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ABSTRACT 
 

This thesis investigates the use of long term analysis to estimate the q-probability responses of 

a non-linear problem. The structure subjected to the investigations is a realistic jacket found 

in the Norwegian Continental Shelf (NCS) with slightly increased deck mass to increase the 

dynamic behaviour. The following responses are investigated, airgap, deck displacement, 

overturning moment and base shear. The long term analysis q-probability responses are 

obtained using the peak over threshold (POT) method and a modified all sea state approach. 

Hindcast data from a reference site in the Norwegian Sea is used with over 61 years of 

metocean data.  

 

The responses from the jacket structure follow a Gumbel distribution. Therefore, the 

maximum response for each 3-hour simulation is obtained, and Gumbel´s location and shape 

parameters are assessed for each sea state by method of moments. The unknown sea states 

between the simulated sea states are known by an interpolation function named spline. As a 

result, a response surface is obtained as the short term variability for the 3-hour maximum 

responses. 

 

The modified all sea state method uses the joint distribution of all 3-hour sea states over 8 

metres (m). The probability density of the joint distribution of sea states is multiplied by the 

short term response surfaces to obtain the long term distribution of a 3-hour maximum 

response. The q-probability values correspond to a 100-year and 10.000-year response value. 

 

The POT approach is implemented as the long term distribution of a response given the most 

probable maximum response for a random storm. Each storm is sequenced by 3-hour storm 

steps which are assumed stationary. The long term analysis is achieved by multiplying the 

conditional distribution of storm maximum response given the most probable maximum 

response with the long term distribution of most probable maximum responses. The q-

probability is the same as for modified all sea state. 

 

The long term analysis results demonstrate that for a jacket structure, the q-probability 

responses are less conservatively estimated by the POT. This implies that for design work, the 
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responses obtained by the POT following the guidelines for q-probability will have a better 

cost-optimized design without disregarding or compromising the safety. 

  



 IV 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENT ....................................................................................................................................... I 

ABSTRACT ...................................................................................................................................................... II 

1. INTRODUCTION ..................................................................................................................................... 1 

1.1 BACKGROUND .......................................................................................................................................... 1 
1.2 OBJECTIVE ............................................................................................................................................... 3 
1.3 THESIS OUTLINE ........................................................................................................................................ 4 

2. WAVE DATA AND MODELLING .............................................................................................................. 7 

2.1 HINDCAST DATASET ................................................................................................................................... 9 
2.2 SITE-SPECIFIC HINDCAST ANALYSIS .............................................................................................................. 11 
2.3 JOINT DISTRIBUTION OF SEA STATES ............................................................................................................ 13 

2.3.1 Marginal distribution of !" .......................................................................................................... 14 
2.3.2 Conditional distribution of #$ given !" ........................................................................................ 17 
2.3.3 Contour lines ................................................................................................................................. 20 

3. PEAK OVER THRESHOLD APPROACH ..................................................................................................... 25 

3.1 STORMS ................................................................................................................................................ 28 

4. JACKET STRUCTURE .............................................................................................................................. 31 

4.1 MODEL ................................................................................................................................................. 31 
4.2 DECK DISPLACEMENT NODE ...................................................................................................................... 35 

5. USFOS SIMULATION ............................................................................................................................. 36 

5.1 TIME-DOMAIN SIMULATIONS .................................................................................................................... 36 
5.2 WAVE GENERATION ................................................................................................................................ 38 
5.3 LOAD GOVERN RESPONSE ......................................................................................................................... 43 
5.4 SPOOL TO A PEAK ELEVATION .................................................................................................................... 45 
5.5 DYNAMIC AND STATIC BEHAVIOUR OF RESPONSES .......................................................................................... 47 

6. JACKET ASSESSMENT ............................................................................................................................ 50 

6.1 AIRGAP ANALYSIS .................................................................................................................................... 50 
6.2 TIME-DOMAIN SIMULATIONS .................................................................................................................... 55 

6.2.1 Simulations .................................................................................................................................... 55 
6.2.2 Distribution of 3-hour extremes .................................................................................................... 57 
6.2.3 Response surface for Gumbel parameters .................................................................................... 59 



 V 

7. LONG TERM ANALYSIS MODIFIED ALL SEA STATE ................................................................................. 63 

7.1 MODIFIED ALL SEA STATE APPROACH .......................................................................................................... 63 
7.1.1 Modified marginal distribution of !" ........................................................................................... 64 
7.1.2 Conditional distribution of #$ given modified !" ......................................................................... 66 
7.1.3 Contour lines based on modified !" values .................................................................................. 68 
7.1.4 Long term analysis ........................................................................................................................ 69 

8. LONG TERM ANALYSIS POT .................................................................................................................. 71 

8.1 SHORT TERM MODELLING ......................................................................................................................... 71 
8.2 LONG TERM ANALYSIS .............................................................................................................................. 77 

8.2.1 Long term analysis of mpm storm max, % .................................................................................... 77 
8.2.2 Long term analysis of X ................................................................................................................. 81 

8.3 THRESHOLD SENSITIVITY STUDY .................................................................................................................. 83 

9. COMPARISON BETWEEN LONG TERM ANALYSES METHODS POT AND MODIFIED ALL SEA STATE ......... 86 

10. CONCLUSION ................................................................................................................................... 88 

10.1 FUTURE WORK ....................................................................................................................................... 89 

REFERENCES .................................................................................................................................................. 91 

APPENDICES .................................................................................................................................................. 93 

A    SCATTER DIAGRAM ................................................................................................................................. 94 

B    MODIFIED SCATTER DIAGRAM ................................................................................................................. 95 

C     RESULTS FROM MODIFIED ALL SEA STATE ............................................................................................... 96 

C.1 AIRGAP ......................................................................................................................................................... 96 
C.2 DECK DISPLACEMENT ....................................................................................................................................... 97 
C.3 OVERTURNING MOMENT .................................................................................................................................. 98 
C.3 BASE SHEAR ................................................................................................................................................... 99 

D     RESULTS FROM POT .............................................................................................................................. 100 

D.1 AIRGAP ....................................................................................................................................................... 100 
D.2 DECK DISPLACEMENT ..................................................................................................................................... 101 
D.3 OVERTURNING MOMENT ................................................................................................................................ 102 
D.4 BASE SHEAR ................................................................................................................................................. 103 

 

  



 VI 

LIST OF FIGURES 
 
FIGURE 1: LOAD LEVEL FOR THE SAME SYSTEM UNDERGOING AN ABRUPT CHANGE FOR AN ANNUAL 

EXCEEDANCE PROBABILITY LOWER THAN ALS(10 − 4)[3]. ........................................................................... 2 
FIGURE 2: DATA CONTAINED IN A HINDCAST DATABASE. ...................................................................................... 7 
FIGURE 3: MAP OF HINDCAST LOCATION. LATITUDE 67.05, LONGITUDE 7.00 IN THE NORWEGIAN SEA. 

OBTAINED FROM GOOGLE MAPS. ................................................................................................................ 9 
FIGURE 4: SCATTER PLOT OF HINDCAST DATA, WITH UNCORRECTED AND CORRECTED DATA COMPARED IN THE 

SAME PLOT (TOTAL SEA). ............................................................................................................................ 10 
FIGURE 5: WAVE PROPAGATION DIRECTION FOR ALL EVENTS IN THE HINDCAST DATASET. EACH BIN IS 30°. ... 11 
FIGURE 6: HISTOGRAM OF WAVE HEIGHT AND WAVE PERIOD COMPARING THE PERCENTAGE OF 

OCCURRENCES PER BIN. EACH BIN IS OF A LENGTH SCALE OF 1 UNIT. ...................................................... 12 
FIGURE 7: MARGINAL DISTRIBUTION OF HS FITTED WITH A 3-PARAMETER WEIBULL DISTRIBUTION. ............... 14 
FIGURE 8: !" VALUES FROM THE EKOFISK AREA FITTED WITH 3-PARAMETER WEIBULL DISTRIBUTION AND 

COMPARED TO THE ORIGINAL SAMPLE FROM THE NORWEGIAN SEA. ...................................................... 16 
FIGURE 9: OBTAINING LINE ESTIMATE FOR THE POINT ESTIMATE. THIS IS DONE FOR PARAMETERS *(ℎ) AND 

.(ℎ). ........................................................................................................................................................... 18 
FIGURE 10: THE 90 % BAND FOR #$ AND THE CONDITIONAL MEAN FROM HINDCAST DATA FROM THE 

REFERENCE SITE. ......................................................................................................................................... 19 
FIGURE 11: OBTAINED CIRCLE IN STANDARD GAUSSIAN SPACE FOR THE VARIABLES /1 AND /2. ..................... 22 
FIGURE 12: TRANSFORMATION FROM STANDARD GAUSSIAN SPACE TO PHYSICAL SPACE WITH CONTOUR LINE 

CORRESPONDING TO AN ANNUAL EXCEEDANCE PROBABILITY OF 10 − 4. ............................................... 23 
FIGURE 13: CONTOUR LINES BASED ON THE JOINT DISTRIBUTION OF !" AND #$. THE CONTOUR LINES HAVE 

AN ANNUAL EXCEEDANCE PROBABILITY CORRESPONDING TO A 100-YEAR AND 10.000-YEAR RETURN 

PERIOD. THERE ARE ADDED DNV WAVE HEIGHT LIMIT TO THE CONTOUR PLOT. ...................................... 24 
FIGURE 14: A RANDOM STORM EXTRACTED OVER A THRESHOLD OF 9 M. ......................................................... 28 
FIGURE 15: POLARHISTOGRAM OF WAVE DIRECTION WITH DIFFERENT WAVE HEIGHTS AS THE INPUT 

PARAMETER. ............................................................................................................................................... 29 
FIGURE 16: HISTOGRAM OF WAVE HEIGHT AND WAVE PERIOD COMPARING THE PERCENTAGE OF 

OCCURRENCES PER BIN. EACH BIN IS OF LENGTH SCALE 1 UNIT, WITH AN 8 M THRESHOLD. ................... 30 
FIGURE 17: JACKET STRUCTURE REPLICA FROM THE NORTH SEA. THE STRUCTURE IS IN THE USFOS SOFTWARE.

 .................................................................................................................................................................... 33 
FIGURE 18: FRONT AND SIDE VIEW OF THE JACKET STRUCTURE. ........................................................................ 33 
FIGURE 19: DECK DISPLACEMENT MEASUREMENT ON NODE 145. ..................................................................... 35 
FIGURE 20: TRUE WHEELER STRETCHING ON A LINEAR WAVE. THE TWO GRAPHS ARE FROM THE SAME TIME-

DOMAIN SIMULATION OF DIFFERENT WAVES. THE WAVES ARE NEGATIVE DUE TO THE ORIENTATION OF 

THE COORDINATE SYSTEM. ......................................................................................................................... 39 



 VII 

FIGURE 21: RAYLEIGH LINEAR CREST VERSUS FORRISTALL SECOND-ORDER CREST MODEL. THE SIMULATED 

SEEDS FROM THE TIME-DOMAIN SIMULATION ARE ADDED USING THE SAME SEA STATE. ....................... 40 
FIGURE 22: JONSWAP SPECTRUM FOR !" = 14.9	5, #$ = 16.4	" AND 7 = 2.4 ............................................... 42 
FIGURE 23: SPOOL WAVE FUNCTION FOUND IN USFOS SOFTWARE. A GRAPHIC DESCRIPTION OF HOW THE 

FUNCTION WORKS[25]. ............................................................................................................................... 45 
FIGURE 24: COMPARISON OF DYNAMIC AND STATIC DECK DISPLACEMENT. THE THREE FIGURES DISPLAY A 

DYNAMIC SECOND-ORDER RESPONSE, DYNAMIC LINEAR RESPONSE AND STATIC LINEAR RESPONSE. THE 

LINEAR RESPONSES HAVE ALSO WHEELER STRETCHING. ........................................................................... 47 
FIGURE 25: SURFACE ELEVATION FOR SECOND-ORDER WAVE AND LINEAR WAVE + WHEELER STRETCHING. ... 49 
FIGURE 26: SIMULATED SEA STATES FOR TIME-DOMAIN SIMULATION OF THE JACKET STRUCTURE. ................. 56 
FIGURE 27: GUMBEL DISTRIBUTION OF 3-HOUR MAXIMUM RESPONSES. THE SELECTED SEA STATE IS !"	 =

	16	5, #$	 = 	19	". FIGURE (A) RESPONSE IS BASE SHEAR, (B) IS DECK DISPLACEMENT AND (C) IS 

OVERTURNING MOMENT. ........................................................................................................................... 58 
FIGURE 28: DECK DISPLACEMENT RESPONSE SURFACE FOR 89 AND :9 ............................................................ 59 
FIGURE 29: BASE SHEAR RESPONSE SURFACE FOR 89 AND :9 .......................................................................... 59 
FIGURE 30: OVERTURNING MOMENT RESPONSE SURFACE FOR 89 AND :9 ..................................................... 60 
FIGURE 31: THE EVOLUTION OF GUMBEL RESPONSE PARAMETERS Α AND Β FOR THE RESPONSES DECK 

DISPLACEMENT, BASE SHEAR AND OVERTURNING MOMENT. THE EVOLUTION IS CONSIDERING AN 

INCREASING !" RANGE AND FIXED #$. ...................................................................................................... 60 
FIGURE 32: THE EVOLUTION OF GUMBEL RESPONSE PARAMETERS 8 AND : FOR THE RESPONSES DECK 

DISPLACEMENT, BASE SHEAR AND OVERTURNING MOMENT. THE EVOLUTION IS CONSIDERING AN 

INCREASING #$	RANGE AND FIXED !". ...................................................................................................... 61 
FIGURE 33: FITTED MARGINAL DISTRIBUTION FOR !" EQUAL AND OVER 8 M TO A 3-PARAMETER WEIBULL 

DISTRIBUTION. THE DISTRIBUTION IS SEEN IN THE GUMBEL SCALE. .......................................................... 65 
FIGURE 34:	NON-LINEAR	FITTING	OF	LOG-NORMAL	PARAMETER	*	FOR	MODIFIED	!"	VALUES. ............ 66 
FIGURE 35: NON-LINEAR FITTING OF LOG-NORMAL PARAMETER .2 FOR MODIFIED !" VALUES. ..................... 67 
FIGURE 36: A 90 PERCENTILE OF #$, BASED ON FITTED #$ DATA. ...................................................................... 67 
FIGURE 37: CONTOUR LINES BASED ON THE JOINT DISTRIBUTION OF MODIFIED SEA STATES. .......................... 69 
FIGURE 38: CUMULATIVE DENSITY FUNCTION FOR EACH STORM STEP IN A GIVEN STORM. THE FUNCTIONS FOR 

EACH STEP ARE MULTIPLIED TO A STORM MAXIMUM, SEEN AS A STIPPLED LINE IN THE FIGURE. ........... 72 
FIGURE 39: CUMULATIVE DENSITY FUNCTION OF THE EXACT STORM, DISPLAYING ITS MOST PROBABLE 

MAXIMUM. ................................................................................................................................................. 74 
FIGURE 40: : VALUES FOR ALL THE STORMS OVER THE THRESHOLD OF 8 M. .................................................... 75 
FIGURE 41: COMPARES THE EXACT AND APPROXIMATED STORM DISTRIBUTION IN A GUMBEL PROBABILITY 

PAPER FOR RANDOM STORMS IN THE DATASET. THE EXACT DISTRIBUTION IS FROM THE OVERTURNING 

MOMENT RESPONSE. .................................................................................................................................. 76 
FIGURE 42: PROBABILITY PLOT IN WEIBULL SCALE, WHERE A FITTED 3-PARAMETER WEIBULL DISTRIBUTION IS 

COMPARED TO AN EMPIRICAL SAMPLE OF % VALUES. .............................................................................. 79 



 VIII 

FIGURE 43: PROBABILITY PLOT IN GUMBEL SCALE, WHERE A FITTED 3-PARAMETER WEIBULL DISTRIBUTION IS 

COMPARED TO AN EMPIRICAL SAMPLE OF %VALUES. ............................................................................... 80 
FIGURE 44: DISTRIBUTION FUNCTION FOR THE LONG TERM ANALYSIS OF OVERTURNING MOMENT. THE 

THRESHOLD IS 8 M. ..................................................................................................................................... 81 
FIGURE 45: DISTRIBUTION FUNCTION FOR THE LONG TERM ANALYSIS OF AN OVERTURNING MOMENT IN A 

GUMBEL PROBABILITY PAPER. THE THRESHOLD IS 8 M. ............................................................................. 82 
FIGURE 46: RELATIVE CONTRIBUTION FOR THE CREST HEIGHT TO EXCEED ULS (LEFT FIGURE) AND ALS (RIGHT 

FIGURE) PROBABILITIES GIVEN THE SEA STATES IN THE MODIFIED ALL SEA STATE APPROACH. ............... 96 
FIGURE 47: RELATIVE CONTRIBUTION FOR THE DECK DISPLACEMENT EXCEEDED ULS (LEFT FIGURE) AND ALS 

(RIGHT FIGURE) PROBABILITIES GIVEN THE SEA STATES IN THE MODIFIED ALL SEA STATE APPROACH. ... 97 
FIGURE 48: RELATIVE CONTRIBUTION FOR THE OVERTURNING MOMENT TO EXCEED ULS (LEFT FIGURE) AND 

ALS (RIGHT FIGURE) PROBABILITIES GIVEN THE SEA STATES IN THE MODIFIED ALL SEA STATE APPROACH.

 .................................................................................................................................................................... 98 
FIGURE 49: RELATIVE CONTRIBUTION FOR THE BASE SHEAR TO EXCEED ULS (LEFT FIGURE) AND ALS (RIGHT 

FIGURE) PROBABILITIES GIVEN THE SEA STATES IN THE MODIFIED ALL SEA STATE APPROACH. ............... 99 

 

 

LIST OF TABLES 
 
TABLE 1: THE THREE LARGEST !" VALUES IN THE SAMPLE. ................................................................................ 15 
TABLE 2: SIGNIFICANT WAVE HEIGHT VALUES FOR THE 3-PARAMETER WEIBULL WHEN EXTRAPOLATED TO THE 

DESIGN CRITERION. ..................................................................................................................................... 16 
TABLE 3: PARAMETERS FOR THE LINE ESTIMATE FOR * AND .2. ........................................................................ 18 
TABLE 4: EXTREME SEA STATES OBTAINED FROM ALL SEA STATES. .................................................................... 19 
TABLE 5: STORMS AND STORM EVENTS EXTRACTED OVER VARIOUS THRESHOLDS. ........................................... 29 
TABLE 6: SUMMARY OF INFORMATION REGARDING THE JACKET STRUCTURE USED IN THIS THESIS[17]. .......... 32 
TABLE 7: THE TWO FIRST EIGENMODES OF THE JACKET STRUCTURE. THE PERIODS ARE OBTAINED FROM USFOS 

WITH ADDED GRAVITY. ............................................................................................................................... 34 
TABLE 8: SUMMARY OF THE OBSERVED POPULATION (LINEAR CREST) VERSUS A FORRISTALL SECOND-ORDER 

CREST MODEL. THE SEA STATE IS !" = 16	5 AND #$ = 19	". ................................................................. 41 
TABLE 9: OVERVIEW OF THE CHOSEN COEFFICIENTS IN THE MORRISONS EQUATION FOR LM AND LN ........... 44 
TABLE 10: DIFFERENCES BETWEEN DYNAMIC AND STATIC SIMULATIONS OF THE SAME SEA STATE AND SEED. 48 
TABLE 11: DIFFERENCES BETWEEN DYNAMIC RESPONSES SIMULATED WITH A SECOND-ORDER WAVE THEORY 

AND SIMULATION PERFORMED WITH LINEAR WAVES + WHEELER STRETCHING. THE SEA STATE AND SEED 

ARE THE SAME FOR BOTH. .......................................................................................................................... 48 
TABLE 12: SELECTED SEA STATES TO SIMULATE RESPONSES IN THE TIME DOMAIN. .......................................... 56 
TABLE 13: LONG TERM EXTRAPOLATION OF !" TO TARGET PROBABILITY. ......................................................... 65 



 IX 

TABLE 14: VALUES FROM THE 90% BAND OF ULS AND ALS VALUES. ................................................................... 68 
TABLE 15: MOST PROBABLE MAXIMUM OVERTURNING MOMENT CORRESPONDING TO ULS AND ALS VALUES 

AT THRESHOLD 8 M. .................................................................................................................................... 80 
TABLE 16: CHARACTERISTIC MOST SIGNIFICANT VALUES FOR THE OVERTURNING MOMENT GIVEN ULS AND ALS 

FOR DIFFERENT THRESHOLDS. .................................................................................................................... 83 
TABLE 17: SENSITIVITY STUDY OF THE STORMS BY THRESHOLD. ......................................................................... 83 
TABLE 18: :O VALUES FOR ALL RESPONSES GIVEN DIFFERENT THRESHOLDS. ..................................................... 84 
TABLE 19: COMPARISON FOR THRESHOLD ANALYSIS OF ALS RESPONSES OF THE JACKET STRUCTURE. ............. 84 
TABLE 20: COMPARISON TABLE OF RESPONSES PREDICTED BY POT AND MODIFIED ALL SEA STATE. THE 

THRESHOLD IS 8 M. ..................................................................................................................................... 86 
TABLE 21: COMPARISON TABLE OF RESPONSES PREDICTED BY POT AND MODIFIED ALL SEA STATE. THE 

THRESHOLD IS 9 M. ..................................................................................................................................... 86 
TABLE 22: SCATTER DIAGRAM FOR ALL !" AND #$ VALUES. DATA IS OBTAINED FROM HINDCAST. ................. 94 
TABLE 23: MODIFIED SCATTER DIAGRAM FOR ALL !" AND #$ VALUES OVER THE THRESHOLD OF 8 M. DATA IS 

OBTAINED FROM HINDCAST. ...................................................................................................................... 95 
TABLE 24: CHARACTERISTIC CREST HEIGHT VALUES FROM THE LONG TERM ANALYSIS IN MODIFIED ALL SEA 

STATE APPROACH. THE CHARACTERISTIC VALUES ARE FOUND IN Q-PROBABILITIES ULS AND ALS. .......... 96 
TABLE 25: CHARACTERISTIC DECK DISPLACEMENT VALUES FROM THE LONG TERM ANALYSIS IN MODIFIED ALL 

SEA STATE APPROACH. THE CHARACTERISTIC VALUES ARE FOUND IN Q-PROBABILITIES ULS AND ALS. ... 97 
TABLE 26: CHARACTERISTIC OVERTURNING MOMENT VALUES FROM THE LONG TERM ANALYSIS IN MODIFIED 

ALL SEA STATE APPROACH. THE CHARACTERISTIC VALUES ARE FOUND IN Q-PROBABILITIES ULS AND ALS.

 .................................................................................................................................................................... 98 
TABLE 27: CHARACTERISTIC BASE SHEAR VALUES FROM THE LONG TERM ANALYSIS IN MODIFIED ALL SEA STATE 

APPROACH. THE CHARACTERISTIC VALUES ARE FOUND IN Q-PROBABILITIES ULS AND ALS. ..................... 99 
TABLE 28: SUMMARY OF CREST RESPONSE VALUES IN A POT APPROACH. ....................................................... 100 
TABLE 29: SUMMARY OF DECK DISPLACEMENT RESPONSE VALUES IN A POT APPROACH. ............................... 101 
TABLE 30: SUMMARY OF OVERTURNING MOMENT RESPONSE VALUES IN A POT APPROACH. ........................ 102 
TABLE 31: SUMMARY OF BASE SHEAR RESPONSE VALUES IN A POT APPROACH. ............................................. 103 
 

  



 X 

ABBREVIATIONS 
 

ULS – Ultimate Limit State 

 

ALS – Accident Limit State 

 

POT – Peak over threshold 

 

pdf – probability density function 

 

cdf – cumulative density function 

 

MoM – Method of Moments 

 

CoG – Centre of Gravity 

 

JONSWAP – Joint North Sea Wave Project 

 

DNV – Det Norske Veritas 

 

NCS – Norwegian Continental Shelf 

 

 

 

 

  



 XI 

NOMENCLATURE 
 

!! = Significant wave height 

 

 "" = Spectral peak period 

 

t = time 

  

 ## = Design load 

 

$# = Design resistance 

 

%$  = Partial safety factor for variable load 

 

&$  = Characteristic response for variable 

load 

 

%% = Partial safety factor variable for 

functional load 

 

&% = Characteristic response for variable 

functional load 

 

 %& = Partial safety factor for 

environmental load 

 

&& = Characteristic response for 

environmental load 

 

%' = Partial safety factor for deformation 

load 

 

&' = Characteristic response for 

deformation load 

 

 $( = Characteristic resistance 

 

 %) = Material factor 

 

rnd = Random number generator [0,1] 

 

 ""∗ = Corrected spectral peak period 

 

 '+!,"(ℎ, +) = Joint distribution of !! and 

"" 

 

 '+!(ℎ) = Marginal distribution of !! 
 

 ',"|+!(+|ℎ) = Conditional distribution of 

"" given !! 
 

 . = Mean of a population 

 

.) = Mean of modified populations 

 

 / = Standard deviation of a population 

 

/) = Standard deviation of a modified 

population 

 

/. = Variance of a population 

  



 XII 

//012"3 = Standard deviation for ln	("") 

 

 ./0	(2") = Mean of ln	("") 

 

37, 3., 38 = Coefficients 

 

47, 4., 48 = Coefficients 

 

q = Probability of exceedance 

 

 5 = Gaussian normal variable 

 

 597 = Inverse Gaussian normal variable 

 

 6:.:::7 = Radius in failure domain 

following probability of exceeding ALS 

value 

 

77 = Variable for marginal !! in standard 

Gaussian space 

 

7. = Variable for conditional "" in 

standard Gaussian space 

 

#" = Average steepness criteria 

 

m = Mass 

 

&̈ = Second derivative of the response 

 

c = Damping 

 

&̇ = Derivative of response 

k = Stiffness 

 

x = Response 

 

 :' = Relative damping 

 

": = Eigenperiod 

 

% = Peak enhancement factor 

  

;(+) = External load/force 

 

<) = Coefficient of mass 

 

<' = Coefficient of drag 

 

A = cross-section 

 

D = Diameter 

 

= = Density of sea water 

 

u = Water particle velocity 

 

7̇ = Water particle acceleration 

 

>$  = Gumbel distribution > parameter for 

response 

 

6$  = Gumbel parameter 6 for response 

 

3 = Instantaneous airgap 

 



 XIII 

3: = Still water air gap 

 

? = Wave elevation 

 

;<|+!,"@<|ℎ!, +", AB = 2-Parameter Weibull 

distribution (Forristall´s crest model) 

 

>= = > parameter in Forristall´s crest 

model 

 

6= = 6 parameter in Forristall´s crest 

model 

 

#7 = Steepness number 

 

C> = Ursell number 

 

"7 = Mean wave period 

 

"? = Zero-up crossing period 

 

g = Gravitational constant 

 

D7 = Wave number 

 

d = Water depth 

 

E8@ = Expected number during 3-hour 

 

;A#|((&|D) = Gumbel distribution of a 

response X in storm step m in storm k. 

 

;A|AB(&|&F) = Distribution of the response 

given the most probable maximum 

response  

 

GH = Storm´s most probable maximum 

response 

 

6 = Constant for a given threshold in the 

POT 

 

E!2C>D! = The number of storms over the 

threshold limit 

 

I = Wave event direction 

 

;A|E,FG)(&|J+KLM) = Maximum response 

for a given storm 

 

N@GOGHB = Sample mean in the POT 

 

P3L@GOGHB = Sample variance in the POT 

 

;!H(&F) = cdf of most probable maximum 

response 

 

> = Distribution parameter in 3-parameter 

Weibull distribution 

 

6 = Distribution parameter in 3-parameter 

Weibull distribution 

 

: = Distribution parameter in 3-parameter 

Weibull distribution 



 XIV 

.AB  = Mean of most probable maximum 

response (first moment) 

 

/
AB
. = Variance of most probable maximum 

response (second moment) 

 

Q7 = Skewness of most probable maximum 

response (third moment) 

 

;R((D) = Empirical probability distribution 

 

;A|+!,"(&|ℎ, +) = Distribution of response 

given all sea states 

 

;A(&) = Long term distribution of 

maximum response 

 

;A$%(&) = Long term distribution of all sea 

states 

 

SA$%@& > &IB = Relative contribution of 

sea states to the response. 

 

 

 

 

 

 

 



 1 

1. INTRODUCTION 
 

1.1 Background 

 

The Norwegian Continental Shelf has a harsh environment due to the extended coastline and 

the large fetch. This leads to the propagation of large wind developed waves. Therefore, the 

elements such as wind, waves and currents around the NCS will create an environment in 

which structures operating in these seas need to be designed to handle the elements. This 

means be designed to achieve a robust design against extreme loads and responses, including 

fatigue. 

 

Waves will govern the structural responses of most fixed structures. Therefore, the waves 

occurring in a storm and the responses associated with the structure need to be assessed to 

maintain a safe operating condition for the personnel, environment, and asset. Failing to 

address these extreme responses or loads, the outcome may lead to structural failure.  

 

The design of offshore structures follows the method: Load and Resistance Factor Design 

(LRFD). The LRFD method provides a combination of safety and economic efficiency when 

designing structures. The method uses load and resistance factors when considering the 

uncertainty regarding the load and resistance. The structural safety is satisfied if the design 

load, ## is less or equal to the design resistance, $#[1], seen in Equation 1–1: 

 

 

## ≤	$# 1–1 

 

 

The design load is categorized into several partial safety factors and characteristic responses, 

where the characteristic response is the q-probability exceedance response. The design 

resistance includes the characteristic resistance and a resistance factor, covering the material 

resistance in the structure[1]. From equation 1–2, the limit state design equation is introduced 

within different categories of loads: 
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%$&$ + %%&% + %&&& + %'&' ≤	
$(
%)

 1–2 

 

 

Where &$ , &%, &&, &' is denoted as the characteristic responses, and %$ , %%, %&, %' is the 

partial safety factors. The different categories are permanent load G, variable functional load 

Q, environmental load E, and deformation load D. From the design resistance, $( is the 

characteristic resistance and %) the material factor[1]. However, since only environmental 

loads are considered, the other partial safety factor and characteristics are set to zero. 

 

In this thesis, the focus will be on wave govern responses. Regarding characteristic responses, 

two criteria are implemented for design against overloads. The two criteria are ultimate limit 

state (ULS) and accident limit state (ALS)[2]. The target maximum exceedance probabilities 

associated with the limit states are 109. for ULS and 109J for ALS, respectively[2]. The 

target values are given as annual exceedance probabilities. 

 

 

 
Figure 1: Load level for the same system undergoing an abrupt change for an annual exceedance probability lower than 

ALS(10!")[3]. 

 

 

In a well-behaved system, seen in Figure 1, the partial safety factor for environmental loads 

will increase the characteristic value to correspond to the range of ALS, i.e., exceedance 

probability Y = 109J [3]. However, for a badly behaved system, the ULS partial safety factor 
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may be insufficient to cause the necessary robust design. An example of badly behaved 

systems is a severe wave-in-deck impact on fixed structures and green water on floating 

vessels. In such cases, ALS may govern the design of the load[3]. The partial load and 

material safety factor in an ALS structure check is typically set to 1. This implies no margin 

of safety beyond the characteristic response (Y = 109J) [1]. In ALS, one may utilize non-

elastic and system effects. In this thesis, the values corresponding to ULS and ALS will 

follow NORSOK[2] with the ULS value (Y = 109.) corresponding to a 100-year value and 

ALS (Y = 109J) corresponding to a 10.000-year value. 

 

The characteristic loads described above are accurately predicted by a long term analysis with 

specified target annual exceedance probabilities. All inherent variability must be included in 

the analysis. The uncertainties regarding the unknowns are covered mainly by partial safety 

factors[4]. Haver[4] and DNV[5] gives some of the most used long term analysis methods in 

the NCS, the all sea state method and the POT method. Another used method for the initial 

design is the contour line approach, in this thesis, the contours will be constructed; however, 

no response will be calculated from the extreme sea stats obtained on the contours.  

 

This thesis will focus on the POT. Analyses using POT will be thoroughly described. An all 

sea state approach will also be described, modified to only use the values over 8 m.  

 

By utilizing the POT approach, the characteristic values are defined as the annual probability 

of exceedance for the most probable largest maximum response in a storm[6]. Important 

responses for a jacket structure are airgap, deck displacement, overturning moment, and base 

shear. All responses mentioned are covered in this thesis. The storms used in the POT 

analysis are storms obtained from Hindcast data. The data is produced from a finetuned and 

mathematical model to give wave and wind data where measurements are unavailable. The 

reference site for the hindcast data is located in the Norwegian Sea and is seen in Figure 3. 

 

 

1.2 Objective 

 

The motivation for utilizing the POT to predict q-probability extremes is that the approach is, 

to a large extent, not adopted in the NCS as a design method. The POT is mainly used in areas 
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where severe hurricane events occur since it is believed that the hurricanes will give the 

largest respons[4]. In the NCS, 3-hour hindcast measurements are utilized as the design basis 

since hurricanes are not a common weather phenomenon in Norway. The POT can be used 

with hindcast data after a storm has been introduced. Previous analyses and comparisons 

between the POT and all sea state show that the all sea state is more conservative in the q-

probability estimates than the POT[4]. By adopting the POT as the long term analysis method, 

economic gains can be made without reducing the safety. This is the motivation for using the 

POT to predict the extreme responses of a jacket structure in this thesis. 

 

The aim of the thesis is to predict q-probability responses for a jacket structure. The q-

probability responses are obtained by a long term analysis utilizing the method POT and a 

modified version of the all sea state. The two methods will be compared for the q-probability 

responses. In addition to the all-sea state approach, relative contribution to extreme responses 

is found to investigate where more time-domain simulations are needed to better determine 

the long term distribution. The thesis will investigate the two long term analysis methods and 

evaluate if the all sea state is more conservative as seen in the literature[4]. 

 

The responses from the jacket structure are non-linear. This implies that time-domain 

simulations must be performed to obtain the correct short-term variability from the structure. 

Due to the structure's geometry, the waves are directed 270° on the structure to obtain most 

dynamics. No current is added in this thesis work. Usfos is the software used for the time-

domain simulations, while MATLAB is used for post-processing the data. 

 

 

1.3 Thesis outline 

 

The outline of chapter 2 – 9 of the thesis is described in the following sub-chapter. 

 

Chapter 2 starts with an introduction to the hindcast model and how the hindcast spectral peak 

period is corrected. From hindcast measurements, a joint model of the sea states !! and "" is 

obtained. Based on the joint model, contour lines are established. The hindcast is also used to 

obtain the joint distribution between significant wave height and spectral peak period for the 

long term analysis in chapter 7. 
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Chapter 3 gives the reader an introduction to the POT approach used in this thesis. A storm is 

defined based on the 3-hour measurements from hindcast data. The annual storms obtained 

over thresholds ranging from 7 m to 10 m are given. The storm data and annual storms are 

further used in the long term analysis using POT to predict extremes. 

 

Chapter 4 gives the reader an introduction to the jacket model used in this thesis. To increase 

the dynamic behaviour of the jacket, the deck mass has been increased. This is observed in the 

prediction of q-probability extremes. A summary of properties regarding the structure is 

provided. The deck displacement node where the response is measured is also given. The 

jacket structure is further used when the short term variability of the structure is obtained by 

simulating various sea states in a 3-hour time-domain simulation. 

 

Chapter 5 describes the simulation using the software Usfos. Background, useful functions, 

and settings to simulate the 3-hour time series are given. A comparison between two identical 

time series, where dynamic and static responses are described and compared, is also given. 

Further, the dynamic responses of the jacket structure when a linear crest and a second-order 

crest are compared are also seen. The chapter is included in order to help the reader 

understand the simulation of the responses using Usfos. 

 

Chapter 6 is devoted to the jacket assessment. An airgap analysis is included to obtain 

knowledge about the clearance between a second-order wave crest and the underside of the 

deck on the jacket structure. A grid with simulation points is given, and the maximum 

response values for each 3-hour time-domain simulation are fitted to a Gumbel distribution. A 

response surface is constructed with a spline function based on the Gumbel parameters for 

each simulated sea state. The response surface for all relevant responses is further used in the 

long term analysis part in chapters 7 and 8. 

 

Chapter 7 covers the long term analysis using a modified all sea state approach, where all sea 

states over 8 m are used. The example used is for the overturning moment. The relative 

contribution of sea states will be given for the. All responses are found in appendix C. The 

results obtained in this long term analysis will be compared with the POT. 
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Chapter 8 covers the long term analysis of the POT method. An example for calculating 

extremes is given for the overturning moment response. The thresholds used for defining 

storms are 8 – 10 m. 

 

Chapter 9 compares the results obtained from the long term analyses methods POT and 

modified all sea state. 

 

Chapter 10 gives insight into concluding remarks about the findings, with a section related to 

further improvements for future work. 
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2. WAVE DATA AND MODELLING 
 

In the offshore environment, the main concern regarding structures is waves and, in particular, 

large waves. The regulation states that the waves or other environmental actions shall be 

determined by extrapolating exceedance probabilities to obtain a characteristic value[2]. 

Therefore, a substantial amount of environmental data must be available for the specific 

location to obtain a long term analysis of sea states[2]. This is often problematic for sites 

where previously no measurements have been obtained. As a result, the hindcast database was 

established. The hindcast database produces data by running a numerical model. The 

numerical model is based on historical weather data, and the database is thoroughly validated 

against actual measurements[4]. 

 

At NCS, hindcast data have been adapted as the primary design data since 2010[4]. NORA10 

is a hindcast database covering the North Sea, the Norwegian Sea, the Barents Sea and the 

Eastern Atlantic with data over a 10 km spaced grid on x and y-direction over the total area 

covered. However, a hindcast database with a grid size of 3 km is now available; see 

NORA3[7]. The Nora10 database starts on the 1st of September, 1957, and continues to the 

present time, meaning nearly 65 years are presently available with data every 3-hours. In this 

thesis, data from 1957 to 2018 are used. The data output from the hindcast database is seen in 

Figure 2. 

 

 

 
Figure 2: Data contained in a hindcast database. 
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The data contained in the database for every 3-hours are: 

 

• Mean wind speed at the height of 10 m over the sea level and the corresponding mean 

direction of the wind[4]. 

• Significant wave height, spectral peak period, mean wave periods, and the peak 

corresponding wave propagation direction for wind sea. 

• Significant wave height, spectral peak period, mean wave period, and the peak 

corresponding wave propagation direction for swell. 

• Total significant wave height, the spectral peak period of the combination of wind sea 

and swells. The peak and mean direction of propagation of the resulting waves. 
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2.1 Hindcast dataset 

 

The hindcast data for the reference site used in the long term analysis is seen in Figure 3. The 

reference site is located at The Norwegian Sea with a Latitude of 67.05°	and a Longitude of 

7.00°. The dataset starts on the 1st of September, 1957, and ends on the 31st of October, 2018, 

and contains 178725 samples of !! and corresponding "" values with a data-sampling rate of 

3-hour.  

 

 

 
Figure 3: Map of hindcast location. Latitude 67.05, Longitude 7.00 in the Norwegian Sea. Obtained from Google maps. 

 

 

Simultaneous pairs of !! and "" are plotted by cyan circles in Figure 3. The resolution looks 

relatively poor for large "". This is due to the fixed resolution in terms of ab("") used by the 

hindcast model[4]. By inspecting the scatter plot in Figure 3, the lower values for "" yields 

reasonably good resolution. However, due to the poor resolution for the high values of "", 

some sort of correction method must be adopted. Values of !! has no recommended 

correction[4]. 
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Figure 4: Scatter plot of hindcast data, with uncorrected and corrected data compared in the same plot (total sea). 

 

 

Statoil (now Equinor) has made a correction method described by a Memo of Andresen and 

Mathiesen. The memo can be found in appendix D of Haver[4]. How to correct ""	will be 

given briefly below, but the scatter diagram with the corrected "" is shown by blue circles in 

Figure 4. The resulting scatter diagram looks rather similar to what is obtained from 

measurements. 

 

 The equation for correcting "" reads: 

 

 

""∗ = 3.224e:.:KL.L(M9:.L9>0#) 2–1 

 

 

TN∗ is given as the value of the spectral peak period after correction. The variable “rnd” is a 

uniformly distributed random number between [0,1] for each real value of "". Variable “i” is 

given: 
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g = LK7bA h1 +
ab i ""

3.244j
0.09525 l 

2–2 

 

 

Where "" is the actual values from hindcast data of the spectral peak period. 

 

 

2.2 Site-specific hindcast analysis 

 

The wave events in this thesis are “total sea”, and the total sea is a combination of wind sea 

and swells, given by the relation in equation 2–3. 

 

 

"K+3a	Je3 = 	m@!!,PM0#	!QRB
. + @!!,!PQ//	!QRB

.
 

2–3 

 

 

Helpful information can be extracted from the hindcast dataset by minor data investigation to 

evaluate the location. Some overall patterns regarding wave propagation for the selected 

offshore site are seen in Figure 5 and Figure 6. 

 

 

 
Figure 5: Wave propagation direction for all events in the hindcast dataset. Each bin is 30°. 
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Figure 6: Histogram of wave height and wave period comparing the percentage of occurrences per bin. Each bin is of a 

length scale of 1 unit. 

 

 

The wave directions of all events are seen in Figure 5 and include a rose diagram to obtain the 

direction relative to Figure 3. The bar diagram gives a more exact percentage of occurrences 

in each bin size. For example, from Figure 6, the dominant wave heights are between [1 m - 3 

m] when taking all events in, while the dominant peak period is between [6 s – 13 s].  

 

When estimating long term extremes, low sea states are often of little interest. For example, 

sea states lower than 6 m !! will never affect extremes at the actual site, but they still cover 

95 % of the data. More information can be extracted by adding a threshold to the data and 

inspecting the direction of the waves, the wave height and the peak period. The threshold 

applied to the data will help identify storms in this thesis. Based on wave data, the way to 

describe the sea state with reasonable accuracy is by a minimum two-parameter model.   
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2.3 Joint distribution of sea states 

 

The two parameters used to describe a sea state are significant wave height (!!), and spectral 

peak period (""). The two variables are described by a joint probability density function, 

which is obtained by the product of each probability density function of each variable. The 

joint distribution of all 3-hour sea states reads[3]: 

 

 

'+!,"(ℎ, +) = '+!(ℎ)',"|+!(+|ℎ) 2–4 

 

 

fS&(h) is the marginal distribution of HT and fU'|S&(t|h) is the conditional distribution of TN 

given HT. This represents the long term variability of the sea states. Both random variables 

will be obtained in this section for further use of the methodology in the modified all sea state 

approach.  

 

A scatter diagram is constructed based on the observed sea states in the hindcast dataset. 

The diagram can be seen for all 3-hour sea states in appendix A, and will be further used in 

the distribution of conditional TN. 
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2.3.1 Marginal distribution of !! 
 

In the marginal distribution of HT the values obtained from the hindcast data are fitted to a 

probabilistic model. The 3-parameter model is a frequently used model for the marginal 

distribution of !! [3], hence, a 3-parameter Weibull distribution will be used. The Weibull 

distribution reads with the parameters obtained by the method of moments and gives:  

 

 

;+!(ℎ) = 1 − e&s t−iℎ − 0.77972.0884 j
7..JL:

v ; ℎ ≥ 0.7797	M 
2–5 

 

 

The method of moments estimation of a 3-parameter Weibull will be further explained in 

section 8. The empirical distribution and the fitted model are given in Figure 7 of the hindcast 

data at the reference site, and the data fitting is displayed in a Gumbel probability axis to keep 

a linear scale for !! on x-axis.  

 

 

 
Figure 7: Marginal distribution of hs fitted with a 3-parameter Weibull distribution. 
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The 3-parameter Weibull seems to fit the data reasonably well in the tail, until the last three 

!! values. The model seems to be very conservative in the estimation of extremes. In the case 

of the sample being correlated, a further look into the three largest values deviating from the 

3-parameter Weibull distribution is performed. From Table 1, it is seen that the three largest 

!! values are not correlated. This raises a question about the conservatism of the 3-parameter 

Weibull distribution. 

 

 
Table 1: The three largest $# values in the sample. 

Significant wave 

height, yV [m] 

Spectral peak 

period, zW [s] 

Wave direction 

 [°] 
Date  

[dd-mm-yyyy] 

14.7 16.51  255 03-02-1992 

14.8 17.06 239 28-01-1989 

14.9 17.36 221 25-11-2011 

 

 

For example, the 3-parameter Weibull distribution is used on data from the Ekofisk area. This 

area generally has lower sea states compared to the Norwegian sea. The fitting of !! is seen 

in Figure 8. The tail of the sample distribution again indicates that the 3-parameter Weibull 

may be on the conservative side. The empirical distribution of both datasets gives the same 

increasing trend in the tail. This can again imply that the Weibull distribution is on the more 

conservative side of the marginal distribution of !!. 
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Figure 8: $# values from the Ekofisk area fitted with 3-parameter Weibull distribution and compared to the original sample 

from the Norwegian Sea. 

 

 

The extrapolated 100-year and 10.000-year return values for the marginal distribution, 

following a 3-parameter Weibull in the Norwegian Sea, are given in Table 2. 

 

 
Table 2: Significant wave height values for the 3-parameter Weibull when extrapolated to the design criterion. 

ULS [m] ALS [m] 

16.74 21.29 
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2.3.2 Conditional distribution of "" given !! 
 

The conditional distribution of "" follows a log-normal distribution[8], and the log-normal 

distribution reads: 

 

 

',"|+!(+|ℎ) = 	
1

√2|+//012"3(ℎ)
e&s }−12t

ab(+) − ./0	(2")(ℎ)
//012"3(ℎ)

v
.

~ 
2–6 

 

 

From equation 2–6, .(ℎ) and /(ℎ) are the expected value and the standard deviation of 

ln(""), given !!. Since "" is conditional on !!, the parameters . and / are calculated for all 

classes of !! from the scatter diagram. Smooth functions are fitted to the point estimates in 

order to extrapolate the population beyond the observed range. The smooth function´s 

parameters are obtained by applying curve fitting. Commonly adopted equations used to 

obtain a reasonable fit for mean and variance is presented in equation 2–7 and 2–8 [4]: 

 

 

. = 	37 + 3. ∙ ℎR$ 2–7 

 

 

/. = 47 + 4. ∙ e&s	(−48 ∙ ℎ) 2–8 

 

 

For this particular fitting, a fixed value for 47 was chosen. The reason is that the calculated 

value for 47 was negative. The best fit was obtained for 47 = 0.001, and this value is further 

used. It should be emphasised that the variance can never become negative. The line estimate 

with the population is seen in Figure 9, and the resulting parameters for the estimated lines are 

seen in Table 3. 
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Figure 9: Obtaining line estimate for the point estimate. This is done for parameters %(ℎ) and )(ℎ). 

 

 

Table 3: Parameters for the line estimate for % and )2. 

ÄX ÄY ÄZ ÅX ÅY ÅZ 

1.0443 0 0.2203 0.0010 0.0871 0.2360 

 

 

The conditional 90 % confidence interval for "" with the mean period of the population, is 

shown in Figure 10. By implementing ULS and ALS values for !! it is possible to find the "" 

value corresponding to the same probability of exceedance. The extreme values for "" are 

presented in Table 4.  
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Figure 10: The 90 % band for *% and the conditional mean from hindcast data from the reference site. 

 

 
Table 4: Extreme sea states obtained from all sea states. 

 Ç[	[Ñ] Ü\	á	%	[â] Ü\	Ñäãå	[â] Ü\	çá	%	[â] 

ULS (éè9Y) 16.74 16.77 18.26 19.88 

ALS	(éè9]) 21.29 18.93 20.21 21.57 

 

 

Based on the joint distribution '+!,"(ℎ, +) of !! and "", and of a known annual q-probability, 

contour lines can be constructed based on the IFORM method. 
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2.3.3 Contour lines 

 

The motivation behind utilizing the contour line approach is to obtain an approximation for 

the long term analysis by using only short term sea states[3]. Therefore, the contour lines can 

be a convenient tool to utilize when the short term response is rather complicated and must be 

performed for an extensive range of sea states [9]. Contour lines are an approach where the 

aim is to obtain a closed curve in !!-"" plane. All combinations along the closed curve will 

correspond to a given annual exceedance probability[4]. The method utilized in this thesis is 

based on IFORM methods obtained from the study field of structural reliability [10]. The 

approach uses short-term statics to obtain a relatively accurate estimate for the full long-term 

extremes[9]. This method is rather convenient when the structural response is complicated, 

i.e. time-consuming, in order to establish the short term conditional distribution for a 3-hour 

maximum response. The contour lines presented in this section are determined from the 

conditional density function, '+!,"(ℎ!, +"). 

 

The first step in constructing the contour lines is transforming the distribution of  !! and "" to 

the standard Gaussian space by utilizing a Rosenblatt transformation[11]. The joint 

distribution is given by a 3-parameter Weibull for !! and a log-normal distribution for "" is 

then transformed into standard Gaussian variables 77 = E(0,1) and 7. = E(0,1): 
 

 

5(77) = ;+!(ℎ!) 	⇔ 	77 = 597 ë;+!(ℎ!)í 

Φ(u.) = F,"|S&@+"|hTB 	⇔ 	u. = Φ97 iF,"|S&@+"|hTBj 

 

2–9 

 

It should be noted that the transformation results for 77 and 7. are uncorrelated. Since they 

are both Gaussian distributed, they are statistically independent[4]. 

 

The Rosenblatt transformation[11] of the variables !! and "" will for a given probability of 

exceedance, ULS and ALS, give circles in standard Gaussian space. The radius associated 

with the circles in standard Gaussian space is given with the constant 6. The radius of the 

circle given by 6 is in terms of annual exceedance probability, which means all 3-hour sea 
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states. In this case, the annual number is 2920 3-hour sea states in a year. If POT is used, the 

annual exceedance value is the number of mean storms per year. 

 

 

6:.:::7 = −597 t10
9J

2920v = 5.3951 
2–10 

 

 

The radius in standard Gaussian space is obtained from 6:.:::7 for ALS, as seen in equation 

2–10. This radius has a return period of 10.000-years, respectively. However, this is only a 

radius line, which has to be closed. The circle is formed by multiplying a vector, which has 

points making up a circle, [0 − 2|]. In standard Gaussian space, the circle will be in a closed 

form, with the radius corresponding to the target annual exceedance probability. The 

equations for the circle when ALS is the target exceedance probability is given in equation 2–

11 for 77 and 7. respectivly: 

 

 

77 = 6:.:::7 <KJ I 

7. = 6:.:::7 Jgb I 

2–11 

 

 

The circle obtained from equation 2–11 in standard Gaussian space is seen in Figure 11. 
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Figure 11: Obtained circle in standard Gaussian space for the variables +& and +'. 

 

 

The pairs of u7 and u. denoting points along the circle with radius 6 can further be 

transformed back into the physical !!-"" space. This is done by reversing the Rosenblatt 

transformation. For !! the 3-parameter Weibull the transformation will be: 

 

 

ℎ = : + >@− ab@1 − 5(77)BB
7

^ 
2–12 

 

 

The Rosenblatt transformation for "" will become: 

 

 

+ = e&s	(./01,"3 + //0	(,")7.) 2–13 

 

The result of the transformation into the physical !!-"" space is a continuously shaped figure, 

corresponding to all values of the annual exceedance probability chosen.  
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Figure 12: Transformation from standard Gaussian space to physical space with contour line corresponding to an annual 

exceedance probability of 10!". 

 

 

Three return periods are chosen to be displayed with the observed sample with !! and "". A 

DNV significant wave height limitation conditional on "" is also implemented[5]. The limit 

model is obtained from empirical measurements on the Norwegian Continental Shelf. The 

DNV average wave steepness criteria are given as[5]: 

 

 

#" =
2|	!!
ñ	""

 2–14 

 

 

Were #" is chosen based on whether "" is over or under the given boundary, otherwise the 

value for #" is interpolated between the boundaries. 

 

 

#" =
7

7L
	'KL	"" ≤ 8	J  

 

#" =
7

.L
	'KL	"" ≥ 15	J  
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The limit is thought by DNV to correspond to a 100-year return. This lets us expect the 

10.000-year return contour to be slightly outside the limit. The steepness is a limiting situation 

for "" ≤ 8	J, for larger "" values, the waves will not reach breaking dominated sea states. 

However, this can occur with sufficiently strong wind, resulting in waves outside the limit. 

 

 

 
Figure 13: Contour lines based on the joint distribution of $# and *%. The contour lines have an annual exceedance 

probability corresponding to a 100-year and 10.000-year return period. There are added DNV wave height limit to the 

contour plot. 
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3. Peak over threshold approach 
 

This chapter will introduce the long term method POT to the reader. It will start with some 

background theory in this chapter before proceeding to an example in chapter 8. Next, a storm 

will be defined based on the hindcast data for various thresholds, which will be used further 

for the example of using POT for extreme jacket responses. 

 

POT is a long term analysis method used to predict extreme responses. The method was 

initially applied to areas where severe sea states occur, such as hurricanes[4]. Hurricanes are 

the worst storms that will yield the most extreme responses that the structure will encounter. 

For this reason, the sea states between the hurricanes are not engaging in an extreme response 

analysis[4].  

 

As a basis for extreme analysis, all data must be independent. In a POT analysis, this is 

achieved by implementing a threshold. Several ways to reduce the storm data correlation have 

been implemented based on previous work. Tromans and Vanderschuren[6] describe two 

methods. The first method involves disregarding significant wave height data if the height is 

less than 30 – 40 % of the storm's largest significant wave height[6]. The second method 

involves breaking a storm into two separate parts if the trough between the two storm peaks is 

less than 80 % of the lowest storm peak height[6]. Using a minimum time between each 

storm, i.e., 24 – 48-hours, is also a way to reduce the correlation[12]. Any storms within this 

time will be disregarded. A sensitivity study on both threshold and time between two 

consecutive storms should always be done to find the optimal threshold and time between 

storms. 

At the Norwegian Continental Shelf, a general threshold limit is used but is not limited to 

values between 7 - 9 m[13]. 

 

In the POT, the storm should be treated as a random event[6]. This is different from previous 

response analysis methods, i.e., the all sea state approach where 3-hour sea states are treated 

as a random event and characterised by a significant wave height and a spectral peak period. 

In the POT, the target variable is storm maximum response. One extreme response per storm 

will make the involved observations less correlated[13]. This is very different from the all sea 
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state approach, and the trade-off of adopting the POT approach is fewer data. The summary of 

storms by increasing the threshold is seen in Table 5. 

 

The response problem analysed follows a Gumbel distribution, and the response is denoted X. 

However, this is not limited to one distribution. 

 

A storm sample is further established from hindcast data at the reference site. The data 

sampling rate in NCS is 3-hour. The threshold is selected based on sensitivity study or 

extensive knowledge about the area. The storms are modelled as a sequence of 3-hour 

stationary steps where environmental data is known for each step. In this example, it is 

assumed that the response is following a Gumbel distribution, calculated for each storm step 

m, in storm number k. with known parameters >, and 6,. 

 

 

;A#|((&|D) = e&s ó−e&s ò−
& − >,#,)
6,#,)

ôö 
3–1 

 

 

Assuming statistically independent data for each storm maximum step, this leads to the exact 

storm distribution of the response: 

 

 

;A)|((&|D) = 	õóe&só−e&s ò−
& − ,,#,)
6,#,)

ôöö
D)

D_7

 
3–2 

 

 

The storm maximum distribution is obtained from each storm (3–2), and then the most 

probable maximum response GH, can be calculated as the pdf reaches maximum 
`=*+|+1xak3

`b+
=

0. As long as the exact distribution (3–4) is closely following a Gumbel distribution, the most 

probable maximum GH is given as the storm's most probable maximum response and is 

estimated for each storm when the distribution is equal to the quantile e97. 
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The conditional distribution of storm maximum response X, given the most probable 

maximum GH, is the short term variability and is here approximated by the Gumbel 

distribution: 

 

 

;A|AB(&|&F) = e&s û− e&s ü−& − &F6&F †° 
3–3 

 

 

The 6 value is estimated for each storm as long as the variance for the exact storm is known. 

The value will fluctuate as the storms are different from the previous. A value of 6 is 

calculated for the selected threshold, and this mean-6 is assumed to be equal for all storms in 

the selected threshold[13]. 

 

GH (mpm), is described by fitting a probabilistic model to the sample obtained of GH. This is the 

long term distribution of X£ and is given by 'AB(&F). The long term distribution of the response 

is obtained when the integral in equation 3–4 is solved. The long term distribution of the 

response reads: 

 

 

;A(&) = § ;A|AB(&|&F)'AB(&F)A&F
c

:

 
3–4 

 

 

Based on the long term distribution of response, q-probability values can be calculated by 

solving equation 3–5: 

 

 

1 − ;A(&) =
Y

E!2C>D!
 3–5 
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Where q is the probability of exceedance and E!2C>D! is the annual number of storms over the 

threshold. 

 

 

3.1 Storms 

 

A storm is defined by Tromans & Vanderchuren[6] as a continuous period where the sea 

states will increase beyond a threshold of say !! = 9	M to a maximum during the 

development phase. Then, from the maximum, the storm !! will decay until it goes under the 

selected threshold limit. An example of this is a storm taken from the dataset with a threshold 

that starts its development phase at 9 m. This is seen in Figure 14. Each event is assumed to 

be stationary for 3-hours, and the step function has environmental data for each 3-hour step. 

 

 

 
Figure 14: A random storm extracted over a threshold of 9 m. 

 

 

From the hindcast dataset, storms have been extracted for the various thresholds. Table 5 

displays how many events of 3-hour storms and mean storms per year occur in the dataset 

over the pre-defined threshold limit at the specific location. 
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Table 5: Storms and storm events extracted over various thresholds. 

Threshold 7 [m] 8 [m] 9 [m] 10 [m] 11 [m] 

All 3-hour 

events 
3841 1774 803 328 136 

All storms 

events 
770 436 224 110 49 

Storm 

events per 

year 

12.61 7.14 3.67 1.80 0.80 

 

 

By selecting a threshold, the main incoming direction of waves over the threshold will be 

slightly different for all 3-hour wave events. This is also true for the significant wave height 

and the peak period. For example, the direction for the wave events with wave heights 

between 8-10 m, 10-12 m and >12 m are given in the polar plots in Figure 15. It is seen that 

the larger waves from Figure 15 do come from the same direction. 

 

 

 
Figure 15: Polarhistogram of wave direction with different wave heights as the input parameter. 

 

 

If a threshold of 8 m is defined, the corresponding wave height at this threshold will count for 

50 % of the wave height, as shown in Figure 16. Lastly, the peak period of the events over the 

threshold of 8 m has mainly a period of [13 s – 15 s] for over 50 % of the events. 
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Figure 16: Histogram of wave height and wave period comparing the percentage of occurrences per bin. Each bin is of 

length scale 1 unit, with an 8 m threshold. 
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4. JACKET STRUCTURE 
 

There are different offshore structures, both floating and fixed, used worldwide. In this thesis, 

the jacket is the structure of interest. The jacket is a fixed structure with a welded tubular 

frame. It is fixed into the sea bed by driven piles through the substructure into the seabed. 

These piles are permanent solutions to hold the jacket structure into its original placement on 

the seabed. The deck is often installed after the structure has been installed[14]. The jacket 

structure is mainly used in areas where the water depth is < 150 m. However, this is not 

always the case. For example, the jacket structure Bullwinkle in the Gulf of Mexico, owned 

by Shell, is seated at a depth of 529 m[15]. On the NCS, jackets are among the most 

frequently used fixed structures. Due to its relatively large dynamics, the most known jacket 

structure in these waters is probably the Kvitebjørn jacket structure[16], which is operated by 

Equinor and installed at a water depth of about 190 m. 

 

This thesis examines an example jacket used in about 110 m water depth to wave conditions 

in deep water found in the Norwegian Sea. The depth is somewhat inconsistent. The thesis 

aims to determine the adequacy of response analysis by the POT method. This chapter will 

mainly cover the structure and the structural properties. The structure described in this chapter 

will be used in all analyses in later chapters. 

 

 

4.1 Model 

 

The jacket structure in Figure 17 and Figure 18 is a realistic structure from the North Sea[17]. 

The information about this structure is obtained from Usfos[17]. The jacket structure consists 

of eight legs, with the leg arrangement being two by four, making it a rectangular shape. The 

jacket`s bottom foundation has four clusters in each corner, consisting of eight skirt piles in 

each cluster. The dimensions at the mudline of the structure are 56 x 70 m, while the top has 

the dimensions of 27 x 54 m. The structure`s height is 142 m, with five horizontal bracings 

levels. The support used for this jacket is a mix of X and K bracings. This particular structure 

is considered fit to operate in water depths of around 110 m[17]. Therefore the water depth in 

this thesis is chosen to be 110 m. 
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On top of the jacket structure, there is a support frame consisting of trusswork beams. The 

arrangement of the beams is two longitudinal trusses and four transverse trusses. The overall 

dimensions of this module are 27 x 68 m with a height of 9.75 m. For the thesis, the deck 

weight has been increased. This is in order to increase the eigenperiod of the structure and the 

dynamics for the example jacket, given that the structure itself is a quasi-static structure. The 

“top side” has been modelled with extra weight on the support frame. The extra weight has 

been added in a uniform “x” shape to not disturb the balance of the structure in waves. A 

summary of the jacket structure information is given in Table 6, while a more detailed side 

and front view of the structure is seen in Figure 18. 

 

 
Table 6: Summary of information regarding the jacket structure used in this thesis[17]. 

 Jacket structure Modified jacket structure 

Total height 142 m 142 m 

Total mass 9720.5 Tons 15230.7 Tons 

Water depth 110 m 110 m 

Number of legs 8 8 

Leg diameters 1.6 – 3.0 m 

(Top – bottom) 

1.6 – 3.0 m 

(Top – bottom) 

Overall dimentions top 27 m x 54 m 27 m x 54 m 

Overall dimentions bottom 

(mudline) 

56 m x 70 m 56 m x 70 m 

CoG z-dir -53.218 m -21.393 m 
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Figure 17: Jacket structure replica from the North Sea. The structure is in the Usfos software. 

 

 
Figure 18: Front and side view of the jacket structure. 

  



 34 

Damping is the structure's way of reducing oscillations after a response has been 

implemented. If the system is under-damped, the oscillations will decrease with time [18]. 

According to Ove T. Gudmestad[18], offshore structures are under-damped by nature. 

 

The damping of the structure is obtained from solving the equation of motion for a free 

damped system. For a linear system, it is relatively easy to perform free vibration analysis, 

and this can be done by solving free the damped vibration. The jacket structure is analysed by 

a non-linear load. If the jacket structure is undergoing extreme conditions, i.e., large waves, 

drag load may dominate. This is best solved by a time-domain analysis. 

 

The general damping of fixed systems will be around 2-3 % of critical damping[18]. 

However, this is a general value and may not suit every structure. In this thesis, the structural 

damping of the jacket structure is set to 1 % of the critical damping. There is also 

implemented hydrodynamic damping in terms of relative velocity. 

 

The water depth will highly influence the stiffness of a jacket structure. This will again affect 

the eigenperiod of the system by the relation of •:. The mass tends to increase as more 

equipment is loaded onto the topside. Hence the period may deviate from the original 

prospect.  

 

 
Table 7: The two first eigenmodes of the jacket structure. The periods are obtained from USFOS with added gravity. 

Eigenmode Model [s] Model (added weight) [s] 

Mode 1 (bending in x-dir) 0.5601 1.2369 

Mode 2 (bending in y-dir) 0.5391 1.1126 

 

 

To increase the structure’s dynamic, weight was added to the top support frame. The weight 

was added centred. By increasing the deck mass, the eigenperiod increased as expected, and 

this can be seen in Table 7. However, due to the realism in the model, it was chosen not to 

further increase the loads on the support frame. 
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4.2 Deck displacement node 

 

The deck displacement response in a jacket structure is vital to understanding the behaviour. 

The jacket structure is slender and stiff, meaning wave-in-deck phenomena can cause 

dangerously large deck displacement if this is not counted for. Therefore, the deck 

displacement measurement point is taken at the centre node of the support frame on the jacket 

structure. The node 145 where the displacement is measured is marked as a red ring, as seen 

in Figure 19. 

 

 

 
Figure 19: Deck displacement measurement on node 145. 
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5. USFOS SIMULATION 
 

Before simulating sea states, some sort of non-linear simulation software must be introduced. 

The software used to obtain the responses from structures in simulated sea states is named  

Usfos and is from the company DNV. This chapter will introduce time-domain simulations 

with the relevant wave theory, which will be used to simulate the surface elevation to obtain 

the non-linear responses of the jacket. 

 

Usfos is a software for assessing non-linear static and dynamic analyses of structures[19]. The 

software analyses integrity assessment, collapse analysis, extreme load analysis, and more. 

Usfos can do fast time-domain simulations due to smart functions implemented in the 

software. This thesis uses the software to obtain dynamic responses from the jacket by 

collecting the maximum response obtained in many different sea states for each 3-hour 

realization. 

 

 

5.1 Time-domain simulations 

 

To obtain a dynamic response, the equation of motion has to be solved in time. The equation 

reads from equation 4-1[2] for a system with one degree of freedom (DOF). However, more 

DOFs are usually solved, and the parameter for mass, damping, and stiffness will be in a 

matrix format. 

 

 

M&̈(+) + <(&, &̇)&̇(+) + D(&, &̇)&(+) = ;(+) 5–1 

 

Where: 

m is the system's mass, including added mass if relevant. 

<(&, &̇) is the system damping for the given DOF. 

D(&, &̇) is the system stiffness for the given DOF. 

F is the external force contributing to the response. For a slender structure, this force is the 

Morison equation. 

x is the response with its derivatives &̈ and &̇. 
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As seen from equation 4-1, on the left-hand side, is the response from the jacket structure, and 

on the right-hand side, is the external forces. The Morison equation is usually adopted as a 

loading formula for a jacket. The response considered in this thesis is deck displacement, 

overturning moment and base shear[20]. 

 

The equation of motion can be solved with various solvers to obtain a solution. Some 

numerical integration techniques that can be chosen in Usfos are Newmark-6, direct and 

predictor-corrector [21]. 

 

From Haver[4], the direct approach is solved. From equation 4-1, the assumption is that the 

system is of linear nature. To solve this directly, one assumes the known position of the 

response &M = &(+M) simultaneously with &̇M and &̈M and 'Md7 = '(+Md7). Utilizing this 

knowledge, it is possible to obtain the response &(+Md7) for +Md7. The equation for the dynamic 

equilibrium of motion at + = +Md7 reads[4]: 

 

 

M&̈Md7 + <&̇Md7 + D&Md7 = 'Md7 5–2 

 

 

The equation is solved directly with initial conditions. In this case, the initial condition is + =
+M for solving the response at time + = +Md7. Furthermore, some assumptions need to be 

included to obtain the solution to the response. The timestep (∆+) between +M and	+Md7	must be 

small for the acceleration between the points to be constant and averaged, and in order to 

yield a reasonable accuracy of the solution[4].  

 

A step-by-step guide for solving responses for a jacket structure follows[4]: 

 

1. Construct irregular linear waves with various !! and "" from a JONSWAP spectrum 

with % =2. The simulation duration is 10800 s, 3-hours, which is the standard 

measurement in The NCS for waves. It may be necessary to add a start-up time. 

 

2. Calculate the wave kinematics from the generated waves exposed to the structure. To 

obtain the best accuracy, the kinematics should be calculated at the actual surface 
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elevation of the wave. 

 

3. Calculate the loads for each timestep of the simulated sea surface process. For 

example, the load vector is obtained from the Morison equation. 

 

4. Solve the equation of motion based on the load vector obtained in step 3. The time 

solving the equation of motion is based on the requirement of solving the damping and 

stiffness for each iteration. 

 

 

5.2 Wave generation 

 

Waves are generated and sent towards the structure to obtain a structural response according 

to the interaction between the waves and the structure. The waves will increase the structural 

response based on the significant wave height and the spectral peak period. A wave is 

described by different mathematical expressions, where a linear wave is the most basic way to 

describe a wave. Other wave theories, more often applied in engineering, is a second-order 

wave or Stokes 5th. 

 

Different wave theories can describe the surface elevation in Usfos[22]. For example, first-

order and second-order waves can be chosen to describe the irregular wave elevation in a 

dynamic time-domain simulation. For a regular wave, the Stokes 5th wave can be selected. 

 

The linear wave will not be the correct choice of theory to imitate the natural waves. A wave 

found in nature will never have the exact distance between the troughs and crests as linear 

waves do. By selecting a second-order theory for the waves, the waves will have a higher 

crest than the trough. A second-order wave is typically accepted as accurate for engineering 

design purposes, say, obtaining the short term response of a structure[20]. 

 

This thesis chose simple linear waves to describe the surface elevation. An argument is that 

this will reduce the computational time for the time-domain simulations. The trade-off is the 

accuracy that a second-order wave gives. However, as an improvement of the standard linear 

theory, which will not display any wave kinematics over the still water line (z = 0), Usfos has 
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built-in wave extrapolation. The extrapolation is a stretched Airy theory, also named Wheeler 

stretching. The wave kinematics calculated at the still water-line is extended to be calculated 

at the true surface elevation. The kinematic profile down to the seabed is stretched as needed. 

A graphic display of how Wheeler stretching works is seen in Figure 20. 

 

 

 
Figure 20: True Wheeler stretching on a linear wave. The two graphs are from the same time-domain simulation of different 

waves. The waves are negative due to the orientation of the coordinate system. 

 

 

The linear waves with Wheeler stretching are under estimating the maximum crest, hence, the 

structural response will be underestimated for a jacket structure. The under-estimation of the 

crest height between a Rayleigh 3-hour maximum crest model fitted from the population and 

a Forristall second-order crest is seen in Figure 21.  
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Figure 21: Rayleigh linear crest versus Forristall second-order crest model. The simulated seeds from the time-domain 

simulation are added using the same sea state. 

 

 

The observed 3-hour maximum crest height from simulations fit the Rayleigh crest model 

reasonably well, as expected since the 3-hour maximum crest heights are simulated with 

linear wave theory. However, the difference between the Rayleigh and the Forristall models is 

relatively significant. This emphasizes that the linear waves will underestimate the response 

by a rather large quantity. By inspecting the maximum observed crest height, it is seen that 

the value for a Forristall second-order crest would be roughly 21.45 m. This means an 

increase over the linear crest by as much as 21.87 %. Similarly, for the smallest observed 

value, equal to the Forristall model, the crest will be 16.05 m. The increase in percentage 

between the smallest observed value and Forristall is 18.19 %.  A Summary of the largest and 

the smallest observed population and the corresponding value for the Forristall crest model is 

given in Table 8: 
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Table 8: Summary of the observed population (linear crest) versus a Forristall second-order crest model. The sea state is 

$# = 16	0 and *% = 19	2. 

 Observed 

population, linear 

model 

Forristall second-

order crest model 

Difference 

Minimum crest 13.58 m 16.05 m 18.19 % 

Maximum crest 17.60 m 21.45 m 21.87 % 

 

 

It should be mentioned that second-order wave kinematics would be preferred over any 

extrapolation methods. In the later versions of Norsok N-003 (2017), it is recommended not to 

use the Wheeler stretching in combination with linear waves[4]. 

 

Usfos can choose irregular waves based on spectrum and linear wave theory or alternatively 

second-order wave theory to obtain more realistic waves. In Norway, a generalized version of 

the Pierson-Moskowitz spectrum, called JONSWAP, is the preferred wave spectrum for the 

short term variability of the sea states[5]. The JONSWAP spectrum was the recommendation 

of the Joint North Sea Wave Project (JONSWAP)[23]. Although the spectrum is obtained 

from observing the growing wind sea in the south of the North sea, the spectrum does not 

account for swells. The equation for calculating the JONSWAP spectrum in a simplified 

format reads: 

 

 

Jee(') = 0.3125ℎ!.+"9J'9L e&sß−1.25+"9J'9J® (1

− 0.287 ab(%))%
Qf"g9:.Lh

i9i"
ji"

k

-
l

 

5–3 

 

 

Where '" =
7

2"
 and / = 0.07 if ' ≤ 	'", otherwise 0.09. 

 

The peak enhancement factor % is often calculated as[24]: 
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% = 42.2 t2|ℎ!ñ+".
v
m

n

 

5–4 

 

 

From the equation, ñ = 9.81 D

!-
 is the gravitational constant, !! is the significant wave height, 

and "" is the spectral peak period. 

 

An example of a JONSWAP spectrum can be seen in Figure 22, where % has been decided 

based on equation 5–4. 

 

 

 
Figure 22: JONSWAP spectrum for $# = 14.9	0, *% = 16.4	2 and 5 = 2.4 

 

 

Irregular linear waves are used for the time simulation in Usfos. The JONSWAP spectrum 

used to generate the waves have a  % = 2. The equal areal method has been used to distribute 

the different frequencies in the spectrum. A total of 300 frequencies have been selected 

between the period " = 2	J and " = 25	J.  
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5.3 Load govern response 

 

The wave kinematic obtained from the generated waves in a time domain simulation is used 

to determine the load on the structure. The jacket structure is classified as a slender 

structure[4]. Therefore, the drag term is essential for slender structures interacting with waves 

as part of the hydrodynamic loading[4]. Slender structures are categorized into sub-classes 

regarding predicting extreme responses, namely quasi-static and dynamic behaviour. The 

quasi-static behaviour occurs for a jacket structure in water depths of roughly < 150 m[4]. For 

a structure with a low eigenperiod, say < 2 s, the mass and damping term can be neglected 

while solving the equation of motion. As a result, the equation of motion will reduce to the 

following: 

 

 

&(+) = 	;(+)D  
5–5 

 

 

The structure's dynamic effects may be important for increased water depth and consequently 

increased eigenperiod. However, when the structure goes from quasi-static to dynamic is 

rather vague[4]. 

 

For a jacket structure in more considerable water depths and a higher eigenperiod, say 4-5 

s[16], the mass and damping term can no longer be neglected. This results in the equation of 

motion having to be fully solved in the time domain with the proper drag load[4]. In this 

thesis, the jacket behaves quasi-static due to the low eigenperiod even with the increased deck 

mass. Regardless of the quasi-static behaviour, it is still chosen to use time-domain 

simulations to illustrate the method. 

 

Due to the slender construction, the classes described will have the hydrodynamic loads 

applied from Morrison´s equation. The load will act per unit length on the structural members. 

The equation reads: 

 

 



 44 

;(©, +) = 	 <)=™(©)7̇(©, +) +
1
2 <'=´(©)7(©, +)|7(©, +)| 

5–6 

 

 

Where <) is coefficient of mass, <' is coefficient of drag, = is the density of sea water, A(z) 

is the cross-section of the member, D(z) is the diameter of the member, 7(©, +) is the water 

particle velocity, and 7̇(©, +) is the water particle acceleration. 

 

However, the Morison equation will only be valid if the wave length is larger than the 

member´s diameter. This is such that the water is not disturbed by the refraction of the wave 

as it flows through the member[4]. For the response problem of the jacket structure in this 

thesis, the following values for the coefficients have been used. 

 

 
Table 9: Overview of the chosen coefficients in the Morrisons equation for 7( and 7) 

Drag coefficient ¨o Interia coefficient ¨p 

1.20 1.20 
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5.4 Spool to a peak elevation 

 

A long term response analysis requires a significant amount of time-domain simulations for 

various sea states of a non-linear load on a structure. This means that the time it will take to 

generate all those time series will often take too long. In Usfos, however, a built-in function 

called spool wave is implemented. The user put in the simulation duration, 10800 s, which is 

3-hour. During this duration, the peak or the most significant wave is unknown. However, 

Usfos searches for the largest surface elevation in the entire period instead of simulating the 

beginning obtaining responses of no interest regarding extreme responses. The simulation is 

spooled to a time before the largest peak, set by the user. This is described graphically in 

Figure 23. The time-domain simulation is executed through the most significant peak, and the 

structural response captures. This function can be performed for the five most significant 

wave realizations in the time series. If the fifth largest peak is desired, then the spool to wave 

function will be re-executed five times, where each iteration will reduce the wave until the 

fifth largest is obtained. 

 

 

 
Figure 23: Spool wave function found in Usfos software. A graphic description of how the function works[25]. 

 

 

The spool wave function must have an extensive time before the peak, in order for the 

structure to have all its dynamics accounted for. This will become very important for 

structures with a large eigenperiod, and the time before the peak must therefore be increased. 

On the other hand, the dynamics will settle fast for a jacket structure with a low eigenperiod; 
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thus, the time before the most significant peak can be reduced. For the jacket response 

problem in this thesis, the time before the peak was set to 80 s. This time should be more than 

enough regarding the low eigenperiod of roughly 1.24 s. This statement has not been further 

investigated, but no evidence from the time domain simulations showed that this number was 

too low for this particular structure. 

 

It must be said that this function has added uncertainties regarding obtaining the maximum 

response from the maximum wave elevation. We say that the largest response is obtained 

given the largest elevation with this function. However, this is not always the case. For 

example, it might be that the second-largest wave gives the largest response due to the 

difference in wave period. As a result, the largest wave elevation might underestimate the 

result. To increase the reliability of obtaining the largest response, run the simulation for the 

five largest wave elevations and find where the largest response occurs. 
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5.5 Dynamic and static behaviour of responses 

 

A test has been performed in order to check the responses obtained by the time domain 

simulations by Usfos. Due to the low eigenperiod of the jacket structure, the dynamic and 

static responses should be close in value. Usually, the dynamic responses are the largest 

among the time-domain simulations. Therefore, an investigation has been made to verify the 

responses with dynamic effects active and disabled. When the dynamics are disabled, only 

static responses are obtained. The differences between the dynamic and static time series are 

seen in Table 10 and are graphically displayed in Figure 24. 

 

 

 
Figure 24: Comparison of dynamic and static deck displacement. The three figures display a dynamic second-order 

response, dynamic linear response and static linear response. The linear responses have also Wheeler stretching. 
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Table 10: Differences between dynamic and static simulations of the same sea state and seed. 

 
Dynamic Static Difference [%] 

Deck displacement [m] 0.0838 0.0791 5.94 

Overturning moment [Nm] 6.7077e+09 6.4809e+09 3.49 

Base shear [N] 4.5607e+07 4.4336e+07 5.18 

 

 

A simulated dynamic time series where the waves were of the second-order was also 

performed, which is seen in Table 11. This was done to obtain a more realistic crest than the 

linear wave with Wheeler stretching. The differences can be seen in this particular sea state. 

However, the difference may change for other sea states. 

 

 
Table 11: Differences between dynamic responses simulated with a second-order wave theory and simulation performed with 

linear waves + Wheeler stretching. The sea state and seed are the same for both. 

 
Dynamic 

(2nd order) 

Dynamic 

(linear + stretching) 

Difference 

[%] 

Deck displacement [m] 0.1299 0.0838 55.01 

Overturning moment [Nm] 9.3232e+09 6.7077e+09 38.99 

Base shear [N] 6.0042e+07 4.5607e+07 31.65 

 

 

The time series of surface elevation for linear and second-order for this simulation sea state is 

seen in Figure 25. The crest of a second-order wave has a higher peak and is sharper in shape 

than a linear wave with Wheeler stretching. 
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Figure 25: Surface elevation for second-order wave and linear wave + Wheeler stretching. 

 

 

The difference between dynamic and static responses for the same wave elevation is on par 

with reasonability. The highest response values were obtained with dynamic activated on the 

structure. However, the static responses were underperforming the response values by 3-6 %, 

given in Table 10. 

 

Based on Table 11 and Figure 25, the linear wave + Wheeler stretching is underestimating the 

values for the short term variability of the responses. The responses obtained for second-order 

wave elevation are 30-55 % higher than linear waves + wheeler stretching. As a result, the 

approaches to estimate the long term responses with the target exceedance probability will 

underestimate the extreme responses. Simulating all responses with the second-order wave 

will give a more reasonable short term response surface than linear waves + Wheeler 

stretching. 
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6. JACKET ASSESSMENT 
 

This chapter describes how the 3-hour maximum deck displacement, overturning moment and 

base shear responses obtained from the jacket structure are fitted to a Gumbel distribution. 

Based on the response fitting, the Gumbel distribution is adequate to be used. The Gumbel 

parameters, location and shape are constructed into a response surface to be further used in 

the long term analysis sections. The main objective of this chapter is to obtain the short term 

variability for airgap and the response surfaces from the short term variability of 3-hour 

extremes. 

 

The time-domain simulations have been performed with Usfos, with the structure introduced 

in chapter 4. Due to the jacket structure's rectangular shape, the waves were sent at an angle 

of 270° to obtain the most dynamics possible. 

 

 

6.1 Airgap analysis 

 

Airgap assessment is an important topic for a jacket structure. The jacket deck should go clear 

a 10.000-year crest height. A long term analysis of crest height is therefore needed. The short 

term crest model used in this assessment is a Forristall second-order wave crest[26], meaning 

it is more realistic than the linear model used to obtain responses from the jacket structure. 

 

In an offshore environment, the still water air gap 3C is given as the distance between the still 

water line and the underside of the structure's deck. The waves will contribute to an 

instantaneous airgap	3(&, ≠, +), which is affected by the wave motions where the airgap will 

change with the wave elevation ?(&, ≠, +), hence, being different from 3C [27]. A fixed 

structure has no heave direction response due to the seabed's fixed position. There will not be 

any relative wave elevation for bottom fixed structures. The equation for instantaneous airgap 

reads: 

 

 

3(&, ≠) = 	3:(&, ≠) − ?(&, ≠, +) 6–1 
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The instantaneous airgap must be positive, which indicates that the wave crest is not hitting 

the deck. By a negative instantaneous airgap, the wave crest is higher than 3C, and leads to a 

wave-in-deck event.  

 

The wave crest heights follow Forristall's second-order wave crest model[26]. A long term 

analysis is performed using a POT approach and a modified all sea state approach. The air 

gap is investigated against the crest height of design characteristics and is defined by annual 

exceedance probabilities of 109. and 109J [2]. The return period of these probabilities equals 

100-year and 10.000-year wave crest heights. 

 

Based on the second-order wave theory and many time-domain simulations of waves in 

various depths and steepnesses, Forristall[26] proposes a probabilistic model for the crest 

heights based on his findings. The model is proposed as a two-parameter Weibull. The model 

reads from equation 6–2: 

 

 

;<(<) = 1 − e&s Æ−i <
>= 	ℎ!

j
^.
Ø 	 6–2 

 

 

The parameters >= and 6= in the Forristall wave crest height distribution[26] are functions of 

steepness #7 and the Ursell number C>. The functions for steepness and the Ursell number 

relate to how the water depth influences the non-linearity of the waves[4]. 

 

From DNV[5], the steepness number is given: 

 

 

#7 =	
2|	ℎ!
ñ	+7.

 
6–3 

 

 

Where g is the gravitational constant, "7 is the mean wave period, and !! is the significant 

wave height. Further, "7 reads: 
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"7 =
M:

M7

 6–4 

 

 

The value of "7 will change depending on which wave spectrum is followed. This is due to 

the definition of M:, and M7 which is given in equation 6–5: 

 

 

∞0 = § '0	#(')A'
c

:

	'KL	b = 0,1,2, … 
6–5 

 

 

If the data follows a JONSWAP spectrum[23],  "7  and "? can be related to the peak period by 

using the approximations given in equations 6–6 and 6–7 from DNV[5]:  

 

 
"7
""
= 0.7303 + 0.04936% − 0.006556%. + 0.0003610%8 

6–6 

 
"?
""
= 0.6673 + 0,05037% − 0.006230%. + 0.0003341%8 

6–7 

 

 

However, this is only valid if % is in the interval [1 ≤ % < 7] [5]. 

The % value represents the peak shape factor in the JONSWAP spectrum. With a % = 2 into 

equation 6–6 and 6–7, "7 and "q is found numerically: 

 

 

"7 = 0.805684"" 	≈ 0.806"" 

 

"? = 0.7457928"" ≈ 0.746"" 
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The Ursell number is defined in DNV[5], from equation 6–8 as: 

 

 

C> =	
ℎ!

D7.	A8
 

6–8 

 

 

Variables included in the Ursell number are the significant wave height !!, water depth d, and 

wavenumber D7. The wave dispersion relation must be solved to find D7. The linear 

dispersion relation is valid for 2nd order nonlinear waves. This is because the wave celerity in 

a second-order wave theory is equal to small-amplitude wave celerity, e.g., linear wave. 

 

The dispersion relation to solving for the wavenumber is given in equation 6–9 and in 

DNV[5]: 

 

 
2|
+7
= ñ	D7	+3bℎ	(D7	A) 

6–9 

 

 

Where, "7 is the mean wave period given in equation 6–6, g is the gravitational constant, D7 is 

the wave number and will be solved by iterating several numbers to find D7 which will make 

both sides equal, and water depth d. 

 

When numbers are obtained for Steepness number #7 and the Ursell number C>, parameters 

>= and 6= in Forristall's proposed model[26] can be solved by equation 6–10 and 6–11: 

 

 

>= = 0.3536 + 0.2892#7 + 0.1060C> 	 6–10 

 

6= = 2 − 2.1597#7 + 0.0968C>. 6–11 
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The distribution function for the 3-hour extreme crest height following second-order theory is 

obtainable with equation 3-11: 

 

 

;<|+!,"@<|ℎ!, +", AB = Æ1 − e&s t− i <
>= 	ℎ!

j
^.
vØ

r$%
	 

6–12 

 

 

Where E8@ is the expected number of crest heights during 3-hour (10800s = 3-hour) with 

given "". "? is the zero-up crossing wave period and is given by equation 6–7. Thus, E8@ 

reads: 

 

 

E8@ =	
10800
0.746+"

 

 

 

The distribution function in equation 6–12 is further used to obtain q-probability values of the 

air gap through the long term analysis methods POT and modified all-sea states. Although the 

weather data are from a deep water location (~1100 m), the weather characteristics will be 

applied for the jacket positioned at 110 m water depth. 
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6.2 Time-domain simulations 

 

For a non-linear response of a jacket structure, a reasonable amount of time-domain 

simulations must be performed to obtain an accurate short term behaviour of extremes. The 

response accuracy will increase with an increased number of sea states simulated. Therefore, 

many seeds should be used for each sea state to reduce the statistical uncertainty of the 

obtained response. The result then becomes an accurate short term variability of 3-hour 

extremes.  

 

The asymptotic short term variability of 3-hour extremes follows a Gumbel 

distribution[20][3]. The two parameters, location and scale, of the Gumbel distribution are 

estimated from the obtained 3-hour extremes of simulations and found by the method of 

moments[28]. The obtained Gumbel parameters for each response are plotted for the selected 

sea state simulated. A continuous function is applied (spline function) with a biharmonic (v4) 

surface between the selected sea states to obtain a function which will make it possible to 

obtain the short term variability of sea state, which has not been simulated. The response 

surface obtained by the spline function is further used in the long term analysis. By 

implementing the POT and the all-sea state approach, q-probability extreme responses can be 

estimated. 

 

 

6.2.1 Simulations 

 

The most accurate way to present the short term response from the structure would be to do 

an thousands of 3-hour time-domain simulations for all !! and "". However, this is not 

always realistic. Instead, several 3-hour simulations are performed to capture the weather 

domain of interest through a grid pattern. The sea states must be reasonably spaced out within 

the area. One possible way to evaluate which sea states to simulate, is by inspecting the 

contours of the worst sea states in the hindcast dataset. The simulated sea states for this thesis 

are given in Figure 26. In practice, the sea states outside the DNV limit[5] will be hard to see 

due to the high wind speed needed to obtain these sea states. However, those points act as 

outer boundaries for the points on the right-hand side of the limit. 
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Figure 26: Simulated sea states for time-domain simulation of the jacket structure. 

 

 

A total of 18 sea states have been chosen to simulate, with ten seeds per sea state. The total 

number of simulated 3-hour extremes is 180, however, it was later added three more 

simulations with 20 seeds. Due to the low seed number per sea state, the statistical uncertainty 

will be high. NORSOK N-003[2] requires a minimum of 20 - 40 seeds per sea state in a long 

term analysis. However, the number of sea states used to obtain the response in this thesis will 

give an approximate accuracy of the responses. The simulated sea states are given in Table 

12. 

 
Table 12: Selected sea states to simulate responses in the time domain. 

Sea state yV	[¥] zW	[µ] 

1 – 3 8 7 12 25 

4 – 6 10 9 15 24 

7 – 9 13 11 17 22 

10 – 12 16 16 19 22 

13 – 14 19 17 22 - 

15 – 16 21 18 22 - 

17 – 18 22 18 22 - 
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6.2.2 Distribution of 3-hour extremes 

 

The response maximum is considered following a Gumbel distribution[20]. The distribution 

function is seen in equation 6–13: 

 

 

;A|+!,,"(&|ℎ, +) = e&s ò−e&s Æ−& − >$
(ℎ, +)

6$(ℎ, +)
Øô 

6–13 

 

 

Gumbel parameters >$  and 6$  are estimated for each sea state. The parameters are obtained 

by the method of moments[28]. From equation 6–14, this implies finding the mean ., and 

standard deviation /, of the sample, which in this case is responses obtained from different 

seeds for one sea state. Gumbel parameters are estimated by[4][28]: 

 

 

>$ = . − 0.57726$  

6$ =
/√6
|  

 

6–14 

 

To obtain the adequacy of the Gumbel distribution for the 3-hour maximum response. A 

Gumbel probability plot has plotted one sea state for three responses. The sea state has !! =
16	M and "" = 19	J. The plot has a fitted line based on the parameters obtained from the 

method of moments and the 3-hour maximum response obtained from the simulations. Figure 

27 displays the Gumbel probability plots, where figure (a) is base shear, (b) is deck 

displacement and (c) is overturning moment. 
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(a)                                                                     (b) 

 
     (c) 

Figure 27: Gumbel distribution of 3-hour maximum responses. The selected sea state is $# 	= 	16	0, *% 	= 	19	2. Figure (a) 

response is base shear, (b) is deck displacement and (c) is overturning moment. 

 

 

From Figure 27, it is clear that the underlying distribution has reached an asymptotic limit. 

This shows that the Gumbel distribution is suitable for modelling the responses of a jacket 

structure. 

 

From all the 18 sea states, one >$  and one 6$  have been calculated. To obtain the response for 

the values not accounted for in the simulation, some sort of interpolation has to be 

implemented for the Gumbel parameters. 
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6.2.3 Response surface for Gumbel parameters 

 

A surface where the Gumbel parameters >$  and 6$  are functions of !! and "" has to be 

obtained. This is done utilizing MATLAB´s spline function, with the method biharmonic (v4) 

four gridded method[20]. The Gumbel parameters will change depending on the !! and "" 

input, e.g., >$(ℎ!, +") and 6$(ℎ!, +"). The response surfaces for >$  and 6$  is seen in Figure 

28, Figure 29, and Figure 30. 

 

 

 
Figure 28: Deck displacement response surface for ,* and 8* 

 

 
Figure 29: Base shear response surface for ,* and 8* 
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Figure 30: Overturning moment response surface for ,* and 8* 

 

 

From the response surfaces, a cut-out is presented in Figure 31. The evolution of > and 6 -

response parameters in the Gumbel distribution is given for an increased !! and a fixed "".  

 

 
Figure 31: The evolution of Gumbel response parameters α and β for the responses deck displacement, base shear and 

overturning moment. The evolution is considering an increasing $# range and fixed *%. 
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In addition, the evolution of > and 6 -response parameters are also given for "" when !! is 

fixed, as seen in Figure 32. 

 

 

 
Figure 32: The evolution of Gumbel response parameters , and 8 for the responses deck displacement, base shear and 

overturning moment. The evolution is considering an increasing *%	range and fixed $#. 

 

 

As seen in Figure 31 and Figure 32, the outcome is that the parameters in the response 

surfaces are increasing, as one would expect, since the response itself will increase for 

increased sea states. However, the spline function can behave in an unfavourable way if the 

spacing between each node and the difference between the interpolated values are large. In 

this case, this happens since the seed count for each simulated sea state is low and the node 

points are far spaced, due to the low simulated "" values.  

 

The reduction in 6 for the responses for !! the range between 16 - 18 m and the fixed value 

"" = 16 s is probably occurring due to the low resolution of simulated sea states. Therefore, 
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the simulated sea states should be increased, and as a result, the spacing between the node 

points will be reduced, making the spline function behave better. The outcome of using spline 

on an increased sea state grid will be less unexpected shapes, such as a sudden decrease 

between two sea states when the response parameters should have increased. 

 

The Gumbel parameter functions >$(ℎ!, +") and 6$(ℎ!, +") are further used in this thesis to 

describe the short term variability for the different responses[20]. 
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7. LONG TERM ANALYSIS MODIFIED ALL SEA STATE 
 

The long term analysis method used for the selected responses, second-order crest, deck 

displacement, overturning moment and base shear is a modified all sea state where only 8 m 

and above sea states are selected. 

 

 

7.1 Modified all sea state approach 

 

The most used long term method in the Norwegian Continental Shelf to estimate extreme 

values is the all sea state approach DNV[5]. This method uses all 3-hour events to predict 

extreme responses, which can be very time consuming since, in theory, all the sea states need 

to be simulated to obtain a reasonable estimate for extreme responses. The sea states are 

modelled as a joint distribution between the significant wave height and spectral peak period. 

The joint distribution of sea states can be seen in section 2.3. The long term response 

distribution is found by solving the integral: 

 

 

;A$%(&) =∂;A$%|+!,"
c

:

(&|ℎ, +)'+!,"(ℎ, +)A+Aℎ 
7–1 

 

 

Where Fs$/|S&U'(&|ℎ, +) is the response given as a Gumbel distribution, where the parameters 

are obtained from the response spectrum for the given response. fS&U'(h, t) is the joint 

modelling of sea states from hindcast data. 

 

Due to time limitations and the fact that this is a master thesis and not design work, it was 

decided to remove the sea states below the threshold of 8 m. This was done to save time in the 

time domain simulations needed to obtain a proper response at the low sea states. As a fact, 

this thesis is more about utilizing the POT approach to predict extreme responses.  
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The reader is referred to section 2.3 to review how each distribution is obtained. The process 

will not be covered step by step in this section. However, some additional information will be 

provided. 

 

 

7.1.1 Modified marginal distribution of !! 
 

The marginal distribution of the modified sea states for all events equal and over 8 m follows 

a 3-parameter Weibull distribution reasonably well. The distribution for !! with the Weibull 

parameters reads: 

 

 

;+!(ℎ) = 1 − expt−iℎ − 7.8991.296 j
7.:Kt

v 
7–2 

 

 

Where the parameters >, 6 and : are obtained from the method of moments. The procedure 

for the method of moments for 3-parameter Weibull is described further in section 8.2.1. The 

fitting of marginal !! for all values equal and over 8 m is seen in Figure 33 in a linear scale, 

e.g., Gumbel scale. 
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Figure 33: Fitted marginal distribution for $# equal and over 8 m to a 3-parameter Weibull distribution. The distribution is 

seen in the Gumbel scale. 

 

 

Comparing the all sea state 3-parameter Weibull from Figure 7 and the modified version 

found in Figure 33. It is clear to see how well the 3-parameter Weibull works for the larger 

values of !! at the base of the distribution, i.e., at 8 m – 13 m. Both the base and almost the 

entire tail look like a very reasonably fit except for the outer end. As described before in 

section 2.3.1, the 3-parameter Weibull distribution seems to be more on the conservative side 

for areas where larger waves are present. 

 

The order of magnitude of !! based on the 3-parameter Weibull distribution using ALS and 

ULS design criterion is given in Table 13. 

 

 
Table 13: Long term extrapolation of $# to target probability. 

ULS (100-year) [m] ALS (10.000-year) [m] 

16.48 20.90 
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7.1.2 Conditional distribution of "" given modified !! 
 

The conditional distribution of "" follows the same log-normal distribution found in equation 

2–6. The log-normal distribution parameters are fitted to each !! group from the scatter 

diagram seen in appendix B. Based on this, fitting parameters for the non-linear fit are 

obtained. The equations for the non-linear fit with the corresponding coefficient values are 

seen in 7–3 and 7–4. 

 

 

.) = 1.0125 + ℎ:...nm 7–3 

  

/). = 0.001 + 0.0631 ∙ e&s	(−0.2231 ∙ ℎ) 7–4 

 

 

Further, the fitting is seen in Figure 34 for . and Figure 35 for /.. 

 

 

 
Figure 34:	Non-linear	fitting	of	log-normal	parameter	%	for	modified	$#	values. 
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Figure 35: Non-linear fitting of log-normal parameter )' for modified $# values. 

 

 

A 90 % band for "" can be found based on the fitted parameters. A low, mean and high value 

of "" is found in Figure 36, and the values are given in Table 14. 

 

 

 
Figure 36: A 90 percentile of *%, based on fitted *% data. 
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Table 14: Values from the 90% band of ULS and ALS values. 

 Ç[	[Ñ] Ü\	á	%	[â] Ü\	Ñäãå	[â] Ü\	çá	%	[â] 

ULS (éè9Y) 16.48 16.79 18.26 19.85 

ALS	(éè9]) 20.90 18.99 20.28 21.66 

 

 

7.1.3 Contour lines based on modified !! values 

 

The contour lines are constructed following the procedure in section 2.3.3. A new annual q-

probability value is introduced since the number of sea states is equal to and over 8 m. The 

way to obtain the new annual exceedance probability is to divide the number of values over 

and equal to 8 m with the collection time in years. Here the data set consists of 61 years of 

data. The new q-probability for the ULS design criterion will be: 

 

 

Y = 	 0.01
29.0631 

7–5 

 

 

The contour lines based on the joint distribution of modified sea states with the q probability 

values of design levels of ULS and ALS are seen in Figure 37. The DNV limiter is added to 

the contour lines. 
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Figure 37: Contour lines based on the joint distribution of modified sea states. 

 

 

7.1.4 Long term analysis 

 

The response distribution of the 3-hour maximum is obtained when solving the integral, and 

when the equation is set equal to the value desired to exceed every year. The q-probability for 

design regarding NORSOK[2] is given beforehand, and this leads to the long term analysis as 

the following[20]: 

 

 

;A$%@&IB = ∂;A$%|+!,"

c

:

(&I|ℎ, +)'+!,"(ℎ, +)A+Aℎ 
7–6 

 

 

The following equation finds the probability of exceeding the target concerning the modified 

sea states[20]: 
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SA$%@&IB = 1 − ;A$%@&IB =
Y

29.0631 7–7 

 

 

Where q is the target probability, according to NORSOK[2], ULS value Y = 109. and ALS 

value Y = 109J. The value 29.0631 is described in section 7.1.4. All q-probability response 

values are given in appendix C. 

 

Another available and rather interesting evaluation can be assessed from the all sea state 

approach. The relative contribution to the target response given the different sea states of !! 
and "". The equation of relative contribution to the response reads: 

 

 

SA$%@& > &IB = ∂(1 − ;A$%|+!,"
c

:

(&I|ℎ, +))'+!,"(ℎ, +)A+Aℎ 
7–8 

 

 

Based on the response probability being larger than &I, a colour map has been constructed to 

better show relative contributions from each sea state. As a result, the map will have a more 

intense red colour where the contributions of the sea state are highest. Furthermore, based on 

the map of relative contributions, more time-domain simulations can be performed to enhance 

the response in the area of the highest probability of extreme response occurring. This will 

give a more accurate long term analysis. Since this thesis deals with four responses, the 

relative contributions for each response regarding target probability will be shown in 

appendix C. 

 

  



 71 

8. LONG TERM ANALYSIS POT 
 

The long term analysis method POT is used for the selected responses, second-order crest, 

deck displacement, overturning moment and base shear.  

 

The POT method for the overturning moment response will be thoroughly described in this 

chapter. The other responses are given in appendix D. 

 

 

8.1 Short term modelling 

 

The exact distribution of a storm is described by Haver[9], and it considers the storm as a step 

function. Each step of 3-hours is assumed to be stationary. The number of storm steps for a 

random storm can be described as a variable M. Hence, the storm will contain M storm steps 

of 3-hours with information about !!, "", I[AgLe<+gKb] and the occurring date. These are 

some of the measurements included in the hindcast database within the NCS. Each step 

extreme within the storm is assumed to be statically independent.  

 

The distribution function for storm maximum response can be obtained and reads as follows: 

 

 

;A|E,FG)(&|J+KLM) = 	õûe&s	(−e&s	(− & − >$6$
))°

)

M_7

 
8–1 

 

 

In the case of a second-order crest height, the Gumbel model is replaced by the Forristall crest 

height model. The Gumbel parameters αu and βu are the through response parameters 

obtained from the response surface. The cumulative density function (CDF) for the exact 

storm maximum response distribution from equation 8–1 is obtained by multiplying each 

consecutive storm step together to a storm maximum. For example, the CDF for each storm 

step response and the storm maximum response can be seen in Figure 38. The effect of the 
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storm's 2-3 largest steps contributes mainly to the storm's maximum crest height. This will be 

the case for most storms.  

 

 

 
Figure 38: Cumulative density function for each storm step in a given storm. The functions for each step are multiplied to a 

storm maximum, seen as a stippled line in the figure. 

 

 

Based on the work of Tromans & Vanderschuren[6], it is found that the exact distribution of 

storm maximum approaches asymptotic shapes. The exact storm response distribution 

;A|E,FG)(&|J+KLM) is further approximated by a Gumbel distribution[4]: 

 

 

;A|AB(&|&F) = e&s û− e&s ü−& − &F6&F †° 
8–2 
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The Gumbel parameter &F is the location parameter and 6 is the scale parameter in the 

distribution. The distribution parameters for scale and location are solved by using the method 

of moments. The sample mean and variance are needed to obtain Gumbel parameters[4]: 

 

 

N@GOGHB = 	&F + 0.57726  

P3L@GOGHB = |.
6 (&F6)

. 

 

 

Two requirements must be met for the Gumbel distribution to work as an approximation of 

the exact distribution.  

 

1) Each storm's most probable maximum (mpm) must be the same for the approximated 

(8–2), and the exact distribution (8–1)[4]. 

 

2) The exact storm distribution's standard deviation must be equal to the standard 

deviation of the approximated Gumbel distribution[4].  

 

The most probable maximum response GH, is from Tromans & Vanderschuren[6] obtained 

when the exact distribution of the storm response ;A|E,FG)(&|J+KLM) is equal to 7
Q
 read from 

equation 8–3. 

 

 

;A|E,FG) ≈ e97 8–3 

 

 

The calculation in equation 8–3 is performed for all acquired storms within the data giving a 

range of different most probable maximum response values. The most probable maximum 

response for a given storm can be assessed in Figure 39. 
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Figure 39: Cumulative density function of the exact storm, displaying its most probable maximum. 

 

 

To obtain the standard deviation of the exact distribution, both the expected value and the 

variance have to be calculated first. This is done by the theoretical definition of expected 

value and variance following equations 8–4 and 8–5 [4]. However, since the cdf for all storms 

has already been calculated, the following integral will be solved numerically using the 

following relation between cumulative density function and probability density function, 

A;A(&)M =	;A(&)Md7 − ;A(&)M.  
 

 

N(G) = § & ∙ 'A(&)A& = ª&M ∙ A;A(&)M
(97

M_7

c

:

 
8–4 

 

 

 

 

 

P3L(G) = §[& − 	N(G)]. ∙ 'A(&)A& = ª[&M − N(G)]. ∙ A;A(&)M
(97

M_7

c

:

	 
8–5 
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The variance of the storms is now obtained from the exact distribution. Combining the 

standard deviation / = 	ºP3L(&) of a given storm with the corresponding GH (mpm) storm 

value, the storm’s 6 value can be calculated and read from equation 8–6. 

 

 

6 = /√6
|	&F  

8–6 

 

 

The 6 values obtained from each storm's maximum response are plotted in Figure 40. Each 

storm will have a slightly different value due to the storm's maximum response difference. 

Due to the fact that this is a short term variability, one can take the mean value of all the 6 

values. This value will become the constant 6 value for the selected threshold for all storms. 

It is shown that the 6 value for deck displacement for a threshold of 8 m is 0.1758. 

 

 

 
Figure 40: 8 values for all the storms over the threshold of 8 m. 

 

 

After the 6-constant is adopted to all storms, plots comparing the approximated Gumbel 

distribution ;A|AB(&|&F) and the exact distribution ;A|E,FG)(&|J+KLM) for a given storm in the 
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data series can be produced. Figure 41 shows the exact and approximated distributions plotted 

in a Gumbel probability paper. Based on Figure 41, it can be concluded that the asymptotic 

behaviour is met. This means that the approximated distribution is very close to the exact 

distribution. 

 

 

 
 

 
Figure 41: Compares the exact and approximated storm distribution in a Gumbel probability paper for random storms in the 

dataset. The exact distribution is from the overturning moment response. 
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8.2 Long term analysis 

 

The long term analysis consists of the long term analysis of the most probable maximum 

response G!, and the long term analysis of X. 

 

 

8.2.1 Long term analysis of mpm storm max, G! 

 

For each given threshold, a corresponding G! (mpm) is obtained for every storm. These most 

probable maximum response values can be fitted to a probabilistic model to obtain the long 

term distribution of the most probable maximum response G!. The reasonable fit for G! was 

obtained with a 3-parameter Weibull distribution given in equation 8–7[28]. 

 

 

;!H(&F) = 1 − e&s Æ	− i	&F − :> 	j
^

	Ø 
8–7 

 

 

In this distribution, the three unknown parameters α, 6 and : are the scale, shape and location 

parameters of the distribution. A requirement of using this equation is &F ≥ 	:[28]. 

The unknown parameters are obtained using the method of moments (MoM) [4]. The 

moments used in a 3-parameter Weibull distribution are read from equations 8–8 to 8–10: 

 

 

.AB = : + >Ω i1 + 1
6j 

8–8 

 

/
AB
. = >. üΩ i1 + 2

6j − Ω
. i1 + 1

6j† 
8–9 
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Q7 =
Ω i1 + 3

6j − 3Ω i1 +
1
6jΩ i1 +

2
6j + 2Ω

8 i1 + 1
6j

üΩ i1 + 2
6j − Ω

. i1 + 1
6j†

8

.	
 

8–10 

 

 

The values from the sample are the sample mean, sample variance and sample skewness. By 

obtaining these quantities from the sample and inserting them into the given equations above, 

the unknown parameters in the 3-parameter Weibull distribution will be known[4]. 

 

In order to fit the data in a probability paper, the correct interpretation of the data is needed. 

This means sorting the data by increasing values and removing duplicated values from the 

total sample size n. Finally, the empirical probability distribution function 8–11 is calculated 

as: 

 

 

;R((D) =
D

b + 1 
8–11 

 

 

The empirical distribution can be plotted in a probability paper to determine if the fit is 

reasonable, and the following fitted distribution is to be used further in estimating extreme 

values. 

 

Since the sample data is fitted using a 3-parameter Weibull distribution, two probability plots 

can be constructed based on the 3-parameter Weibull distribution, one in logarithmic and one 

in linear scale. A Weibull probability paper, which reads: 

 

 

ab ë− abë1 − ;!H(&F)íí = 6 ab(&F − :) − 6ab> 8–12 
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Furthermore, a Gumbel probability paper should be used to obtain a non-scaled extrapolation 

towards extremes. Due to the logarithm scale on the x-axis, the Weibull probability paper will 

not give. The Gumbel probability paper equation is given as: 

 

 

− ab ë− abë;!H(&F)íí =
&F − >
6  

8–13 

 

 

The results of plotting GH both probability papers described above are found in Figure 42 and 

Figure 43. The plots give the sample as dots, while a fitted line represents the 3-parameter 

Weibull distribution with parameters described in Table 29. In both plots, the threshold has 

been set to 8 m, yielding a 3-parameter distribution as: 

 

 

;!H(&F) = 1 − exp Æ	− i	&F − 9.29e08
8.05e08 	j

1.33
	Ø 

 

 

 
Figure 42: Probability plot in Weibull scale, where a fitted 3-parameter Weibull distribution is compared to an empirical 

sample of !K values. 
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Figure 43: Probability plot in Gumbel scale, where a fitted 3-parameter Weibull distribution is compared to an empirical 

sample of !Kvalues. 

 

 

The 3-parameter Weibull seems to fit the data reasonably well. However, there are some 

uncertainties regarding the furthest tail, the most extreme values. From Figure 42, the fit 

seems exceptionally good, which means that the extrapolation to a design mpm response 

value would seem accurate. However, plotting it in a true scale, i.e. without logarithm, more 

uncertainty will immerse in the tail regarding extrapolated values to the wanted values. The 

distribution's base (opposite the tail) yields an inaccuracy. For this thesis, we are neglecting 

this since these mpm values are of lower responses and ultimately will not change the 

outcome of the distribution fitted line. 

 

 
Table 15: Most probable maximum overturning moment corresponding to ULS and ALS values at threshold 8 m. 

ULS (100-year) [m] ALS (10.000-year) [m] 

4.2509e+09 5.8838e+09 

 

 

To better understand the magnitudes of the most probable maximum response in the long term 

distribution of most probable maximums, calculations regarding ULS and ALS-mpm 

responses are computed, and given in Table 15. This will, however, indicate the response 
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level since this is only a short-term analysis. The long-term analysis will likely yield larger 

values for the given response.  

 

 

8.2.2 Long term analysis of X 

 

The long term distribution of deck displacement response is given in equation 8–14: 

 

 

;A(&) = § ;A|AB(&|&F)'AB(&F)A&F
c

:

 
8–14 

 

 

Where the conditional distribution function of the most probable maximum overturning 

moment in a storm ;A|AB(&|&F) is multiplied with the long term distribution function of the 

most probable overturning moment maximum '!H(&F). The distribution function of ;A(&) can 

be seen in Figure 44 and is given in a Gumbel probability paper in Figure 45. 

 

 

 
Figure 44: Distribution function for the long term analysis of overturning moment. The threshold is 8 m. 
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Figure 45: Distribution function for the long term analysis of an overturning moment in a Gumbel probability paper. The 

threshold is 8 m. 

 

 

From a design perspective, a characteristic value of the overturning moment is needed. The 

exceedance probability used in NORSOK[2] and in general in the NCS is the probability of 

exceedance Y = 109. (ULS) and Y = 109J (ALS). This is calculated by the following 

equation 8–15: 

 

 

1 − ;A(&) =
Y

E!2C>D!
 8–15 

 

 

Where the q is equal to the exceedance probability, ;A(&) is the long term analysis of 

overturning moment distribution and E!2C>D! is the number of a storm occurring each year. 

This quantity is found by dividing all storms over the threshold limit by the number of years 

of data. This number will change for each threshold selected. The characteristic most 

significant values are given in Table 16 for both ALS and ULS. 
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Table 16: Characteristic most significant values for the overturning moment given ULS and ALS for different thresholds. 

ULS (100-year) [m] ALS (10.000-year) [m] 

5.6023e+09 9.0127e+09 

 

 

As expected, the long term overturning moment is larger than the magnitude of the GH values 

obtained in the long term distribution of the most probable response maximum. However, this 

implies that it is not possible to use the long term GH values as the design parameter. Instead, a 

full long term analysis of the overturning moment is needed. 

 

 

8.3 Threshold sensitivity study 

 

A selected threshold is used to filtrate the lower sea states to obtain the storm data. By 

increasing this threshold, a reduction in the number of storms can be seen, as displayed in 

Table 17. However, this will eventually lead to insufficient data if the threshold is raised too 

high, impacting the q-probability values. The aim is to obtain the highest threshold possible 

but still obtain a reasonable accuracy on the predicted extremes. If this is not possible and a 

lower threshold is needed, then the point of using a storm based approach goes away. 

However, the trade-off in a POT approach will always be less available data. 

 

 
Table 17: Sensitivity study of the storms by threshold. 

Threshold 8 m 9 m 10 m 

Storms 436 224 110 

Storms 

per year 
7.14 3.67 1.80 

 

 

There is no clear way to obtain the most accurate threshold level. The general way is to find a 

preferred area between the threshold levels where the values are relatively stable with little 
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increase. However, this is hard to find since the response will increase in most cases. 

However, it might be best to find the smallest increase in response or other relevant values 

between two threshold levels. 

 

In this thesis, two values will be evaluated for threshold selection, 6v which is the parameter 

in the short term variability in the POT. The second is the ALS values for all the responses 

considered in the POT analysis. 

 

 
Table 18: 8+ values for all responses given different thresholds. 

Threshold [m] Crest Displacement Overturning moment Base shear 

8 0.0636 0.2201 0.1758 0.2000 

9 0.0639 0.2638 0.2104 0.2258 

10 0.0654 0.2900 0.2334 0.2456 

 

 
Table 19: Comparison for threshold analysis of ALS responses of the jacket structure. 

ALS 8 m 9 m 10 m Step 8 - 9 m Step 9 – 10 m 

Crest [m] 23.91 23.58 23.42 -1.40 % -0.68 % 

Deck displacement [m] 0.1351 0.1459 0.1553 8.73 % 6.44 % 

Overturning moment [Nm] 9.0127e+09 9.7211e+09 1.0506e+10 7.86 % 8.07 % 

Base shear [N] 6.0347e+07 6.3423e+07 6.9012e+07 5.09 % 8.81 % 

 

 

The storms observed over threshold level 10 m are four times less than 8 m. In practice, this 

means that the amount of available data is limited, and there is a high uncertainty using the 

estimated q-probability numbers at this time. This will, however, change in the future, when 

more storm data is available. At threshold level 10 m, 6v, as seen in Table 18, is at the highest 

value. This supports that the threshold at 10 m should not be recommended for further use in 

this thesis. 

 

Based on the ALS responses between 8 – 9 m for the jacket, the response values increased by 

5 – 8.73 %. It could be reasonable to use 9 m since it is desired to use the largest possible 



 85 

threshold in the POT, without increasing the response values too much. However, there are 

more storm data at 8 m, and therefore the q-probability values are more accurate. Therefore, a 

range between 8 – 9 m is reasonable in this thesis. 

 

It would be optimal to select the threshold that yields roughly the same characteristic values. 

For example, the percentage increase from Table 19 for the responses of threshold 8 m – 9 m 

is almost the same as for 9 m – 10 m, although there are almost four times the amount of 

storms for 8 m  compared to 10 m. Other usages of POT in the NCS[13][12] have suggested 8 

- 9 m to be a reasonable choice of threshold. 
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9. COMPARISON BETWEEN LONG TERM ANALYSES 

METHODS POT AND MODIFIED ALL SEA STATE 
 

The characteristic responses obtained by the predictions from the long term analysis methods 

POT and modified all sea states, are given in Table 20 for threshold 8 m and in Table 21 for 

threshold 9 m. 

 

 
Table 20: Comparison table of responses predicted by POT and modified all sea state. The threshold is 8 m. 

Threshold = 8 m for POT POT 
Modified all sea 

state 
POT 

Modified all sea 

state 

 100-year 100-year 10.000-year 10.000-year 

Crest height [m] 18.30 18.61 23.91 24.33 

Deck displacement [m] 0.0781 0.0792 0.1351 0.1272 

Base shear [N] 3.7136e+07 4.2389e+07 6.0348e+07 7.7881e+07 

Overturning moment 

[Nm] 
5.6203e+09 6.2214e+09 9.0127e+09 1.0530e+10 

 

 
Table 21: Comparison table of responses predicted by POT and modified all sea state. The threshold is 9 m. 

Threshold = 9 m for POT POT 
Modified all sea 

state 
POT 

Modified all sea 

state 

 100-year 100-year 10.000-year 10.000-year 

Crest height [m] 18.23 18.61 23.58 24.33 

Deck displacement [m] 0.0838 0.0792 0.1459 0.1272 

Base shear [N] 3.8829e+07 4.2389e+07 6.3423e+07 7.7881e+07 

Overturning moment 

[Nm] 
5.9846e+09 6.2214e+09 9.7211e+09 1.0530e+10 
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Based on the ULS and ALS values chosen, the q-probability responses are compared. The 

jacket responses overturning moment and base shear will be in focus. As seen in Table 20 and 

Table 21, the deck displacement does not give a consistent value. From the relative 

contribution of the sea states in Figure 47 for deck displacement, it is seen that the responses 

in ULS and ALS are incorrect. The response surface was slightly changed as an investigation 

towards finding the error. By doing this, the relative contribution changes for the worse, 

indicating that the deck displacement response surface is source of error. The deck 

displacement must be sensitive, since both responses for overturning moment and base shear 

were relatively good. All the responses are obtained from the same time-domain simulations. 

 

The base shear has the largest difference between the long term analysis methods. The ULS 

level is 14.14 % when POT has a threshold of 8 m. Similarly, for the overtunring moment, the 

difference is 10.70 %. When the threshold is increased to 9 m for the POT, the difference for 

ULS for base shear reduces to 9.17 % and, similarly for overturning moment, to 3.94 %. 

Since the responses increases with an increased threshold for POT, the differences in ULS 

predictions are less for 9 m than for 8 m. 

 

By investigating the ALS predicted values for both long term analysis methods with a 

threshold for POT at 8 m, it is seen that the difference in base shear is 29.0 %. Similarly, for 

overturning moment, the difference is 16.80 %. The large difference between POT and 

modified all sea state must again be the response surface. By increasing the threshold to 9 m 

for the POT, the base shear difference in ALS reduces to 22.78 %, and, similarly for the 

overturning moment, to 8.31 %. 

 

Based on the ULS and ALS results when using the two methods, it is clear that the POT 

underestimates the predicted q-probability responses compared to the modified all sea state. 

In general, the modified all sea state approach will yield more concervative estimates due to 

the correlation between the successive sea states, which is neglected in the POT.  
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10. CONCLUSION 
 

The thesis aimed to obtain a short term variability of a jacket structure and then compare the 

characteristic response values from the POT with the more known conservative method, the 

all sea state. However, in this thesis, the all sea state approach was modified to only include 

waves equal to and larger than 8 m significant wave height. 

 

The characteristic values obtained from the POT showed a less conservative estimate for the 

q-probabilities compared to the all sea state. A slight deviation was obtained from the deck 

displacement. This can be seen regarding the response surface, and would not have been an 

issue if more time-domain simulations had been performed. The relative contribution of sea 

states shows that an issue is occurring for this response only. The conservatism of the all sea 

state approach can be seen by neglecting the correlation between the successive sea states, 

which in reality is highly correlated. The assumption of neglecting the sea states under 8 m 

will, in this case, reduce the conservative estimates in the all sea state. The POT approach has 

less observed data than the all sea state. However, the data quality is significantly higher due 

to the uncorrelated data observed from a storm maximum between storms. 

 

The challenge for the POT is the amount of storm data, which the chosen threshold will 

highly influence. From Table 5, it is seen that the amount of storms is reduced by almost half 

for a 1 m increased threshold. This is seen for every threshold increase from 7 - 10 m. 

Therefore, by the number of storms available and the change in q-probability response, it 

would be assumed that the thresholds between 8 m and 9 m will be the optimal threshold 

selection. This is also considered by Haver & Bratland[13] to be a reasonable choice for 

assessing airgap on the NCS. 

 

As a closing remark, the less conservative values obtained by the q-probability responses in a 

POT analysis. Compared to the all sea state, this will give a more optimized design regarding 

economy without any compromise on the safety aspect of the structural design. 
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10.1 Future work 

 

As a closing remark to this thesis, I would like to address future work based on the knowledge 

gained while working on the subject. 

 

 

Storms 

 

The storms in the POT analysis are obtained without any specified time between each storm. 

This ensures that the statistical uncertainty is larger than if a time was specified between each 

storm. For practical meaning, if a storm drops below the threshold limit and then increases to 

a new maximum within the same storm, it will be counted as two uncorrelated storms. In 

reality, it will be the same storm but counted as two. Therefore, a sensitivity study should be 

performed to find the optimal time between each consecutive storm. From past studies, the 

time between two storms can be in the range of 24-hours to 48-hours should be sufficient[12]. 

Tromans & Vanderscuren[6] have proposed two methods to identify storms, the first 

disregards the time of the sea states below 30 – 40 % of the largest significant wave height in 

the storm. The second method purposes that if the trough between two storm peaks is less 

than 80 % of the lowest significant wave peak of the two, then the storms should be broken 

from the trough into two storms. 

 

 

Simulated wave elevation 

 

The simulated waves in Usfos utilized linear wave theory with Wheeler stretching. This is not 

representative of the real ocean and is not recommended by NORSOK N-003[2]. Future 

simulations should follow second-order wave theory to obtain the responses. It shows that the 

larger crests increase the responses from 30 - 55 % for the jacket structure in this thesis for 

one sea state. The long term distribution of q-probability responses will also be more in the 

range of what can be expected in the ocean. 
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Response surface 

 

There were 18 simulated sea states in total, with 10 seeds per sea state. Due to the low seeds 

per sea state, there are large statistical uncertainties. This means that if two responses are very 

large in the ten seeds, the mean and standard deviation will be statistically higher than if there 

were, for example, 40 seeds. The simulated sea states in the grid should also include more 

points and focus on areas where POT sea states are dominant. By increasing the simulated sea 

states and seeds, the accuracy in the spline function would increase hence a better long term 

analysis. The optimal simulation location of sea states could be obtained from the relative 

contribution of sea states to the relevant response. 

 

 

Current 

 

In this thesis, the current was not included as a part of the calculation of extremes. The current 

speed is relatively low, compared to the horizontal particle speed of the wave. The current 

velocity is very important for drag load-dominated structures in obtaining extremes. This is 

shown by extracting the wave-particle and current velocity out by considering the drag load 

per unit length[4]: 

 

 

(7P + 7w). = 7P. + 27P7w + 7w. 10–1 

 

 

The term where the current velocity is multiplied by the wave velocity and 2 is very important 

and will increase the drag load by as much as 25 % in some extreme cases[4]. This implies 

that current must be added for a better prediction of extremes regarding structures of load 

govern responses. 
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A    Scatter diagram 
Table 22: Scatter diagram for all !! and "" values. Data is obtained from hindcast. 

Hs [m]|Tp[s] 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 Sum 
0-5 0 1 33 20 18 17 15 5 2 0 0 0 0 1 0 0 0 0 0 0 0 112 
0.5-1 1 84 577 1562 2217 1725 1215 776 379 230 129 50 28 18 9 4 1 2 1 0 0 9008 
1-1.5 0 23 925 2728 4596 6158 5616 3503 2059 1079 584 251 144 100 65 32 17 4 2 2 1 27889 
1.5-2 0 0 211 1920 4058 4728 6223 5419 3582 2139 1240 605 302 190 121 62 44 13 18 3 9 30887 
2-2.5 0 0 13 442 2608 3801 4160 4844 4093 2718 1831 864 487 277 148 74 43 19 12 4 9 26447 
2.5-3 0 0 0 76 1065 2722 3359 3559 3700 2932 1974 1081 583 292 158 60 63 18 18 5 3 21668 
3-3.5 0 0 0 3 262 1295 2720 2608 2856 2648 1962 1150 620 401 184 93 64 15 13 7 4 16905 
3.5-4 0 0 0 0 47 393 1732 2242 2271 2108 1737 967 679 443 188 107 70 19 15 9 1 13028 
4-4.5 0 0 0 0 7 104 777 1610 1789 1592 1332 861 604 406 162 94 66 14 17 2 2 9439 
4.5-5 0 0 0 0 0 12 272 953 1383 1300 1089 737 419 311 166 73 65 17 11 2 4 6814 
5-5.5 0 0 0 0 0 5 85 468 931 1101 872 607 353 253 136 86 53 8 3 3 3 4967 
5.5-6 0 0 0 0 0 0 17 162 526 827 793 449 265 221 92 48 42 3 3 1 2 3451 
6-6.5 0 0 0 0 0 0 3 45 277 593 645 391 231 144 96 48 36 3 3 0 1 2516 
6.5-7 0 0 0 0 0 0 0 10 118 325 522 342 179 117 60 44 32 2 2 0 0 1753 
7-7.5 0 0 0 0 0 0 0 1 41 164 349 307 143 87 33 34 23 1 0 0 0 1183 
7.5-8 0 0 0 0 0 0 0 1 17 92 200 283 143 65 22 32 27 1 1 0 0 884 
8-8.5 0 0 0 0 0 0 0 0 3 18 105 213 110 64 31 22 14 1 0 0 0 581 
8.5-9 0 0 0 0 0 0 0 0 0 8 46 145 98 56 21 10 5 0 1 0 0 390 
9-9.5 0 0 0 0 0 0 0 0 1 4 14 84 77 58 12 11 11 0 0 0 0 272 
9.5-10 0 0 0 0 0 0 0 0 0 1 11 43 82 40 13 5 7 0 1 0 0 203 
10-10.5 0 0 0 0 0 0 0 0 0 0 1 19 47 25 15 8 5 0 0 0 0 120 
10.5-11 0 0 0 0 0 0 0 0 0 0 1 11 25 20 7 6 2 0 0 0 0 72 
11-11.5 0 0 0 0 0 0 0 0 0 0 0 1 14 18 9 4 4 0 0 0 0 50 
11.5-12 0 0 0 0 0 0 0 0 0 0 1 0 7 6 8 1 0 0 0 0 0 23 
12-12.5 0 0 0 0 0 0 0 0 0 0 0 0 5 2 12 3 1 0 0 0 0 23 
12.5-13 0 0 0 0 0 0 0 0 0 0 0 0 4 2 3 2 2 0 0 0 0 13 
13-13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 1 2 0 0 0 0 10 
13.5-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 0 0 0 8 
14-14.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 4 
14.5-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 5 
Sum 1 108 1759 6751 14878 20960 26194 26206 24028 19879 15438 9461 5649 3621 1782 967 705 140 121 38 39 178725 
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B    Modified scatter diagram 
 
Table 23: Modified scatter diagram for all !! and "" values over the threshold of 8 m. Data is obtained from hindcast. 

Hs [m] | Tp[s] 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 Sum 
8-8.5 3 18 105 213 110 64 31 22 14 1 0 581 
8.5-9 0 8 46 145 98 56 21 10 5 0 1 390 
9-9.5 1 4 14 84 77 58 12 11 11 0 0 272 

9.5-10 0 1 11 43 82 40 13 5 7 0 1 203 
10-10.5 0 0 1 19 47 25 15 8 5 0 0 120 
10.5-11 0 0 1 11 25 20 7 6 2 0 0 72 
11-11.5 0 0 0 1 14 18 9 4 4 0 0 50 
11.5-12 0 0 1 0 7 6 8 1 0 0 0 23 
12-12.5 0 0 0 0 5 2 12 3 1 0 0 23 
12.5-13 0 0 0 0 4 2 3 2 2 0 0 13 
13-13.5 0 0 0 0 0 3 4 1 2 0 0 10 
13.5-14 0 0 0 0 0 0 4 0 4 0 0 8 
14-14.5 0 0 0 0 0 1 1 1 1 0 0 4 
14-5.15 0 0 0 0 0 0 2 2 1 0 0 5 

Sum 4 31 179 516 469 295 142 76 59 1 2 1774 
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C     Results from modified all sea state 
 

C.1 Airgap 
 

 
Table 24: Characteristic crest height values from the long term analysis in modified all sea state approach. The 

characteristic values are found in q-probabilities ULS and ALS. 

ULS [m] ALS [m] 

18.61 24.33 

 

 

 
Figure 46: Relative contribution for the crest height to exceed ULS (left figure) and ALS (right figure) probabilities given the 

sea states in the modified all sea state approach. 
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C.2 Deck displacement 
 

 
Table 25: Characteristic deck displacement values from the long term analysis in modified all sea state approach. The 

characteristic values are found in q-probabilities ULS and ALS. 

ULS [m] ALS [m] 

0.0792 0.1272 

 

 

 

 
Figure 47: Relative contribution for the deck displacement exceeded ULS (left figure) and ALS (right figure) probabilities 

given the sea states in the modified all sea state approach. 
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C.3 Overturning moment 
 

 
Table 26: Characteristic overturning moment values from the long term analysis in modified all sea state approach. The 

characteristic values are found in q-probabilities ULS and ALS. 

ULS [Nm] ALS [Nm] 

6.2214e+09 1.0530e+10 

 

 

 

 
Figure 48: Relative contribution for the overturning moment to exceed ULS (left figure) and ALS (right figure) probabilities 

given the sea states in the modified all sea state approach. 
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C.3 Base shear 
 

 
Table 27: Characteristic base shear values from the long term analysis in modified all sea state approach. The characteristic 

values are found in q-probabilities ULS and ALS. 

ULS [N] ALS [N] 

4.2389e+07 7.7881e+07 

 

 

 

 
Figure 49: Relative contribution for the base shear to exceed ULS (left figure) and ALS (right figure) probabilities given the 

sea states in the modified all sea state approach. 
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D     Results from POT 
D.1 Airgap 
 

 
Table 28: Summary of crest response values in a POT approach. 

Mpm 3-parameter Weibull fitting 

Threshold ! " # 

8 2.2674 1.3820 7.8390 

9 2.2471 1.4461 8.8845 

10 2.6045 1.6708 9.4800 
    

Mpm long term distribution 

Threshold ULS [m] ALS [m] 
 

8 16.69 20.84 
 

9 16.56 20.31 
 

10 16.46 19.69 
 

    

Beta  

Threshold "! 
  

8 0.0636 
  

9 0.0639 
  

10 0.0654 
  

    

Long term distribution crest height 

Threshold ULS [m] ALS [m] 
 

8 18.30 23.91 
 

9 18.23 23.58 
 

10 18.25 23.42 
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D.2 Deck displacement 
 

 
Table 29: Summary of deck displacement response values in a POT approach. 

Mpm 3-parameter Weibull fitting 

Threshold ! " # 

8 0.0099 1.2091 0.0087 

9 0.0113 1.3544 0.0125 

10 0.0147 1.5785 0.0128 
    

Mpm long term distribution 

Threshold ULS [m] ALS [m] 
 

8 0.0561 0.0823 
 

9 0.0548 0.0772 
 

10 0.0551 0.0758 
 

    

Beta 

Threshold "! 
  

8 0.2201 
  

9 0.2638 
  

10 0.2900 
  

    

Long term distribution of deck displacement 

Threshold ULS [m] ALS [m] 
 

8 0.0781 0.1351 
 

9 0.0838 0.1459 
 

10 0.0876 0.1553 
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D.3 Overturning moment 
 

 
Table 30: Summary of overturning moment response values in a POT approach. 

Mpm 3-parameter Weibull fitting 

Threshold ! " # 

8 8.0522e+08 1.3284 9.2876e+08 

9 8.4543e+08 1.4372 1.2598e+09 

10 9.6618e+09 1.5126 1.3890e+09 
    

Mpm long term distribution 

Threshold ULS [Nm] ALS [Nm] 
 

8 4.2509e+09 5.8838e+09 
 

9 4.1686e+09 5.6041e+09 
 

10 4.2603e+09 5.7576e+09 
 

    

Beta 

Threshold "! 
  

8 0.1758 
  

9 0.2104 
  

10 0.2334 
  

    

Long term distribution of overturning moment 

Threshold ULS [Nm] ALS [Nm] 
 

8 5.6203e+09 9.0127e+09 
 

9 5.9846e+09 9.7211e+09 
 

10 6.2547e+09 1.0506e+10 
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D.4 Base shear 
 

 
Table 31: Summary of base shear response values in a POT approach. 

Mpm 3-parameter Weibull fitting 

Threshold ! " # 

8 5.9516e+06 1.4481 4.6660e+06 

9 6.0604e+06 1.5597 7.0309e+06 

10 6.1300e+06 1.4755 8.3115e+06 
    

Mpm long term distribution 

Threshold ULS [N] ALS [N] 
 

8 2.6507e+07 3.6183e+07 
 

9 2.5953e+07 3.4415e+07 
 

10 2.7050e+07 3.7132e+07 
 

    

Beta 

Threshold "! 
  

8 0.2002 
  

9 0.2258 
  

10 0.2456 
  

    

Long term distribution of base shear 

Threshold ULS [N] ALS [N] 
 

8 3.7136e+07 6.0348e+07 
 

9 3.8829e+07 6.3423e+07 
 

10 4.0358e+07 6.9012e+07 
 

 


