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4 Abstract 
 

Kube Energy is a renewable energy services company that has most of its solar power plants planned 

around a single or multiple off-takers (end-users) connected in a small mini-grid. What is common for 

these off-takers is that a large proportion of their power consumption is to cover air conditioning and 

water heating for offices and residences. To date, Kube has designed their systems with larger battery 

banks or spinning capacity in diesel generators to provide stability in the grid during the day, as well as to 

provide electricity during the night.  

This year, Kube Energy has started a project with an aim at optimizing consumption of electricity to better 

match generation. This mainly entails scheduling loads for when there is high production from the PV 

(e.g., reheating water in hot water tanks or charging electrical vehicles) or cutting loads if there is an 

unscheduled decrease in generation (clouds). In this effort, Kube Energy is looking at methods for 

forecasting consumption and generation. This thesis will explore multiple methodologies for consumption 

forecasting in the UNHCR offices in Kukuma, Kenya to help Kube build a power management system (PMS) 

that will improve the profitability of such system by reducing the gap between generation and 

consumption of electricity. An important feature of the PMS is to ensure adequate balance between 

power generation and consumption to avoid load shedding, in case power consumption is larger than 

power production, or other strategies when other type of load variations take place. 

The thesis looks at parametric and non-parametric models and compares the models’ prediction accuracy 

to choose the best performing or reliable one. The models used in this thesis are the Auto Regressive 

Integrated Moving Average (ARIMA), Error Trend and Seasonality (ETS), linear regression (simple and 

multiple), and Long-Short Term Memory (LSTM). The LSTM outperforms the others significantly and was 

selected as the most reliable one for forecasting consumption values at the site in question. The decision 

was based on the performance metrics of the models. The non-parametric model or LSTM had a better 

performance than the two remaining parametric models due to many reasons. One of the advantages of 

the LSTM is the ability to tune hyperparameters to obtain a well performing forecasting model, giving 

flexibility to the user if overparameterization is avoided. 

 

 

 



5 Prediction methods 
 

The prediction horizon, the time between two consecutive data points, and the purpose of the prediction 

played a role in determining prediction methods. The purpose of the prediction is to better handle and 

manage the power produced by the solar PVs and to reduce the use of the generator. Consequently, the 

prediction horizon will range from hours to days. Therefore, the prediction horizons are classified as short-

term and medium short-term prediction [1]. Parametric models, including ARIMA, ETS, and linear 

regression models, and non-parametric model (LSTM) were chosen, model assumptions tuned, regression 

coefficients estimated, and results tested for robustness.  

Most of the methods are considered univariate auto-regression because historical data of the 

consumption variable, regressor variable, are used to estimate future consumption value, response 

variable. The remaining methods include linear and multiple linear regression since the methods use 

variables or regressors such as weather and dummy variables to get a better fit.  

The terms predicted and forecasted shall be distinguished in the following manner throughout the paper: 

The term predicted shall be used to refer to the data obtained from the training data and the predicted 

data will be compared with the actual data (testing data) to assess the performance of the model. The 

term forecasted shall be used to refer to the future data obtained after the model has been trained and 

validated. 

 

6 Data source 

 

Power consumption data is obtained from a UN office in Kakuma, Kenya. Credentials to access and 

download the data are provided by Kube Energy. The first ever recorded power consumption data is on 

January 18, 2022. There is a data blackout from 10:00 PM on 09 February 2022 until 4:00 PM on 22 

February 2022. Then, there is a blackout from 05 April 2022 until the present day of editing/writing the 

thesis that is 31 May 2022. The sampling rate (data frequency) as obtained from the website is 1 hour. 

The unit of collected data is inconsistent because it is not consistently reported in the same unit. Data pre-

processing and data treatment is explained in 7.2.  

 



 

 

 

 

 

 

 Table 1: Data snippet from the Excel file 

As for the weather data, the values were collected from the website www.meteostat.net in which the 

location was set to be that of Nairobi because of the lack of data in the offices’ location in Kukuma. 

 

 count mean std min 25% 50% 75% max 

Consumption(kWh) 1038 4.315012 4.931249 0.00 0.554250 2.200000 7.022500 29.10 

Temperature(°C) 1038 21.552023 4.063941 0.00 18.00 21.00 25.00 30.00 

Table 2: Summary of power consumption and temperature data 

 

6.1 Tools and Programs 

 

The following tools and programs were used in this paper:  

R/RStudio: R is an open-source programming language used for statistical computing and graphics 

supported by the R Core Team and the R Foundation for Statistical Computing. RStudio is a third-party 

open-source graphical user interface. These tools are used in the parametric models of this study. 

Python: is an open-source general purpose programming language. It is used to derive the non-parametric 

model (Machine learning part). 

 

 

 

time watt_hour 

18-01-22 0:00 26.1 Wh 

18-01-22 1:00 30.4 Wh 

18-01-22 2:00 27.5 Wh 

18-01-22 3:00 27.5 Wh 

18-01-22 4:00 6.46 kWh 

18-01-22 5:00 27.5 Wh 

18-01-22 6:00 3.95 kWh 

http://www.meteostat.net/


7 Data 

7.1 Data types 
 

Two of the most common statistical data types used are the time series and the cross sectional data [2].  

While the cross-sectional data is recorded at one point in time, the time series data is one measurement 

over time [3]. The main difference between these two types is that in time series data, unlike in cross 

sectional data, the ordering of the data is crucial [2]. An example of cross sectional data is the gross annual 

income for a certain number of randomly chosen households in Stavanger for the year 2022. While an 

example of time series data is the wind speeds collected at a certain height over a period of time. The 

data analyzed in this study is labeled as a time series data since its values are recorded in a fixed frequency 

over a certain time interval. 

7.2  Data pre-processing 

 

As mentioned earlier, each power data cell is a string made up of the energy consumption value and the 

unit of consumption (𝑊ℎ or 𝑘𝑊ℎ). Pre-processing is done in two steps. The first step is done directly on 

the raw data on Excel while the second step is done in Python. The first step is extracting the numerical 

part of the string and converting it to 𝑘𝑊ℎ. The second step handles zero and NULL values. In this study, 

zero or NULL values are replaced with the mean of the time series had it not have neither NULL nor zero 

values. This is known as mean imputation. For example, assuming that the data was the one in the left 

table in Figure 1 then the zero values would be deleted leading to the new data shape shown in the middle 

table. Here, the average of the non-zero values is calculated and then this value is replaced with the zeros 

in the left table to produce the final treated data in the right table of Figure 1.  

 time watt_hour 

01-02-22 3:00 0.976 

01-02-22 4:00 0 

01-02-22 5:00 5.72 

01-02-22 6:00 0.878 

01-02-22 7:00 0.819 

01-02-22 8:00 0 

time watt_hour 

01-02-22 3:00 0.976 

01-02-22 5:00 5.72 

01-02-22 6:00 0.878 

01-02-22 7:00 0.819 

time watt_hour 

01-02-22 3:00 0.976 

01-02-22 4:00 2.09825 

01-02-22 5:00 5.72 

01-02-22 6:00 0.878 

01-02-22 7:00 0.819 

01-02-22 8:00 2.09825 

Figure 1: Data imputation process. The average of the non-zero values of the middle table is 2.0985 and it replaces 
the zero values in the first table to get the treated data as shown in the right table 



 

 

After collecting the temperature data, a Python code was written to align the collected weather data with 

the existing consumption data with respect the time column at which the consumption was collected 

using the 𝑝𝑎𝑛𝑑𝑎𝑠 library in Python. Then the data was saved in an Excel file in which two dummy variables 

were created. The first dummy variable is a binary variable called isWeekend that identifies whether the 

data and time fall on a weekend. The second dummy variable is also a binary variable called AMPM that 

identifies whether the time of the day is between 9:00 AM and 6:00 PM, inclusive. The time column format 

in the dataset has a character structure and must be converted to a date structure.  

 

 

Each model has two datasets: the original sub-daily (hourly) set and the daily set. The daily set is obtained 

by summing the original hourly set to a daily set. The forecasts are then obtained accordingly. The 

forecasts were based on the original hourly data and then compared to the forecasts obtained from the 

daily data.  

 

 

 

 

 

Figure 2 (a) Post processed Un-Imputed data (b) Post processed imputed data 

(a) (b) 



 

 

 

 

 

 

 

 

7.3 Model fit metrics 

 

For the models, the dataset is split into training and testing. Unlike in cross sectional data where 

partitioning is done randomly, in time series data partitioning is done sequentially where the data is 

trimmed into a training period from the start till period 𝑛 and a testing period starting from 𝑛 + 1 until 

the end.  

Choosing the length of the testing or testing period is highly dependent on the forecasting horizon, data 

frequency, forecasting goal. The rule is to select a period that follows the forecast horizon so that the 

predictive performance of the model can be done [3]. In other words, if the forecast horizon is 10 hours 

and the data frequency is one hour then the testing period should at least have 10 entry points. In this 

study, the training and testing periods are set as 80% and 20% of the entire dataset, respectively. 

In the parametric models, the coefficients of the regressions are estimated based on the training set. Once 

the coefficients are computed, they are used to predict the values from the testing. The predicted values 

are then compared to the observations (actual values) from the testing set. 

While in the non-parametric model, there are two data subgroups, training and testing sets (like the 

training and testing sets in the parametric model, respectively). However, the training set in the non-

parametric model is further split into a testing set as well. This testing process gives information that helps 

with the tuning of the model’s hyperparameters and configurations accordingly. The testing set is a set of 

time watt_hour 

18-01-22 0:00 26.1 Wh 

18-01-22 1:00 30.4 Wh 

18-01-22 2:00 27.5 Wh 

18-01-22 3:00 27.5 Wh 

18-01-22 4:00 6.46 kWh 

18-01-22 5:00 27.5 Wh 

18-01-22 6:00 3.95 kWh 

time watt_hour 

18-01-22 10.549 Wh 

Figure 3: Example showing transformation of the original hourly data into a daily data 



data not to be confused with the training set, that is used to validate our model performance during 

training. 

To assess the predictive accuracy of a time series model and to avoid overfitting, the performance metrics 

of the testing period are calculated i.e., the predicted value generated by the model is compared to the 

actual value from the testing period. Also, a visualization of the predicted values using plots can prove 

useful [3]. The performance metrics used in this study to assess the performance of the models are the 

Pearson Correlation Coefficient (PCC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 

R squared (R2).  

 

 

 
𝑃𝐶𝐶 =

∑(𝑦𝑖 − 𝑦𝑖
̅̅ ̅)(𝑦�̂� − �̅̂�𝑖)

∑(𝑦𝑖 − 𝑦𝑖
̅̅ ̅)

2
(𝑦�̂� − �̅̂�𝑖)

2
 

 Eq. 1 

    

where ŷ𝑖  is the predicted data, 𝑦𝑖  is the actual data, �̅�𝑖  is the actual data’s arithmetic mean (average), �̅̂�𝑖  

is the predicted data’s arithmetic mean, and 𝑛 is the number of data. PCC has a value between −1 to 1. 

An absolute value of 1 means that a linear equation describes the relationship between the two datasets 

perfectly. The sign of the coefficient is determined by the regression slope. If the regression slope is equal 

to +1 then when one dataset increases the other dataset will increase, vice versa when the slope is equal 

to -1. Whereas a PCC value of 0 means that there exists no linear relation between the two datasets [4]. 

The PCC is used in this study to assess how well the model predicted values correlate with the observed 

ones (in testing sets). A high correlation is a sign of good model prediction abilities. 

RMSE measures the accuracy of the model by comparing forecasting errors of different models on the 

same dataset [5]. 

 

 

RMSE = √
∑(ŷ𝑖 − 𝑦𝑖)

2

𝑛
 

 Eq. 2 

    

 



R2 is also known as the coefficient of determination. It measures how well the prediction of the model fits 

the observed data based on the proportion of total variation of outcomes explained by the model [6]. For 

example, if the R2 value is 60% then the model was able to fit 60% of the data. So, a higher value is 

desirable. 

 
𝑅2 = 1 −

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

 

 Eq. 3 

    

where, 

  𝑆𝑆𝑟𝑒𝑠 =  ∑(ŷ𝑖 − 𝑦𝑖)
2

  Eq. 4 

    

is the residual sum of squares and 

 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑(𝑦𝑖 − 𝑦𝑖)
2

  Eq. 5 

    

is the total sum of squares (proportional to the variance of the data), 𝑦
𝑖
 is the arithmetic mean (average) 

of the observed data (𝑦𝑖). 

 

7.4 Overfitting 
 

Overfitting occurs when a model fits exactly against its training data resulting in poor performance on 

unseen data and failure to generalize predict or forecast on new data [7]. The reasons of overfitting are 

too complex but can be categorized into noise learning, hypothesis complexity, and multiple comparison 

procedures [8]. Overfitting will lead to the model memorizing the training data rather than generalizing 

from a trend i.e., learning, meaning that the model will fail to predict accurately when presented with 

new data. The problem of overfitting can be resolved in several ways such as early stopping, 

regularization, network reduction, or expansion of the training data in machine learning [8]. Overfitting 

can be detected by partitioning the data and checking if the model has low error rates and a high variance 

[9]. In this study, a cross validation technique is used to check for overfitting. The technique chosen is the 

sliding window technique where previous time steps are used to predict the future time.  



In the parametric models, increasing the range of the testing set can help identify overfitting and reduce 

its risk by splitting the data into training and testing set, building the model on the training set, and 

evaluating its performance on the testing set to see its ability for generalization. Doing so has many 

advantages such as including the testing period that is the most recent and closest to the forecasting 

period, including the training period thus providing more data, and possibly leading to better accuracy [3]. 

Whereas in the non-parametric model, in addition to splitting the data, tuning of the main hyper-

parameters to get an optimal result in terms of 𝑅2, RMSE, and PCC on the testing data were used to avoid 

the issue of overfitting. While in the non-parametric model, the risk of overfitting can be reduced not only 

by splitting the data but also by tuning the hyperparameters. However, over-tuning of the 

hyperparameters can lead to overfitting so the tuning was done using a limited grid search technique. 

Some of the hyperparameters’ values were considered from previous studies to reduce the computational 

cost. Details are provided in section 7.5.2.1.1. 

7.5 Models 

7.5.1 Parametric models 

7.5.1.1 Linear Regression models 

Linear regression analysis forecasts values of a certain variable, using values of other variables. The 

variable that is to be forecasted is referred to as the dependent or response variable. The variables that 

are used to calculate the response variable are called independent variables or predictors [14] [15]. First, 

the coefficients of the linear equation are estimated then a straight line is fitted that minimizes the 

differences between predicted and actual output values. The best fit straight line can be found using many 

methods such as the least square method. Then the value of the response can be estimated from the 

value of the predictor [14]. The estimation is done, using two renown methods, one called ordinary least 

squats and the other maximum likelihood.   

Simple linear regression (SLR) model and multiple linear regression (MLR) models are types of linear 

regression models. The MLR is characterized as having one response and multiple predictors whereas the 

SLR is a special case of the MLR having one response and only one nontrivial predictor [15]. Other linear 

regression techniques are available and the difference between them, is the assumptions regarding the 

data, the relationship between the dependent variables, and the error term.  

 



7.5.1.1.1 Simple linear regression (SLR) model 

 

The general form for a linear regression is  

 𝑌i =  𝑋i1β1 + 𝑋i2β2 + ⋯ + 𝑋ipβ𝑝 + εi      Eq. 6 

    

Where it is assumed that each observation in a sample (𝑦𝑖 , 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝), 𝑖 =  1, . . . , 𝑛 is generated by 

an underlying process described by Eq. 6, where 𝑌𝑖  is the dependent or explained variable and 𝑋i1, … , 𝑋𝑖𝑝 

are the independent or explanatory variables.  

The term 𝜀𝑖  is a white noise process, otherwise known as the error term, it arises primarily because we 

cannot capture all influence on the dependent variable in a model. The dependent variable is energy 

consumption, and the independent variables are as explained in each regression model section. The 

author acknowledges that the validity of the model depends crucially on the assumption of the stochastic 

process that has led to the observations of the data at hand. Assumptions such as linearity, full rank 

between the independent variables, exogeneity between the independent variables and the error term. 

The latter shall also respect the homoscedasticity, no-autocorrelation, and normality criteria.  

The simple linear regression (SLR) model can be written as: 

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝑒𝑖 

where 𝛼 and 𝛽1 are unknown regression coefficients to be estimated, 𝑒𝑖 is the 𝑖𝑡ℎ error, 𝑌𝑖  is the response 

variable, and 𝑋𝑖  is the predictor variable [15].  

In this case, 𝑋𝑖  is the 𝑡 − 1 observation of 𝑌𝑡 (also referred to as 𝑌𝑖  in the above equation). The equation 

can thus be written as follows: 

 𝑌𝑡 = 𝛼 + 𝛽1𝑌𝑡−1 + 𝑒𝑡 

 

 Eq. 7 

  

 

 

 

 

  



7.5.1.1.2 Multiple linear regression (MLR) model – three variables 

 

 𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖,1 + 𝛽2𝑋𝑖,2 + 𝛽3𝑋𝑖,3 + 𝑒𝑖   Eq. 8 

    

Like the direct linear relationship between 𝑌𝑖  and 𝑋𝑖,1, and due to the conceptually and empirically proven 

relationship between energy consumption and weather, the author believes that adding a weather-

related independent variable, 𝑋𝑖,2, will lead to an improvement in the fit. Thus, the temperature variable 

has been added, as well as, another binary variable, 𝑋𝑖,3 to distinguish data, that is observed in the 

weekends.   

The MLR model with three variables has the consumption data, temperature, and isWeekend as 

predictors because the metrics between the MLR with temperature and isWeekend and the MLR with 

temperature and AMPM as predictors do not differ much from each other. 

7.5.1.1.3 Multiple linear regression (MLR) model – four variables 

 

The difference between the model in 7.5.1.1.2 and in this one is that the model of this section has four 

predictors. The added predictor here is the AMPM. 

7.5.1.2 ARIMA Model 

 

ARIMA or Auto Regressive Integrated Moving Average model assumes that the predicted or forecasted 

value of a variable is a linear function of several past observations (AR) and random errors (MA) [10] 

Expanding equation 9, one can write the following general form of ARMA/ ARIMA models: 

𝑌𝑖 =  𝛼 + ∑ 𝛽𝑖 ∗ 𝑋1𝑡−𝑖 +

𝑝

𝑖=1

∑ 𝜃𝑖 ∗ εt−i

𝑞

𝑖=1

 

Or simply use this form 

 
𝑌𝑡 =  𝛼 + ∑ 𝛽𝑖 ∗ 𝑌𝑡−𝑖 +

𝑝

𝑖=1

∑ 𝜃𝑖 ∗  εt−i

𝑞

𝑖=1

 

 

 Eq. 9 

    

 



where, 

𝑌𝑡 and 𝜖𝑡 are the actual value and random error at time 𝑡, respectively 

𝛽 and 𝜃 are model parameters 

𝑝 and 𝑞 are known as the order of the model.  

Random errors, 𝜖𝑡 , are assumed to be independently and identically distributed with a mean of zero and 

a constant variance of 𝜎2 [10]. 

 

A crucial step in creating a reliable ARIMA model is to ensure that the data is stationary [11]. Stationarity 

in a time series means that statistical characteristics such as the mean and the autocorrelation structure 

are constant over time. Otherwise, if the time series displays a trend or seasonality, differencing is applied 

to the data to remove the trend and seasonality and stabilize the variance before an ARIMA model can be 

fitted [11]. The Dickey-Fuller test is often used to test for stationarity or tend stationarity in a time series 

[12]. In the Dickey-Fuller test, if the time series has a p-value lower than a certain threshold then it is 

stationary [12]. 

 

Determining the order (𝑝,𝑞) of the model is an essential task because it has a significant impact on the 

forecasted/predicted values [10] [11]. Box and Jenkins developed a methodology to find the order of the 

model [11]. In short, Box-Jenkins advocate the use of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) of the sample data as the basic tools to identify the order of the ARIMA 

model [11]. It is common practice to enumerate the set of all possible candidate models (ARIMA (𝑝, 𝑞)) 

by considering significant lags based on the auto-correlation and partial auto-correlation functions (ACF 

and PACF). A grid search technique is then applied to come up with 𝑝 and 𝑞 values that minimizes the 

Akaike Information Criterion (AIC). 

 

 𝐴𝐼𝐶 = 2(𝑘 + 𝑝 + 𝑞) − 2 log(𝐿)  Eq. 10 

    

where 𝐿 is the likelihood of the data and 𝑘 is the intercept of the ARIMA model.  

The best model has the lowest AIC value. The grid search was developed in RStudio and used to determine 

the lowest AIC value. 

 

 

  



7.5.1.3 ETS Model 

 

The Error, Trend, and Seasonality (ETS) model is one of many methods of the exponential smoothing 

technique. The error, trend, and seasonality in this model can be either additive (A), multiplicative (M), or 

none (N) [13]. The ETS model has a built-in function in RStudio that can also automatically determine the 

best fit for error, trend, or seasonality. In this study, the error and seasonality are selected to be additive 

whereas the trend is none. 

 Seasonality 

Trend None Additive Multiplicative 

None ZNN ZNA ZNM 

Additive ZAN ZAA ZAM 

Multiplicative ZMN ZMA ZMM 

Additive damped ZAdN ZAdA ZAdM 

Multiplicative damped ZMdN ZMdA ZMdM 

Some of the combinations stated in Table 3 are restricted because numerical difficulties will result when 

applied to some time series. However, the restriction can be overwritten by turning the restriction option 

off in the ETS function ets (..., restrict = TRUE,...). Another option in the ETS function is 

the automated option for model selection. It is activated by ets (..., model =”ZZZ”,...). It selects 

the best model among the several combinations from Table 3 except the restrictive and multiplicative 

models (unless overwritten) [3]. 

The best model is chosen based on the Akaike’s Information Criterion (AIC) 

 

 𝐴𝐼𝐶 = 2𝑧 − log(𝐿)  Eq. 11 

    

where 𝑧 is the number of smoothing parameters. 

 

Models with few smoothing parameters can help avoid overfitting a model and thus lead to better 

predictions or forecasts in the testing period or the future, respectively [3]. 

Table 3: Possible exponential smoothing models in R using the ETS function where Z can be either A or M [3]. 



 

7.5.2 Non-parametric models 

7.5.2.1 LSTM Model 

 

 

 

 

 

 

 

 

 

 

Long Short Term Memory (LSTM) is one of many Recurrent Neural Networks (RNN) models that 

overpasses the issue of vanishing gradient problem and short term memory problem with gates and 

maintains information over long periods of time [16]. LSTM units have three different gates: input gate, 

output gate, and forget gate [9].  

 

 

 

 

 

 

 

 

 

The mathematical equations associated with the LSTM gates at time 𝑡 are as follows: 

 𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  Eq. 12 
    

 

Figure 4: LSTM cell architecture [14] 

Figure 5: (a) LSTM memory cell (b) LSTM block at any timestamp (t) [14] 



 𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  Eq. 13 

    

 

 𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  Eq. 14 
    

 

 𝑐�̃� = tanh (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐  Eq. 15 
    

 

 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃�  Eq. 16 
    

 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)  Eq. 17 
    

 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 

 Eq. 18 

    

where 𝑖𝑡 is the input gate, 𝑓𝑡 is the forget gate, 𝑜𝑡 is the output gate, 𝜎 is the sigmoid function, 𝑤𝑥 is the 

weight for the respective gate neurons, ℎ𝑡−1 is the output of the previous LSTM block at time 𝑡 − 1 , 𝑥𝑡 is 

the input at time 𝑡, 𝑏𝑥 are the biases for the respective gates, 𝑐𝑡 is the cell state at time 𝑡, and 𝑐�̃� represents 

the candidate for cell state at time 𝑡. 

The model used in this study is made of three layers: an input layer, one hidden layer, and an output layer. 

The model is of type Sequential() because the data is time dependent with LSTM as the first layer 

followed by two Dense layers each with an activation function. 

7.5.2.1.1 Hyperparameter tuning 

 

The hyperparameters are the inputs on which the neural networks model is built. Therefore, it is crucial 

for the model accuracy and performance to determine the best set of hyperparameters. This process is 

known as hyperparameter tuning. The parameters to be tuned are the number of layers, the activation 

function, EPOCHS, loss function, and the optimizer. Hyperparameter tuning can be done either manually 

or automatically. 

In manual tuning, the model is run a first time and then values of the hyperparameters are tweaked 

manually until the model has an acceptable performance. In contrast, random search and grid search 

models are automated. In the random search method, random sets of hyperparameters are selected and 



tested. Whereas, in the grid search method, all possible combinations of hyperparameters are tested 

making it an exhaustive and computationally expensive way. In this study, an extensive grid search 

method is chosen.  

7.5.2.1.1.1 Loss function 
 

There are two types of loss functions: Classification and regression. The choice of loss function type 

depends on the desired outcome. The loss function type in this thesis is of the regression type since the 

data is of the sequential type. The loss function is necessary in the training of the model because it 

measures the deviation between the actual output and the output generated by the machine learning 

model. The result from the loss function is used to update the gradients that are in turn used to update 

the weights. There exist many loss functions each of which will have a different error for the same 

prediction. Therefore, the choice of the loss function will influence the performance of the model. In this 

model, the loss function is chosen to be the Mean Squared Error. The performance of the model is deemed 

good if the loss value is low enough meaning if the values predicted by the machine learning model are 

close to the actual values. 

7.5.2.1.1.2 Optimizer and learning rate 

 

The deep learning model must update the weights after each epoch while minimizing the loss function. 

The way the model does that is via an optimizer that changes the weights and learning rate of the model 

with respect to the gradient descent [17]. The learning rate determines how fast the model is trained [16]. 

Adam, derived from adaptive moment estimation, is a stochastic optimization method that needs first-

order gradients with minimal memory requirement [18]. It computes “individual adaptive learning rates 

for different parameters from estimates of first and second moments of the gradients” [18]. The optimizer 

used in this study is Adam not only because it has the advantages of two other stochastic optimization 

methods, AdaGrad and RMSProp [18] but also because the Adam optimizer is generally better, has less 

computational time, and requires fewer parameters for tuning [17]. 

 

 

 



7.5.2.1.1.3 Activation function 

 

Activation functions, sometimes referred to as transfer functions, are used to calculate the weighted sum 

of input and biases and consequently determine whether a neuron is to be activated [19]. These functions 

can either be linear or non-linear. The choice of the proper activation function will lead to the best model 

performance [19]. In most case, the optimal activation function is generally determined by trials or tuning 

[20]. There are many activation functions available in deep machine learning such as the sigmoid, 

hyperbolic tan, and the rectified linear unit (ReLU). 

 

 

ReLU, used only in the hidden layers, is more efficient than other functions because it does not activate 

all the neurons simultaneously [21]. ReLU function is the most popular function and has a better 

performance than the other activation functions [21].  

 𝑔(𝑧) = max (0, 𝑧)  Eq. 19 
    

where 𝑧 is the input to a neuron. 

7.5.2.1.1.4 EPOCH 

 

The number of epochs is the number of times the model goes through the training data. Upon the 

completion of one epoch, the model would have seen each entry once. In other words, the dataset has 

been passed forward and backward through the network only once.  In this study, the number of EPOCHs 

was determined manually by plotting different learning curves in which the model loss is plotted against 

the number of EPOCH. Since gradient descent is used for optimization then it is better to pass the entire 

Figure 6: Some of the activation functions available [25] 



dataset through a single network multiple times to update the weights and get a more accurate model 

[22]. However, there is no general rule to obtain the best epoch to find the optimal weights. Different 

datasets behave differently and therefore this parameter is data specific [22]. 

7.5.2.1.1.5 Batch Size 

 

The batch size is the total number of training data used. For instance, when a dataset is divided into parts 

each part is referred to as a batch. An iteration, by contrast, is the number of batches required to use the 

entire dataset. Consequently, the number of batches is equal to number of iterations to complete one 

round of training using the entire set of data. For example, assume that we have 100 training points. If 

the dataset is divided into batches of 10 then 10 iterations would be needed to fulfill one round of training 

[22]. The batch size and the number of epochs determine how often the weights are updated and thus 

how quick the machine learning process is.  

7.5.2.1.1.6 Number of neurons and layers 

 

The number of layers and the number of neurons for each layer cannot be obtained from a certain 

formula. So, a trial and error approach will result in different performance curves upon which the best 

combination was chosen. The number of layers has been selected as 1 since results slightly increased 

resulted by adding an additional layer. The addition of layers might result as well in overfitting [23]. The 

number of neurons was determined using a manual and exhaustive grid search technique. 

 

 

 



7.5.2.1.2 Hyperparameter tuning results 

 

 

 

 

 

 

a) For learning_rate= 0.001, EPOCH= 30, win_size= 5, and 
batch_size= 5:  

RMSE = 3.92  

𝑅2 = 0.51 

PCC = 0.73 

 

b) For learning_rate= 0.001, EPOCH= 150, win_size= 5, and 
batch_size= 5: 

RMSE = 4.31 

𝑅2 = 0.40 

PCC = 0.69 

c) For learning_rate= 0.0001, EPOCH= 30, win_size= 5, and 
batch_size= 5: 

RMSE = 3.72 

𝑅2 = 0.55 

PCC = 0.74 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) For learning_rate= 0.0001, EPOCH= 150, win_size= 5, and 
batch_size= 5: 

RMSE = 3.70 

𝑅2 = 0.56  

PCC is 0.75 

 

Figure 7: Comparison of LSTM models with different epochs and learning rates 

a) For LSTM neurons set at 8 and the Dense layer neurons at 2: 

RMSE = 3.71  

𝑅2 = 0.509 

PCC = 0.76 

b) For LSTM neurons set at 8 and the Dense layer neurons at 8: 

RMSE = 3.49 

𝑅2 = 0.565 

PCC = 0.771 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) For LSTM neurons set at 32 and the Dense layer neurons at 32: 

RMSE = 3.13  

𝑅2 = 0.651 

PCC = 0.808 

c) For LSTM neurons set at 16 and the Dense layer neurons at 16: 

RMSE = 3.26  

𝑅2 = 0.6207 

PCC = 0.793 

e) For LSTM neurons set at 32 and the Dense layer neurons at 64: 

RMSE = 3.11  

𝑅2 = 0.655 

PCC = 0.81 

f) For LSTM neurons set at 32 and the Dense layer neurons at 128: 

RMSE = 3.095  

𝑅2 = 0.659 

PCC = 0.813 



 

 

Among the machine learning models, the one with the relatively best metrics is selected. The model 

chosen and the metrics obtained can be summarized as follows: 

 

 

 

 

 

 

Hyperparameter Value 

Batch size 15 

Window size 20 

Learning rate 0.0001 

EPOCH 150 

LSTM cell neurons 32 

Number of hidden 

layers 

1 

Neurons per hidden 

layer 

32 

Activation function 

for hidden layer 

ReLU 

Activation function 

for output layer 

Linear 

Dropout coefficient 0.2 

RMSE 3.12 

𝑹𝟐 0.654 

PCC 0.810 

Table 4: Summary of best non-parametric model showing hyperparameters and metrics 

g) For LSTM neurons set at 128 and the Dense layer neurons at 128: 

RMSE = 3.38  

𝑅2 = 0.593 

PCC = 0.777 

Figure 8: Models with different input neurons and Dense hidden layer neurons. Batch size = 15, Window size=20, 
Epoch=150, Learning rate=0.0001, drop out = 0.2 



8 Results 
8.1.1 ARIMA Model 

8.1.1.1 Hourly data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

(f) 

(d) 

(e) 

Figure 9: (a) Hourly data and predictions (b) Hourly data TS and predictions (c) validation of (a) (d) 
validation of (b) (e) forecast of (a) (f) forecast of (b). Here validation data means testing data 



8.1.1.2 Daily data 

 

 

 

 

 

 

 

 

 

 

8.1.2 ETS Model 

8.1.2.1 Hourly data 

 

  

 

 

 

 

 

 

(a) (b) 

Figure 10: (a) Shows the training data in black, predicted values in light 
blue, trained model in blue, and validation(actual) values in red (b) 
Shows the forecasted data in light blue, trained model in blue, and 
original data in black. Here validation data means testing data 

(a) (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

8.1.2.2 Daily data 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: (a) Shows the training data in black and the predicted data in light 
blue (b) Shows the trained model in navy blue and the validation data in red 
over the original and predicted data (c) Shows the original data, trained 
model, and the forecasted values. Here validation data means testing data 

Figure 12: (a) Original training data in black, the trained model in navy blue, the 
validation data in red, and the predicted data in light blue (b) Original data, 
trained model, and forecasted data. Here validation data means testing data 

(a) (b) 

(c) 



8.1.3 LSTM 

8.1.3.1 Hourly data 

 

 

 

 

 

 

 

 

 

8.1.3.2 Daily data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: (a) Hourly model’s predicted values in black versus model’s actual values in blue (b) Hourly model 
forecasted values in blue 

(a) (b) 

Figure 14: (a) Daily model’s predicted values in black versus model’s actual values in blue (b) Daily model 
forecasted values in blue 

(a) (b) 



8.1.4 Regression models 

8.1.4.1 Simple Linear Regression  

 

 

 

 

 

 

 

8.1.4.2 Multiple linear regression (three variables) 

 

 

 

 

 

 

 

 

 

 

 

 

RMSE = 3.67 

𝑅2 = 0.495 

PCC = 0.496 

RMSE = 3.51 

𝑅2 = 0.537 

PCC = 0.537 

Figure 15: Scatterplot for the SLR model showing predicted and actual 
values with the metrics shown on the side 

Figure 16: Scatterplot for the MLR model with 3 variables showing predicted and 
actual values with the metrics shown on the side 



8.1.4.3 Multiple linear regression (four variables) 

 

 

 

 

 

 

8.2 Summary 
 

 ARIMA(3,0,3)-  
Hourly 
 

ARIMA(6,0,8)- 
Daily 

ETS – Hourly ETS - Daily LSTM – 
Hourly 

LSTM - 
Daily 

RMSE 4.807009 51.69176 3.960112 40.22078 3.095 43.814 

PCC 0.2858419 0.2319191 0.0002081217 0.7388444 0.813 0.716 

𝑅2 -0.09344764 0.2049215 -0.7021382 0.5184492 0.659 0.451 
Table 5: Summary table of ARIMA, ETS, and LSTM models' performance metrics 

 

 

 

 

 

 

 

 

 

 

 

 Simple Linear 
Regression  

Multiple linear 
regression (two 
variables) 

Multiple linear 
regression (three 
variables) 

RMSE 3.665229 3.508423 3.383951 

PCC 0.4955552 0.5373905 0.5696202 

𝑅2 0.4948103 0.5371117 0.5693739 
Table 6: Summary of linear regression models' performance metrics 

RMSE = 3.384 

𝑅2 = 0.57 

PCC = 0.57 

Figure 17: Scatterplot for the MLR model with 4 variables showing predicted 
and actual values with the metrics shown on the side 



9 Discussion 
 

The models used in this thesis vary in terms of complexity, some are auto-driven and governed by specific 

assumptions, while others have some of the assumptions relaxed and can be manually tuned by the user. 

While the first type is easy to communicate and perform, the second adds complexity, but at the same 

time, can improve the forecasting and generalization capability of the models.  

After making sure that the consumption variable is stationary, the simple linear regression is performed, 

and the coefficient of determination is computed. Additionally, the error terms have been tested for 

normality and autocorrelation.  

Since including additional variables will improve the model, the weather and some control variables are 

added. It appears that the model slightly improves, and the coefficients for the added variables are 

statistically significant as well (with 95% confidence level).  

All above mentioned regression models, respect the same set of rules and assumptions, mainly used on 

ordinary least square method. The errors are independent, non-autocorrelated and normal. However, 

when the error term is allowed to have a time series structure, it is possible to use other models, such as 

ARMA, SARIMA, or ETS, while adjusting the estimated regression coefficients and standard errors. This 

adds flexibility to the user with the potential to explore additional models.   

The predictive power of the ARIMA and ETS models is minimal in the hourly data but gets significantly 

better when the daily data is used. Unfortunately, SARIMA model does not improve the results neither. 

The main difference between the ETS and ARIMA models is that the ETS deals with seasonality and trend 

in the data whereas ARIMA focuses on the autocorrelation in the data and does not detect neither trend 

nor seasonality. Also, it is worthy to mention that the data is relatively short giving an advantage for the 

ETS over the ARIMA [24]. Using a seasonal ARIMA model did not show improvements from the ARIMA 

model. When enough data is provided multiple seasonality might be present in the data and therefore 

another approach such as Seasonal-Trend decomposition using LOESS (STL) or Trigonometric seasonality, 

Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) must be selected [24].  

Also, sub-daily data can sometimes have seasonal complexities and are better dealt with using the msts 

function [27]. When the data is not dealt with using any time series function such as ts, xts, or msts 

in the code, the resulting forecast looks like that of Figure 9(a), however, when such a function is used the 

forecast gets a better shape Figure 9(b). 

 



ARIMA and ETS provide another approach to time series forecasting and are widely used approaches to 

time series forecasting. Conceptually, both models should give better fit, especially for data that contains 

trend/seasonality. This is the case for exponential smoothing models whereas the ARIMA models loosen 

the auto-correlation of errors assumption for regression models, as this adds flexibility. 

To exploit all available options, machine learning techniques are also employed, and since we are 

constrained by the type of data, the LSTM model is used. The LSTM hourly model outperforms the other 

models. The parametric model with the performance closest to that of the LSTM is the MLR with four 

variables. One of the reasons the LSTM model outperforms the parametric models could be attributed to 

the relax-free environment in terms of loosening the assumptions, empirical tuning, and the black-box 

strategy where the machine learning methodology is responsible for finding the best relationship between 

inputs and outputs. Also, The “black-box” method has overcome some of the disadvantages in the 

parametric models. However, machine learning models require a large database to build a reliable model 

[23]. Therefore, the model can be retested when more data is available. Additionally, the results are case-

sensitive to the data and its assumptions. Another reason the LSTM model outperforms the other models 

in predicting the consumption is mainly the optimization algorithm’s approach that finds the best result. 

The approach is known as iterative because the results are generated several times before the model with 

the lowest error is chosen [22].  

As shown in Figure 7, increasing the epochs does not necessarily produce better results. As it can be 

concluded by comparing the metrics of Figure 7 (a) and (b) where the RMSE and the 𝑅2 have decreased 

when the epoch increases while all other hyperparameters are held constant. Whereas, the same metrics 

increased, although slightly, in Figure 7 (c) and (d). So, there is a lack of evidence to conclude that training 

the dataset more than a certain number of times would improve the accuracy of the model.  

In this study, it was evident that the more training data used the more accurate the model is. This finding 

is corroborated as well in the study [8]. However, acquiring more data such as weather data was difficult 

and can sometimes be costly. Also, data collection from Kube Energy’s website was not consistent because 

the sensors on site would not collect data properly (mention periods).  

It is evident that the model performance metrics get better when there is more data while all other 

hyperparameter are held constant. This can also be seen by comparing the hourly and daily LSTM models. 

The daily model has fewer data and has lower performance metrics. Even though some of the models 

showed somewhat of an acceptable performance, the predictions are ought to be treated with care and 

are to be used for short term predictions. 

 



10 Limitations 
 

The main obstacle that was faced while writing the thesis was the limitation of data. Data is limited to one 

set of variables, namely the power consumption, which restricted the use of univariate parametric 

regression type methods, and non-parametric LSTM method. Additional variables, like the weather data 

used, as well as other data that could explain the consumption patterns, might produce better forecasting 

results. Additionally, the univariate data was sometimes unavailable as well, creating discontinuity in the 

sample. Given that the data provided started from the 18th of January 2022, any discontinuity could have 

significant effects on the study since all the models depend on data to perform well. Imputing methods 

were employed; however, the authors acknowledge that other types can be used, and produce different 

results. The use of continuous data set will avoid such issues in the future. The author believes that the 

machine learning model results can also be improved further, and overfitting avoided, if more data is 

available. In fact, more data, means that the training and testing data available will increase in range, thus 

the model will have better ability to learn, and to generalize. Additionally, rolling windows and cross 

validation techniques can be used more extensively to test for overfitting.  

 

11 Conclusion 
 
With the rapid development of advanced deep learning algorithms, machine learning models are 

becoming more popular. This thesis compares the prediction power of several parametric models, 

including ARIMA, ETS and linear regression models, and a non-parametric model, LSTM. These models 

were tuned and then used on a set of power consumption data to have valid consumption forecasting 

capability at hand. The results clearly showed an improvement of the prediction power when the LSTM 

model was used. This thesis advocates the use of deep learning models to forecast power consumption. 

The next logical step would be to compare the performance of the LSTM model with other emerging 

intelligent models such as BERT, Reformers, or T5. Also, when enough data is available the process of 

imputation can be improved, the results validated/tested, and the model generalizing capabilities 

enhanced. The author believes that these methods will help Kube, establish its PMS model. The 

consumption forecasting methods introduced in this document, can be added to the power generation 

model that is being built, and together can indeed improve the efficiency, and thus the profitability of 

their project will be enhanced.
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Appendix A: ARIMA(3,0,3) - Hourly data 
 
# Clear console and envirronment 

cat("\014") 

rm(list=ls())  

 

# Set Working directory 

setwd("C:/Users/ali_a/Desktop/Master Thesis/Code") 

 

# Libraries required 

library(dplyr) 

library(tseries) 

library(lubridate) 

library(ggplot2) 

library(forecast) 

 

# Code start 

power_use <- read.csv("Energy consumption per hour-data-2022-03-16 

17_50_56_Edited.csv") 

time_vector <- dmy_hm(power_use$ï..time) 

ac13 = power_use$watt_hour 

 

# Fill missing data using "Impute"  

 

ac13[ac13==0]=NA   

# Replace NA values with the median value computed in the previous step 

  power_use_replaced <- power_use %>% 

    mutate(ac13_mean_replaced  = ifelse(is.na(ac13), mean(ac13,na.rm=TRUE), 

ac13)) 

  sum(is.na(power_use_replaced$watt_hour)) 

  sum(is.na(power_use_replaced$ac13_mean_replaced)) 

  head(power_use_replaced) 

 

# de-trending and de-seasonalizing  

AC13 <- power_use_replaced$ac13_mean_replaced 

plot(time_vector,AC13,type= "l") 

noSnoT = AC13 

noSnoT 

plot(time_vector[1:length(time_vector)],noSnoT,type = "l", xlab = "Time", 

ylab = "kWh") 

 

# Dickey-Fuller Test  

Stationarity = adf.test(noSnoT, alternative = "stationary") 

if (Stationarity$p.value <= 0.01) { 

  print("AC13 is a stationary data set") 

} 

 

# ACF and PACF(Partial Auto Correlation Factor) 

acf(AC13) 

pacf(AC13)  

acf(noSnoT)  

pacf(noSnoT) 

 

# Splitting data into training and validation period  



train_per <- 0.8 

limit <- floor(train_per * length(noSnoT)) 

train_noSnoT <- noSnoT[1:limit] 

train_noSnoT 

validation_noSnoT <- noSnoT[(limit+1):length(noSnoT)] 

validation_noSnoT 

 

#Building the model 

arima_noSnoT = arima(train_noSnoT, order=c(3,0,3)) 

arima_noSnoT 

checkresiduals(arima_noSnoT) 

x_range = seq(1,length(noSnoT)) 

predict_noSnoT = forecast(arima_noSnoT,h=length(validation_noSnoT), level=0) 

predict_noSnoT 

 

#plotting the model 

plot(predict_noSnoT,main="ARIMA(3,0,3) - Hourly",xlab="Time",ylab="kWh") 

lines(x_range[(limit+1):length(noSnoT)],validation_noSnoT,col="red") 

lines(predict_noSnoT$fitted,col="blue") 

legend("topleft",c("Trained model","Validation data","Training 

data","Predicted data"), 

       lty=c(1,1,1,1),col=c("blue","red","black","light blue"),y.intersp = 

0.35, 

       cex = 0.75,text.width = 200) 

#calculating metrics 

rmse = sqrt(mean((validation_noSnoT - predict_noSnoT$mean)^2)) 

rmse 

 

rsq1 <- function (x, y) cor(x, y) ^ 2 

pcc = rsq1(predict_noSnoT$mean,validation_noSnoT) 

pcc 

 

rss <- sum((predict_noSnoT$mean - validation_noSnoT)^2) ## residual sum of 

squares 

tss <- sum( ( validation_noSnoT - mean(validation_noSnoT) ) ^ 2)  ## total 

sum of squares 

rsq <- 1 - rss/tss 

rsq 

 

# Forecasting 

predict_future = 50 

arima_all = arima(noSnoT,order=c(3,0,3)) 

forecast_noSnoT = forecast(arima_all,h=predict_future, level=c(0)) 

forecast_noSnoT 

plot(forecast_noSnoT,main="ARIMA(3,0,3)",xlab="Time",ylab="kWh",xlim = 

c(0,1150)) 

 

lines(forecast_noSnoT$fitted,col="blue") 

 

legend("topleft",c("Trained model","Training data","Forecasted data"), 

       lty=c(1,1,1,1),col=c("blue","black","light blue"),y.intersp = 0.35, 

       cex = 0.75,text.width = 200) 

 

 

 



Appendix B: ARIMA(3,0,3) with ts – Hourly data 
 

# Clear console and environment 

cat("\014") 

rm(list=ls())  

 

# Set Working directory 

setwd("C:/Users/ali_a/Desktop/Master Thesis/Code") 

 

# Libraries required 

library(dplyr) 

library(tseries) 

library(lubridate) 

library(ggplot2) 

library(forecast) 

library(xts) 

 

# Code start 

power_use <- read.csv("Energy consumption per hour-data-2022-03-16 

17_50_56_Edited.csv") 

dates <- power_use$ï..time 

ac13 = as.numeric(power_use$watt_hour) 

plot(ac13,type='l') 

 

ac13[ac13==0] = NA 

# Fill missing data using "Impute"  

avg_ac13 = mean(na.omit(ac13)) 

 

power_use_replaced <- power_use %>% 

   mutate(ac13_mean_replaced  = ifelse(is.na(ac13), avg_ac13, ac13)) 

 sum(is.na(power_use_replaced$watt_hour)) 

 sum(is.na(power_use_replaced$ac13_mean_replaced)) 

 head(power_use_replaced) 

 

 

power_use_replaced %>% 

   mutate(ï..time=as.POSIXct(dates,format="%d-%m-%y %H:%M",tz="")) 

 

Ac13=power_use_replaced$ac13_mean_replaced 

dates13=power_use_replaced$ï..time 

AC13 = ts(Ac13, frequency = 7, start = as.Date(dates13[1],format="%d-%m-%y"), 

          end = as.Date(dates13[length(Ac13)],format="%d-%m-%y")) 

 

noSnoT = AC13 

noSnoT 

 

 

# Dickey-Fuller Test  

Stationarity = adf.test(noSnoT, alternative = "s") 

if (Stationarity$p.value <= 0.01)  

{ 

  print("AC13 is a stationary data set") 

} 

 

# ACF and PACF(Partial Auto Correlation Factor) 



acf(AC13)  

pacf(AC13)  

 

acf(noSnoT)  

pacf(noSnoT) 

 

# Splitting data into training and validation period  

train_per <- 0.8 

limit <- floor(train_per * length(noSnoT)) 

train_noSnoT <- noSnoT[1:limit] 

train_noSnoT 

validation_noSnoT <- noSnoT[(limit+1):length(noSnoT)] 

validation_noSnoT 

 

 

# Determining the values of p, d, and q based on lowest AIC: 

pvalue_manual = c(0:2) 

qvalue_manual = c(0:1) 

manual_order = 0 

min_aic = 1000000 

 for(p in 1:length(pvalue_manual)){ 

  for(q in 1:length(qvalue_manual)){ 

    man_arima = arima(train_noSnoT, order= 

c(pvalue_manual[p],0,qvalue_manual[q])) 

    print(c(pvalue_manual[p],0,qvalue_manual[q])) 

    print(":") 

    print(man_arima$aic) 

    if(man_arima$aic < min_aic) { 

      min_aic = man_arima$aic 

      manual_order = c(pvalue_manual[p],0,qvalue_manual[q]) 

    } 

  } 

} 

print(paste("AC13 Lowest AIC: ",min_aic)) 

print(paste("AC13 Corresponding ARIMA: ",toString(manual_order))) 

 

x_range = seq(1,length(noSnoT)) 

 

 

p = 3#manual_order[1] #1 #3 

d = 0#manual_order[2] 

q = 3#manual_order[3] #5 #3 

 

# Using of SARIMA 

P = 0 #2  

D = 0 

Q = 0 #2 

 

#Building the model 

arima_noSnoT = arima(train_noSnoT, order=c(p,d,q),seasonal = c(P,D,Q)) 

arima_noSnoT 

checkresiduals(arima_noSnoT) 

predict_noSnoT = forecast(arima_noSnoT,h=length(validation_noSnoT), 

level=c(0)) 

predict_noSnoT 

 

# Plotting test data vs predictions 



plot(predict_noSnoT, main="ARIMA(3,0,3) Predictions",xlab = 

"Time",ylab="kWh") 

lines(predict_noSnoT$fitted,col="blue") 

lines(x_range[(limit+1):length(noSnoT)],validation_noSnoT,col="red") 

legend("topleft",c("Training data","Predicted data","Validation 

data","Trained model"), 

       lty=c(1,1),col=c("black","light blue","red","blue"),y.intersp = 0.35, 

       cex = 0.75,text.width = 60) 

 

#Calculating the metrics 

rmse = sqrt(sum((validation_noSnoT - 

predict_noSnoT$mean)^2)/length(validation_noSnoT)) 

 

rsq1 <- function (x, y) cor(x, y) ^ 2 

pcc = rsq1(predict_noSnoT$mean,validation_noSnoT) 

pcc 

 

rss <- sum((predict_noSnoT$mean - validation_noSnoT)^2) ## residual sum of 

squares 

tss <- sum( ( validation_noSnoT - mean(validation_noSnoT) ) ^ 2)  ## total 

sum of squares 

rsq <- 1 - rss/tss 

rsq 

 

# Residuals 

x = seq(1,length(validation_noSnoT)) 

max_y = max(predict_noSnoT$upper,validation_noSnoT) 

min_y = min(predict_noSnoT$lower,validation_noSnoT) 

 

plot(x, as.numeric(predict_noSnoT$mean),type="l",col="blue", 

     ylim=c(min_y,max_y + 0.05)) 

lines(x,as.numeric(predict_noSnoT$upper), col="green") 

lines(x,as.numeric(predict_noSnoT$lower), col="red") 

points(x,validation_noSnoT,col="black", type="l") 

legend(1,max_y + 0.05,legend=c("upper","mean","lower","actual"),  

       col=c("green","blue","red","black"), 

       pch=c("","","","*"),lty=c(1,1,1,0), ncol=4,cex = 0.5) 

 

# Forecasting using all data 

predict_num = 24 #forecasting horizon 

arima_all_noSnoT = arima(noSnoT, order=c(p,d,q),seasonal = c(P,D,Q)) 

lt_noSnoT = predict(arima_all_noSnoT, n.ahead = predict_num) 

ltFore_noSnoT = forecast(arima_all_noSnoT, h=predict_num,level=0) 

 

print(lt_noSnoT$pred) 

x = seq(1,predict_num) 

max_y = max(lt_noSnoT$pred) 

min_y = min(lt_noSnoT$pred) 

 

plot(x, as.numeric(lt_noSnoT$pred),type="l",col="blue", 

     ylim=c(min_y,max_y), main="Predictions") 

 

legend(15,max_y,legend=c("noSnoT"),  

       col=c("blue"), 

       pch=c(""),lty=c(1), ncol=1) 

 

 



x = seq(1,predict_num) 

max_y = max(lt_noSnoT$se) 

min_y = min(lt_noSnoT$se) 

 

plot(x, as.numeric(lt_noSnoT$se),type="l",col="blue", 

     ylim=c(min_y,max_y), main="standard errors on predictions") 

 

legend(25,max_y,legend=c("AC13"),  

       col=c("blue"), 

       pch=c(""),lty=c(1), ncol=1) 

 

# Plotting Forecasts 

plot(AC13,main="ARIMA(3,0,3)",xlab="Time",ylab="kWh",xlim=c(19010,19070)) 

lines(lt_noSnoT$pred, col="light blue",lwd=2) 

lines(ltFore_noSnoT$fitted, col="blue",lwd=2) 

 

legend("topleft",c("Trained model","Original data","Forecasted data"), 

       lty=c(1,1,1,1),col=c("blue","black","light blue"),y.intersp = 0.35, 

       cex = 0.75,text.width = 10) 

 



 

Appendix C: ETS(A,N,A) – Hourly data 
 
# Clear console and envirronment 

cat("\014") 

rm(list=ls())  

 

setwd("C:/Users/ali_a/Desktop/Master Thesis/Code") 

 

library(expsmooth) 

library(forecast) 

library(lubridate) 

library(tseries) 

library(dplyr) 

library(tidyverse) 

 

# TRY 1 out 2: Results included in the study 

 

power_use <- read.csv("Energy consumption per hour-data-2022-03-16 

17_50_56_Edited.csv") 

 

dates <- power_use$ï..time 

# Plot the data 

plot(power_use$watt_hour, type="l") 

watt_hour = power_use$watt_hour 

 

# Fill missing data using "Impute" and find daily averages 

power_use[power_use == 0] <- NA 

power_use[is.na(power_use)] <- mean(watt_hour,na.rm=TRUE) 

newdata = power_use %>% 

  mutate(dates=as.POSIXct(dates,format="%d-%m-%y %H:%M",tz="")) %>% 

  group_by(date(dates)) %>% 

  summarise(watt_hour=sum(watt_hour,na.rm=TRUE)) 

 

AC13 = newdata$watt_hour 

noSnoT = (AC13) 

noSnoT 

 

# Splitting data into training and validation period 

train_per <- 0.8 

limit <- floor(train_per * length(noSnoT)) 

train_noSnoT <- noSnoT[1:limit] 

train_noSnoT 

validation_noSnoT <- noSnoT[(limit+1):length(noSnoT)] 

validation_noSnoT 

 

train_noSnoT_ts = ts(train_noSnoT, frequency = 7) 

# Building the model 

x_range =  seq(1,by=1/7,length.out=length(noSnoT)) 

ses <- ets(train_noSnoT_ts, model = "ANA") 

ses.pred <- predict(ses, h = length(validation_noSnoT),level = 0) 

ses.pred 



 

#Plotting predictions vs actual values 

plot(ses.pred,main="ETS (ANA) - Total daily values") 

lines(ses.pred$fitted, lwd = 2, col = "blue") 

lines(x_range[(limit+1):length(noSnoT)],validation_noSnoT,lwd = 2, col = 

"red") 

legend("topleft",c("Trained model","Validation data","Training 

data","Predicted data"), 

       lty=c(1,1,1,1),col=c("blue","red","black","cornflowerblue"),y.intersp 

= 0.35, 

       cex = 0.75,text.width = 2) 

 

# Calculate metrics 

rmse = sqrt(sum((validation_noSnoT - 

ses.pred$mean)^2)/length(validation_noSnoT)) 

rmse 

 

rsq1 <- function (x, y) cor(x, y) ^ 2 

pcc = rsq1(validation_noSnoT,ses.pred$mean) 

pcc 

 

rss <- sum((ses.pred$mean - validation_noSnoT)^2) ## residual sum of squares 

tss <- sum( ( validation_noSnoT - mean(validation_noSnoT) ) ^ 2)  ## total 

sum of squares 

rsq <- 1 - rss/tss 

rsq 

 

#Forecast  

horizon = 14 

ses_all <- ets(ts(noSnoT, frequency = 7), model = "ANA") 

ses.pred.all <- forecast(ses_all, h = horizon,level = 0) 

ses.pred.all 

plot(ses.pred.all,main="ETS(ANA) - Forecasted daily values") 

lines(ses.pred.all$fitted, lwd = 2, col = "blue") 

 

legend("topleft",c("Trained model","Original data","Forecasted data"), 

       lty=c(1,1,1),col=c("blue","black","light blue"),y.intersp = 0.35, 

       cex = 0.75,text.width = 2) 

 



Appendix D: ETS(A,N,A) – Daily data 
 
# Clear console and envirronment 

cat("\014") 

rm(list=ls())  

 

setwd("C:/Users/ali_a/Desktop/Master Thesis/Code") 

 

library(expsmooth) 

library(forecast) 

library(lubridate) 

library(tseries) 

library(dplyr) 

library(tidyverse) 

 

# TRY 1 out 2: Results included in the study 

 

power_use <- read.csv("Energy consumption per hour-data-2022-03-16 

17_50_56_Edited.csv") 

 

dates <- power_use$ï..time 

# Plot the data 

plot(power_use$watt_hour, type="l") 

watt_hour = power_use$watt_hour 

 

# Fill missing data using "Impute" and find daily averages 

power_use[power_use == 0] <- NA 

power_use[is.na(power_use)] <- mean(watt_hour,na.rm=TRUE) 

newdata = power_use %>% 

  mutate(dates=as.POSIXct(dates,format="%d-%m-%y %H:%M",tz="")) %>% 

  group_by(date(dates)) %>% 

  summarise(watt_hour=sum(watt_hour,na.rm=TRUE)) 

 

AC13 = newdata$watt_hour 

noSnoT = (AC13) 

noSnoT 

 

# Splitting data into training and validation period 

train_per <- 0.8 

limit <- floor(train_per * length(noSnoT)) 

train_noSnoT <- noSnoT[1:limit] 

train_noSnoT 

validation_noSnoT <- noSnoT[(limit+1):length(noSnoT)] 

validation_noSnoT 

 

train_noSnoT_ts = ts(train_noSnoT, frequency = 7) 

# Building the model 

x_range =  seq(1,by=1/7,length.out=length(noSnoT)) 

ses <- ets(train_noSnoT_ts, model = "ANA") 

ses.pred <- predict(ses, h = length(validation_noSnoT),level = 0) 

ses.pred 

 

#Plotting predictions vs actual values 



plot(ses.pred,main="ETS (ANA) - Total daily values") 

lines(ses.pred$fitted, lwd = 2, col = "blue") 

lines(x_range[(limit+1):length(noSnoT)],validation_noSnoT,lwd = 2, col = 

"red") 

legend("topleft",c("Trained model","Validation data","Training 

data","Predicted data"), 

       lty=c(1,1,1,1),col=c("blue","red","black","cornflowerblue"),y.intersp 

= 0.35, 

       cex = 0.75,text.width = 2) 

 

# Calculate metrics 

rmse = sqrt(sum((validation_noSnoT - 

ses.pred$mean)^2)/length(validation_noSnoT)) 

rmse 

 

rsq1 <- function (x, y) cor(x, y) ^ 2 

pcc = rsq1(validation_noSnoT,ses.pred$mean) 

pcc 

 

rss <- sum((ses.pred$mean - validation_noSnoT)^2) ## residual sum of squares 

tss <- sum( ( validation_noSnoT - mean(validation_noSnoT) ) ^ 2)  ## total 

sum of squares 

rsq <- 1 - rss/tss 

rsq 

 

#Forecast  

horizon = 14 

ses_all <- ets(ts(noSnoT, frequency = 7), model = "ANA") 

ses.pred.all <- forecast(ses_all, h = horizon,level = 0) 

ses.pred.all 

plot(ses.pred.all,main="ETS(ANA) - Forecasted daily values") 

lines(ses.pred.all$fitted, lwd = 2, col = "blue") 

 

legend("topleft",c("Trained model","Original data","Forecasted data"), 

       lty=c(1,1,1),col=c("blue","black","light blue"),y.intersp = 0.35, 

       cex = 0.75,text.width = 2) 

 



Appendix E: Linear Regression models – Hourly data 
only 

 

 

 

library(readxl) 

library(ggplot2) 

library(forecast) 

 

# Clear console and envirronment 

cat("\014") 

rm(list=ls())  

 

data1=as.data.frame(read_excel("C:/Users/ali_a/Desktop/Master 

Thesis/Code/cleaned_data1_1.xls")) 

 

 

# Split data into two sets: training and testing  

set.seed(1234) 

index = sample(1:nrow(data1),round(0.80*nrow(data1))) 

train = data1[index,] 

test = data1[-index,] 

nValid = length(test) 

 

################ 1 - Simple linear Regression: Consumption 

################################################################# 

 

#Build the model 

 

model1=lm(watt_hour ~ watt_hour_LR , data=train) 

summary(model1) 

 

#Calculate R^2 

rss1 <- sum(na.omit(predict(model1,test) - test$watt_hour)^2) ## residual sum 

of squares 

tss1 <- sum(na.omit((test$watt_hour - mean(na.omit(test$watt_hour)))) ^ 2)  

## total sum of squares 

rsq12 <- 1 - rss1/tss1 

 

watt_hour_predicted1 = predict(model1,test) 

#Calculate RMSE 

rmse1 = sqrt(sum((watt_hour_predicted1 - 

test$watt_hour)^2)/length(watt_hour_predicted1)) 

rmse1 

 

#Calculate Pearson's coefficient 

PCC <- function (x, y) cor(x, y) ^ 2 

pcc1 = PCC(test$watt_hour,watt_hour_predicted1) 

pcc1 

 

# Scatter plot 

ggplot(data=test,aes(x=watt_hour, y=watt_hour_predicted1))+ 

  geom_point()+ 



  geom_abline(intercept=0, slope=1)+ 

  ggtitle("Consumption") + # and Binary") 

  xlab("Actual consumption in kWh") + ylab("Predicted comsumption in kWh") 

 

################ 2 - Multiple linear Regression: Consumption + Temp 

################################################################# 

 

#Build model 

 

model2=lm(watt_hour ~ watt_hour_LR + Temp, data=train) 

summary(model2) 

 

#Calculate R^2 

rss2 <- sum(na.omit(predict(model2,test) - test$watt_hour)^2) ## residual sum 

of squares 

tss2 <- sum(na.omit((test$watt_hour - mean(na.omit(test$watt_hour)))) ^ 2)  

## total sum of squares 

rsq2 <- 1 - rss2/tss2 

 

watt_hour_predicted2 = predict(model2,test) 

 

#Calculate RMSE 

rmse2 = sqrt(sum((watt_hour_predicted2 - 

test$watt_hour)^2)/length(watt_hour_predicted2)) 

rmse2 

 

#Calculate Pearson's coefficient 

pcc2 = PCC(test$watt_hour,watt_hour_predicted2) 

pcc2 

 

#Scatter plot 

ggplot(data=test,aes(x=watt_hour, y=watt_hour_predicted2))+ 

  geom_point()+ 

  geom_abline(intercept=0, slope=1)+ 

  ggtitle("Consumption + Temperature ") + # and Binary") 

  xlab("Actual consumption in kWh") + ylab("Predicted comsumption in kWh") 

 

################ 3 - Multiple linear Regression: Consumption + Temp + 

isWeekend ################################################################# 

 

#Build Model 

 

model3=lm(watt_hour ~ watt_hour_LR + Temp + isWeekend, data=train) 

summary(model3) 

 

##Calculate R^2 

rss3 <- sum(na.omit(predict(model3,test) - test$watt_hour)^2) ## residual sum 

of squares 

tss3 <- sum(na.omit((test$watt_hour - mean(na.omit(test$watt_hour)))) ^ 2)  

## total sum of squares 

rsq3 <- 1 - rss3/tss3 

 

watt_hour_predicted3 = predict(model3,test) 

 

#Calculate RMSE 

rmse3 = sqrt(sum((watt_hour_predicted3 - 

test$watt_hour)^2)/length(watt_hour_predicted3)) 



rmse3 

 

#Calculate Pearson's coefficient 

pcc3 = PCC(test$watt_hour,watt_hour_predicted3) 

pcc3 

 

#Scatter plot 

ggplot(data=test,aes(x=watt_hour, y=watt_hour_predicted3))+ 

  geom_point()+ 

  geom_abline(intercept=0, slope=1)+ 

  ggtitle("Consumption + Temperature + isWeekend") + # and Binary") 

  xlab("Actual consumption in kWh") + ylab("Predicted comsumption in kWh") 

 

################ 4 - Multiple linear Regression: Consumption vs Other 

Variables ################################################################# 

 

#Build Model 

 

model4=lm(watt_hour ~ watt_hour_LR + Temp + isWeekend +AMPM , data=train) 

summary(model4) 

 

#Calculate R^2 

rss4 <- sum(na.omit(predict(model4,test) - test$watt_hour)^2) ## residual sum 

of squares 

tss4 <- sum(na.omit((test$watt_hour - mean(na.omit(test$watt_hour)))) ^ 2)  

## total sum of squares 

rsq4 <- 1 - rss4/tss4 

 

watt_hour_predicted4 = predict(model4,test) 

 

#Calculate RMSE 

rmse4 = sqrt(sum((watt_hour_predicted4 - 

test$watt_hour)^2)/length(watt_hour_predicted4)) 

rmse4 

 

#Calculate Pearson's coefficient 

pcc4 = PCC(test$watt_hour,watt_hour_predicted4) 

pcc4 

 

#Scatter plot 

ggplot(data=test,aes(x=watt_hour, y=watt_hour_predicted4))+ 

  geom_point()+ 

  geom_abline(intercept=0, slope=1)+ 

  ggtitle("Consumption + Temperature + isWeekend + AMPM") + # and Binary") 

  xlab("Actual consumption in kWh") + ylab("Predicted comsumption in kWh") 

 

 

 

 

  
 



Appendix F: LSTM – Hourly data 
 

%reset 

%matplotlib inline 

 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import torch.optim as optim 

import datetime 

import seaborn as sns 

import tensorflow as tf 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import * 

from tensorflow.keras.callbacks import ModelCheckpoint 

from tensorflow.keras.losses import MeanSquaredError 

from tensorflow.keras.metrics import RootMeanSquaredError 

from tensorflow.keras.optimizers import Adam 

 

import sys 

import time 

import warnings 

warnings.filterwarnings("ignore") 

import logging 

logging.disable(logging.CRITICAL) 

 

 

## load data (empty cells are treated as 0) 

file = (r'C:\\Users\ali_a\Desktop\Master Thesis\Code\Energy consumption per 

hour-data-2022-04-24 13_58_34_APRIL.csv') 

 

df = pd.read_csv (file)  

df 

 

df.index = pd.to_datetime(df['time'], format = '%d-%m-%y %H:%M') 

df[:26] 

 

power_ac13 = df['watt_hour'] 

power_ac13.plot(ylabel='kWh'); 

 

# Cleaning data 

 

power_ac13_replaced = power_ac13[power_ac13 != 0]    

print(f"{len(power_ac13)-len(power_ac13_replaced)} empty values have been 

omitted") 

 

#Calculate the mean for the series with the omitted empty values 

power_ac13_replaced_mean = np.mean(power_ac13_replaced) 

power_ac13_replaced_mean 

 

 

#Impute: replace empty values with mean 

 



power_ac13[power_ac13 == 0] = power_ac13_replaced_mean 

print(f"length of Imputed series is {len(power_ac13)}") 

 

print(power_ac13[power_ac13 == power_ac13_replaced_mean]) 

 

# # Box-plot to see the outliers 

sns.boxplot(power_ac13) 

 

AC13 = power_ac13 

AC13.plot(ylabel='kWh') 

 

#comparing before and after data cleaning 

 

plt.figure(figsize=(16,8)) 

plt.subplot(2,2,1) 

sns.distplot(power_ac13) 

plt.subplot(2,2,2) 

sns.boxplot(power_ac13) 

plt.subplot(2,2,3) 

sns.distplot(AC13) 

plt.subplot(2,2,4) 

sns.boxplot(AC13) 

plt.show() 

 

 

Ac13 = AC13 

 

# Creating a function to assemble the data and make it appropriate for the 

machine learning model 

 

def df_to_new(df,window_size): #window size the value of used data to 

forecast the future data at window_size+1 

    df_as_np = df.to_numpy() 

    X = [] 

    y = [] 

    for i in range(len(df_as_np)-window_size): 

        row = [[a] for a in df_as_np[i:i+window_size]] 

        X.append(row) 

        label = df_as_np[i+window_size] 

        y.append(label) 

         

    return np.array(X),np.array(y)                

 

win_size = 20 #This is the sliding window 

num_features = 1 #since we only have one variable 

X,y = df_to_new(Ac13,win_size) 

 

X.shape,y.shape 

 

pd.DataFrame(y) 

 

#Split the data into training and testing 

perc_train = 0.8 

limit_train = int(np.floor(len(Ac13)*perc_train)) 

xtrain,ytrain = X[:limit_train],y[:limit_train] 

xval,yval = X[limit_train:],y[limit_train:] 

 



#creating the model 

dropout_rate = 0.2 

model1 = Sequential()  

model1.add(InputLayer((win_size,1))) # the inputlayer should be equal to the 

# of variables and number of inputs at a time 

#                                      # (which is equal to win_size), 1 is 

the number of features 

model1.add(LSTM(32)) 

model1.add(Dropout(dropout_rate)) 

model1.add(Dense(128,'relu')) # Dense feeds the outputs from the previous 

cell to all its neurons 

model1.add(Dropout(dropout_rate)) 

model1.add(Dense(1,'linear')) 

model1.summary() 

 

#creating a location to save the model 

import os 

checkpointpath = 'C:\\Users\\ali_a\\training/cp.ckt' 

cp = ModelCheckpoint(checkpointpath, save_best_only=True,verbose=1) # the one 

with the lowest validation loss:  

                                                     # what we care about the 

model predicting well on unseen  

learningRate = 0.0001     

model1.compile(loss=MeanSquaredError(),optimizer =  

               Adam(learning_rate=learningRate), 

               metrics=[RootMeanSquaredError()]) # The higher the learning 

rate the faster the  

                                                 # model tries to decrease 

its loss 0.0001 

 

 

#fitting the model 

import time 

EPOCH = 150  

batchSize = 15 

t0 = time.time() 

model1.fit(xtrain,ytrain,validation_data=(xval,yval),batch_size=batchSize,epo

chs=EPOCH,callbacks=[cp],shuffle=False) 

t1 = time.time() 

 

print(f'total time for simulation was {t1-t0} seconds, {(t1-t0)/60} minutes') 

from tensorflow.keras.models import load_model 

model1.save("my_model") 

model1 = load_model("my_model") 

 

train_predictions = model1.predict(xtrain).flatten() # flatten() removes the 

brackets inside the data 

train_results = pd.DataFrame(data={'Train 

Predictions':train_predictions,'Actual values':ytrain}) 

train_results 

 

scale = len(train_predictions) 

 

plt.plot(train_results['Train Predictions'][:scale],label='Trained 

Predictions') 

plt.plot(train_results['Actual values'][:scale],'b',label='Actual Values') 

plt.legend(bbox_to_anchor =(0.75, 1.15), ncol = 2) 



plt.show() 

 

val_predictions = model1.predict(xval).flatten() # flatten() removes the 

brackets inside the data 

val_results = pd.DataFrame(data={'Validate 

Predictions':val_predictions,'Validation values':yval}) #yval are the actual 

values 

val_results 

 

scale2 = len(val_predictions) 

 

plt.plot(val_results['Validate Predictions'][:scale2],label='Trained 

Predictions') 

plt.plot(val_results['Validation values'][:scale2],'b',label='Actual Values') 

plt.legend(bbox_to_anchor =(0.75, 1.15), ncol = 2) 

plt.show() 

 

#RMSE 

rmse = np.sqrt(((val_results['Validate Predictions']-val_results['Validation 

values'])**2).sum()/len(val_results['Validate Predictions'])) 

 

#Rsquared 

 

RSS = ((val_results['Validate Predictions']-val_results['Validation 

values'])**2).sum() 

TSS = ((val_results['Validation values']-np.mean(val_results['Validation 

values']))**2).sum() 

rsq = 1 - RSS/TSS 

 

#Pearson's correlation coefficient 

def pearsonr(x, y): 

  # Assume len(x) == len(y) 

  n = len(x) 

  sum_x = float(sum(x)) 

  sum_y = float(sum(y)) 

  sum_x_sq = sum(xi*xi for xi in x) 

  sum_y_sq = sum(yi*yi for yi in y) 

  psum = sum(xi*yi for xi, yi in zip(x, y)) 

  num = psum - (sum_x * sum_y/n) 

  den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 

0.5) 

  if den == 0: return 0 

  return num / den 

PCC = pearsonr(val_results['Validation values'],val_results['Validate 

Predictions']) 

 

print(f'rmse is {rmse}') 

print(f'R**2 is {rsq}') 

print(f'PCC is {PCC}') 

 

 

# Assembling forecasts in an array 

prediction = [] #Empty list to populate later with predictions 

current_batch = xval[-win_size] #Final data points in train 

current_batch = current_batch.reshape(1, win_size,num_features) #Reshape 

f_horizon = 240 # Number of hours ahead 

for i in range(len(xval) + f_horizon): 



    current_pred = model1.predict(current_batch)[0] 

    prediction.append(current_pred) 

    current_batch = np.append(current_batch[:,1:,:],[[current_pred]],axis=1) 

 

current_pred = model1.predict(current_batch) 

# Plotting forecasts 

 

plt.plot(prediction) 

plt.title(f'EPOCH = {EPOCH}, learning rate = {learningRate}'); 

plt.xlabel("Time"); 

plt.ylabel("kWh"); 

xnew = np.arange(0, len(AC13)) 

yrange = np.arange(xnew[-1]+1,xnew[-1]+len(prediction)+1) 

plt.plot(xnew,AC13) 

plt.plot(yrange,prediction); 

plt.title("Total data and forecasted values"); 

plt.xlabel("Time") 

plt.ylabel("Consumption in kWh") 

plt.legend(['Entire dataset',"Forecasted values"],loc='upper left'); 



Appendix G: LSTM – Daily data 
 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import torch.optim as optim 

import datetime 

import seaborn as sns 

import tensorflow as tf 

 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import * 

from tensorflow.keras.callbacks import ModelCheckpoint 

from tensorflow.keras.losses import MeanSquaredError 

from tensorflow.keras.metrics import RootMeanSquaredError 

from tensorflow.keras.optimizers import Adam 

 

 

import sys 

import time 

import warnings 

warnings.filterwarnings("ignore") 

import logging 

logging.disable(logging.CRITICAL) 

 

## load data (empty values are treated as 0) 

file = (r'C:\\Users\ali_a\Desktop\Master Thesis\Code\Energy consumption per 

hour-data-2022-03-16 17_50_56_Edited.csv') 

 

df = pd.read_csv (file) 

df 

 

df.index = pd.to_datetime(df['time'], format = '%d-%m-%y %H:%M') 

df[:24] 

 

power_ac13 = df['watt_hour'] 

power_ac13.plot(); 

 

#Remove null entries 

power_ac13[power_ac13 != 0]         

power_ac13_replaced = power_ac13[power_ac13 != 0]    

print(f"{len(power_ac13)-len(power_ac13_replaced)} empty values have been 

omitted") 

 

#Calculate the mean for the series with the omitted empty values 

power_ac13_replaced_mean = np.mean(power_ac13_replaced) 

power_ac13[power_ac13==0]=np.mean(power_ac13_replaced) 

 

print(f"length of Imputed series is {len(power_ac13)}") 

 

print(power_ac13[power_ac13 == power_ac13_replaced_mean]) 

# Transofrming the values from hourly to daily 



newdata13 = power_ac13.resample('D').sum() 

newdata13 

plt.plot(newdata13) 

 

type(newdata13) 

len(newdata13) 

print(newdata13) 

 

# Creating ta function to assemble data for the machine learning model 

 

def df_to_new(df,window_size): #window size the value of used data to 

forecast the future data at window_size+1 

    df_as_np = df.to_numpy() 

    X = [] 

    y = [] 

    for i in range(len(df_as_np)-window_size): 

        row = [[a] for a in df_as_np[i:i+window_size]] 

        X.append(row) 

        label = df_as_np[i+window_size] 

        y.append(label) 

         

    return np.array(X),np.array(y)     

     

# Pearson correlation 

def pearsonr(x, y): 

  # Assume len(x) == len(y) 

  n = len(x) 

  sum_x = float(sum(x)) 

  sum_y = float(sum(y)) 

  sum_x_sq = sum(xi*xi for xi in x) 

  sum_y_sq = sum(yi*yi for yi in y) 

  psum = sum(xi*yi for xi, yi in zip(x, y)) 

  num = psum - (sum_x * sum_y/n) 

  den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 

0.5) 

  if den == 0: return 0 

  return num / den 

 

win_size = 5 #Sliding window  

num_features = 1 #since we only have one variable 

X,y = df_to_new(newdata13,win_size) 

 

#Split the data 

perc_train = 0.8 

limit_train = int(np.floor(len(newdata13)*perc_train)) 

 

xtrain,ytrain = X[:limit_train],y[:limit_train] 

xval,yval = X[limit_train:],y[limit_train:] 

 

#creating the model 

dropout_rate = 0.2 

model1 = Sequential()  

model1.add(InputLayer((win_size,1))) # the inputlayer should be equal to the 

# of variables and number of inputs at a time 

#                                      # (which is equal to win_size), 1 is 

equal to the number of features 

model1.add(LSTM(128)) #check how the input of LSTM can affect the forecast 



model1.add(Dense(256,'relu')) # Dense feeds the outputs from the previous 

cell to all its neurons 

model1.add(Dropout(dropout_rate)) 

model1.add(Dense(256,'relu')) # Dense feeds the outputs from the previous 

cell to all its neurons 

model1.add(Dropout(dropout_rate)) 

model1.add(Dense(1,'linear')) 

model1.summary() 

 

#creating a directory to save the model 

import os 

checkpointpath = 'C:\\Users\\ali_a\\training_daily/cp.ckt' 

cp = ModelCheckpoint(checkpointpath, save_best_only=True,verbose=1) # the one 

with the lowest validation loss:  

                                                     # what we care about the 

model predicting well on unseen  

model1.compile(loss=MeanSquaredError(),optimizer =  

               Adam(learning_rate=0.001), 

               metrics=[RootMeanSquaredError()]) # The higher the learning 

rate the faster the  

                                                 # model tries to decrease 

its loss 

 

#fitting the model 

EPOCH = 150 

model1.fit(xtrain,ytrain,validation_data=(xval,yval),batch_size=3,epochs=EPOC

H,callbacks=[cp],shuffle=False) 

 

from tensorflow.keras.models import load_model 

model1.save("my_model") 

model1 = load_model("my_model") 

 

train_predictions = model1.predict(xtrain).flatten() # flatten() removes the 

brackets inside the data 

train_results = pd.DataFrame(data={'Train 

Predictions':train_predictions,'Actual values':ytrain}) 

train_results 

 

scale = len(train_predictions) 

 

plt.plot(train_results['Train Predictions'][:scale],label='Trained 

Predictions') 

plt.plot(train_results['Actual values'][:scale],'b',label='Actual Values') 

plt.legend(bbox_to_anchor =(0.75, 1.15), ncol = 2) 

plt.show() 

 

val_predictions = model1.predict(xval).flatten() # flatten() removes the 

brackets inside the data 

val_results = pd.DataFrame(data={'Validate 

Predictions':val_predictions,'Validation values':yval}) 

val_results 

 

#RMSE 

rmse = np.sqrt(((val_results['Validate Predictions']-val_results['Validation 

values'])**2).sum()/len(val_results['Validate Predictions'])) 

print(f'rmse is {rmse}') 

 



#Rsquared 

 

RSS = ((val_results['Validate Predictions']-val_results['Validation 

values'])**2).sum() 

TSS = ((val_results['Validation values']-np.mean(val_results['Validation 

values']))**2).sum() 

rsq = 1 - RSS/TSS 

print(f'R**2 is {rsq}') 

 

pcc = pearsonr(val_results['Validation values'],val_results['Validate 

Predictions']) 

print(f'PCC is {pcc}') 

 

# Function to store future values 

prediction = [] #Empty list to populate later with predictions 

current_batch = xval[-win_size] #Final data points in train 

current_batch = current_batch.reshape(1, win_size,num_features) #Reshape 

f_horizon = 6 # Number of 5 minutes ahead 

for i in range(len(xval) + f_horizon): 

    current_pred = model1.predict(current_batch)[0] 

    prediction.append(current_pred) 

    current_batch = np.append(current_batch[:,1:,:],[[current_pred]],axis=1) 

 

current_pred = model1.predict(current_batch) 

 

# Forecast curve shape 

 

plt.plot(prediction) 
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