundaries – were identified. 

The lines separating the grains in Figure 

4.18 are for illustrational purposes only, 

and are not as exact as the ones used in 

the actual analysis (performed using 

Adobe Photoshop® CC 6, Edge Animate 

software bundle). 
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Figure 4.18 – Sample A1T: Simplified identification 

of ferritic and martensitic (prior austenitic) grains, 

used to measure the change in grain diameter  
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4.4.4 Estimation of phase fractions 

 

The principle of cross-section analysis was also performed on samples A1T, A2T, A5T, A10T and A20T 

in order to provide a somewhat reliable estimate of the fractions of phases that were present. Adobe 

Photoshop® CC 6 was used for this analysis. There were no noticeable precipitations in the 

microstructure. Therefore, this analysis only differentiated between martensite and ferrite. Note that 

the numbers are purely estimates, based on the analyzed cross-sectional areas. The true phase 

fractions may differ substantially from the results collected from the relevant areas. 

 

The measurements were performed on 5 micrographic images from each sample, totaling an area of 

6.0 ∙ 105 µm2. The results are presented in Figure 4.19 below. The fractions are rounded to two 

significant figures, due to the error margin in the analysis. The fractions are calculated as follows, 

where PF equals Phase Fraction (and is unitless): 

 

𝑃𝐹𝑓𝑒𝑟𝑟𝑖𝑡𝑒 =
∑ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑓𝑒𝑟𝑟𝑖𝑡𝑖𝑐 [𝜇𝑚2]

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 [𝜇𝑚2]
 

 

 

Figure 4.19 – Estimation of martensitic/ferritic phase fractions in AT-samples 

 

Although the numbers are estimates, the analyzed cross-sectional areas show a clear increase in 

martensitic phase fractions, and a corresponding decrease in ferritic phase fractions. This change in 

morphology may have impacted the mechanical properties – simultaneously with other factors – and 

will be discussed in more detail in section 5.4  
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4.5 Control sets (core temperatures) 
 
 

As mentioned in section 3.3, all heat treatments were performed in parallel with a dummy set of 

samples, in order to verify the heating rate of the specimen cores. The dummy set consisted of one 

20 mm x 20 mm x 180 mm rod, and one 12 mm x 12 x 180 mm rod. A center bore – measuring 4 mm 

in diameter – was drilled, running 95 mm from one end. Thermocouples were inserted in the 

samples, and spot-welded in the insertion end. This ensured that no air could penetrate the core 

cavity. The thermocouples were connected to separate Ehlm V temperature loggers. The 

thermometer logged the spot temperature in the thermocouple with 10 second intervals. The 

dummy set was inserted in the furnace chamber simultaneously as the control sample. The furnace 

chamber held the relevant temperature at the time of specimen insertion, i.e. 1000 °C for A-samples, 

and 1030 °C for H-samples. The time it took for the dummy set to reach – and hold a stable core 

temperature for 60 seconds – is shown in Table 4.3 below. All durations are rounded to nearest 10 s. 

 

 

Table 4.3 – Duration of heating until stable core temperature for all hardening processes 

 

Treatment code 

Core heating time 

Large dummy sample 

20 mm x 20 mm x 185 mm 

Small dummy sample 

12 mm x 12 mm x 185 mm 

A1 13 min 20 s 8 min 50 s 

A2 13 min 40 s 8 min 40 s 

A5 14 min 0 s 9 min 20 s 

A10 13 min 30 s 9 min 10 s 

A20 13 min 30 s 9 min 20 s 

A1T 14 min 10 s 8 min 30 s 

A2T 14 min 0 s 8 min 50 s 

A5T 13 min 40 s 9 min 0 s 

A10T 14 min 50 s 9 min 0 s 

A20T 14 min 20 s 9 min 0 s 

H1 13 min 50 s 8 min 50 s 

H2 14 min 10 s 9 min 20 s 

H5 13 min 40 s 9 min 50 s 

H10 14 min 50 s 9 min 40 s 

H20 14 min 10 s 8 min 50 s 

H1T 14 min 20 s 8 min 30 s 

H2T 14 min 20 s 8 min 40 s 

H5T 13 min 50 s 8 min 40 s 

H10T 13 min 40 s 9 min 10 s 

H20T 14 min 0 s 9 min 20 s 
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4.6 Correlation of data sets 

 

Figure 4.20 below shows some correlation graphs for the mechanical properties collected from the 

20 heat treatments. Soaking time is on the X-axis, while mechanical properties are on the Y-axis. 

From statistics, there is a dictum stating that correlation does not imply causation, where the 

meaning is that one cannot use a correlation to infer a causal relationship between the variables. 

However, this dictum does not exclude the possibility that a correlation indicates a possible existence 

of causal relations (Hagen, 2010). The different correlation sets are used in this section to possibly 

verify or reject any indication of whether or not the soaking time shows any tendency to correlate 

with the mechanical properties. The properties shown are from the AT-samples (i.e. samples 

hardened at 1000 °C and tempered at 560 °C for 8 hours). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.20 – Correlation of soaking times and (a) hardness, (b) impact energy, (c) ultimate tensile strength 

and (d) yield strength for AT-samples 

 

None of the data sets indicate any noticeable correlation between the soaking time during hardening 

and the relevant mechanical properties. The correlation graphs for sample sets A, H and HT are 

presented in Appendix E, and indicate the same results as for the AT-samples. Note that this does not 

automatically imply that the soaking time has no any effect on mechanical properties, only that there 

is no noticeable correlation (i.e. correlation coefficient ≈ 0) 
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5. Discussion 

 
5.1 Research assumptions and/or limitations 
 

Overall, the experimental and analytical methods utilized in this thesis were based on a set of 

assumptions and/or limitations. This was done to ensure that the quality of the data is properly 

maintained, and to ensure the verifiability and the reproducibility of the experiments. The 

assumptions and limitations described in the following section are to avoid confusion regarding the 

contents and postulations that formed the basis of the thesis. In regards to the experiments and 

analysis performed, the following is assumed to be true: 

 

 The provided chemical composition for the material is the true composition for the material 

as a whole, and forms the baseline for the composition of alloy elements 

 The temperatures registered in the furnace chamber during testing, and subsequently from 

the dummy samples, are the true temperatures at the given times 

 Slight variations in the time used to remove specimens from the furnace chamber did not 

affect the material properties significantly 

 Measurements given by other calibrated equipment are true values6 

 Averages of collected mechanical properties are representative for the samples7 

 

The thesis is also performed on the basis of the following limitations: 

 

 The quantity of material to be analyzed was restricted; the quantity defined the amount of 

test specimens produced from each heat treatment. Said amount is believed to be 

statistically accurate as a sample 

 Analysis software utilized for EDS and EBSD computed results at a limited rate; the results 

provided by said analysis is for all intents and purposes believed to be genuine 

 

                                                           

6
 There are valid reasons for suspecting that the equipment used to measure the impact energy provides non-valid data. 

This is discussed in further detail in section 5.2.1 
7
 The collected Charpy-V impact values presented in this thesis is not comparable to those normally found when analyzing 

S165M at -20 °C, which are higher than the average values found in this thesis. The main topic of this thesis is to evaluate if 

the alloy experiences any changes in mechanical properties when the soaking time is varied. Thus, the real value is not as 

significant as any occurrence of change in the properties 
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5.2 Quantitative results 
 
The quantitative results collected included (but was not limited to) yield strength, ultimate tensile 

strength, Charpy-V impact energy, hardness, elongation, contraction, modulus of elasticity plus 

various fractions and compositions. Few of these quantities change noticeably, even with a high 

increase in soaking time. It is postulated that the constant mechanical properties is a sum function of 

the subsequent changes to the morphology for longer soaking times. This is discussed in more detail 

in later section. 

 

The displayed properties show a high level of consistency when confined to specimen groups (i.e. A, 

AT, H and HT). Most of the changes between specimen groups are to be expected, i.e. the drop in 

hardness for tempered samples when compared to their as-quenched counterparts. However, there 

is no evidence that a variation in the soaking times at the hardening temperatures has any noticeable 

effect on mechanical properties such as yield strength, ultimate tensile strength and hardness. 

 

5.2.1 Charpy-V impact energy 
 

The measured Charpy-V impact energy values ranged from 105.1 J (A20) to 132.1 J (H20), as seen in 

Table 4.1. Although the difference from the highest to the lowest exceeds 25 J, the average of the 

total number of tests equal 122 J with a standard deviation of 6 J. 75 % of the data points lie within 

1σ of the average, and 95 % of the data points lie within 2σ.  

 

From section 4.6, we see that the variation in soaking times seems to have no correlation with the 

impact energies of the samples. This is valid for both the as-quenched and the tempered samples. 

However, this is not the expected values for impact energy when comparing as-quenched samples to 

tempered samples. Normally, tempering is performed in order to increase the ductility of a material. 

This occurs due to the removal of grain boundary strains and dislocations (Bhadeshia & Honeycombe, 

2006). The tempered samples seem to provide – on average – the same impact energy values as 

those that are as-quenched. When primarily austenitic before quenching, the resulting micro-

structure is mostly martensitic. The microstructure analysis of the as-quenched samples – both for 

hardening at 1000 °C and 1030 °C – indicate that the majority of the phase composition is 

martensitic. This would imply a fairly brittle microstructure, since as-quenched martensite normally is 

very brittle (Callister & Rethwisch, 2011). No noticeable increase in ductility is registered. However, it 

has been discussed with metallurgists and material engineers at NOMAC that this may be due to lack 

of calibration of the testing apparatus. 
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5.2.2 Hardness testing 
 

The material hardness was measured using Hardness Vickers. The Hardness Vickers test normally 

tests areas ranging from 10000 µm2 – 40000 µm2, and is often characterized as microhardness. It is 

applicable in order to gauge the hardness of smaller fractions of the material sections (i.e. the 

hardness of specific phases). Although some standards present conversion tables between Hardness 

Vickers and Hardness Brinell8, the accuracies of these conversions are limited. This is because the 

standardized tables are based on plain carbon and/or low-alloy steels.  

 

Hardness Vickers – unit HV – measures hardness by applying a standardized diamond pyramid into 

the sample, and calculating the hardness using the diagonals of the resulting indentation. The applied 

load was 10 kg, and the load duration was 10 s. The as-quenched samples yielded Hardness Vickers 

values in the range of 346 HV – 350 HV for a hardening temperature of 1000 °C, and values in the 

range of 342 HV – 354 HV for a hardening temperature of 1030 °C. The tempered samples yielded 

hardness values that were lower than the as-quenched samples. This was to be expected, seeing that 

the results of a tempering process is to relieve stresses and embrittlement from the structure, 

yielding a material less resistant to plastic deformation (Hibbeler, 2008). The tempered samples 

produced hardness values that were 22 – 29 HV lower than their as-quenched counterparts (i.e. 

when comparing samples with equal soaking times, for example A5 and A5T). 

 

The collected HV values are remarkably consistent, and there are no indications that the HV values 

have any correlation with the soaking time at the two analyzed hardening temperatures. However, 

this does not mean that any morphological changes occur that does not impact the hardness. This is 

discussed in greater detail in section 5.4. Also, even though the change in hardness values were to be 

expected, the HV values dropped by a factor that was lower than what is expected for tempered low-

carbon martensitic ferritic steels. It is suspected that the tempering temperature plays a critical role 

in the development of the hardness values. The Holloman-Jaffe parameter presented in section 2.5.3 

is very sensitive for this alloy composition, ranging from 15.7 – 18.2 for the tempering temperature 

interval of 480 °C – 600 °C (Hollomon & Jaffe, 1947). This indicates that a higher tempering 

temperature would yield a greater drop in hardness for the tempered samples. 

                                                           

8
 Single Hardness Brinell tests – unit HB – were performed on all 20 heat treatments. The individual values are 

found in Appendix G. The HB-values are not included in the discussion, as it only validated the consistency of 

the material hardness. Thus, the discussion focuses on discussing Hardness Vickers values. This was determined 

after discussing results with NOMAC (att. Håkon Jørgensen). 
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5.2.3 Validity of data (standard deviation) 
 
 

Standard deviation is, from the field of statistics, a useful tool to quantify the amount of variation 

within a specific data set. A standard deviation close to 0 indicates that the data points tend to be 

very close to the average value of said data set, while a high standard deviation value indicates that 

the data points are spread more from the average. The numerical value of the standard deviation is 

always measured against the average, i.e. a data set with an average of 10 and a standard deviation 

of 8 has a far higher data spread than that of a data set with an average of 100 and a standard 

deviation of 12. 

 

From the quantitative results (Table 4.1) it is clear that the samples provided data sets with low 

standard deviation values, relative to the measurement. For sample sets with 20 individual 

measurements (i.e. hardness testing), this is to be expected if the equipment is properly calibrated 

and the methodic is followed consistently. However, an equally low level in the standard deviation 

values for those samples with only 2 individual measurements (i.e. tensile stress testing) indicates 

that the data is either a) highly reliable, or b) subject to a random occurrence, causing similarly equal 

results. Given the fact that the standard deviation for all tensile stress test measurements – including 

yield point and ultimate tensile strength – was consistently below 1.0 % of the average values, it is 

fair to claim that the quantitative data collected has a high level of validity. Therefore, the tensile 

stress test results are deemed to be reliable.  
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5.3 Microstructure analysis 
 

5.3.1 Effect of hardening temperatures (1000 °C and 1030 °C) on general microstructure 
 
The resulting microstructures of the two hardening temperatures are very comparable when the 

samples are exposed to equally long soaking times. For example, the microstructure of sample A1 is 

comparable to that of sample H1, as seen in Figure 5.1. The microstructure of sample A20 is 

comparable to that of H20, as seen in Figure 5.2. Tempered samples (A1T VS. H1T and A20T VS. 

H20T) are also included in the figures, and show the same tendency. 

 

The orientation of the δ-ferrite seem to be of a random nature, and not dependent on the hardening 

temperature. There is no indication that the ferrite aligns in a uniaxial direction when exposed to 

longer soaking times during hardening, or during tempering. As examined in equivalent low-carbon 

alloys (Kokawa, Kuwana, & Yamamoto, 1989), the lacy and vermicular morphologies of the δ-ferrite 

co-exist. These morphologies are the most thermodynamically stable at room temperature for δ-

ferrite. The coloring of the micrographs is not related to the microstructure, but the parameters used 

in the light microscope to obtain the highest possible resolution/contrast for the different samples. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.1 – Comparison of microstructures at 20X magnification, showing samples (a) A1, (b) H1, (c) A1T and 

(d) H1T 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.2 – Comparison of microstructures at 20X magnification, showing samples (a) A20, (b) H20, (c) A20T 

and (d) H20T 

 
 

From the microstructural analysis, there are no results indicating that hardening at 1000 °C yields a 

different microstructure than when hardening at 1030 °C. 

 

The figures seem to indicate that the ferrite content decreases when the material is exposed to 

longer soaking times, which is in thread with the analysis performed on cross-sectional areas. This is 

discussed in more detail in section 5.3.2.  

 

The ferritic grains also experience a shape-change, possibly related to the soaking times. The ferritic 

grains seem to evolve from lacy/vermicular grains to globular grains. This may have impacted the 

original forging characteristics of the microstructure. Further analysis is offered in section 5.3.4. 
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Figure 5.4 – Computed S165M phase diagram, amount of phases VS. 

temperature. The austenitic phase composition for A and H at equilibrium 

is marked in red (NOMAC v/ Håkon Jørgensen, 2015) 

 

5.3.2 Effect of soaking time on ferrite content 
 
As presented in section 4.4.4, the ferrite content in the microstructures decreases when the soaking 

times increase. This indicates that the ferrite content has an inverse proportional relationship to the 

soaking times the samples are exposed to. This decrease in ferrite content is also evident if 

micrographs from short and long soaking times are compared, as in Figure 5.3. 

 

 

(a) 

 

(b) 

Figure 5.3 – Micrographs at 20X magnification from (a) A1T and (b) A20T. The decrease in ferrite content is 

evident 

 

Figure 5.4 shows the computed phase diagram for S165M, based on the chemical composition of 

charge A19606 (see Table 2.2). The phase diagram is an illustration of the equilibrium state of the 

material, i.e. if the material is allowed to fully thermodynamically stabilize at given temperatures. 

The two hardening temperatures 1000 °C and 

1030 °C are marked in the figure, illustrating 

that the composition of S165M is fully 

austenitic if allowed to reach equilibrium. The 

longer the soaking time is, the closer the 

material is able to approach its equilibrium 

state. The reduction of ferrite content with 

longer soaking times at hardening 

temperatures is logical, seeing that the 

equilibrium states at both of the hardening 

temperatures is fully austenitic. The 

increased austenite content causes the 

subsequent increase in martensite 

content after quenching. 
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5.3.3 Longitudinal VS. Transverse microstructure 
 
All of the microstructure analyzed in sections 4.2 and 4.4 are from longitudinal samples, i.e. they are 

viewed in the cross-section of the tensile stress test rods. In order to establish a basis for the three-

dimensional microstructure, transverse samples from A1T and A20T were analyzed. The resulting 

microscopic images are shown in Figure 5.5, along with the corresponding longitudinal samples. 

Transverse samples 

 
(a) 

 
(b) 

Longitudinal samples 

 
(c) 

 

 
(d) 

Figure 5.5 – Longitudinal VS. Transverse microstructure in samples A1T and A20T at 20X magnification, 

where (a) A1T transverse; (b) A20T transverse; (c) A1T longitudinal; (d) A20T longitudinal 

 

The results show that the transverse samples exhibit very similar microstructures to those of the 

longitudinal samples. This implies that the two-dimensional images created from either of the cross-

sections are representative for the three-dimensional microstructure. The images clearly illustrate 

how the ferrite content decreases in correlation with an increasing soaking time at hardening 

temperature, as calculated in section 4.4.4. It was suspected that the orientation of the δ-ferrite 

would change when switching from a longitudinal to a transverse viewing angle. However, these 

results indicate that the orientation of the ferritic grains is a random function, entirely independent 

of how the microstructure is observed.  
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5.3.4 Effects of soaking time on original forged grain structure 
 

Another notable result stemming from the examination of longitudinal VS. transverse samples is the 

evolution of the ferrite grain shape with the increase soaking times. From the figure, it is evident that 

the general ferrite grain morphology evolves from the symbiotic lacy/vermicular forms into globular 

grains. This is in addition to the fraction of the ferrite dissolving and transforming into martensite. 

The samples hardened for 1 hour seem to retain the stretched ferritic structure one often finds in 

forged steels. When the soaking time is increased, the effects gained from the forging process are 

diminished. The ferrite transforms into more stable, globular grains (see Figure 5.5). 

 

During the longer soaking times, the samples are exposed to a larger sum amount of thermal energy. 

This thermal energy alters the phase composition by increasing and/or decreasing the amount of free 

energy stored in the crystal structure. This allows the structure to approach its equilibrium state, 

which consists of less ferrite. This implies that the heat treatment is the sole contributor to the 

alteration of the material phase composition, and that an increasing soaking time at hardening 

temperatures may affect the grain distribution of ferrite in the material structure. 

 

The continuous grain flow achieved through forging is a strengthening contributor. However, the 

results seem to indicate that the reduced grain flow has little to no effect on the material properties. 

It is worth to note that this change in microstructure cannot be analyzed independently. It is likely 

that the constant mechanical properties is a sum function of the alterations examined in the 

morphology of the material by exposing it to prolonged soaking times. The weakening factors are 

assumed to be the growth of martensitic grains and the loss of continuous grain flow. The 

strengthening factors are assumed to be the decrease of the ferrite fraction, and the increase of 

martensite. Together these factors combine and affect the material properties in opposite directions, 

yielding an average that remains relatively unchanged. This is discussed in further detail in section 

5.4. 
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5.4 Morphologic changes and subsequent effects on material properties 
 

5.4.1 Average martensitic grain diameters VS. Phase fractions of ferrite 
 

There are many factors that contribute when one is evaluating how the general strength and 

toughness of a material changes. The list includes (but is not limited to) alloy composition, atomic 

density, lattice structure, crystal morphology, phase distribution and grain size. The latter is often 

alterable through heat treatment, where one subjects an alloy to thermal energy. This thermal 

energy may alter the level of free energy within the material structure, causing a rearrangement in 

the global crystallographic structure and a subsequent change in mechanical properties. 

 

Metallurgic theory illustrates a strong support for the relation between a material grain size and the 

corresponding material strength that evolves from said size. The Hall-Petch equation9 is a relevant 

example of how such a corresponding mathematical relationship has been established (Morris, 

2004). The logic behind this connection is simple; the smaller grains a material has, the larger is the 

total amount of grain boundaries. On these boundaries we often find dislocations and concentrated 

shear strain, increasing the material ability to resist further deformation. Thus, there is a logical 

connection behind the grain sizes in the material and the material strength. 

 

The data from the microstructure analysis indicated that the average martensitic (i.e. prior 

austenitic) grain diameters increased when exposed to corresponding increasing soaking times at 

hardening temperatures. The grain diameters evolved from 36.3 µm when held at hardening 

temperature for 1 hour, into 67.6 µm when held at 20 hours. If assuming ceteris paribus, this should 

have had detrimental effects on the general material strength, seeing as the average grain size 

increased by over 82 % when comparing the samples hardened for 1 and 20 hours, respectively. 

However, as seen in sections 4.1 and 4.3, the mechanical properties remain relatively unchanged. 

This is despite the fact that the growth in grain size occurs. The material properties therefore 

contradict established theory. This is an indication that other factors play a significant role in terms of 

altering the mechanical properties. 

 

The distribution and formation of different phases also play an important role in terms of how a 

material can resist deformation. In ferritic-martensitic steels, the ratio between ferrite and 

martensite play a substantial role in terms of mechanical properties. For tempered martensitic 

                                                           

9
 σy = σ0 + Kyd

-1/2
, where σy is the yield strength, Ky is the Hall-Petch slope and d is the average grain diameter 
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ferritic steels, a lower ferrite fraction normally yields better results in terms of tensile strength. At 

the same time, it normally affects ductility negatively (Pouranvari, 2010). As seen in section 4.4.4, the 

estimated ferrite fraction based on image analysis decreased with increasing soaking times. The 

ferrite fractions ranged from approximately 0.19 in the sample soaked for 1 hour at 1000 °C down to 

as little as 0.11 for the sample soaked for 20 hours at the same temperature. Due to the expected 

effects of the changing average martensitic grain sizes, it may be possible that the decrease in ferrite 

content has had a positive effect on the mechanical properties of S165M. 

 

Figure 5.6 illustrates the average martensitic (i.e. prior austenitic) grain diameters and the estimated 

ferrite content in the respective samples, where the former is marked by a red line and the latter is 

marked by a black line. The axises are scaled in order to highlight the change in either property. The 

inverse relationship between the factors is remarkably consistent, and the graphs seem to correlate 

negatively. It is possible that since these processes seem to have taken place simultaneously, they 

have enabled the alloy to exhibit consistent material properties; the increase in grain diameters have 

had a negative effect, but the decrease in ferrite content may have had a positive effect. Note that 

the horizontal axis is not scaled to represent the factor of time (thus yielding graphs that appear to 

behave more exponentially than they actually do). 

 

 

Figure 5.6 – Average martensitic grain diameter (red) and phase fraction of ferrite (black) in AT-samples 
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5.4.2 Effect of tempering on reversed austenite formation 
 
The EBSD scans of samples A1 and A20T illustrated that the austenite was present in both the as-

quenched and tempered samples. Figure 5.7 shows the samples set up side by side for comparison. 

 

 

(a) 

 

(b) 

Figure 5.7 – EBSD unit cell identification scan, showing (a) A1 and (b) A20T. The pink pixels correspond to 

BCC/BCT, and the green pixels correspond to FCC. Black pixels are unidentified (i.e. signal pollution) 

 

The scans show that varying amounts of austenite is present in both samples. In the as-quenched 

sample (A1), the present austenite is categorized as retained austenite (austenite that did not fully 

transform into martensite during quenching). The tempered sample (A20T) shows a massive increase 

in austenite in the martensitic structure. The tempered sample consists of a mix between retained 

austenite and reversed austenite, where the majority of the present austenite in this sample is of the 

latter type. Studies have shown that the tempering temperature has a direct effect on the formation 

on reversed austenite during tempering of martensitic steels (Song, Rong, & Li, 2011). Normally, the 

formation of reversed austenite starts at 550 °C (i.e. the formation-start temperature). The 

tempering temperature used in this thesis was consistent at 560 °C. It is believed that it was the 

tempering process that yielded the formation of reversed austenite, not the hardening process. The 

amount of formed reversed austenite affects the tensile properties of the material. The effect on the 

tensile properties is directly proportional to the difference from the formation-start temperature, i.e. 

that higher tempering temperatures have substantially larger effects on the tensile properties. The 

difference between the tempering temperature and the formation-start temperature (∆T) was only 

10 °C. It is believed that the reversed austenite had no noticeable effect on the properties other than 

affecting the decrease in hardness. A larger ∆T could yield a larger effect on tensile properties. 
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5.5 Method: Weaknesses and improvement proposals 
 

Whenever an experimental method is applied, care must be taken in order for it to be possible to 

reproduce the gathered results. This thesis relies on numerous experiments with varying elements of 

accuracy. The key unverified variable is the possibility that testing apparatuses were improperly 

calibrated. The results in this thesis are based on several measurement devices, which may or may 

not have been calibrated. However, seeing as the main purpose was to identify any change in 

mechanical properties and/or morphology, the grade of change was equally – if not more – 

important than the true values themselves. 

 

For further testing and/or analysis regarding this alloy, it is recommended to pursue the following 

elements (due to the reasons listed): 

 

 Microstructural analysis: Analyze the longitudinal and transverse microstructure in all 

separate heat treatments, in order to verify the development of the microstructure in all 

stages 

 EBSD sample examination: Examine and compare the crystallography for solely as-quenched 

samples. This will reduce any uncertainty produced by the tempering process. 

 Effect of tempering durations: Vary the duration the samples are tempered, in order to 

possibly quantify the optimal duration for the given alloy composition 

 Detailed phase fraction analysis: Increase the analyzed cross-sectional area, so that the 

computed phase fraction estimates become more reliable. Also, utilize area calculations 

instead of average grain diameters. This will increase the reliability of the data 

 Quantification of phases: The use of SEM-techniques to more accurately quantify the 

present phases in the alloy is recommended. For this alloy – given the increased presence of 

austenite in tempered samples – it is recommended that one uses EBSD in order to provide 

detailed grain volume information 

 Charge variation: Analyze samples taken from different – but chemically equivalent – 

charges, in order to verify that it is said composition that is the main factor that affects the 

general material properties (pre-heat treatment) 

 

 



 
Master’s Thesis  André Ruså-Lie  Spring 2015  Page 69 

This page has intentionally been left blank 

  



 
Master’s Thesis  André Ruså-Lie  Spring 2015  Page 70 

6. Conclusion 
 

This thesis focused on examining if the time a martensitic ferritic stainless steel was soaked at the 

hardening temperature had any effect on the material properties and/or its morphology. Two 

hardening temperatures were used in this thesis, i.e. 1000 °C and 1030 °C. Samples were soaked for 

1, 2, 5, 10 and 20 hours at both hardening temperatures. Both as-quenched and tempered samples 

were analyzed and compared. Based on the collected data and subsequent analysis, the following 

general conclusions can be drawn: 

 

 Soaking times up to and including 20 hours at hardening temperature has little to no 

outwardly evident impact on mechanical properties such as yield strength, ultimate tensile 

strength, elongation, contraction, hardness and/or ductility. The values stay within what is 

deemed to be a natural statistical variation, regardless of soaking time 

 The use of 1000 °C and 1030 °C as hardening temperatures are deemed to be mutually 

exclusive in terms of resulting microstructures and mechanical properties. This is given equal 

soaking times at both temperatures. Neither temperature show signs of carbide precipitation 

 Longer soaking times decreases the present ferrite fraction, because it approaches its 

equilibrium state, where the structure is fully austenitic 

 Longer soaking times yield a linear growth of average martensitic (i.e. prior austenitic) grain 

diameters. The growth of the martensitic grains is believed to be somewhat proportional to 

the soaking time. The ferritic grains does not experience an equivalent growth, but 

experience a change in grain form (transformation from an outstretched vermicular to a 

globular grain structure) 

 There seems to be a negative correlation between the average martensitic grain diameters 

and the ferrite fractions, where the former increases and the latter decreases with longer 

soaking times. These parallel processes are believed to be the main cause for why the 

mechanical properties remain unchanged, as they counteract each other 

 The martensite in the as-quenched samples contains small amounts of retained austenite. 

The tempered martensite contains high amounts of reversed austenite. It is not believed that 

the reversed martensite is the primary cause for the lower mechanical properties in 

tempered samples, but is believed to aid in reducing the strength and hardness 

 The factors by which the morphological changes affect the mechanical properties have yet to 

be quantified 
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In relation to the thesis question, it is justifiable to conclude on the following key points: 

 

 The mechanical properties remain relatively constant, regardless of soaking time. There is 

not found any direct correlation between increasing/decreasing soaking times and tested 

mechanical properties 

 

 The soaking times at hardening temperatures alters the material morphology. An increased 

soaking time leads to: 

  Growth of average martensitic grain diameters (i.e. prior austenitic grain diameters) 

 Reduction in material ferrite fraction (and subsequent growth of martensite fraction) 

 

 The changes in the morphology negatively correlate. They are believed to produce 

constant mechanical properties, due to the sum function of the morphological changes 

 

 The two tested hardening temperatures do not produce statistically varying mechanical 

properties and/or morphologies, and are deemed to be mutually exclusive 
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Appendix A – Data sheet (S165M) 
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Appendix B – Material certificate for charge A19606 
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Appendix C – Stress VS. Strain curves from raw data 
 
All heat treatments had 2 separate tensile stress tests. Both graphs are indicated in the same 

diagram for a specific heat treatment. 

A1 

 

 

A2 
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A20 

 

 

 

 
A1T 
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A2T 

 

 

 

 
A5T 
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A10T 

 

 

 

 
A20T 
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H20 
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H2T 
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H10T 

 

 

 

 
H20T 
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Appendix D – Optical light micrographs w. different magnifications 
 

D.1 - 10X magnification 
 

As-quenched A-samples (1000 °C, A1 – A20) 

 

A1 

 

A2 

 

A5 

 

A10 

 

A20 
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Tempered A-samples (1000 °C, A1T – A20T) 

 

 

A1T 

 

A2T 

 

A5T 

 

A10T 

 

A20T 

 

  



 
Master’s Thesis  André Ruså-Lie  Spring 2015  Page 91 

As-quenched H-samples (1030 °C, H1 – H20) 

 

 

H1 

 

H2 

 

H5 

 

H10 

 

H20 
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Tempered H-samples (1030 °C, H1T – H20T) 

 

 

H1T 

 

H2T 

 

H5T 

 

H10T 

 

H20T 
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D.2 – 50X magnification 
 

 As-quenched A-samples (1000 °C, A1 – A20) 

 

A1 

 

A2 

 

A5 

 

A10 

 

A20 
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Tempered A-samples (1000 °C, A1T – A20T) 

 

 

A1T 

 

A2T 

 

A5T 

 

A10T 

 

A20T 
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As-quenched H-samples (1030 °C, H1 – H20) 

 

 

H1 

 

H2 

 

H5 

 

H10 

 

H20 
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Tempered H-samples (1030 °C, H1T – H20T) 

 

 

H1T 

 

H2T 

 

H5T 

 

H10T 

 

H20T 
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Appendix E – Correlation with soaking time for A, H and HT-samples 
 

E.1 – A-samples 
 
 

 

(a) 

 

 

(b) 

 

(c) 

 

 

(d) 

Correlation of soaking times and (a) hardness, (b) impact energy, (c) ultimate tensile strength and (d) yield 

strength for A-samples 
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E.2 – H-samples 
 
 

 

(a) 

 

 

(b) 

 

(c) 

 

 

(d) 

Correlation of soaking times and (a) hardness, (b) impact energy, (c) ultimate tensile strength and (d) yield 

strength for H-samples 
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E.3 – HT-samples 
 
 

 

(a) 

 

 

(b) 

 

(c) 

 

 

(d) 

Correlation of soaking times and (a) hardness, (b) impact energy, (c) ultimate tensile strength and (d) yield 

strength for HT-samples 
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Appendix F – Reliability of experimental/analytical methods 
 
F.1 EBSD 
 

EBSD is a widely popular and used analysis tool. However, the statistical reliability of EBSD based 

results is open for discussion, since typical volumes analyzed using such methods are significantly 

smaller than those analyzed using other techniques (for example XRD). If a material with a fine 

microstructure is to be examined, there is a wide tendency to use smaller step sizes. This limits the 

investigation to relatively small areas in order to be able to complete the measurements within a 

reasonable amount of time. This raises the problem where generalized conclusions regarding global 

material information are drawn based on information collected from a very small material volume. 

 

The reliability of EBSD as a conclusion tool is limited. Different techniques have been tested in order 

to determine phase fractions in TRIP steels. Those studies have proven to show a rather large 

variance in the results, indicating that possibly false conclusions regarding the material 

macrostructure are drawn from utilizing techniques incorrectly (Jacques, et al., 2009). However, if 

allowed an adequate sampling size, the EBSD scan points can be estimated to be statistically accurate 

for determinations regarding the general material structure. The EBSD scans in this thesis focused on 

producing results gained from scans using relatively small step sizes (i.e. a high number of sampling 

points). Therefore, it is believed that the EBSD scan results obtained in this thesis are reliable. 

 

F.2 Threaded tensile stress test connectors 
 

The tensile stress test specimens were post-machining too short to be correctly inserted into the 

testing device. Therefore, an elongation-connector had to be manufactured, using threads to 

connect and disconnect it from the different tensile stress test specimens. Given the nature of 

threaded connections, it is useful to examine if whether the threaded connection had a noticeable 

impact on the tensile stress testing results. 

 

The connector was constructed using St-37 structural steel, using an outer diameter sufficiently large 

enough to not be affected by the tensile stress testing. A center bore, measuring 14 mm in diameter, 

was drilled 45 mm from one end. An M16 x 2 internal thread with tolerance 6G was machined in the 

connector, which corresponded to the external M16 x 2 threads on the tensile stress test specimens, 

machined with tolerance 6g. 
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Threaded connections should normally be designed so that the female (i.e. internal) threads break 

prior to the male threads experiencing stripping. However, given the nature of the tensile stress test, 

the connector could not fail under tension prior to the actual test specimen, as this would not enable 

the specimen to fail. This is why the large thread dimension and corresponding tolerance classes 

were used. There was also the issue with the bolt material (i.e. the test specimen) exhibiting far 

greater material properties in terms of yield strength. Material theory of threads dictate that if the 

bolt material is stronger than the nut material (as in this case), the bolt threads would tear out the 

nut threads in case of failure (ASTM, 2014). The failure would occur at the root of the nut threads. 

Also, in order to prevent yield in the weaker threads, the length of the thread must be sufficient to 

provide an adequate surface contact area between the male and the female threads. For M16 x 2 

threads that are 40 mm long, a factor of yield should not be a problem. 

 

One test occurred, where a suspected yield and/or slight failure of the threads affected the results in 

terms of elongation on sample H5. See the figure for an illustration on how this affected the 

stress/strain curve. This was corrected for when calculating the yield and ultimate tensile strengths 

of the material. The threaded connectors were deemed to be sufficiently dimensioned, and is not 

believed to have affected the test results. 

 

 

 

Excerpt of stress/strain curve for sample H5. The noticed strain effect is marked in the figure 
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F.3 Consequences of varying heating durations (pre-hardening) 
 

As explained in section X, a dummy set of samples were inserted in the furnace chamber 

simultaneously with all 20 heat treatments. This dummy set recorded the time it took for the 

samples to reach a stable core temperature equal to the relevant hardening temperature. The 

dummy set consisted of one rod measuring approximately 20 mm x 20 mm x 185 mm and one rod 

measuring approximately 12 mm x 12 mm x 185 mm, both with air-sealed thermocouples attached. 

The larger dummy sample used – as expected – longer time to reach a stable core temperature than 

its smaller counterpart. The core heating times for the large sample varied from 13 min 20 s up to 14 

min 50 s, averaging at 14 m 0 s. The core heating time for the smaller sample varied from 8 min 30 s 

up to 9 min 50 s, averaging at 9 min 10 s. 

 

The temperature loggers did not provide live data output. Therefore, it was not possible to adjust the 

soaking time according to the core heating times, i.e. a sample hardened for 1 hour with an average 

heating time of 11 minutes was not located in the furnace chamber for a total of 1 hour and 11 

minutes, only 1 hour. The soaking times at hardening temperatures thus include the core heating 

times. Smaller soaking times were more affected by this variation, seeing that subtracting 10 – 12 

minutes from a total of 60 minutes (i.e. 1 hour) makes a greater relative difference than subtracting 

the same amount from 1200 minutes (i.e. 20 hours). Therefore, if the purpose is to replicate the 

experiments, these heating times must be taken into account. 

 

It is not believed that the varying core heating times had any noticeable effect on the resulting 

mechanical properties and/or microstructural analysis performed in this thesis. However, there are 

possible factors that may have resulted in an increased level of inaccuracy in the reported core 

heating times. The primary error causes are mechanical. The spot-welded air seal may in reality not 

have been air-sealed, causing the pre-warmed air in the furnace chamber to affect the 

thermocouple. Also, the hole drilled in the dummy samples had to be drilled with a clearance 

allowance for insertion of the thermocouple. The consequence of this was that the thermocouples 

were surrounded by air within the dummy samples, which may have been more easily affected by 

the surrounding heat (seeing that the conduction of thermal energy is far greater in steel than in air).  

 

As noted in section 5.1, it is assumed that the reported temperature values from the furnace 

chamber and the dummy samples to be the true temperature values. 
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Appendix G – Hardness Brinell values 
 

Brinell Hardness was measured at NOMAC. One indentation per sample was performed and 

measured. The diameter of the steel ball was Ø10 mm. The applied load was 3000 kg. The load was 

held for 20 seconds. The diameter of the indentation was measured visually with the aid of a 

measuring rod. 

 

Sample Hardness Brinell [HB] 

A1 321 

A2 353 

A5 353 

A10 353 

A20 353 

A1T 302 

A2T 302 

A5T 302 

A10T 302 

A20T 302 

H1 353 

H2 353 

H5 341 

H10 341 

H20 341 

H1T 302 

H2T 302 

H5T 302 

H10T 302 

H20T 302 

 

 
The samples show consistent HV values, except for sample A1. This anomaly is believed to be a 

combination of (a) measurement error and (b) uncertainty due to only a single applied indentation. A 

larger number of indentations would possibly yield more consistent data. However, the size of the 

indentation VS. the specimen sample made this impossible. 
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Appendix H – Schematics of test piece preparation 
 
 

 


