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Abstract

Mud gas data are continuous measurements of the different compounds of the gas re-
leased from the formation while drilling. While these data are cheap and extensive, as
they are always recorded for safety reasons, they are mainly used qualitatively for fluid
and reservoir characterization. It is only recently that mud gas data starts to be used
quantitatively. The limited use of mud gas data is generally attributed to the difficulty
in making a direct relation to reservoir and fluid properties.

The motivation of this study is to assess the potential use of mud gas data for quicker,
better, and more cost-effective assessment of fluid and reservoir properties which would
be beneficial for both exploration and development. Potentially, this could allow for
better understanding of the reservoir, better development strategies, identifying missed
net pay leading to new exploration and development opportunities, decrease data ac-
quisition costs and more. In this master project, 40 wells in quad 35 of the Norwegian
sector of Northern North Sea, were investigated using data analytics to explore the mud
gas data and relate it to reservoir properties by evaluating model outputs and how they
relate to real physical behavior. We focused on three predictive tasks (two classifications
and one regression):

1. Identifying hydrocarbon bearing zones in the reservoir rock through supervised
classification using features from mud gas data

2. Identifying fluid type (Gas or Oil) in hydrocarbon bearing zones through super-
vised classification using features from mud gas data

3. Estimating permeability in hydrocarbon bearing zones from combining mud gas
data with logging data through supervised prediction

First, data were exported from different sources and loaded to R and Jupyter Note-
book. The data were resampled in accordance with mud data resolution. Some of the

x



features were then log transformed and scaled to reduce skewness and improve predic-
tion capability. Then, Multiple machine learning models (Linear with subset selection,
Lasso, Ridge, Random Forest, Boosting, SVM and Neural Network) were generated and
compared. For each model, hyperparameters were tuned either based on validation set
or cross validation. Then, a more realistic approach was developed to test the different
models by leave one well out cross validation (LOWOCV), which is less sensitive to
systematic error from sampling and experience bias, to rank the different models. For
the first and second classification tasks a separate well was also used as a test set.

The first classification results (distinguishing water from hydrocarbon) provided a mod-
erately good prediction. The training set for this task consists of 2952 samples and 281
for the test set. Most of the models provided comparable results. The best model ‘logis-
tic regression with features selection’ had a LOWOCV AUC=0.82, F1score=0.55, accu-
racy=0.77. The same model was the best for the test set with AUC=0.87, F1score=0.82,
accuracy=0.96. The modest performance for distinguishing water from hydrocarbon us-
ing mud gas data is probably due to the presence of low saturation gas in some sand
intervals.

The second classification showed much better results and allowed for a very good per-
formance with regards to distinguishing gas and oil. The training set consists of 611
samples and 102 for the test set. The best model ‘logistic regression with features se-
lection’ had a LOWOCV AUC=0.86, F1score=0.87 and accuracy=0.84, and a test set
AUC=0.99, F1score=0.94 and accuracy=0.93. The main features important for the
prediction are the different gas ratios which is in alignment with the finding of Pixler
in 1969 [22].

The third prediction had a sample size of 282 observations and showed that adding mud
gas data to porosity and shale volume improved the prediction of permeability compared
to conventional approach of using only porosity or porosity with shale volume. The best
model was linear regression with subset selection and R2 of the LOWOCV had improved
from 0.65 to 0.85 by adding mud gas features as C1, and C1/(DEPTH*MW). Physically,
C1/(DEPTH*MW) or (C1/MW) could be considered as a gas rate corrected by the mud
weight or depth*mud weight. However, for this task the sample size is small making
the generalization of this finding difficult.

The results of these different models for the three tasks, were loaded to Petrel software
to allow better use and visualization by geoscientists.

While the data set is limited, we succeeded in obtaining valuable results from mud gas
data which could be a base for further work and investigations.



Chapter 1

Introduction

Understanding reservoir properties is crucial in hydrocarbon exploration, development
and production for reserve calculation. Thus, oil and gas companies invest a lot in
data acquisition programs when drilling wells and try to develop new ways that provide
better understanding of volumes and fluid flow inside the reservoir.

Mud gas data are continuous measurements of the different compounds of the gas re-
leased from the formation while drilling. These data are cheap and extensive as they are
always recorded for safety reasons, but their use for reservoir and fluid characterization
is usually limited and mainly used to qualitatively identify hydrocarbon bearing zones,
migration pathways and sealing formations. Only recently [16] [29], mud gas data has
started to be used quantitatively.

The limited quantitative use of mud gas data is probably due to the lack of a straight-
forward relationship between these data and reservoir properties contrary to logging
data. In fact, logging data provide some direct measurements while mud gas data could
be affected by multiple parameters making any inference difficult.

However, we think that mud gas data holds a wealth of information [1] and that ad-
vances in big data and data analytics would help us to unlock more value from the rich
and abundant mud gas data. Thus, combining mud gas data with logging data could im-
prove our prediction of multiple reservoir and fluid properties allowing better-informed
decisions.

1



1.1 Motivation

1.1 Motivation

The motivation for using mud gas data for reservoir and fluid characterization is that
these data are extensive and low cost compared to petrophysical measurements in the
borehole. Thus, if these data could improve our understanding of the petroleum system,
it would be impressively beneficial in both exploration and development stages. In
fact, this could allow for better development strategy, identification of missed net pay
and thus new exploration and development opportunities, decreasing data acquisition
costs. . .

1.2 Objectives

In this master project, we will try to explore mud gas data and use it to predict reservoir
and fluid properties. We will use data analytics to help screen the main features for the
prediction and try to explain the physics behind it. We will focus specially on three
predictive tasks:

1. Identifying hydrocarbon bearing zones in the reservoir rock

2. Identifying fluid type (Gas or Oil) in hydrocarbon bearing zones

3. Estimating permeability in hydrocarbon bearing zones

In the first chapter, we will present the technical background. We will start by presenting
the study area and the project dataset. Then, we will explain what a petroleum system
is and how it relates to mud gas data. Next, we will explain the mud gas data, how it
is acquired and why, its limitations and interpretation. Then, we will describe briefly
the logging and coring data and how it is used for porosity, saturation estimation and
permeability prediction. At the end, we will try to investigate the relationships between
mud gas and logging data in relation to reservoir and fluid properties, we will show the
latest literature updates on this field, and stipulate our research questions.

The second chapter will be about the theoretical background behind the different ma-
chine learning approaches and the data analytics techniques used during this study.

The third chapter will deal with the methodology that we adopted for the three pre-
diction tasks. We will start by explaining the data extraction, cleaning and features

2



1.2 Objectives

generation method. Then, we will investigate the data through correlations, model re-
sult assessments, principal component analysis for both seal and reservoir. We will start
to assess some feature importance and how it relates to real physical relations estab-
lished in the previous chapter. Next, we will show the implementation of the different
machine learning techniques, the features used, the optimization of the hyperparame-
ters and the best models selection. Finally, we will show how the results were assessed
and the implementation of the new LOWOCV cross validation method.

The fourth chapter will focus on the results from the predictive tasks. For each task,
we will show the prediction results and the models ranking. Then, we will explain the
inference obtained from the main important features. For permeability prediction, we
will also compare the results with the conventional approach. Finally, we will provide
some explanation of the results, the limitation of our procedure and the way forward.

3



Chapter 2

Technical Background

2.1 Regional Setting

The study area of interest (AOI) is part of the Norwegian sector of the northern North
sea (NNS)2.1, specially the prolific area of quadrant 35, north of the Troll field, which
includes major fields and discoveries as Gjøa , Duva, Nova, Vega, Byrding and Fram
(Figure 2.2).40 released wells in this area containing mud gas data were used in this
study (Table 2.1)

4



2.1 Regional Setting

Figure 2.1: Regional map showing the Area Of Interest (AOI)
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2.1 Regional Setting

Figure 2.2: More focused map showing the wells used in this study

6



2.2 Petroleum system

2.2 Petroleum system

For an oil and gas accumulation to exist, five factors need to be present.

• Presence of a source rock

• Presence of reservoir rock

• Presence of a sealing rock

• Hydrocarbon migration and timing

• Presence of a trap

In this section, we will define the five elements of the petroleum system.

2.2.1 Source rock

A source rock is a rock rich in organic matter that has been buried to a depth where
pressure and temperature allows for generating movable quantities of hydrocarbons.
The quantity of organic matter is commonly assessed by a measure of the total organic
carbon (TOC) contained in a rock. Quality is measured by determining the types of
kerogen (micro molecular material) contained in the organic matter. The change in
temperature of the earth’s interior per unit depth change is called geothermal gradient.
With increase of temperature the kerogen cracks generating oil (Catagenesis) at a first
stage, then gas (Methagenesis) at a second stage (Fig 2.3). The thermal maturity
is most often estimated by using vitrinite reflectance measurements and data from
pyrolysis analyses. The source rock is generally characterized by high GR2.3.2.1 values.
But, laboratory tests on the rock allows an assessment the quality of the source rock.
In our AOI, the main source rocks are Draupne and Heather shales which are part of
the Viking group.

7



2.2 Petroleum system

Table 2.1: Well Database

Index Well Name Well Results Surface X Surface Y Latitude Longitude TD (TVDSS) TD (MD) Spud date Operator

1 34/12-1 Gas/Condensate 499935 6787698 61°13’19.8800"N 2°59’55.6198"E 4678 4704 Nov 03 2007 Eni Norge AS

2 35/1-1 Dry, 503863 6856062 61°50’9.1126"N 3°04’24.1065"E 4515 4540 May 28 2002 Phillips Petroleum Company Norway

3 35/1-2 S Dry, 502943 6859374 61°51’56.1800"N 3°03’21.3702"E 4098 4202 Sep 12 2010 Statoil Petroleum AS

4 35/10-1 T2 Oil, 512198 6776028 61°07’2.0499"N 3°13’34.8701"E 3959 3986 Aug 01 1991 Den norske stats oljeselskap a.s

5 35/10-2 T2 Gas, 502260 6767363 61°02’22.6699"N 3°02’30.5997"E 4651 4677 Apr 16 1996 Den norske stats oljeselskap a.s

6 35/10-3 Dry, 506902 6768151 61°02’47.9483"N 3°07’40.0551"E 2224 2250 Jun 23 1999 Den norske stats oljeselskap a.s

7 35/11-11 Dry with shows 530382 6775183 61°06’31.1902"N 3°33’49.0798"E 3200 3225 Apr 16 1998 Norsk Hydro Produksjon AS

8 35/11-12 Dry with shows 520555 6777350 61°07’43.5299"N 3°22’53.6603"E 3353 3378 Apr 19 2000 Norsk Hydro Produksjon AS

9 35/11-15 S Oil/Gas 528144 6775755 61°06’50.2801"N 3°31’19.9398"E 3186 3250 Apr 01 2007 Norsk Hydro Produksjon AS

10 35/11-15 ST5 Oil/Gas 528144 6775755 61°06’50.2801"N 3°31’19.9398"E 2961 3250 Apr 01 2007 Norsk Hydro Produksjon AS

11 35/11-16 ST2 Dry, 527464 6778351 61°08’14.3700"N 3°30’35.8702"E 3211 3554 Jan 10 2014 Statoil Petroleum AS

12 35/11-17 Oil/Gas 528745 6769599 61°03’31.1862"N 3°31’56.7464"E 2864 2889 Mar 24 2014 Statoil Petroleum AS

13 35/11-18 A Oil/Gas 518510 6780460 61°09’24.4100"N 3°20’38.0898"E 3874 4020 Sep 27 2015 Wintershall Norge AS

14 35/11-2 Gas/Condensate 524675 6782417 61°10’26.4199"N 3°27’31.3598"E 4007 4031 Jul 20 1987 Mobil Exploration Norway INC

15 35/11-8 S Oil/Gas 528987 6773139 61°05’25.5299"N 3°32’14.8498"E 3329 3624 Mar 03 1996 Norsk Hydro Produksjon AS

16 35/12-2 Oil/Gas 536069 6781689 61°09’59.7200"N 3°40’13.3502"E 2512 2541 May 30 2009 Wintershall Norge ASA

17 35/12-3 S Dry, 540398 6773080 61°05’19.9996"N 3°44’56.3668"E 2729 2807 Dec 24 2010 Wintershall Norge ASA

18 35/12-4 S Oil/Gas 537184 6783775 61°11’6.7601"N 3°41’29.3999"E 2737 3585 Apr 23 2011 Wintershall Norge ASA

19 35/12-5 S Dry, 544455 6787415 61°13’1.6599"N 3°49’39.2202"E 3369 3570 May 10 2015 Wintershall Norge AS

20 35/3-4 Gas/Condensate 545990 6859632 61°51’54.5399"N 3°52’26.9899"E 4062 4089 Nov 30 1980 Saga Petroleum ASA

21 35/3-5 Dry, 548100 6851991 61°47’46.7099"N 3°54’44.0098"E 4095 4130 Dec 22 1981 Saga Petroleum ASA

22 35/3-6 Dry, 551916 6862883 61°53’36.8600"N 3°59’15.7897"E 3295 3321 Feb 06 2002 RWE Dea Norge AS

23 35/3-7 S Gas, 543472 6856278 61°50’7.2400"N 3°49’31.8302"E 3946 4051 Jun 28 2009 VNG Norge (Operations) AS

24 35/3-7 ST2 Gas, 543472 6856278 61°50’7.2400"N 3°49’31.8302"E 3647 3777 Jun 28 2009 VNG Norge (Operations) AS

25 35/4-1 Dry with shows 516076 6822412 61°32’0.5499"N 3°18’8.2602"E 4898 4936 Dec 23 1996 Norsk Hydro Produksjon AS

26 35/6-2 S Dry, 548461 6822727 61°32’0.9800"N 3°54’40.7202"E 3561 3700 Feb 11 2009 StatoilHydro Petroleum AS

27 35/8-3 Gas, 528567 6802217 61°21’5.3502"N 3°32’2.6303"E 3915 3944 Jul 06 1988 Norwegian Gulf Exploration Company AS

28 35/8-4 Dry, 527041 6803059 61°21’32.9499"N 3°30’20.4101"E 3700 3719 Jul 04 1999 BP Norway Limited U.A.

29 35/8-5 S Dry with shows 534935 6805220 61°22’40.5000"N 3°39’13.2199"E 3803 4000 Jun 01 2003 Norsk Hydro Produksjon AS

30 35/8-6 A Oil, 518097 6799557 61°19’41.6499"N 3°20’17.0598"E 3529 3800 Apr 22 2016 Wintershall Norge AS

31 35/9-10 S Oil/Gas 536725 6791208 61°15’7.1001"N 3°41’3.8999"E 3108 3619 Oct 16 2013 Wintershall Norge AS

32 35/9-11 A Oil/Gas 536315 6802911 61°21’25.4536"N 3°40’44.5727"E 3795 3860 Apr 15 2014 RWE Dea Norge AS

33 35/9-12 S Dry, 540037 6791900 61°15’28.3128"N 3°44’46.5820"E 3423 3556 Nov 04 2014 RWE Dea Norge AS

34 35/9-3 T2 Oil/Gas 551937 6816925 61°28’51.9001"N 3°58’30.1003"E 2759 2783 Sep 23 1997 Norsk Hydro Produksjon AS

35 35/9-5 Dry, 543499 6799386 61°19’28.8722"N 3°48’45.1748"E 3511 3531 Jan 01 2010 Nexen Exploration Norge AS

36 35/9-6 S Oil/Gas 537025 6804491 61°22’16.2708"N 3°41’33.5004"E 3664 3740 Sep 29 2010 RWE Dea Norge AS

37 35/9-7 Oil, 536101 6793049 61°16’6.8301"N 3°40’23.2802"E 2976 3006 Feb 28 2012 Wintershall Norge ASA

38 35/9-8 Oil, 536213 6794912 61°17’6.9726"N 3°40’32.1440"E 3231 3256 Feb 01 2013 Wintershall Norge AS

39 35/9-9 Dry, 549847 6808255 61°24’12.7199"N 3°56’0.4798"E 3298 3339 Oct 04 2013 GDF SUEZ E&P Norge AS

40 36/7-4 Oil/Gas 557054 6809820 61°24’59.7081"N 4°04’8.0051"E 2702 2726 Jul 18 2016 ENGIE E&P Norge AS
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2.2 Petroleum system

Figure 2.3: Stages of petroleum generation adapted from [Tissot and Welte, 1984; Selley,
1998]. [18]

2.2.2 Reservoir rock

A reservoir rock is a rock having sufficient porosity and permeability to store and trans-
mit fluids [25]. In this study, we will focus on clastic sandstone reservoirs. The main
reservoir properties are porosity and permeability.

The porosity of the reservoir is the amount of void space inside the rock. In fact,
a rock is formed by smaller grains that get cemented together. The void between
grains is the porosity. The bigger the grains that form the rock and the better sorting
they have, the higher is the porosity. As the rock gets buried deeper, it gets more
compacted and porosity is reduced. In addition, as temperature increases with burial,
cementation (precipitation of minerals in the voids between the grains) occurs which
also decreases the porosity (Fig 2.4). Porosity is determined through interpretation from
log data2.3.2.2 like density, neutron porosity, or sonic logs and measured from cores.

Permeability is the measurement of fluid ability to flow inside the rock. The permeability
relates to the porosity and the connectivity between pores. Presence of faults and
fractures can also affect permeability. The main factors influencing permeability are
the grain sorting, grain size and connection between pores surrounding the grains (Fig
2.4 C). Permeability generally is determined after lab test on core data or predicted
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2.2 Petroleum system

from porosity.

Figure 2.4: Porosity and permeability, (A) Schematic representation of granular rock showing
the pore space, (B) Effect of burial on porosity and the main factors of porosity reduction
[4], (C) The importance of connectivity. Connected pores (green) give rock its permeability,
allowing fluid to flow (black arrows) [26]

In our AOI, the main discoveries are found in Cretaceous and Jurassic sandstone reser-
voirs2.5:

• Agat Formation: Agat formation is cretaceous sandstone deposited in marine
environment influenced by gravity flows of sediment,

• Intra Heather Formation sandstone: The formation was deposited during upper
Jurassic time in a coastal-shallow marine and deep marine environment,

• BRENT Group: The Brent group is a middle Jurassic group of formations. In our
AOS, it is formed by Rannoch, Etive , Ness and Tarbert formations which could
be reservoirs and are deposited in delta to shallow marine environments,

• Cook Formation: Consists mainly of shallow marine sandstone,

10



2.2 Petroleum system

• Statfjord Group: A lower Jurassic group consists of formations deposited in con-
tinental environment

Figure 2.5: Regional lithostratigraphic chart in our AOI.[12]
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2.2 Petroleum system

2.2.3 Seal rock

The seal rock is a relatively impermeable rock. It should cap the reservoir rock to
form a barrier and blocks the upward migration of hydrocarbon. The seal rock has a
sealing capacity which determines how much hydrocarbon column it can hold. In fact,
hydrocarbons accumulating below the seal start to generate pressure into the seal rock.
While the seal is a relatively impermeable rock, after buildup of a certain pressure,
which overcomes the capillary pressure, fluid could enter the seal rock and potentially
start to flow very slowly (geological time) through the seal rock. Common seals include
shale, clay, chalk, and evaporates.

2.2.4 Trap

The trap in a petroleum system is a geological structure formed by the combination of
the seal and reservoir rock that allows accumulation and retainment of hydrocarbon in
the reservoir. It could be structural (Fig 2.6) due to folding and faulting of the earth’s
strata, or stratigraphic (Fig 2.7) which occur due to lateral and/or vertical variations
in reservoir properties.

2.2.5 Migration and timing

Migration is the movement of the hydrocarbons from the source rock to the reservoir
rock. This process occurs over geological time. The primary migration is the expulsion
from the source rock, it is mainly due to the overpressure generated in the pores of the
source rock. Under compaction and high temperature, hydrocarbons start to be expelled
to zones of lower pressure. The secondary migration is the movement of hydrocarbon
through a carrier bed or through faults to a reservoir rock. Secondary migration is
driven by the buoyancy forces of hydrocarbons which are generally less dense than
water. Hydrocarbons will therefore displace the water and move upward to the surface
unless stopped by an impermeable rock in a trap setting. It is important to notice that
it is crucial that the timing of the trap formation precedes the time of migration. The
figure 2.8 shows a simplified schematic of a working petroleum system.
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2.2 Petroleum system

Figure 2.6: Structural traps [18].

Figure 2.7: Stratigraphic traps [18]
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Figure 2.8: Simplified schematic of a working petroleum system [7].

2.3 Dataset: Technical background

The dataset used for this study consists of mud gas logs, well logs and core data from 40
wells in NNS. All of these data consist of continuous measurement of some properties
along the well bore. These could be recorded either while drilling or after drilling by
introducing some tools into the wellbore. In this section, we will provide the technical
background regarding the datasets used in this study.

2.3.1 Mud gas data

Mud gas data are continuous measurements of the different compounds of gas released
from the drilling mud while drilling. While drilling heavy mud is used to balance the
pressure of the drilled formation. The mud used for drilling is called the drilling fluid
and the primary role of drilling fluid is to ensure the safety of the drilling operations.
Thus, the drilling fluid is used to avoid inflow from the formation, maintain borehole
from collapsing, ensure formation stability, remove cuttings from the well, transmit
hydraulic power to the drilling bit, and cool and lubricate the drill bit.

The drilling fluid is pumped from tanks at the surface (“mud pit”) by powerful pumps
to the well. When the drill bit cuts through the different formations, the mud circulates
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from the surface to the bottom of the well then back to the surface again where it
undergoes processing and treatments to maintain its properties before reaching the
mud pit again where it can continue its circulation process. This circulation of the
drilling fluid mobilizes the cuttings; fragments of rock that the drill bit cuts from the
formation. Thus, the formation fluid in the cutting is released to the mud column as
the mud travel up in the annulus. The gas trap extracts a sample of the gas in the
mud. Depending on the gas trap system used for the well, the trap would have different
efficiency. The sample is then accurately analyzed by the gas chromatography (Fig 2.9).

Figure 2.9: Sketch of a possible gas monitoring system [10]

The gas chromatography is a technique of separation of the gas components with the
purpose of obtaining information about their molecular compositions and amounts
[5]. Thus, in our case, (C1), (C2), (C3) and (C4) means the amounts of respectively
methane, ethane, propane and butane in the mud gas sample. So, drilling into the
hydrocarbon reservoir would generally be associated with an increase of these quanti-
ties. But an increase of these quantities does not always mean a hydrocarbon bearing
reservoir. Residual gas in sand, high pressure reservoirs, gas in silty layers, source rock
and fractured cemented zones can be associated with an increase of gas quantities as
well. It is also important to notice that the mud gas quantities are sensitive to drilling
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parameters such as the rate of penetration (ROP) which is the drilling speed, weight
on bit (WOB) which means the force exerted on the drill bit while drilling, drill bit
diameter, etc.

It is essential to monitor the mud gas quantities to keep control of the well. In fact, a
sudden increase of gas into the well bore could mean entering a high-pressure zone and
urgent measures needs to be undertaken to control the pressure with an ultimate risk
of losing the well and gas blow out.

The well is mainly controlled by adjusting the drilling fluid properties. In fact, the
drilling fluid would have multiple properties that differs from well to well and formation
to formation. These properties are decided during planning of the well and adjusted
while drilling in order to ensure the most safe and cost-effective operation. Some of
these properties are the mud weight, viscosity, ph, fluid loss control, solids content and
shale inhibition (Bloys et al., 1994). The control of these properties is done through
multiple chemical additives. In addition, the drilling fluid could be water based or oil
based. All of these parameters could affect the final mud gas data and compromise
repeatability of the experiment.

Part of the mud logging procedure is also to analyze cuttings data. The mud log
unit takes a sample of the cuttings at regular time interval corresponding to a regular
change in formation depth (ex: 5m). The cutting sample is then analyzed with a
microscope and a description is made and sent to the office. The description should
contain information regarding grain properties, porosity, presence of hydrocarbon, . . .
In this study, information from cutting were not included due to the difficulties to
combine these data with the logging and mud gas data.

2.3.2 Well logging

Well logging consists of recorded information from the borehole that would allow to
get useful information regarding formation, fluid properties, fluid flow, etc. It could be
recorded while drilling or after drilling. The well logging procedure consists of lowering
tools into the borehole that measure several physical properties of the rocks (Fig2.10).
The outputs of the logging procedure are these physical measurements function of depth
which are called well logs. In this study, we are interested in well logs that relate to
either reservoir or fluid properties. The spliced raw measurements in function of depth
are generally called composite logs. The petrophysicist interpret these composite logs
to generate interpreted logs.
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Figure 2.10: Schematic representation of onshore logging operation and resulting composite
log [24]

2.3.2.1 Composite logs

Gamma Ray (GR): This tool measures the strength of the natural radioactivity
present in the formation. As shales usually emit more gamma rays than other sed-
imentary rocks, GR tool is particularly useful in distinguishing sands from shales in
siliciclastic environments and assessing the shale content in sandstones.

Caliper: This tool measures the geometry of the hole using either two or four arms[8].
It returns the diameter seen by the tool over either the major or both the major and
minor axes. Caliper is used to detect borehole enlargements due to potential caving
and drilling issues that could make the logging measurements unreliable or risky.
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Density: Density tool emits Gamma Rays that interact with electron in the formation.
The number of scattered gamma rays that reach the detector, placed at a set distance
from the emitter, is related to the formation’s electron density, which is related to
formation density.

Neutron porosity: Neutron logs measure the hydrogen content in a formation. Neu-
tron tool bombards the formation with neutrons from a chemical source. At collision
with nuclei in the formation the neuron loses energy. After several collisions (specially
against hydrogen atoms), the neutron is absorbed, and a gamma ray is emitted[19]. So,
materials with large hydrogen content are the most effective on slowing down neutrons.
As hydrogen and water are the fluids filling the pores, the absorbed energy can be
related to porosity.

Sonic log: A sonic tool has a transmitter and receivers. The emitter emits a sonic
wave that travel into formation and to the receivers. The time from the emitter to the
receivers is the transit time and it is the inverse of the velocity. The transit time would
depend on lithology and porosity. The denser the formation the lower is the transit
time and the more porous the formation is. The sonic tool could provide measurements
of the two types of sonic waves: compressional sonic (DTC) and shear sonic (DTS).

Resistivity logs: Resistivity logs are electrical well logs that record the resistivity
(or inductivity) of a formation. Resistivity is usually recorded in ohm meters (Ωm).
Three depths of resistivity can be logged (shallow, medium, and deep) that record the
resistivity of the formation with increasing distance away from the borehole. Resistivity
logs can be interpreted to infer information about the water saturation, and the presence
of hydrocarbons

Formation pressure/sampling: Formation-testing tools are designed to measure
the formation pressure and/or acquire formation samples at a discrete point in the
formation [8]. It consists of isolating a part of the formation, either through probe or
packers, then apply a pressure drawdown to allow fluid to move from the formation to
the tool. By opening chambers in the tool and analyzing the fluids and pressures while
the chambers are filled, it is possible to determine the true pressure of the formation
(as distinct from the mud pressure). If needed, a sample will be retained for analysis
at the surface. This will not only allow to assess the fluid type (oil , gas or water), but
also to assess some fluid properties as gas oil ratio, viscosity, fluid density, etc.
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2.3.2.2 Interpreted logs

After the logging data acquisition, the petrophysicist will interpret the composite logs to
determine reservoir and fluid properties, by generating a set of interpreted log data and
reservoir summation table. The main outputs of this interpretation are shale volume
(Vshale), reservoir flag, porosity (PHIT, PHIE), water saturation (Sw) and fluid type.

Shale volume: First, the petrophysicist has to assess the presence of reservoir rock.
We will assume that we are dealing with clastic reservoirs which are the reservoir rocks
in our AOI. The most reliable indicator of reservoir rock will be from the behavior of the
density/neutron logs, with the density moving to the left (lower density) and touching
or crossing the neutron curve. In most cases, this will correspond also to a fall in the
gamma ray (GR) log. Shales can be clearly identified as zones where the density lies to
the right of the neutron. Generally, the greater the crossover between the density and
neutron logs, the better the quality of the reservoir. But, it can also be a fluid effect as
gas zones will exhibit a greater crossover for a given porosity than oil or water zones.
The volume of shale (VShale) can be determined either by using density and neutron
porosity or using GR. Using GR, Vshale could be determined using GR values in pure
sand (GRsa) and GR values in pure shale (GRsh),

V shale =
GR−GRsa

GRsh−GRsa

A 60% Vshale could be used as cut off for sand, meaning higher values than 60% Vshale
would be considered non reservoir. Also, porosity cut off could be used at a later stage.

Porosity (ϕ): Porosity could be calculated by multiple logs as sonic log and neutron
porosity log. But, most often porosity is calculated from density log (Rho) log using
this formula:

ϕden =
Rhom −Rho

Rhom −Rhof

Rhom is the matrix density and Rhof is the fluid density. For sandstones, Rhom
typically lies between 2.65 and 2.67 g/cc. Where regional core data are available, Rhom
can be taken from the measures on conventional core plugs. Rhof depends mainly on
the density of the fluid filling the rock pores.
Porosity measurements from logs can be calibrated to core porosity if core material is
available from the reservoir section.
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Water saturation, fluid type and contacts: The main log data to identify hy-
drocarbons from water is the resistivity log. In fact, in reservoir section, the water is
generally saline thus conductive, while the hydrocarbons are resistive. So, the presence
of hydrocarbons in the reservoir would generally induce an increase of the resistivity.
Generally speaking, the pores in the rock are either filled by water or hydrocarbon.
Thus, the lower the water saturation, the higher is the hydrocarbon saturation. The
resistivity tool allows the determination of water saturation through Archie equation[2].
Resistivity, however, does not allow distinguishing oil from gas. If the sandstone reser-
voir is clean and thick, the cross-over between density and neutron porosity (as discussed
above) could allow to separate gas and oil. In case pressure points and fluid samples were
acquired, they are extremely important to identify the fluid in the reservoir. Plotting
pressure points as a function of depth, allows to identify pressure gradients which allow
to identify the fluid and determine precisely the fluid contacts, which is the interface
between the two-fluid fill (Fig 2.11).

In this master project, we will try to use mud gas data to assess fluid type while drilling.
This would be extremely important to have an early assessment of the fluid in place
and in the absence of fluid sample points.

Figure 2.11: Reservoir fluid zones in a normally pressurized petroleum reservoir. [18]

2.3.3 Coring

2.3.3.1 Coring Procedures

Coring is the procedure of cutting a part of the formation with a special drill bit,
allowing to move it to the surface to do more studies directly on the formation rock.
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Particularly during the exploration phase of a field, coring presents an important means
to calibrate the petrophysical model and gain additional information about the reservoir
not obtainable by logs. Usually the decision of when and where to core will be made
in conjunction with the geologist and operations department, considering the costs and
data requirements. So, not all the wells have core data and generally it is acquired in a
limited part of the reservoir zone.

It is considered essential to at least attempt to core a part of the main reservoir formation
during the exploration and appraisal phases of drilling[8]. Coring is obligatory in Norway
for new exploration wells when reservoir containing movable hydrocarbons are present.

2.3.3.2 Core data analysis

First, a core description is made by assessing visually its sedimentary features, grain
sizes, colors, etc to infer information about depositional environment, fluid content, type
of cementation, vertical heterogeneity, faults and fractures, etc.

Then, in routine core analysis (RCA) or special core analysis (SCAL), core plugs are cut
to run multiple tests to assess different properties as porosity, permeability, formation
salinity, saturation height, capillary pressure, etc. The main difference between RCA
and SCAL, is that in RCA the plugs are at ambient conditions, while in SCAL, the
plugs are at reservoir conditions[17].

Core Porosity: Porosity can be determined from both RCA and SCAL with different
methods: destructive (the plug can’t be used after) or non destructive methods. The
most known method is the helium porosimeter test. Helium is used as the gas because
it is an ideal gas at ambient conditions is inert and has a very small molecular size so
that it can penetrate all the accessible pores in a rock. This test is a non destructive
test and allows the determination of porosity and grain density. The empty container
of the core plug would have a volume Vs. By introducing the plug, the volume become
Vs-Vg, with Vg is the grain volume. A reference container filled with helium having
initially a volume Vr and a pressure Pr, will be connected to the plug container. Thus,
the pressure will expand. Using Boyles Law (P1*V1=P2*V2), the grain volume (Vg)
can be determined by solving Pr*Vr=P*(Vr+Vs-Vg) [17].

The bulk volume of the plug (Vb) can be determined by mercury immersion. As the
pores are too small for mercury to penetrate in. The volume increase by inducing the
core plug in mercury would be equal to Vb. Then, porosity (Phi) could be determined
by Phi*Vb=(Vb-Vg).
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Core Permeability: There are three principle definitions of permeability in core
analysis[17]:

• Absolute permeability: The permeability to a single phase where only that phase
fills the pore space (e.g. air, oil or brine).

• Effective permeability: The permeability to one phase when two or three phases
are present in the pore space. For example, oil permeability (Ko) and water
permeability (Kw) at some specific water saturation.

• Relative permeability: The ratio of effective permeability to a base permeability
which for SCAL laboratories is normally an endpoint effective permeability (Ko
or Kg at Swir(irreducible water saturation)).

Permeability can also be split into horizontal and vertical permeability. Horizontal
permeability is the ability to flow in the direction of the geological layer, the vertical
permeability is the perpendicular direction to the geological layer.

The core permeability data used in this study is the absolute ambient horizontal per-
meability. So, we will not discuss the other type of permeability in this section.

The permeability test is based on the Darcy law which is a law relating pressure dif-
ference (P1-P2) and rate (Q) governing the fluid flow inside any medium. Q = k*A
(P1-P2)/(mu*L). k, mu, L and A are respectively the permeability, the viscosity, length
and area of the core plug (Fig 2.12).

The unit of permeability is the Darcy. But, generally due to the relative low permeability
in the rocks, permeability is reported in mDarcy.

Steady state permeability test consists of injecting nitrogen gas into the core plugs.
The core plugs should be isolated and a confining stress applied to avoid the nitrogen
escaping. Then, the injection pressure, Pi, and flow rate, Qi, are recorded. The time
to reach steady state in each measurement varies from only a few seconds to a few
minutes, depending upon permeability. Once stable conditions are attained, the data
are recorded either manually or automatically via a computer, and the probe is released
and moved to the next location. Knowing the rate, pressures, length and area of the
probe we can determine the permeability using Darcy’s law (Fig 2.12).
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Figure 2.12: Diagram explaining parameters in the Darcy equation for incompressible liquid
flow through a core plug allowing to determine the permeability. [17]

Porosity Permeability relation: Plotting core porosity vs. logarithm of perme-
ability could show generally a linear relation. However, this linear relation generally
changes with rock type. It means that it depends on cementation and pore structure
of the rock. This linear relation is called poroperm relationship (Fig 2.13), and allows
predicting the permeability in wells where we do not have core data, or predicting the
permeability in new wells.

In addition, using this relation a cut off on porosity could be determined as net reservoir
cut off. Example, a cut off of 10% porosity means that rocks having less than 10%
porosity are assumed to not contribute to the hydrocarbon flow.

In this master project, we will try to use mud gas data in addition to the conventional
method of using porosity and Vshale in order to assess if we can have better prediction
of permeability.
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Figure 2.13: Example of poroperm relationship from AOI wells showing logarithmic horizontal
permeability change with core porosity where each color correspond to a well

2.4 Causality analysis, literature and limitations

2.4.1 Causality analysis

Figure2.14 shows a simplified schematic of the processes involved while drilling.

First, the mud gas quantities, as they are a measure of gas quantities released from
the cuttings of a particular formation in the mud, they should be related to the fluid
composition in the same formation.

Thus, water filled reservoir rocks should not be associated to an increase of mud gas
readings, compared to oil or gas reservoirs. So, mud gas quantities could be useful to
separate water zones from hydrocarbon zones. However, very often, presence of residual
gas due to a leaking trap, migration pathway, etc is associated with an increase of mud
gas quantities.
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Thus, our first prediction task in this study will be Water/ Hydrocarbon classification
using mud gas data.

As oil contains heavier alkane compounds than gas, it is expected to have a higher
ratio of heavier components in mud gas coming from oil zones than gas zones. To
assess this relation different mud gas ratio will be used as features: (C1/C2), (C1/TG)
with TG: total gas, (C1/(C2+C3)), (C3*100/(C1+C2)), wetness (Wh) and balance
(Bh). Moreover, mud gas ratios would be less affected by drilling parameters and gas
background trend, thus could be more reliable quantities.
Thus, our second prediction task in this study will be Oil/ Gas classification using mud
gas data.

It could also be intuitive to say that the higher the porosity and permeability the
higher the mud gas quantities. In fact, the higher the porosity the higher the amount of
hydrocarbon per unit of volume and thus higher the quantity of gas liberated. Also, the
higher the permeability the easier for the gas to leave the formation and the cuttings.
In fact, due to low permeability the gas could be trapped inside the pores and do not
escape to the gas trap.
Thus, our third prediction task in this study will be permeability prediction using mud
gas and logging data.

Seal rocks are relatively impermeable and mud gas quantities would be small. However,
the presence of migration route, overpressure, presence of hydrocarbon column below,
could still fill the pores of a seal rock with gas. While drilling and breaking these rocks
gas would be released to the well which increases the mud gas quantities.
Source rock would have high mud gas quantities due to the presence of hydrocarbon
trapped in the pores.
Mud gas data effect seal and source rock will be assessed through clustering and PCA
in the data analysis part.
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Figure 2.14: A simplified schematic of the processes involved while drilling.

2.4.2 Literature

The presence of a relation between the ratio of C1 over heavier gas components and fluid
type was established by Pixler on 1969[22]. These relations were used mainly qualita-
tively to assess hydrocarbon bearing zones, migration pathways and sealing formations
Later on, using the wetness parameter, Haworth et al 1985[13] established the wetness
(Wh), balance (Bh) and character (Ch) ratios.

Wh =
C2 + C3 + C4 + C5

C1 + C2 + C3 + C4 + C5
∗ 100

Bh =
C1 + C2

C3 + C4 + C5

Ch =
C4 + C5

C3

Using the (Wh) (Haworth et al 1985) established the following fluid characters:
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• Wh < 0.5 very dry gas;

• 0.5 < Wh <17.5 gas;

• 17.5 < Wh <40 oil;

• Wh > 40 residual oi

The more Wh increases the more dense the fluid. In fact, Wh represents the percentage
of C2+ in the mud gas. These relations were mainly used qualitatively as the numbers
changes from area to area.

Only recently, mud gas data was used quantitatively and it was to determine fluid
properties. (Liqiang et Al, 2014)[16] generated a mathematical formula to calcualte
GOR in Yingdong Oil/Gas Field in the Qaidam Basin. This was done using star chart
of gas components[16], the coefficients on the formula were determined by mathematical
fitting of the data. Next, (Tao Yang et Al, 2014)[30] showed that all PVT inputs can be
derived reasonably from only surface gas composition in a shale gas reservoir. Finally,
(Tao Yang et Al, 2020)[31], used machine learning methods to quantitatively predict
GOR from advanced mud gas data in conventional reservoir.

For permeability, based on fields on US, Pixler[22] established qualitatively a potential
relation between these gas ratios and the formation permeability assessing if it is tight
or productive. It was also established that in permeable zone the amount of lighter gas
increases compared to the heavier fraction [Giovanni N. Pinna 2008][11]. Thus a low
K’=(C1+C2)/(C4+C5), would mean lower permeability.

In this study, we will investigate these relations by using data analytics to validate or
discard these inferences in our area of study and we will investigate more features that
could be important for the predictions. Thus, we will try to estimate quantitatively the
reservoir permeability.

2.4.3 Limitations

The main uncertainty on using mud gas for fluid and reservoir characterization is that
the amount of extracted gas from the mud would depend on multiple factors and not
only the fluid properties on the rock:

• Gas trap and extraction equipment: While the gas trap technology had shown a
lot of progress through the years. In our area of study traditional gas extractor
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with different efficiency were used which would be a bias in our data. Moreover,
efficiency of gas traps can vary between 20% and 50% depending upon design,
location and mud properties and maintenance. Efficiency will also depend on the
composition of gas present, distribution of gas in the mud, viscosity, gel strength
of the mud, and the mud flow rate.In addition, traditional gas trap would under-
estimate heavy alkane compounds (C3+) amounts.

• Drilling parameters: For repeatability and coherent results, it is needed to have
a constant mud flow. However, change on drilling parameters while drilling could
make difficult maintaining a consistent mud flow specially on old gas trap[23].

• Mud types and properties: Oil-based mud would have much greater interaction
with the fluid in the reservoir than water-based mud.

• Temperature: Temperature affects solubility

2.5 Summary and objectives

In this chapter, first, we defined the petroleum system. Then, we provided the technical
background of the mud gas data and the multiple logging data that we acquire to
characterize reservoir and fluid properties and that will be used in this study. We
have presented the current approaches to assess permeability which require to cut core
through the formation and generate a poroperm relationship. We have explained that
the main way to assess reservoir fluid type is to acquire discrete pressure or sample
data. Next, we tried to identify how mud gas data could help to predict permeability
and fluid through causality assessment and using most recent literature studies. Finally,
we presented some potential limitations of mud gas data that could affect our machine
learning models.

In this study, we will explore through data analytics and machine learning techniques the
mud gas data. Despite its limitation, we will assess if we can extract from conventional
mud gas data insights on reservoir and fluid properties through three predictive:

1. Identifying hydrocarbon bearing zones in the reservoir rock

2. Identifying fluid type (Gas or Oil) in hydrocarbon bearing zones

3. Estimating permeability in hydrocarbon bearing zones
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Chapter 3

Theoretical Background: Machine
Learning

3.1 Introduction

In the last chapter, we discussed the technical background behind our data set acquisi-
tion and the limits of mud gas data. In this chapter, we will discuss briefly the theory
of data mining and the machine learning methods used in this project.

3.2 Data and data mining

A dataset consists of multiple objects (records) characterized by a collection of at-
tributes. These attributes could be quantitative or qualitative. Data mining is the pro-
cess of automatically discovering useful information and patterns from dataset. Data
mining techniques also provide capabilities to predict the outcome of a future observa-
tion. Recent progresses on data mining allowed to develop algorithms to use data that
were before unusable due to its size or complexity. In fact, data mining integrated dis-
ciplines from statistics and machine learning, to solve the challenges from big, complex
and high dimensions datasets[27].
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3.2 Data and data mining

Figure 3.1: Data mining as a confluence of many disciplines[27].

3.2.1 Prediction vs Inference

Suppose that we observe a quantitative response Y and p different predictors, X1,
X2,...,Xp. We assume that there are some relationships between Y and X = (X1,
X2,...,Xp), which can be written in the very general form Y = f(X)+ ε . ε is a random
error term. f is some fixed but unknown function. Our main goal in machine learning
is to estimate the function f for two purposes prediction and inference. We will refer to
this function f through the chapter.

3.2.1.1 Prediction

In order to predict f, we want to find a function f̂ as Ŷ = f̂(X), that minimizes the error
between predictions and real observations E(Ŷ-Y). This estimate of error is formed by
two terms a reducible error that we want to minimize and an irreducible error that is
due to the features, even in an ideal condition, won’t be able in to perfectly explain
the response. Thus, the irreducible error will always provide an upper bound on the
accuracy of our prediction for Y[14]. Machine learning algorithms are used to learn
from X to estimate Y using f̂.
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3.2 Data and data mining

3.2.1.2 Inference

If our purpose is only prediction, we are interested only on Ŷ and knowing the f̂ is
not important. However, if our goal is also inference, it is needed to know f̂. This
would allow to understand which predictors are associated with the response, the type
of relationship between the predictor and the response (positive or negative and at what
extent) and is it linear or more complicated[14].

3.2.1.3 Trade-off between inference and prediction

Later we will explain the different machine learning methods used in this study. But,
first it is important to explain the trade-off between inference and prediction. In fact,
there are different machine learning methods to estimate the function f. These algo-
rithms would have different degree of flexibility. A linear model for example would be
inflexible approach because it constrains the prediction to a linear relation to the fea-
tures. However, being so simple, it is very efficient for interpretability as we can assess
quantitatively how a positive or a negative change of the feature value would change
the response. In the other end, neural network with multiple layers are very flexible
models as it allows for non-linearity and can fit any form of functions. But it makes
any inference very difficult. Figure 2.7 provides an illustration of the trade-off between
flexibility and interpretability for the methods that we used in this study.
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3.2 Data and data mining

Figure 3.2: A representation of the tradeoff between flexibility and interpretability for the
methods used in this study showing that generally if the method flexibility increases, its inter-
pretability decreases[14]

3.2.2 Classification vs Regression

Data attributes could be measurable (quantitative) or categorical (qualitative). When
the response variable is quantitative, we use regression methods, while if the response
variable is qualitative, we use classification methods. In some cases, we can transform
quantitative variables to categorical and use classification methods (for example using
threshold and apply a binary classification). Similarly, in some instances, we can trans-
form a categorical variable to quantitative and use regression methods, for instance, if
the categorical variable describe order (ex: 1-low, 2-medium and 3-high).

3.2.3 Data preprocessing

Data preprocessing consists in transforming the raw input data into an appropriate
format for further analysis. This includes merging data from multiple sources, cleaning
data to remove noise and duplicate observations, selecting records and features that are
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3.2 Data and data mining

relevant to the data mining task at hand, resampling if needed, assessing and handling
of missing values, data transformation as applying logarithmic or exponential,etc.

3.2.4 Data analysis

3.2.4.1 Statistics and visualization

Part of the data analysis is to look to features statistics. Generally, we can assess
statistics for the whole range of data or select subset of the data. First, we can start by
assessing individual statistics for each variable as max, min, mean, median, standard
deviation (which shows the spread of the data) and percentiles. Also, at this step data
histograms can be plotted and skewness of the data assessed. For categorical variables
we can assess frequencies and mode.
The variables generally are not independent. To assess the dependencies between vari-
ables we use multivariate statistics. We can assess covariance and correlation between
the different variables. Good correlation between features and response could show that
there is a relation between the response and the variable. However, high correlations
between features, could show redundant information and could harm model stability
and interpretability. For visualization we can cross-plot each pair of features, we can
use scatter plots for three variables using colors or shape for the third variables, and for
categorical variable we can use boxplots.

3.2.4.2 Model summary

At this step, linear models could be generated to assess features statistical importance
by assessing F-statistic and to examine the associated p-value. If we conclude based on
the p-value that at least one of the predictors is related to the response, we could look
at the individual p-values to assess which ones (will be discussed further in linear model
section).

In addition, assessment of the variance inflation factor (VIF) allows to detect multi-
collinearity problem. In fact, while correlation allows to identify collinearity between
two features, (VIF) allow to assess collinearity between three and more features even if
no pair of features has a particularly high correlation. The VIF is defined as the ratio
of the variance of β̂j when fitting the full model divided by the variance of β̂j if fit
on its own[14]. The smallest possible value for VIF is 1, which indicates the complete
absence of collinearity. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates
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3.3 Machine Learning techniques

a problematic amount of collinearity, specially for linear models.

3.2.4.3 PCA for data analysis

As discussed earlier, generally the variables would have some correlations which would
correspond to a redundant information in the data. This is especially true in high
dimensionality data. In fact, the more features we use, sparsity of the data increases and
the model becomes more prone to over fitting as adding features that are not associated
to the response would add more noise. This concept is called the curse of dimensionality.
In addition, the more features there are the more difficult to visualize and explain
the results. The goal of the Principal Component Analysis (PCA) is to reduce the
dimensions by finding a new set of attributes that better captures the variability of the
data removing redundant information. In PCA, this is done by projecting the features
space into a new space. Thus, the first dimension is chosen to capture as much of the
variability as possible. The second dimension is orthogonal to the first and captures as
much of the remaining variability as possible, and so on. The least dimension, would
have the least variability. Then, dimensionality reduction could be done by selecting a
few principal components that explain most of the information of the data.

PCA could be used for data analysis. In fact, reducing the number of dimensions
allows for better visualization of the main variability of the data. Thus, displaying
pairwise both the principal component scores (projection of the data on the principal
components) and the principal component loadings (projection of the original features
on the principal components) of the first principal components would already provide
an understanding of the information present in the data by identifying the strongest
patterns. This figure is known as a biplot.

PCA could be also used for clustering and regression. The risk using PCA for prediction,
is that it is not certain that the response variable would be associated to the chosen
main principal components.

3.3 Machine Learning techniques

3.3.1 Supervised vs Unsupervised learning

Unsupervised learning or clustering consists of automatic classification of the data based
on a measure of certain distance between the data points. The data points that have
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the smallest distance between them are clustered together. No response variable is used.
The unsupervised learning could show some patterns in the data. In this study, we will
focus on supervised learning. In supervised learning setting, for each data point ‘i’ with
a set of features ‘Xi’ there is a response ‘Yi’ associated to it. The goal in supervised
learning is to train a model to be able for a new data point ’j’ with feature vector ’Xj’
to predict the associated response ’Yj’. The machine learning techniques that will be
presented below corresponds to techniques used in supervised leaning setting and that
we had used during this study.

3.3.2 Linear models

3.3.2.1 Linear regression

In the linear regression model, our estimate function f̂ is restricted to be linear. Thus,
β̂j ŷ = β̂0+ β̂1x1+ β̂2x2+ + β̂pxp. The parameters are estimated using the least squares
approach. Thus, we choose β0, β1,..., βp to minimize the sum of squared residuals
(RSS):

RSS =
n∑

i=1

(y2i − ŷi
2)

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2

The values β̂0, β̂1, β̂2 ··· β̂p that minimize the RSS are the multiple least squares
regression coefficient estimates. Linear regression models allow for high degree of in-
terpretability. In fact, we interpret these results as follow: if all the features values are
fixed, a unit increase of feature i value leads to an increase of β̂i in the response. This is
extremely important as it allows to understand the relation between the response and
the features. In fact, if all the β̂i are equal to 0, It means that the response has no re-
lation with the predictors. This hypothesis is called the null hypothesis and is assessed
by computing the F-statistics. Similarly, for each individual predictor a t-statistic and
a p-value are computed. These provide information about whether each individual pre-
dictor is related to the response, after adjusting for the other predictors. Interaction
between two predictors could also be evaluated by multiplying the two predictors in the
linear model. We say there is an interaction effect, when the increase of the response
value, by an increase of feature i, depends on feature j.
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These relations between features and response could be highly more complicated in case
of high number of features, confounding relation between variables and multicollinearity
issues which affects prediction and interpretability.

3.3.2.2 Subset selection and regularization

Subset selection, regularization and dimensionality reduction techniques allow to im-
prove linear model prediction and interpretability in case of high features number com-
pared to the sample size. The improvement on prediction is due to reducing overfitting
effect by removing irrelevant features or reducing their contribution. The improvement
in interpretability is also due to reducing the number of features and thus the multi-
collinearity.

Subset selection The subset selection consists of identifying the p predictors that
we believe to be related to the response. Then we fit a linear model on the reduced set
of variables.

In subset selection we try out different subsets of the p predictors and pick the subset
which gives the best model. The best model selection could be based on cross-validation
error, or directly on the training set by assessing Cp, AIC, BIC, or Adjusted R2. In
fact, as the training set error would keep decreasing by increasing complexity as adding
features3.4.1, assessing MSE, R2 or error rates directly on the training set underesti-
mates the true error as it won’t detect overfitting situations. To simplify, Cp, AIC, BIC,
and Adjusted R2 are methods to estimate the test set performance by adding a penalty
to the training error. The penalty term increases with the number of predictors in the
model.

Different algorithms exist to determine the best features combination by either going
through each possible combinations which is very expensive or selecting more smartly
by adding (or removing) the features that improve the best (or the least) the results.

Regularization We fit a model involving all p predictors, but the estimated coeffi-
cients are shrunken towards zero relative to the least squares estimates. This shrinkage
(also known as regularization) has the effect of reducing variance and can also perform
variable selection reducing overfitting effect. This is done by modifying the least square
optimization by adding a shrinkage factor.
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Ridge: For Ridge, the regression coefficient estimates β̂j are the ones that minimize

RSS + λ

p∑
j=1

β2
j

Lasso: For Lasso, the regression coefficient estimates β̂j are the ones that minimize

RSS + λ

p∑
j=1

|βj |

Lasso tend to remove some features by setting their β̂j equal to 0, while Ridge only
decreases β̂j values without nullifying them.
The shrinkage factor λ is a positive number which could be optimized through cross
validation error.

3.3.2.3 Logistic regression

When it comes to classification, we will consider binary classification formed by two
classes class (0) and class (1). Linear regression is not a good technique for classification.
Instead, logistic regression is used. Logistic regression uses the logistic function

p(X) =
eβ0+β1x1+β2x2+...+βpxp

1 + eβ0+β1x1+β2x2+...+βpxp

In logistic regression, the βi are determined by fitting the training data by maximizing
likelihood function. It can be shown that P(X) is then an estimate of the probability of
the sample being in class (1).

Logistic regression is considered a linear model because logit of the probability called
also log-odds is linear function of the features.

log(
p(X)

1− p(X)
) = β0 + β1x1 + β2x2 + . . .+ βpxp
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Similarly to linear models, regularization and features selection are used in logistic
regression.

3.3.3 Tree-based models

In this project, we used boosting and random forest which are tree-based models.

Trees are set of non-linear methods for regression and classification which split the
predictor space into regions, and use the mean (or mode, median, . . . ) of the training
observations in each region for prediction. The split sequence (feature and associated
value) is based on optimizing a criterion (Gini index, Entropy, RSS). Based on this
optimization, it is possible to assess the most important features for the splits.
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Figure 3.3: Linear model classification region (left) vs tree-based classification region (right)
with the decision boundaries showing (top) better classification using linear model if the true
boundary between classes is linear, (bottom) better classification using tree based model if the
true boundary between classes is a square

3.3.3.1 Random forest

The ensemble method consists of aggregating multiple models and averaging the results
to improve the prediction. It is based on the fact that averaging uncorrelated predictors

39



3.3 Machine Learning techniques

improves the prediction uncertainty by reducing the variance[28]. In fact, decision
trees often suffer from high variance as the trees are sensitive to small changes in the
predictors. In fact, changing the observation set may lead to a very different tree. The
main idea of random forest is to reduce the variance by averaging the results from
multiple prediction trees. This is done by bootstrapping (sampling with replacement)
the training data and fitting a decision tree for each bootstrap, then averaging the
results. If all features are used this is called Bagging. The random forest method would
reduce further the variance by restricting the number of features to use at each split as
this would reducing the correlation between the trees.

3.3.3.2 Boosting

Boosting is another tree-based approach which uses trees sequentially. It consists of
fitting a small tree to the data, then, fitting a small tree to the residuals of the model.
The first tree is then updated based on the residual tree with a weight. Then, the
procedure is repeated till a certain stop criterion.

3.3.4 SVM

SVM method is used for classification, it started by finding the best hyperplane sepa-
rating two classes based on maximizing a margin between the two classes data points.
This method is called maximal margin classifier. SVM was then extended to nonlinear
boundary by using different types of Kernels as polynomial or radial. This method is not
a probabilistic method; thus, class prediction probability cannot be directly obtained.
In addition, features need to be scaled.

3.3.5 Neural Network (NN)

The human brain consists primarily of neurons linked together with other neurons.
Analogous to human brain structure, a Neural Network (NN) is composed of an inter-
connected assembly of nodes and directed links[32].

There are multiple types of neural network models. In this study, we used the multi-
layers perceptron which we think is the most adapted to our data and was used in
similar context.
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3.3.5.1 Multi-Layers Perceptron model

A multi-layer perceptron model is composed by an input layer, intermediate layers, and
a final output layer. Each layer l is formed by nodes i. The node (i) from layer (l) is
connected to the node (j) in layer (l+1) through a weight θlij . Example, the activation
node a21 is written as follow:

a21 = g(θ110x0 + θ111x1 + θ112x2 + + θ11pxp)

ali is called the activation of node (i) in layer (l) and g is the activation function.
The problem comes up to finding all the θlij through optimization. First, we use an
arbitrary θlij and calculate all the ali. This is called the forward propagation. Then, we
backpropagate the error term, which is a(L)-y(i), a(L) is the last layer activation and
y(i) is the response for the training sample (i). Then gradient descent algorithm is used
to update the θlij .

3.4 Assessing model results

3.4.1 The Bias-Variance trade off

An important concept in model fitting is the Bias-Variance trade off. It is possible to fit
the data almost perfectly. But, generally, the prediction capabilities of such models are
week, this is called overfitting. In this case, the estimate predictive function would have
high complexity that it starts fitting patterns that are not in reality associated with
the response. Thus, minimizing the error on the training set data does not guarantee
the best performance on new data point. In fact, it could be proven that[14] for a new
observation (X_0, Y_0) the mean squared error (MSE) is equal:

MSE = E[(Y0 − f̂(x0))
2] = [Bias(f̂(x0))]

2 + V ar(f̂(x0)) + V ar(ε)

The (MSE) is formed by two competing terms. The bias term is minimized by better
fitting the training data. The variance term measures the variability of the estimate of
f by changing the training data. However, to reduce the bias term, the variability of the
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estimate function f is generally increased. Thus, the variance term increases. In other
term, as the predictive function becomes more complex the bias term will decrease and
the variance term will increase. This is bias-variance dilemma (Fig3.4). High bias leads
to underfitting, and high variance leads to overfitting. The best model is generally the
one which has the correct trade off between bias and variance.

Figure 3.4: Typical bias variance trade off: squared bias (red), variance(blue) and total
error(black) curves for a data set. The vertical dotted line indicates the optimal complexity
level minimising the total error.

3.4.2 Training, validation and testing

The best model is the model which has the best predictive power on unseen data. So,
to find the best model, we split the data randomly in different data sets.

• The training set is used to train the model. In fact, the model uses these data to
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learn and extract the relevant patterns and association between the features and
the response. Thus, it decreases the model bias.

• The validation set is used to optimize model parameters to obtain the best trade
off between bias and variance. In fact, we will explain later that most of the
machine learning models would have some parameters to tune allowing to adjust
the complexity and the variance of the models. The best model parameters are
generally the ones that have the best predictions on the validation set as it provides
an estimate of the test set error. However, using a validation set could be limited
specially in case of small data set. In fact, first, the estimate of the validation
set error can be highly variable, depending on precisely which observations are
included in the training set and which observations are included in the validation
set. So that a different split could change noticeably the validation error. Second,
using a validation set means that less data are used for training which gives
less robust models. Cross validation (CV) techniques allows to overcome these
limitations by using the whole training data for both training and validation. The
k-fold CV is done by dividing the training data into k groups. One of the groups
is treated as a validation set, the remaining k-1 groups as training set. The error
is then computed in the held-out group. This procedure is repeated k times;
each time, a different group of observations is treated as a validation set. This
process results in k estimates of the test error, The k-fold CV estimate is computed
by averaging these values. A special case of K-fold CV is leaving one out cross
validation (LOOCV) where k equal 1 which consists of leaving one observation
out and training on all remaining observations. Then assess the error on that
observation. Then, we repeat the previous operation for the whole training data.
The average error on all the left-out observations is the LOOCV error.

• Test set is used for a final comparison of the different models having the optimal
parameters. As the validation set was used to optimize the models parameters it
could be biased. The test set in a completely independent data set never seen by
the models. Thus, it is a good estimate for unseen new data.

3.4.3 Model selection

Machine learning models allow to control the balance between bias and variance through
adjustment of the models hyperparameters. Practically, this could be done exhaustively
by varying one parameter at a time and assess the validation set or cross validation
performance, or manually. The best model’s parameters are the ones that provide the
best results in the cross validation, or the validation set.

Examples of hyperparameters are the shrinkage factor for Lasso and Ridge, the number
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of decision trees for random forest, the number of trees, the learning rate and tree max
depth for boosting, cost, gamma, degree and kernel for SVM and number of iterations,
batch size, number of layers and regularization parameters for the neural network.

3.4.4 Model performance metrics

The goal of the machine learning models is to be able to predict the value of new data.
As the test set is an estimate of new unseen data. Our model performance should be
assessed on test set. Thus, to compare the performance of different models, we need
to quantify the extent to which the predicted response value for a given observation in
the test set is close to the true response value for that observation. The selection of the
metrics would depend on the task (prediction or classification) and the data. Generally,
these metrics measure a certain distance between the predicted and the true response.
For prediction the most used metrics are mean squared error (MSE) and R2.

• MSE stands for mean squared error, it is the mean square of the Euclidian distance
between the prediction and true response. Thus, the lower the MSE the better
the fit.

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2

• R2 statistics takes values between 0 and 1.

R2 =
TSS −RSS

TSS

where TSS =
∑n

i=1(yi − y)2 and RSS =
∑n

i=1(yi − ŷi)
2.

Thus, R2 measures the proportion of variability in Y that can be explained using
X[ref stat]. The higher the R2 value the better is the fit.

For binary classification (for simplicity, we assume the classes are labeled “-” and “+”),
there are multiple metrics depending on the data and the objective. Example of classi-
fication metrics used in this project are:

• The Confusion matrix: The confusion matrix is a practical tool to visualize the
data the columns are the predicted classes while the rows are the actual classes
and each cell in the matrix would be the count of predictions vs actuals (Table3.1);
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Table 3.1: Confusion Matrix

True - True + Total

Predicted- True Negative TN False Negative FN N*

Predicted + False Positive FP True Positive TP P*

Total N P

• Misclassification rate: the fraction of the predictions that were wrong, without
distinguishing between positive and negative predictions. FN+FP

N+P

• Accuracy: the fraction of the predictions that were correct, without distinguishing
between positive and negative predictions TN+TP

N+P

• Recall or Sensitivity or True Positive Rate: is the proportion of correctly classified
positive observations TP

P

• Specificity or True Negative Rate is the proportion of correctly classified negative
observations TN

N

• Precision is the proportion of correctly predicted positive observations from the
predicted positive observations TP

P∗

• Balanced accuracy[20] is equal to the arithmetic mean of sensitivity (true posi-
tive rate) and specificity (true negative rate), which avoids inflated performance
estimates on imbalanced datasets

balanced− accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

• F1score: Is the harmonic mean of precision and recall

F1score = 2 ∗ Precision ∗Recall

Precision+Recall

• ROC curve: The receiver operating characteristics (ROC) curve gives a graphical
display of the sensitivity against specificity, as the threshold value (cut-off on
probability of success or disease) is moved over the range of all possible values
(Fig3.5) . An ideal classifier will give a ROC curve which hugs the top left corner,
while a straight line represents a classifier with a random guess of the outcome.
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Figure 3.5: Example of ROC curve for the second classification task showing sensitivity as
function of specificity and associated AUC value.

• AUC score is the area under the ROC curve(Fig3.5). It ranges between the values 0
and 1, where a higher value indicates a better classifier. The AUC score is useful
for comparing the performance of different classifiers, as all possible threshold
values are considered.
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Chapter 4

Methodology

4.1 Dataset

4.1.1 Data and data loading

The dataset used for this study consists of mud gas logs, well logs and core data from
40 wells. The normal display of these data is function of depth. A data point would be
a record of certain properties for a given well at a certain depth.

The well logs consist of composite logs (measured) and interpreted logs (interpretation
of the different composite log)2.3.2:

• The composite logs are direct measurements of some physical properties that
allows later to identify lithology, fluid and porosity. These logs include gamma
ray (GR), caliper (CAL), resistivity (shallow, medium and deep), density (ROHB),
neutron (NPHI), shear sonic (DTS) and compressional (DTC) and were provided
by Spirit energy through Petrel Studio.

• The interpreted logs are interpretation of the composite log by a petrophyisicist
to relate to reservoir properties or fluid content. This includes porosity (PHIE),
shale volume (VSHALE) and water saturation (SW). These were interpreted by
Spirit-Energy petrophysicist and provided by Spirit-Energy through Petrel Studio.

The mud gas and drilling data were provided by Geo-Provider. It consists of cleaned
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mud gas quantities and ratios that are generally used for qualitative reservoir and
fluid assessments (C1), (C2), (C3), (C4), (C5), (C1/C2), (C1/TG) with TG: total gas,
(C1/(C2+C3)), (C3*100/(C1+C2)), wetness (WH): (C2+C3+C4+C5)/(TG)*100 and
balance (BH): (C1+C2)/(C3+C4+C5), and drilling parameters as mud weight (MW),
rate of penetration (ROP) and weight on bit (WOB). These data were provided in form
of a petrel project. For completion some of the missing drilling data as (MW) was
imported from NPD website, and (WOB) and (ROP) imported from some final well
drilling reports in order to decrease number of missing data.

The core data consists mainly of core porosity (CPOR) and core horizontal permeability
(KLH). These data were provided as .las files by Spirit-Energy petrophysicist.

Petrel is a software developed by Schlumberger. It is mainly used in Spirit Energy by
geoscientists to integrate works from petrophysicsit, geoscientist and reservoir engineers.
Petrel Studio allows to load all sort of different data from a common database to Petrel.

A new Petrel Project was created in which all the data needed for the current study
were collected and checked.Then, all the data were exported as multiple .las files. Figure
4.1 shows an example of the data used in this study for a well ’A’ visualized with Petrel
software.

A .las file corresponds to all the data from one well with a header specifying some
well attributes as well location, number of logs, their units, maximum depth. . . Next,
using ’lasio’ library[15] that handles .las files, these .las files were loaded both into R
and Jupyter notebook (Fig4.2). Then, a dataframe was generated merging all these log
data and adding a column for the well name (Fig4.3).

In this study, Python, R and Petrel were used to visualize the data.
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Figure 4.1: Example of data-set for a well used in this study visualised in Petrel.

Figure 4.2: Example of data-set for a well used in this study visualised in JupyterNotebook.
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Figure 4.3: First raws of the data frame generated by merging all the data and re-sampling
to 1 meter.

4.1.2 Data processing

Logging data has a resolution of 0.15m. Permeability data are punctual and discrete
measures from core plugins thus distance between the measures depends on quality of
core and interest. Mud gas data have a resolution of around 1m. To merge all these
data, a rolling median filter was generated to have a sampling rate of 1m.

Two binary categorical response variables were generated for each well:

• (HCind) to distinguish water (0) from hydrocarbon (1) samples: this response
variable was generated by cut off of 0.65 on water saturation (Sw). So that if
water saturation is more than 0.65, the point is classified as water and classified
hydrocarbon if not.

• (FluidType) to distinguish between oil (0) and gas (1) in hydrocarbon bearing
area: this response variable was generated using well reports and from NPD web
site. This data generally comes from well test reports or pressure and fluid sam-
pling data.

A cut off of 10% on porosity were applied for the data for the Hydrocarbon/Water classi-
fication. In fact, this cut off is generally used in petrophysical evaluation to consider the
rock as reservoir rock. Using this cut off, we have 2952 samples for the training set and
281 samples for the test set corresponding to well: "35/12-2”. The data is imbalanced:
class-0 (water) has 2323 samples and class-1 (hydrocarbon) has 676 samples.
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A cut off of 5% on porosity and 60% on water saturation was used for fluid type classi-
fication. In fact, 60% is generally used by petrophysicist as hydrocarbon flag (considers
the rock to be hydrocarbon bearing). Using this cut off the training set consists of 611
observations from which 382 oil (0) and 229 water(1), and 102 observations (52 for oil
and 50 for gas) for the test set corresponding to the well “36/7-4”.

The same cut off as in task-2 (5% on porosity and 60% water saturation) was used
for permeability prediction. In addition, not all the wells had core data and the core
data does not cover generally the whole reservoir sections. So, for this task, we had 282
observations.

An analysis of the generated data regarding missing values were done (Fig4.4) (number
of NaN values by features, number of NaN values by features and by wells). Some
missing data were then checked and recollected as the mud weight from NPD web site.
The features that have high percentage of missing values were dropped as some drilling
data ROP and WOB.
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Figure 4.4: Missing data analysis: A) using the whole data-set B) using only the data where
we have permeability measures.

Considering that the dataset is small, other features with lower percentage of missing
values were also dropped when it was noticed that they are not important for the
prediction.

After plotting the correlations between the different features and the response variables
and generating features statistics, some features were log transformed to have more
adequate distribution and better prediction (Fig 4.5)
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Figure 4.5: Histogram of permeability (top) and C1 (bottom) before (left) and after log
transform (right) showing better spread of the distributions.

4.1.3 Data analysis

4.1.3.1 Corrleations

A pairwise comparison of the features and response variables and their associated Pear-
son correlation coefficient were generated using GGally library ([9]). We notice high
correlation between some features, specially between the gas quantities (C1), (C2),
(C3) and (C4), shallow resistivity and deep resistivity, (GR) and (VShale), (DTS) and
(DTC), . . .

We notice from the boxplot in figure 4.6, that the hydrocarbon and water classes could
be well separated by the mud gas quantities (C1), (C2) and (C3), while the gas and oil
classes (Fig 4.7) could be well separated using both mud gas quantities (C1), (C2) and
(c3) and/or ratios (C1/C2), (WH) and (BH).

We notice that log permeability (response variable), porosity, density, core porosity are
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highly correlated. No strong correlation were observed between individual mud gas data
and permeability (Fig 4.8)

Figure 4.6: Pairwise cross plots of the mud gas data and HCInd response showing high
correlation between mud gas quantities and that the mud gas quantities could allow for a good
separation between water and hydrocarbon.
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Figure 4.7: Pairwise cross plots of the mud gas data and fluidType response showing that the
mud gas quantities and/or ratios could allow for a good separation between oil and gas.

55



4.1 Dataset

Figure 4.8: Pairwise cross plots of mud gas data, well log data and log of permeability
showing that log permeability, porosity, density, core porosity are highly correlated. No strong
correlation were observed between mud gas data and permeability.

4.1.3.2 Model summary

Some linear models were generated to assess features statistical importance and mul-
ticollinearity through model summary and variance inflation factor (VIF) (Fig 4.9).
Analysis of the variance (ANOVA) on adding some mud gas data to porosity and shale
for predicting permeability (which is the standard approach for permeability assess-
ment) showed that mud gas data are important and improves the fit (Fig5.7). No
special high leverage and high residuals data points were observed that we think need
to be removed (Fig4.10).

56



4.1 Dataset

Figure 4.9: VIF when all the features are used in the model showing high multicolinearity
problem between mud gas data thus, features selection is needed to reduce this VIF value.

Figure 4.10: Assessment of model residuals and leverage through multiple cross plots.

Similarly, model output was used to assess statistical importance of mud gas data to
classify FluidType.

Assessment of collinearity using VIF, shows high correlation between features and spe-
cially mud gas quantities and ratios which could be a problem for inference and model
stability(Fig 4.9). A lot of work will be done to reduce this multicollinearity effect by
reducing the number of features.
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Dimensionality reductions were done through PCA to explore the data. This method
was used separately in seal (PHIE<0.1) and reservoir rocks (PHIE>0.1) through poros-
ity cut offs, to assess any trends in the data that could characterize seals and reservoirs.

Figure 4.11: Linear model summaries fitting permeabiltiy with A) porosity and Vshale; B)
prosity, Vshale, C1, 1/MW and C1/MW, and C) ANOVA showing that some mud gas features
could be statistically important to predict permeability.
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4.1.3.3 PCA analysis

In Reservoir Rock: The figure 4.12 represents both the principal component scores
and the loading vectors for the reservoir zones in a single biplot display. We notice that:

• PC1 gives most weight to Depth, MW, GR, Neutron, Vshale. An increase of
depth is associated with a decrease of Vshale. This could be explained by the
general trend that the deeper reservoirs are cleaner than shallower (upper Jurassic)
reservoirs as we know from the geology and depositional environments.

• PC2 gives clearly more weight to gas quantities (C1, C2, C3), resistivity and
water saturation. An increase of gas quantities is associated with an increase
of resistivity and a decrease on water saturation. PC2 clearly relates more to
fluid content. In fact, it captures the negative trend between the gas quantities
and (Sw), which shows that these mud gas quantities could allow to distinguish
hydrocarbon zones from water zones which is our first classification task.

• PC3 gives more weight to gas ratios, density and sonic. We see as expected
positive correlation between amount of heavy component in the mud gas with
velocity and density.

Figure 4.12: Principal components biplots in reservoir. Left: biplots of PC1 and PC2, mid-
dle:biplots of PC2 and PC3 and right: biplots of PC1 and PC3 showing the major variability
directions in the data. Example: PC2 shows the negative relation between mud gas quantities
and water satruation
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In Hydrocarbon bearing reservoir rock The figure 4.13 represents both the prin-
cipal component scores and the loading vectors for the reservoir zones in a single biplot
display. We notice that:

• PC1 gives most weight to C1, C2 and C3, followed by density, depth and MW. It
relates to compaction. Higher the depth, higher the density and the mud weight.

• PC2 gives most weight to gas ratios, followed by neutron porosity. It could relate
to fluid in the reservoir as Neutron porosity is quite affected by fluid. If the
reservoir is gas bearing, we have lower neutron density. While the proportion of
heavy component (like ’Wh’) will decrease as we see from PC2. This shows that
these mud gas quantities could allow to distinguish between oil and gas zones
which is our second classification task.

• PC3 gives most weight saturation followed by shale volume, porosity and resistiv-
ity. It relates to how both shale volumes and porosity would affect the hydrocarbon
saturation. The lower shale volume, higher the porosity, higher the hydrocarbon
saturation.

Figure 4.13: Principal components biplots in hydrocarbon bearing zones. Left: biplots of
PC1 and PC2, middle:biplots of PC2 and PC3 and right: biplots of PC1 and PC3 showing that
PC1 could be more related to compaction while PC2 could be more related to fluid content

In Seal Rock The figure 4.14 represents both the principal component scores and
the loading vectors for the reservoir zones in a single biplot display. We notice that:
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• PC1 gives most weight to mud gas ratios and MW.

• PC2 gives most weight to mud gas quantities and GR

• PC3 gives most wight to NEUT, RDEP, DTC and GR

No clear relation in the seal was found, probably due to the geological complexity and
lack of repeatability of the acquisition. Generally, while drilling the seal rock, the goal
is to drill safely as fast as possible. So, the focus on data quality is minimum.

Figure 4.14: Principal components biplots in seals: Left: biplots of PC1 and PC2, mid-
dle:biplots of PC2 and PC3 and right: biplots of PC1 and PC3 showing the major variability
directions in the data. No clear relation in seals was found.

4.1.4 Systematic error

Figure 4.15 shows the distribution of C1 from well to well compared to the density log.
We can notice that while density has similar distribution in most wells, the distribution
from mud gas are more variables. In fact, the distribution of C1 is more sensitive to
the wells. This could be an indication of systematic error[3] on the mud gas quantities.
In fact, in section2.4.3 we discussed that mud gas data are influenced by multiple pa-
rameters as drilling parameters and the gas trap system used, reservoir pressure, the
mud sample extracted, etc. This is inducing a systematic error that would change from
well to well, or from formation to formation. A tentative to reduce this error was done
by generating corrected mud gas quantities, by dividing by mud wight and depth. In
addition, mud gas ratios could be less affected by the systematic error.
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Figure 4.15: Box plots showing spread of density distribution (left) and C1 distribution (right)
by well. While density has similar distribution in most wells. The distribution of C1 are more
sensitive to the wells which could show a systematic error in the data changing from well to
well

4.1.5 Data analysis summary

To summarize, from the data processing and analysis, we can already notice some
interesting features that could be important for the prediction tasks. We noticed that:

• Mud gas quantities could be important to separate water from hydrocarbon bear-
ing observations,

• Mud gas quantities and ratios could be important to separate water from oil and
gas,

• Corrected mud gas quantities by mud weight could be important for permeability
prediction,

• The data (specially mud gas and drilling data) are affected by systematic error
that could be due to drilling conditions and parameters, mud gas equipment’s,
etc.
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4.2 Project workflow

After data cleaning, processing and analysis, one well was removed from the data as a
test set for the two classification tasks. This was not done for the permeability prediction
due to the small number of data points.

Then for the classification tasks seven models were assessed (logistic regression with
feature selection, Lasso, Ridge, Random Forest, Boosting, SVM and Neural Network)
and for the prediction task six models were generated (linear regression with feature
selection, Lasso, Ridge, Random Forest, Boosting and Neural Network)

Next, for each model, model hyperparameters were tuned through measuring perfor-
mance on validation set or cross validation.

Final models were then run with these optimal parameters to assess cross validation
error using a new technique which consists of removing one well out and training on
the other wells, then iterate through wells. This is similar to Leave one out cross
validation (LOOCV), but instead of leaving one observation we leave one well with
all the observations associated to it (LOWOCV). This is more realistic than a random
sample split to avoid bias from data from the same well. In addition, for the classification
tasks 1 and 2, these models were also run on the test set well. Both metrics on the
LOWOCV set and test set were used to judge on the best model 4.16.
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Figure 4.16: Project workflow diagram showing the steps and tasks followed during the project
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4.3 Machine learning methods and optimization

4.3.1 Fluid classification tasks

4.3.1.1 Logistic regression

For the first and second task, logistic regressions were done in R using generalized linear
models (glm). Multiple combinations of mud gas data were fed to the model. (Fluid-
type) and (HcInd) were the response variables. Subset selection, Ridge regularization
and lasso regularization were then tried, in order to have simpler model for better
interpretability and prediction.

• Subset selection: Step wise selection of the features were done based on AIC using
‘stepAIC’ function,

• Lasso Regularization: Lasso regularization with lamda optimization using cross
validation 4.17,

• Ridge Regularization: Ridge regularization with lamda optimization using cross
validation 4.17.
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Figure 4.17: Lasso and Ridge optimisation

4.3.1.2 Tree based methods and SVM

Tree based methods (Random Forest (RandomForest) and Boosting (xgboost)), and
SVM (svm) were implemented using R. (Xgboost) iteration number was optimized
through cross validation. SVM linear, polynomial and radial were implemented and
optimized using grid search and validation set misclassification rate. SVM with radial
kernel showed the lowest misclassification rate of the validation set.

4.3.1.3 Neural Network

Neural Network were implemented in Python (Jupyter notebook) using Keras library[6],
two hidden layers perceptron model with 30 neurons and regularization was used (Fig
4.18). First, all featrues were normalized. Three combination of the normalized fea-
tures were used on the models. Optimization of number of epochs were done through
train/validation loss and accuracy evaluation (Fig 4.19). However, we notice that the
loss and accuracy of the validation keep improving at high iterations number this is
believed to be due to the systematic error in the data and that our model start early to
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overfit, learning some patterns that won’t be present in a new well. This bias will be
discussed more on chapter5.5.

Figure 4.18: Neural network model architecture

Figure 4.19: Evolution of Loss and accuracy with epochs using the neural network model for
both training and validation set showing questionable continuous improvement in the validation
set
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4.3.2 Permeability prediction task

For permeability prediction, similar techniques with parameter optimization were used
as linear prediction using subset selection optimized through cross validation and through
LOWOCV mean squared error (Fig 4.20); Lasso and Ridge, Random Forest and boost-
ing, and Neural Network.

Figure 4.20: Subset selection optimization: A) best features for each number of features used,
B) mse for LOWOCV evolution with number of features showing that six features provide the
best results

4.3.3 Hyperparameter tuning

Some Hyperparameters for each model were hyper tuned. Table4.1 summarizes the
tuned parameters for each prediction task.
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Table 4.1: Models optimized hyperparameters: * means manual tuning of the hyperparameter
while the absence of * means grid search was implemented

Task-1&2 Task-3

Subset Selection

Lasso lambda (shrinkage factor) lambda (shrinkage factor)

Ridge lambda (shrinkage factor) lambda (shrinkage factor)

Random Forest ntree* (number of trees), criterion: (gini or entropy) ntree* (number of trees), criterion: (gini or entropy)

XGBoost nrounds (number of trees), eta* ( learning_rate), max_depth* nrounds (number of trees), eta* ( learning_rate), max_depth*

SVM cost, gamma, degree, kernel

Neural Network epochs, number of layers*, batch_size*, regularization parameter* epochs, number of layers*, batch_size*, regularization parameter*

4.4 Results Assessment

Two methods were used to assess the results of the models: one well test set and leave
one well out cross validation. The main metrics were F1 score and balanced accuracy for
the classification tasks and R2 for the prediction task. These metrics were implemented
using scikit-learn[21].

4.4.1 One well test set

One well was removed from the data prior to training for the classification tasks and
used as a test set. This well was chosen to have both positive and negative classes in a
way representative of the training distribution.

4.4.2 Leave One Well Out Cross Validation (LOWOCV)

LOWOCV was implemented to have a more realistic assessment of the prediction. In
reality, we want to predict the fluid and reservoir properties on a complete new well. A
classical train/test split would mix the data from all wells. So, data from the same well
would be used for both training and testing. Thus, the testing error would be misleading
(underestimating the real error). In fact, the models would be learning patterns that
are not real and that would be present also in the test set and this idea was validated
by our results (figure5.11).

The LOWOCV is similar to Leave one out cross validation (LOOCV), but instead of
leaving one observation we leave one well with all the observations associated to it.
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This is more realistic than a random sample split to avoid bias from data from the same
well.
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Chapter 5

Results

5.1 First task: Water/Hydrocarbon classification

For the first classification (Water/Hydrocarbon classification in reservoir rock), the
training set consists of 2952 samples and 281 for the test set corresponding to the well
data of the "35/12-2" well. As the data is imbalanced: class-0 (water) has 2323 and
class-1 (hydrocarbon) has 676 samples, main metrics used to assess results are F1 score,
balanced accuracy and AUC.

5.1.1 Prediction

Most of the models provided comparable results. The best model ‘logistic regres-
sion with subset selection’ had a LOWOCV AUC=0.80, F1score=0.54, balanced ac-
curacy=0.72(Table5.1). The same model was the best for the test set with AUC=0.87,
F1score=0.82, accuracy=0.96 (Table5.2). The prediction performance were moderate.
We could not get a good prediction probably due to probably the presence of low sat-
uration gas in some sand interval which responses are similar to hydrocarbon bearing
reservoirs and at this stage we failed to separate these responses with mud gas data.
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Table 5.1: Task-1: LOWOCV performance comparison of the ML models showing that subset
selection provided the best performance.

Table 5.2: Task-1 performance comparison: training set and test set balanced accuracy scores
showing that subset selection provided the best test set performance.

5.1.2 Inference

Subset selection model had removed the following features C1/C4, C1/TG, 1/MW and
C1 judged not important for the prediction. As showed in figure 5.1, it looks that most
of the remaining features have statistical importance. So, both gas quantities and ratios
were important. However, it is still difficult to make some statistical inference due to
collinearity between these features. No clear separation using cut offs on ratios2.4.2
were established as done by Pixler 1969[22] and Haworth et al.1985[13].
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Figure 5.1: Task-1 model inference: subset selection model summary (left) shows remaining
important features however inference still difficult due to multicolinearity problem; XGboost
features importance (right) shows most important features

5.2 Second task: Oil/Gas classification

For the second task (Identifying fluid type (Gas or Oil) in hydrocarbon bearing zones),
the training set consists of 611 samples and 102 for the test set. Main metrics was F1
score, balanced accuracy and AUC.

5.2.1 Prediction

The Oil/Gas classification classification showed much better results than Water/Hy-
drocarbon classification and allowed for an excellent performance on distinguishing gas
and oil. The best model ‘logistic regression with features selection’ had a LOWOCV
AUC=0.86, F1score=0.87, balanced accuracy=0.84(Table5.4). Best model for test set
provided AUC=0.99, F1score=0.94, accuracy=0.93 (Table5.3).
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Table 5.3: Task-2: LOWOCV performance comparison of the ML models showing that subset
selection provided the best performance.

Table 5.4: Task-2 performance comparison: training set and test set balanced accuracy scores
showing that subset selection provided the best test set performance.

5.2.2 Inference

Subset selection and further manual tests allowed to remove multiple features (C1, C2,
C4, DEPT, I(C1/C2), I(C1/C4))5.2. The main features important for the prediction
are the multiple gas ratios5.3 which is in alignment with the finding of Pixler 1969[22]
and Haworth et al 1985[13]. Thus, an increase of the proportion of the heavy compo-
nents increases the probability of oil rather than gas. However, using directly Pixler or
Haworth cut offs for fluid classification2.4.2 did not allow for good results which shows
that these cut offs need calibration to the study area. It was also noticed that gas
rates (C3) and mud weigh (MW) are important but collinearity between features make
further inference difficult.
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Figure 5.2: Task-2 subset selection model summary showing that mud gas ratio are important
for the fit, from the model coefficients we can infere that an increase of the proportion of the
heavy components increases the probability of oil rather than gas..

Figure 5.3: Task-2 feature importance from XGBoost(left) and random forest (right), showing,
specially XGBoost, that mud gas ratios then mud quantities are the most important features.
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5.3 Third task: Permeability Prediction

The third prediction task (predicting permeability in hydrocarbon bearing zones) con-
sists of a sample size of 282 observations. Main metrics used to assess the results is
R2.

5.3.1 Prediction

Combining mud gas data with porosity and shale volume improved the prediction of
permeability compared to conventional approach of using only porosity or porosity
with shale volume. Linear models performed well on the prediction as subset selection,
Ridge and Lasso5.5. The best model was linear regression with subset selection and
R2 of the LOWOCV had improved from 0.65 to 0.85 by adding mud gas features: C1,
C1/(DEPTH*MW) and 1/DEPTH5.4.

Figure 5.4: Cross plot of actual permeability function of the predicted permeability using
linear model: using only porosity and Vshale in the right, using porosity, Vshale, C1, 1/Depth
and C1/(MW*Depth) in the left showing an improvement of the LOWOCV R_2 from 0.65 to
0.85, colors represent different wells
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Table 5.5: Task-3: LOWOCV performance comparison of the ML models showing that subset
selection provided the best performance.

5.3.2 Inference

Some of the generated features as C1/(DEPT*MW (or C1/MW) led to an interesting
improvement of the prediction. These features could be considered as corrected gas rates
to the mud weight and depth and needs further investigation. As seen in the subset
selection results (Fig5.6), porosity, as expected, is the most important feature and it is
the one that should be used if we want to fit a linear regression with one feature, followed
by Vshale. Then, the model starts to see the importance of mud gas data, especially
(C1) and (C1) corrected by MW and depth. ANOVA(Fig5.7) and the improvement of
the prediction on the LOWOCV5.4 show the importance of these features. In addition,
we succeeded to reduce the number of features that we can have a robust model and
some inference by reducing the collinearity as max VIF is around 20 (Fig5.5).

Figure 5.5: VIF of permeability prediction subset selection model features showing a very big
improvement on the multicolinearity problem by reducing the VIF allwing for more stability
and interpretabaility.

As expected, an increase of core porosity and a decrease of Vshale would tend to increase
the permeability. Figure5.6 shows that if depth*MW < 4125, we have an increase of C1
associated with an increase of permeability and the opposite effect if depth*MW>4125
(high depth and high MW). This could be due to the overpressure that we have at high
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depths in this area. So, that even with low permeability we have higher gas quantities.
A way forward for better prediction is to try to include pressure data (Figure 2.14) as
features.

Figure 5.6: Peremability prediction subset selection model summary showing that an increase
of core porosity and a decrease of Vshale would tend to increase the permeability. In addition,
if depth*MW < 4125 we have an increase of C1 associated with an increase of permeability and
the opposite effect if depth*MW>4125

Figure 5.7: Permeability prediction ANOVA for the model with using CPOR and VShale, and
the subset selection model showing the statistical imprtance of the addition mud gas features.
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5.4 Petrel visualization

All the predictions were loaded to Petrel. This allowed to compare the results by well
while displaying any logs to study more the causes of errors. Also, Petrel is the software
used by geoscientist for the interpretation, so they could include these results in their
interpretation workflows.
Figures 5.8, 5.9 and 5.10 show Petrel visualization of the prediction and the actual
response using the best method for each of the three tasks

Figure 5.8: Task-1 Petrel visualisation of the classification results: for each wells two track
are displayed (predicted HCInd probability from best model (track-1) and true HCind response
(track-2)). Blue represent water and pink hydrocarbon. Results quality are moderate

Figure 5.9: Task-2 Petrel visualisation of the classification results for each wells two track
are displayed (predicted FluidType probability from best model (track-1) and true FluidType
response (track-2)) showing excellent fit. Green represent oil and red gas
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Figure 5.10: Task-3 Petrel visualisation of the regression results: for each well three track
are displayed (Track1: GR log, Track-2: Real permeability (black points) and predicted perme-
ability from standard approach of linear model with porosity and Vshale (red points), Track3:
Real permeability (black points) and predicted permeability from linear model with porosity,
Vshale, and mud gas data (red points) showing a better fit from the model with mud gas data
in some wells, generally the results are comparable

5.5 General comments

The linear models had outperformed the nonlinear models. This is probably due to the
existence of true linear physical relation between the features and the response as we
know for example that log of permeability has a linear relation to the porosity and that
rate and permeability has a linear relation.

We think that due to some limitations of the mud gas data2.4.3, the data suffers from
experiment bias, a systematic error due to different tools used and measurements from
well to well that affected more the nonlinear models. In fact, the results from simple
randomly sampled cross validation or validation set were different and much better,
than from LOWOCV, specially using nonlinear methods. Due to this bias, the non
linear methods as they are by construction more complex, tend more easily to overfit
the data by trying to explain this systematic noise than the linear models. The low
number of data points enhances further this problem.
For example, figure5.11 shows that for the neural network model the data fits very
well both training and validations set, but not the LOWOCV. In fact, The mse of the
validation set keep decreasing after 50 iterations and have similar level to the training
set mse, while the mse from the LOWOCV is more noisy, starts to increase again after
only 20 iterations and its level is not comparable to the mse level of the training set. In
fact, this could explained by the fact that quickly the network start to learn patterns
only relevant for the training and validation set, but not for the LOWOCV. It is starting
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to overfit and learning from the systematic noise that is present in both validation and
training set but not if we consider a complete new well as sed by the LOWOCV.

To solve this issue further work, need to be done on sampling and on the features, may
be trying to remove background trends as done in time series. We could also implement
parameters optimization as grid search on the LOWOCV technique to better optimize
the parameters of the models. . . .

Figure 5.11: Evolution of mse with epochs using the neural network model for the permeability
prediction for train set, validation set and LOWCV showing that the data fits very well both
training and validations set, but not the LOWOCV.The mse of the validation set keep decreasing
after 50 iterations and have similar level to the training set mse, while the mse from the
LOWOCV is more noisy and starts to increase again after only 20 iterations.
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5.6 Limitations and potential improvements

As shown in this chapter, we succeeded to have an excellent prediction in task-2 (oil
and gas classification) and task-3 permeability prediction. Task-1 (water and hydro-
carbon classification) prediction had moderate results. We made some inference and
explanations on mud gas features and how it relates to the response variable. However,
we noticed some limitations:

• Number of sample points and wells are small making difficult to generalise these
findings, a way forward is using more data and more wells,

• Various sampling rates, background trends, scale and experiment bias in the data
are affecting the different models making learning real and relevant physical be-
havior more difficult. Collecting more data and generating more standardized
features between wells may improve the learning capacity of the models. We can
consider removing background trend, normalize features, calibrating with drilling
parameters and mud type . . .

• Due to the systematic bias 4.15, hyperparameters tuning on validation set or cross
validation set was not optimal for optimizing the models as these hyperparameters
will be affected by this noise. A better way would be to use the LOWOCV method
to optimize these hyperparameters instead and implement a grid search.

• Causality assessment and evaluation of the different model results allowed to de-
termine more features that could improve the models as reservoir pressure for
permeability prediction. A way forward is to collect these data and update the
models with these features.

• Traditional mud gas systems is limited to a high resolution (C3) quantities and to
(C5) with lower confidence. However, advanced mud gas systems allow now for
more accurate quantification of gas quantities from Methane (C1) to Octane (C8)
which would unlock more potential from mud gas in the future.
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Chapter 6

Conclusion

Mud gas data are continuous measurements of the different compounds of the gas re-
leased from the formation while drilling. Due to the difficulties of manual interpretation
of these data, their use has always been limited.

The focus of this study was to use big data analytics to extract insights from mud gas
data that helps petroleum system analysis. We specially focused on three predictive
tasks:

1. Identifying hydrocarbon bearing zones in the reservoir rock

2. Identifying fluid type (Gas or Oil) in hydrocarbon bearing zones

3. Estimating permeability in hydrocarbon bearing zones

In this study, we succeeded in generating robust and stable ML models for these three
predictive tasks. The reservoir fluid prediction (task-1 and task-2) would allow assess-
ment of the rock fluid type while drilling allowing to decrease cost and to have better
decision on data acquisition program. The permeability prediction task would allow
better prediction and understanding of permeability, allowing ultimately for better in-
formed development decision and decrease data acquisition costs (core, pressure points).

Multiple ML models were used for the different prediction tasks including Linear models
with subset selection, Lasso, Ridge, Random Forest, Boosting, SVM and Neural Net-
work. Parameters’ tuning was done to optimize these models. The linear model after
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Conclusion

subset selection showed the best performance in the three tasks. It showed a moder-
ately good prediction for the classification of water and hydrocarbon samples, a very
good prediction of distinguishing between oil and gas, and a very good performance on
permeability prediction, better than conventional approach of using just a poro-perm
relationship. The linear models outperforming the nonlinear models were attributed to
the existence of true linear physical relation between the features and the response as
we know for example that log of permeability has a linear relation to the porosity and
that rate and permeability has a linear relation. Also, we think due to the small num-
ber of wells (also data points) that the data suffers from experiment bias, a systematic
error due to different tools, measurements and drilling parameters from well to well that
affected more the nonlinear models. In fact, very low error on test set was observed
using random sample training and test set split.

To reduce the effect of this systematic error on choosing the best model, we developed
a new validation procedure consisting of leaving one well out cross validation allowed
to have more realistic assessment of the model metrics as this would remove sampling
and experiment bias from the validation set.

As the linear model with best or stepwise subset selection showed the best performance
in the three tasks, it also allowed some inference. Despite the high collinearity of the
mud gas, the subset selection method allowed to eliminate multiple features enhancing
at some degree the interpretability of the relations. Thus, for the second classification
task for example, we validated the importance of mud gas ratios for the prediction of
fluid type as established first by Pixler 1969[22]. Thus, an increase of the proportion
of the heavy carbon components increases the probability of oil rather than gas. In
addition, we noticed other features such as mud weight and depth which are important
for the prediction. For the permeability prediction, some of the generated features such
as C1/MW and C1/(DEPT*MW) gave an interesting improvement to the prediction.
These new features were considered as corrected gas rates to the mud weight and depth,
and needs further investigation.

The different predictions were then exported for each well and imported to the main
geological interpretation software ‘Petrel’, allowing for better visualization of the results.
In addition, as the best model for the three tasks were linear prediction with features
selection, we were able to easily export the model to petrel through writing the formula
in the software which would allow to test the results on more wells.

In this project, we showed that data analytics and machine learning unlocked some of
the potential of mud gas data that previously had very limited uses by predicting some
fluid and reservoir properties. But we are still scratching the surface.
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Conclusion

Multiple ways forward exist. We can try to generate standardized features from mud
gas data that would be less affected by bias for example removing gas background trend
from the mud gas logs and correcting with drilling parameters and mud types. We can
also use more features such as reservoir pressure (Pr) which could be important for
predicting permeability. We can collect and use more data from more wells and handle
better missed values. In addition, we can improve the parameter tuning of the models
by implementing a LOWOCV with grid search to generate more accurate models. To
simplify visualization, handling of the data and allow geoscientists to take real time
decisions, a web base application could be developed to run directly the models in
Petrel or TechLog. Moreover, other properties could be used a response variable as
GOR, porosity,. . .

Furthermore, new advances in mud gas systems allow now for more accurate quantifi-
cation of gas quantities from Methane (C1) to Octane (C8) which would unlock more
potential from mud gas in the future.
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