u

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:

Master of Science in Computer Science, The spring semester, 2022
specialisation in Data Science ‘ :
Open / Confidential
Author: Dawit Habtemariam Kidane -
........ [l I hidose

(signature author)
Course coordinator:

Supervisor(s): Professor Reggie Davidrajuh
Co-supervisor: Daniel Barati
Thesis title:

Forecasting bicycle traffic in cities

Credits (ECTS): 30
Keywords:

-Machine learning

_Data Engineering + appendix: Quereens
-Bike theft forecasting
Stavanger, 15/06/2022

-Bike traffic forecasting date/year

Approved by the Dean 30 Sep 21
Faculty of Science and Technology

Forecasting Bicycle "Iratfic
i Cities

Bike Theft & Bike Traffic Predictions

Dawit Habtemariam Kidane - June 15, 2022

FORECASTING BICYCLE TRAFFIC IN CITIES - DAWIT H. KIDANE 1

F N 015 1 = o TR 4

1. INrOAUCHION ..o 5
1.2 Problem definition..........cccocoiiiiiiiiiiiiiiiii 7

2. Literature Review and Formulation of the problem.............ccccooiiiiiin. 9
2.1 Literature reVIeWccccooviiiiiiiiiiiiiiccc e 9

2.1.1 BikeFindercccccociiiiiiiiiiiic e 9

2.1.2 Machine Learningcccccceuvieuriniciniininicisincesecsissesicsecees 9

2.1.3 SCIKIt-1@AIN ... 10

2.1.4 Machine learning evaluation methodsccccccovuvicirinicinnaee. 10

3. Method and DeSIgNcooeiiiiiiiiiiiiiieeee s 12
3.1 0verall Designccooiiiiiiiiiiiiie 12

3.2 Modular Approach ..o 13

3.4 Design AIteInativescoouieiiiiiiiiiiiicc 16

4. IMpIementation ... 17
4.1 Implementation fIOW ..o 18

4.2 Data EXtractionc.ccocoiiiiiiiiiiniiiii 19

4.3 Data Cleaning..........ccovueiiiiiiiiiiieicieeeeee s 19

4.3.1 Theft data cleaning............ccccceuvicuriniciriiininicrcrcece e 19

4.3.2 Traffic data cleaning..........c.cccceueueueieeinicicicccicccccccccee 22

4.4 Data Preparingccccceeveiiiiiiiiiiiiiiieiiecc e 24

4.4.1 Theft Data Preparation..........cccccceuvicuniiininicninicnicsncescne 24

4.4.2 Traffic data preparation..........ccccccccueueieecciccccccccccccennes 28

4.4.3 Chicago crime data cleaning & preparationcccccccuveeeee. 30

4.5 Machine 1arningccccceoiriiiiiiiiniiiiiiccse 31

4.5.1 Method evaluation on Chicago crime data............cccoeuevcurunnne. 31

4.5.2 KNN 1egTeSSION.....ccviviiitiietiiietiietete e 34

4.5.3 CIUSEOTINGooveviiiiiciciie et 37

FORECASTING BICYCLE TRAFFIC IN CITIES - DAWIT H. KIDANE 2

4.6 AAAIHHONAL FEATUTE e e 38

5. Testing, Analysis and ReSUIS..........ccoiiiiiiiiiiiiiiiiiii s 39
5.1 5amPle TUNS.....ooviiiiiiiieie e 39

5.1.1 BikeFinder theft datac.cocovvrnrnennnnrrreree e 39

5.1.2 Police theft data.......cocovverrerinninirreeee e 40

5.1.3 BikeFinder traffic data.......c.ccccoveeinieeninieciniiiciniccncceeen 41

5.1.4 Stavanger traffic data..........cccocovviiiniiinn 42

5.1.5 Theft forecasting results............cccoucuviniciriciinicinicnnceccaes 43

5.1.6 Traffic forecasting resultscccocoovivvvninnnnnne, 44

5.2 Data usSed.....cccuiiiiiiiiiiiiiiii 45

5.3 Result ANalysiscccooiiiiiiiiiiiiiicc 46

6. DISCUSSION.......cviiiiiiiiii i s 48
6.1 Originality of this WOTKccccciiiiiiiiiiiii 48

6.2 FUTTher WOTKouviiiiiiiiiiiiiiiccce e 49

7. ACKNOWIEAgMENTS ... 50
References........oo i 51
APPENAIX-A . 53
Al: Complete code: ... 53

FORECASTING BICYCLE TRAFFIC IN CITIES - DAWIT H. KIDANE 3

Abstract

In this project the task is to predict bicycle theft and bicycle traffic in a city using
machine learning methods. The project proposal was given in collaboration with BikeFinder
AS, a Petter Stordalen’s “Strawberry Million” award winning company established in 2015.
Bicycle theft is a problem in many places around the world and one of the objectives in this
thesis is to help preventing it, based on data science analysis and machine learning methods
applied on existing data. Predicting bicycle traffic as well as analyzing the factors that might
affect traffic is another important goal for this thesis. However, throughout the project it is
expected to work on various other steps such as gathering the relevant data, pre-processing,
evaluating and comparing methods and results. It is also important to optimize and improve
the performance of the methods to achieve as accurate results as possible. Lastly, interpreting
the results, and solving the questions asked in the thesis.

The project has been solved by first, gathering BikeFinder theft and traffic data,
Stavanger weather conditions data, Rogaland Police District bike theft reports data and data
from the bike counting sensors in the city of Stavanger. Secondly, various steps of
preprocessing has been done on the data according to the use cases. Afterwards, machine
learning method evaluations and comparisons, using a neutral and larger dataset, Chicago
crime dataset was accomplished. Thereafter, applying the best performing methods on the
theft and traffic datasets, as well as forecasting bike theft and traffic has been achieved.
Finally, results interpretation and discussion on the findings of the project.

The findings in this project reflects that bike theft and bike traffic can be predicted using
machine learning methods on BikeFinder data. Furthermore, other factors such as weather
conditions do affect bike traffic as well as improves the performances of bike traffic
predictions. The results of the project provide useful insight to multiple parties and can be
used to help preventing bike theft as well as providing suggestions for city planning

improvements.

1. Introduction

This master thesis is about forecasting bike theft and bike traffic using machine learning
and data engineering applied to different existing datasets. The objective is to use machine
learning techniques to solve real life problems such as, bike theft by predicting potential theft
risks in a given place and time. Also another objective is to analyze bike traffic and attempt to
predict the traffic flow based on other factors such as weather. Lastly, evaluating BikeFinder
dataset on how well it can perform with those type of analysis is another objective.

The history of bicycles go all the way back to the 19th century, or at least the first
verifiable claim for a practically used bicycle belongs to Karl von Drais. The idea was a
human powered vehicle, although it was pedal-less in the beginning, but it still served its
purpose. By the early 21st century, more than 1 billion were in existence. Bicycles became a
huge part of the human race throughout history and inspired a lot of other inventions for a
long time. (Mirrorpix, 2017)

Ever since bicycles first invention, bicycles were constantly developed in different
shapes and forms. Several major improvements has been done to bicycles throughout history,
whether it is mechanically or even other major changes such as the addition of motors or
electricity. However, the traditional idea of a simple man powered bike is still surviving and
used daily by people of nearly all ages. Bicycles are used for many purposes such as a form of
transportation vehicle, racing sports, exercising or even as a form of entertainment. This
simple two-wheeled vehicle invention survived through centuries and still going strong,
currently with a higher production rate than automobile. This is not coincidence, due to
accessibility and simplicity of bicycles it is perhaps the most common choice of transportation
for people all over the world.[4]

Today bicycles come in a wide range of categories and varieties which results in a huge
price gaps between different bikes. Although bikes can be one of the most affordable
transport vehicle options to own for many people, at the same time it should come as a
surprise to find bikes that exceed the prices of automobiles. Even though bikes are not a
motor driven automobiles, but they do have a lot in common. Bikes share the road with cars
in some cases, used as a substitute for cars and are also in most cases parked and kept out
doors. However, given how simple bikes are in terms of security compared to automobiles

they become a more vulnerable target for theft. Bike thefts can be as simple as grabbing a bike

and leaving within seconds, or in other cases breaking a lock and maybe disassemble the
bike.

Either way, stealing a bike is not that challenging of a task to be done by the average
person. London, for example, is considered the number one hotspot for bike theft. According
to an article from Cycling Weekly magazine, between 2017 and 2021 around 162,943 bicycles
were registered stolen in London. The real number could possibly be higher since it is
unlikely that every bike owner reports a bike theft, this add up to around one bike is stolen
every 16 minutes. The stolen bikes were worth around £93 million combined. [1]

As a result there are hundreds of police reports yearly about bike theft according to
dataset from the police, even in cities as Stavanger, relatively smaller in size and population.
Today, there are several options a person can choose between in order to prevent themselves
from going through such losses. Some maybe less convenient options than others. For
instance, avoiding to leave bikes out doors as much as possible. Other options could be some
sort of an investment like an insurance, or even a more advanced option like installing a
tracker such as BikeFinder, that will be introduced at section 2.1.1. Regardless of what the
choice is, there are no guarantees that a person will 100% avoid a loss. However, what can be
done is decrease the chances as much as it possibly can. A great alternative that one might
think of in this situation is probably looking into the future to avoid being at the wrong place
in the wrong time. However, this is unfortunately not entirely possible, but the next best
thing might just be predicting it, what if we can predict the wrong place and time to be at a
certain place? Machine learning is the answer.

Since the term “Machine learning” was reportedly first introduced by Arthur Samuel
in 1952 the term and the idea behind it has been revolutionary. The beginnings saw IBMs
computer checkers playing program that learns and adapts playing chess based on
experience. Eventually, “Deep Blue” was created, a computer that managed to beat the world
chess champion Garry Kasparov in May 3-11, 1997. (Garry Kasparov, 2017)

One of the main uses that Machine learning can provide is predicting, future events. In
this thesis the objective is to utilize some suitable machine learning techniques that learns the
existing data and based on that, it should forecast bike traffic and bike theft.

1.2 Problem definition

BikeFinder possesses rich data sets containing location data of its customers biking
routes. The idea for this master thesis is to use the data for analyses on biking habits and
discover what valuable insights we can gather. In this project, preprocessing will also be a
vital part of the project. As the nature of BikeFinder data is sensitive, an important step of the
preprocessing stages is anonymazation of the location data so that no user can be directly or
indirectly identified. A general analysis using data science methods needs to be done to
familiarize with and gather insights about the data.

Analyzing and predicting bike traffic provides valuable information in many aspects
for a city. Predicting where and when bikers will bike in, can give an insight to the city, as far
as various city planning is concerned. Bike traffic and its correlation with weather is another
insightful piece of information that may save the city or public transportation companies lots
of resources. The companies can for instance have less routes when it is expected that bikers
in an area will be biking at a specific day and time. Predicting bike traffic can be utilized and
benefited by several other sides and companies, an example could be a sports company
targeting bikers with advertisements through billboards in the predicted routes. This leads to
the following questions:

- Biking patterns - Where and when do bikers ride? It would be interesting to restrict
the analysis to one city and generate a heat map of the density of biking routes over time.

- Correlation with weather - Can we correlate the location data with weather data? To
what extent does the type of weather and temperature influence the biking traffic?

- Bike traffic prediction - Is it possible to predict the bike traffic in a city?

- Theft prediction - Discover whether or not the current theft report dataset from

BikeFinder is rich enough to predict thefts. Is it possible to use other open data sets or

to generate synthetic data as an input to the prediction algorithm?

OBJECTIVES

+ Bike theft & traffic forecasting.
+ Bike traffic correlation with weather.

+ BikeFinder data evaluation.

Fig:1. Main objectives

The motivation for this project is to provide insights to multiple parties. Providing the
city insights about the routes traffic on different routes across the city so that they can plan
better. The results in this project could say something about where a new route should be
build. Additionally, in the case of theft prediction, both BikeFinder users and local police may
be interested in where and when there is an increased chance of theft. As a feature of the
BikeFinder app, this insight could be used to identify users when they are parking in
locations with a high risk for theft.

Possible outcomes:

¢ Using BikeFinder data with combination of weather and public transportation
data, bike theft and bike traffic predictions provide results with high accuracy. Based
on the results in this project the objectives are achieved and a deeper understanding

of the biking behaviors reached. The project focuses on the city of Stavanger.

* The gathered data is not suitable to achieve the objectives of this project.
Analyze and explain why that is. Seek an alternative solution, perhaps a different
data and compare it with the original data. Use similar data to the original ones and
create a general solution that can simply be adapted to answer the questions in the

project.

2. Literature Review and Formulation of the problem

Gathering datasets and predicting bike traffic and bike theft using machine learning are
the main objectives. However, a number of pre processing stages should be done, such as
data cleaning, evaluation, anonymazation and data engineering. Furthermore evaluating,
tuning and improving the application is also necessary. The following sub-sections will

extensively explain the literature review as well as defining the problem.

2.1 Literature review

2.1.1 BikeFinder

BikeFinder AS is a Stavanger based company that produces BikeFinder trackers. The
idea with a BikeFinder tracker is to track a bicycles position if it was to get stolen. The tracker
is installed in the bicycles handlebar. When the bike is moving, the tracker sends position
signals to the BikeFinder system through satellite. These positions can then be tracked by the
user through the BikeFinder app. The BikeFinder user can then locate their stolen bicycles
and for example contact the police. If the bicycle is not found and all the insurance
requirements were full filled, then the user can be covered by insurance. [5]

When a theft occurs, the user can report the theft through the app by clicking on a
button. The report is then registered in the database with report time and the device id of the
tracker. When a theft report is reported the user is contacted by the BikeFinder support team
and then both collaborates to find the bicycles. [5]

2.1.2 Machine Learning

Machine learning is a type of artificial intelligence that allows software applications to
become more accurate at predicting outcomes without being explicitly programmed to do so.
Machine learning algorithms use historical data as input to predict new output values. The
idea is to give the computer the capability of learning and improving by identifying patterns

based on past experiences, similar to human beings. A number of jobs that required human

resources due to the capabilities of adapting and the requirement of less general solutions in
the past, now can be achieved by computers with the help of machine learning.[3]

There are two areas of machine learning, Supervised learning and unsupervised
learning. Supervised learning uses the input data as well as the output data to train the
model and then predict the output when it is given new data. Some popular examples of
supervised machine learning algorithms are: Linear regression for regression problems,
Random forest for classification and regression problems and Support vector machines for
classification problems. [3]

Unsupervised learning in the other hand finds unknown patterns in data.

In unsupervised learning, the algorithm tries to learn some inherent structure to the data
with only input data. Two common unsupervised learning algorithms are clustering and
dimensionality reduction. In clustering, we attempt to group data points into meaningful
clusters such that elements within a given cluster are similar to each other but dissimilar to
those from other clusters. Clustering is useful for tasks such as market segmentation.
Dimension reduction models reduce the number of variables in a dataset by grouping similar

or correlated attributes for better interpretation (and more effective model training)./3]

2.1.3 Scikit-learn

Scikit-learn is an open source software with machine learning library for the Python
programming language. It includes several regression, classification and clustering
algorithms such as SVM, random forests, gradient boosting and k-means. Scikit-learn is
designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
Using Scikit-learn tools we get a more accurate implementation of machine learning

algorithms as well as various features to analyze our results.[12] [13]

2.1.4 Machine learning evaluation methods

In this thesis, one of the objectives is to evaluate the methods used to reach the optimal
results. Machine learning methods evaluations can be achieved by tuning the parameters
properly. However it can be a difficult task to guess the most suitable parameter for each
model. Therefore, a good metric to compare the performances of a model is by comparing the
results of several parameters. In this project, Root Mean Square Error (RMSE) for regression

and Silhouette score for clustering are used.

10

- 2.1.4.1 Root Mean Square Error (RMSE)

<

i)

(3

N
(% -
=1

Root mean squared error (RMSE) = i

Fig:2. RMSE formula

Root-mean-square error also known as RMSE is one of the most commonly used
metric for regression tasks. This is defined as the square root of the average squared distance
between the actual score and the predicted score as shown in Fig:2. Where Yi is the actual
result for the i-th data point, and Yi-hat is the predicted value for the i-th data point. “One
intuitive way to understand this formula is that it is the Euclidean distance between the
vector of the true scores and the vector of the predicted scores, averaged by N, where N is the
number of data points.” (Alice Zheng, 2015)

- 2.1.4.2 Silhouette score

. —L j j jt .
a(;) = e Z:d(i, %) V& € K;

Fig:3. Silhouette score formula

Silhouette score is used to evaluate clustering algorithm performances, with the
formula shown in Fig:3.“The most common method to assess the performance of a clustering
algorithm without knowledge of the ground truth is the silhouette score. It provides both a
per-sample index and a global graphical representation that shows the level of internal

coherence and separation of the clusters.” (Giuseppe Bonaccorso, 2019)

11

3. Method and Design

This section includes the approached ideas and models that can possibly solve the
problem, as well as a discussion about other possible alternatives. The platform that will be
used is Jupyter Notebook and the programming language is Python.

“For data analysis and interactive computing and data visualization, Python will
inevitably draw comparisons with other open source and commercial programming
languages and tools in wide use, such as R, MATLAB, SAS, Stata, and others. In recent years,
Python’s improved support for libraries (such as pandas and scikit-learn) has made it a
popular choice for data analysis tasks. Combined with Python’s overall strength for general-
purpose software engineering, it is an excellent option as a primary language for building
data applications.” [9]

Jupyter Notebook platform is a suitable choice for data analysis, the possibility to run

each line independently and visualize the data and the figures is very useful. [9]

3.1 Overall Design

In order to approach this project it is important to have a well modeled and structured
design from the very beginning. The design of this project can possibly be divided into
smaller segments as there are several independent steps that needs to be taken to solve it.
This makes the project easily debuggable and simpler to modify both during the project or in
future developments.

The project preferably should be split into several modules. In most cases, the steps
taken to solve the assignment can be treated independently and the results are compared at
the end. Each objective can have two modules, one for the cleaning and preparation steps and

the other for the machine learning and analyzing steps.

12

3.2 Modular Approach

To begin with, the project can be split into two main parts, namely bike theft
predictions and bike traffic predictions. First step in this project is gathering the data, after
that cleaning and preparing them accordingly is a crucial part. Lastly, performing predictions
using machine learning methods on the data to predict and evaluate how these data perform
should lead to answering the objectives in these project. The project will focus on a single city,

the city of Stavanger and therefore all the data involved should be within Stavanger.

Results: Interpretation,
comparison and

Machine learning:
Predictions

Machine learning:

. . Method evaluation
discussion

Fig:4. Project stages

Gathering the relevant data is a crucial part of this project as mentioned earlier. A
major part of the project is to use and evaluate BikeFinder data to conclude if it is rich enough
to be used for predicting future theft and traffic behavior. The BikeFinder data will be
gathered from BikeFinder AS, it is expected to be two datasets, one with bike theft reports
and the other with bike position points. As mentioned earlier BikeFinder data is sensitive as
far as protecting their customers information, thus it is important to anonymize the data. One
issue to figure out is then, how to anonymize the data and still give accurate answers.
Therefore, for theft data one way to anonymize the position of the theft is to change the
position points randomly. This means that rather than using the exact point the bike was
parked at before it got stolen, instead have a random position in that area but not exact. This
can possibly be done by for instance randomizing the longitude and latitude with a certain
range, this way the area is preserved as well as the exact position is unknown.

As for the position data to be used for bike traffic predictions, it is perhaps crucial to
use exact points for the bike movement but at the same time maintain the privacy of

BikeFinder users. One possible way to solve this could be by checking how often a data is

13

given for a specific bike, to determine whether it was at rest or on the move. The bike being at
rest is assumed to probably be at home, work, etc. The idea here is if the bike was at rest then
anonymize the data position same way as it was done with the theft data, otherwise use the
real data. After observing the data the limit can be set to check how long the previous
position was sent prior to the current one thereby determine whether the anonymazation
should take place.

In order to conclude whether BikeFinder data perform well or not, it needs to be
compared to the performances of other data for the same city. Theft datasets for bicycles
should be gathered for the city of Stavanger, and that is possible through a collaboration with
Rogaland Police District. As part of this project Rogaland Police District should be contacted
and requested to provide the relevant theft data.

Furthermore, position datasets for bike traffic can be gathered from the website of
Stavanger commune. There are sensors spread across the city of Stavanger used to count
bicycles that happen to pass through those. This is a still sensor somehow different from the
moving position data provided by BikeFinder. However, this can be an interesting
combination, perhaps the results might be useful to the city for Stavanger municipality to set
those sensors in other areas. Weather dataset is another relevant factor to determine and
answer whether it affects bike traffic. To gather weather data, online resources can be used
such as “seklima.met.no”. However, data such as weather data, the frequency is mostly taken
in an interval of 1 hour minimum, this leads to the next steps data cleaning and preparing.

Since the goal in this project is to focus on the city of Stavanger and given that
BikeFinder data contains data across the world it is then reasonable to filter the data as the
first step. Limiting the data to Stavanger by filtering data by only taking longitude and
latitude within certain range only into the next steps. Limiting the data as first step is
reasonable to avoid unnecessary running time and computer resources consumption.
Furthermore removing duplicates, handling empty values, re-formatting the data structure,
merging and /or splitting the data are all to be done within this part. This part of the project
will be adjusted multiple time based on the requirements the further the project advances
through the machine learning part.

The field of Machine learning provides a wide range of possibilities and options to
choose from, there are several ways one can go about to solve a problem rather than just one.
The methods will be implemented using “scikit-learn” machine learning library that provides
a wide range of machine learning methods. Furthermore, using multiple machine learning

methods, as well as evaluating the performances of these using methods such us silhouette

14

score and comparing the RMSE of the results to determine what is the suitable approach to
take is important part too. Additionally, other things to consider is optimizing the
performance of the method as much as possible, this includes the choices of what part of the
data to include and exclude.

Making some of the choices should be justified by performing multiple tests or
evaluations such as correlation checks. The nature of the data in principle is a spatial data
expected as a response variable in the form of longitude and latitude position data. Usually
for a single response variable the approach is more straightforward than in Spatial data. In
this project one way response variables could be treated as is by handling longitude and
latitude values separately and then combining those. However, this could be simpler in
clustering as using two variables to perform clustering can be straightforward. Results from
clustering can also be interpreted as grouping the areas according to, most likely to be risky
for theft or in the other case most likely high traffic.

Date and time are major input data in this project as the aim in this project is being
able to predict when and where something happens. However, date and time if used as
strings in the standard form the results would not make much sense. Therefore, date and
values are expected to be handled before being used. Some possible ways to handle date and
time values could be such as splitting them up into several categorical and continuous
values. An example could be considering year as a continuous separate value and day of the
week a categorical value in the interval 1-7 and for the time the fraction of a day could be
taken.

Based on the results one can give several recommendations to when and where in a
city there will most likely going either to be bike theft and help prevent it or predict traffic
and help the city plan better. This project can also possibly be used for other purposes as well,
given how similar situations can be prevented in a larger scale as far as crime is considered in

general, or for instance traffic within cars.

15

3.4 Design Alternatives

There are several possible ways to solve this project, some of which has been suggested
in the beginning of the project and others have been considered during the project. The first
choice to be done was whether the analysis should be limited to a single city or a larger area.
The analysis could have included the entire country of Norway or even globally since
BikeFinder data features data from many different countries. Such analysis could have
possibly compared the risks involved of biking in some countries than others. This sort of
information would have come in handy for travelers. An example would be, getting to
predict what season of the year is the most risky for theft in a specific country compared to
other and maybe help making decisions based on that. However, doing the research in a
smaller area would give a more detailed insight, especially in the beginning before expanding
the project further. Focusing on one city and doing it properly in details is the preferred
approach. Another reason is focusing on a familiar city such as Stavanger gives a proper
insight on the results based on real life observations, given that Stavanger is where
BikeFinder AS is based as well as where this project is taking place.

BikeFinder data could be a little smaller in number if limited to one city currently as the
company is still growing. That raises the idea of possibly combining it with data obtained
from Rogaland Police District for theft or the position data from recorded through the city
sensors. Furthermore, compare the results to data from other cities to evaluate the results.
However, although the number of data is increasing which is a great thing, but it can’t give
an accurate answer on the objective of this project to determine whether BikeFinder data is
rich enough as it is currently.

Anonymazation of BikeFinder data as mentioned is a central part of the project
therefore several techniques were considered such as data masking or data
pseudonymization. Some techniques of which can hide the actual data from outside the
development environment of the project and others that can possibly modify the data in a
less controlled way. However, the approached solution is more suitable to the data gathered
from Rogaland Police District and the position data from the city. The theft data from
Rogaland Police District was “zoomed out” meaning that instead of the actual position points
it contains the area name, similarly to the sensor position data from the city. Generalizing the
data where it could be a possible place for a BikeFinder user stationary positions or theft
position would make a better comparison than other methods as far as result evaluation is

concerned.

16

Implementation

There are seven modules all together implemented in this project:-

* bf_theft_preprosess.ipynb: Here BikeFinder theft data is first uploaded and then

exported after the cleaning and preparation steps are completed.

* bf_traffic_preprocess.ipynb: Here BikeFinder position data and the weather data are
uploaded then exported after the cleaning, merging and preparation steps are

completed.

* police_preprocess.ipynb: Here the theft data from Rogaland Police District is first

uploaded and then exported after the cleaning and preparation steps are completed.

* city_counter_preprocess.ipynb: Here the city bike counting sensors and the weather
data are uploaded and then exported after the cleaning, merging and preparation steps

are completed.

* theft_predictions.ipynb: Using the data exported from bf_theft_preprosess.ipynb and
police_preprocess.ipynb, here the machine learning and evaluation parts take place on the
theft data.

* traffic_predictions.ipynb: Using the data exported from bf_traffic_preprosess.ipynb and
city_counter_preprocess.ipynb, here the machine learning and evaluation parts take place
on the traffic data.

* chicago_crime_predictions.ipynb: In this file data cleaning, preparation as well as

machine learning and evaluation parts take place on the Chicago crime dataset.

17

4.1 Implementation flow

Input datasets

Police Theft BikeFinder BikeFinder Stavanger Stavanger Chicago crime
data Theft data Traffic data Weather data sensor data data

police_preprocess bf_theft_preprocess bf_traffic_preprocess city_counter_preprocess
Output: Output: Output: Output:

Preprocessed police Preprocessed Preprocessed Preprocessed Stavanger
theft data. BikeFinder theft data. BikeFinder theft data. sensor data.

theft_predictions

A4
traffic_predictions Chicago_crime_predictions

Theft predictions and Traffic predictions and Chicago crime data
evaluations. evaluations. preprocessing, theft
prediction and
evaluations.
Modules

Fig:5. Project flow chart

This Project consists of 7 modules, all in a separate ipynb files. It also consists of 6
datasets as mentioned in chapter 4. All the inputs with the exception of Chicago crime
dataset, are first processed in the 4 preprocessing modules respectively and then directly
used on the prediction modules. Chicago crime data being a bonus addition to the project,

everything is used in a single module for this dataset through the whole process.

18

4.2 Data Extraction

BikeFinder dataset was extracted and provided by BikeFinder AS. A total of two
datasets were provided, one that contains thefts reports and another that contains bike
positions. These are independent, so it is expected to combine those to have a complete theft
dataset. For the Rogaland Police District theft dataset, Rogaland Police District were
contacted and requested to provide the desired datasets. Due to security policies it was only
possible to get area name for locations instead of latitude and longitude exact positions. The
dataset was extracted and provided by Rogaland Police District. Stavanger bike counter
sensor data was directly loaded from Stavanger municipality website. The Stavanger bike
counter data however was separate for each year, all six from 2017 to 2022 are loaded

separately. Weather data filtered and downloaded from Norsk Klimaservicesenter website.

4.3 Data Cleaning

Data cleaning is the first step of the implementation. Cleaning the data in this project is
mostly about trimming down the data by eliminating undesired data. This part will feature

the steps taken to clean the following datasets:

- Theft datasets: BikeFinder theft data and Rogaland Police District theft data
- Traffic datasets: BikeFinder traffic data, Stavanger city bike sensors data and weather
datasets.

- Chicago crime dataset.

4.3.1 Theft data cleaning
- 4.3.1.1 BikeFinder theft data cleaning

The gathered BikeFinder Theft dataset consists of 1008 rows and 2 columns, the
columns are the following:

- deviceid: The id of the tracker installed in the stolen bike.

- timestamp: The time the theft report was sent by the user.

19

First step was to check for duplicates using the method .duplicated() for pandas
DataFrame, which then detected 32 duplicates, 32 rows were an exact copy of other rows
across both columns. This means the device and timestamp were identical, this could be
because the data got stored twice due to a bug, or BikeFinder users reporting multiple times
within a second. It can also be due to extracting the same rows from the database multiple
times, either way it would not be useful data for this project. Duplicates were then removed
and the remaining 976 rows are again checked for duplicates this time only across the deviceid
column. As a result 385 duplicate devices are detected. This means there are 591 unique
devices with 976 theft reports in total. However, this time this can either be the same case or
that simply the same bike got stolen multiple times, which then the data is certainly useful in
this project.

In order to make sure this data is valid, defining the following rule might be necessary:
In this case only keep data from the same device when it is registered 24 hours after the
report registered by the same device prior to it. This is done by first sorting the data by
timestamp and then by the deviceid, such as all the reports from one device is grouped together
while sorted from oldest to most recent report. Then a new DataFrame bf_theft_data_results is

initialized, this will be used to store the results.

mins=1440
counter=0

bf theft data results = pd.DataFrame(columns=
i in range(len(bf_Theft data dup droped sorted)):
tr(bf Theft data dup droped sorted.iloc[i i str(bf_theft_data_results.deviceId)

res=(pd.Timedelta((bf theft data results.loc[bf theft data results
==bf Theft data dup droped sorted.iloc[i

-bf_Theft_data dup_droped sorted.iloc[i]["timestamy .seconds/ 60.0)

f (res>mins):

bf theft data results = bf theft data_results.append({'deviceld': bf Theft data dup droped sorted.iloc[i
: bf_Theft data_dup_droped sorted.iloc[i ti amp , ignore_index=)

bf theft _data results = bT theft_data_results.append({'deviceId': bf Theft data dup drop?d sorted.iloc[i
estal : bf Theft data dup droped sorted.iloc[i]["timestal , ignore index=

bf theft data results

Fig:6. Bike theft cleaning code

20

Thereafter, as shown in Fig:6, the code iterates through the 591 data rows in
bf_Theft_data_dup_dropped_sorted while checking whether the device id exist in
bf_theft_data_results or not. If the device id does not already exist in bf_theft_data_results, then
it gets directly stored at bf theft_data_results. Whereas if the device id exist, then the time
difference is calculated. The time from the current data row in
bf_Theft_data_dup_dropped_sorted is subtracted from the last row added to bf_theft_data_results
for this specific device in minutes. Thereafter, the time difference is checked whether it is
more than 1440 minutes (1 day) or less. If the value is larger than 1440 then the current data
row is added to bf_theft_data_results, otherwise it is ignored. After this process there is 591
rows left remaining. The data is now ready for the next step, data preparation (section:
4.4.1.1).

- 4.3.1.2 Rogaland Police District theft data cleaning

Theft data from Rogaland Police District consists of 1686 rows and 15 columns.
However, most of those columns are not relevant to this project, those columns has the same
values through all rows. Columns such as crime type, law chapters, police district, etc, this
could be because the dataset was extracted based on those columns among different crime
data rows. Therefore, only relevant data among those happen to be police zone, theft date,

day of the week and time.

- Police zone: An area name a bike was stolen at, in Stavanger.

- Date: The date the theft accord.

- Day: Day of the week the theft took place.

- Time: Hour and minute the theft was reported, assumed to be the theft time in this

project.

The data provided by Rogaland Police District is mainly from 2019 to 2021 (with 12
reports from 2018) and it does not include the exact latitude and longitude values, instead it
has a police zone column which is the area name. After detecting and removing 13 duplicates
in addition to two rows due to them being the only ones from 2011 and 2015, 1671 rows are
left. In this case, it is not necessary to check whether a report is registered multiple times with

different timestamps for the same theft, as it was done with BikeFinder theft reports.

21

With BikeFinder theft reports a BikeFinder user is able to register reports on their own
by just clicking on the report button in the BikeFinder app, thus less controlled. However, in
this case the Police register each case as a crime case in a more controlled manner. Therefore,
highly unlikely two reports are registered for the same theft with different timestamps. This
might raise the question, how come there were duplicates in this case? The reason for this
might possibly be that it was an error when retrieving the data. However, detecting whether
a theft report was reported multiple times with different timestamps for a single theft, would
not be possible in this case anyway. Reason being, there is no unique id attached to each theft
report per stolen bike for the Rogaland Police District dataset, thus assuming each report to

be independent. The data is now ready for the next step, data preparation (section: 4.4.1.2).

4.3.2 Traffic data cleaning
- 4.3.2.1 BikeFinder traffic data cleaning

BikeFinder traffic dataset consists of 19833415 rows and 5 columns, the columns are

the following:

- deviceid: The id of the tracker installed in the stolen bike.

- packetType: The packet type of the information sent from the tracker (GSM, INI and
GPS).

- latitude: The latitude position value.

- longitude: The longitude position value.

- timestamp: The time a position was sent from the tracker.

Given how large the data is, first step should be limiting the data to Stavanger only to
avoid using unnecessary computer resources on the other steps. This is possible to do as first
step, opposed to the BikeFinder theft data since here the position data are included. Null
values for latitude and longitude columns are checked and 79817 rows were removed due to
not containing either or both values. Thereafter, the latitude and longitude columns are
converted to float type. Finally, the positions are limited in the ranges (5.585986955209788,

22

5.773063826295662) for longitude and (58.9180072658198, 58.98768986749389) for latitude,
with 794971 rows remaining.

Next step, duplicates are checked and removed leaving 792444 data rows. Using the
code stavanger_position_data[‘deviceld’].value_counts(), stavanger_position_data being the data
frame containing the current dataset, it shows that the 792444 position data are from only 655
trackers. The amount of data the trackers registered varies from 1 position to 19562 positions
(rows) per tracker. However, all the data can be relevant because one bike can’t be in several
locations at once. The focus here is how crowded a location can be which makes it less of an
importance which bike it is but more important how many bikes in a location. The 792444

rows are to be used for further preparation (section: 4.4.2.1).

- 4.3.2.2 Stavanger city sensor traffic data cleaning

Data from Stavanger bike counting sensors, are loaded separately as mentioned in section: 4.2
and merged together. The data consists of 728912 rows and 13 columns. However, most of
those columns are not relevant to this project, columns such as station id is not relevant when
there is station name. Removed columns such as, Average vehicle length, lane name or even
average temperature is going to be eliminated because it was only introduced in later years
and is not included in the earlier datasets, thus might be biased to use. Therefore, only
relevant data among those happen to be station name, date, time, count.

Starion Name

- Station_Name: The area name a bike counter sensor is placed in Stavanger.
- Date: The date the counter was used.

- Time: Time is a one hour interval.

- Count: Number of bikes passed through within the one hour interval.

After removing null values there is 728909 rows remaining. The data should be
merged with weather data and further prepared in the next step (section: 4.4.2.2).

23

4.4 Data preparing

After cleaning the data individually in the previous step now in this section the data is
prepared for the machine learning part. The data is visualized, adjusted and merged
depending on the desired objectives.

4.4.1 Theft Data Preparation
- 4.4.1.1 BikeFinder theft data preparation

The BikeFinder theft data as mentioned in the previous step consists of two columns
the device id and the timestamp, however an important piece of information is missing. The
BikeFinder theft data is missing the theft location. A solution to this is getting the position
data from BikeFinder traffic data. Thereby, a number of choices and assumption must be
made, however the following are the two main assumptions:

- First assumption is that, the BikeFinder user reported the bike theft immediately after

it got stolen, thus that is the time it got stolen.

- Second assumption is that, the latest position of the bike prior to the theft report is

where the bike got stolen from.

Taking these assumptions into consideration the next step is to merge the BikeFinder

theft and traffic data. This is done by first sorting the position data by device id as well as by

counter=0
final theft data = pd.DataFrame(columns=['deviceId
or 1 in range(len(bf_theft data results)):

latest=bf _position data.loc[bf position datal =
tr(bf_theft_data_results.iloc[i]["deviceId"])].sort_values(by='timestamp').reset_index(drop=)

latest.empty (latest.loc[latest[' timestan < (bf_theft _data results.iloc[i]["timestamp"])]).empty:
temp=(latest.loc[latest['timestamp < (bf theft data results.iloc[i]["timestamp"])]).iloc[-1]

: temp["packetType

final theft_data = final theft data.append({'deviceld': temp["devicel

) ide': temp["latitude"], gitude': temp["longitude
o il : bf theft data results.iloc[i timestamp , ignore_index=)

counter = counter + 1

counter

Fig:7. Bike theft preparation code

24

the timestamp such that all devices are grouped together and sorted by the timestamp, oldest
being first and latest at the bottom.

Thereafter, a new DataFrame final_theft_data is initialized with columns device_id,
packetType, latitude, longitude and timestamp to store the results at. Second step is to iterate
through the BikeFinder theft data in bf_theft_data_results and check whether there is a traffic
data with the same device id if so these will be stored in a temporary dataframe temp. The
dataframe is then checked first if it is empty or it does not include data points before the
report. That is to ensure if there exists any position data for a specific tracker prior to the theft
report. If the check passes the latest data prior to the theft report from a specific device is then
stored in the result dataframe final_theft_data . The process is done for each row in the theft
data until 429 rows left in final_theft_data.

After limiting the data to Stavanger only by taking data within the range of
(5.585986955209788, 5.773063826295662) for longitude and (58.9180072658198,
58.98768986749389) for latitude, now there are 31 data rows left. Next step is anonymizing the
position points, this is done by randomizing the value of the latitude and longitude between
the intervals (x-0.00500, x+0.00500). Based on observations the new position data will still be
within the same area but large enough that it is not possible to identify any exact addresses.

Visualizing the data using the Folium library for Python gives the result in Fig:8:

Endresto

o \
Bjergsted Selyst

00)
s@anget o®
Kvernavik o
no oStorveuq

Stokka Eiganes
J N\

4419 O‘,
Valand, |
Sandal
o S o 1
Tjensvoll Q.J.:llbég
\: \
37
4562 Ullandhaug Asen
37 48 \
Tananger "
Mam‘v()l'
Grannes \
Vaulen /
-

-~
v

Fig:8. Visualizing BikeFinder theft data

C

25

Furthermore, other adjustments were done to the dataset such as maintaining a similar
date and time format. Another major thing that was done in this part is finding a way to use
date and time data for the purpose of using them as input parameters to predict the cases.
Date data are split into different columns, year, month and day separately. Time is split into

hour, minutes and seconds.

theft_data. theft_time)

year = final_bf_stavanger_theft_data.theft_time.dt.year

months = final_bf_stavanger_theft_data.theft_time.dt.month

nonth = nger_theft_data. theft_time.dt.day

Fig:9. Splitting the date and time

- 4.4.1.2 Rogaland Police District theft data preparation

The theft dataset from Rogaland Police District required similar steps to the
BikeFinder dataset to adjust the date and time data. However, several steps were skipped in
comparison. Rogaland Police District dataset was already limited to Stavanger as well as it
was not required to be merged with other datasets as it included the report time and position.
Although, many steps were skipped but one new issue was, missing longitude and latitude
data.

26

Rogaland Police District bike theft report

Theft reports

Buoy -mm

Police zones

Fig:10. Rogaland Police District theft reports by police zones

To find these points geopy library is used, using this library a string of an area name is
given as an input and latitude and longitude are returned as outputs. However, some areas
were not detected using geopy, 10 of the 39 areas required to be manually stored. This is done
by iterating through all the possible values, and store the results in a new dataframe.
Thereafter, add the 10 position values to the dataframe manually. Afterwards, the new
dataframe is merged with the theft data on “Police zone’ column. There are 1669 theft reports
left across 39 areas after removing the missing values.

Finally, time is handled in a similar way as it is done with the BikeFinder theft data
shown in Fig:9. However, time for this data does not include minutes and seconds, it only

includes hours.

27

4.4.2 Traffic data preparation

- 4.4.2.1 BikeFinder traffic data preparation
After the cleaning process of BikeFinder traffic data, time format should be adjusted.

Date and Time is converted into Pandas datetime type and then as shown in Fig:9, time is split
into hours, minutes and seconds. Date is split into year, month and day and then these are
merged with the position data. The Date and Time Timestamp column is removed and only

the following are taken to the next step:

Thereafter, the weather will also be merged with the BikeFinder traffic data by time.
However, a different version with weather data is considered since the time for weather
conditions data is registered in an hourly interval. Therefore the second version of BikeFinder
traffic data is rounded to the nearest hour and then only the hours are extracted. The weather
condition data used contains rain and temperature data as well as hours. The weather data
and BikeFinder data are then merged on hours, day, month and year. Now there are two
versions of the dataset that will be used for the machine learning part, one without weather
conditions data and other with weather condition data including minutes and seconds

included.

28

- 4.4.2.2 Stavanger city sensor traffic data preparation

The traffic data obtained from Stavanger municipality website exist as separate datasets
based on a calendar year. Therefore, first step was to merge all the data from 2017 to 2022 in a
single dataframe. The datasets are missing geo-location data in the form of longitudes and
latitudes, these were obtained using geopy library similarly to the Rogaland Police District
theft dataset.

le6 Stavanger bike counter 2017-2022

08

06

Passings (y * 10°6)

04

02

00

Forus Vest
Gausel Stasjon
Sandal
Hillevdg
Héhammer
Mosvannet
Mollebukta
andabergveien
Brevig

Kulvert Mariero
Tananger Bru
Stemmen
Stokkavannet
Sermarka
Tjensvollkrysset

3
Sensor Stations

Fig:11. Visualization of the bike traffic by sensors

Furthermore the city sensor time and date data are split into hours, year, month and
day. Finally, similar to BikeFinder weather data the data are split into two versions, one

merged with weather conditions data and other left as it is.

Jeerstrendene
fuglefredningsomrade

Fig:12. Bike counter sensors around Stavanger

29

4.4.3 Chicago crime data cleaning & preparation

Chicago crime data consists of 7486655 rows and 22 columns. Firs step is cleaning the

data by checking for duplicates, empty values and removing columns that are not of use for

this project. There were no duplicates detected, this shows that the data was well controlled

when added to Kaggle. [6]

Data columns (total 23 columns):

22

Dtype

object
datetime64[ns]
object
object
object
object
object
bool
bool
int64
float64
float64
float64
object
float64
float64
inté64
object
float64
float64
object

Column Non-Null Count
D 945 non-null
Case Number 945 non-null
Date 945 non-null
Block 945 non-null
IUCR 945 non-null
Primary Type 945 non-null
Description 945 non-null
Location Description 945 non-null
Arrest 945 non-null
Domestic 945 non-null
Beat 945 non-null
District 945 non-null
Ward 945 non-null
Community Area 945 non-null
FBI Code 945 non-null
X Coordinate 945 non-null
Y Coordinate 945 non-null
Year 945 non-null
Updated On 945 non-null
Latitude 945 non-null
Longitude 945 non-null
Location 945 non-null
init 945 non-null

float64

dtypes: bool(2), datetime64[ns](1l), float64(8), int64(3), object(9)
memory usage: 164.3+ KB

Fig:13. Chicago crime columns

Date and time values were split into year, month, day, hour, minutes and second

similarly to the other datasets. The heat map of crimes in the city of Chicago for the first 100

rows of the dataset is shown in Fig:14.

U e =
o o L |2
R4 ’i w
© ® AL b i
3
Yoo ! Lot Dty © oot ndar OO

Fig:14. Heat map of the first 100 points

30

4.5 Machine learning

4.5.1 Method evaluation on Chicago crime data

The evaluation of the method choices is done using Chicago crime data. Reason for this
choice is that, BikeFinder datasets are to be compared to the city sensor data and the police
data. It would be appropriate to use the same methods for both, and determine the method

by testing on a neutral dataset, in this case Chicago crime dataset.

- 4.5.1.1 Regression
To determine which regression method to use between KNN Regression, Random

Forest Regression and Decision Tree Regression methods, RMSE value will be used. The
implementation of the chosen method will be shown in details when used on the theft and

traffic datasets.

Latitude RMSE Comparison

Fig:15. Latitude RMSE comparison Fig:16. Longitude RMSE comparison

After applying predictions with all three methods on the Chicago dataset, KNN
seem to perform better on both latitude and longitude values. Therefore, KNN Regression

will be used for predictions.

31

- 4.5.1.2 Clustering

To determine which clustering method to use between Kmeans and Hierarchcal

clustering methods, Silhouette score will be used. The implementation of the chosen method

will be shown in details when used on the theft and traffic datasets.

When clustering based on the latitude and longitude, the rest of the data are not going

to be used, as the goal is to find out which areas are the most dangerous. In this case, the

cluster that includes most position points. Starting with the Hierarchcal method, the

dendogram help to observe how the clusters are built. Furthermore, using for-loops to

determine and select the best numbers of clusters to use based on the results of the Silhouette

score.

Inert gata gendogram
35 Longitude and Latitude Hierarchy Tree Clustering

o5
42,00 .‘.\-0?.‘

£ "'f;’l,.

41.95
ey @ o

25 b) o3,
41.90 o .~" ..t %
, 3 Wi

T &
4185 0’)’.

. o':.- \
TG
.o *

Latitude

41.80

10 4175

05 4170

41.65

00

-87.90 -87.85 -87.80 -87.75 -87.70 -87.65 -87.60
nnnnnnnnnn

Fig:17. Dendrogram for first 100 rows Fig:18. Hierarchal cluster

-87.55

The scatter plots created to observe the results before and after clustering, as well as printing

the data based on each cluster.

Longitude and Latitude K-means clustered

42.00

4195 ® o

41.90

4185

Latitude

41.80

475

41.70

4165

-87.90 -87.85 -87.80 -87.75 -87.70 -87.65 -87.60 -87.55

Fig:19. Kmeans clustering

32

Kmeans Clustering algorithm, the steps to determine the optimal numbers of clusters
used here was identical to the one used for the Hierarchcal method. The scatter plots were also
created in an identical way. The only difference is algorithm used. Based on comparison
between different clustering methods used (Hierarchy and Kmeans), they appear to be very
similar based on the data results.

The results were identical after observing through both scatter plots and printing the
results for every cluster. The plots shows that the points are well grouped based on the given
variables. However, using the Silhouette Coefficient for the given methods and their optimal
numbers of clusters respectively, the Silhouette Score for KMeans clustering was 0.427 and
Silhouette Score for Hierarchy Tree clustering 0.387. Therefore, KMeans clustering is to be

used onto the next step.

33

4.5.2 KNN regression

All the datasets after the preparation step are now ready to be used for KNN
regression using the Scikit library, to predict and forecast theft and traffic. The steps taken for
all the data is similar to help for comparison. The latitude and longitude data are predicted
separately. First the data will be split into train and test data to test the performance by
comparing predictions versus the actual data and calculating the RMSE value. The data is
randomly sorted and split into test and train data, where 20 percent of the data is for testing
and 80 percent for training. First goes the latitude data is predicted, therefore it is added to
the y_train and y_test as response variable while both latitude and longitude are removed
from x_train and x_test data as predictors. Then the data are scaled between 0 and 1 to avoid

bias results. Next step is to set the model for the KNN Regressor.

| #Performing KNN and picking the model with the best results
2 import sklearn.neighbors
3 from sklearn.neighbors import KNeighborsRegressor
from numpy import sqgrt
from sklearn.metrics import mean_squared_error
best_k_latitude = 0
smallest_error = 0

rmse_values_latitude = []
10 for K in range(10):
11 K = K+1
2 KNN = sklearn.neighbors.KNeighborsRegressor(n_neighbors = K)
KNN.fit(x_train_latitude, y_train latitude)
pred = KNN.predict(x_test_latitude)

16 rmse = sqrt(mean_squared_error(y_test_latitude,pred))
rmse_values_latitude.append(rmse)

2 if best_k_latitude == 0 or smallest_error > rmse:
2 best_k_ latitude = K

22 smallest_error = rmse

23 best_predictions_latitude= pred

25 print('k = ' , best_k_latitude , ', gives the smallest rmse value:', smallest_error)

k = 10 , gives the smallest rmse value: 0.015846624197014787

Fig:20. Choosing best-k and performing KNN

34

KNN Regressor requires to add a parameter K that is the number of neighbors to use,
by default it is 5 with sckitlearn. However, to optimize the method as much as possible it has
been implemented to check all possibilities from 1 to 10 in a for loop and stop the best result
in a variable best_k to be used for the forecasting later and the best prediction is also stored.
The check take place in the if loop that checks whether the current RMSE value is smaller
than the best one, if it is smaller than the current values K, predictions and the RMSE values
are stored and so on. At the end the best predictions and the rise is taken to the next step.All

the RMSE values are also stored to be used in a plot in the next step.

Rmse values

0.026 1

0.024 4

0.022 1

0.020 1

Rmse values

0.018 1

0.016

0 2 4 6 8
k values

Fig:21. RMSE results for KNN

After that the same steps are done for the longitude values. However, the difference
now is that the longitude values are added to y_train and y_test while both latitude and
longitude are removed from x_train and x_test. When both longitude and latitude are done,
the results are added to a new dataframe results as well as the actual test values and both
plotted in one plot. The same steps are done to all the data, however traffic data its down

twice one with weather and other without.

35

Next comes forecasting, the period to forecast is for July 2022. Instead of forecasting for
a specific time testing the data for each day might be interesting to see and weather somedays
are more likely to affect theft in a specific area, weekends for instance. A dataframe with year

and month of July 2022 is generated as well as day 1-31, however time is generated randomly.

import random

days_next_month = list(range(1, 32))
month = [7] * 31

year = [2022] * 31

hours = []
mins = []
sec = []

for i range(0,31):
hours.append(random. randint(0,23))
mins.append(random.randint(@,59))
sec.append(random. randint(@,59))

bf_theft_forecast = pd.DataFrame({'days_next_month': days_next_month, 'month': month, 'year': year, 'hour': hours, 'mins': mins,'sec': sec})

Fig:22. Creating forecasting data

This data is then used to perform KNN regression on, same way it was done previously.
The results are then listed and plotted on a map as it will be shown in the results section. The
center of the theft positions is also calculated by taking the average values of the longitude

results and latitude results.

36

4.5.3 Clustering

When clustering the rest of the data are not going to be used as longitude and latitude
are the only values that are going to affect the results. Therefore Longitude and latitudes are
extracted in an array. Next step is to cluster the data using KMeans algorithm with Scikit learn
library. Similar to the KNN Regressor, the goal here is to optimize the result therefore picking

the best parameter is crucial. In this case the number of clusters chosen can affect the results.

from sklearn.cluster import KMeans #for performing Kmeans
from sklearn.metrics import silhouette samples, silhouette score #for silhouette

range_n_clusters = [3,4,5,6,7,8,9,10,11,12,13,14,15]

print("*****Checking for the optimal number of clusters for theft and getting its results.*¥¥****x\p")

best k=0
largest_silhouette av = 6
k_theft_cluster result = 0

for n_clusters in range_n_clusters:

kmeans_k_theft = KMeans(n_clusters=n_clusters)
k_theft_clusters=kmeans_k_theft.fit(K_theft)

k_theft_silhouette avg = silhouette score(K theft, k_theft clusters.labels)

if best_k == 0 or largest_silhouette av < k_theft_silhouette avg:
best k = n_clusters
largest_silhouette av = k_theft_silhouette avg
k_theft_cluster_result = k_theft_clusters.labels_

print('n = ' , best_k , ', gives the largest silhouette avg value:', largest_silhouette_av,"\n"

*****Checking for the optimal number of clusters for theft and getting its results.***kikts

n = 4, gives the largest silhouette avg value: 0.6112164640598284

Fig:23. Performing KMeans clustering and choosing best n

This is done by checking different possible options for by iterating with 3-15 clusters.
Less than 3 is considered too little to show much information, the default number by Scikit
learn is 8. The check is quiet similar to the RMSE check implemented on the KNN Regressor,
but instead its the Silhouette score is checked here, the largest the score the better the results.
The results are then stored back in the dataframe and plotted, as well as it is now possible to
get the values based on the cluster number. By counting how many positions are in a cluster,
one can for instance avoid the areas around a location that belongs to a cluster with the most
points. As the chances are higher in the surrounding areas for a bike to get stolen for

example.

37

4.6 Additional feature

Additional step taken in this project was to perform theft prediction using a different
dataset. The data from both BikeFinder and Rogaland Police District had some limitations
mainly because they were relatively small. In order to achieve results with high level of
accuracy and at the same time insightful, a large dataset are required. Therefore, a dataset on
crime in Chicago was gathered, the dataset consists of around 7 million rows and 22 columns.
It is important to point out that this dataset is not solely for bike theft nor is it only about
theft, the dataset is about crime in general in the city of Chicago. The idea for using this is
first and foremost to test the performance of the algorithm on a larger dataset. Furthermore,
the idea of the data is quite similar and the purpose remains the same, in both cases a crime is
reported during a specific time at a specific place. However, the Chicago data gives a more
accurate information also because the occurred time is not merged based on assumptions nor
is that the position guessed using GeoLocator.

This addition can also serve as a reference point to what BikeFinder theft data could be
used as in the future with a larger dataset. Therefore, given those circumstances this seem to
be an informative addition to the project, as well as an insight to future development of this
project with larger data, perhaps focusing on crime in general.

This project can be useful for many different parties therefore, a feature such as finding
the center location of the predictions in a map like shown in the image below, would come in
handy. The black ring circle in the map represents is the center of the predictions computed
by calculating the average of longitude and latitude values.

Combining this feature with a filter to use data only during certain date and time,
would be a great addition to city. Having this feature can help the city place their resources
such as police, ambulances or other control forms in the center of possible incidents. As for
traffic, this could possibly be a cheat code for business especially moving businesses such as

food trucks or advertisements, to be placed in a suitable place for that specific day.

38

5. Testing, Analysis and Results

5.1 Sample runs

5.1.1 BikeFinder theft data

BikeFinder theft data was tested using K-Nearest Neighbors Regression method. 20% of
the data were used to be tested and 80% to be trained. Fig:24 and Fig:25 are plots of the actual
test data vs the predicted data, Fig:26 shows the results on a table. Clustering was also
applied on the latitude and longitude values of the BikeFiner data using KNN clustering
method, result shown in Fig:27.

RMSE results:

Latitude RMSE: 0.015846624197014787

Longitude RMSE: 0.014206798522780102

test vs latitude prediction test vs longitude prediction

—— Test Data
58.97 3750 K-Nearest Neighbour Predictions
5.745
58.96
5740
§ 5895 g 5735
% g 5.730
T 5894 K
5725
58.93
— st Data 5720
K-Nearest Neighbour Predictions
58.92 5715
5 10 15 20 r-) 30 5 10 15 20 b3 30
Indexes Indexes
Fig:24. BikeFinder tests prediction for Fig:25. BikeFinder tests prediction for
latitude longitude
Longitude and Latitude K-means clustered
-
Test _Data latitude Test Data | | _latitude
3 58.921084 5.722016 5.725313 58.953525 e
4 58.973281 5.728444 5.725383 58.960778 .96
5 58.969685 5.724326 5.711445 58.969499
10 58.972692 5.759425 5.705600 58.961922 g%
17 58.955814 5.733725 5.714883 58.961933 8.94
28 58.972072 5.755443 5.732712 58.967898
30 58.975083 5.720755 5.737882 58.965536 =
-

Longitude

Fig:26. BikeFinder tests and predicti
1§:20. BikeEunder tests and prediction Fig:27. BikeFinder clustering results

data

39

5.1.2 Police theft data

Police theft data was tested using K-Nearest Neighbors Regression method. 20% of the

data were used to be tested and 80% to be trained same as BikeFinder data. Fig:28 and Fig:29

are plots of the actual test data vs the predicted data, Fig:30 shows the results on a table.

Clustering was also applied on the latitude and longitude values of the Police theft data

using KNN clustering method, result shown in Fig:31.

RMSE results:
Latitude rmse: 0.028786957648243457
Longitude rmse: 0.026234226313309236

test vs latitude prediction

9.20 - —— Test Data
——— K-Nearest Neighbour Predictions

latitude

500

b

10 5 0 12 ‘w 0

Indexes

Fig:28. Police tests prediction for
latitude

Test_Data_latitude Test_Data_longitude Predictions_longitude Predictions_latitude

13

16

17
18

58.964115 5.717764 5.718923 58.961423
58.964115 5.717764 5.734851 58.945005
58.964115 5.717764 5.704107 58.960250
58.964115 5.717764 5.717465 58.958242
58.964115 5.717764 5.722464 58.949728

Fig:30. Police tests and prediction data

Latitude

test vs longitude prediction

- = Test Data
——— K-Nearest Neighbour Predictions

longitude

1250 1500

1000
Indexes

b 25“3 515\3 ?3‘3

Fig:29. Police tests prediction for
longitude

Longitude and Latitude K-means clustered

59.20 -
59.15 -

59.10 -

59.05 -
59.00 - - =
.
. s e

- L] e

2 []

. L]
.
.. L]
58.90 - L]
¢ o
5.600 5625 5.650 5675 5.700 5725 5750 5775 5.800
Longitude

Fig:31. Police clustering results

40

5.1.3 BikeFinder traffic data

BikeFinder traffic data tested using K-Nearest Neighbors Regression, without weather
conditions data included. The data was split 80% to 20% here also.

RMSE results:

Latitude rmse: 0.01207376927744944

Longitude rmse: 0.03305405084070961

test vs latitude prediction test vs longitude prediction

58.99 1 5.775 1
58.98 5.750 1
58.97 5.725 1
o 58.96 g 57001
g 58.95 g 5.675 1
B 58.94 56501
5.625 1
58.93
— Test Data 56004 — TestData
58.92 =~ K-Nearest Neighbour Predictions ~ K-Nearest Neighbour Predictions
0 100000 200000 300000400000500000 600000 700000800000 0 100000 200000 300000400000500000 600000 700000800000
Indexes Indexes
Fig:32. BikeFinder traffic, test vs Fig:33. BikeFinder traffic, test vs
prediction for latitude prediction for longitude

BikeFinder traffic data tested using K-Nearest Neighbors Regression, with weather
conditions data included. The data was split 80% to 20% here also.

RMSE results:

Latitude rmse: 0.011122154548081006

Longitude rmse: 0.029283858994079943

test vs latitude prediction test vs longitude prediction
58.99 5775
58.98 5750
58.97 5725
5700
u 58.96 g
2 5 5675

T 5650

5625

— Test Data 56001 — '®estData
== K-Nearest Neighbour Predictions —== K-Nearest Neighbour Predictions

T T T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000

T T T T T T T T T
0 100000 200000 300000400000 500000 600000 700000 800000 Ind
naexes

Indexes

Fig:34. BikeFinder traffic, test vs Fig:35. BikeFinder traffic, test vs

prediction for latitude with weather prediction for longitude with weather

41

5.1.4 Stavanger traffic data

Stavanger traffic data tested using K-Nearest Neighbors Regression, without weather
conditions data included. The data was split 80% to 20% here also.

RMSE results:
Latitude rmse: 0.06437473931032374
Longitude rmse: 0.06563877833974363

test vs longitude prediction

test vs latitude prediction

59.00
5.85 1
58.95 580
58.90 4575
g — st Data g
E 5585 ~—— K-Nearest Neighbour Predictions 5 570 A
5.65 1
58.80
— TestData
560 1 —— K-Nearest Neighbour Predictions
%8751 T T T T T T T T (') 100'000 200'000 300'000 400’000 500'000 600'000 700:300
0 100000 200000 300000 400000 500000 600000 700000 Indexes
Indexes
Fig:36. Stavanger traffic, test vs Fig:37. Stavanger traffic, test vs
prediction for latitude prediction for longitude

Stavanger traffic data tested using K-Nearest Neighbors Regression, with weather
conditions data included. The data was split 80% to 20% here also.

RMSE results:

Latitude rmse: 0.06416158084185032

Longitude rmse: 0.0654394075032857

test vs latitude prediction test vs longitude prediction

59.00
585
58.95 5380
v 58.90 L 575
S 5885 §s70
58.80 5.65
— Test Data — TestData
cg75 | — KNearest Neighbour Predictions 560 1 — KNearest Neighbour Predictions
0 100000 200000 300000 400000 500000 600000 700000 0 100000 200000 300000 400000 500000 600000 700000
Indexes Indexes
Fig:38. Stavanger traffic, test vs Fig:39. Stavanger traffic, test vs
prediction for latitude w/weather prediction for longitude w/weather

42

5.1.5 Theft forecasting results

Forecasting for theft for July 2022 Forecasting for theft for July 2022
using BikeFinder data using Rogaland Police District data
(One prediction per day) (One prediction per day)

forecast_prediction_longitude forecast_prediction latitude days_next_month month year hour mins sec U Ss0ey e asese) L Ve O
0 5.688758 58959198 1 7202 7 20 6 1 5716065 58.958962 2 72022 2
1 5.686742 58.956437 2 7 202 0 49 25 2 5714975 58.961393 3 7 2022 0
2 5.683806 58.958736 3 7202 8 9 20 3 5717419 58.948483 4 7 202 20
3 5.702684 58.954610 4 7 202 8 5 18 4 5.716065 58.958962 5 7 202 4
4 5686742 58.961342 5 7 202 0 53 29 5 5.714975 58.961303 6 7 202 1
5 5692514 58.955946 6 7 202 6 2 21 s 5714975 58.961383 7 7 2022 1
6 5686742 58.961045 7 7 2002 7 56 55 7 5707728 56951008 s 7 2002 21

7 5699728 58.962528 8 7 202 3 40 17
8 5.716065 58.958962 9 7 202 3

8 5701814 58.959738 9 7 202 17 50 23
9 5.711566 58.948549 10 7 202 23

9 5.700856 58.963727 10 7 202 2 48 26
10 5.716492 58.946200 11 7 2022 16

10 5705751 58.956609 11 7 202 16 9 25
1 5604438 58.959027 12 7202 0 2 28 " 5.716978 56.963256 12 72022 0
12 5698941 58.956501 13 7202 11 s 9 B EHALEED Ry B v g i
13 5.692699 58.960223 14 7222 15 31 52 13 5.712693 58.955126 14 7 202 18
14 5698128 58.956960 15 7 202 10 6 50 14 5716989 58.960842 15 7 202 20
15 5604044 58.957261 16 7 202 6 6 3 15 5.725517 58.959407 16 7 2022 4
16 5607797 58.956960 17 7 202 12 25 44 16 5722206 58.965787 17 7 2022 15
17 5701514 58.959534 18 7202 6 12 0 17 5.719499 58.060743 18 7 202 8
18 5701429 58.959315 19 7 202 4 28 2 P B e ® 7 Em W

19 5604651 58.958677 20 7 202 2 37 56
19 5727054 58.966589 20 7 2022 23

20 5604044 58.956960 2 7 202 8 1 44
20 5.724522 58.965890 21 7 202 12

2 5.695960 58.958631 2 7 202 19 19 38
21 5717934 58.968660 2 7 202 18

2 5718485 58.954614 2 7 2002 14 37 0
2 5700444 58.959153 24 7 2002 18 2 1 2 SI2a022 £o.00e6%0 2 2022 B2
24 5603029 58.959087 2 7202 10 19 16 2 5.728597 58.962618 2 72027
2 5.708455 58.957241 26 7 202 9 51 28 24 5.727054 58.966589 25 7 2022 23
2 5708455 58.958313 27 7 202 4 55 21 25 5727616 58.953034 26 7 202 12
27 5708455 58.957628 2 7 202 5 36 24 2% 5.725017 58.945420 27 7 2022 1
2 5.708455 58.958313 29 7 202 4 49 16 27 5727210 58.955281 28 7 202 8
2 5689745 58.958745 30 7 202 6 12 87 P 5721790 58.937486 2 7 2022 14
30 5714018 58.958631 3 7 202 19 2 3 2 5719878 58970760 2 702 o

Fig:40. BikeFinder theft, forecasting results Fig:41. Police theft, forecasting results

The fitted K-Nearest Neighbor models with BikeFinder theft data and Rogaland
PoliceDistrict theft data has been used to forecast theft using future date and time. The data

to be forecasted are dates for July 2022 and randomized time of the day.

center point: 58.95844164966807 5.698526521749961
center point: 58.058177903387

1038331060135

57’””"«, oper 3

™,

|+ fioe
=]

Stavanger,

% «
% o sersked
%)

a1 e amper,

sacdsvel
et
o

Stavanger

=

o
o gtessal
» e

ognes D)

®o0

Stokka

o SEapRIS UEOSIAD

W G S
Sancal 2 5 ¥,

Viadiaveien - a | Leste | Dt by OpenSireetaap, ncer 000

Fig:42. BikeFinder theft, forecasting on map Fig:43. Police theft, forecasting on map

43

5.1.6 Traffic forecasting results

Forecasting for traffic for July 2022
using BikeFinder data
(One prediction per day)

o 5.737045 58.971963 1 7 2022 6
1 5.727579 58.972740 2 7 2022 18
2 5.733163 58.974140 3 7 2022 23
3 5.719846 58.973188 4 7 2022 16
4 5.718437 58.973774 5 7 2022 10
5 5.719081 58.954335 6 7 2022 18
6 5.719081 58.954335 7 7 2022 18
7 5.719081 58.954335 8 7 2022 18
8 5.742005 58.955535 9 7 2022 20
9 5.725607 58.955269 10 7 2022 10
10 5.729521 58.956813 11 7 2022 1
1 5.714911 58953893 12 7 2022 23
12 5.720622 58.953309 13 7 2022 15
13 5.720622 58953309 14 7 2022 15
14 5.729098 58.957762 15 7 2022 21
15 5.687267 58.959741 16 7 2022 19
16 5.720169 58.965826 17 7 2022 1
17 5.715420 58.949888 18 7 2022 8
18 5.637653 58.945678 19 7 2022 12
19 5.715420 58.949888 20 7 2022 8
20 5.705182 58.962379 21 7 2022 14
21 5.708588 58.956849 22 7 2022 13
22 5.708588 58.956849 23 7 2022 13
23 5.705182 68.962379 24 7 2022 14
24 5.705133 58.950242 25 7 2022 15
25 5.700963 58.939196 26 7 2022 17
26 5.734280 58.951731 27 7 2022 3
27 5.730901 58.958562 28 7 2022 4
28 5.743921 58.957029 29 7 2022 20
29 5.706182 58.953702 30 7 2022 1
o & 700708 coaatces a1 7 enon 4a

Fig:44. BikeFinder traffic, forecasting results

Forecasting for forecasting for July 2022
using Stavanger city sensor data
(One prediction per day)

forecast_prediction_longitude forecast_prediction_latitude day month year hour

0 5.703351 58933101 1 7 202 16
1 5.723357 58914726 2 7 202 14
2 5.691319 58.946540 3 7 202 9
3 5.680768 58.960530 4 7 202 21
4 5.695583 58954926 5 7 202 8
5 5.687088 58.956484 6 7 202 6
6 5.704546 58.929589 7 7 202 18
7 5.693485 58961417 8 7 202 23
8 5.703241 58943591 9 7 202 6
9 5.704546 58.929589 10 7 202 18
10 5.692455 58961332 11 7 202 17
1 5.698820 58.959513 12 7 202 21
12 5.743163 58.896246 13 7 202 8
13 5.663229 58.957205 14 7 202 2
14 5.694200 58915735 15 7 202 11
15 5.693504 58.947904 16 7 22 6
16 5.702467 58.928994 17 7 202 10
17 5.717492 58.892731 18 7 202 2
18 5.710929 58.923003 19 7 2022 16
19 5.698279 58.938347 20 7 2022 1
20 5.699547 58.944063 21 7 2022 6
21 5.678650 58.960834 22 7 2022 23
22 6701083 58.958030 23 7 2022 18
23 5.714076 58.959381 24 7 222 7
24 6.700337 58.955050 25 7 2022 17
25 5.700337 58.955050 26 7 202 17
26 5.708501 58.953963 27 7 202 13
27 5.714572 58.934564 28 7 202 17
28 5.704385 58943234 29 7 202 18
29 5.710200 58.942654 30 7 202 6
30 5.689151 58.957500 31 7 202 19

Fig:45. Stavanger traffic, forecasting results

The fitted K-Nearest Neighbor models with BikeFinder traffic data and Stavanger city

sensors data has been used to forecast traffic using future date and time. The data to be

forecasted are dates for July 2022 and randomized time of the day.

center point: 58.957942710344696 5.716913952021747

- Tastags
a+l) . oy
-])
g
Selys
% > Bjergsted Y
Z o, o = o
a) w5
° \
“"%..,,, Kipeh o)
Glaisiachstger Stavanger b
Cedaal ;
! W ¢
o X gt Storhaug
giokka Eiganes §
0
° g/
e o
o
Sandal e 3
\ - ey, ©
™~ . Tiedsbol / »
=3 Madla’ % o K. A
%, ¥
° s -
sen
w2 e hansug \

ariero
et | Data by © Opentreethap, under ODbL.

Madlstus

Fig:46. BikeFinder traffic, forecasting on map

center point: 58.942445959586834 5.700730925559323

viste rageoy cgay
%,

+ Enaresto
6 2 glergsted s SO0t
S Stavanger
Kvernavik “woN P
Stokka * Eiganes’ Storhaug: 3 "
7EAN A
w > ®
o % 7 © fivaana |
sl o \
o 1 . i
Tiensvoll Hileido)
= o Y X2 A | Elterv!
510 aug_hsen
Yrba vl \ e
Tananger ° o)
p A
Granies 0 |
vadlen ~ J 3
2 Fommerssk
o »
= i
£ {
> 2N A
N Jaus
% \
Royneberg
Gaisty
Godéser |
"3 \
forus \
sola \
Siokka)
N { Leafe | Data by © Opensiretiiap, under ODbL

Fig:47. Stavanger traffic, forecasting on map

44

5.2 Data used

A number of datasets are used in this project, the main ones are the BikeFinder data as
the project revolves around it. Two BikeFinder datasets were gathered one for theft reports
that consisted of 1,008 rows and 2 columns. The other with position data that consisted of
19,833,415 rows and 5 columns, both datasets contained data from 2019 to 2022. In order to
get theft positions it was required to merge position data with theft data. After limiting the
data to Stavanger, eliminating duplicates and removed missing information, theft data
contained 31 cases while position data became 794,971 rows.

Theft data from Rogaland Police District was a single dataset that consisted of 1686
rows and 15 columns in total after removing duplicates it was reduced to 1673 rows. It was
challenging to gather this dataset as it required to send multiple emails, long waiting time for
responses and even meeting up in person at the Police station in order to gather the dataset.
As a result it was gathered at late stage into the thesis time, which then resulted in the idea to
find a similar dataset such as the dataset for crime in Chicago from Kaggle to work with in the
meantime.

Chicago crime dataset with 6.99m rows and 22 columns is the largest dataset in this
project. The dataset contains data about crimes in general registered in Chicago, the dataset is
from 2001 to present. According to the dataset description in kaggle approximately 10 people
are shot on an average day in Chicago, which gives an idea on how the dataset is this large.

Weather data was gathered from “Norsk KLIMASERVICE SENTER” website, the data
consists of around 47,242 rows of hourly weather data from 2017 up to now, with columns
such as rain, temperature and date. [11] The location of this measurement is Stavanger-
Viland, as it is there where the sensor is placed. The data was limited to 2017 - 2022 in order
to contain data within the range of BikeFinder position data as well as the data city bike
counter sensor.

The data for bike counter sensors from the city of Stavanger is gathered from the
Stavanger municipality website that contains a set of datasets. The datasets are a registry of
how many bikes has passed through the sensors that are placed around the city. A total of six
datasets were obtained with data from 15 sensors and merged together resulting in 723121

rows and 10 columns.[14]

45

5.3 Result Analysis

The BikeFinder data has a great potential to be used in many ways to gain insight on
bike traffic and bike theft. The advantage of the BikeFinder data is that it is not gathered from
a stationary position such as the city bike counter sensors. This makes BikeFinder data more
attractive to perform such researches and analyses as it gives a more insightful and realistic
data on bike movements. However, The city bike counting sensors have the advantage on the
amount of different bikes it registers. BikeFinder data in the other hand only includes bikes
with BikeFinder tracker installed. In some cases, there is not a big number of those in a single
city, a single bike can send many positions which might then result in a bias outcome.

BikeFinder theft data does have the potential to be used as predictor data, however as
it is currently the amount of data for the city of Stavanger is too small to be a reliable
predictor. A data as small as this can cause overfitting. When a model is overfitted, it is not
reliable to use for forecasting as it is not going to work accurately when other different data
are to be predicted. Thus, the model is not exposed to enough adversity to learn from.
However, it can be seen in the results from sections 5.1.1 and 5.1.2 that BikeFinder data has
lower RMSE values although the data size is significantly less than Rogaland Police District
data. Another reason that plays a big role other than overfitting is that BikeFinder data has
two more columns that Rogaland Police District data don’t, namely minutes and seconds.
This two values can affect the results positively as well to certain degree, it helps to get a
more accurate outcome.

Based on the results of traffic forecasting from BikeFinder at section 5.1.6 and the
Fig:12 & Fig:47 the sensor placements for Stavanger city bike counting sensors it is possible to
see that the sensors are placed around the city of Stavanger perhaps to count how many bike
in and out the city. However, if the city is not counting most of the movements inside the city
as it can be seen from the forecasting results at section 5.1.6. The city sensors results look
different in comparison to BikeFinder traffic forecasting results. There is more predictions
around the city center including areas such as Bjergstad, Kampen and Eiganes where possibly
many bikers might live and for instance use bikes as a transportation option in the city. The
city bike counting sensors surrounding Stavanger will fail to take those into consideration.
Thus, it might affect the city judgments on what routes need improvements or needs to be
added. The sensors might also fail to count bikes traveling in and outside the city obviously if

a biker uses other transportation means to move the bike in and out the city such as trains or

46

busses. A suggestion is to have the sensors closer to the city center. Placing them at places
where people around the city center live, between the city center and routes such as
Storhaug, Bjergstad, Eiganes, Vdland Hundvagtunnelen. This way the city would have a
better insight on how bike traffic is.

As shown RMSE comparison results in sections 5.1.3 and 5.1.4, for both BikeFinder
traffic data and Rogaland Police District data, the RMSE value is lower when weather
conditions data is included. This indicates that the predictions are more accurate when
weather condition data is given, thus the weather does affect bike traffic. From the results at
5.1.4 bike traffic forecast for July 2022, if it was taken several predictions per day and time it
can give an insight to for instance transportation companies. If it were to be expected much
traffic around certain area a time of the year, month or day, the company can for example

have less busses around that area.

47

6. Discussion

6.1 Originality of this work

In this thesis bike traffic and bike theft prediction for the city of Stavanger was
achieved. BikeFinder data has been explored, evaluated and for the first time used for
prediction purposes. BikeFinder location data were successfully anonymized to protect the
BikeFinder users privacy, but at the same time the data was used as desired to achieve the
objectives for theft predictions and traffic predictions. Forecasting theft with both BikeFinder
data and Rogaland Police District data were achieved to help bikers avoid those place. In this
thesis it was also given suggestions on where would the ideal place be to have control over
possible theft was also given to sides such as the police.

Traffic predictions using weather data was also achieved and concluded that weather
conditions does affect traffic, based on the data used. The city stationary sensor data and
BikeFinder traffic data both can be useful predictors. The city sensors data provides data of a
wider range of bikes that can result in less bias results. BikeFinder traffic data can give more
detailed bike movements as well as it can provide insightful information to the city on where
to place their sensors.

This thesis for the most part had freedom of choices, there wasn't a specific way the
project needed to be approached, as long as it served its purpose. This means all the “hows”
were up to me to decide, such as which data to use on top of BikeFinder data and methods to
perform forecasting and evaluations. However, my supervisors provided very valuable
guidance through the entire process and redirected me in time if the project were to go in the
wrong direction. The project was taken step by step, each problem was solved through
several tests with different models. Each choice has been made after comparing the test
results.

This is the first project that involved BikeFinder data to be used to forecast potential
theft and/ or traffic, such feature would be a great addition for BikeFinder AS users, perhaps
on the BikeFinder app. The project was successfully completed despite facing several
challenges in gathering police theft dataset which required several attempts and almost half
the thesis period. Also, failed attempts in gathering public transportation data after several

requests, despite that it is safe to say the project achieved the objectives.

48

6.2 Further work

There are several possibilities for the growth of this project depending on the objectives
to be achieved. With more resources and datasets accessibility larger datasets can be used to
achieve more accurate results. Different datasets also can be added such as data about public
transportation. Data like public transportation can provide insight to public transportation
companies. Based on the correlation between how busy public transportation gets and bike
traffic in some areas. This sort of information can save the companies money if they use the
results to allocate their resources based on traffic predictions. The company can for instance
have less busses in an area when bikes are expected to be used more.

This project can also be extended to more than just bikes. The project can focus on
crimes generally and for instance add data about holidays, festivals etc. In this case the police
can use this information to allocate their resources accordingly. Another party that can use
this, hospitals and health care organizations, for instance an ambulance can be placed at areas
were crime is expected during a certain time.

Traffic predictions can also be used for more than just bikes, it can be used for cars or
other places where one is trying to avoid waiting time. The opposite is also possible, some
companies might need to know where there is traffic to target potential customers.

The project would be a very useful tool if a User Interface were to be developed. A user
can the either insert the date and time to predict and then the predictions displays on a map.
A possibility to insert a dataset with date and time in a specific format as input, would also be
an option for other more advanced features. Another possibility, instead of making the user
insert anything, pre forecast for the day or the week, similar to weather forecasting. Also,
maybe display the results on a map using a sliding switch that works as a moving window.

The further the project expands with larger data, the computing time as well as
resources used can be very large, that being said this gives the opportunity to put a use for

distributed processing systems such as Hadoop and Spark.

49

7. Acknowledgments

I would like to appreciate my supervisor Professor Reggie Davidrajuh and co-
supervisor Daniel Barati, for the valuable guidance, frequent feedbacks and encouragements

throughout the master thesis. I would also like to thank my family for all the support.

50

References

[1]. A bike is stolen every 16 minutes in London and there's a 98 per cent chance you'll
never see it again. Available online: https://www.cyclingweekly.com/news/a-bike-is-
stolen-every-16-minutes-in-london-and-theres-a-98-per-cent-chance-youll-never-see-

it-again (accessed on 12 June 2022).
[2]. Alice Zheng (2015), Evaluating Machine Learning Models. O'Reilly Media, Inc..

[3]. Andreas C. Miiller & Sarah Guido (2016), Introduction to Machine Learning with
Python: A Guide for Data Scientists. O'Reilly Media, Inc.

[4]. Bicycle vs car production, Available online: https://www.worldometers.info/

bicycles (accessed on 12 June 2022).
[5]. BikeFinder, Available online: https://www.bikefinder.com (accessed on 12 June 2022).

[6]. Chicago Crime, Available online: https://www.kaggle.com/datasets/chicago/chicago-

crime?select=crime (accessed on 12 June 2022).

[7]. Garry Kasparov (2017), Deep Thinking: Where Machine Intelligence Ends and Human
Creativity Begins. John Murray Publishers Ltd.

[8]. Giuseppe Bonaccorso (2019), Hands-On Unsupervised Learning with Python. Packt
Publishing.

[9]. McKinney, W. (2017), Python for data analysis : data wrangling with Pandas, NumPy,
and IPython. Beijing, O'Reilly.

[10]. Mirrorpix (2017), The Bicycle: 200 Years on Two Wheels. United Kingdom, The
History Press Ltd..

51

[11]. NORSK KLIMA SERVICE SENTER, Available online: https://seklima.met.no/

observations (accessed on 12 June 2022).

[12]. Richert, W. (2015), Building machine learning systems with Python : get more from
your data through creating practical machine learning systems with Python.
Birmingham, Packt Publishing.

[13]. Scikit-Learn. Available online: https://scikit-learn.org (accessed on 12 June 2022).

[14]. Stavanger Sykkeldata, Available online: https://open.stavanger.kommune.no/dataset/
sykkeldata (accessed on 12 June 2022).

52

Appendix-A

A1: Complete code:

BikeFinder traffic data pre-processing

bf_traffic_preprocess.ipynb

Dawit H. Kidane, 15.june.2022

Importing Libraries

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from datetime import timedelta

import folium

from folium import plugins

from folium.plugins import MarkerCluster

import warnings

warnings.filterwarnings("ignore")
warnings.simplefilter(action='ignore', category=FutureWarning)

Loading and exploring the Bikefinder traffic data

#Load the BikeFinder bike position data
bf position data = pd.read csv('final deviceLocationData.csv')
bf position_data.shape

#check for undefined latitude and/or longitude values
print((bf position data['latitude']=='undefined').sum())
print((bf position data['longitude']=='undefined').sum())

#remove undefined latitude and/or longitude values

bf position data = bf position data[bf position data.latitude != 'undefined']
bf position data = bf position data[bf position data.longitude != 'undefined']
print((bf position data['latitude']=='undefined').sum())
print((bf_position data['longitude']=='undefined').sum())

convert longitude and latitude values from string to float
bf position data['longitude'] = bf position data['longitude'].astype(float)
bf position_data['latitude'] = bf position data['latitude'].astype(float)

#Limit the data to Stavanger only
stavanger position_data = bf_position_data[bf_ position_data['longitude'].between

stavanger position_data = stavanger position_data[stavanger position data['latit
stavanger position data

#check for duplicates
print(stavanger position data.duplicated().value counts())

#drop duplicates
stavanger position_data = stavanger position_data.drop duplicates()
stavanger position data

#Convert Time format to 'month/day/year hour:minute:second’

stavanger position_data['timestamp'] pd.to _datetime(stavanger position data['t
stavanger position_data['timestamp'] = pd.to_ datetime(stavanger position_data['t
stavanger position_data['timestamp'][0]

#Trackers that has over a 1000 positions registered
stavanger position_ data['deviceId'].value_counts()#.loc[lambda x : x>10]

#anonymizations
stavanger position_data['longitude']=random.uniform((stavanger position_datal['lo
stavanger position_data['latitude']=random.uniform((stavanger position_data['lat

#split traffic date and time data into separate columns

extract hours

hours = stavanger position data.timestamp.dt.hour
extract minutes

mins = stavanger position data.timestamp.dt.minute
extract seconds

sec = stavanger position data.timestamp.dt.second

extract month
year = stavanger position_data.timestamp.dt.year

extract month
months = stavanger position data.timestamp.dt.month

extract day of a month
day_of month = stavanger position_ data.timestamp.dt.day

time data = pd.DataFrame({

'year' : year,

'month' : months,

'day_of month' : day of month,
'"hour' : hours,

'minutes' : mins,

'seconds' : sec

})

final bf stavanger position_data

pd.concat([stavanger position_data, time data

final bf stavanger position_data final bf stavanger position data[['latitude',

final bf stavanger position data

#export preprocessed data to be used for machine learning part.
final bf stavanger position data.to csv('bf traffic preprocessed.csv', index=Fal

BikeFinder traffic data with weather data

#importing weather data
weather = pd.read excel('table.xlsx')
with _weather data = stavanger position_data

with_weather data

with weather data['hours'] = with weather data.timestamp.dt.hour

with weather data

weather['Tid(norsk normaltid)']
weather['Tid(norsk normaltid) ']
weather['Tid(norsk normaltid)'][0]

pd.to _datetime(weather['Tid(norsk normaltid) ']
pd.to datetime(weather['Tid(norsk normaltid) ']

weather.rename(columns = {'Tid(norsk normaltid)':'timestamp'}, inplace = True)

weather=weather.dropna()

weather['hours'] = weather.timestamp.dt.hour.astype(int)
weather|['year'] = weather.timestamp.dt.year.astype(int)

weather['month'] = weather.timestamp.dt.month.astype(int)
weather['day'] = weather.timestamp.dt.day.astype(int)

weather

with weather data['hours'] = with weather data.timestamp.dt.hour
with weather data['year'] = with weather data.timestamp.dt.year

with_weather data['month'] = with_weather_data.timestamp.dt.month
with weather data['day'] = with weather data.timestamp.dt.day
with _weather data

final with weather=pd.merge(with weather data, weather, on=['year',6 'month', 'day'
final with weather

final with weather.dropna(inplace=True)
final with weather=final with weather.reset index(drop=True)
final with weather

final with weather = final with weather[['latitude', 'longitude', 'year', 'month’',
final with weather['Nedbgr (1 t)'].unique()

final with weather = final with weather[final with weather['Nedbgr (1 t)'] != '-
final with weather = final with weather[final with weather['Lufttemperatur'] !=
final with weather

#export preprocessed data to be used for machine learning part.
final with weather.to csv('bf traffic weather preprocessed.csv', index=False)

BikeFinder theft data pre-processing

bf_theft_preprocess.ipynb

Dawit H. Kidane, 15.june.2022

Importing Libraries

#Importing required libraries

import random

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from datetime import timedelta

import folium

from folium import plugins

from folium.plugins import MarkerCluster
import warnings

warnings.filterwarnings ("ignore")
warnings.simplefilter (action='ignore', category=FutureWarning)

Loading and exploring the Bikefinder theft data

#Load the BikeFinder theft Data
bf Theft data = pd.read csv('BikeFinder theft Data.csv')

#Rename BikeFinder theft data columns to match BikeFinder position data
bf Theft data.rename (columns = {'Time':'timestamp', 'Device':'devicelId'}, inplace = True)

#check for duplicates
print ('checking for duplicate rows :\n',bf Theft data.duplicated() .value counts(),'\n'")

#drop duplicates
bf Theft data dup droped = bf Theft data.drop duplicates ()

#check for unique devices
print ('checking device duplicates :\n',bf Theft data dup droped.duplicated("deviceId").value counts(),'\n")

#Convert theft dataset Time format to 'month/day/year hour:minute:second’

bf Theft data dup droped['timestamp'] = pd.to datetime (bf Theft data dup droped['timestamp']).dt.strftime ('%m/¢
bf Theft data dup droped['timestamp'] = pd.to datetime (bf Theft data dup droped['timestamp'], format='%m/%d/%Y
print ('checking new time format :\n',bf Theft data dup droped['timestamp'][0])

#Sort by Time first and then by Device id so that each device is grouped together and sorted by time
bf Theft data dup droped sorted = bf Theft data dup droped.sort values (by='timestamp') .reset index (drop=True)
bf Theft data dup droped sorted = bf Theft data dup droped sorted.sort values (by='deviceld') .reset index (drop=1

#show the dataset
bf Theft data dup droped sorted

In this section only one theft report per tracker in one day should be taken into account
mins=1440 #minutes in a day
counter=0

New Dataframe for rsults
bf theft data results = pd.DataFrame (columns=['deviceId',6 'timestamp'])

Iterate through every row
for i in range(len(bf Theft data dup droped sorted)):

If Device exists from before in the result dataframe, go in and compare the date differences
if str(bf Theft data dup droped sorted.iloc[i] ["deviceId"]) in str(bf theft data results.deviceld):

#Take the Last date of the existing Device and calculate the differences in the date with the current «
res=(pd.Timedelta ((bf theft data results.loc[bf theft data results["deviceId"]
==bf Theft data dup droped sorted.iloc[i] ["deviceId"]]).iloc[-1]['timestar
-bf Theft data dup droped sorted.iloc[i] ["timestamp"]) .seconds/ 60.0)

#If the differences 1is less than 1440 mins then store it in the result data frame
if (res>mins) :

bf theft data results = bf theft data results.append({'deviceId': bf Theft data dup droped sorted.:
, 'timestamp': bf Theft data dup droped sorted.iloc[i] ["timestamp"]}, ignore

#else add it as new value
else:
bf theft data results = bf theft data results.append({'deviceId': bf Theft data dup droped sorted.iloc
,'timestamp': bf Theft data dup droped sorted.iloc[i] ["timestamp"]}, ignore inc

#Print results
bf theft data results

#Load the BikeFinder bike position data
bf position data = pd.read csv('final deviceLocationData.csv')

print ('checking bikfinder traffic dataset size :\n',bf position data.shape, '\n')

#check for undefined latitude and/or longitude values
print ('nr. of dupliicates for latitude:\n', (bf position data['latitude']=='undefined').sum(), " '\n")
print ('nr. of dupliicates for longitude:\n', (bf position data['longitude']=='undefined').sum(),'\n")

#remove undefined latitude and/or longitude values
bf position data = bf position data[bf position data.latitude != 'undefined']
bf position data = bf position data[bf position data.longitude != 'undefined']

convert longitude and latitude values from string to float
bf position data['longitude'] = bf position data['longitude'].astype (float)
bf position data['latitude'] = bf position data['latitude'].astype (float)

#Limit the data to Stavanger only
bf position data = bf position data[bf position data['longitude'].between (5.585986955209788, 5.773063826295662)

bf position data=bf position data[bf position data['latitude'].between (58.9180072658198, 58.98768986749389)].r¢

#show the dataset
bf position data

#Convert traffic dataset Time format to 'month/day/year hour:minute:second’

bf position data['timestamp'] = pd.to datetime (bf position data['timestamp']).dt.strftime ('%m/%d/%Y $H:%M:%S"')
bf position data['timestamp'] = pd.to datetime (bf position data['timestamp'], format='%m/%d/%Y $H:%¥M:%$S"')

print ('checking new time format :\n',bf position data['timestamp'][0])

Merge the latitude and longitude of the devices with the latest time right before sending the notification
counter=0

#new dataframe to store results in
bf stavanger theft data = pd.DataFrame (columns=['deviceId', 'packetType', 'latitude','longitude','timestamp'])

iterate through the theft report data
for i in range(len(bf theft data results)):

get all the rows with the specific device id
latest = bf position data.loc[bf position data['deviceId'] ==
str (bf theft data results.iloc[i] ["deviceId"])].sort values (by='timestamp') .reset ir

1f it is not empty or there exist latest data that is before the theft report then continue
if not latest.empty and not(latest.loc[latest['timestamp'] < (bf theft data results.iloc[i] ["timestamp"])])

#get the latest data before the theft reprot
temp = (latest.loc[latest['timestamp'] < (bf theft data results.iloc[i]["timestamp"])]) .iloc[-1]

#store the values for the latest data before theft in the new dataframe

bf stavanger theft data = bf stavanger theft data.append({'deviceld': temp["deviceId"], 'packetType': te
,'latitude': temp["latitude"], 'longitude': temp["longitude"]
, 'timestamp': bf theft data results.iloc[i] ["timestamp"]}, ignore index=True)

#counts how many rows are detected
counter = counter + 1

counter

#reset indexes
bf stavanger theft data = bf stavanger theft data.reset index (drop=True)

#anonymizations
bf stavanger theft data['longitude']=random.uniform((bf stavanger theft data['longitude'])-0.00500, (bf stavanc
bf stavanger theft data['latitude']=random.uniform((bf stavanger theft data['latitude'])-0.00500, (bf stavange:

#plot a scatter plot of the results

plt.scatter (x=bf stavanger theft data['longitude'].astype(float), y=bf stavanger theft data['latitude'].astype
plt.xlabel ('longitude')

plt.xlabel ('latitude"')

plt.show ()

#https://python-visualization.github.io/folium/modules.html#module-folium.map
#show the results in map, theft reports in Stavanger

#remove nan values.
bf stavanger theft data = bf stavanger theft data[bf stavanger theft data['latitude'].notna()]
bf stavanger theft data = bf stavanger theft data[bf stavanger theft data['longitude'].notna()]

#plotting the points in a map using folium library

fig 1 = folium.Map([59,5.6], zoom start=11)

for index, row in bf stavanger theft data.iterrows():

folium.CircleMarker ([row['latitude'], row['longitude']],

radius=3,
popup=row|['deviceId'],
) .add _to(fig 1)

fig 1

#plot the center of the points by calculating the average of the latitude and longitude values.

lat = []

long = []

for index, row in bf stavanger theft data.iterrows():
lat.append(row["latitude"])
long.append (row["longitude"])

latl=sum(lat)/len(lat)
lat2=sum(long)/len (long)
folium.CircleMarker ([latl,lat2],
radius=5,
popup="CENTER LOCATION",
color='black',
) .add_to(fig 1)
fig 1

#split date and time values.

final bf stavanger theft data = bf stavanger theft datal[['latitude',6 'longitude', 'timestamp']]
final bf stavanger theft data.rename(columns = {'timestamp':'theft time'}, inplace = True)

convert date time column to datetime type
final bf stavanger theft data.theft time = pd.to datetime (final bf stavanger theft data.theft time)

#split theft into separate columns

extract hours

hours = final bf stavanger theft data.theft time.dt.hour
extract minutes

mins = final bf stavanger theft data.theft time.dt.minute
extract seconds

sec = final bf stavanger theft data.theft time.dt.second

extract month
year = final bf stavanger theft data.theft time.dt.year

extract month
months = final bf stavanger theft data.theft time.dt.month

extract day of a month
day of month = final bf stavanger theft data.theft time.dt.day

time data = pd.DataFrame ({

'year' : year,

'month' : months,
'day of month' : day of month,
'hour' : hours,

'minutes' : mins,

'seconds' : sec

})
final bf stavanger theft data

pd.concat ([final bf stavanger theft data, time data], axis = 1)

final bf stavanger theft data
final bf stavanger theft data

final bf stavanger theft data[['latitude', 'longitude', 'year', 'month', 'day of r

#export preprocessed data to be used for machine learning part.
final bf stavanger theft data.to csv('bf theft preprocessed.csv', index=False)

Rogaland Police District theft data pre-processing

police_preprocess.ipynb

Dawit H. Kidane, 15.june.2022

Importing Libraries

#Importing required libraries

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from datetime import timedelta

import folium

from folium import plugins

from folium.plugins import MarkerCluster
from geopy.geocoders import Nominatim
import warnings

warnings.filterwarnings ("ignore")
warnings.simplefilter (action='ignore', category=FutureWarning)

Loading and exploring the police theft data

#Load the Police theft Data
Theft data = pd.read excel('Tyveri av sykkel 2019 til 2021.x1sx"')
Theft data

#sort the data by date and time
Theft data = Theft data.sort values (by="Gj dato start").reset index (drop=True)

#check for duplicates
print ('checking for duplicate rows :\n',6 Theft data.duplicated().value counts(),'\n")

#drop duplicates
Theft data=Theft data.drop duplicates() .reset index (drop=True)

#take only data after 31-12-2017
Theft data=(Theft data.loc[Theft data['Gj dato start'] > ('2017-12-31')]) .reset index (drop=True)

#converting time and date type

pd.to datetime (Theft data['Gj kl start'],format= 'SH:%M').dt.time
pd.to datetime (Theft data['Gj dato start']).dt.strftime ('%m/%d/%Y")

#combining date and time
Theft data['timestamp'] = pd.to datetime (pd.to datetime (Theft data['Gj dato start']).dt.strftime('Sm/%d/%Y'") .ac

#chaninging time and date format

Theft data['timestamp'] = pd.to_datetime(Theft_data['timestamp']).dt.strftime('%m/%d/%Y SH:%M')
Theft data['timestamp'] = pd.to datetime (Theft data['timestamp'], forma ='%m/%d/%Y $H:%M')

Theft data['timestamp'][0]

#check for unique police zone values
Theft data.Politisone.unique ()

assigning latitude and longitude values to the areas and add the rest manually
results = pd.DataFrame (columns=['Politisone', 'longitude’', 'latitude'])

for i in ['Eiganes', 'Kampen', 'Varden', 'Parken', 'Hinna',
'Sglvberget', 'Ullandhaug', 'Ytre Tasta', 'Kvalaberg',6 'Hundvag',
'Straen', 'Tjensvoll', 'Randaberg sentrum',
'Boganes', 'Stokka', 'Sunde', 'vValand', 'Vaulen',
'Madlamark', 'Gausel', 'Forus @st', 'Skagen', 'Jatten', '@yane - Hundvag',
'"Mostergy', 'Kvernevik', 'Bugy', 'Rennesgy',
'Finngy', 'V. Amgy']:

loc = Nominatim(user agent="GetLoc")
getLoc = loc.geocode (i+ ", Rogaland")

results = results.append({'longitude': getLoc.longitude
,'latitude': getLoc.latitude,
'Politisone':i}, ignore index=True)

results = results.append({'longitude': 5.694794
,"latitude': 58.986799,
'Politisone':'Indre Tasta'}, ignore index=True)

results = results.append({'longitude': 5.739472
,'latitude': 58.970624,
'Politisone':'Storhaug Nord'}, ignore index=True)

results = results.append({'longitude': 5.651457
,'latitude': 59.003017,
'Politisone':'Randaberg @st'}, ignore index=True)

results = results.append({'longitude': 5.618087
,'latitude': 58.991531,
'Politisone':'Randaberg Sgr'}, ignore index=True)

results = results.append({'longitude': 5.708706
,"latitude': 58.889985,
'Politisone':'Forus Vest'}, ignore index=True)

results = results.append({'longitude': 5.647453
,'latitude': 58.939494,
'Politisone':'Madlasannes'}, ignore index=True)

results = results.append({'longitude': 5.614829
,'latitude': 58.998939,
'Politisone':'Randaberg Vest'}, ignore index=True)

results = results.append({'longitude': 5.668205
,'latitude': 59.045169,
'Politisone':'Bru og Sokn'}, ignore index=True)

results = results.append({'longitude': 5.792006
,'latitude': 58.997676,
'Politisone':'Bygyene'}, ignore index=True)

results

#merge the latitude and longitude on the theft data by police zone names
Theft data=pd.merge (Theft data, results, on="Politisone", how="right")

#check for column information
Theft data.info()

#drop null values

Theft data.dropna(inplace=True)

Theft data.info()

Theft data=Theft data.reset index (drop=True)

#show the results in map

fig 1 = folium.Map([59,5.6], zoom start=11)

for index, row in Theft data.iterrows():

folium.CircleMarker ([row['latitude'], row['longitude']],

radius=3,
popup=row['Politisone'],
) .add_to(fig 1)

fig 1

#heatmap

dfmatrix = Theft data[['latitude', 'longitude']].values

plot heatmap

fig 1.add child(plugins.HeatMap (dfmatrix, radius=15))

fig 1

convert date time column to datetime type

final theft = Theft data

final theft.rename (columns = {'timestamp':'theft time'}, inplace = True)
final theft.theft time = pd.to datetime (final theft.theft time)

hours = final theft.theft time.dt.hour

year = final theft.theft time.dt.year

extract month
months = final theft.theft time.dt.month

extract day of a month
day of month = final theft.theft time.dt.day

features = pd.DataFrame ({
'year' : year,
'month' : months,
'day of month' : day of month,
'hour' : hours
})
features = pd.concat ([final theft, features], axis = 1)
final = features[['latitude', 'longitude', 'year',6K 'month','day of month', "hour']]
final

#export preprocessed data to be used for machine learning part.
final.to csv('police theft preprocessed.csv', index=False)

Stavanger bike counter, traffic data pre-processing

city_counter_preprocess.ipynb

Dawit H. Kidane, 15.june.2022

Importing Libraries

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from datetime import timedelta

import folium

from folium import plugins

from folium.plugins import MarkerCluster
from geopy.geocoders import Nominatim
import warnings

warnings.filterwarnings ("ignore")
warnings.simplefilter (action='ignore', category=FutureWarning)

Loading and exploring the city bike counter data

City bike data import from : https://open.stavanger.kommune.no/dataset/bysykler-
stavanger/resource/987ad1f2-99a6-4695-9924-3a943c4f5e0a

Source description from website:

Sykkeldata

Data fra sykkelsensorer i Stavanger kommune. Oppdateres daglig. Se datasettet "Lokalisering sykkeltellere Stavanger" for & finne
plasseringen av tellerne. Knyttes sammen vha feltet "Station_id" (Navnefeltet kan ogsa brukes). Bike data - Data from bike counting
sensors in Stavanger municipality. Updated daily. See the dataset "Lokalisering sykkeltellere Stavanger" to find the locations of the
sensors. Use with the field "Station_id" (the name field can also be used)

https://open.stavanger.kommune.no/dataset/sykkeldata

Bike counting stations 2017

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/7472d940-285f-457c-baf2-
b92565a6947d/download/sykkeldata2017-1.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/7472d940-285f-457c-baf2-b92565a6¢
bike counting 2017 = pd.read csv(url)

print (bike counting 2017['Station Name'].unique ())
bike counting 2017.info ()

bike counting 2017['Date'] = pd.to _datetime (bike counting 2017['Date']) .dt.strftime('3Y-%m-%d")
bike counting 2017['Date'] = pd.to datetime (bike counting 2017['Date'], format='S$Y-%m-%d')

bike counting 2017

Bike counting stations 2018

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/18b5a612-e9f9-4d53-9134-
3eabf162f956/download/sykkeldata2018.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/18b5a612-e9f9-4d53-9134-3ea5f1621
bike counting 2018 = pd.read csv(url)

print (bike counting 2018['Station Name'].unique ())
bike counting 2018.info ()

Bike counting stations 2019

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/36477654-14cf-405¢c-8f23-
ba6fbe674d94/download/sykkeldata_2019.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/36477654-14cf-405¢c-8f23-ba6fbe67¢
bike counting 2019 = pd.read csv(url)

print (bike counting 2019['Station Name'].unique ())

bike counting 2019.info ()

Bike counting stations 2020

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/4952514a-0590-4381-9583-
0048a10f3f87/download/sykkeldata_2020.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/4952514a-0590-4381-9583-0048a10f:
bike counting 2020 = pd.read csv(url)

print (bike counting 2020['Station Name'].unique ())
bike counting 2020.info ()

Bike counting stations 2021

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/d86e8405-fc7a-47e7-a67c-
ec156a3ale87/download/sykkeldata.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/d86e8405-fc7a-47e7-a67c-ecl56a3a’
bike counting 2021 = pd.read csv(url)

print (bike counting 2021['Station Name'].unique ())
bike counting 2021.info ()

Bike counting stations 2022

URL: https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/8f3d84b5-c3b8-41b2-8ffd-
4deelb6ffc86/download/sykkeldata.csv

url="https://opencom.no/dataset/90cef5d5-601e-4412-87e4-3e9e8dc59245/resource/8£3d84b5-c3b8-41b2-8ffd-4deelbb6fi
bike counting 2022 = pd.read csv(url)

print (bike counting 2022['Station Name'].unique ())
bike counting 2022.info ()

frames = [bike counting 2017,
bike counting 2018,
bike counting 2019,
bike counting 2020,
bike counting 2021,
bike counting 2022]

Merged counting stations 17 22 = pd.concat (frames)

print (Merged counting stations 17 22['Station Name'].unique ())
Merged counting stations 17 22.info()

totalcases = np.array([Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'Fc
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'G:
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'S:
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'H:
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'H:

[
[
[
[
[
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'Mc
[
[
[
[
[

[
[
[
[
[
[
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'M
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'R
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'Bz:
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'Kt
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'T:
+Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == '
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'St
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'St
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'S
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'T:
fig = plt.figure(figsize = (15, 5))
creating the bar plot
plt.bar (['Forus Vest', 'Gausel Stasjon', 'Sandal', 'Hilleva&g', 'Hahammer', 'Mosvannet', 'Mgllebukta',
'Randabergveien', 'Brevig', 'Kulvert Mariero', 'Tananger Bru', 'Stemmen', 'Stokkavannet', 'Sgrmarka',
'Tjensvollkrysset'], totalcases, color ='maroon',
width = 0.4)
plt.xlabel ("Sensor Stations")
plt.xticks (rotation = 90)
plt.ylabel ("Passings (y * 1076)")
plt.title("Stavanger bike counter 2017-2022")
plt.show ()
Merged counting stations 17 22.loc[Merged counting stations 17 22['Station Name'] == 'Forus Vest',6 'Count'].sur
Merged counting stations 17 22
Merged counting stations 17 22['Date'] = pd.to datetime (Merged counting stations 17 22['Date']) .dt.strftime('%}
Merged counting stations 17 22['Date'] = pd.to datetime (Merged counting stations 17 22['Date'], format='S%Y-3m-%

Merged counting stations 17 22

Merged counting stations 17 22.columns

Geolocator
results = pd.DataFrame (columns=['name', 'longitude', 'latitude'])
for i in ['Forus Vest', 'Gausel Stasjon', 'Sandal', 'Hillevag', 'Mosvannet',6 'Mgllebukta',
'Randabergveien', 'Tananger Bru', 'Stemmen', 'Stokkavannet', 'Sgrmarka',
'Tjensvollkrysset']:
loc = Nominatim(user agent="GetLoc")

getLoc = loc.geocode(i+ ", Rogaland")

results = results.append({'longitude': getLoc.longitude
,'latitude': getloc.latitude,
'name':1}, ignore index=True)

results = results.append({'longitude': 5.766132388103561
,'latitude': 58.96522697040621,
'name':'Brevig'}, ignore index=True)

results results.append({'longitude': 5.741497499503618
,'latitude': 58.93473267193572,

'name':'Kulvert Mariero'}, ignore index=True)

results = results.append({'longitude': 5.672781147867864
,'latitude': 58.94165180079404,
'name' :'Hadhammer'}, ignore index=True)

results.rename (columns = {'name':'Station Name'}, inplace = True)
results

#show the results in map

fig 1 = folium.Map([59,5.6], zoom start=11)

for index, row in results.iterrows /() :

folium.CircleMarker ([row['latitude'], row['longitude']],

radius=3,
popup=row['Station Name'],
) .add_to(fig 1)

fig 1

Merged counting stations 17 22=pd.merge (Merged counting stations 17 22, results, on="Station Name", how="left")

Merged counting stations 17 22['temp time']= Merged counting stations 17 22['Time'].str.split(':")

Merged counting stations 17 22['temp date']= Merged counting stations 17 22['Date'].astype(str).str.split('-")
Merged counting stations 17 22["hours"] = Merged counting stations 17 22["temp time"].str[0]

Merged counting stations 17 22["day"] = Merged counting stations 17 22["temp date"].str[2]

Merged counting stations 17 22["month"] = Merged counting stations 17 22["temp date"].str[1]

Merged counting stations 17 22["year"] = Merged counting stations 17 22["temp date"].str[0]

Merged counting stations 17 22['Tid(norsk normaltid)'] = Merged counting stations 17 22(["day"]+'.'+Merged count

Merged counting stations 17 22

del Merged counting stations 17 22["Station id"]

del Merged counting stations 17 22["Station Uptime"]

del Merged counting stations 17 22["Lane Name"]

del Merged counting stations 17 22["Average Speed"]

del Merged counting stations 17 22["Average Temperature"]
Merged counting stations 17 22.dropna (inplace=True)
Merged counting stations 17 22.info ()

Merge Traffic data with weather data

Weather data from https://seklima.met.no/observations/

weather = pd.read excel('table.xlsx')
weather.head (5)

with weather=pd.merge (Merged counting stations 17 22, weather, on="Tid(norsk normaltid)", how="left")

#check for undefined latitude and/or longitude values
print ((Merged counting stations 17 22['latitude']=='"') .sum())
print ((Merged counting stations 17 22['longitude']=='") .sum())

#remove undefined latitude and/or longitude values

Merged counting stations 17 22 = Merged counting stations 17 22[Merged counting stations 17 22.latitude !'= 'unc
Merged counting stations 17 22 = Merged counting stations 17 22[Merged counting stations 17 22.longitude != 'ur
print ((Merged counting stations 17 22['latitude']=='undefined') .sum())
print ((Merged counting stations 17 22['longitude']=='undefined') .sum())

convert longitude and latitude values from string to float

Merged counting stations 17 22['longitude'] = Merged counting stations 17 22['longitude'].astype (float)

Merged counting stations 17 22['latitude'] = Merged counting stations 17 22['latitude'].astype(float)

Merged counting stations 17 22 = Merged counting stations 17 22.reset index (drop=True)

final stavanger position data = Merged counting stations 17 22[['latitude', 'longitude', 'year',6 'month', 'day','?

final stavanger position data

#export preprocessed data to be used for machine learning part.
final stavanger position data.to csv('city traffic preprocessed.csv', index=False)

with weather.dropna (inplace=True)

#check for undefined latitude and/or longitude values
print ((with weather['latitude']=="'") .sum())
print ((with weather['longitude']=='") .sum())

#remove undefined latitude and/or longitude values

with weather = with weather[with weather.latitude '= 'undefined']
with weather = with weather[with weather.longitude != 'undefined']
print ((with weather['latitude']=='undefined') .sum())

print ((with weather['longitude']=='undefined') .sum())

convert longitude and latitude values from string to float
with weather['longitude'] = with weather['longitude'].astype (float)
with weather['latitude'] = with weather['latitude'].astype (float)

with weather=with weather.reset index (drop=True)
final traffic=with weather

final traffic.rename (columns = {'Tid(norsk normaltid)':'theft time'}, inplace = True)
final traffic

final = final traffic[['latitude', 'longitude', 'year',6 'month', 'day', 'hours', 'Nedbgr (1 t)',6 'Lufttemperatur']]
#making sure all empty data are removed

final['Nedbgr (1 t)'].unique ()

final = final[final['Nedbgr (1 t)'] !'= '-"']

final = final[final['Lufttemperatur'] != '-']

final

#export preprocessed data to be used for machine learning part.
final.to csv('city traffic weather preprocessed.csv', index=False)

Chicago crime data, preprocessing & predictions

theft_predictions.ipynb

Dawit H. Kidane, 15.june.2022

Importing Libraries

#Importing required libraries

from math import sqgrt

from sklearn.metrics import mean absolute error, mean squared error #for calculation of errors
from sklearn.model selection import train test split

from sklearn.preprocessing import MinMaxScaler

import sklearn.neighbors

from sklearn.neighbors import KNeighborsRegressor

from numpy import sqgrt

import random

from sklearn.cluster import KMeans #for performing Kmeans

from sklearn.metrics import silhouette samples, silhouette score #for silhouette

from sklearn import tree

from sklearn.ensemble import RandomForestRegressor

from scipy.cluster.hierarchy import dendrogram, linkage #for the dendogram

from sklearn.cluster import AgglomerativeClustering #for performing AgglomerativeClustering
from sklearn.cluster import KMeans #for performing Kmeans

from scipy.cluster.hierarchy import dendrogram, linkage

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from datetime import timedelta

import folium

from folium import plugins

from folium.plugins import MarkerCluster

import warnings

warnings.filterwarnings ("ignore")

warnings.simplefilter (action='ignore', category=FutureWarning)

Loading and exploring the Chicago crime data

https://www.kaggle.com/datasets/chicago/chicago-crime?select=crime

#Load the preprocessed BikeFinder theft Data
data = pd.read csv('Crimes - 2001 to Present.csv')
data.shape

#check for duplicates
data.duplicated() .value counts ()

#use 100000 rows
data 100000=data.head(100000)

print (data 100000.columns)
print (data 100000.info())

convert date time column to datetime type
data 100000.Date = pd.to datetime (data 100000.Date)

print (data 100000.columns)
data 100000.info ()

#split theft into separate columns

extract hours

hours = data 100000.Date.dt.hour
extract minutes

mins = data 100000.Date.dt.minute
extract seconds

sec = data 100000.Date.dt.second

extract month
year = data 100000.Date.dt.year

extract month
months = data 100000.Date.dt.month

extract day of a month
day of month = data 100000.Date.dt.day

time data = pd.DataFrame ({

'year' : year,

'month' : months,
'day of month' : day of month,
'hour' : hours,

'minutes' : mins,

'seconds' : sec

})
final chicago_theft data

pd.concat ([data 100000, time data], axis = 1)

final chicago_theft data final chicago theft data[['Latitude', 'Longitude', 'year',6 'month', 'day of month', 'hot

#drop empty rows
final chicago theft data=final chicago theft data.dropna () .reset index (drop=True)
final chicago theft data

#https://python-visualization.github.io/folium/modules.html#module-folium.map
#show in map first 100 points

data 100 =final chicago_ theft data.head(100)
data 100 data 100[data 100['Latitude'].notna()]
data 100 data 100[data 100['Longitude'] .notna()]

fig 1 = folium.Map([41.8616504,-87.6779599], zoom start=11)
for index, row in data 100.iterrows():
folium.CircleMarker ([row['Latitude'], row['Longitude']],
radius=3,
popup=row|['year'],
) .add_to(fig 1)
fig 1

#heatmap

dfmatrix = data 100[['Latitude', 'Longitude']].values
plot heatmap

fig 1.add child(plugins.HeatMap (dfmatrix, radius=15))
fig 1

Predictions

#Latitude prediction
train , test = train test split(final chicago theft data, test size = 0.2)

X _train latitude = train.drop(['Latitude', 'Longitude'], axis=l)
y_train latitude = train['Latitude']

x _test latitude test.drop(['Latitude', 'Longitude'], axis = 1)
y_test latitude = test['Latitude']

#scalling the training values between 0 and 1, to avoid bias results

scaler = MinMaxScaler (feature range=(0, 1))

x train scaled latitude = scaler.fit transform(x train latitude)
X _train latitude = pd.DataFrame (x_train scaled latitude)
X test scaled latitude = scaler.fit transform(x_ test latitude)

x test latitude = pd.DataFrame (x test scaled latitude)

Testing predictions with different alogorithms

#tree latitude

clf = tree.DecisionTreeRegressor ()
clf.fit(x train latitude, y train latitude)
pred tree = clf.predict(x test latitude)

rmse latitude tree = sqrt(mean squared error (y test latitude,pred tree))
print ("rmse latitude tree",rmse latitude tree)

#RF latitude

RF = RandomForestRegressor ()

RF.fit (x train latitude, y train latitude)
pred RF = RF.predict (x test latitude)

rmse latitude RF = sqrt(mean squared error (y test latitude,pred RF))
print ("rmse latitude RF",rmse latitude RF)

#Performing KNN and picking the model with the best results

best k latitude = 0
rmse latitude KN = 0

rmse values latitude = []
for K in range (10) :
K = K+1
KNN = sklearn.neighbors.KNeighborsRegressor (n_neighbors = K)

KNN.fit (x train latitude, y train latitude)

pred = KNN.predict (x test latitude)

rmse = sqrt (mean squared error(y test latitude,pred))
rmse values latitude.append (rmse)

if best k latitude == 0 or rmse latitude KN > rmse:
best k latitude = K
rmse latitude KN = rmse
best predictions latitude= pred

print('k = ' , best k latitude , ', gives the smallest rmse value:',6 rmse latitude KN)

#compare Latitiude rmse

import matplotlib.pyplot as plt

fig = plt.figure ()

ax = fig.add axes([0,0,2,1])

Methods = ['KNN Regression', 'Decision Tree', 'Random Forest']
plt.title("Latitude RMSE Comparison")

plt.xlabel ("Methods")

plt.ylabel ("RMSE")

RMSE latitude = [rmse latitude KN, rmse latitude tree,rmse latitude RF]
ax.bar (Methods,RMSE latitude,color=['blue', 'green', 'red'])
plt.show()

#plotting the rmse values against k values
rmse plots = pd.DataFrame (rmse values latitude)
plt.title ('Rmse values')

plt.xlabel ('k values')

plt.ylabel ('Rmse values')

plt.plot (rmse plots)

#longitude
x train longitude = train.drop(['Latitude', 'Longitude'], axis=l)
y_train longitude = train['Longitude']

x _test longitude test.drop (['Latitude', 'Longitude'], axis = 1)
y_test longitude = test['Longitude']

#scalling the training values between 0 and 1, to avoid bias results

scaler = MinMaxScaler (feature range=(0, 1))

x train scaled longitude = scaler.fit transform(x train longitude)
x train longitude = pd.DataFrame (x train scaled longitude)
x test scaled longitude = scaler.fit transform(x test longitude)

x test longitude = pd.DataFrame (x test scaled longitude)

#tree longitude

clf tree.DecisionTreeRegressor ()
clf clf.fit(x train longitude, y train longitude)
pred tree = clf.predict(x test longitude)

rmse longitude tree = sqgrt (mean squared error(y test longitude,pred tree))
print ("rmse longitude tree",rmse longitude tree)

#RF longitude

RF = RandomForestRegressor ()

RF.fit (x train longitude, y train longitude)
pred RF = RF.predict (x test longitude)

rmse longitude RF = sqrt (mean squared error(y test longitude,pred RF))
print ("rmse longitude RF",rmse longitude RF)

#Performing KNN and picking the model with the best results

best k longitude = 0
rmse longitude KN = 0

rmse values_ longitude = []
for K in range (10) :
K = K+1
KNN = sklearn.neighbors.KNeighborsRegressor (n_neighbors = K)

KNN.fit (x train longitude, y train longitude)

pred longitude = KNN.predict (x test longitude)

rmse = sqgrt (mean squared error (y test longitude,pred longitude))
rmse values longitude.append (rmse)

if best k longitude == 0 or rmse longitude KN > rmse:
best k longitude = K
rmse longitude KN = rmse
best predictions longitude= pred longitude

print('k = ' , best k longitude , ', gives the smallest rmse value:', rmse longitude KN)

#compare Longitude rmse

fig = plt.figure()

ax = fig.add axes([0,0,2,1])

Methods = ['KNN Regression', 'Decision Tree', 'Random Forest']
plt.title("longitude RMSE COMPARISON")

plt.xlabel ("Methods")

plt.ylabel ("RMSE")

RMSE longitude = [rmse longitude KN, rmse longitude tree,rmse longitude RF]
ax.bar (Methods,RMSE longitude,color=['blue', 'green', 'red'])
plt.show ()

#plotting the rmse values against k values

rmse _plots = pd.DataFrame (rmse values longitude)
plt.title('Rmse values')

plt.xlabel ('k values')

plt.ylabel ('Rmse values')

plt.plot (rmse plots)

results = pd.DataFrame ()

results['Test Data latitude']=y test latitude
results['Test Data longitude']=y test longitude
#print (y test.shape)

results['Predictions longitude']=best predictions longitude
results['Predictions latitude']=best predictions latitude

#Sorting them by based on the keys from the test data
results = results.sort index()
results

plt.plot (results['Test Data latitude'],)

plt.plot (results['Predictions latitude'])

plt.title('test vs latitude prediction')

plt.xlabel ('Indexes')

plt.ylabel ('latitude')

plt.legend(['Test Data', 'K-Nearest Neighbour Predictions'])

plt.plot (results['Test Data longitude'],)

plt.plot (results['Predictions longitude'])

plt.title('test vs longitude prediction')

plt.xlabel ('Indexes')

plt.ylabel ('longitude')

plt.legend(['Test Data', 'K-Nearest Neighbour Predictions'])

Clustering

Hierarchy Tree Clustering

#Sources:

#https://matplotlib.org/3.1.1/api/ as gen/matplotlib.axes.Axes.axhline.html
#https://matplotlib.org/3.1.1/api/ as gen/matplotlib.pyplot.figure.html
#https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html

df hierarchy=final chicago theft data.head(100)

assigning the latitude and longitude column to HT
HT = df hierarchy.iloc[:, 0:2].values
#print (HT)

#creating Dendograms for both latitude and longitude values combined
plt.figure (figsize=(10, 7))

plt.title ("Theft data dendogram")

z = linkage (HT)

dendogram = dendrogram(z)

#Choosing The Optimal Number Of Clusters
#Sources:
#https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

range n clusters = [3,4,5, 6,7,8,9,10,11,12,13,14,15]
print ("*****x***Checking for the optimal number of clusters for latitude and longitude combined*****x**x*xxkxxi)

best n=0

largest silhouette av = 0

HT cluster result = 0

for n clusters in range n clusters:

clustering for latitude longitude values combines
HT cluster = AgglomerativeClustering(n clusters=n clusters, affinity='euclidean', linkage='ward')
HT cluster res=HT cluster.fit predict (HT)

HT silhouette avg = silhouette score (HT, HT cluster res