
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
Master of Science in Computational
Engineering

The spring semester, 2022

Open
Author: Jonathan Perilla Arias

…………………………………………

(signature author)

Course coordinator: Steinar Evje

Supervisor(s): Steinar Evje

Thesis title: Influence of Hyperparameters of Neural Ordinary Differential Equations
in Their Ability to Model Dynamic Systems Governed by ODEs

Credits (ECTS): 30

Keywords: Neural Ordinary Differential
Equations, NODEs, Neural ODEs,
hyperparameters of NODEs

 Pages: 56

 + appendix: 13

 Stavanger, June 15 /2022

Influence of Hyperparameters of Neural Ordinary
Differential Equations in Their Ability to Model

Dynamic Systems Governed by ODEs

Author
Jonathan Perilla Arias

Supervisor
Steinar Evje

A thesis presented for the degree of
Master of Science

in
Computational Engineering

Department of Energy Resources
University of Stavanger

Norway
2022

Abstract

In this thesis the Neural Ordinary Differential Equations (NODEs) are studied in their
ability to model dynamic systems governed by ODEs. NODEs are a new type of artificial
neural network that uses a feed-forward artificial neural network as the source of gradient
to construct a continuous trajectory. Although there are several investigations showing
NODEs extraordinary ability to model time series, no comprehensive study of the influence
of its hyperparameters on its performance has been conducted. In this investigation the
objective was to evaluate the influence of some of the NODEs’ hyperparameters on the
NODEs capabilities of modeling. Special focus was set on the evaluation of the influence of
the gradient computation algorithm used, because it determines to a great extent the speed
of the training session. Three gradient computation algorithms were analyzed, including
a novel method proposed in this thesis; this new approach is based on a modification of
the adjoint sensitivity method.

In order to reach these aims, an implementation of NODEs was created using object-
oriented programming in the Matlab suite. Then, a group of ODE systems was used to
generate several trajectories that were used to train a collection of NODEs that had a
different set of hyperparameters. The trained NODEs were used to approximate a set of
new trajectories generated by the same systems of ODEs, and the error in the trajectories
was used to quantify the influence of the hyperparameters.

The results indicated that the hyperparameters have a big impact on the performance
of the NODEs in modeling dynamic systems. Some characteristics of the data to model
can give a hint in potential initial hyperparameters, but the evidence showed that many
tests need to be done in order to get the optimal hyperparameters. In this regard, the
new method proposed for gradient calculation showed potential, because it was ten times
faster than the other methods analyzed; that in effect could allow a broader set of hyper-
parameters to be tested when facing a modeling problem.

i

To my wife and daughter that always stand by me.

Acknowledgments

I would like to express my gratitude to my supervisor Steinar Evje for his continuous
support and guidance in this thesis. I would also like to thank my friend and teacher
Bryan Thalhammer for his invaluable feedback.

iii

Contents

1 Introduction 1
1.1 Previous Work in the Topic . 1

1.1.1 Feed-forward ANN . 1
1.1.2 Recurrent Neural Networks . 5
1.1.3 Long-Short Term Memory . 5

1.2 Current Ideas in the Topic . 6
1.2.1 Residual Neural Networks . 6
1.2.2 Neural Ordinary Differential Equations 7

1.3 Knowledge Gap . 9
1.4 Aim of the Study . 10
1.5 Objectives . 10

2 Methods 12
2.1 Neural ODE Implementation . 12
2.2 The Feed-forward ANN Class . 13

2.2.1 Forward method . 14
2.2.2 Gradient method . 15
2.2.3 Parameters initialization . 17

2.3 The Neural ODE Class . 17
2.3.1 Forward method . 17
2.3.2 Gradient method . 17
2.3.3 Gradient step methods . 19
2.3.4 Training Methods . 23
2.3.5 Adam learning rate optimization method 24

2.4 Systems of ODE selected and synthetic datasets 25
2.4.1 Linear ODE system: Three stage tank salt content 25
2.4.2 Almost linear ODE system: Damped pendulum 27
2.4.3 Nonlinear ODE system: Predator-prey system 28

2.5 Experiments and Experiments Metrics . 29
2.5.1 Experiment 1 - Testing gradient step methods on single pairs of points 29
2.5.2 Experiment 2 - Evaluating gradient step methods on complete train-

ing datasets . 29
2.5.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-

parameter’s influence in final model performance 30

iv

2.5.4 Experiment 4 - Exploring different SGD mini-batch size effect on
the training cost trajectory . 30

2.5.5 Experiment 5 - Final model evaluation 30

3 Results 31
3.1 Linear ODE System. The Three Stage Tank Salt Content 31

3.1.1 Experiment 1 - Testing gradient step methods on single pairs of points 32
3.1.2 Experiment 2 - Evaluating gradient step methods on complete train-

ing datasets . 33
3.1.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-

parameter’s influence in final model performance 35
3.1.4 Experiment 4 - Exploring different training algorithms and their

effect on the training cost trajectory 36
3.1.5 Experiment 5 - Final model evaluation 36

3.2 Almost Linear ODE system. The Damped Pendulum 38
3.2.1 Experiment 2 - Evaluating gradient step methods on complete train-

ing datasets . 38
3.2.2 Experiment 3 - Investigating the NODE’s underlying ANN hyper-

parameters influence in final model performance 41
3.2.3 Experiment 4 - Exploring different training algorithms and their

effect on the training cost trajectory 42
3.2.4 Experiment 5 - Final model evaluation 42

3.3 Non-linear ODE system: Predator-prey system 44
3.3.1 Experiment 2 - Evaluating gradient step methods on complete train-

ing datasets . 44
3.3.2 Experiment 3 - Investigating the NODE’s underlying ANN hyper-

parameters influence in final model performance 47
3.3.3 Experiment 4 - Exploring different training algorithms and their

effect on the training cost trajectory 48
3.3.4 Experiment 5 - Final model evaluation 48

4 Discussion and Conclusion 51
4.1 Discussion . 51

4.1.1 Experiment 1 - Testing gradient step methods on single pairs of points 51
4.1.2 Experiment 2 - Evaluating gradient step methods on complete train-

ing datasets . 52
4.1.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-

parameter’s influence in final model performance 53
4.1.4 Experiment 4 - Exploring different training algorithms and their

effect on the training cost trajectory 53
4.1.5 Experiment 5 - Final model evaluation 53

4.2 Contributions . 54
4.3 Limitations . 54
4.4 Future work . 55
4.5 Conclusion . 55

v

Bibliography 57

A NODE Class 59

B ANN Class 69

vi

List of Figures

1.1 Feed-Forward ANN, (a) Feed-forward ANN example, (b) Single neuron
structure. 2

1.2 Activation functions and its derivatives, (a) Logistic sigmoid, (b) Hyperbolic
tangent sigmoid, (c) ReLU. 4

1.3 Recurrent neural network (Modified from source: Elman (1990)). 5
1.4 Residual learning: a building block (Modified from source: He et al. (2016)). 6
1.5 ResNets compared with NODEs (Modified from source: Chen et al. (2018)). 7
1.6 Simplified block diagram of a NODE. 8

2.1 NODE implementation block diagram. 13
2.2 Neural ODE implementation UML diagram. 14
2.3 Detailed feed-forward ANN structure. 14
2.4 Individual Neuron. 15
2.5 NODE cost calculation. 18
2.6 NODE backpropagation. 20
2.7 Single step in the NODE using the Euler ODE solver. 21
2.8 (a) Three stage tank system, (b) Salt content function (Equation 2.36) for

X0 =
[
15 0 0

]
(Modified from source: Edwards et al. (2007)). 26

2.9 (a) Damped pendulum, (b) Solution of Equation 2.39 with initial condition
X0 =

[
1.5 1.5

]
. 27

2.10 Solution of Equation 2.40 . 28

3.1 Linear case: Equation 3.1 vector field and trajectories forX0 =
[
10.3 2.0 3.5

]
,[

13.2 2.8 4.2
]
and

[
10.5 1.7 0.2

]
. 32

3.2 One-thousand gradient calculation for two consecutive points, (a) Average
time per gradient calculation, (b) Average Euclidean normalized distance
between the numerical calculated gradient and the gradient calculated by
back-propagation, adjoint and adjoint-modified methods 33

3.3 Linear case: Training of a NODE with different gradient step algorithms,
(a) Learning curves, cost versus epochs, (b) Numerical gradient, (c) Back-
propagation gradient, (d) Adjoint gradient, (e) Adjoint-modified gradient. . 34

3.4 Linear case: NODE sizes for hyperparameters tests. 35
3.5 Linear case: Underlying ANN hyperparameter tests, (a) Cost trajectories

for each test, (b) Average training error, (c) Average testing error. 35
3.6 Linear case: Average cost trajectory for the gradient descent algorithm and

the stochastic gradient descent (different mini-batch sizes) for five tests. . . 36

vii

3.7 Linear case: (a) Cost trajectory for NODE with optimal hyperparameters
trained with training-dataset-0, (b) NODE approximation for the training
trajectory, (c) NODE approximation for first trajectory in testing-dataset-
0, (d) NODE approximation for second trajectory in testing-dataset-0, (e)
NODE approximation for third trajectory in testing-dataset-0, (f) NODE
approximation for fourth trajectory in testing-dataset-0. 37

3.8 Linear case: NMSE for NODE approximation of the testing-dataset-0 (1000
trajectories). 38

3.9 Almost linear case: Equation 3.2 vector field and trajectory for X0 =
[
2 1

]
. 39

3.10 Almost linear case: Training of a NODE with different gradient step al-
gorithms, (a) Learning curves, cost versus epochs, (b) Numerical gradient,
(c) Back-propagation gradient, (d) Adjoint gradient, (e) Adjoint-modified
gradient. 40

3.11 Almost linear case: NODE sizes for hyperparameters tests. 41
3.12 Almost linear case: Underlying ANN Hyperparameters tests, (a) Cost tra-

jectories for each test, (b) Average training error, (c) Average testing error. 41
3.13 Almost linear case: Average cost trajectory for gradient descent algorithm

and stochastic gradient descent (different mini-batch sizes) for five tests. . . 42
3.14 Almost linear case: (a) Cost trajectory for NODE with optimal hyperpa-

rameters trained with training-dataset-1, (b) NODE approximation for the
training trajectory, (c) NODE approximation for first trajectory in testing-
dataset-1, (d) NODE approximation for second trajectory in testing-dataset-
1, (e) NODE approximation for third trajectory in testing-dataset-1, (f)
NODE approximation for fourth trajectory in testing-dataset-1. 43

3.15 Almost linear case: NMSE for NODE approximation of the testing-dataset-
1 (1000 trajectories). 44

3.16 Non-linear linear case: Equation 3.3 vector field and trajectories for X0 =[
328.2 32.2

]
,
[
122.9 21.5

]
and

[
108.0 119.3

]
. 45

3.17 Non-linear linear case: Training of a NODE with different gradient step
algorithms, (a) Learning curves, cost versus epochs, (b) Backpropagation
gradient, (c) Adjoint gradient, (d) Adjoint-modified gradient. 46

3.18 NODE sizes for hyperparameters tests. 47
3.19 Non-linear linear case: Underlying ANN Hyperparameter tests, (a) Cost

trajectories for each test, (b) Average training error, (c) Average testing
error. 47

3.20 Non-linear linear case: Average cost trajectory for gradient descent algo-
rithm and stochastic gradient descent (different mini-batch sizes) for five
tests. 48

3.21 Non-linear linear case: (a) Cost trajectory for NODE with optimal hy-
perparameters trained with training-dataset-2, (b) NODE approximation
for the training trajectory, (c) NODE approximation for first trajectory in
testing-dataset-2, (d) NODE approximation for second trajectory in testing-
dataset-2, (e) NODE approximation for third trajectory in testing-dataset-2,
(f) NODE approximation for fourth trajectory in testing-dataset-2. 49

3.22 Non-linear linear case: NMSE for NODE approximation of the testing-
dataset-2 (1000 trajectories). 50

viii

Chapter 1

Introduction

A dynamic system is a system in which its next state is defined by its current state and
a rule of change. Modelling dynamic systems in order to be able to predict their state is
of key importance, because it allows the manipulation of variables to produce a desired
behaviour. Data-based models and more specifically artificial neural networks (ANNs)
offer a great advantage: they do not require any assumptions about the underlying rela-
tionships between the input-output data. Although artificial neural networks (ANN) have
revolutionized the artificial intelligence field, most of the successful implementations are
based on ideas that were presented some decades ago that do not adapt well to continu-
ous dynamic systems. Recently, a new ANN architecture, the neural ordinary differential
equation (NODE) was introduced; this architecture was a breakthrough because it was
able to produce continuous outputs and to be trained with irregular spaced samples. This
research aims to investigate the ability of NODEs in modeling dynamic systems and to
quantify the effect of their hyperparameters in the accuracy of the model obtained.

This chapter will provide an introduction to the study by first discussing the basic
concepts behind ANNs and the legacy ANNs structures that first attempted to model time
series. Then it shows the current ideas, with the main topic being Neural ODEs. Finally
the knowledge gap, the research aims and the objectives of the research are presented.

1.1 Previous Work in the Topic

1.1.1 Feed-forward ANN

ANNs are structures inspired by the brain in the way that they are composed of neurons
or nodes and links between them. Each node stores information (a numerical value)
and passes that information to other nodes through links that are characterised by its
strength or weight. These structures are designed to adapt themselves to generate a
desired combination of input-output vectors; they achieve this by adjusting the weights of
the links between nodes.

The most basic ANN structure is the feed forward topology, in a feed-forward ANN the

1

Figure 1.1: Feed-Forward ANN, (a) Feed-forward ANN example, (b) Single neuron struc-
ture.

information only moves forward from the input layer to the hidden layers and then to the
output layer; there are no loops in the network (Figure 1.1a). Each of the layers (e.g. A in
Figure 1.1a) is composed of several nodes. In the input layer, the nodes represent an input
variable for the system and take that variable value. For the hidden layers (e.g. B, C and
D in Figure 1.1a), every node receives information from the nodes in the previous layer
(i.e. B from A and C from B in Figure 1.1a); that information is weighted and defines
the value of the nodes. Finally, each node in the output layer (e.g. E in Figure 1.1a)
represents an output variable of the system and takes values using the weighted values
from the last layer.

In Figure 1.1b, an elementary neuron in the Lth layer with j inputs is shown. The a
variables in the input and output represent the values of the neurons, with the superscript
being the layer number and the subscript the position in the layer. The input vector
contains j values aL−1; these are the values of the j neurons of the L− 1 layer. The single
output aLk is the value of the kth neuron of the Lth layer. On the other hand, each neuron
has a set of parameters w (i.e. weights) and b (i.e. biases) that are constant and are used
to calculate the neuron values a each time the input is changed.

The process in Figure 1.1b starts with a set of inputs a that are weighted with a specific
constant, w, the weighted inputs are summed, and a bias term b is added. The intermediate
result output of the operations involving the parameters w and b is defined as z. This
z is then input into a transfer function σ to generate the neuron value a (Equation 1.1).
The use of transfer functions, more specifically nonlinear transfer functions, is required
because it allows the network to learn nonlinear relationships between input and output
vectors.

aLk = σ

∑
j

(aL−1
j wL

jk) + bLk

 (1.1)

Equation 1.1 applies for layers starting with the second layer up to and including the
last layer. The neuron values a of the first layer (i.e. A in Figure 1.1a) are just the external
inputs of the neural network, thus no calculations are done in this first layer. The a values
in layer one then serve as the initial state for the process in Equation 1.1.

2

The back-propagation is the learning process to find the best weights and biases for
an ANN given an input-output and was introduced by Rumelhart et al. (1986). The
development of this algorithm made it possible to effectively train an ANN and was a
breakthrough in the machine learning field. This algorithm first defines a cost function
proportional to the sum of the square differences between the outputs of the ANN and
the expected outputs for all the data points. Then, using the chain rule, it calculates the
partial derivative of this cost function with respect to each parameter of the neural network
in one backward pass. The parameters can then be updated in the opposite direction of
the gradient, in the direction of the steepest descent.

If an ANN with L layers is considered, the total cost is defined as:

C =
1

2

∑
i

∑
k

((yk)i − (aLk)i)
2

(1.2)

Where i is the index of input-output data points and k is the index of the neurons
of the output layer, a is the output of the ANN and y are the desired outcomes. The
back-propagation starts finding the partial derivative of the cost with respect to the single
output aLk :

∂C

∂aLk
= yk − aLk (1.3)

Then, using the chain rule, the partial derivative of the cost with respect to the inter-
mediate value zLk is:

∂C

∂zLk
=

∂C

∂aLk

∂aLk
∂zLk

= (yk − aLk)σ
′(zLk) (1.4)

As zLk is a linear function of the parameters wL
jk and bLk , the partial derivative with

respect to these parameters can be easily calculated:

∂C

∂wL
jk

=
∂C

∂zLk

∂zLk
∂wL

jk

= (yk − aLk)σ
′(zLk)a

L−1
j

∂C

∂bLk
=

∂C

∂zLk

∂zLk
∂wL

jk

= (yk − aLk)σ
′(zLk)

(1.5)

Moving one layer backward to the L−1 layer, the derivative of the cost with respect to
a neuron value aL−1

j will be a sum of the contributions emanating from it to the layer L.

Each of these contributions will be the product of the weight wL
jk (connecting the neuron

j of the L− 1 layer to the neuron k of the L layer) by the partial derivative of the cost
with respect to the intermediate value zLk .

∂C

∂aL−1
j

=
∑
k

∂C

∂zLk
wL
jk (1.6)

Then the same process follows in Equation (1.4), and (1.5) can be used to find the
derivative of the cost with respect to the parameters wL−1

jk and bL−1
jk (i.e. θL−1

jw). The
trainable parameters (i.e. weights and biases) in an ANN are called parameters and

3

are group in the variable θ, while the non-trainable parameters (e.g. number of layers,
activation function) in an ANN are called hyperparameters.

The process described in Equations (1.3),(1.4),(1.5) and (1.6) can be repeated to
find the gradient of the cost with respect to all the trainable parameters θ. This back-
propagation algorithm was a breakthrough because it can calculate the derivative of the
cost with respect to all the parameters for an input-output pair in one backwards pass.

To be able to perform the back-propagation, the activation function must be differen-
tiable for all possible z values, that is z ∈ R. The transfer function used by Rumelhart
et al. (1986) was the logistic sigmoid (Equation 1.7) that maps the entire number line into
the range (0, 1) (Figure 1.2). But Glorot & Bengio (2010) showed that the sigmoid activa-
tion caused the last layer of deep networks to saturate towards zero, causing the training
to slow down and even to never converge to a minimum. In the same document Glorot &
Bengio (2010) showed that the hyperbolic tangent sigmoid (Equation 1.8) that is similar
to the standard sigmoid, but maps the line into the range (−1, 1), does not suffer from
the same type of saturation as the standard sigmoid, and can give better results when the
parameters are properly initialized.

More recently the rectified linear activation function (ReLU) was introduced; it outputs
0 for negative inputs and the same input for positive inputs (Equation 1.9). It was first
published by Hahnloser et al. (2000), justifying it as a better model of a biological neuron.
Glorot et al. (2011) showed empirically that the ReLU offered a better test error for some
benchmark problems compared to the hyperbolic tangent sigmoid. Since then it had
become one of the most popular activations in deep neural networks.

σ(zLk) =
1

1 + e−zLk
(1.7)

σ(zLk) =
e−2zLk − 1

e−2zLk + 1
(1.8)

σ(zLk) =

{
zLk if x > 0

0 otherwise
(1.9)

Figure 1.2: Activation functions and its derivatives, (a) Logistic sigmoid, (b) Hyperbolic
tangent sigmoid, (c) ReLU.

4

Figure 1.3: Recurrent neural network (Modified from source: Elman (1990)).

Feed-forward ANNs have many applications, but they cannot be used to model sequen-
tial data because they assume independence between the measurements. In a feed-forward
ANN, a single piece of data is fed and then a response is obtained, but when another piece
of data is fed, the ANN goes to an initial state and forgets all the information from the pre-
vious event. Although these structures cannot model continuous systems ruled by ODEs,
the feed-forward ANNs are the building blocks for all the other types of ANNs presented
in this document.

1.1.2 Recurrent Neural Networks

This limitation was addressed by Elman (1990). He proposed the use of feed-forward
ANNs, however using what he called context. The ANN is fed with the first sequential
data and an initial context, and then the hidden unit will generate an output and an
updated context. This context will then be fed back to the network and then be used in
the next time step (Figure 1.3). This context works as a memory for the network, and
then information can flow over time. This architecture is called recurrent neural network
(RNN).

However there are some issues with RNN described by Hochreiter & Schmidhuber
(1997) when the sequences are long. The influence in the loss function of an input early
in the sequence will explode or vanish depending on the sizes of the weights. In the case
of exploding gradients, this will lead to oscillating weights, and in the case of vanishing
gradients the long-term information will be lost.

1.1.3 Long-Short Term Memory

In the same work, Hochreiter & Schmidhuber (1997) proposed a new architecture called
long-short term memory (LSTM) whose main feature was to let information flow through
the network in time without applying a continuous scaling and a nonlinear activation on
each step. This extra piece of information that is passed to the next time step is called
cell state. Since the introduction of the LSTM by Hochreiter & Schmidhuber (1997), this

5

Figure 1.4: Residual learning: a building block (Modified from source: He et al. (2016)).

architecture has been used successfully in many areas, showing exceptional results.
Even Though LSTMs are successful in many areas such as speech recognition, image

classification, and music composition; they have fundamental limitations to model con-
tinuous dynamic systems. Their architecture is built to have equally-spaced time series
inputs-outputs that are not compatible with the measurement of dynamic systems in which
measurements can be missing or not taken in constant time intervals. Most importantly,
due to their discrete nature, LSTMs tend to be affected by noise, and they also struggle
to capture the underlying dynamics in systems ruled by ODEs (Chen et al. 2018).

1.2 Current Ideas in the Topic

1.2.1 Residual Neural Networks

Recently, He et al. (2016) introduced an ANN architecture called residual neural networks
(ResNETs) in order to overcome the difficulty of training very deep neural networks used in
image recognition. He et al. (2016) found that after a certain number of layers, increasing
the depth caused an increment in training and test error, which is counter-intuitive because
one will expect a better fit with increased flexibility of the model. They addressed the
problem by creating shortcut connections that feed-forward the inputs of layers to later
layers, skipping one or more layers (Figure 1.4). In this way, the ANN will need to learn
only the residuals of the change of the input vector. It turns out that this was a much
better architecture to train deep networks, and the ResNET won the ILSVRC (ImageNet
Large Scale Visual Recognition Competition) in 2015 in the image classification task (Zhai
et al. (2020)).

6

Figure 1.5: ResNets compared with NODEs (Modified from source: Chen et al. (2018)).

1.2.2 Neural Ordinary Differential Equations

Inspired by the ResNETs, Chen et al. (2018) presented a new architecture called neural
ordinary differential equations (NODE). They were based on the idea that the residual
architecture of a ResNET can be seen as an Euler discretization of an ODE:

Ut+1 = Ut +∆tf(Ut, θt) (1.10)

Where t ∈ 0, 1, .., T is the layer sequence, ∆t = 1, Ut is the vector containing the state
of the neurons at layer t, and f represents a feed-forward ANN with parameters θt. Then,
if the steps are made smaller and smaller, the state U will become continuous and the
derivative will become the neural network itself:

dU(t)

dt
= f(U(t), θ) (1.11)

Starting from the initial condition U(0) an ODE solver can be used to calculate the
output of the network U(T) using a feed-forward ANN as the source of the gradient of
U(t) (Equation 1.12). The NODE transforms the state vector U(T) continuously, while
the ResNet has a discrete sequence of finite transformations (Figure 1.5). The depth
of the NODE is determined by the ODE solver, and it is equivalent to the number of
times the gradient is evaluated. A key difference between ResNets and NODEs is that
the parameters θt in ResNets can variate between layers because it has a finite number
of layers T (i.e. t ∈ 0, 1, .., T); on the contrary, in NODEs these parameters θ must be
constant as the t interval is continuous (i.e. t ∈ (0, T]).

U(T) = U(0) +

∫ T

0
f(U(t), θ) (1.12)

The NODE can evaluate the state vector at any time forward in time; this enables the
NODE to be trained by back-propagation, using a time series with irregular sample steps.
This offers a great advantage over the LSTM and RNN architectures that have a fixed

7

Figure 1.6: Simplified block diagram of a NODE.

time step and cannot be trained or evaluated at irregular time steps. Then for example,
a real dataset that has missing or invalid points can be used to train NODEs, and the
resulting NODE can be evaluated at any time t as well as between training points.

Figure 1.6 shows a simplified block diagram of the NODE; it shows that the ODE solver
can be treated as a black box, thus allowing different ODE solvers to be used, depending
on the type of problem and the accuracy required. This can be done without changing
the structure of the NODE.

Chen et al. (2018) showed that NODEs trained with data series contaminated with
gaussian noise can recover the original trajectory and successfully extrapolate the be-
haviour of the underlying phenomenon.

In order to train the NODE, the gradient of the cost with respect to the parameters
θ of the underlying feed-forward ANN have to be calculated. This can be done by back-
propagating through the operations of the ODE solver and then through the feed-forward
ANN. But for doing this, the exact operations of the ODE solver have to be known, and
then the ODE solver cannot be treated any longer as a black box.

As an alternative to the back-propagation method, Chen et al. (2018) proposed a
method that treats the ODE solver as a black box and computes the gradient using the
adjoint sensitivity method. This method is based on the idea that the state vector is
continuous and then the gradients of the cost with respect to the parameters only depend
on the gradients of the underlying feed-forward ANN.

The method defines an adjoint state that is the gradient of the cost with respect to
the state vector U(t) at each instant a(t) = ∂C

∂U(t) . The dynamics of this adjoint state is
defined for another ODE that can be thought of as the instantaneous chain rule:

da(t)

dt
= −a(t)

∂f(U(t), θ)

∂U
(1.13)

With this, the adjoint state a(t) can be found:

a(t) = a(T) +

∫ t

T
a(s)

∂f(U(s), θ)

∂U
ds (1.14)

The gradient of the cost with respect to the parameters θ can be calculated again using
the instantaneous chain rule:

dC

dθ
=

∫ 0

T
a(t)

∂f(U(t), θ)

∂θ
dt (1.15)

8

Finally, the Equation 1.12 needs to be reversed:

U(t) = U(T)−
∫ t

T
f(U(s), θ)ds (1.16)

Equations (1.14), (1.15) and (1.16) can be concatenated and be solved in a single call
to an ODE solver from T to 0, thus obtaining the total gradient dC

dθ . The initial conditions
U(T) and a(T) need to be found beforehand with a forward pass of Equation 1.12. Note
that Equations (1.12), (1.14), (1.15) and (1.16) involved in the calculations only depend
on the gradient of the underlying feed-forward ANN, so the ODE solver can be treated as
a black box.

But Hasani et al. (2020) claimed that the adjoint sensitivity method produces gradients
with lower accuracy, compared with the back-propagation method. This is caused by the
numerical errors generated in the recovery of the state vector U(t) in the backward-pass
using Equation 1.16. The state vector U(t) needs to be recovered in the adjoint sensitivity
method, because the ODE solver used in the backward-pass needs the value of the state
vector U(t) at some specific times t in order to find the total gradient dC

dθ .
Recently, Kidger et al. (2021) proposed a modification of the adjoint sensitivity method

that improves the speed of the calculation. Kidger et al. (2021) noticed that the Equation
1.15 is not an ODE in the sense that errors do not propagate in time; it is just an integral
once a(t) and U(t) are known. Thus, if the accuracy requirements for the Equation 1.15 are
relaxed when solving it simultaneously with Equations (1.14) and (1.16), the calculation
needs less gradient evaluations. This supposedly improves the speed, but maintains a
similar accuracy corresponding to the original adjoint sensitivity method.

Inspired by this, a modification of the adjoint method to find the gradient in NODEs
is proposed in this document. It uses the state values U(t) of the forward-pass to evaluate
numerically the integrals in Equations (1.14) and (1.15) to find the total gradient dC

dθ .
Because it uses the value of U(t) of the forward-pass, the numerical errors mentioned
by Hasani et al. (2020) are avoided, and the problem is simplified to that of solving
numerically two integrals. As the adjoint method, this method only requires the gradients
of the underlying feed-forward ANN; then there is no need to back-propagate through the
ODE solver.

1.3 Knowledge Gap

Karlsson & Svanström (2019) and Chen et al. (2018) showed some examples of the out-
standing capabilities of the NODEs for modelling dynamic systems. However, there is no
comprehensive study that evaluates the dependency of the performance of these structures
when the underlying ANN used to model the gradient is changed. An example would be
using different depths or changing the activation function of the underlying ANN.

Chen et al. (2018) proposed the adjoint sensitivity method for finding gradient in
NODEs, because it explicitly controls numerical error an has a constant memory cost, but
Hasani et al. (2020) argued that the gradient generated with the adjoint sensitivity method
had lower accuracy than the gradient generated by the backpropagation method. However

9

there is no direct comparison of the accuracy-speed of the gradients obtained with these
methods. Moreover, there is no comparison of the models obtained with different gradient
calculation methods.

As a result, there is not a basic starting point for selecting the underlying ANN struc-
tures for NODEs, or criteria for selecting a gradient algorithm when facing a modeling
problem.

In this study, a set of trajectories generated by an ODE system were used to train a
set of NODEs with different hyperparameters (e.g. number of layers, activation function,
training algorithm, and gradient computation algorithm); then these NODEs were used
to replicate a set of new trajectories generated by the same ODE systems. The distances
between the true trajectories and the approximations generated by the NODEs were used
to quantify the effects of those hyperparameters in the NODEs obtained, and to evaluate
in general the performance of NODEs.

1.4 Aim of the Study

The aim of this study is to evaluate the ability of NODEs to model different dynamic sys-
tems governed by ODEs and to quantify the influence of the hyperparameters (i.e. number
of layers, activation function) of the underlying feed-forward ANN, the optimization al-
gorithm and the gradient algorithm in the accuracy of the model obtained. Between the
gradient algorithms to evaluate, a new method proposed in this document referred as the
adjoint-modified method is included.

1.5 Objectives

The main objectives of this thesis are:

• Select several systems of ordinary differential equations that can be used as ground
truth which will be used to generate synthetic data.

• Use object-oriented programming to develop classes, objects and methods that allow
the testing and training of NODEs. This implementation should be flexible enough to
accept different underlying ANNs structures and also to train the networks using the
back-propagation method, the adjoint sensitivity method, and the adjoint-modified
method.

• Use a set of trajectories generated by an ODE system to train a NODE (i.e. learn the
parameters θ of the underlying ANN); then using the trained NODE, try to replicate
another set of trajectories generated by the same ODE system. With this, assess
the ability of NODEs to learn the training data and to extrapolate the behaviour of
the dynamic systems selected.

10

• Quantify the influence of changing different hyperparameters in the underlying ANN
in the ability of NODEs to learn the training trajectories and to approximate the
testing trajectories.

• Quantify the cost-benefit of using the back-propagation, the adjoint sensitivity or
the adjoint-modified methods to compute gradients for the NODEs implemented.

.

11

Chapter 2

Methods

This chapter discusses the details of the methodology followed in the study to achieve the
aim. First, a general description of the implementation of Neural ODE built in this study
is given. Then a detailed description of the main parts of the implementation is presented,
including the derivation of the mathematical expressions that were used. Subsequently, the
selected ODE systems used to generate synthetic data are shown. Finally, the experiments
proposed to quantify the effect of the NODE’s hyperparameters in its performance are
described.

2.1 Neural ODE Implementation

An approach based on object-oriented programming was selected over procedural pro-
gramming because it allows encapsulation of data and behaviours in the same entity. This
effectively adapts to the modeling of ANNs because these structures are a blend of pa-
rameters and hyperparameters (data) and actions (behaviour). Then specific instances of
NODEs with different hyperparameters can be created, used, and stored with ease.

Matlab was chosen as a programming language, because it was designed specifically
to work with matrices. As most of the functionality related to ANN involves matrix
operations, this suite is a good fit for the problem in hand. It also has a well-documented
graphics library that allows the creation of 2D and 3D plots for visualising and presenting
the results. Besides that, the author and the advisor had previous experience with the
programming language, which made it convenient to use.

The implementation proposed uses objects from two classes: an ANN class that rep-
resents the underlying feed-forward ANN; and a NODE class that uses an instance of the
ANN class, and that encapsulates the whole structure. There are two high level methods
that the NODE must execute. First, the forward pass in which an initial condition and
a time interval is given and the NODE returns a trajectory. Second, the backward pass
or training, in which the NODE is given training data that it uses to update its internal
parameters.

The Figure 2.1 shows the block diagram of the program implemented. The ANN object
represents the feed-forward ANN; it has methods to feed-forward an input, and to find

12

Figure 2.1: NODE implementation block diagram.

the gradient of the output with respect to its parameters and inputs. As the trainable
parameters of the NODE are the parameters of the feed-forward ANN, this object stores
and uses these parameters for its methods.

The object NODE has a forward method that uses an ODE solver and an ANN instance
as a source for gradient. The training method uses the gradient method to find total
gradients, that in turn uses the Adam optimizer to update the parameters of the ANN
instance. To find the total gradient, the gradient method can use one of the four gradient
step algorithms that find the gradient for a pair of points in the training data.

The unified modeling language (UML) diagram in Figure 2.2 gives a complete overview
over the structure of the NODE developed. The main methods and properties (highlighted
in blue in Figure 2.2) for the two classes are going to be described in the following two
sections.

2.2 The Feed-forward ANN Class

The ANN class is an implementation of a feed-forward ANN. An instance of this class
will serve as a source of gradient for the NODE class. The attributes necessary to create
an instance of this class are the size and activ vectors. In the size vector, the number
of elements represent the number of layers, and the element values represent the number
of neurons in each layer. Activ is a vector of the same length as the size vector and it
encodes the activation function of each layer. In this way each layer can have a different
activation function.

13

Figure 2.2: Neural ODE implementation UML diagram.

2.2.1 Forward method

The forward method calculates the output of the feed-forward ANN for a given input.
Figure 2.3 shows the basic ANN structure and the nomenclature used in this document,
for each variable the super-index indicates the layer and the sub-index the neuron of the
layer. W i and Bi are the matrices containing the weights and biases for the interface
between layer i− 1 and i , and aij is the value of the neuron j in the layer i.

Figure 2.3: Detailed feed-forward ANN structure.

14

Figure 2.4: Individual Neuron.

In Figure 2.4, the kth neuron of the Lth layer detailed internal operation is shown.
The intermediate zLk term is obtained by the product of the vector containing the output
of the neurons in the previous layer with the kth column of the WL matrix, and then
adding the kth element of the bias matrix BL. The intermediate term zLk is then passed
through the activation function σ, resulting in the neuron value aLk .

The operation shown in Figure 2.4 can be done matricially to get all the intermediate
terms zl in the layer l in a vector Z l, as shown in Equation 2.1. The vector containing
the neuron values a of the layer l − 1 times the matrix containing the weights w of layer
l, this is added to the vector containing the bias terms b of layer l.

Then, the vector with Z l can be passed through the activation function σ to obtain the
vector with the neuron values for layer l, Al. The process in Equation 2.1 can be looped
from layer 2 to the output layer to get the outputs of the feed-forward ANN.

Z l =
[
a1 a2 · · · asl−1

]l−1

w1,1 w1,2 · · · w1,sl

w2,1 w2,2 · · · w2,sl
...

...
...

...
wsl−1,1 wsl−1,2 · · · wsl−1,sl

l

+
[
b1 b2 · · · bsl

]l
Z l = Al−1W l +Bl

Al = σ(Z l)
(2.1)

2.2.2 Gradient method

In a normal feed-forward ANN the gradient of interest is the gradient of the cost with
respect to the parameters θ (i.e. weights and biases). For the case of Neural ODEs, the
gradient calculation for the underlying feed-forward ANN is different. First, it is necessary
to calculate the gradient of each output with respect to the parameters, if the vector state
has M variables, then the gradient will be M groups of matrices. Also it is necessary
to calculate the gradient of the outputs with respect to the inputs; this will be a matrix
with MxM elements in the case of a vector state with M elements. In order to find these
gradients a back-propagation process from the output to the input needs to be done.

15

From Equation 2.1 the derivative of one of the outputs aLj can be calculated with

respect to the previous intermediate state ZL as:

∂aLj
∂ZL

=

[
∂aLj
∂zLj

∂aLj
∂zL2

. . .
∂aLj
∂zLM

]
=

[
0 . . . σ′(zLj) . . . 0

]
= δLj (2.2)

This derivative is a vector with all the elements equal to zero except the jth element.
The jth element is equal to the derivative of the activation function σ′ evaluated at zLj . For

convenience the derivative of an output of the network aLj with respect to a intermediate

state Zi is called δij .

One step back, the derivative of the output aLj with respect to the cell values of the

previous layer AL−1 by chain of rule is δLj multiplied by the derivative ∂ZL

∂AL−1 that is the

jth column of the weights matrix WL (Equation 2.3).

∂aLj
∂AL−1

=
∂aLj
∂ZL

∂ZL

∂AL−1
= δLj (W

L)T =
[
0 . . . σ′(zLj) . . . 0

]

w11 w21 . . . wsl−11

w12 w22 . . . wsl−12
...

...
. . .

...
w12 w22 ... wsl−12

L

(2.3)
Where (WL)T is the transpose of the WL matrix. Going one step backwards the

derivative of the outputs aLj with respect to the intermediate state ZL−1 will be:

∂aLj
∂ZL−1

=
∂aLj

∂AL−1

∂AL−1

∂ZL−1
= δLj (W

L)T ⊙ σ′(ZL−1) = δL−1
j

(2.4)

Where ⊙ represent the element-wise product operation. This process can continue
until the derivative of an output with respect to the inputs is found as follows:

∂aLj
∂A1

=
∂aLj
∂Z2

∂Z2

∂A1
= δ2j (W

2)T (2.5)

In order to find the derivatives of the outputs with respect to the inputs, the δij from
i = L . . . 2 for each of the state variables j has to be calculated. The following expressions
summarise the process:

δLj =
[
0 . . . σ′(zLj)) . . . 0

]
δij = δi+1

j (W i+1)T ⊙ σ′(Zi)

∂aLj
∂A1

=
∂aLj
∂Z2

∂Z2

∂A1
= δ2j (W

2)T

(2.6)

Now, it is necessary to find an expression for the derivative of outputs of the feed-
forward ANN with respect to the parameters (i.e. weights and biases). Using the deriva-
tives of the outputs with respect to the intermediate states Zi found previously, the deriva-
tives are straightforwardly found as follows:

16

∂aLj
∂W i

=
∂aL1
∂Zi

∂Zi

∂W i
= ((δij)

TAi−1)T

∂aLj
∂Bi

=
∂aL1
∂Zi

∂Zi

∂Bi
= δij

(2.7)

2.2.3 Parameters initialization

The trainable parameters of a NODE are the parameters θ of its underlying ANN, so
the initialization of these parameters is done inside the ANN object. The initialization
of the weights matrix W proposed by Glorot et al. (2011) was selected because they
demonstrated that it can overcome the vanishing gradient problem in deep networks that
cause slow convergence. The initialization depends on the layer sizes sl−1 and sl of the
layers that the weight matrix W l connects (Figure 2.3). Each element of the matrix W l

is sampled from a uniform distributions as follows:

wl
ij = U

[
−

√
6

√
sl−1 + sl

,

√
6

√
sl−1 + sl

]
(2.8)

The biases vectors B were initialized to zero.

2.3 The Neural ODE Class

The NODE class is an implementation of Neural ODEs that uses an instance of the ANN
class as a building block. The attributes necessary to create an instance of the NODE class
are the size and activ attributes that dictate the structure of the underlying feed-forward
ANN.

2.3.1 Forward method

The forward method calculates the output at time tN of a NODE with initial condition
vector U at time t0. The main forward method uses the Ode45 solver from the Matlab
suite that is based on the explicit Runga-Kutta method Shampine & Reichelt (1997).

2.3.2 Gradient method

The training data for a NODE consist of a series of Y points at different time steps
not necessarily equally separated. The objective of the NODE is to join each pair of
consecutive points and then be able to reconstruct the true trajectory. For a pair of

17

Figure 2.5: NODE cost calculation.

consecutive training points Y 0 and Y 1 given at times t0 and t1, the cost is a function of
the distance between Y 1 and the NODE approximation at that point, that is the state
vector U at time t1, i.e. UN1 (Figure 2.5). The super-index N1 represents the number of
time steps that the NODE has done between the points Y 0 and Y 1.

The cost for two consecutive points for simplicity is defined as:

Cn =
1

2

M∑
i=1

(yni − uNn
i)2 (2.9)

Where Cn is the cost associated to the nth point Y n, M is the number of variables in
the state vector, and uNn

i is the ith element of the vector UNn containing the approximation
of the NODE for the nth point.

The total cost for all the d training points is:

C =
1

d− 1

d∑
n=1

Cn (2.10)

Then the gradient of the total cost with respect to the parameters θ of the underlying
feed-forward ANN is:

∂C

∂θ
=

1

d− 1

d∑
n=1

∂Cn

∂θ
(2.11)

In order to find the total gradient of the cost with respect to the parameters θ, it is
necessary to find the gradient of the partial cost Cn with respect to the parameters θ for
every pair of points of the training dataset. This process is going to be done separately
by another method called gradient step.

18

2.3.3 Gradient step methods

These methods calculate the gradient of the partial cost Cd for two consecutive points in
the training dataset Y d and Y d−1 as shown in Figure 2.5. Different approaches are going
to be considered for this gradient calculation.

Gradient step numerical method

This method is based on the symmetric definition of derivative in the Equation 2.12. A
parameter is disturbed by −ϵ and +ϵ and the cost is calculated for each case using the
forward method, with this the gradient with respect to that parameter can be estimated.
The error in the estimation of the gradient will be then proportional to ϵ2. This method
is going to be the basis for checking the accuracy of the other methods.

f ′(x0) = lim
ϵ→0

f(x0 + ϵ)− f(x0 − ϵ)

2ϵ
(2.12)

Gradient step back-propagation method

In Figure 2.6 the back-propagation procedure to find the cost for each pair of points Y r and
Y r+1 is shown. Starting from U0 = Y r a forward pass is performed using the parameters
θ to obtain UNr+1. Then the cost can be calculated using the following equation:

Cr+1 =
1

2

M∑
i=1

(yr+1
i − u

Nr+1

i)2 (2.13)

For simplicity, the r + 1 index is dropped. The partial derivative of the cost with
respect to UN is as follows:

∂C

∂UN

∣∣∣∣
θ

=
[
uN1 − y1 uN2 − y2 ... uNM − yM

]
(2.14)

One step backward from Figure 2.6, it can be seen that UN is a function of UN−1

and the parameters θ. The partial derivative of the cost with respect to the parameters θ
having UN−1 constant is as follows:

∂C

∂θ

∣∣∣∣
UN−1

=

(
∂C

∂UN

∂UN

∂θ

)∣∣∣∣
UN−1

(2.15)

The partial derivative of the cost with respect to UN−1 having the parameters θ con-
stant is then as follows:

∂C

∂UN−1

∣∣∣∣
θ

=
∂C

∂UN

∂UN

∂UN−1
(2.16)

One more step backwards from Figure 2.6, it can be seen that UN−1 is a function
of UN−2 and the parameters θ. The partial derivative of the cost with respect to the
parameters θ having UN−2 constant is now the sum of the two ways that the parameters

19

Figure 2.6: NODE backpropagation.

θ affect the cost. One way going through UN−1 and the other way going through UN as
follows:

∂C

∂θ

∣∣∣∣
UN−2

=

(
∂C

∂UN−1

∂UN−1

∂θ

)∣∣∣∣
UN−2

+

(
∂C

∂UN

∂UN

∂θ

)∣∣∣∣
UN−1

(2.17)

That can be written as:

∂C

∂θ

∣∣∣∣
UN−2

=

(
∂C

∂UN−1

∂UN−1

∂θ

)∣∣∣∣
UN−2

+
∂C

∂θ

∣∣∣∣
UN−1

(2.18)

The partial derivative of the cost with respect to UN−2 having the parameters θ con-
stant is then as follows:

∂C

∂UN−2

∣∣∣∣
θ

=
∂C

∂UN−1

∂UN−1

∂UN−2
(2.19)

20

Figure 2.7: Single step in the NODE using the Euler ODE solver.

This process continues until the derivative of the cost with respect to the parameters
θ with only the input U0 constant.

∂C

∂θ

∣∣∣∣
U0

=

(
∂C

∂U1

∂U1

∂θ

)∣∣∣∣
U0

+
∂C

∂θ

∣∣∣∣
U1

(2.20)

But to be able to evaluate this expression it is necessary to know the partial derivatives
∂U l

∂U l−1 and ∂U l

∂θ for l ∈ N,N − 1, . . . , 1. These partial derivatives depend on the operations
of the ODE solver used by the NODE and need to be recalculated in case the ODE solver
is changed. This is a major drawback of the backpropagation method.

For this implementation the Euler method was selected as the ODE solver for simplic-
ity. In Figure 2.7 the diagram for the calculation of U l from U l−1 is shown. The output
is calculated from the following equation:

ul1 = ull−1 + hf l
1(u

l−1
1 , ..., ul−1

M , θ) (2.21)

The matrices with the derivatives of U l with respect to U l−1, and U l with respect to
the parameters θ are:

∂U l

∂U l−1
=

∂ul

1

∂ul−1
1

. . .
∂ul

1

∂ul−1
M

...
. . .

...
∂ul

M

∂ul−1
1

. . .
∂ul

M

∂ul−1
M

 =

1 + h

∂f l
1

∂ul−1
1

. . . h
∂f l

1

∂ul−1
M

...
. . .

...

h
∂f l

M

∂ul−1
1

. . . 1 + h
∂f l

M

∂ul−1
M

∂U l

∂θ
=

h
∂f l

1
∂θ

h
∂f l

2
∂θ
...

h
∂f l

M
∂θ

(2.22)

These derivatives are in terms of the derivatives ∂f
∂u and ∂f

∂θ that are calculated by the
gradient method of the ANN object. With this, the back-propagation implementation is
completed.

21

Gradient step adjoint sensitivity method

The adjoint sensitivity method is an alternative method to find the gradients that does
not require back-propagation through the operations of the ODE solver. This method was
proposed in Chen et al. (2018) claiming that it lowers the numerical error and has less
memory cost when compared with the backpropagation method.

Two new quantities are introduced a(t) and m(t). Let’s consider a trajectory of the
state vector U(t) from t0 to tN , then a(t) is the gradient of the cost with respect to the
hidden state U(t), considering only the trajectory from t to tN . On the other hand, m(t)
is the gradient of the cost with respect to the parameters, considering only the trajectory
from t to tN .

a(t) =
∂C

∂U(t)
, Considering the trajectory from t to tN

m(t) =
∂C

∂θ
, Considering the trajectory from t to tN

(2.23)

If the U(t) trajectory is considered continuous by the instant chain rule:

dU(t)

dt
= f(U(t), θ)

da(t)

dt
= −a(t)

f(U(t), θ)

∂U
dm(t)

dt
= −a(t)

f(U(t), θ)

∂θ

(2.24)

Solving the ODE system in Equation 2.24 from tN to t0 will give us m(t0) , which
is the gradient of the cost with respect to the parameters for the whole trajectory. The
initial conditions for the ODE system in Equation 2.24 at tN are:

UN

a(tN) =
∂C

∂UN
=

[
uN1 − y1 uN2 − y2 ... uNM − yM

]
m(tN) = 0

(2.25)

In order to find the initial conditions in Equation 2.25, a forward pass of the NODE
needs to be performed a priori. The ODE system in Equation 2.24 is only in terms of ∂f

∂U

and ∂f
∂θ that are calculated by the gradient method of the ANN object.

Gradient step adjoint-modified method

The Equations in 2.24 can be written as:

U(t) = U(tN)−
∫ t

tN
f(U(s), θ)

a(t) = a(tN) +

∫ t

tN
a(s)

f(U(s), θ)

∂U
ds

m(t) =

∫ t

tN
a(s)

f(U(s), θ)

∂θ
ds

(2.26)

22

Kidger et al. (2021) noticed that the expression for m(t) (Equation 2.26) is not an
ODE, but rather an integral, in the sense that small errors do not propagate to create
large errors. Then it is much more important for the accuracy of the solution to have an
accurate U(t) and a(t) that are truly ODEs. When the Equations 2.26 that include m(t)
are solved with a ODE solver, it may take many unnecessary steps due to m(t) that will
still not improve the overall error. In Kidger et al. (2021) a method for only taking into
account U(t) and a(t) in the steps rejection algorithm of the ODE solver is proposed, but
this method is not analysed in this study.

Instead, based on the ideas in Kidger et al. (2021), an original alternative method
called the adjoint-modified method is proposed in this study. The method consists in
using the U(t) obtained in a forward-pass to evaluate the integrals for a(t) and m(t) in
Equation 2.26 numerically. Therefore, no ODE solver call is needed for finding the total
gradient in the backward-pass, which could make this method very fast. Keeping U(t)
from the forward-pass instead of reconstructing it in a backward-pass helps with the speed
and accuracy of the method. But because the only times t that U(t) values are available
are the ones from the forward-pass, the accuracy in the evaluation of the integrals of a(t)
and m(t) is expected to be lower than the standard adjoint method.

The method for approximating the integrals is the trapezoidal rule in Equation 2.27.∫ b

a
f(x)dx ≈ (b− a)

2
(f(a) + f(b)) (2.27)

Using the approximation in Equation 2.27 to solve for a(tN−1) and m(tN−1) in the
Equation 2.26 gives:

a(tN−1) =

(
a(tN) +

(tN − tN−1)

2
a(tN)

∂f(U(tN), θ)

∂U

)(
I − (tN − tN−1)

2

∂f(U(tN−1), θ)

∂U

)−1

m(tN−1) =
(tN − tN−1)

2

(
a(tN)

∂f(U(tN), θ)

∂θ
+ a(tN−1)

∂f(U(tN−1), θ)

∂θ

)
(2.28)

Doing a loop with Equation 2.28 from tN to t0 using the steps obtained in the forward
pass for U(t) will produce an approximation for m(t0) that is the gradient ∂C

∂θ .

2.3.4 Training Methods

Gradient Descent

Gradient descent (GD), or batch optimization, is the most basic optimization algorithm to
find the minimum of a cost function as it uses the whole dataset for gradient calculations.

Before the parameters θt−1 from time step t−1 are updated, the gradient is calculated
for the whole training dataset with d data points (Equation 2.29). Then the parameters
θt−1 are updated in the direction of the steepest descent that corresponds to the negative
of the gradient; the gradient is weighted by a constant learning rate α (Equation 2.30) to
obtain θt. This process is done in a loop while the cost is bigger than the maximum cost,
and the number of epochs is less than the maximum number of epochs.

23

∂C

∂θ
=

1

d− 1

d−1∑
n=1

∂Cn

∂θ
(2.29)

θt = θt−1 − α
∂C

∂θ
(2.30)

As the parameters are updated only once for each pass through the entire dataset, the
algorithm tends to converge slowly to the optimal parameters.

Stochastic Gradient Descent

In the case of continuous datasets, GD tends to evaluate similar gradients of adjacent
points, this causes redundancy that slows the training process unnecessarily. For this
reason, the stochastic gradient descent SGD method was implemented as an alternative
to the GD method in the NODE class. This method is based on the idea proposed by
Robbins & Monro (1951) for finding roots of a function with an stochastic approximation
method. The SGD calculates the gradient for updating the parameters using a random
sample over the training data. It samples without replacement a mini-batch number of
data points in a set ns, and with this sample calculates the gradient as:

∂C

∂θ
=

1

|ns|
∑
ns

∂Cn

∂θ (2.31)

Where |ns| is the number of elements in ns. With this gradient, in the same way
as GD, SGD updates the parameters using the gradient weighted by a constant learning
rate α (Equation 2.30). This process is continued until all the data points in the training
dataset are sampled, completing one epoch. Then a new sample over the whole dataset
can start again.

2.3.5 Adam learning rate optimization method

But the challenge with GD and SGD is the tuning of the hyperparameter α, which is crucial
for convergence of the training algorithm. The optimal hyperparameter α is different for
each set of initial parameters, each training dataset and each time step. If a constant α is
used, it is required that it is tuned for each set of initial parameters θ and each training
dataset to ensure convergence. For this reason the Adam adaptive learning rate method
was implemented in the NODE class. The Adam method was proposed in Kingma & Ba
(2017) and it estimates adaptive learning rates based on approximations of the first and
second momentum of the gradient; accelerating the learning in relevant directions and
slowing it down in irrelevant directions.

The Adam optimization was selected because it only requires the first-order gradient,it
has a simple implementation, and requires minimum hyperparameter tuning. To obtain
the updated parameters θt, the bias-corrected first m̂t and second v̂t momentum are used
as follows:

24

θt = θt−1 − α
m̂t√
v̂t + ϵ

(2.32)

Where α is the step size and was set to 0.001 as suggested by Kingma & Ba (2017).
The bias-corrected momentums are calculated based on the biased first mt and second vt
momentum as follows:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.33)

Where β1 = 0.9 and β2 = 0.999 are the exponential decay rates for the moment
estimates, and were selected as suggested by Kingma & Ba (2017). Finally, the biased
first and second momentums are calculated using the gradient of the cost function with
respect to the parameters and the biased momentums of the previous step t− 1 as:

mt = β1.mt−1 + (1− β1)
∂C

∂θ

vt = β2.vt−1 + (1− β2)

(
∂C

∂θ

)2 (2.34)

The initial values of the biased first m0 and second v0 momentum are zero. With this,
the updated parameters θt can be obtained.

2.4 Systems of ODE selected and synthetic datasets

Three systems of ODE that model physical phenomena were selected to generate the
synthetic data necessary to train and test the NODE implementation. The intention
was to select systems that represent general groups of ODE systems and that increase in
complexity. The first and simpler system selected was a linear system of ODE that models
a three stage tank salt content. An almost linear system of ODE that models the movement
of a damped pendulum was selected as second system. Lastly, the most complex model is a
non-linear ODE system modeling a predator-prey system. The following sections describe
these models briefly.

2.4.1 Linear ODE system: Three stage tank salt content

Figure 2.8a shows a three stage tank system with volumes V1, V2 and V3 (gallons) contain-
ing brine. Fresh water enter the system in thank 1 with rate r (gals/min), while mixed
brine flows down to tank 2 and 3 with the same rate r. The salt content (pounds) in each
tank is denoted with x1, x2 and x3 for tanks 1, 2 and 3 respectively. The ODE system in
Equation 2.35 models the salt content in the tanks over time, where ki = r/Vi.

25

Figure 2.8: (a) Three stage tank system, (b) Salt content function (Equation 2.36) for
X0 =

[
15 0 0

]
(Modified from source: Edwards et al. (2007)).

dx1
dt

= −k1x1

dx2
dt

= k1x1 − k2x2

dx3
dt

= k2x2 − k3x3

(2.35)

The parameters selected for the system used in this study were k1 = 0.5, k2 = 0.25
and k3 = 0.2, with this the linear ODE system becomes:

d

dt

x1x2
x3

 =

−0.5 0 0
0.5 −0.25 0
0 0.25 0.2

x1x2
x3

 (2.36)

Figure 2.8b shows an example of the solution of Equation 2.36 with initial condition
X0 =

[
15 0 0

]
.

Using the ODE solver ODE45 from the Matlab suite the training-dataset-0 containing
three trajectories with initial conditions

[
10.3 2.0 3.5

]
,
[
13.2 2.8 4.2

]
and

[
10.5 1.7 0.2

]
in the time interval

[
0 30

]
was generated as training data. The initial conditions were

generated sampling from a uniform distribution in the case of x1 from the interval
(
10 15

)
and for x2 and x3 from the interval

(
0 5

)
. The testing-dataset-0 was generated using

1000 trajectories, the initial conditions for these trajectories were generated, sampling
from the same distribution as in the training dataset.

26

2.4.2 Almost linear ODE system: Damped pendulum

Figure 2.9a shows a simple pendulum, a mass m swinging back and forth, attached to a
mass-less rod of length L; the position of the pendulum on time is described by the angle
θ(t) to the vertical. The second order ODE in Equation 2.37 describes the angle θ(t),
where µ is a constant accounting for the air resistance.

d2θ

dt2
+ µ

dθ

dt
+

g

L
sin(θ) = 0 (2.37)

Figure 2.9: (a) Damped pendulum, (b) Solution of Equation 2.39 with initial condition
X0 =

[
1.5 1.5

]
.

Doing the variable substitution x1 = θ and x2 =
dθ
dt , the almost linear first-order ODE

system equivalent to Equation 2.37 is:

dx1
dt

= x2

dx2
dt

= − g

L
sinx1 − µx2

(2.38)

The parameters selected were g/L = 1 and µ = 0.1, then the system becomes Equation
2.39. Figure 2.9b shows and example of a trajectory with initial condition X0 =

[
1.5 1.5

]
for the time interval

[
0 15

]
.

dx1
dt

= x2

dx2
dt

= − sinx1 − 0.1x2

(2.39)

Using the ODE solver ODE45 from the Matlab suite the training-dataset-1 containing
one trajectory with initial condition

[
2 1

]
in the time interval

[
0 40

]
was generated as

training data. Due to the spiral behaviour that winds towards zero, one long trajectory

27

was used as training data. The testing-dataset-1 was generated using 1000 trajectories,
and the initial conditions were generated, sampling from a uniform distribution over the
interval

(
−1.5 1.5

)
for both x1 and x2.

2.4.3 Nonlinear ODE system: Predator-prey system

The nonlinear ODE system in Equation 2.40 is known as the predator-prey equation that
is used to describe the dynamics of the interaction between predator and prey in a natural
environment. In this model, the number of prey is denoted by x1(t) and the number of
predators is denoted by x2(t); a is the natural grow rate of prey in the absence of predators;
b is the natural decline rate of predators in the absence of prey; p and q are the constants
modelling the interactions between prey and predators.

dx1
dt

= ax1 − px1x2

dx2
dt

= −bx2 + qx1x2

(2.40)

The parameters selected were a = 200, b = 150, p = 4 and q = 2. An example of the
system obtained is shown in Figure 2.10

Figure 2.10: Solution of Equation 2.40
with parameters a = 200, b = 150, p = 4, and q = 2, for initial condition

X0 =
[
200 100

]
.

Using the ODE solver ODE45 from the Matlab suite the training-dataset-2, containing
three trajectories with initial conditions

[
328.2 32.2

]
,
[
122.9 21.5

]
, and

[
108.0 119.2

]
in the time interval

[
0 50

]
, was generated as training data. The initial conditions were

generated, sampling from a uniform distribution over the interval
(
0 350

)
for x1 and(

0 200
)
for x2. The testing-dataset-2 was generated using 1000 trajectories, the initial

conditions for these trajectories were generated, sampling from the same distribution as
for the training dataset.

28

2.5 Experiments and Experiments Metrics

In this section, the experiments and experimental metrics proposed to reach the aims are
described. The results of these experiments are presented in the next chapter.

2.5.1 Experiment 1 - Testing gradient step methods on single pairs of
points

The NODE class has four gradient step methods for evaluating the gradient between two
consecutive points Y i and Y i+1 in a training dataset. As these gradient step algorithms are
the basis to find the total gradients, it is of paramount importance that these gradients
between two points are accurate. The objective in this experiment is to evaluate the
accuracy of these methods; the true gradient was considered to be the numerical method.
It is also of interest to evaluate the time per gradient evaluation for each method.

For testing these methods, 1000 pair of points with two elements Y i =
[
yi1 yi2

]
and

Y i+1 =
[
yi+1
1 yi+1

2

]
were generated randomly, each element was sample from an uniform

distribution over the interval
(
−0.1 0.1

)
. Then, the gradient was evaluated with the four

gradient step methods and the time per gradient evaluation was recorded.
After that, the distance between the true gradient (Numerical method) and the other

methods was evaluated. The metric selected to measure the distance between the gradients
was the euclidean distance normalized by the sum of the norms (Equation 2.41). This
measurement gives a distance normalized between 0 and 1. Finally, an average of the
distances for the 1000 points was used to evaluate the accuracy.

Distance =

∥∥dC
dθ − (dCdθ)approx

∥∥
2∥∥dC

dθ

∥∥
2
+
∥∥(dCdθ)approx∥∥2 (2.41)

2.5.2 Experiment 2 - Evaluating gradient step methods on complete
training datasets

After finding the accuracy of the different gradient steps algorithms and their speed, it is
of interest to evaluate how these differences in gradients of single pairs of points affect the
model obtained after a training session, using a complete training dataset.

For this experiment a NODE with one hidden ReLU layer with 100 neurons was used.
This NODE was trained using the four different gradient step algorithms, and the cost
trajectory for each was recorded. The initial parameters of the NODE were the same at
the beginning of each training session, and the GD was used as training algorithm with
100 epochs. With this setup, the cost trajectory and the final model obtained would be
the same if the gradient step algorithms give the same gradient.

The cost trajectory, the final cost, and the final model trajectory for the training
datasets were used to evaluate the impact of the use of different gradient step algorithms.

29

2.5.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-
parameter’s influence in final model performance

Now the effect of the NODE’s underlying ANN hyperparmeter’s (i.e. number of layers and
activation functions) in the resulting model precision was evaluated. For this, NODEs with
different underlying ANN number of layers and different activation functions were trained.
The training error and the testing error were calculated and presented for each combination
of hyperparameters. To lower the influence on the results of the initial parameters of the
underlying ANN, five different tests with different initial parameters for each combination
of hyperparameters were performed, and the average result presented.

2.5.4 Experiment 4 - Exploring different SGD mini-batch size effect on
the training cost trajectory

The effect on the mini-batch size of the SGD training algorithm on the final cost and cost
trajectory was evaluated. For this, a NODE with an underlying feed-forward ANN with
the best hyperparameters from experiment 4 was trained using different batch-sizes; in
order to see the advantages of the SGD over the GD algorithm, a test with GD was also
done. To lower the influence on the results of the initial parameters of the underlying ANN,
five different tests with different initial parameters for each batch-size were performed, and
the average result presented.

2.5.5 Experiment 5 - Final model evaluation

NODEs with the gradient step algorithm selected from experiment 2, best underlying ANN
hyperparameters selected from experiment 3, and best mini-batch size from experiment 4,
were trained using the training datasets. The test error over the testing datasets including
1000 trajectories was evaluated.

In order to get a normalized test and training error, the normalized mean-squared
error NMSE shown in Equation 2.42 was used to evaluate the distance between the true
trajectory and the NODE approximation.

MSE(Yi, Ui) =
1

n

n∑
i=1

(Yi − Ui)
2

NMSE(Yi, Ui) =
MSE(Yi, Ui)

MSE(Yi, 0)

(2.42)

Where Y i is the true trajectory, U i is the approximated trajectory and n is the number
of points. A plot showing the frequencies of the NMSE for the test trajectories compared
with the NMSE of the training trajectory was used to evaluate the ability of the model to
generalize.

30

Chapter 3

Results

In this chapter the results of the experiments planned in the previous chapter are shown.
These experiments were designed to give information that contributes to reaching the
aims. The chapter is divided in three sections containing the experiments applied to the
data generated, using the three systems of ODE selected. These systems of ODE were
selected with the intent that they increase in complexity, starting from a linear system,
then going to an almost linear system and ending with a nonlinear system; in this way a
wide range of ODE systems is covered that allows generalisation.

The implementation of NODE, built using the Matlab suite, was used to carry out the
experiments. Appendix A presents the source code for the NODE class, while appendix
B shows the source code for the ANN class.

3.1 Linear ODE System. The Three Stage Tank Salt Con-
tent

The following linear system of ODE with three variables was selected as a test system:

d

dt

x1x2
x3

 =

−0.5 0 0
0.5 −0.25 0
0 0.25 0.2

x1x2
x3

 (3.1)

The training-dataset-0 shown in Figure 3.1 was generated solving Equation 3.1, it
contains three trajectories with initial conditions

[
10.3 2.0 3.5

]
,
[
13.2 2.8 4.2

]
and[

10.5 1.7 0.2
]
in the time interval

[
0 30

]
. The vector field in three planes for Equation

3.1 is also shown in Figure 3.1.

31

Figure 3.1: Linear case: Equation 3.1 vector field and trajectories for X0 =[
10.3 2.0 3.5

]
,
[
13.2 2.8 4.2

]
and

[
10.5 1.7 0.2

]
.

3.1.1 Experiment 1 - Testing gradient step methods on single pairs of
points

The NODE class has four methods for evaluating the gradient between two consecutive
points Y i and Y i+1. For testing these methods, one thousand pairs of points with two
elements Y i =

[
yi1 yi2

]
and Y i+1 =

[
yi+1
1 yi+1

2

]
, in which each element y was generated

randomly from an uniform distribution in the interval
(
−0.1 0.1

)
were used.

A NODE with underlying ANN with one hidden ReLU layer with 100 neurons was
used for this test. The gradient was calculated for each of the one thousand pairs of points,
and then the distance between the true gradient (i.e. Numerical method) and the other
methods was measured. The metric used to measure the distance between the gradients
was the euclidean distance normalised by the sum of the norms NMSE (Equation 2.41).

As the accuracy of the back-propagation method based on the Euler method depends
on the step size selected, five different step sizes were evaluated, from 1e − 6 to 1e − 2;
the adjoint, and adjoint-modified methods use the ODE45 solver that selects the step
size automatically. Figure 3.2b shows the error in the gradient calculation from the three
methods considered, back-propagation, adjoint and adjoint-modified. When the step size
is set very small (e.g. 1e − 6 to 1e − 4) for the back-propagation method, it becomes
the most accurate method, and then as the step size is set bigger (e.g. 1e − 2), the
error increases over the two other methods. The adjoint-modified has an average error of
3.15e− 4 that is approximately double the error of the adjoint method, i.e. 1.46e− 4.

32

Figure 3.2: One-thousand gradient calculation for two consecutive points, (a) Average
time per gradient calculation, (b) Average Euclidean normalized distance between the
numerical calculated gradient and the gradient calculated by back-propagation, adjoint
and adjoint-modified methods

Figure 3.2a shows the adjoint-modified method had a time per gradient step approxi-
mately 10 times smaller than the adjoint method, and 100 times smaller than the numeric
method. The back-propagation time per gradient step depends greatly on the time step
selected, having a time per gradient similar to the adjoint and adjoint-modified methods
when the accuracy is matched.

3.1.2 Experiment 2 - Evaluating gradient step methods on complete
training datasets

To test the effect of the differences in the gradient calculated for two consecutive points
observed in Figure 3.2, four NODEs were trained with the training-dataset-0 using the four
distinct gradient algorithms. The NODEs used had an underlying ANN with one hidden
ReLU layer with 100 neurons. For each training session, the same initial parameters
(weights and biases) were loaded to the NODE and the gradient descent method was
used as a training algorithm. This implies that if the gradients obtained with different
methods were equal, the cost trajectory and trained NODE approximation of the training
trajectory should be exactly the same.

The cost trajectory for each method (Figure 3.3a) remained perfectly overlapped for the
whole training session; this means that the gradient calculations for the different methods
remained very close. Figure 3.3(b)(c)(d)(e) shows that the paths reconstructed by the
NODEs, generated with gradients calculated by all the methods, are indistinguishable.
Thus, any of the methods had produced the same final parameters. Due to the speed, all
the tests below in this section were done using the adjoint-modified method for gradient
calculations.

33

Figure 3.3: Linear case: Training of a NODE with different gradient step algorithms, (a)
Learning curves, cost versus epochs, (b) Numerical gradient, (c) Backpropagation gradient,
(d) Adjoint gradient, (e) Adjoint-modified gradient.

34

3.1.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-
parameter’s influence in final model performance

Now the effect of the hyperparameters (i.e. number of layers and activation function) of the
underlying ANN is going to be evaluated. The training-dataset-0 was used as a training
dataset. One trajectory of the testing-dataset-0 was used as a testing dataset. Eighteen
NODEs with unique hyperparameters were tested. The activation functions considered
were: sigmoid, hyperbolic tangent sigmoid, and ReLU. Six sizes of NODE were tested, all
had a total of 100 neurons in the hidden layers evenly distributed, as shown in Figure 3.4.
Each test was repeated five times and the average results presented, this to reduce the
influence of the random parameters initialization in the results.

Figure 3.4: Linear case: NODE sizes for hyperparameters tests.

The ReLU activation performed better for any size of NODE (Figure 3.5a). On the
other hand, Figure 3.5(b)(c) shows that the best NODE performer in terms of testing and
training error was the shallowest network with only one hidden layer.

Figure 3.5: Linear case: Underlying ANN hyperparameter tests, (a) Cost trajectories for
each test, (b) Average training error, (c) Average testing error.

35

3.1.4 Experiment 4 - Exploring different training algorithms and their
effect on the training cost trajectory

In this section, two different training algorithms were evaluated, the gradient descent that
had been used in all the tests in this section and the stochastic gradient descent with
different mini-batch sizes. The underlying ANN hyperparameters that were used for all
the NODEs were the optimal ones found in the previous section, one hidden ReLU layer
with 100 neurons. Five tests were done for each training algorithm, and average values
were presented.

In Figure 3.6 it can be seen that the SGD algorithm with any of the considered mini-
batch sizes performed better than the GD algorithm. The GD cost curve is more stable
but it decreases very slowly, compared with the SGD algorithm. The SGD with mini-batch
sizes of 5, 10 and 20 reached the absolute minimum faster, but their training trajectories
were very unstable. For this reason, the SGD with a mini-batch size of 50 was selected as
the best performer.

Figure 3.6: Linear case: Average cost trajectory for the gradient descent algorithm and
the stochastic gradient descent (different mini-batch sizes) for five tests.

3.1.5 Experiment 5 - Final model evaluation

A final NODE with the optimal hyperparameters found in the previous sections was trained
with training-dataset-0 (3 trajectories) and its performance evaluated with the testing-
dataset-0 (1000 trajectories). A NODE with an underlying ANN with one ReLU hidden
layer with 100 neurons was used. It was trained with SGD with mini-batch size of 50. All
gradients were calculated using the adjoint-modified method.

Figure 3.7a shows the training process using SGD of the optimal NODE, the training
was restricted to 100 epochs. The resulting NODE can reproduce the training trajectory
with a high degree of accuracy (Figure 3.7b). The first four testing trajectories and the
corresponding NODE approximation are shown in Figure 3.7(c)(d)(e)(f). These trajecto-
ries were effectively reconstructed even though they had never been seen by the NODE.

36

The trajectory in Figure 3.7c is even closer to the true model than the training data. To
measure the distance between trajectories, the NMSE metric was used (Equation 2.42).

Figure 3.7: Linear case: (a) Cost trajectory for NODE with optimal hyperparameters
trained with training-dataset-0, (b) NODE approximation for the training trajectory, (c)
NODE approximation for first trajectory in testing-dataset-0, (d) NODE approximation
for second trajectory in testing-dataset-0, (e) NODE approximation for third trajectory in
testing-dataset-0, (f) NODE approximation for fourth trajectory in testing-dataset-0.

37

Figure 3.8: Linear case: NMSE for NODE approximation of the testing-dataset-0 (1000
trajectories).

A histogram with the summary of the distance between the NODE approximation and
the true trajectory for the testing-dataset-0 with one thousand trajectories is shown in the
Figure 3.8. With NMSE in the order of 10−5 and 10−6, the NODE was able to decode the
underlying dynamics of the ODE system in Equation 3.1. More than 10% of the testing
trajectories approximated by the NODE are closer to the truth trajectory than the NODE
approximation of the training data.

3.2 Almost Linear ODE system. The Damped Pendulum

The following almost linear system of ODE with two variables was selected as a test
system:

dx1
dt

= x2

dx2
dt

= − sinx1 − 0.1x2

(3.2)

The training-dataset-1 shown in Figure 3.9 was generated solving Equation 3.2 using
the ODE solver ODE45 from the Matlab suite; it contains one trajectory with initial
condition X0 =

[
2 1

]
, in the time interval

[
0 40

]
. The vector field for Equation 3.2 is

also shown in Figure 3.9.

3.2.1 Experiment 2 - Evaluating gradient step methods on complete
training datasets

To evaluate the effect of the differences in the gradient calculated for two consecutive
points observed in Figure 3.2, four NODEs were trained with training-dataset-1 using the

38

Figure 3.9: Almost linear case: Equation 3.2 vector field and trajectory for X0 =
[
2 1

]
.

four distinct gradient algorithms. The NODEs used have an underlying ANN with one
hidden ReLU layer with 100 neurons. For each training session the same initial parameters
were loaded to generate the same cost trajectory, in the case that the gradient calculated
by the different methods were the same.

The cost trajectory for each method (Figure 3.10a) overlapped at the beginning of
the training process until around epoch 50; after that, the trajectories separated, but
followed almost the same general trend. This indicates that the gradients found by the
four methods differed slightly, but these small differences did not affect the final cost in
any significant way.

Figure 3.10(b)(c)(d)(e) shows that the paths reconstructed by the NODEs generated
with gradients calculated by the numerical method, the adjoint and the adjoint-modified,
are almost indistinguishable. These results demonstrate that the small differences in the
gradient calculated by different algorithms did not affect the training process, as the final
cost and final model differed in a minor way. Due to the speed, all the tests within this
section will use the adjoint-modified method for gradient calculations.

39

Figure 3.10: Almost linear case: Training of a NODE with different gradient step al-
gorithms, (a) Learning curves, cost versus epochs, (b) Numerical gradient, (c) Back-
propagation gradient, (d) Adjoint gradient, (e) Adjoint-modified gradient.

40

3.2.2 Experiment 3 - Investigating the NODE’s underlying ANN hyper-
parameters influence in final model performance

Now the effect of the hyperparameters of the underlying ANN is going to be evaluated. The
training-dataset-1 was used as a training dataset and one trajectory of the testing-dataset-
1 was used as a testing trajectory. Thirty NODEs with unique hyperparameters were
tested. The activation functions considered were: Sigmoid, hyperbolic tangent sigmoid,
and ReLU. Ten sizes of NODE were tested. All had a total of 100 neurons in the hidden
layers, evenly distributed, as shown in Figure 3.11. Each test was repeated five times
and the average results presented, this to reduce the influence of the random parameters
initialization in the results.

Figure 3.11: Almost linear case: NODE sizes for hyperparameters tests.

All the NODEs that used the sigmoid activation function performed poorly. The
hyperbolic tangent sigmoid and the ReLU activation performed similarly, but the best
performance was achieved with the ReLU activation and four layers (two hidden layers);
the hidden layers had 50 neurons per layer. From Figure 3.12, it is clear that the hyperpa-
rameter selection of the underlying ANN affects the performance of the NODE to a great
extent.

Figure 3.12: Almost linear case: Underlying ANN Hyperparameters tests, (a) Cost tra-
jectories for each test, (b) Average training error, (c) Average testing error.

41

3.2.3 Experiment 4 - Exploring different training algorithms and their
effect on the training cost trajectory

Even though the hyperparameters of the NODE for the test done in Figure 3.10 were
very close to the optimal parameters, the results were very poor after 100 epochs. In this
section, two different training algorithms are going to be evaluated, the gradient descent
that had been used in all the tests in this section and the stochastic gradient descent with
several mini-batch sizes. The underlying ANN hyperparameters that were used for all the
NODEs were the optimal ones found in the previous section. Five tests were done for each
training algorithm.

In Figure 3.13, it can be seen that the SGD algorithm with any of the considered
mini-batch sizes performed better than the GD algorithm. The SGD with batch size of
25 reaches the absolute minimum faster, but it is very unstable, going even above the GD
cost at the end of the training process. For this reason, the SGD with a mini-batch size
of 50 was selected as the best performer.

Figure 3.13: Almost linear case: Average cost trajectory for gradient descent algorithm
and stochastic gradient descent (different mini-batch sizes) for five tests.

3.2.4 Experiment 5 - Final model evaluation

The Figure 3.14a shows the training process using the optimal training algorithm SGD
(50 elements mini-batch size) of the optimal NODE (Two hidden ReLU layers with 50
neurons). The training process found the target cost only after 80 epochs. The resulting
NODE can reproduce the training data with high degree of accuracy, as shown in Figure
3.14b.

The testing-dataset-1 with 1000 trajectories was used to test the model obtained. In
Figures 3.14(c)(d)(e)(f) the first four testing trajectories are shown, accompanied by the
approximation generated by the trained NODE. These trajectories could be reconstructed
with a high degree of accuracy, even though they had never been seen by the NODE. The

42

trajectories approximated by the NODE in Figures 3.14(e)(f) are even closer to the true
model than the approximation of the NODE for the training data.

Figure 3.14: Almost linear case: (a) Cost trajectory for NODE with optimal hyperparam-
eters trained with training-dataset-1, (b) NODE approximation for the training trajectory,
(c) NODE approximation for first trajectory in testing-dataset-1, (d) NODE approximation
for second trajectory in testing-dataset-1, (e) NODE approximation for third trajectory in
testing-dataset-1, (f) NODE approximation for fourth trajectory in testing-dataset-1.

43

Figure 3.15: Almost linear case: NMSE for NODE approximation of the testing-dataset-1
(1000 trajectories).

A histogram with the summary of the result of the distance (i.e. error) of the approxi-
mation of the trained NODE with the one thousand trajectories in the testing-dataset-1 is
shown in Figure 3.15. Nearly half of the approximated trajectories have the same NMSE
or better NMSE than the approximation of the training trajectory. The NODE trained
with only one trajectory was able to decode effectively the behaviour of the ODE system
in Equation 3.2.

3.3 Non-linear ODE system: Predator-prey system

The following non-linear system of ODE with two variables was selected as a test system:

dx1
dt

= 200x1 − 4x1x2

dx2
dt

= −150x2 + 2x1x2

(3.3)

The training-dataset-2 shown in Figure 3.16 was generated solving Equation 3.3. It
contains three trajectories with initial conditions X0 =

[
328.2 32.2

]
,
[
122.9 21.5

]
and[

108.0 119.3
]
in the time interval

[
0 50

]
. The vector field in three planes for Equation

3.3 is also shown in Figure 3.16.

3.3.1 Experiment 2 - Evaluating gradient step methods on complete
training datasets

Due to the differences in the gradient calculated between two points using different meth-
ods observed in experiment 1 (Figure 3.2), four NODEs were trained with the training-
dataset-2, using three gradient algorithms, and the resulting models and training trajectory
were evaluated. Initially a NODE with an underlying ANN with one hidden ReLU layer

44

Figure 3.16: Non-linear linear case: Equation 3.3 vector field and trajectories for X0 =[
328.2 32.2

]
,
[
122.9 21.5

]
and

[
108.0 119.3

]
.

with 100 neurons was attempted, but the model was not able to converge with either GD
or SGD with different mini-batch sizes. The number of layers had to be increased to two,
and the SGD algorithm had to be used to achieve convergence. The NODE used for this
test had an underlying ANN with two ReLU layers with 100 neurons each; it was trained
using SGD with mini-batch size of 50. Due to the size of the NODE, it was not feasible
to train the network with the gradient generated with the numerical method, because the
training time was several days; the NODE was trained using the back-propagation, adjoint
and adjoint-modified gradient step methods.

Although it was expected that the cost trajectories would have remained similar, in
this case the trajectories diverged substantially as shown in Figure 3.17a. This indicates
that the gradients calculated with the different methods were different. But even though
the trajectories were different, they all found a similar minimum cost at different places
in the training session.

Figure 3.17(b)(c)(d) shows the paths reconstructed by the NODEs generated with
gradients calculated by three methods. Despite the fact that the cost trajectories followed
different paths, the approximations of the training trajectories found by the different
NODEs do not seem substantially different. This is because the minimum cost for each
method was similar, and the parameters saved at the end of the training (by design of the
NODE class) are the ones that generated the minimum cost in the whole training session.
Due to the benefit in the speed and the final similar results, the adjoint-modified method
was used for the following experiments 3 and 4.

45

Figure 3.17: Non-linear linear case: Training of a NODE with different gradient step
algorithms, (a) Learning curves, cost versus epochs, (b) Backpropagation gradient, (c)
Adjoint gradient, (d) Adjoint-modified gradient.

46

3.3.2 Experiment 3 - Investigating the NODE’s underlying ANN hyper-
parameters influence in final model performance

The effect of the hyperparameters (i.e. number of layers and activation function) of the
underlying ANN was evaluated with this experiment. The training-dataset-2 was used as
a training dataset; one trajectory of the testing-dataset-2 was used as a testing dataset.
Twenty-four NODEs with unique hyperparameters were tested. Six sizes of NODE were
tested, each with a total of 200 neurons in the hidden layers, distributed as shown in
Figure 3.18. As before, each test was repeated five times.

Figure 3.18: NODE sizes for hyperparameters tests.

As for the other cases studied, the ReLU activation performed better for any size of
NODE (Figure 3.19a). But contrary to what was seen in the other two cases studied,
deeper networks performed better; the network with 9 layers was selected as the best
performer (Figure 3.19(b)(c)).

Figure 3.19: Non-linear linear case: Underlying ANN Hyperparameter tests, (a) Cost
trajectories for each test, (b) Average training error, (c) Average testing error.

47

3.3.3 Experiment 4 - Exploring different training algorithms and their
effect on the training cost trajectory

With this experiment, the effect on the mini-batch size of the SGD algorithm was studied.
The underlying ANN hyperparameters that were used for all the NODEs were the optimal
ones found in the previous section, which was the NODE-6 in Figure 3.18. Five tests were
done for each training algorithm, and average values were presented.

In this case the training was more unstable, compared with the previous cases studied.
The SGD with mini-batch size 50 reached a better minimum that the other mini-batch
sizes; for this reason it was selected as the better performer.

Figure 3.20: Non-linear linear case: Average cost trajectory for gradient descent algorithm
and stochastic gradient descent (different mini-batch sizes) for five tests.

3.3.4 Experiment 5 - Final model evaluation

The optimal NODE-6 (Figure 3.18) with ReLU hidden layers was trained with 3 trajec-
tories (training-dataset-2) and its performance evaluated with one thousand trajectories
(testing-dataset-2). The NODE was trained with SGD with mini-batch size of 50. Due
to the results in experiment 2 that showed that the models using different gradient step
algorithms differed slightly, the optimal NODE was trained using the adjoint and the
adjoint-modified gradient step methods.

Figure 3.21a shows the cost trajectories for both gradient step algorithms. As seen
in experiment 2, the trajectories differed. When the adjoint method was used, the cost
reached a lower minimum than when the adjoint-modified method was used. This caused
the approximated trajectory of the training data of the NODE trained with the adjoint
method to be closer (Lower NMSE) to the true model than the NODE trained with the
adjoint-modified (Figure 3.21b).

But an interesting result can be observed in Figures 3.21(c)(d)(e)(f) that show that in
three of the first four trajectories of the testing data, the NODE trained with the adjoint-
modified method is closer to the true trajectory than the NODE trained with the adjoint

48

method. This being the case, even though the NODE trained with the adjoint method
had a lower cost in the training session than the NODE trained with the adjoint-modified
method.

Figure 3.21: Non-linear linear case: (a) Cost trajectory for NODE with optimal hyper-
parameters trained with training-dataset-2, (b) NODE approximation for the training
trajectory, (c) NODE approximation for first trajectory in testing-dataset-2, (d) NODE
approximation for second trajectory in testing-dataset-2, (e) NODE approximation for
third trajectory in testing-dataset-2, (f) NODE approximation for fourth trajectory in
testing-dataset-2.

49

Figure 3.22: Non-linear linear case: NMSE for NODE approximation of the testing-
dataset-2 (1000 trajectories).

A plot with the summary of the test error of the approximations made by the NODEs
trained with adjoint and adjoint-modified methods is shown in Figure 3.22; the one thou-
sand trajectories in testing-dataset-2 were used. The training error in both cases is lower
than the testing error for most of the testing trajectories. This means that the training
trajectory was approximated better than most of the testing trajectories. But it is im-
portant to note that in general the NODE trained with the adjoint-modified produced
trajectories closer to the true test trajectory than the NODE trained with the adjoint
method. In Figure 3.22 the histogram with the error from the NODE trained with the
adjoint-modified has a distribution closer to the zero error than the error distribution from
the NODE trained with the adjoint method.

50

Chapter 4

Discussion and Conclusion

To reach the aim, a series of experiments were conducted and the results were presented
in the previous chapter. In the first section of this chapter a discussion of these results
in connection with the aims is presented. The first two experiments had the objective of
evaluating the effects of the gradient algorithm on the NODE obtained after training. The
third experiment assessed the impact of the hyperparameters (i.e. number of layers and
activation function) of the NODE underlying ANN. The fourth experiment focused on
evaluating the effects of the optimization algorithm on the learning curves of the NODEs.
And the last experiment evaluated the ability of the NODEs to model the different cases
considered.

After the discussion of the results, a review of the contributions of this study is given.
Following, an examination of the limitations of this study and future research opportunities
to address the limitations of the study are presented. Finally, the conclusion of this study
is presented.

4.1 Discussion

4.1.1 Experiment 1 - Testing gradient step methods on single pairs of
points

In this test, the accuracy and speed of the different methods to find a gradient between
two points of a training dataset in a NODE was studied. These methods execute the
basic step, which is repeated for all the data points in the training dataset. Therefore the
overall speed and accuracy of the training depend to a large degree on these methods. For
studying the accuracy of the methods, the numerical method was considered as the truth
gradient.

As the back-propagation method implemented in the NODE class was based on an
Euler ODE solver, the accuracy of it depends on the time step selected: When the step was
selected small enough, the back-propagation gave the best approximation of the gradient
over the adjoint and adjoint-modified methods. This result is in accordance with the

51

results reported by Hasani et al. (2020) that showed empirically that the back-propagation
provided more accurate gradient calculations than the adjoint sensitivity method. But this
high accuracy comes with a cost, because the time per gradient step calculation increases
inversely proportional to the time step size, even reaching a time per step above the one
of the numerical method.

As expected, the accuracy of the gradient step method proposed in this document (i.e.
adjoint-modified) was lower than the adjoint method; in this specific dataset of one thou-
sand data points, the error produced by the adjoint-modified method was approximately
double that which was obtained with the original adjoint sensitivity method. But due to
the simplicity of the calculations done by the adjoint-modified method, it was ten times
faster than the original adjoint method and one hundred times faster than the numerical
approximation method.

The findings of this experiment suggest that the trade-off between the accuracy and
speed of the adjoint-modified method proposed in this study could be superior to the other
methods. But this data must be interpreted with caution, because it was obtained with
a small database of one thousand data points generated randomly, and the measurement
per gradient was obtained by measuring the running time.

4.1.2 Experiment 2 - Evaluating gradient step methods on complete
training datasets

The results of experiment 1 showed that there is a difference in the gradient calculated
between two points. So, with this experiment, the objective was to quantify the influence
of these differences in the total gradient calculated for a complete training session. The
total gradient was monitored following the cost trajectory.

This experiment indicated that the differences of total gradients calculated by different
methods increased with increased problem complexity. For the linear case, the cost trajec-
tories overlap completely, suggesting that the gradients generated using different methods
were approximately the same. For the almost linear case, the cost trajectories had only
slight differences when different methods were used. In contrast, in the nonlinear case
the trajectories had considerably different trajectories. This indicates that the gradients
generated were significantly different.

For the first two cases, the linear and almost linear, the final NODEs obtained were
nearly the same, regardless of the gradient computation algorithm used. For the nonlinear
case, although the trajectory followed using different gradient computation methods, was
different, the resulting NODEs did not have major differences; when these NODEs were
evaluated in the training trajectories they reconstructed almost the same trajectories.

Taken together these results suggest that the ability of the NODEs to learn the data
obtained with the three ODE systems selected was not impacted in a significant way by
the gradient step algorithm used. In this case, due to the speed of the calculations, the
adjoint-modified could offer an advantage over the other methods. But it is important
to bear in mind that only three datasets were used to test the method, and such a small
sample does not allow for generalisation.

52

4.1.3 Experiment 3 - Investigating the NODE’s underlying ANN hyper-
parameter’s influence in final model performance

In this experiment, the objective was to evaluate the influence of the hyperparameters of
the underlying ANN in the performance of the NODE. Three activation functions were
evaluated: logistic sigmoid, tangent hyperbolic sigmoid and ReLU. The data collected for
the three study cases suggested that the ReLU activation is the activation that performs
better in NODEs used to model dynamical systems; this coincides with the results re-
ported by Glorot et al. (2011) in which ReLUs outperformed the logistic sigmoid and the
hyperbolic tangent activations in several task with deep ANNs.

Keeping the same number of hidden neurons, the effect of the depth of the network on
the accuracy of the final NODE was also evaluated. The evidence from the three study
cases suggests that when the training data is extracted from a simple model (e.g. linear
ODE system), a shallow network performs better, but when the data is extracted from a
more complex model (e.g. non-linear ODE system), deeper networks perform better.

4.1.4 Experiment 4 - Exploring different training algorithms and their
effect on the training cost trajectory

The objective of this experiment was to quantify the influence in the training trajectory
of the training algorithm used. Two training algorithms were tested, the gradient descent
and the stochastic gradient descent, both using the Adam optimization algorithm. The
data indicated that batch optimization that uses the whole training data converges at a
slower pace, compared with the stochastic optimization algorithm. Besides this, the SGD
was able to find a lower minimum than the GD. It was observed that with small mini-batch
sizes (e.g. 5, 10 ,20) the learning trajectory was unstable, but the best mini-batch size was
50 for the cases analysed in this document.

4.1.5 Experiment 5 - Final model evaluation

The purpose of this final experiment was to assess the ability of NODEs to learn the
training trajectory, and to extrapolate the behaviour of the dynamic systems selected. For
this, the hyperparameters that performed better from experiment 3 and the mini-batch
size that produced better results found in experiment 4 were used. With this, the NODEs
were trained with the training datasets and tested with the testing datasets, including one
thousand trajectories each.

The data reported in this experiment for the linear and almost linear case suggest that
NODEs are able to learn the underlying behaviour of these ODE systems effectively, and
that they are able to extrapolate that behaviour to other initial conditions. In the almost
linear case, the NODE examined was able to approximate half of the testing trajectories
better than the training trajectories. But these results need to be interpreted with caution,
because the initial conditions selected for the testing trajectories were sampled from the

53

same distribution as the training dataset.
For the nonlinear case the observations suggest that the extrapolation ability of NODEs

is inferior compared with the linear and almost linear cases. This is because extrapolations
in the non-linear case had in general a higher error than the training trajectory.

Due to the results in experiment 2 for the non-linear case that indicated that the gra-
dient computation method affected the learning trajectory, the NODE for the non-linear
case was trained with the adjoint and adjoint-modified methods to evaluate the differ-
ences in the models obtained. The models obtained were slightly different, and the NODE
trained with the adjoint method was able to better approximate the training trajectory,
but the NODE trained with the adjoint-modified method was able to extrapolate the test-
ing trajectories better. As the differences were small, there is no evidence that any of
these methods for computing gradients produces a better model. However, with only one
case studied, caution must be applied when interpreting this result.

4.2 Contributions

The algorithm for gradient computation referred to as the adjoint-modified method was the
most significant contribution of this study. The data suggest that it could offer advantages
in terms of speed over other methods analysed in this study, when training NODEs with
certain types of datasets.

Another contribution of this study is the step by step explanation of the back prop-
agation process in NODEs. Even though the process is just the application of the chain
rule backwards successively, the graphical explanation developed in this study could be
useful for understanding the process.

The classes developed in the Matlab suite offer a modular piece of software that could
be expanded easily to test other ideas related to Neural ODEs. It was implemented
using the Parallel Computing Toolbox TM that can use the full processing power in multi-
core computers, so that it could be used to test more complex systems in multiprocessor
computers.

Finally, the study of the effect of the underlying ANN hyperparameters and the training
algorithm on the performance of NODEs can give a notion of a good initial approach when
facing a more complex modelling problem using NODEs.

4.3 Limitations

Only data generated from a group of three different ODE systems was used for this study.
Moreover, only synthetic data was used, so the results remained specific to that group of
ODE systems and limited the generalisability of the results.

Even though the Parallel Computing Toolbox TM was used to take advantage of the full
computational power available, only a personal computer was available to run the tests.
This limited the quantity of hyperparameters tested (e.g. activation functions, parameter

54

initialization techniques), and this could have impacted the performance of the NODEs
evaluated, as a better hyperparameter was not able to have been evaluated.

4.4 Future work

Connected to the limitations of this study, a future investigation could include more ODE
systems to generate synthetic data or even data from real dynamic systems. This to
confirm the results in this study, and especially to assess the performance of the adjoint-
modified gradient computation method in a more real setting. Also, more hyperparameter
instances could be considered, this to ensure that the parameters that maximise the per-
formance of NODEs are selected.

New types of NODEs such as the Liquid Time-Constant Networks LTCs proposed by
Hasani et al. (2020) that states a better performance in the modelling of dynamic systems
could be included in future investigations. It would be interesting to see the final models
obtained with LTCs and standard NODEs and the effect of the gradient algorithms used.

The gradient calculation method proposed by Kidger et al. (2021) (i.e. adjoint via
semi-norms), that lies in between of the adjoint-modified method and the adjoint method,
would be interesting to assess as it claims to offer improved speed with the same accuracy
as the adjoint method.

4.5 Conclusion

Overall, the data suggest that NODEs are suitable structures to model dynamic systems.
The results obtained for the three cases analyzed in this study showed the ability of the
NODEs to learn the training trajectory effectively. In contrast, the ability of NODEs to
extrapolate varied with the complexity of the ODE system used to generate the data; the
extrapolations obtained in the linear and almost linear ODE systems were in general much
better than the one for the non-linear case.

But this performance was also influenced heavily by the hyperparameters selected for
the NODE. For example, the findings of this study suggest that the use of the ReLU
activation produces NODEs that performed better than the sigmoid activations in terms
of training and testing error. In addition, the data reported in this study appears to
support the idea that the number of layers that give better approximations increases with
complexity of the derivatives of the problem to model. Moreover, the stochastic gradient
descent proved to be key in the training of the NODEs studied, and it was not only faster
to get to absolute minimums in the cost function, but it happened that this method also
found better minimums than the batch training algorithm.

On the other hand, the gradient algorithm that was used influenced the speed of a
training session, and it also affected the final model obtained, depending on the accu-
racy of the gradient. In this study, three different gradient computation algorithms were

55

analyzed, the back-propagation method and two methods based on the adjoint. The back-
propagation method offered the best gradient approximation, but only if the step size was
small enough, which increased the time per calculation over the other methods, making it
the slowest. Additionally, it cannot treat the ODE solver as a black box.

Alternatively, the adjoint methods can treat the ODE solver as a black box, this allows
the user to test different ODE solvers, without changing the structure of the NODE. The
first adjoint method analyzed was the standard adjoint sensitivity method that showed
a slightly worse approximation of the gradient than the back-propagation method, this
possibly due to the fact that it forgets the forward pass of the state vector and has to
reconstruct it in the backward pass introducing numerical error in the process. In terms of
speed, the adjoint method did not offer significant advantages over the back-propagation
method.

The other adjoint method analyzed was the adjoint-modified method, which is an
original contribution of this study. This method uses the forward-pass state vector values
to solve the adjoint equations numerically as integrals. This makes this method extremely
fast: Some tests performed indicated a time per gradient 10 times smaller than the adjoint
method. But as expected, the accuracy is degraded: Some tests done showed that the
adjoint-modified method gives an error in the gradient calculation of about double that
of the adjoint method. However, when the method was used to model the case studied,
no significant differences were found in the final models obtained.

All things considered, the NODEs are structures that are able to model and predict the
behaviour of dynamic systems, but the hyperparameters of the underlying feed-forward
ANN and the NODE in general have a great influence on the accuracy of the resulting
model. As these parameters are not trainable, many training sessions need to be done
in order to find a set of hyperparameters that optimise the final NODE, however the
running time limits the quantity of test that can be performed. Here, the adjoint-modified
proposed in this study could be use to test a broader set of hyperparameters in order to
select the optimal ones, this due to its exceptional speed. And, after that the final NODE
with optimal hyperparameters can be trained with a more accurate gradient computation
method, such as the standard adjoint method.

56

Bibliography

Chen, R., Rubanova, Y., Bettencourt, J. & Duvenaud, D. (2018), Neural ordinary differ-
ential equations, Vol. 2018-December, pp. 6571–6583. ISSN: 1049-5258.

Edwards, C. H., Penney, D. E. & Calvis, D. (2007), Elementary Differential Equations,
6th edition edn, Pearson College Div, Upper Saddle River, N.J.

Elman, J. (1990), ‘Finding structure in time’, Cognitive Science 14(2), 179–211.

Glorot, X. & Bengio, Y. (2010), Understanding the difficulty of training deep feedforward
neural networks, in ‘Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics’, JMLR Workshop and Conference Proceedings, pp. 249–256.
ISSN: 1938-7228.
URL: https://proceedings.mlr.press/v9/glorot10a.html

Glorot, X., Bordes, A. & Bengio, Y. (2011), Deep Sparse Rectifier Neural Networks, in
‘Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics’, JMLR Workshop and Conference Proceedings, pp. 315–323. ISSN: 1938-
7228.
URL: https://proceedings.mlr.press/v15/glorot11a.html

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. & Seung, H. S. (2000),
‘Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.’,
Nature 405(6789), 947–951. Num Pages: 5.

Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. (2020), ‘Liquid Time-constant
Networks’, arXiv:2006.04439 [cs, stat] . arXiv: 2006.04439.
URL: http://arxiv.org/abs/2006.04439

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recognition,
Vol. 2016-December, pp. 770–778. ISSN: 1063-6919.

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long Short-Term Memory’, Neural Computation
9(8), 1735–1780.

Karlsson, D. & Svanström, O. (2019), ‘Modelling Dynamical Systems Using Neural Ordi-
nary Differential Equations’. Accepted: 2019-07-05T11:53:06Z.
URL: https://odr.chalmers.se/handle/20.500.12380/256887

Kidger, P., Chen, R. T. Q. & Lyons, T. (2021), ”Hey, that’s not an ODE”: Faster ODE
Adjoints via Seminorms, Technical Report arXiv:2009.09457, arXiv. arXiv:2009.09457

57

[cs, math] type: article.
URL: http://arxiv.org/abs/2009.09457

Kingma, D. P. & Ba, J. (2017), Adam: A Method for Stochastic Optimization, Technical
Report arXiv:1412.6980, arXiv. arXiv:1412.6980 [cs] type: article.
URL: http://arxiv.org/abs/1412.6980

Robbins, H. & Monro, S. (1951), ‘A Stochastic Approximation Method’, The Annals of
Mathematical Statistics 22(3), 400–407. Publisher: Institute of Mathematical Statistics.
URL: http://www.jstor.org/stable/2236626

Rumelhart, D., Hinton, G. & Williams, R. (1986), ‘Learning representations by back-
propagating errors’, Nature 323(6088), 533–536.

Shampine, L. F. & Reichelt, M. W. (1997), ‘The MATLAB ODE Suite’, SIAM Journal
on Scientific Computing 18(1), 1–22.
URL: http://epubs.siam.org/doi/10.1137/S1064827594276424

Zhai, J., Shen, W., Singh, I., Wanyama, T. & Gao, Z. (2020), A review of the evolution
of deep learning architectures and comparison of their performances for histopathologic
cancer detection, Vol. 46, pp. 683–689. ISSN: 2351-9789.

Thesis.bib

58

Appendix A

NODE Class

1 classdef NODE < matlab.mixin.Copyable

2 %Implements a NODE

3

4 properties

5 ANN; options;

6 end

7

8 methods

9 function obj = NODE(size ,activ ,varargin)

10 %NODE Construct an instance of this class

11 % Creates a NODE with an underlying ANN

12 obj.ANN = ANN(size ,activ);

13 if isempty(varargin)

14 obj.options = odeset(’RelTol ’,1e-5,’AbsTol ’,1e-7);

15 else

16 obj.options = varargin {1};

17 end

18 end

19

20 function [steps ,u] = Forward_Euler(obj ,u0,h,tspan)

21 %Forward takes and input for the ANN and generate and output

22 %using the current ANN

23 t0=tspan (1); tN=tspan (2);

24 u(1,:) = u0;

25 steps = floor((tN -t0)/h); %Number of time steps to perform

26 if h*steps < tN-t0

27 steps = steps + 1;

28 end

29 %Go throug the all the time steps and store interm. results

30 for i = 1:steps -1

31 u(i+1,:) = u(i,:)+h.*obj.ANN.Forward(u(i,:));

32 end

33 u(steps +1,:)= u(steps ,:)+(tN -h*(steps -1)-t0)...

34 .*obj.ANN.Forward(u(steps ,:));

35 end

36

37 function [t,u] = Forward(obj ,u0,tspan)

38 %Takes and input for the ANN and generate and output

39 %using the current ANN as a source of gradient

40 [t,u]= ode45(@(t,u) obj.ANN.Forward(u’)’,tspan ,u0 ,obj.options);

59

41 end

42

43 function [C,dCdw ,dCdb] = Gradient_step_verif(obj ,u0,y,h,t0 ,tN)

44 %Calculates the gradient and cost for a pair of points u0 and y

45 %perturbing the parameters

46 eps=1e-5;

47 w_backup = obj.ANN.w;

48 b_backup = obj.ANN.b;

49 for l = 2:1: obj.ANN.layers

50 for j = 1:obj.ANN.size(l)

51 for i = 1:obj.ANN.size(l-1)

52 obj.ANN.w{l}(i,j) = obj.ANN.w{l}(i,j)-eps;

53 [~,u] = obj.Forward(u0 ,[t0 tN]);

54 Cm = sum((y-u(end ,:)).^2) /2;

55 obj.ANN.w{l}(i,j) = obj.ANN.w{l}(i,j)+2* eps;

56 [~,u] = obj.Forward(u0 ,[t0 tN]);

57 Cp = sum((y-u(end ,:)).^2) /2;

58 dCdw{l}(i,j) = ((Cp-Cm)./(2* eps));

59 obj.ANN.w = w_backup;

60 end

61 obj.ANN.b{l}(1,j) = obj.ANN.b{l}(1,j)-eps;

62 [~,u] = obj.Forward(u0 ,[t0 tN]);

63 Cm = sum((y-u(end ,:)).^2) /2;

64 obj.ANN.b{l}(1,j) = obj.ANN.b{l}(1,j)+2* eps;

65 [~,u] = obj.Forward(u0 ,[t0 tN]);

66 Cp = sum((y-u(end ,:)).^2) /2;

67 dCdb{l}(j) = ((Cp-Cm)./(2* eps));

68 obj.ANN.b = b_backup;

69 end

70 end

71 C=sum((y-u(end ,:)).^2) /2; %Returns the total cost

72 end

73

74 function [C,dCdw ,dCdb] = Gradient_step_backp(obj ,u0,y,h,t0 ,tN)

75 [steps ,u] = obj.Forward_Euler(u0 ,h,[t0 tN]);

76 for i = steps :-1:1 %Backpropagates the error from the last step

77 obj.ANN.Gradient(u(i,:));

78 if i==steps %Calculates dC/du for the last step

79 dCdu{steps} = u(steps +1,:)-y;

80 else %Calculates dC/du for all the steps but the last

81 dCdu{i} = dCdu{i+1}*(obj.ANN.iograd*h+...

82 eye(size(obj.ANN.iograd)));

83 end

84 for l = obj.ANN.layers :-1:2 %Calculates dC/dw and dC/db

85 dCdw{l,i} = 0;

86 dCdb{l,i} = 0;

87 for j = 1:obj.ANN.size(end)

88 dCdw{l,i} = h*dCdu{i}(j).*obj.ANN.wgrad{l,j}...

89 +dCdw{l,i};

90 dCdb{l,i} = h*dCdu{i}(j).*obj.ANN.bgrad{l,j}...

91 +dCdb{l,i};

92 end

93 if i~= steps

94 dCdw{l,i} = dCdw{l,i}+dCdw{l,i+1};

95 dCdb{l,i} = dCdb{l,i}+dCdb{l,i+1};

96 end

60

97 end

98 end

99 %Return just the gradient dC/dw dC/db with backpropagation all

100 % the way back

101 dCdw=dCdw (:,1);

102 dCdb=dCdb (:,1);

103 C=sum((y-u(steps +1,:)).^2) /2; %Returns the total cost

104 end

105

106 function [C,dCdw ,dCdb] = Gradient_step_adj(obj ,u0,y,h,t0 ,tN)

107 %Calculates the gradient and cost for a pair of points u0 and y

108 %Using the adjoint sensitivity method

109 [~,u] = obj.Forward(u0 ,[t0 tN]); %Calculates U(tN)

110 i = obj.ANN.size (1); %Number of components of the U vecor

111 ivector (1:i) = u(end ,:);%Insert U(tN) in the init. vec.

112 ivector(i+1:i*2) = u(end ,:)-y; %Insert dC/dU(tN) in init. vec.

113 parameters =0;

114 for l = 2:1: obj.ANN.layers

115 parameters=obj.ANN.size(l-1)*obj.ANN.size(l)+...

116 obj.ANN.size(l)+parameters;

117 end

118 ivector(i*2+1:i*2+ parameters)=0;

119 ivector = ivector ’; %ODE solver requires columns vectors

120 [~,vector] = ode45(@(t,vector) obj.odefun(t,vector) ,...

121 [tN t0],ivector ,obj.options); %Finds the dC/dtheta

122 %Only interested in the values in the end time t0

123 vector = vector(end ,:);

124 %Converts the vector resulting in the dCdw and dCdb matrices

125 i2 = i*2+1;

126 [dCdw ,dCdb] = obj.Vector_to_gradient(vector(i2:end));

127 C=sum((y-u(end ,:)).^2) /2; %Returns the total cost

128 end

129

130 function [C,dCdw ,dCdb] = Gradient_step_adj_mod(obj ,u0,y,h,t0 ,tN)

131 %Calculates the gradient and cost for a pair of points u0 and y

132 %Using the adjoint sensitivity method modified

133 [times ,u] = obj.Forward(u0 ,[t0 tN]); %Calculates U(tN)

134 steps = length(times);

135 a(steps ,:) = u(end ,:)-y;

136 obj.ANN.Gradient(u(steps ,:));

137 ANN_= obj.ANN;

138 for i=2:obj.ANN.layers

139 dCdb_{i,steps} = zeros(1,obj.ANN.size(i));

140 dCdw_{i,steps} = zeros(obj.ANN.size(i-1),obj.ANN.size(i));

141 temp_b{i} = zeros(1,obj.ANN.size(i));

142 temp_w{i} = zeros(obj.ANN.size(i-1),obj.ANN.size(i));

143 end

144 for i = steps -1: -1:1

145 obj.ANN.Gradient(u(i,:));

146 a(i,:) = (a(i+1,:)+(times(i+1)-times(i))/2.*(a(i+1,:)...

147 *ANN_.iograd))*inv(eye(obj.ANN.size (1)) -...

148 (times(i+1)-times(i))/2.* obj.ANN.iograd);

149 for l=obj.ANN.layers :-1:2 % For each layer

150 for j=1: obj.ANN.size(end)

151 temp_w{l} = a(i+1,j).*ANN_.wgrad{l,j}+a(i,j)...

152 .*obj.ANN.wgrad{l,j}+ temp_w{l};

61

153 temp_b{l} = a(i+1,j).*ANN_.bgrad{l,j}+a(i,j)...

154 .*obj.ANN.bgrad{l,j}+ temp_b{l};

155 end

156 temp_w{l} = temp_w{l}.*(times(i+1)-times(i))/2;

157 temp_b{l} = temp_b{l}.*(times(i+1)-times(i))/2;

158 dCdw_{l,i} = dCdw_{l,i+1}+ temp_w{l};

159 dCdb_{l,i} = dCdb_{l,i+1}+ temp_b{l};

160 temp_b{l} = zeros(1,obj.ANN.size(l));

161 temp_w{l} = zeros(obj.ANN.size(l-1),obj.ANN.size(l));

162 end

163 ANN_= obj.ANN;

164 end

165 for l=obj.ANN.layers :-1:2 % For each layer

166 dCdw{l} = dCdw_{l,1};

167 dCdb{l} = dCdb_{l,1};

168 end

169 C=sum((y-u(end ,:)).^2) /2;

170 end

171

172 function [C_total ,dCdw_total ,dCdb_total] = ...

173 Gradient(obj ,targets ,times ,h,grad_alg)

174 data_points = length (targets {1}(: ,1));

175 for i=1:obj.ANN.layers -1 %Initializes total gradients to zero

176 dCdw_total{i+1}= zeros(obj.ANN.size(i),obj.ANN.size(i+1));

177 dCdb_total{i+1}= zeros(1,obj.ANN.size(i+1));

178 end

179 C_total = 0; %Initializes total cost to zero

180 C = zeros(1, data_points);

181 %Go through pairs of consecutive data points evaluating

182 % gradients and cost

183 parfor i=1: data_points

184 if grad_alg == 1

185 [C(i),dCdw_{i},dCdb_{i}] = obj.Gradient_step_verif ...

186 (targets {1}(i,:),targets {2}(i,:),h,times {1}(i) ,...

187 times {2}(i));

188 elseif grad_alg == 2

189 [C(i),dCdw_{i},dCdb_{i}] = obj.Gradient_step_backp ...

190 (targets {1}(i,:),targets {2}(i,:),h,times {1}(i) ,...

191 times {2}(i));

192 elseif grad_alg == 3

193 [C(i),dCdw_{i},dCdb_{i}] = obj.Gradient_step_adj ...

194 (targets {1}(i,:),targets {2}(i,:),h,times {1}(i) ,...

195 times {2}(i));

196 elseif grad_alg == 4

197 [C(i),dCdw_{i},dCdb_{i}] = obj.Gradient_step_adj_mod ...

198 (targets {1}(i,:),targets {2}(i,:),h,times {1}(i) ,...

199 times {2}(i));

200 end

201 end

202 for i=1: data_points

203 dCdw = dCdw_{i};

204 dCdb = dCdb_{i};

205 for j=2:obj.ANN.layers

206 dCdw_total{j} = dCdw_total{j}+dCdw{j}./(data_points -1);

207 dCdb_total{j} = dCdb_total{j}+dCdb{j}./(data_points -1);

208 end

62

209 end

210 C_total = sum(C);

211 end

212

213 function [cost] = train_GD(obj ,targets ,times ,h,max_epochs ,...

214 max_cost ,grad_alg ,varargin)

215 %Gradient decent algorith that uses input -output data

216 %to update the weights and bias

217 data_points = length (targets (:,1));

218 %If data containes more than one trajectory segmented=true

219 if nargin > 7

220 segmented = true;

221 segments = length(varargin {1}) +1;

222 borders = varargin {1};

223 else

224 segmented = false;

225 end

226 %Initializes intermediate variables for Adam

227 for i=2:obj.ANN.layers

228 mt{i,1}= obj.ANN.w{i}*0;

229 mt{i,2}= obj.ANN.b{i}*0;

230 vt{i,1}= obj.ANN.w{i}*0;

231 vt{i,2}= obj.ANN.b{i}*0;

232 end

233 t=0; beta1 =0.9; beta2 =0.999; alpha =0.005; eps=1e-8; %Adam para

234 epochs = 1;

235 cost=zeros(1, max_epochs);

236 [~,dCdw ,dCdb] = obj.Gradient(targets ,times ,h,grad_alg);

237 [mt ,vt ,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,vt ,dCdw ,dCdb);

238 ANN_best = copy(obj.ANN);

239 figure (20);

240 set(gca ,’TickLabelInterpreter ’,’latex’);

241 costs = animatedline(’Color’,’b’);

242 set(gca , ’YScale ’, ’log’)

243 ylabel(’Cost’,’Interpreter ’,’latex ’)

244 xlabel(’Number of epochs ’,’Interpreter ’,’latex ’)

245 figure (21);

246 hold on

247 if segmented

248 for i = 1: length(borders)-1

249 [~,u] = obj.Forward(targets {2}(borders(i) ,:) ,...

250 times {2}(borders(i):borders(i+1) -1));

251 plot(targets {2}(borders(i):borders(i+1) -1,1) ,...

252 targets {2}(borders(i):borders(i+1) -1,2),’b’)

253 uplot(i) = plot(u(:,1),u(:,2),’r’);

254 cost(epochs) = sum(sum((targets {2}(borders(i):...

255 borders(i+1) -1,:)-u).^2 ,2) /2) + cost(epochs);

256 end

257 else

258 [~,u] = obj.Forward(targets {1}(1 ,:),times {2});

259 plot(targets {2}(: ,1),targets {2}(: ,2))

260 uplot = plot(u(:,1),u(:,2));

261 cost(epochs) = sum(sum((targets {2}-u).^2 ,2) /2);

262 end

263 set(gca ,’TickLabelInterpreter ’,’latex’);

264 ylabel(’$x_2(t)$’,’Interpreter ’,’latex ’)

63

265 xlabel(’$x_1(t)$’,’Interpreter ’,’latex ’)
266 legend(’True model ’,’NODE aproximation ’,’Interpreter ’,’latex ’)

267 fprintf(’Gradient Decent. Number of epochs %d Cost %f\n’ ,...

268 epochs ,cost(epochs));

269 addpoints(costs ,epochs ,cost(epochs));

270 refreshdata;

271 drawnow

272 while cost(epochs)>max_cost && epochs <max_epochs

273 epochs = epochs +1;

274 [~,dCdw ,dCdb] = obj.Gradient(targets ,times ,h,grad_alg);

275 [mt ,vt ,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,vt ,...

276 dCdw ,dCdb);

277 if segmented

278 for i = 1: length(borders)-1

279 [~,u] = obj.Forward(targets {2}(borders(i) ,:) ,...

280 times {2}(borders(i):borders(i+1) -1));

281 uplot(i).XData = u(:,1); uplot(i).YData = u(:,2);

282 cost(epochs) = sum(sum((targets {2}(borders(i):...

283 borders(i+1) -1,:)-u).^2 ,2) /2) + cost(epochs);

284 end

285 else

286 [~,u] = obj.Forward(targets {1}(1 ,:),times {2});

287 uplot.XData = u(:,1); uplot.YData = u(:,2);

288 cost(epochs) = sum(sum((targets {2}-u).^2 ,2) /2);

289 end

290 if min(cost (1: epochs -1))>cost(epochs)

291 ANN_best = copy(obj.ANN);

292 end

293 fprintf(’Gradient Decent. Number of epochs %d Cost %f\n’...

294 ,epochs ,cost(epochs));

295 addpoints(costs ,epochs ,cost(epochs));

296 refreshdata;

297 drawnow

298 end

299 obj.ANN = copy(ANN_best);

300 hold off; figure (20); hold off;

301 end

302

303 function [cost] = train_SGD(obj ,targets ,times ,h,max_epochs ,...

304 max_cost ,grad_alg ,batch_size ,varargin)

305 %Stochastic Gradient decent algorith that uses input -output

306 % data to update the weights and bias

307 data_points = length (targets {1}(: ,1)); %Number of data points

308 if nargin > 8 %If data containes more than one trajectory

309 segmented = true;

310 segments = length(varargin {1}) +1;

311 borders = varargin {1};

312 else

313 segmented = false;

314 end

315 if nargin ==10 %If random index vector was input

316 index = varargin {2};

317 else %If index was not input it generates one

318 [~,index] = sort(rand(max_epochs ,length(targets {1})) ,2);

319 end

320 %Initializes intermediate variables for Adam

64

321 for i=2:obj.ANN.layers

322 mt{i,1}= obj.ANN.w{i}*0;

323 mt{i,2}= obj.ANN.b{i}*0;

324 vt{i,1}= obj.ANN.w{i}*0;

325 vt{i,2}= obj.ANN.b{i}*0;

326 end

327 t=0; beta1 =0.9; beta2 =0.999; alpha =0.005; eps=1e-8; %Adam para

328 epochs = 1;

329 cost=zeros(1, max_epochs);

330 iter = floor(data_points/batch_size);

331 for k = 1:iter -1

332 selected_targets {1} = targets {1}(index(epochs ,(k-1) ...

333 *batch_size +1:k*batch_size) ,:);

334 selected_targets {2} = targets {2}(index(epochs ,(k-1) ...

335 *batch_size +1:k*batch_size) ,:);

336 selected_times {1} = times {1}(index(epochs ,(k-1) ...

337 *batch_size +1:k*batch_size));

338 selected_times {2} = times {2}(index(epochs ,(k-1) ...

339 *batch_size +1:k*batch_size));

340 [~,dCdw ,dCdb] = obj.Gradient(selected_targets ,...

341 selected_times ,h,grad_alg);

342 [mt,vt,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,...

343 vt,dCdw ,dCdb);

344 end

345 selected_targets {1} = targets {1}(index(epochs ,(iter -1) ...

346 *batch_size +1:end) ,:);

347 selected_targets {2} = targets {2}(index(epochs ,(iter -1) ...

348 *batch_size +1:end) ,:);

349 selected_times {1} = times {1}(index(epochs ,(iter -1) ...

350 *batch_size +1:end));

351 selected_times {2} = times {2}(index(epochs ,(iter -1) ...

352 *batch_size +1:end));

353 [~,dCdw ,dCdb] = obj.Gradient(selected_targets ,...

354 selected_times ,h,grad_alg);

355 [mt ,vt ,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,vt ,dCdw ,dCdb);

356 ANN_best = copy(obj.ANN);

357 figure (20);

358 set(gca ,’TickLabelInterpreter ’,’latex’);

359 costs = animatedline(’Color’,’b’);

360 set(gca , ’YScale ’, ’log’)

361 ylabel(’Cost’,’Interpreter ’,’latex ’)

362 xlabel(’Number of epochs ’,’Interpreter ’,’latex ’)

363 figure (21);

364 hold on

365 if segmented

366 for i = 1: length(borders)-1

367 [~,u] = obj.Forward(targets {2}(borders(i) ,:)...

368 ,times {2}(borders(i):borders(i+1) -1));

369 plot(targets {2}(borders(i):borders(i+1) -1,1)...

370 ,targets {2}(borders(i):borders(i+1) -1,2),’b’)

371 uplot(i) = plot(u(:,1),u(:,2),’r’);

372 cost(epochs) = sum(sum((targets {2}(borders(i)...

373 :borders(i+1) -1,:)-u).^2,2)/2) + cost(epochs);

374 end

375 else

376 [~,u] = obj.Forward(targets {1}(1 ,:),times {2});

65

377 plot(targets {2}(: ,1),targets {2}(: ,2))

378 uplot = plot(u(:,1),u(:,2));

379 cost(epochs) = sum(sum((targets {2}-u).^2 ,2) /2);

380 end

381 set(gca ,’TickLabelInterpreter ’,’latex’);

382 ylabel(’$x_2(t)$’,’Interpreter ’,’latex ’)
383 xlabel(’$x_1(t)$’,’Interpreter ’,’latex ’)
384 legend(’True model ’,’NODE aproximation ’,’Interpreter ’,’latex ’)

385 fprintf ([’Stochastic Gradient Decent. Number of epochs ’ ...

386 ’ %d Cost %f\n’],epochs ,cost(epochs));

387 addpoints(costs ,epochs ,cost(epochs));

388 refreshdata;

389 drawnow

390 while cost(epochs)>max_cost && epochs <max_epochs

391 epochs = epochs +1;

392 iter = floor(data_points/batch_size);

393 for k = 1:iter -1

394 selected_targets {1} = targets {1}(index(epochs ,(k-1) ...

395 *batch_size +1:k*batch_size) ,:);

396 selected_targets {2} = targets {2}(index(epochs ,(k-1) ...

397 *batch_size +1:k*batch_size) ,:);

398 selected_times {1} = times {1}(index(epochs ,(k-1) ...

399 *batch_size +1:k*batch_size));

400 selected_times {2} = times {2}(index(epochs ,(k-1) ...

401 *batch_size +1:k*batch_size));

402 [~,dCdw ,dCdb] = obj.Gradient(selected_targets ,...

403 selected_times ,h,grad_alg);

404 [mt,vt,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,...

405 vt,dCdw ,dCdb);

406 end

407 selected_targets {1} = targets {1}(index(epochs ,(iter -1) ...

408 *batch_size +1:end) ,:);

409 selected_targets {2} = targets {2}(index(epochs ,(iter -1) ...

410 *batch_size +1:end) ,:);

411 selected_times {1} = times {1}(index(epochs ,(iter -1) ...

412 *batch_size +1:end));

413 selected_times {2} = times {2}(index(epochs ,(iter -1) ...

414 *batch_size +1:end));

415 [~,dCdw ,dCdb] = obj.Gradient(selected_targets ,...

416 selected_times ,h,grad_alg);

417 [mt ,vt ,t] = obj.Adam(beta1 ,beta2 ,alpha ,eps ,t,mt ,vt ,...

418 dCdw ,dCdb);

419

420 if segmented

421 for i = 1: length(borders)-1

422 [~,u] = obj.Forward(targets {2}(borders(i) ,:) ,...

423 times {2}(borders(i):borders(i+1) -1));

424 uplot(i).XData = u(:,1); uplot(i).YData = u(:,2);

425 cost(epochs) = sum(sum((targets {2}(borders(i)...

426 :borders(i+1) -1,:)-u).^2,2)/2) + cost(epochs);

427 end

428 else

429 [~,u] = obj.Forward(targets {1}(1 ,:),times {2});

430 uplot.XData = u(:,1); uplot.YData = u(:,2);

431 cost(epochs) = sum(sum((targets {2}-u).^2 ,2) /2);

432 end

66

433 if min(cost (1: epochs -1))>cost(epochs)

434 ANN_best = copy(obj.ANN);

435 end

436 fprintf ([’Stochastic Gradient Decent. Number of epochs ’ ...

437 ’ %d Cost %f\n’],epochs ,cost(epochs));

438 addpoints(costs ,epochs ,cost(epochs));

439 refreshdata;

440 drawnow

441 end

442 obj.ANN = copy(ANN_best);

443 figure (21); hold off; figure (20); hold off;

444 end

445

446

447 function [mt,vt,t] = Adam(obj ,beta1 ,beta2 ,alpha ,eps ,t,mt,vt, ...

448 dCdw ,dCdb)

449 %Adam optimization algorithm

450 t=t+1;

451 alphat=alpha *((1- beta2^t)^0.5) /(1-beta1^t);

452 for i=2:obj.ANN.layers

453 mt{i,1}= beta1 .*mt{i,1}+(1 - beta1).*dCdw{i};

454 mt{i,2}= beta1 .*mt{i,2}+(1 - beta1).*dCdb{i};

455 vt{i,1}= beta2 .*vt{i,1}+(1 - beta2).*dCdw{i}.^2;

456 vt{i,2}= beta2 .*vt{i,2}+(1 - beta2).*dCdb{i}.^2;

457 obj.ANN.w{i} = obj.ANN.w{i}-alphat *(mt{i ,1}./(vt{i,1} ...

458 .^0.5+ eps));

459 obj.ANN.b{i} = obj.ANN.b{i}-alphat *(mt{i ,2}./(vt{i,2} ...

460 .^0.5+ eps));

461 end

462 end

463

464 function dydt = odefun(obj ,t,y)

465 %Function that build a vector containing the derivatives

466 %dU/dt , da/dt , dm/dt. This vector is use to solve for the

467 %gradient dC/dtheta using an ODE solver

468 i = obj.ANN.size (1);

469 obj.ANN.Gradient(y(1:i)’);

470 dydt (1:i) = obj.ANN.a{end};

471 dydt(i+1:i*2) = -y(i+1:i*2) ’*obj.ANN.iograd;

472 for l = 2:1: obj.ANN.layers

473 dmdt_w{l} = zeros(obj.ANN.size(l-1),obj.ANN.size(l));

474 dmdt_b{l} = zeros(1,obj.ANN.size(l));

475 for j = 1:i

476 dmdt_w{l} = -y(i+j).*obj.ANN.wgrad{l,j}+ dmdt_w{l};

477 dmdt_b{l} = -y(i+j).*obj.ANN.bgrad{l,j}+ dmdt_b{l};

478 end

479 end

480 vector = obj.Gradient_to_vector(dmdt_w ,dmdt_b);

481 dydt= [dydt ,vector];

482 dydt = dydt ’;

483 end

484

485 function dist = Compare_gradients(obj ,dCdw ,dCdb ,dCdw_ ,dCdb_)

486 %Returns the euclidean distance normalized by the sum of the

487 % norm of the vectors

488 gvector = obj.Gradient_to_vector(dCdw ,dCdb);

67

489 gvector_ = obj.Gradient_to_vector(dCdw_ ,dCdb_);

490 dist = norm(gvector -gvector_)/(norm(gvector)+norm(gvector_));

491 end

492

493 function gvector = Gradient_to_vector(obj ,dCdw ,dCdb)

494 %Convert dCdw and dCdb from structures to concatenated

495 % 1D vector

496 gvector = [];

497 for l = 2:1: obj.ANN.layers

498 for j = 1:obj.ANN.size(l)

499 for i = 1:obj.ANN.size(l-1)

500 gvector = [gvector ,dCdw{l}(i,j)];

501 end

502 gvector = [gvector ,dCdb{l}(j)];

503 end

504 end

505 end

506

507 function [dCdw ,dCdb] = Vector_to_gradient(obj ,gvector)

508 %Convert a 1D vector contaning gradients to structures

509 index = 1;

510 for l = 2:1: obj.ANN.layers

511 for j = 1:obj.ANN.size(l)

512 for i = 1:obj.ANN.size(l-1)

513 dCdw{l}(i,j) = gvector(index);

514 index = index +1;

515 end

516 dCdb{l}(j) = gvector(index);

517 index = index +1;

518 end

519 end

520 end

521

522 end

523 end

68

Appendix B

ANN Class

1 classdef ANN < matlab.mixin.Copyable

2 %ANN Feedforward Artifitial Neural Network Class

3

4 properties

5 size; activ; w; z; a; b; delta; layers; wgrad; bgrad; iograd;

6 end

7

8 methods

9 function obj = ANN(size ,activ)

10 %Creates a feedforward ANN

11 %Creates weights , bias and gradients matrices and initializes

12 %them

13 obj.size = size;

14 obj.activ = activ;

15 obj.layers = length(size);

16 obj.a{1} = zeros(1,obj.size (1));

17 for i=2:obj.layers

18 obj.w{i} = (2* rand([obj.size(i-1) obj.size(i)],’double ’)...

19 -1)*sqrt(6 / (obj.size(i-1)+obj.size(i)));% "Glorot"

20 obj.b{i} = zeros(1,obj.size(i));

21 obj.z{i} = zeros(1,obj.size(i));

22 obj.a{i} = zeros(1,obj.size(i));

23 for j = 1:obj.size(end)

24 obj.bgrad{i,j} = zeros(1,obj.size(i));

25 obj.wgrad{i,j} = zeros(obj.size(i-1),obj.size(i));

26 end

27 end

28 end

29

30 function f = Forward(obj ,input)

31 %Takes and input for the ANN and generate and output using the

32 %current weights and bias

33 obj.a{1} = input;

34 for i=2:obj.layers

35 obj.z{i} = obj.a{i-1}* obj.w{i}+obj.b{i};

36 obj.a{i} = obj.activation(obj.z{i},obj.activ(i));

37 end

38 f = obj.a{end};

39 end

40

69

41 function Gradient(obj ,input)

42 %Finds the gradient of the output with respect to the

43 %parameters (weights and bias) and the input

44 obj.Forward(input);

45 for j=1:obj.size(end)

46 obj.delta{obj.layers ,j} = zeros(1,obj.size(end));

47 obj.delta{obj.layers ,j}(1,j) = obj.activation_der(obj.z...

48 {obj.layers }(1,j),obj.activ(obj.layers));

49 obj.wgrad{obj.layers ,j} = (obj.delta{obj.layers ,j}’*obj.a

50 {obj.layers -1}) ’;

51 obj.bgrad{obj.layers ,j} = obj.delta{obj.layers ,j};

52 for l=obj.layers -1: -1:2

53 obj.delta{l,j} = (obj.delta{l+1,j}*obj.w{l+1}’)...

54 .*obj.activation_der(obj.z{l},obj.activ(l));

55 obj.wgrad{l,j} = (obj.delta{l,j}’*obj.a{l-1}) ’;

56 obj.bgrad{l,j} = obj.delta{l,j};

57 end

58 obj.iograd(j,:)=obj.delta{2,j}*obj.w{2}’;

59 end

60 end

61

62 function reset_WB(obj)

63 %Clear weights and bias

64 for i=2:obj.layers

65 obj.w{i} = (2* rand([obj.size(i-1) obj.size(i)],’double ’)...

66 -1)*sqrt(6 / (obj.size(i-1)+obj.size(i)));% "Glorot ".

67 obj.b{i} = zeros(1,obj.size(i));

68 obj.z{i} = zeros(1,obj.size(i));

69 obj.a{i} = zeros(1,obj.size(i));

70 for j = 1:obj.size(end) %Creates gradient matrices for w

71 % and b for each output

72 obj.bgrad{i,j} = zeros(1,obj.size(i));

73 obj.wgrad{i,j} = zeros(obj.size(i-1),obj.size(i));

74 end

75 end

76 end

77

78 function output = activation(obj ,input ,activ)

79 %Returns the activation function evaluated at input

80 switch activ

81 case 1 %Identity

82 output = input;

83 case 2 %Sigmoid

84 output = logsig(input);

85 case 3 %Hiperbolic tangent sigmoid

86 output = tanh(input);

87 case 4 %ReLU

88 output = zeros(1,length(input));

89 for i=1: length(input)

90 if input(i)>0

91 output(i)=input(i);

92 end

93 end

94 end

95 end

96

70

97 function output = activation_der(obj ,input ,activ)

98 %Returns the activation derivative evaluated at input

99 switch activ

100 case 1 %Identity

101 output = ones(1,length(input));

102 case 2 %Sigmoid

103 output = dlogsig(input ,logsig(input));

104 case 3 %Hiperbolic tangent sigmoid

105 output = dtansig(input ,tansig(input));

106 case 4 %ReLU

107 output = zeros(1,length(input));

108 for i=1: length(input)

109 if input(i)>0

110 output(i)=1;

111 end

112 end

113 end

114 end

115

116 end

117 end

71

	Introduction
	Previous Work in the Topic
	Feed-forward ANN
	Recurrent Neural Networks
	Long-Short Term Memory

	Current Ideas in the Topic
	Residual Neural Networks
	Neural Ordinary Differential Equations

	Knowledge Gap
	Aim of the Study
	Objectives

	Methods
	Neural ODE Implementation
	The Feed-forward ANN Class
	Forward method
	Gradient method
	Parameters initialization

	The Neural ODE Class
	Forward method
	Gradient method
	Gradient step methods
	Training Methods
	Adam learning rate optimization method

	Systems of ODE selected and synthetic datasets
	Linear ODE system: Three stage tank salt content
	Almost linear ODE system: Damped pendulum
	Nonlinear ODE system: Predator-prey system

	Experiments and Experiments Metrics
	Experiment 1 - Testing gradient step methods on single pairs of points
	Experiment 2 - Evaluating gradient step methods on complete training datasets
	Experiment 3 - Investigating the NODE's underlying ANN hyperparameter's influence in final model performance
	Experiment 4 - Exploring different SGD mini-batch size effect on the training cost trajectory
	Experiment 5 - Final model evaluation

	Results
	Linear ODE System. The Three Stage Tank Salt Content
	Experiment 1 - Testing gradient step methods on single pairs of points
	Experiment 2 - Evaluating gradient step methods on complete training datasets
	Experiment 3 - Investigating the NODE's underlying ANN hyperparameter's influence in final model performance
	Experiment 4 - Exploring different training algorithms and their effect on the training cost trajectory
	Experiment 5 - Final model evaluation

	Almost Linear ODE system. The Damped Pendulum
	Experiment 2 - Evaluating gradient step methods on complete training datasets
	Experiment 3 - Investigating the NODE's underlying ANN hyperparameters influence in final model performance
	Experiment 4 - Exploring different training algorithms and their effect on the training cost trajectory
	Experiment 5 - Final model evaluation

	Non-linear ODE system: Predator-prey system
	Experiment 2 - Evaluating gradient step methods on complete training datasets
	Experiment 3 - Investigating the NODE's underlying ANN hyperparameters influence in final model performance
	Experiment 4 - Exploring different training algorithms and their effect on the training cost trajectory
	Experiment 5 - Final model evaluation

	Discussion and Conclusion
	Discussion
	Experiment 1 - Testing gradient step methods on single pairs of points
	Experiment 2 - Evaluating gradient step methods on complete training datasets
	Experiment 3 - Investigating the NODE's underlying ANN hyperparameter's influence in final model performance
	Experiment 4 - Exploring different training algorithms and their effect on the training cost trajectory
	Experiment 5 - Final model evaluation

	Contributions
	Limitations
	Future work
	Conclusion

	Bibliography
	NODE Class
	ANN Class

