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A B S T R A C T   

A subsea shuttle tanker (SST) is a pioneering underwater submarine specifically designed to economically 
transport CO2 to smaller hydrocarbon fields. During loading and unloading of the CO2, the SST hovers over the 
well and experiences extreme heave motions resulting in extreme hydrostatic loading. Sustaining the hydrostatic 
loading is indispensable as it forms the dominating load and is a driving factor determining the SST hull’s 
collapse design. Furthermore, the SST’s extreme surge motion regulates the length of the flowline to evade snap 
loads. This paper focuses on the problem of determining these extreme positional responses at one location when 
the aft thruster fails during offloading using data with a shorter time record from another location at the SST. 
This scenario could be of practical engineering importance when either one of the sensors is malfunctioning or 
another similar vessel is being designed for the same environmental condition. A 2D planar Simulink model is 
used to generate the empirical data required for the study.   

1. Introduction 

The subsea shuttle tanker (SST), as presented in Ref. [1], is an 
innovative and novel autonomous submarine proposed by Equinor in 
two of their research disclosures in Equinor [2] and Ellingsen et al. [3]. 
The baseline SST targets ongoing carbon capture and storage (CCS) 
projects in Norway. Such projects are enacted in Sleipner, Utgard, and 
Snøhvit [4]. The CO2 is transferred from an onshore site and stored in the 
SST before being hauled away autonomously to a subsea well for direct 
injection. The SST, which cruises at a depth of 70 m, can function in any 
weather condition since it moves in depths unaffected by winds or wave 
loads. The primary function of the SST is to provide CO2 transportation 
to the marginal fields since it is more economically viable than using 
offshore pipelines or ship tankers. Recent feasibility studies by Xing et al. 
[5]; considering SSTs designed using DNVGL-RU-NAVAL-Pt4Ch1 [6]; 
have shown that the SST is economically more attractive in smaller CO2 
fields. Primary design parameters for the baseline SST [1] are given in 
Table 1. 

After navigating through the waters and reaching its destination, the 
SST will hover steadily and commence its operation with the help of a 
flexible flowline established by a remotely operated vehicle (ROV). The 
methodology of the offloading process is presented in Fig. 1. Throughout 

this procedure, the position of the SST will be maintained dynamically 
by its propeller and thrusters coordinating with a Linear Quadratic 
Regulator (LQR) control system to mitigate any positional disturbances 
[8] due to the environmental loads from ocean currents (presented in 
Fig. 2). 

The extreme hydrostatic loads experienced by the SST during its 
operation are determined by the extreme heave and pitch values and are 
the driving force that leads to the collapse of the SST pressure hull. 
Ensuring these values’ reliability is even more critical in case of thruster 
failure and is exemplified in this paper by considering the aft thruster 
failure scenario. In such a failure scenario, the SST will lose its 
manoeuvrability, resulting in more significant responses. Moreover, 
only the fore thruster provides the power, resulting in an unbalance with 
the global resulting thruster forces, substantial pitch responses and aft 
heave motions. This failure demonstrates the importance of ensuring 
that these values are accurately calculated. In this paper, extreme re
sponses of the SST during unloading during the failure of the aft thruster 
are examined at locations 2 and 3 (see Fig. 1). Two different current 
velocities of 0.5 and 1.0 m/s are used with the bivariate Gumbel copula 
and bivariate correction method. The bivariate correction method has 
been widely used in many applications, for example, to obtain maximum 
structural responses [9–15] and extreme wind and wave profiles 
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[16–18], extreme wave heights [19], and extreme current profiles [20]. 
At the same time, the bivariate correction method uses the inherent 
model of non-linearities without any simplifications. This method is 

from the Monte Carlo method and makes it highly relevant when used to 
solve the highly non-linear SST motion calculation in this paper. This 
paper generates the empirical data with time-domain simulations from a 
2D planar Simulink model (Section 2). For more details on extreme 
response prediction improvement using alternative highly correlated 
response signals, see Wang [21]; Gaidai et al. [16,17] and Xu et al. [15]. 

2. Simulink model implementation 

The Simulink model used in this paper was developed by Ma et al. [8, 
22] and is presented in Fig. 3 and Fig. 4. Further, short descriptions of 
the Simulink model are presented in the following sub-section below. 

The Simulink model is build-up using the below-mentioned blocks:  

• Plant model: The plant model is a replica of the SST enacting the 
equation of motions, including a variety of forces such as drag and 
lift forces, and hydrostatics and hydrodynamic derivatives 

Table 1 
Main design parameters of the baseline SST.  

Parameter Value Unit 

Length 164 m 
Beam 17 m 
Weight 3.36 × 107 kg 
Center of buoyancy (CoB) [xb,yb, zb] [0, 0, − 0.41] m 
Skeg position xs 67 m 
Skeg area AS 40 m2 

Forward tunnel thruster position xtf 60 m 
Aft tunnel thruster position xta − 60 m 
CO2 cargo capacity 1.7 × 106 kg 
Operating depth 70 m  

Fig. 1. SST offloading sequence [1,7].  

Fig. 2. SST subjected to environmental loads during offloading [7].  
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• Actuator system model: The actuator system model enacts the ballast 
tanks’, the propeller’s, and thrusters’ forces and moments.  

• LQR control system model: A LQR control system is replicated 
through this model  

• Observer: An Luenberger [23] Observer is replicated through this 
block.  

• Current velocity model: The ocean current velocities are replicated in 
this model. 

The Simulink model, with its respective blocks acting as the control 
system and feedback loops model, enables the evaluation of the response 
loads, which is then used for the bivariate analysis in this paper. 

3. Mathematical bivariate model 

In this section original mathematical bivariate model as in Gaidai 
et al. (2018, [13,16,17,19,24–26]; Sun et al. [27]; Xing et al. [28], Xu 

et al. [29] is briefly introduced. The key advantage of this model is its 
ability to identify the effect of dependency between the time series data 
on the extreme value distribution. Also, the whole time series can be 
used as input data without de-cluttering (i.e., no requirement to use 
independent data). However, the most prominent feature of the model is 
its ability to provide a non-parametric depiction of the extreme value 
distribution inherent in the data. Therefore, this paper looks at the 
long-term global response process X(t) of the submarine hull, calculated 
through a time interval between (0, T). The eventual bivariant values 
have been calculated in this paper as described in Refs. [16–18]. 

As already mentioned, the method proposed in this paper will be 
based on the bivariate correction methodology. This involves both the 
univariate and bivariate ACER functions. 

For a stationary stochastic process X(t), that has been measured over 
a specific time interval (0,T), there are discrete process values X1,…,XN 
That have been measured/simulated at equidistant time moments t1,… 
, tN in (0, T). The latter discrete process values could be precisely 
observed values of X(t) at each tj, j = 1, …, N, or it could be maxima 
values over time intervals centred at the tj’s. The target is to accurately 
estimate the cumulative distribution function (CDF) of the extreme 
value MN = max ​ {Xj ; j = 1,…,N}. Equivalently, we want to estimate 
CDF(η) = Prob(MN ≤ η) for large values of η. According to the definition 
of CDF (η)

CDF(η)=Prob(MN ≤ η) = Prob{XN ≤ η,…,X1 ≤ η}

= Prob{XN ≤ η|XN− 1 ≤ η,…,X1 ≤ η}⋅Prob{XN− 1 ≤ η,…,X1 ≤ η}

=
∏N

j=2
Prob

{
Xj ≤ η

⃒
⃒Xj− 1 ≤ η,…,X1 ≤ η

}
⋅Prob(X1 ≤ η) (1) 

If all the Xj can be regarded as statistically independent, then 

CDF(η) ≈
∏N

j=1
Prob

(
Xj ≤ η

)
(2) 

In most cases, the dependence between the Xj’s exists and is not 
negligible; therefore, the following one-step memory approximation is 
introduced 

Prob
{

Xj ≤ η
⃒
⃒Xj− 1 ≤ η,…,X1 ≤ η

}
≈ Prob

{
Xj ≤ η

⃒
⃒Xj− 1 ≤ η

}
(3) 

Fig. 3. Simulink model implementation – Control system model feedback 
loop [7]. 

Fig. 4. Simulink model implementation – Plant model, Actuator system model and Current velocity model [7].  
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for 2 ≤ j ≤ N. The next approximation can be expressed as 

Prob
{

Xj ≤ η
⃒
⃒Xj− 1 ≤ η,…,X1 ≤ η

}
≈ Prob

{
Xj ≤ η

⃒
⃒Xj− 1 ≤ η,Xj− 2 ≤ η

}
(4)  

where 3 ≤ j ≤ N, and so on. Eqs. (2) and (3) represent refinements of the 
independence assumption. Such approximations are able to capture the 
effect of statistical dependence between neighbouring data points in the 
time series with increasing accuracy. Combining Eq. (1) with Eq. (2), the 
following approximation is introduced 

CDF(η) ≈
∏N

j=2p2j(η)
∏N− 1

j=2 p1j(η)
(5)  

with the following notation pkj(η) = Prob{Xj ≤ η,…,Xj− k+1 ≤ η} for j ≥
k. 

It is of interest to study closer the values for CDF (η)

CDF(η) ≈
∏N

j=1

(
1 − α1j(η)

)
, (6)  

where 

α1j(η)= Prob
{

Xj > η
}
= 1 − p1j(η). (7)  

Thus 

CDF(η)≈CDF1(η) = exp ​

(

−
∑N

j=1
α1j(η)

)

, (8) 

Alternatively, Eq. (6) gives 

CDF(η) ≈
∏N

j=2

(
1 − α2j(η)

)
p11(η), (9)  

where αkj(η) = 1 − pkj(η)/pk− 1,j− 1(η), for j ≥ k ≥ 2. That is 

αkj(η)=Prob
{

Xj > η
⃒
⃒ Xj− 1 ≤ η,…,Xj− k+1 ≤ η

}
(10)  

denotes the exceedance probability, being conditional on k − 1 previous 
non-exceedances. From Eq. (8) it is obtained that 

CDF(η)≈CDF2(η) = exp ​

(

−
∑N

j=2
α2j(η) − α11(η)

)

, (11)  

since p11(η) ≈ exp ​ ( − α11(η)). Conditioning on the two previous ob
servations Xj− 2,Xj− 1 preceding Xj gives 

CDF(η)≈CDF3(η) = exp ​

(

−
∑N

j=3
α3j(η) − α22(η) − α11(η)

)

, (12)  

and so on. Thus, extreme value prediction by the conditioning approach 
introduced above reduces to the estimation of the αkj(η) functions. For 

most applications N≫k, so that 
∑k− 1

j=1
αjj(η) is, in fact, negligible compared 

to 
∑N

j=k
αkj(η). Thus, for most cases, the following approximation is valid 

CDFk(η)≈ exp ​

(

−
∑N

j=k
αkj(η)

)

, k ≥ 1 . (13) 

Next, the concept of average conditional exceedance rate (ACER) of 
order k can be introduced 

εk(η)=
1

N − k + 1
∑N

j=k
αkj(η) , k = 1, 2,… (14) 

Finally, the following random functions can be introduced 

Akj(η)= 1
{

Xj > η,Xj− 1 ≤ η,…,Xj− k+1 ≤ η
}
, j= k,…,N, k= 2, 3,… (15) 

Fig. 5. Correction scheme.  

Fig. 6. Phase space between simulated R2 and R3 SST vessel responses. The red square indicates the predicted extreme value. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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and 

Bkj(η)= 1
{

Xj− 1 ≤ η,…,Xj− k+1 ≤ η
}
, j= k,…,N, k= 2, 3,… , (16)  

where 1{A } = 1 if A is true, while it is zero if not. Then 

αkj(η)=
E
[
Akj(η)

]

E
[
Bkj(η)

] , j = k,…,N, k = 2,… , (17)  

where E[ ⋅] denotes the expectation operator. Obviously, lim
η→∞

E[Bkj(η)] =

1. Thus, lim
η→∞

ε̃k(η)/εk(η) = 1, where 

ε̃k(η)=
∑N

j=kE
[
Akj(η)

]

N − k + 1
. (18) 

To prove why previous equations may be applicable for non- 
stationary time series, it is seen that 

CDFk(η)≈ exp ​

(

−
∑N

j=k
αkj(η)

)

= exp

(

−
∑N

j=k

E
[
Akj(η)

]

E
[
Bkj(η)

]

)

≈ exp ​

(

−
∑N

j=k
E
[
Akj(η)

]
)

, η→∞ . (19) 

If the time series can be split into K blocks such that E[Akj(η)] remains 
approximately constant within each span block and such that 
∑

j∈Ci

E[Akj(η)] ≈
∑

j∈Ci

akj(η) for a sufficient range of η-values, where Ci de

notes the set of indices for block no. i, i = 1,…,K, and where akj(η) are 
the realized values of Akj(η) for the observed time series, then 
∑N

j=k
E[Akj(η)] ≈

∑N

j=k
akj(η). Therefore, for a recorded time series of a non- 

stationary process that complies with the stated conditions, it follows 
that 

CDFk(η) ≈ exp ​ ( − (N − k+ 1)ε̂k(η)) , (20)  

where 

ε̂k(η)=
1

N − k + 1
∑N

j=k
akj(η) (21) 

Now let one consider the scatter diagram of m = 1,…,M sea states, 

each sea state having a probability pm, such that 
∑M

m=1
pm = 1. Next, 

introduce the long-term ACER function of order k, defined as, 

ACERk(η) ≡
∑M

m=1
ε̂k(η,m)pm (22)  

with ε̂k(η,m) is the same function as in Eq. (21), but corresponds to a 
specific sea state number m. The long-term extreme value distribution of 
M(T), based on the ACER function of order k, can be expressed as follows 

Prob(M(T)≤ η) ≈ exp( − N ⋅ ACERk(η)) (23)  

where ̂εk(η) is the empirical ACER function of order k, with k ≪N; N is a 
total number of data in the analyzed time series. 

Now, consider a bivariate stochastic process Z(t) = (X(t),Y(t)) with 
dependent component processes, which has been observed over a time 
interval, (0,T) say. Assume that the sampled values (X1,Y1),…, (XN,YN)

are allocated to the (usually equidistant) discrete times t1,…, tN in (0,T). 
Our goal in this paper is to accurately determine the joint distribution 
function of the extreme value vector (X̂N, ŶN), where X̂N = max{Xj; j =
1,…,N}, and with a similar definition of ŶN. Specifically, we want to 
estimate P(ξ, η) = Prob(X̂N ≤ ξ, ŶN ≤ η) accurately for large values of ξ 
and η. 

For notational convenience, it is expedient to introduce the non- 
exceedance event C kj(ξ, η) = {Xj− 1 ≤ ξ,Yj− 1 ≤ η,…,Xj− k+1 ≤ ξ,
Yj− k+1 ≤ η} for 1 ≤ k ≤ j ≤ N+ 1. Then, from the definition of P(ξ, η) it 

Fig. 7. A Gumbel copula fit versus the empirical bivariate ACER function for the lighthouse data. Red dots indicate the empirical ACER function, green circles the 
Gumbel logistic model, and the solid line indicates the Asymmetric Gumbel logistic model. Negative numbers indicate probability levels on the decimal logarithmic 
scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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follows that  

Based on Eq. (24) and the properties of conditional probability, a 
sequence of approximations may be introduced which converges to the 
target distribution P(ξ, η). In practice, it is therefore assumed that the 
following representation applies to a suitably chosen k: 

P(ξ, η)≈ exp

{

−
∑N

j=k

(
αkj(ξ; η)+ βkj(η; ξ) − γkj(ξ, η)

)
}

; ξ, η→∞, (25)  

where we have used the notation αkj(ξ; η) = Prob(Xj > ξ
⃒
⃒C kj(ξ, η)), 

βkj(η; ξ) = Prob(Yj > η
⃒
⃒C kj(ξ, η)) and γkj(ξ,η) = Prob(Xj > ξ,Yj > η

⃒
⃒C kj(ξ,

η)). Note that Eq. (2) applies equally well to stationary and non- 
stationary time series. This is due to the fact that the possible time 
dependence of the conditional exceedance probabilities αkj(ξ; η), βkj(η; ξ)
and γkj(ξ, η) has been retained, which is reflected in the presence of the 
time parameter j. 

From Eq. (25) it emerges that for the estimation of the bivariate 
extreme value distribution, it is necessary and sufficient to estimate the 
sequence of functions {αkj(ξ; η) + βkj(η; ξ) − γkj(ξ, η)}

N
j=k. To get a more 

compact representation, it is expedient to introduce the concept of k’th 

Fig. 8. ACER functions for shorter and longer SST response records: R2 and R3 vessel responses, upper and lower figures, respectively. The ACER function decimal 
logarithm values are on the vertical axes. 

Table 2 
Correction results for measured SST vessel response: 80 h (long) and 0.8 h 
(short). 40 days return period prediction.   

Current = 0.5 m/s Current = 1 m/s 

R3short/ R3long 1.17 1.20 
R3corrected/

R3long 

1.02 1.03  

P(ξ, η)=Prob
(
C N+1,N+1(ξ, η)

)

= Prob(XN ≤ ξ,YN ≤ η|C NN(ξ, η)) ⋅ Prob(C NN(ξ, η))=
∏N

j=2
Unsupported ​ Prob

(

Xj ≤ ξ, Yj ≤ η
⃒
⃒
⃒
⃒
⃒
C jj

(

ξ, η
)

⋅ Prob

(

C 22

(

ξ, η
)) (24)   
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order bivariate average conditional exceedance rate (ACER) function as 
follows, 

E k(ξ, η)=
1

N − k + 1
∑N

j=k

(
αkj(ξ; η)+ βkj(η; ξ) − γkj(ξ, η)

)
; k = 1, 2,…

(26) 

The unique feature of the ACER functions is that they provide the 
possibility to portray the exact extreme value distribution inherent in 
the data time series, both the univariate and the bivariate [9,10,13,14]. 
Hence, the bivariate correction method is fundamentally different from 
the traditional approach relying on the fitting of hardly asymptotic data 
to asymptotic extreme value distributions, which, in fact, are based on 
the assumption of stationary time series as opposed to the bivariate 
correction method. The empirical ACER functions are represented in the 
form of non-parametric numerical functions with uncertainty bounds. 
The accuracy obtained depends, of course, on the amount of data 
available to estimate these functions. It is also an essential feature of the 
bivariate correction method that it is not limited to stationary time se
ries. It is entirely valid for non-stationary time series as long as the 
measured data reflects this non-stationarity. 

This section presents a statistical bivariate integral correction that is 
based on the bivariate correction method coupled with the Gumbel lo
gistic model [9,10,13–17,21]. Note that this correction is not limited to 
only extreme value estimates, but it can be applied with appropriate 
bivariate models for any statistical values of interest to improve their 
accuracy based on synchronously measured longer, highly correlated 
data records. 

Let X = max{R2(t); t ∈ [0,Treturn]}, Y = max{R3(t); t ∈ [0, T]}, where 
R2, R3 are responses measured at channels number 2 and 3 corre
spondingly, see Fig. 1, with T being the return period of interest, and let 
FXY(ξ, η) = Prob(X≤ ξ,Y ≤ η) be the joint bivariate cumulative distri
bution function (CDF) of (X,Y). 

Raw response time series with dt = 0.0246 sec were blocked into k =

50 consecutive discrete time points maxima to reduce the neighbouring 
data points’ correlation effect. The conditioning level k was selected 
according to the response power spectral density because this level in 
the distribution tail resulted in a good convergence of the ACER func
tions (Section 3). 

FX(ξ) and FY(η) denote the corresponding univariate marginal CDFs 
for X and Y, respectively. In this paper, it is assumed that the bivariate 
couple (R2(t), R3(t)) has been observed over a period of time t ∈ [0, T̃], 
where the observation duration T̃ is not long enough for accurately 
predicting the univariate extreme response levels with a target low 
probability of interest. Now, consider the case when a ‘long’ record of 
R2(t) is available over a time t ∈ [0,T], with T≫T̃, with a corresponding 
estimated CDF Flong

X (ξ) of the CDF FX(ξ), which has a probability density 
function (PDF) pX = F′

X. In this paper Treturn ≈ 40 days is the return 
period that corresponds to the extreme probability p of interest, p =

10− 6, T = 80 h, T̃ = T/100 see Section 4. Then for any Y- response level 
of interest η*, with Δ→0,

with F′

XY,X(ξ,η) = ∂
∂ξFX,Y(ξ,η). For the details related to these equations, 

see Wang [21]; Gaidai et al. [16,17] and Xu et al. [15]. The following 
copula model for the bivariate extreme value distribution is referred to 
as the Gumbel logistic model [9,10,13,14]. 

FXY(ξ, η)= exp
{
− [( − lnFX(ξ))m

+ ( − lnFY(η))m
]
1/m
}

(28) 

In this model, it is seen that m = 1 corresponds to the case when X 
and Y are independent. When 0 < m < 1, X and Y become dependent [9, 
10,13,14]. However, this dependence structure is of a special kind since 
it only involves the marginal distributions. Still, it appears to be useful in 
some practical cases. Another popular extreme value copula is the 
Asymmetric Gumbel logistic model, see Naess et al. [9,10]; Gaidai et al. 
[13] and Gao et al. [14]. This bivariate extreme value model will not be 
discussed further in this paper since it gives identical results to the 
Gumbel logistic model. The Gumbel logistic model has been verified to 
be a useful model for various offshore engineering practical applica
tions, provided the marginal extreme value distributions are estimated 
using the univariate bivariate correction method instead of standard 
asymptotic extreme value distributions [9,10,13,14]. This is because the 
asymptotic distributions typically used are often not accurate enough in 
the tails, resulting in fitting real, sub-asymptotic data to asymptotic 
distributions. If Eq. (27) is differentiated with respect to ξ, it is obtained 
that 

F′

XY,X(ξ, η*)=FXY(ξ, η*)[1 + (ln FY(η*)/ln FX(ξ))m
]

1
m− 1 d

dξ
ln FX(ξ) (29) 

The numerical estimates F̂Y(η*) and F̂XY(ξ, η*) of FY(η*) and FXY(ξ,η*), 
respectively, based on the available time series of recorded data, are 
now used in the following expression to obtain the corrected estimate 
Fcorr

Y (η*)

Fcorr
Y (η*)=

∫+∞

0

F̂XY(ξ, η*)
[
1 +

(
ln F̂Y (η*)

/
ln F̂

long
X (ξ)

)m]1
m− 1 d

dξ
ln F̂

long
X (ξ)dξ.

(30) 

Note that all quantities on the right side of Eq. (30) are known from 
the available time series of recorded data. The Gumbel copula parameter 
m has been calibrated to fit joint empirical distribution F̂XY . For the 
latter optimization task, the Trust-region-reflective non-linear least- 
squares optimization algorithm can be used, as well as the interior- 
point algorithm to find the minimum of the constrained non-linear 
multivariable function; for details, see Naess et al. [9,10]; Gaidai et al. 
[13] and Gao et al. [14]. 

Fig. 5 presents the bivariate correction scheme based on the bivariate 
correction method and Gumbel bivariate copula. 

4. Bivariate correction results 

This paper examined three mean current velocities at 0.5 and 1.0 m/ 
s, totalling 20 sets of 4 h of simulations executed for each mean current 
velocity. Thus, the total simulations add up to 40 sets of 4-h simulations 
performed. Only two measurement channels, numbers 2 and 3, were 
considered from the responses of five measurement points, as shown in 
Fig. 1. All five measurement channels were spaced evenly and located at 
the bottom extending lengthwise across the SST. 

Simulated R2 and R3 SST vessel responses were chosen as a bivariate 
couple since they possess a high correlation coefficient Rcorr = 0.85. This 
R2 and R3 SST vessel responses couple has been chosen as it was found in 
non-trivial, non-linear relationships, especially for large vessel rotations. 

Fig. 6 presents the synchronous measurements of R2 and R3 SST 

FY(η*)= FXY(∞, η)=
∫+∞

0

Prob(Y ≤ η*|X = ξ)pX(ξ)dξ=
∫+∞

0

Prob(Y ≤ η*,X ∈ [ξ, ξ + Δ])
Prob(X ∈ [ξ, ξ + Δ])

pX(ξ)dξ=
∫+∞

0

F′

XY,X(ξ, η*)dξ (27)   

O. Gaidai et al.                                                                                                                                                                                                                                  



Results in Engineering 15 (2022) 100593

8

vessel responses. It is seen from Fig. 6 that there is a non-linear de
pendency between R2 and R3 SST vessel responses, therefore task of 
bivariate prediction is non-trivial. 

Fig. 7 plots the bivariate results obtained for the 80 h of joint data at 
the two response measurement locations number 2 and 3; see Fig. 1 for 
measurement channel positioning. It is seen that the Gumbel logistic 
copula fits the bivariate empirical ACER function quite well, especially 
at higher probability levels with more data available, as expected. 

Fig. 8 shows the ACER (averaged conditional exceedance rate) 
functions introduced in Eq. (22) for the longer observation period T, 
which is 80 h of numerical simulation, and for the shorter period ̃T = T/
10. It is seen that, due to the high correlation between the two vessel 
response processes, both overestimate the ACER function levels 
compared with the longer dataset Naess-Gaidai curve. 

The following results were obtained for the simulated SST response 
motions bivariate correction. 

Table 2 presents the correction results for the corrected SST vessel 
response R3. It is seen that the proposed correction technique resulted in 
remarkable improvement in accuracy, from about 20% over-prediction 
down to 2–3%. The return period for the predicted response level was 
chosen to be 40 days. The latter provides a practical example, supporting 
the novel correction technique introduced in this paper. 

5. Conclusions 

The SST is a pioneering subsea cargo drone with much research and 
development still to be completed. An important research area to be 
studied further is the collapse design of the SST’s pressure hull, which is 
massively influenced by hydrostatic loading, a dominating load factor. 
This paper suggests using a bivariate correction method to examine the 
extreme surge and heave (positional responses) when the SST is 
unloading its cargo if there is a failure in the aft thrusters. The extreme 
motions determine the design loads experience by the SST. The extreme 
hydrostatic load depends on the maximum depths experienced by the 
extreme heave motions. Further, the minimum flowline depends on the 
extreme surge motions; to prevent flowline taut or snap loads. The 
presented study shows a practical advantage in applying the bivariate 
correction introduced in this paper. It brings prediction based on short 
time series of data quite close to the prediction based on a much longer 
time series. Consequently, a significant improvement in extreme value 
prediction accuracy is obtained. The high correlation between the two 
processes is a key requirement for the described correction to improve 
prediction accuracy. Some practical situations that may justify the 
analysis mentioned above would be:  

⁃ Malfunctioning of one measuring sensor while another is well- 
functioning.  

⁃ Another similar vessel is being designed for the same environmental 
condition, making the data collected from one vessel may be relevant 
to the other. 

This paper shows that applying the bivariate correction for the cases 
studied has increased extreme SST vessel response prediction accuracy. 
This improvement shows that the proposed correction method can be 
useful in engineering design since having a more accurate characteristic 
design value is critical. Bivariate contours enable the use of bivariate 
design points. This distinction is different from the current practices 
used in the industry, which usually use a pair of uncoupled univariate 
design points in the same return period. This univariate design approach 
often results in a non-conservative design factor. While instead, the 
multivariate analysis extends the bivariate approach and could give a 
safer vessel design. The projected approach in this paper is advanta
geous for future emergent design for the SST, supporting dynamic pa
rameters optimization and curtailing possible vessel damage. Moreover, 
such an ingenious method can also be used in other pioneering subsea 

drones, such as the subsea freight-glider [30,31]. 
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