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Abstract 

The global hunger for energy has only been rising every day as we progress more into adopting superior 

and better technology to make lives better and easier. As more countries tread the path of 

industrialization, the need for cleaner and greener energy is imperative to reduce damage to an 

already deteriorating environment. Wind energy accounts for about 15% of renewable energy and is 

one of the fastest-growing renewable technologies. The energy produced by wind has doubled in the 

past decade. The wind industry is only expected to grow with an infinite supply of natural wind. Wind 

turbines in the 1980s had a capacity of 0.1MW, but today they average at around 10MW, with the 

largest wind turbines having a capacity of 15MW. Due to a surge in demand and potential for growth, 

it has become more critical than ever to find newer strategies to maximize turbine efficiency. 

Numerous approaches can be adopted to improve a turbine's efficiency, including design, material, or 

control system changes. Other options include using novel or better prediction models to estimate 

extreme values that can be useful in fine-tuning designs of wind turbines. In this thesis, two main 

strategies are adopted in an attempt to optimize the efficiency of wind turbines. Firstly, in Paper-I, a 

novel change to the pitch controller is adopted by adding and optimizing the bending moments to 

reduce the bending moment in the low-speed shaft. A reduction in the bending moment will reduce 

the internal drive train loads within the gearbox, thus extending its lifespan. A reduction of bending 

moment with minimal loss in shaft rotational speed was observed through this optimization. While in, 

Paper-II and -III, the novel ACER1D and 2D (univariate and bivariant analysis) models were used to 

estimate extreme load values. Paper-II presented the ACER1D results but focused on the ACER2D as it 

fitted it against other models, such as the optimized Asymmetric and Gumbel logistic models. This 

paper showed that ACER2D was advantageous since it could produce very accurate results compared 

to the other models with very little data set. While in Paper-III, extreme values estimate from ACER2D 

were compared against the Gumbel model, and the results obtained were positive, showing that 

ACER1D was better at estimating extreme values with a small data set. Optimizing the extreme values 

is critical when designing wind turbines as proper values enable better and more reliable turbine 

designs. Thus, both the strategies adopted in this thesis showed that through proper optimization, a 

reduction of load or a better design could be achieved, resulting in better efficiency in wind turbines. 
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Introduction 
1.1 Overview of Thesis 
Wind energy is a key agent in the “Net Zero Emissions by 2050” agenda set forth by many countries, 

including Norway (IEA, 2020). Norway has been actively spearheading efforts to develop technologies 

and capabilities to harness wind energy more efficiently (A1). One key area of focus in this pursuit is 

the development and fine-tuning of wind turbine technology. According to Betz’s Law, there is a higher 

cap on how much kinetic energy can be converted to electrical energy. Therefore, any new methods 

or prediction strategies that can maximize the extraction of useful electrical energy are useful. 

Research and development of maximizing wind turbine efficiency only encourage reducing the 

dependence on fossil fuels and facilitate the movement toward wind energy. Wind Turbines (WTs) 

power or its cost efficacy can be improved through modifications in their mechanical designs, material 

properties, control system designs, better loads estimation, etc. However, with very little room for any 

more design improvements, research on WTs today has focused on better materials, control systems 

and loads estimation. This thesis will focus on optimizing wind turbines’ control systems and extreme 

loads estimation methods. 

 

The first part of this thesis (Paper I) focuses on optimizing the present control system through a novel 

and effective modification and then analyzing this modified control system. Wind turbine (WT) control 

concepts have been evolving since their conceptualization. From its early days of controlling the stall-

controlled-constant-speed WTs to the present pitch-controlled-variable-speed WTs, these concepts 

have been evolving according to their requirements. Control algorithms are principally implemented 

to control the pitch and torque of turbines to maximize their effectiveness. It enables the control 

system to maximize or optimize the wind's kinetic energy within the WT operational limits. Within such 

operating limits, it targets maximizing electrical power produced by the generator or maximizing the 

shaft-designed rotating speed. While as a secondary function, the control system is designed to 

minimize excessive mechanical loading in the WTs, thus extending the turbine lifespan. With much 

research on control algorithms focusing on improving the efficiency of the wind turbine (Pao, 2009; 

Laks, 2011), this thesis hopes to look at the control algorithm which can reduce bending moment in 

the low-speed shaft. Better control systems lead to reduced loads and life expectancy of the wind 

turbines. An example of fine-tuning control systems includes varying shaft speed or blade pitch to 

reduce the loads on the turbines. Unfortunately, such variations are problematic since whenever the 

rotational speed increases, the loads acting on the WTs increase equally, decreasing the turbine's 

lifespan. This dilemma of finding a delicate balance between the two has inspired more focused and 

detailed studies on control concepts. Like the control systems, a more accurate extreme statistical 



2 | P a g e  
 

loads estimation can improve the wind turbine cost efficiency. Modelling a wind turbine according to 

these values is critical as it can minimize damage or predict faults in the design in a better way. In the 

past decades, more research and investments have been used on wind turbines allowing wind turbines 

to become bigger and more cost-effective. Furthermore, as more and more turbines are being built, it 

has become even more vital to minimize their developmental and servicing cost. An important 

chokepoint in smooth economic viability is the increased expenditure from wind turbine failure. Thus, 

ensuring such failures are minimized will reduce extended downtime (which can last from months to 

years) or the reliance on the availability of the materials or manpower (IEA,2020; IRENA, 2012; Sheng, 

2012), thereby reducing cost overruns.  

 

This thesis’s second and third parts (Paper II and III) focus on characterizing extreme load estimation 

using the ACER1D and ACER2D methods and then comparing them with the Gumbel method. 

According to International Electrotechnical Commission (IEC) standards, wind turbines must be 

designed to operate in the highly stochastic wind and wave environments for at least 20 years (Veers, 

2001). Since larger wind turbines (both in numbers and size) are constructed, especially offshore, it 

has become essential to minimize construction, maintenance, and operational costs. Turbines and 

their components are vulnerable to various cyclic loads such as axial and transverse loading, bending 

moments and torque. Furthermore, the loads acting on the wind turbines are also influenced by the 

wind’s stochastic behaviours in speed, direction, shear, and vorticity, making extreme load analysis 

imperative for wind turbine design and operation. Any failure in the turbine system can result in 

unnecessary downtime, which can be extremely expensive (Igba, 2015; Irena, 2012; Sheng, 2012). 

Despite this, engineers in the 1970s believed that it was unnecessary to conduct detailed modelling, 

resulting in the design of wind turbines with huge safety margins. However, this changed with the 

further development of larger wind turbines as it became more expensive to maintain similar safety 

margins. On top of that, inaccurate estimation of design loads led to unnecessary failures. These led 

to an industry revamp, where a better accurate prediction technique was developed by the 1990s using 

dynamic structural models, turbulence models, aerodynamic models, and control algorithms (Veers, 

1998). Thus, a better and more accurate estimation of these extreme responses will help designers 

better understand the outcome of these loads on the components, thus developing better design and 

control systems for future wind turbines (Xu, 2019). The ACER1D and ACER2D analysis done in the 

second and third parts of the thesis offers a more reliable description of the extreme load distribution’s 

tail behaviour and have been used reliably in numerous marine structures (Zhang,2019; Gaidai, 2018; 

Gaidai, 2016), and (Naess, 2008; Naess, 2009; Naess, 2010; Naess, 2013). 
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1.2 Background 
The global population is expected to grow to 9.7 billion by the end of 2010 and 11 billion by 2100 

(United Nations, PPP2015), see Figure 1. With such a significant change in the population, energy 

consumption is expected to grow exponentially. In addition, industrial development in developing 

countries which is part of economic growth, will also drive up the need for energy demand. Even as 

fossil fuels can keep up with such growth, it is noteworthy to acknowledge that it also comes with an 

expiry date. Furthermore, burning fossil fuels also increases greenhouse gases in the atmosphere while 

contributing to hazardous effects such as global warming and climate change. Even as new projects 

such as carbon reinjection promises to mitigate the problems in the future, it is premature to conclude 

that it will be able to eradicate the problem associated with fossil fuels. Global investment in the 

energy sector has doubled in the past decade to over 1600 billion and is expected to be around 2000 

billion in the 2030s (IEA, 2014).   

 

Figure 1 Global Population growth (Demographics 2018) 

Socially responsible ideas such as the Paris Climate Change Agreement (PCCA) and The Green New 

Deal have successfully caught traction over the years. Even as over 187 countries sign the PCCA helps 

mitigates greenhouse-gas emissions rates, further research and development in technology will also 

play a critical role in lowering carbon footprint and eventually achieving a target of net-zero carbon 

emissions in the near future. However, a more practical method to reduce our dependence on fossil 

rules in the future would be to adopt renewable energy such as nuclear, hydro, solar, wind, etc. With 

numerous alternatives for fossil fuels, renewable energy is a viable and realistic option. Especially as 

shallower oil and gas fields are starting to dry up, exploration has started moving further offshore, and 
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prices associated with deeper oil fields are expected to rise again. However, a transition towards a 

more renewable energy-friendly market is an ambitious challenge faced by most counties globally (IEA, 

2014).   

1.3 Wind Turbine 
As of 2018, Denmark tops the EU-28's annual electricity demand covered by wind by about 41%, with 

about only about 25% of them produced offshore, While Ireland uses about 28% of its energy 

generated from wind (all onshore), see Figure 2. In Europe, Germany is the highest wind energy 

producer by the sheer size and produces about 60GW of energy from its onshore and offshore wind 

turbine installations (Wind 2018). While globally, in 2014, China produced the most wind energy 

accounting for 145GW (World Wind 2015). The European Union has also set a target to increase the 

percentage of energy produced by renewable to 20% (14% in 2018), while counties like the 

Netherlands have targeted to achieve over 15% energy generation from renewable by 2025 (Wind, 

2014). Within renewable energy, wind energy dominates the Netherlands and is only second to 

biomass (Netherlands, 2019).  

 

Figure 2 Highest wind energy produce in Europe (Wind Energy) 
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Figure 3 Growing wind energy in Europe (Wind Energy) 

Wind energy is the fastest-growing energy source, only second to gas in the EU as of 2017 (Wind, 2018). 

With faster progress expected in the next decade, wind energy is touted to overtake gas and become 

number one. Wind energy primarily is generated from either a horizontal axis wind turbine (HAWT) or 

a vertical axis wind turbine (VAWT). A HAWT rotates on a horizontal axis, while a VAWT rotates on a 

vertical axis. 

 

Figure 4 Horizontal Axis and Vertical Axis for Wind Energy (American Wind Energy Association) 

The HAWT is the most common type of wind turbine and is further subcategorized as an onshore or 

offshore wind turbine. A simple diagram of a HAWT and VAWT is illustrated in Figure 4 above. The 

onshore wind turbine is a common sight throughout Western Europe. Most HAWT are onshore and 

have dominated the sector since they are usually more affordable and easily built. More than 75% of 

Denmark wind energy is generated using onshore turbines (Wind, 2019). Infrastructure transport of 

electricity is also more accessible and affordable onshore than offshore. However, lately, more 

offshore wind turbines are being built in Europe and around the world (Wind, 2019). Over the past 

decade, there has been a steady increase in the total number of offshore wind turbines. Figure 3, in 

2017, about 15% of the energy produced by wind turbines have been produced offshore, as opposed 

to in 2007, where less than 1% were generated offshore (Wind 2018). 
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1.4 Onshore Wind Turbine 

 

Figure 5 Standard turbine with description of the components (McKenna, 2016) 

  

Over the past few decades economic growth throughout the globe has led to an Increase in the need 

of electricity, and within the wind industry such an upsurge has led to the production of larger turbines 

specially focused on increasing the rotor span and the hubs height. In the start of the 1990s, onshore 

wind turbines were built to support a turbine capacity of about 1 MW but now is built to support 5 to 

10 MW with this expected to increase in the new future, see Figure 5. The driving force behind 

increasing the turbine capacity is accounted for by the decrease in levelized costs for electricity 

generation, which has been aided by various optimization criteria (Chehouri, 2015). This has been 

commonly achieved by building at higher hub heights (wind speeds are lager, and power is related to 

the wind speed with a cubic relationship) or increasing the rotor diameters (power is related to the 

rotor diameter with a squared relationship), see Figure 6. However, there is a limitation to the size in 

which we can build onshore as they are limited by different local regulations. Therefore, various new 

ideas such as wind turbine optimization and modelling have been suggested over the years to bring 

down the levelized costs for electricity generation (McKenna, 2016). In an ideal situation, WTs’ 

aerodynamic performance must be optimized at rated speed and be made to endure extreme loads 

for wind speeds higher than it (Capuzzi, 2014). To achieve this objective, it is vital to adopt a two-

frontier approach, with the first being the development of control systems that are better able to 

integrate and give feedback about the system, which enables the reduction of load acting on the 

system. At the same time, a second viable option could be to develop a new method to better predict 
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the extreme load values acting on the turbines that will enable us to build better and more efficient 

WTs (McKenna, 2016). Therefore, with precise control system modification or better extreme values 

predictions, WT can achieve an increase in the annual energy production or a decrease in the total 

turbine cost, decreasing the levelized costs for electricity generation (McKenna, 2016).  

  

 

Figure 6 Development of upper end size turbines over the years (McKenna, 2016) 
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1.5 Offshore Wind Turbine 
 

Offshore wind turbines do not have the same regulation or size limitations as their onshore 

counterparts. Instead, offshore wind turbines are built with a greater liability, and their primary 

limitation with the size is mostly due to engineering or the environment (Tande, 2014). Thus, offshore 

wind turbines can fully exploit the rich wind speeds and availability in deep-sea areas. Like the onshore 

wind turbines, their offshore counterparts have increased their sizes even more rapidly (Tande, 2014), 

see Figure 7. In shallow water lesser than 50 meters, a bottom-fixed base is usually selected as a 

preferred choice. While at deep waters above 100 meters, wind turbines are built with floating bases. 

While, at the intermediate depths ranging from 50.-100 meters, both the bottom-fixed and floating 

bases are chosen based on various factors, e.g., technical feasibility, environmental factors, and cost. 

Bottom-fixed bases are usually the preferred choice if possible, as it cheap and is well established. 

However, further away from the shore, as the water gets deeper, building a bottom-fixed base no 

longer is viable due to the technical feasibility, environmental factor, and cost. Offshore wind 

technologies are commonly considered a game changer as they are seen as a key in achieving 

environmentally target set globally due to the large wind energy availability and the turbine conversion 

potential (Breton, 2009; Hong, 2011; Ackermann, 2001).  

Many bottom-fixed offshore wind farms have been scheduled to be completed mostly in Northern 

Europe and with new farm plans being planned out for the future (Arapogianni, 2011). Nevertheless, 

there are only a few places with good wind conditions and low shallow water, with most of them 

located in deeper waters, e.g., the Northern Americas, Pacific Coast, Portugal, and Japan Coast. In the 

past, such deep water coast would have been considered impossible to be financially viable. Still, with 

the recent development and commercialization of such wind farms, such projects are becoming viable 

with concepts made by HyWind, WindFloat and DeepWind (Tande, 2014). With the development of 

these concepts, there has been a focus on design, control, and operation. Therefore, the two-frontier 

approach, as described in the previous section, can similarly increase the annual energy production or 

decrease the total turbine cost, reducing the levelized costs for electricity generation. 
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Figure 7 Offshore wind turbine installation (International Energy Agency) 

 

1.6 Basics of a Control System 
The control regime of variable speed wind turbines is divided into the above-rated and below-rated 

regions. In the above-rated region, the control system changes the blade pitch angle, which changes 

the blade's angle of attack, allowing the generator speed regulation to sustain the rated power output. 

While in the below-rated region, the control system aims to control the generator (by regulating in 

between its maximum and minimum value) speed maximizing its power output.   

 

In this thesis, as in Paper I, the primary multivariable control will be done with the speed in the above-

rated region. Typical control systems use the generator torque and blade pitch angle to control the 

generator power/torque or generator speed, respectively (Leith, 1997; Leithea, 2000). With the 

construction of bigger and more powerful turbines, the importance of minimizing loads acting on the 

tower and gearboxes using the pitch control system has become more important than ever and has 

been illustrated in previous studies (Leithead, 2003). While previously, as mentioned (Leithead, 2006), 

the pitch control only used the generator speed as a feedback mechanism to control the generator 

speed. Paper-I has suggested that the shaft moment can also be used in the feedback loop to enable 

better pitch control and thus speed control. It has been previously established that for the tower loads, 

only the fore-aft motion needs to be studied as it is the main driving factor that acts on the tower 

(Leithead, 2006). Similarly, minimizing the low-speed shaft moment is a determining factor when 
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analyzing the loads in the gearbox (Leithead, 2006). The study area is focused in the above-rated 

regions with the under-rated and rated regions used as illustrations, since most of the loads occur in 

the above-rated regions. After considering the low-speed shaft moment control, a more efficient 

controller model is feasible since the control is designed to maximize the collaboration between low-

speed shaft moment and generator pitch control. A moment reduction is in this manner possible. The 

control analysis and design are performed later in this thesis for the NREL 5 MW wind turbine. 

 

1.7 Basics of Extreme Values 
Extreme value analysis (EVA) is a division within statistics that predicts the extreme deviations of 

probability/ statistical distributions. The statistical distribution is often used to estimate these extreme 

values are usually from the Weibull, Gumbel or Fréchet extreme value distributions. Such analysis aims 

to predict the probability of events at the ends and those that are more extreme than usual. EVA looks 

to answer the probabilistic questions relating to extreme tail-end values (high or low) in sequences of 

random variables and in stochastic processes (Saeb 2014). EVA is used in various fields, including 

structural engineering, mechanical engineering, finance and traffic prediction. Examples include a 

design engineer who wants to predict a 50-year wind allowing a better design of a wind turbine. There 

are primarily two different ways for EVA. The first method involves deriving block maxima (minima) 

series and then extracting an annual maximum (minima), which produces an "Annual Maxima Series" 

(AMS). In comparison, the second method involves obtaining the peak values when it exceeds a certain 

threshold during the selected period range, known as the "Peak Over Threshold" (POT) method. The 

AMS analysis results in a generalized extreme value distribution being used for fitting, while the POT 

analysis attempts to fit two different distributions (Agarwal, 2009; Fogle, 2008; Ragan, 2008). 

 

Statistical extrapolation is often used when approximating stimulated long-term extreme loads acting 

on wind turbines. Even though many statistical extrapolation methods are well established, the values 

derived from simulations can be inaccurate if there are uncertainties in estimated extreme loads and 

the usability of the chosen extrapolation method is not addressed. Furthermore, the 3rd edition of the 

International Electrotechnical Commission (IEC) Standard: 61400-1 requires developers to use 

statistical extrapolation approaches to investigate loads on the turbines. These load case requirements 

state that characteristic loads need a return period of 50 years to be determined. The initial response 

indicates the turbines’ stochastic response to randomized environmental conditions and is completed 

using the aeroelastic simulations (Agarwal, 2009; Fogle, 2008; Ragan, 2008). 
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To ensure that proper estimation and robust predictions is done for such infrequent loads, an adequate 

quantity and quality extreme loads data are required. However, the reliability of such extrapolation 

has always been a heated debate among scholars. For example, scholars have debated the necessary 

number of ten-minute responses, if a single maximum load is saved or if a few time-separated (block) 

maxima are preferred. Furthermore, even though every speed in between the cut-in or -out speed 

affects the turbine load types differently, often only a region which experiences the largest variation 

is considered (Agarwal, 2009; Fogle, 2008; Ragan, 2008). 

 

1.8 Objective 
The main objective of this thesis is centered on characterizing and optimizing the parameters that will 

help better predict the structural loads acting on the wind turbines with greater accuracy by simulating 

different conditions that give different moments/loads acting on the turbines. It is achieved by 

modifying the conditions such as speed and the turbulence acting on the turbine. To characterize, 

optimize and better predict the load acting on the wind turbine, we have presented the thesis based 

on two strategies applied over three papers: 

 

1. Paper-I: Characterizing and optimizing the moments acting on the low-speed wind shaft by 

developing a compensation scheme for the pitch controller in the NERL 5MW RWT. It has been 

shown to impact the loads acting on the gearbox directly. 

2. Paper-II: Characterizing and optimizing the extreme load prediction through the ACER1D/ 

ACER2D methods from results obtained from the DTU 10MW RWT. Verifying the credibility of 

values obtained from the ACER2D method by fitting and comparing It against the Asymmetric 

and Gumbel logistic model. 

3. Paper-III: Characterizing and optimizing the extreme load prediction through the ACER1D 

methods from results obtained from the DTU 10MW RWT. Verifying the credibility of values 

obtained from the ACER2D method and comparing It against the Gumbel model. 

 

Different RWTs (NREL 5MW RWT and DTU 10MW RWT) have been used in this thesis to create three 

papers. The NREL 5MW RWT used in Paper-I has a better-established control system and is more 

reliable when attempting to optimize a modified control system. Furthermore, it allows the controller 

is better tested before being imported into other turbine models. While characterizing and optimizing 

extreme values, the DTU 10MW RWT was used as it is a larger, contemporary and pertinent wind 

turbine and will thus give suitable loads values, which can be used to develop and build future wind 

turbines. 
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The current thesis is performed in the following steps:  

Paper-I: 

1. Developing a new compensation scheme on Simulink-MATLAB that can be used as a control 

system in the NERL 5MW RWT. 

2. Generation of multiple inflow linear wind and turbulent wind fields (speed) with the NERL 

5MW baseline model in MATLAB and TURBSIM, respectively. 

3. Characterizing how the loads and motions (low-speed shaft RPM, bending moment and 

generator power) on the NERL 5MW RWT are affected by the generated linear and turbulent 

wind spectra when using the new compensation scheme.  

4. Investigate how different compensation weight factor (KBM) used in the compensation 

scheme affects the system and optimizing it to attain the appropriate KBM values. 

5. The results are then computed to find the best KBM values with the maximum reduction in 

shaft bending moments, which also minimizes the rotational speed and power losses.   

Paper-II: 

1. Characterizing the approach to better estimate the extreme load responses of a DTU 10-

MW floating semi-submersible wind turbine focusing on the ACER1D and ACER2D methods. 

The ACER2D results were then compared against the Asymmetric and Gumbel logistic 

model. 

2. Generation of environmental data (wind and wave data) based on hindcast data from an 

offshore site in the Northern North Sea from 2001 to 2010. Three representative load cases 

with a high probability of occurrence in the normal operating conditions are used. 

3. The Kaimal turbulence model generates the three-dimensional turbulent wind fields, 

simulated using TurbSim. Time-varying irregular waves are generated using the JONSWAP 

(Joint North Sea Wave Project) spectrum according to the specified Hs and Tp. 

4. Generate two-bending moments (blade one root flap wise bending moment - RootMyb1 

and tower bottom fore-aft bending moment - TwrBsMyt) on the DTU 10MW FWT using the 

generated wind and wave spectra.  

5. Generate and investigate how the extreme responses (MATLAB) is affected by the 

univariate and bivariate analysis to predict accurate responses.  

6. Characterize the univariate ACER1D extreme response, phase space response; M1 vs M3, 

ACER2D fitted and compared against the Asymmetric and Gumbel logistic model, the 

design safe zone (dashed) due to bivariate analysis and the 50- and 100-year return period 

ACER1D response predictions. 

7. Optimize the ACER model by investigating and optimizing to the relevant k values. 
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Paper III: 

1. Characterizing the approach to better estimate the extreme load responses of a DTU 10-

MW floating semi-submersible type wind turbine focusing for the ACER1D. The ACER1D 

results were then compared against the Gumbel model. 

2. The generation of environmental data and wind field model similar to Paper II.  

3. Generate the three-bending moment (blade one root flap wise bending moment - 

RootMyb1, main shaft tip up-down bending moment (LSSTipMys) and tower bottom fore-

aft bending moment - TwrBsMyt) on the DTU 10MW FWT using the generated wind and 

wave spectra.  

4. Generate and investigate how the extreme responses (MATLAB) is affected by the 

univariate analysis to predict accurate responses.  

5. Characterize the univariate ACER1D extreme response, compared against the Gumbel 

distribution and optimizing the k-values for this ACER1D model. 

 

1.9 Report Methodology 
To better understand the various concepts in this thesis,  

 

1. Literature reviews on other publications, thesis and projects were undertaken. The theories, 

concepts and equations related to the Turbines Model, Control Systems, FAST, ACER1D 

method and ACER2D method were understood. In addition, background studies on wind and 

turbine engineering were undertaken to understand better the TurbSim wind model and the 

mechanism behind the modelling codes in FAST. 

2. Paper-I: The respective model parameter and simulation were prepared to stimulate each 

linear and turbulent wind profile according to each KBM parameter. These simulations yielded 

results such as shaft bending moments, shaft rotational speed, and generator power, which 

were then used to evaluate the best KBM value and the net reduction of bending moments 

when the rotational speed and generator power are minimized. 

3. Paper-II: The respective model parameter and simulations were prepared to stimulate each 

linear and turbulent wind profile. These simulations yielded results such as blade one root flap 

wise bending moment and tower bottom fore-aft bending moment, which were then used to 

characterize the system's univariant and bivariant extreme value and then discussed. 

4. Paper-III: The same steps were undertaken as Paper-II, but the moment for the main shaft tip 

up-down bending moment (LSSTipMys) was also evaluated. Eventually, the univariant extreme 

value prediction of ACER1D and Gumbel was characterized and discussed. 
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1.10 Report Organization 
This report is organized in the following structure: 

Chapter 1: - Introduction 

➢ A brief introduction and synopsis of the background of the topic 

➢ The organization of the report 

Chapter 2: - Theory (Fundamentals Theory for Wind Energy Operations) 

➢ Description of pertinent theories for wind energy operation like wind power, wind profiles, 

atmospheric stabilities, turbulence and turbulent models, wind coherence, is used to 

generate linear field or turbulent flow via Turbsim, 

Chapter 3: - Wind Turbine Model 

➢ Description of turbine engineering: the main turbine parts, blades properties and turbine 

power curve 

➢ Description of the wind turbine models: NREL 5MW turbine and DTU 10MW turbine, 

➢ Background information on the FAST framework 

Chapter 4: - Paper-I: A novel compensation scheme for wind turbine controllers 

➢ Methodology discussing selected wind turbines properties, wind model, cases studies 

selection, Simulink and the compensation scheme 

➢ Results and discussion of the effect of the compensation scheme on the bending moment. 

rotational speed and generator power 

➢ Conclusion of the paper 

Chapter 5: - Paper-II: Extreme values analysis using ACER1D and ACER2D 

➢ Methodology discussing selected wind turbines properties, load cases and environmental 

conditions, ACER1D and ACER2D studies 

➢ Results and discussion of the ACER1D and ACER2D extreme values analysis and the reliability 

of ACER2D results against other models 

➢ Conclusion of the paper 

Chapter 5: - Paper-III: Extreme values analysis of Gumbel against ACER1D 

➢ Methodology discussing selected wind turbines properties, load cases and environmental 

conditions, Gumbel and ACER1D studies 
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➢ Results and discussion of the Gumbel and ACER1D extreme values analysis and the reliability 

of ACER1D results 

➢ Conclusion of the paper 

Chapter 6: - Conclusion 

➢ Overall conclusions from the analysis of this study 

➢ Recommendations on further future investigations 

Chapter 7: - Reference 

Chapter 7: - Appendices 

➢ Publications 
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2 Fundamentals Theory of Wind Energy 

The following section of this thesis discusses the concept behind wind energy. Wind fields generated 

in this thesis were either laminar inflow wind or normal turbulent models, which are generated from 

MATLAB or TurbSim. The underlying concept of wind will be discussed in Sections 2.1 to 2.11. Sections 

2.1 to 2.11 are the theocratical backgrounds used to generate the turbulent wind profile with TurbSim 

and are used in all three papers in this thesis.  

2.1 Wind Power 
The wind is converted into usable energy when it moves the blades linked to the turbines in the form 

of mechanical energy. The turbines then spin the electric generator to generate electricity. Wind power 

is environmentally friendly with a minimal carbon footprint with good sustainability. i.e.,25% of 

Denmark runs on the wind. The power generated is related to the wind characteristics (shear and 

turbulence), turbine properties (size, rotor, transmission system and generator), and the blade’s sweep 

area. E.g., A larger rotor area can generate more energy. However, these properties are also limited 

since increasing this value will simultaneously increase the load excreted on the wind turbine system. 

The maximum power that can be generated by a wind turbine follows the equation (Manwell, 2010):    

 

𝑃 =
1

2
𝜌A𝑈3 

Where, ρ: density in air, A: rotor swept area, U: wind speed 

( 1 ) 

 

In reality, it is not possible for all power from the wind to be converted into usable energy. Thus, the 

maximum power that can be converted is limited by a power coefficient: 

 

𝑃 = 𝐶𝑝 ∗
1

2
𝜌A𝑈3 

Where, Cp: power coefficient 

( 2 ) 

 

 

While it is also important to note the maximum theoretical power that can be extracted by a wind 

turbine is limited by the fraction 16/27. This fraction is commonly known as the Betz limit (Betz, 1926). 

The Betz limit differentiates the maximum power available in the wind and the amount of this power 

that is converted to usable power. As the formula above implies, the Betz limit indicates the maximum 

power that can be converted into usable energy from the wind in the atmosphere given 100% turbine 

efficiency. However, as 100% turbine efficiency is impossible, the real usable energy is further 
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dependent on the turbine efficiency after the Betz limit is applied. The efficiency of the wind turbine 

is influenced by wind shear, turbulence, and yaw misalignment (Micallef, 2016).  

 

2.2 Atmosphere Layers 
 

The atmosphere is a set of different layers made up of gases. It is held in place near the body surface 

by gravity. An atmosphere only forms if gravity is present and if its temperature is low. The atmosphere 

on Earth is surrounded by different layers known as Troposphere, Stratosphere, Mesosphere, and 

Thermosphere, with the Troposphere closest to the surface and the Thermosphere the furthest from 

the surface. The troposphere is the heaviest and the warmest of all layers due to its proximity to the 

surface. Its composition consists primarily of nitrogen (78%), oxygen (21%), carbon dioxide, and other 

gases. All wind turbines are located within this layer, and in greater relevance, extensive research and 

computer simulation are conducted with values from this layer. 

 

Figure 8 Atmosphere Layer and temperature gradient line (Pidwirny, 2006) 

The troposphere can be further divided into the free atmosphere layer and a planetary boundary layer. 

The planetary boundary layer is then further subdivided into the Ekman Layer and the Surface Layer. 

The surface layer ranges between 50 to 200 meters depending on surface roughness values (Z0) and 

the atmospheric stabilities. Z0 is the height above the ground where the wind profile has a zero value 
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(Dyrbye, 1997). This elucidates that a higher Z0 would indicate higher surface roughness and thus a 

longer boundary layer. 

  

2.3 Wind Turbulence 
In fluid dynamics, turbulence is the disturbance in fluid motion due to chaotic changes in the flow 

velocity or pressure (Burton, 2011). It is an uneven movement of air- particles that occur due to the 

presence of eddies and vertical currents. It is characterized by disordered variations in pressure and 

flow velocity. In the case of a wind turbine, wind turbulences affect wind energy in various ways, 

including the fatigue and wake effects, noise proliferation and the turbines' performances. Eddies 

develop because of the instabilities present in wind flow consisting mainly of kinetic energy (Kaimal, 

1994).  

 

Often insignificant at lower or laminar winds, it can be considerably different offshore, contributing to 

significant damage. Turbulence causes major fatigue damage on wind turbines because of the 

dissipation of kinetic energy into thermal energy due to eddies (Kaimal, 1994). Turbulence is 

concomitant with wind shear and thunderstorms, etc. Especially concerning wind, turbulences within 

the boundary layer emerge by shear friction or temperature. Apart from the commonly understood 

turbulence due to friction (mechanically generated), differences in air temperatures can contribute 

substantially to wind turbulence and is commonly called atmospheric stability. Turbulence is often 

denoted as the summation of mechanical-generated turbulence and buoyancy-generated turbulence. 

 

2.4 Atmospheric Stability 
The temperature of the air in the boundary layer affects atmospheric stability. A positive heat flux also 

results in a deeper boundary layer than a zero/negative heat flux (North, 2014). Atmospheric stability 

is categorized into three classes: stable, neutral, and unstable. These classes are labelled based on the 

propensity for the air particles to move on the vertical axis resulting in turbulence, often also known 

as “buoyancy-generated” turbulence. (Atmospheric Stability, 2019).  

 

When the air particles are cooler than the atmospheric air, they remain in the same position or sink 

and are rendered stable. This results in lesser mixing and friction velocity; thus, there exists a steeper 

difference in the velocity gradient and a more significant velocity shear. A lower boundary later height 

is expected under this condition. The stable conditions’ turbulence is often known as “mechanically-

generated” or “shear-produced” turbulence. 
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While when the air particles are warmer than the atmospheric air, they rise and are rendered unstable. 

This results in more mixing and friction velocity; thus, there exists a small difference in the velocity 

gradient and smaller velocity shear. Therefore, a lower boundary later height is expected under this 

condition. The stable conditions’ turbulence is often known as “buoyancy-generated” turbulence. As 

the air particles are usually mixed vertically under unstable conditions, higher turbulent fluctuations 

and fatigue loads are prevalent, especially at offshore locations (Sathe, 2013). However, the stability 

conditions can vary largely according to the locations (Jonkman, 2019). 

 

 

Figure 9 Atmospheric stability (University of Hawai) 

The length scale of energy that characterizes the influence of shear friction to buoyancy ratio in relation 

to the vertical movement of air is known as Monin-Obukhov length (𝐿) (Gasch, 2011) (Chougule, 2017). 

It describes atmospheric stabilities. The (𝐿), is known as the height when the buoyancy begins to 

surpass the shear values in the turbulent energy (Monin & Obukhov, 1954): 

 

𝐿 = −
𝑣∗

3

𝑘
𝑔
𝑇𝑜

𝑞
𝑐𝑝𝜌 

 
( 3 ) 
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Where, 𝑣∗: characteristic velocity scale, 𝜅: von Karman constant = 0.40 ± 0.01, 𝑔: gravity, 𝑇𝑜: 

surface layer temperature, 𝑔/𝑇𝑜: dimensional constant, 𝑞/𝑐𝑝𝜌: temperature flux, 𝑞 is the heat flux 

 

The sign that 𝐿 takes varies with the heat flux (𝑞) direction. Whenever 𝑞 < 0 is negative in a stable 

condition, the 𝐿 > 0 takes a positive value. The opposite is true when 𝑞 > 0 is positive in an unstable 

condition, and the 𝐿< 0 takes a negative value (Monin & Obukhov, 1954). 

 

The absolute value of the Monin-Obukhov length gives lesser information when studied alone, but 

when compared to the height above ground (𝑧) becomes a good stability parameter. The 𝑧/ 𝐿 stability 

parameter, which is dimensionless, can reveal the importance of the different turbulence when there 

is a variation in height and stability conditions (Kaimal, 1994). Its ratios display the relationship 

between the mechanical/shear turbulence and the buoyancy turbulence. 

 

As given in in (Kaimal, 1994), when solving 𝐿 using the dimensionless stability: 

 

𝑍

𝐿
=

(𝑔/𝜃)(𝑤′𝜃′)𝑜

(𝑢∗ 
3 𝑘𝑧⁄ )

  

Where, 𝜃: mean potential temperature, 𝑔/𝜃: buoyancy parameter  (𝑤′𝜃′)𝑜: temperature flux at 

the surface, 𝑢∗: Friction velocity, and 𝑘: constant of proportionality 

 

( 4 ) 

 

The bulk Richardson number (𝑅𝑏) can be used to estimate the atmospheric stability. The 𝑅𝑏 value is 

determined according to 𝐿 value, where 𝑅𝑏 < 0 for an unstable condition.  

 

The 𝑅𝑏 is derived from the following equation: 

 

 

𝑅𝑏 =
(𝑔/𝜃)(𝜃𝑧− 𝜃𝑜)∕2

(𝑢𝑧 ∕𝑧)2   

 

Where, 𝜃𝑧 ; 𝜃𝑜: mean potential temperatures at height z, 𝑢𝑧 : mean wind speed at height 𝑧 

( 5 ) 
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The Monin-Obukhov length can used to classify atmospheric stability. The atmospheric stability varies 

from very unstable to very stable according to the Monin-Obukhov length. It is per the atmospheric 

stability classes that are frequently used (Gryning et al., 2007). 

Monin-Obukhov length(m) Atmospheric Stability 

−𝟏𝟎𝟎≤𝑳≤−𝟓𝟎 Very unstable 

−𝟐𝟎𝟎≤𝑳≤−𝟏𝟎𝟎 Unstable 

−𝟓𝟎𝟎≤𝑳≤−𝟐𝟎𝟎 Near unstable 

|𝐋| ≥ 𝟓𝟎𝟎 Neutral 

𝟐𝟎𝟎≤𝑳≤𝟓𝟎𝟎 Near stable 

𝟓𝟎≤𝑳≤𝟐𝟎𝟎 Stable 

𝟏𝟎≤𝑳≤𝟓𝟎 Very stable 

Table 1 Stability Class for Atmospheric Layer (Gryning, Batchvarova et al. 2007) 

2.5 Wind Profile  
A wind profile is a relationship between wind speeds at a particular height and other heights. A vertical 

wind profile’s gradient varies at different locations depending on the surface layer thickness. The 

surface layer thickness fluctuates with respect to the roughness length zo. The two most functional 

approaches to predicting a wind speed profile are the power or logarithmic law approaches. The 

possible value of roughness length zo, which greatly influences wind speed profile on different surfaces, 

is displayed in the table below (Knight, 2019 and Dyrbye, 1997). 

 

Roughness Length, zo (m) Terrain Type 

10−5 Plane ice  

10−4 Open sea, no waves  

10−3 Coastal area, onshore wind  

0,01 Open land with little vegetation and few houses  

0,05 Agricultural area with few houses and wind-breaks  

0,3 Village and agricultural areas with lots of wind breaks  

1 to 10 Urban areas  

Table 2 Surface layer thickness with respect to the roughness length 

Wind profile can vary differently offshore as compared to onshore. Wind speed significantly affects 

the power output as it is proportional to the cube of the wind speed. The marine atmospheric 

boundary layer (MABL) is in direct contact with the water surface of the ocean. Therefore, it is 

impacted by and transfer of mass, momentum and energy from the water to itself (Kaimal, 1994). 
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The planetary boundary layer (varies from 50 to 200 m) has constant vertical shearing stress. Thus, the 

wind profile at this layer is usually influenced by surface friction and atmospheric stability (vertical 

temperature gradients) (Kaimal , 1994). Above this layer, the Ekman layer, wind profiles are influenced 

more heavily by the variable shear stress resulting from the earth's rotation. In addition, the surface 

friction and atmospheric stability (vertical temperature gradients) also contribute to these layers' wind 

profile. 

 

The Monin-Obukhov similarity theory has been able to successfully predict many wind speed profiles 

in the boundary layer (Monin and Obukhov, 1954). However, discrepancies identified offshore at levels 

as low as about 30m above sea levels indicated its unreliability in using this wind profile offshore (Peña 

et al., 2008). This is a significant problem when designing wind turbines offshore, as most offshore 

turbines are intended to be at a height ranging above 30. However, to mitigate the problems better 

newer technologies has aided the collection of more reliable data from offshore, and it has shortened 

this gap and helped identify a more reliable wind profiles (Peña, 2008; Cheynet, 2018a).  

 

2.6 Power Law Wind Profile 
 

The power law is comparing the wind speeds at one height against another. This law is mainly used 

under neutral atmospheric conditions. The power coefficient (𝛼) determines the vertical shear 

gradient and the eventual shape of the wind profile. However, the power coefficient cannot fully 

compensate for the different atmospheric stability effects and thus is usually not used in the other 

cases. Instead, different power coefficient is used in different terrain. The formula associated with this 

wind profile is as follows: 

  

 

𝑈(𝑍) = 𝑈𝑟𝑒𝑓 (
𝑍

𝑍𝑟𝑒𝑓
)

𝛼

 

𝑍𝑟𝑒𝑓: reference height, 𝑈𝑟𝑒𝑓: mean wind velocity at zref, 𝑧: height considered, 𝛼: power-law or 

empirical wind shear exponent, 

 

 

( 6 ) 

2.7 Logarithmic Wind Speed Profile 
 

The logarithmic wind speed profile is a semi-empirical equation often used to define the vertical 

distribution of horizontal wind speeds. It is also widely used because it is able to better compensate for the 
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differences in atmospheric stability by inputting a correlation factor. The logarithmic wind speed profile is 

also recommended in the (DNV-RP-C205, 2010) handbook. The neutral atmospheric version of the equation 

with mean speed at height z is as follows: 

𝑈(𝑍) = (
𝑢∗

𝑘
) 𝑙𝑛 (

𝑧

𝑧0
) 

𝑢∗: friction velocity, 𝜅: von Kármán constant = 0.4, 𝑧: height considered, 𝑧𝑜: roughness length 

 

( 7 ) 

Using a reference wind speed and height, the equation can be simplified to:  

𝑈(𝑍) = 𝑈𝑟𝑒𝑓

ln (𝑧 ∕ 𝑧𝑜)

In (𝑧𝑟𝑒𝑓 ∕ 𝑧𝑜)
 

Where, 𝑧𝑟𝑒𝑓: reference height, 𝑈𝑟𝑒𝑓: mean wind velocity at 𝑧𝑟𝑒𝑓, 𝑧: height considered, 𝑧𝑜: 

roughness length 

( 8 ) 

 

2.8 Turbulence Spectra Models 
 

Wind turbulence can be described in terms of turbulence intensity (TI). TI measures the fluctuation of 

wind speed about its mean value. Wind turbulence can come in all three directions and is named in 

respect to their respective wind directions. Even though the longitudinal wind contributes is the most 

significant, the lateral (cross-wind) and vertical wind should also be computed to ensure that the wind 

turbine response and movement are fully understood (Eliassen and Obhrai, 2016; Knight, 2019). The 

TI at a particular height (z) is the ratio of the standard deviation (𝜎) and mean of the wind velocity (𝑈), 

which is represented in the longitudinal, lateral, and vertical directions, respectively: 

 

𝐼𝑢(𝑧) =
𝜎𝑢(𝑧)

𝑈(𝑧)
  (𝐸𝑞. 9) 

 

𝐼𝑣(𝑧) =
𝜎𝑣(𝑧)

𝑈(𝑧)
  (𝐸𝑞. 10) 

 

𝐼𝑤(𝑧) =
𝜎𝑤(𝑧)

𝑈(𝑧)
 (𝐸𝑞. 11) 

 

 

( 9 ) 

 

2.9 Kaimal Spectra Model 
 

Kaimal Horizontal Spectra Model can be sub-divided into three parts. It is made up of a low-frequency 

boundary layer height, a high-frequency distance above the ground, and an intermediate range that is 

an interpolation of both the high and low-frequency ranges. The Kaimal Spectra Model has been 
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identified to correctly define the surface layer’s energy content for turbulent wind for neutral stability 

conditions (ranging between 0.01 Hz - 4 Hz) (Knight, 2019). 

 

The Kaimal Spectra used in most engineering applications are (Kaimal, 1972):  

 

𝑛𝑆𝑢

𝑢∗
2 =

105𝑓

(1+33𝑓)5/3  

𝑛𝑆𝑣

𝑢∗
2 =

105𝑓

(1+33𝑓)5/3  

𝑛𝑆𝑤

𝑢∗
2 =

105𝑓

(1+33𝑓)5/3  

 

Where, 𝑛: frequency in Hertz, 𝑆𝑢 , 𝑆𝑣 , 𝑆𝑤: velocity spectra in the along, cross, and vertical wind 

respectively, 𝑢∗: friction velocity  

 

 

( 10 ) 

2.10 Coherence 
 

The wind particles on a different horizontal or vertical plane are not totally independent from one 

another. They influence each other naturally or reasonably. There are correlated with one another 

through a frequency domain. This coherence between them is determined by the separation distance 

between the particles, the mean wind speed, and the frequency. Particles influence each other with 

more intensity as their distance between one another decreases, while their coherence decreases 

exponentially with frequency. Numerous projects have been undertaken to study and understand the 

correlation between the wind speed and the temperature of the particles (Panofsky, 1965; Knight, 

2019). 

 

The coherence between two different air particles is the normalized cross-spectrum of the particles’ 

turbulent velocities. These values are made up of real and imaginary numbers, where the real number 

is officially known as co-coherence, and the imaginary number is known as quad-coherence. Different 

literature defines these differently, but in many works, the real number (co-coherence) is referred to 

as coherence. For example, the magnitude square of the cross-spectrum is defined in (Højstrup, 1999): 

 

𝛾(𝑛) = √
𝐶𝑜2(𝑛)+𝑄2(𝑛)

𝑠1(𝑛)𝑠2(𝑛)
  

Where, 𝑛: frequency in Hz Co: co-spectrum density of the cross-spectrum. 𝑄: quadrature 

spectrum density of the cross-spectrum, 𝑠1(𝑛)𝑎𝑛𝑑 𝑠2(𝑛): spectral densities of the velocity 

components 

( 11 ) 
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3 Fundamentals Theory of Wind Turbine Model 

In Section 3.1.1, the wind turbine's primary components and its model are discussed. These include 

the turbines' basic structures and the energy generation method. Then, in Sections 3.2 and 3.3, the 

primary models (NREL 5MW and DTU 10MW) used in this thesis will be introduced in detail. 

Furthermore, the floating structure (LIFES50+ OO-Star Wind Floater semi-submersible floating 

structure) used in Paper-II and III will also be discussed in Section 3.3.2. 

In Paper-I, the NREL 5MW wind turbine is used as it has been more reliable and tested over a more 

extended period, thus making it more suited for control system testing. While in Paper-II and -III, the 

DTU 10MW wind turbine is used as it produces more relevant results and is applicable for future larger 

turbine designs. 

3.1 Wind Turbine Engineering 
A wind turbine is an apparatus that converts the kinetic energy into the wind into mechanical energy 

and electric energy. The wind that passes over the blade forces the blades to move due to differences 

in pressure in accordance with aerodynamics (Figure 13). As a result, the shaft connected to the blades 

rotates, resulting in the eventual rotation of the generator. The generator produces the electricity 

which is then converted into an appropriate voltage to be transmitted via an electric grid (Figure 10). 

 

Figure 10 Wind Turbine Components Diagram (Creative Commons) 

Wind turbines are usually optimized to function best at a particular speed as they usually lose their 

efficacy when the speed is too fast or slow. The wind turbines are built with the ability to shut off at 
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high speed, ranging above 25 km/h, (cut-out speed) as they can be easily damaged at higher speeds. 

Also, the modern wind turbine is installed with a small motor that allows it to pivot itself in the 

direction to maximize its ability to generate energy at all times. 

The function of wind turbines can vary according to their needs. The smaller turbines can be used to 

charge batteries or power traffic signs on highways. In comparison, bigger turbines can be used to 

generate energy for household consumption as the electric energy is directly injected into the power 

grid lines. Wind turbines lined up together are commonly known as wind farms and are becoming an 

important source of energy in several counties. Many countries today attempt to reduce their 

dependence on fossil fuels by shifting their focus to renewable sources.  

3.1.1 Wind Turbine Components 
A wind turbine diagram with its primary parts can be seen in Figure 11, IEC 61400-3. The figure includes 

the foundation attached with the substructure, the tower, and the rotor-nacelle assembly. The rotor-

nacelle assembly is made up of numerous sub structure such as the nacelle, hub and blade forming the 

powerhouse of the wind turbine. An onshore wind turbine will have its own support structure attached 

to the tower (e.g., Lattice or tubular tower foundation), and an offshore wind turbine will have its 

tower supported by various substructure (e.g., gravity-based, monopile, jacket, etc.) possibly attached 

to a mooring line (Putri, 2016). 

 

Figure 11 Definition of an offshore wind turbine (IEC, 2009) 

The nacelle is made up of the drivetrain, control system, generator, and blade-pitch regulator. The 

kinetic energy generated through the blade movement is converted into electrical energy in the 
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generator. Kinetic energy is transferred from the blade, shaft, drivetrain and eventually to the 

generators. Blade-pitch regulator helps control the speed of the rotation at above-rated speeds, while 

the yaw bearing ensures the nacelle always faces the incoming wind (Putri, 2016). 

 

Figure 12 Rotor-nacelle assembly anatomy of a wind turbine (Ayee et al., 2009) 

 

3.1.2 Blade Properties and Operation 
Blades’ structure is the fundamental structure that captures wind energy and converts it into kinetic 

energy. The blade is made up of the leading edge (thickest part) and the trailing edge (thinnest part), 

and the line connecting the leading edge to the trailing edge is called the chord line (Putri, 2016). 

The wind speed that reaches the head of the hub/ turbine (𝑉2) is not the same as the free undisturbed 

wind speed (𝑉1). It gets reduced by the factor of (1−𝑎). 𝑎 is the induction factor, which is the factor due 

to the change of wind speed with the presence of the blades, and it acts relative to incoming wind 

speed. However, the blade/ aero foil experiences 𝑉𝑟𝑒𝑙 instead of 𝑉2.  𝑉𝑟𝑒𝑙 is defined by the following 

formula and is illustrated in Figure 13, 
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Vrel = √V2
2 + V𝑟

2 
( 12 ) 

Where 𝑉2 is the reduced wind speed and 𝑉𝑟 is the rotor speed, 𝑉𝑟𝑒𝑙 create four different forces (lift, drag, 

thrust and moment force) due to the impact on the blades. The angle of attack (α) determines the results of 

maximum lift (FL), and this maximum lift affects and results in the output power. (FL: lift force, FD: drag force, 

FT: thrust force and FM: moment force). 

 

 

Figure 13 Aerofoil 2D Diagram (DTU, 2016) 

 

The tip speed ratio (TSR) is a critical parameter when determining the power generated by a turbine 

and is the ratio of the 𝑉𝑡𝑖𝑝 (rotational speed of the blade tip) and 𝑉2. THE TSR is governed by the 

following equation: 

TSR =  
𝑉𝑡𝑖𝑝

𝑉2
=

𝑉𝑟

𝑉1(1 − 𝑎)
 

 

( 13 ) 

The blade rotational speed and the angle of attack must be maintained to ensure that power 

generation is optimized, and this can be done by maintaining the TSR. According to previous studies, 

the optimal value of TSR is between 6 and 8 (Wilson, 1974). 
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3.1.3 Wind Turbine Power Curve 
A wind turbine power curve can be divided into four main operating regions (with three cut-off regions: 

cut-in, rated and cut-out wind speed). Each of these four regions requires different control strategies. 

Before the cut-in region, the wind turbine is non-operational, and the wind is helping the blades or the 

system to start up. After the cut in speed starts to produce power and rises until it reaches rated power 

at the rated wind speed. After this point, the turbines continue to function at the rated wind speed 

until it reaches the cut-off wind speed, leading to a turbine shutdown. The visual description of each 

region is shown in Figure 14. While in, Table 3 (DTU, 2016) has further subdivided the regions to explain 

the processes and the procedure of the turbines and control system in a descriptive manner.

 

Figure 14 Classical Power Generation Curve (STFC, 2016) 
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Region Description 

Region 1 In this region, there is no power extraction due to the low wind speed 

Region 2 At below-rated wind, generator torque optimizes its function for power 

generation. Pitch angel is fixed to capture a maximum lift 

Region 2A Constant rotor speed, changing generator torque with constant pitch angle 

Region 2B Increasing rotor speed to maximize power capture, changing generator torque 

to optimize TSR with constant pitch angle  

Region 2C Constant rotor speed, as wind speed approaches rated speed, changing torque 

as wind speed increases until power production reaches rated power as constant 

pitch angle is maintained 

Region 3 Wind speed crosses the above rated speed, and the generator torque remains 

unaffected and constant and now pitch angel is adjusted to reduce the load on 

the rotor 

Region 4 Turbines switch off as there is no power generated. Turbines and blades switch 

off and set to feather conditions to prevent any damages 

Region 4 Turbines switch off as there is no power generated. Turbines and blades switch 

off and set to feather conditions to prevent any damages 

Table 3 Power Region Definition 

 

3.2 NREL 5-MW Reference Turbine 
NREL 5-MW RWT used in Paper I, focused on modifying the control systems. The NREL 5-MW RWT was 

used with changes made to the control system model. 

The NREL 5-MW Reference Turbine is one of the most well-established RWTs that was established in 

2015 using data from industrial turbines and RWTs (Jonkman, 2009). Research institutes and 

universities have commonly used the open-source designs of NREL 5-MW to understand better and 

develop the RWTs. The DTU 10-MW RWTs is another commonly used open-source design RWT used 

for research and was designed using NREL 5-MW as a reference (Muggiasca, 2021). 
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Figure 15 NREL 5-MW Reference Turbine Diagram (Liu, 2017) 

 

Similarly, this thesis uses the NREL 5 MW reference turbine (Jonkman, 2019) as the study object. It is 

a three-bladed, variable pitch-to-feather bladed, upwind, and variable-speed controlled megawatt 

wind turbine developed to study wind technology concepts.  The method used in this thesis aims to 

reduce the non-torque bending moment in the turbine’s low-speed shaft. Reduction in the non-torque 

bending moment is also expected to reduce the loads acting on the gearboxes. The algorithm used in 

the control systems is performed using the Simulink/FAST framework (Jonkman, 2005) and is 

presented in Paper-I in this thesis.    

Parameter Value 

Rating 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades 

Control Variable Speed, Collective Pitch 

Drivetrain High Speed, Multiple-Stage Gearbox 

Rotor, Hub Diameter 126 m, 3 m 

Hub Height 90 m 

Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rated Tip Speed 80 m/s 

Rotor Mass 110,000 kg 
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Nacelle Mass 240,000 kg 

Tower Mass 347,460 kg 

Table 4 Main Properties Chosen for the NREL 5-MW Wind Turbine 

This project uses the Wind-Plant Integrated System Design and Engineering Model (WISDEM) (IEA 

Wind: 16) codeveloped by NREL and DTU (Bortolotti, 2019). The WISDEM toolkit is an open-source 

toolkit used for the multidisciplinary design, analysis and optimization (MDAO), aerodynamics, 

aeroelastic analysis, loads analysis, controls system analysis, etc (Bortolotti, 2019;). 

This project also uses the Multidisciplinary Horizontal Axis Wind Turbine Optimization Tool 

(HAWTOpt2) which was developed by DTU (Zahle, 2017). This tool is used to analyse codes which 

predict the wind turbine's structural properties and aeroelastic response. When predicating the 

turbine’s structural properties BECAS (Blasques, 2012; Bortolotti, 2019) works together with 

HAWTOpt2. While for the aeroelastic analysis, both the HAWC2 (Larsen, 2014) and HAWCStab2 

(Hansen, 2004) are needed, and it works together with HAWTOpt2. 

NREL used the WISDEM framework when designing the drivetrain. DriveSE was used to size the load-

bearing components in the drivetrain (Guo, 2015), while GeneratorSE was used to design the 

generators (Bortolotti, 2019; Sethuraman, 2017). 

 

3.2.1 NREL 5-MW Drivetrain 
Wind turbines’ drivetrain comprises the gearbox and the generator, see Figure 16 NREL 5-MW Drive 

Train (NREL) . It is primarily the main component of a wind turbine that converts kinetic energy into 

electrical energy. The gearbox aids in the initial process by connecting the low-speed shaft (via blades 

and the hub) to the high-speed shaft connected to the generator. The high-speed shaft then rotates 

the coil/magnet to produce electricity in the generator. The main properties of the drivetrain used in 

the NREL 5MW RWT are described in Table 5. 

 

Figure 16 NREL 5-MW Drive Train (NREL)  
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Parameter Value 

Rated Rotor Speed 12.1 rpm 

Rated Generator Speed 1173.7 rpm 

Gearbox Ratio 97:1 

Electrical Generator Efficiency 94.4 % 

Generator Inertia about High-Speed Shaft 534.116 kgm2 

Equivalent Drive-Shaft Torsional-Spring Constant 867,637,000 Nm/rad 

Equivalent Drive-Shaft Torsional-Damping Constant 6,215,000 Nm/(rad/s) 

Fully Deployed High-Speed Shaft Brake Torque 28,116.2 Nm 

High-Speed Shaft Brake Time Constant 0.6 s 

Table 5 Drivetrain properties - NREL 5MW Wind Turbine (Jonkman, 2009) 

 

3.2.2 NREL 5-MW Control Systems 

 

Figure 17 Overview of Control Systems (Njiri, 2016) 

 

Modern controllers (Figure 17) in a wind turbine can simultaneously handle multiple operations, e.g., 

the rotational speed, the generator speed, its voltage, current and how it responds to the wind turbine 

components. In modern times, improved and advanced control systems have been a primary reason 

for the increase in turbine efficiency. Such systems have increased energy production & reliability and 

reduced platform movement & structural loads. The baseline controller in the NREL 5 MW reference 

turbine entails both a generator-torque controller and a rotor-collective blade-pitch controller. The 
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baseline controller, as in Figure 18 is meant to control the rotational speed by receiving feedback from 

the system and adjusting the pitch angle of the blade according, thus allowing the system to optimize 

its efficiency (Jonkman, 2009). The NREL 5MW Baseline Control System Properties are described in 

Table 6. 

 

 

Figure 18 NREL 5MW Control System Flowchart (Jonkman. 2009) 

Parameter Value 

Corner Frequency of Generator-Speed Low-Pass Filter 0.25 Hz 

Peak Power Coefficient 0.482 

Tip-Speed Ratio at Peak Power Coefficient 7.55 

Rotor-Collective Blade-Pitch Angle at Peak Power Coefficient 0.0 º 

Generator-Torque Constant in Region 2 0.0255764 Nm/rpm2 

Rated Mechanical Power 5.296610 MW 

Rated Generator Torque 43,093.55 Nm 

Transitional Generator Speed between Regions 2½ and 3 1,161.963 rpm 

Generator Slip Percentage in Region 2½ 10 % 

Minimum Blade Pitch for Ensuring Region 3 Torque 1 º 

Maximum Generator Torque 47,402.91 Nm 

Maximum Generator Torque Rate 15,000 Nm/s 
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Proportional Gain at Minimum Blade-Pitch Setting 0.01882681 s 

Integral Gain at Minimum Blade-Pitch Setting 0.008068634 

Minimum Blade-Pitch Setting 0 º 

Maximum Blade-Pitch Setting 90 º 

Maximum Absolute Blade Pitch Rate 8 º/s 

Table 6 NREL 5MW Baseline Control System Properties (Jonkman, 2009) 

The generator torque controller functions in five different regions (1, 1½, 2, 2½ and 3), as seen in Figure 

19. The NREL generator torque controller functioning principles are like the explanation given in Table 

3. Furthermore, Region 1½ ensure a smooth linear transformation or shift between regions 1 and 2 

and is known as the start-up region for the rotor. Similarly, region 2½ ensures a smooth linear 

transformation or shift between regions 2 and 3 at the rated power to minimize the tip speed and 

noise emissions (Slot, 2018; Jonkman 2007). 

 

Figure 19 NREL 5ME Power Generation Graph (Slot, 2018) 

3.2.3 Baseline Generator-Torque Controller 

At speeds larger than the cut-in speed but smaller than the rated speed, the generator torque 

controller is activated to ensure that the generator power is maximized. Such an operation is 

accomplished by ensuring that the turbine is operated close to the optimal power efficiency by 

accelerating or decelerating the turbine’s rotor to ensure that the tip-speed ratio remains constant. 

Whenever this ratio is optimized, the turbine can achieve maximum power. The blades’ pitch angle is 

also fixed to generate maximum lift. The following equation governs the general controller. 

 

𝜏𝑔 =  𝐾𝑇𝛺2 ( 14 ) 

where KT is, 
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𝐾𝑇 =  
1

2
𝜌𝜋𝑅5

𝐶𝑃𝑚𝑎𝑥(𝛽𝑜𝑝𝑡 , 𝜆)

𝜆3
 

 

( 15 ) 

Where the λ is the optimum tip-speed-ratio at the CPmax. 

𝐽𝑅Ω̇ = 𝜏𝑎𝑒𝑟𝑜 −  𝜏𝑔 ( 16 ) 

 

Where: 𝜏𝑔: Demanded generated torque, ρ: Air density, R: Rotor radius, λ is the optimum tip-speed ratio at the 

CPmax, CPmax: Maximum power coefficient ,𝛺: Rotor speed ,βopt: Optimum pitch angle ,𝜏𝑎𝑒𝑟𝑜: Aerodynamic 

torque 

Thus, when the τg is equal the τaero the generator remains constant, otherwise it will either accelerate 

or decelerates to achieve a steady state condition (constant tip-speed-ratio). 

3.2.4 Baseline collective pitch control 
While in region III, the primary aim is to ensure that the generated power and loads are controlled to 

prevent mechanical and electrical damage to the turbine. In a conventional setting, this is achieved by 

maintaining generator torque and activating collective pitch control to control the generator’s speed. 

Collective pitch control is achieved through a proportional–integral- derivative (PID) controller, which 

controls the speed in region III (above-rated speed). 

𝛽𝑐(𝑡) =  𝐾𝑝𝛺𝑒(𝑡) + 𝐾𝑖 ∫ 𝛺𝑒(𝜏)𝑑𝜏
𝑡

0

 
( 17 ) 

Where: 𝛺𝑒  = 𝛺𝑑  -  𝛺: Rotor speed error, 𝛺𝑑: Desired rotor speed, 𝐾𝑝: proportional gain, 𝐾𝑖: integral gain 

The major downside of such a control method is that all the blades in the wind turbines are expected 

to be alike with similar properties. It is assumed that they all experience the same load during 

operation. In reality they experience unequal loading which results in unbalanced controls which 

results in induced stressing acting on the rotor disc. 

3.3 DTU 10-MW FWT and LIFES50+ OO-Star Wind Floater  

The DTU 10-MW reference wind turbine (RWT) (Bak, 2013) used in this thesis is designed from the 

NREL 5-MW RWT (Muggiasca, 2021). The operation ideology is similar to the NREL 5-MW RWT and 

thus will not be repeated in this section. Furthermore, the DTU 10-MW RWT used in Paper II and Paper 

III focused on finding the extreme value for the loads using a statistical model. The regular DTU 10-

MW RWT was used with minimal changes to the actual model. 

Instead, this section will expound on both the design of the DTU 10-MW RWT system and the OO-Star 

Semi-submersible Wind Floater. An overview of the figure used in this thesis is shown in Figure 1. In 
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the first part, the DTU 10-MW RWT system will be explained, which then will be followed by the 

description of the properties of the semi-submersible floater and the mooring system. Combined, 

these two systems become the DTU 10-MW Floating Wind Turbine (FWT) system. 

3.3.1 DTU 10-MW RWT  

 

Figure 20 The LIFES50+ OO-Star Wind Floater Semi 10MW structure 10-MW OO-Star floating wind turbine (Yu, 2017) 

 

The DTU 10-MW RWT system was made according to the standards established by the International 

Electrotechnical Commission (IEC) Class 1A wind regime and consists of a traditional three-bladed, 

clockwise rotation-upwind turbine equipped with a variable speed and collective pitch control system. 

The DTU 10-MW RWT numerical model has been successfully developed and studied in many academic 

works e.g. (Muggiasca, 2021; Yu, 2022; Wang, 2022; Hu, 2021). The summary of the DTU 10-MW RWT 

is shown in Table 1. 

 

Parameter Value 

Rating 10-MW 

Type Upwind/3 blades 

Control Variable speed, collective pitch 
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Drivetrain Medium-speed, multiple stage gearbox 

Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25 

Minimum and maximum rotor speed (rpm) 6.0, 9.6 

Maximum generator speed (rpm) 480 

Rotor diameter (m) 178.3 

Hub height (m) 119.0 

Rotor mass (kg) 227962 

Nacelle mass (kg) 446036 

Tower mass (kg) 1.257 x 106 

Table 7 Main parameters of the DTU 10-MW RWT (Bak, 2013) 

 

3.3.2 LIFES50+ OO-Star Wind Floater semi-submersible floating structure 

system 
The DTU 10-MW RWT is supported using a semi-submersible floating structure announced in 

the LIFES 50+ project (Yu, 2017). The floater consists of a central column and three outer 

columns (post-tensioned concrete) attached to a star-shaped pontoon with the slab attached 

at the bottom. Three mooring lines (each line had a clumped mass close to the middle that 

separates the line into two different sections) help hold the floater in position. Detailed 

properties and images of the OO-Star Wind Floater attached to the mooring system can be 

seen in Figure 21, Figure 22, Table 8 and Table 9, respectively. 
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Figure 21 Main dimensions of the OO-Star floater of the LIFES50+ OO-Star Wind Floater Semi 10MW structure (Yu, 2017) 

 

Parameter Value 

Water depth (m) 130 

Draft (m) 22 

Tower-base interface above mean sea level (m) 11 

Displacement (kg) 24158 

Overall gravity, including ballast (kg) 21709 

Roll and pitch inertia about center of gravity (kg∙m2) 1.4462 x 1010 

Yaw inertia about centre of gravity (kg∙m2) 1.63 x 1010 

Centre of gravity height below mean sea level (m) 15.23 

Centre of buoyancy height below mean sea level (m) 14.236 

Table 8 Main properties for the LIFES50+ OO-Star Wind Floater Semi 10MW structure wind floater (Yu, 2017) 
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Figure 22 Sketch of the mooring system in the LIFES50+ OO-Star Wind Floater Semi 10MW structure (left: top view; right: 
side view) (Yu, 2017) 

 

Parameter Value 

Radius to anchors from platform centreline (m) 691 

Anchor position below MSL (m) 130 

Initial vertical position of clump mass below MSL (m) 90.45 

Initial radius to clump mass from centerline (m) 148.6 

Length of clump mass upper segment (kg) 118 

Length of clump mass lower segment (kg) 585 

Equivalent weight per length in water (N/m) 3200.6 

Extensional stiffness (N/m) 1.506 x 109 

Table 9 Main properties for the mooring system of the LIFES50+ OO-Star Wind Floater Semi 10MW structure (Yu, 2017) 

 

3.3.3 FAST (Fatigue, Aerodynamics, Structures and Turbulence) Framework 
In this thesis, the control system algorithm is executed in the FAST framework in a structure that uses 

previously implemented models to improve and enhance its control capability (Jonkman, 2009; Sarkar, 

2021; Vlase, 2020). The FAST software is tied in with the NREL's software-based for the 5-MW 

Reference Onshore Wind Turbine Development (Sarkar, 2021; Vlase, 2020). Similarly, it is applied in 

this thesis to obtain the load results for the coupled aero-hydro-elastic-servo dynamic analysis for the 

DTU 10-MW FWT. FAST is an open-source engineering toolbox that allows us to explore the load study 

of an onshore wind turbine. It is a computer-aided engineering (CAE) tool that is a comprehensive 

aeroelastic simulator which can be run within MATLAB. FAST prognosticates the extreme and fatigue 
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loads acting on the horizontal-axis (2-3 bladed) turbine. The code mimics a turbine as a fusion of rigid 

and flexible bodies with the hydrodynamic loads considered as a point on the bodies. Thus, the CAE 

estimates the response on the substructures. For example, a teetering-hub turbine is modelled as a 

rigid, four-by-four, flexible body. The blades, tower, and drive shaft make up the flexible bodies, while 

the earth, nacelle, hub, and tip brakes form the rigid bodies. The model connects themselves with 

varying amounts and degrees of freedom, which can be activated within the input data files (Jonkman, 

2007; Sarkar, 2021; Vlase, 2020).  

Different computational codes AeroDyn, HydroDyn, ServoDyn, and MoorDyn are used in FAST to 

generate results (Moriarty, 2005; Hall, 2015; Jonkman, 2014b), see Figure 23. For example, the 

aerodynamic loads on rotor blades, structural dynamics, control dynamics, hydrodynamic loads on 

floaters and mooring system dynamics. Furthermore, FAST enables the analysis of time-varying 

stochastic wind for time-domain simulations. The FAST simulation tool has been successfully used in 

other well-known projects such as OC3: Offshore Code Comparison Collaboration (Jonkman, 2010) and 

OC4: IEA Task Wind 30 (Robertson, 2014), and its modelling capability has been authenticated using 

multiple floating structures in the Netherlands (Coulling, 2013). 

For example, for the aerodynamics forces, FAST uses numerical integration to solve the equation of 

motion (Kane's method of the dynamic equation) and the AeroDyn subroutine package (Windward 

Engineering) to solve each blade's aerodynamic forces (Jonkman, 2007; Jonkman, 2014 Sarkar, 2021; 

Vlase, 2020). 

 

Figure 23 Diagram Illustration of the FAST Model (Jonkman, 2007) 

 



42 | P a g e  
 

Aerodynamics 

The blades' aerodynamic loads are calculated based on the quasi-steady Blade Element Momentum 

(BEM) theory. BEM theory combines momentum theory and blade element theory. Various advanced 

corrections, including tip loss, hub loss, skewed inflow and dynamic stall corrections, are included in 

the BEM method. The Prandtl corrections are implemented to account for the hub and blade tip losses 

due to a finite number of blades. The Glauert correction is applied to account for the induction factors, 

while the Pitt and Peters' model accounts for the skewed inflow correction. Finally, the dynamic stall 

correction is employed in the Beddoes-Leishman model. More details about the aerodynamic load 

calculation in the FAST code can be seen in the AeroDyn theory manual, see (Moriarty, 2005; Jonkman, 

2014).  

Hydrodynamics 

Hydrodynamic loads acting on the semi-submersible floater are calculated based on potential flow 

theory with Morison's drag term considered. It accounts for the wave pressures and viscous loads, 

respectively. Hydrodynamic coefficients, such as added mass and potential damping coefficients, and 

first-order wave excitation load transfer function are firstly estimated in the frequency domain by a 

panel code, WAMIT, according to the potential flow theory. These hydrodynamic coefficients are then 

transformed into the time domain using the convolution technique (Jonkman, 2014b). 

Structural dynamics 

A combined multi-body and modal structural approach is considered in the FAST code to account for 

the structural dynamics of the FWT. The blades, tower and driveshaft, are considered flexible bodies, 

while the nacelle, hub and floater are rigid bodies. The inherent structural damping in the blades and 

tower are represented using the Rayleigh damping model. The structural dynamic responses in the 

time domain are calculated by solving the equations of motion of the rigid-flexible coupled system 

derived from Kane's approach, see (Kane, 1983).  

Control system dynamics  

The control system used in the 5MW (and later 10-MW RWT) is implemented in two operational 

modes: the below-rated and full-rated regions. The generator torque-speed curve regulates the rotor 

rotational speed with an optimal tip speed ratio in the below-rated region, achieving maximum power 

generation. A proportional-integral (PI) algorithm regulates the blade pitch angle to reduce the 

structural loading while keeping the rated power generation in the full-rated region. The PI parameters 

are modified from the land-based RWT to avoid the negative damping effects, which are essential in 

affecting the platform motions for FWTs (Jonkman, 2014b).  
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4 Paper I – Characterization of a Compensation Scheme  
 

An increasing number of turbines are being built yearly worldwide to achieve the Net-Zero Emissions 

target by 2050, and thus it has become increasingly essential to keep the cost of developing and 

servicing these turbines to a minimum. An essential aspect in keeping the cost low is ensuring wind 

turbine failure rates are minimized. Failures can cause heavy cost overruns by having downtime, which 

can extend from months to years, depending on the availability of skilled manpower and or materials 

such as spares. As such, failure can easily have extended downtime (varying from months to years), 

and heavily depends on the availability of the materials or manpower (Igba, 2015; Irena, 2012; Sheng, 

2012). Furthermore, since some parts within the wind turbines are more susceptible to damage or are 

expensive to replace, it can significantly affect their base cost due to warranties. One such important 

example is the gearbox which makes up about 15% of the cost involved in manufacturing a wind 

turbine, making it one of the more expensive components to service and replace during failure (Irena, 

2012). Even with better design and manufacturing processes, many gearboxes are still only commonly 

achieving lifespans of lesser than 20 years (Sheng, 2012; Korber, 2014). An estimate of about one 

gearbox failure occurs for every 145 wind turbines per year. Additionally, excessive loading also drives 

up the operational and maintenance costs for the manufacturers (Irena, 2012; Sheng, 2012). 

Therefore, uncertainty in failure rates within the gearbox naturally drives up the total cost of the 

turbines and the insurance cost involved in protecting them against damages (Sheng, 2012). The 

National Renewable Energy Laboratory (NREL) estimates that about 75 % and 15 % of gearbox failures 

can be accredited to the bearing (abrasion and adhesion) or gear parts (bending fatigue and corrosion), 

respectively. In addition, gearboxes experience different loads such as twisting moment or torque, 

transverse load, and axial load. Therefore, minimizing any of these loads will also vastly help reduce 

the total load acting on the gearbox. However, with very little room for better design improvements, 

today’s gearbox research focuses on better materials or reducing loads acting on the gearbox by 

modifying the control systems. Innovations in the control systems focus on improving their controls. 

Examples include varying shaft speed or individual blade pitch to reduce the loads on the turbine shaft 

connected to the gearbox. 

  

It has been well established that non-torque main shaft loads influence the internal drive train loads. 

In (Xing, 2013), the authors showed that changes in floating wind turbine support led to a reduction in 

the non-torque main shaft loads, gear-teeth loads and bearing loads. While in three different papers 

(Guo, 2014; Guo,2012; Guo, 2014), the authors confirmed that non-torque loads induced by overhang 

weight significantly influence the drive train loads and their response. As a result, the authors 
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attempted to change the drive train design to reduce the effect of the load caused by the shaft. The 

authors also identified that both gravity and non-torque loads cause excitations within the carrier 

frame, leading to gearbox loading. In (Link, 2011), the authors confirmed that bending moment (BM) 

in the main shaft resulted in the planet-ring gear misalignment, which led to an increase in edge 

loading. Edge loading eventually led to an increase in contact stress which reduced the gear lifespan. 

Wind turbines have long used active control to mitigate loads and increase power production under a 

wide variety of wind conditions. In (Bossanyi, 2000; Bossanyi, 2003a; Bossanyi, 2003b; Bossanyi, 2005), 

the author suggested that it is possible to further metamorphose controllers (limit pitch controllers), 

limiting certain types of mechanical loads.  

The author further discussed the possibility of using a control system and actuators to adjust the 

different pitch angles of each individual blade to reduce the loads on the systems. The authors 

illustrated a straightforward addition to the pitch control algorithm of each individual blade to reduce 

the peak load on some of the fixed components, which in turn led to a substantial amount of load 

reduction in the whole structure. At the same time, Henriksen (Henriksen, 2010) investigated the 

possibility of creating a model predictive controller (MPC) through gain scheduling or re-linearization. 

In this paper, the author only verified the ability of the MPC to control the turbines subjected to both 

physical and artificial constraints. However, the author did not focus on the controllers’ effect on the 

loads. While in the doctoral thesis written by (Korber, 2014), the author found that a preview MPCs 

performed better in reducing both the mechanical extreme and fatigue loads than a non-preview MPCs 

and classical baseline controllers. Much of this existing research did not focus on reducing non-torque 

main shaft loads.  

 

The first part of this thesis, as done in Paper I, aims to focus on improving an existing control algorithm 

on the NREL 5 MW reference turbine, which will reduce the bending moment in the low-speed shaft, 

which will eventually lead to the reduction of the gearbox or drivetrain loads. This is performed via a 

simple but highly effective scheme that directly compensates the non-torque main shaft loads in the 

blade pitch control system. 

4.1 Methodology 

4.1.1 Wind Turbine Properties 
The simulations done on MATLAB/ Simulink on this project used the NREL 5 MW wind turbine, which 

follows the original project by (Jonkman, 2009). A 5MW offshore wind turbine from the National 

Renewable Energy Laboratory was used as a standard and was connected to three blades at a hub 

height towering of 90m. It has a 126m rotor diameter and an operational speed between 3 to 25 m/s 

(cut-in and cut-out, respectively). The rated speed for this model was 11.4 m/s. Apart from the rated 
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speed, the thesis will also focus on two other speeds, 8 and 20 m/s (below and above the rated 

scenario, respectively). The table with a figure below particularizes the specifications for the offshore 

wind turbine that has been used for the simulation. 

 

 

Figure 24 Design of 5 MW NREL wind turbine 

 

But before investigating possible changes in the control algorithm, this section will also look at the 

main two control algorithm and what is control. Firstly, the WTs electrical system allows the torque 

demand of the generator to be met even as the shaft rotates independently at different speeds using 

a frequency converter. This allows the decoupling of the system as the rotational speeds and the grid's 

frequency become independent of one another. This is accomplished either by converting the 

generated power in DC setup and then again to match the grid AC power or by using a slip-ring 

generator (doubly-fed electric machine), allowing the generator torque to be independent of its 

rotational speed. Secondly, at higher speeds WTs blades pitches (rotates) along its longitudinal axis 

allowing the WTs shaft to reduce its rotational speed, thus shedding its power. Pitching the blades 

changes the angle of attack on the blade, which changes the lift and drag forces associated with the 

blade. Blades designed to pitch to feather decreases the lift as the pitch angle increase with an 

increasing wind speed. With increasing speeds, the blade progressively moves to the feather position 

where the pitch angle is the highest, ensuring that insignificant or zero lift is generated. The actuators 

that control the pitching of the blades are either electric or hydraulic motors. With the improvement 

in control designs, actuators can pitch each of the three blades independently. 

 

The basic setup was created with the controllers as suggested in (Jonkman, 2010) to ensure that the 

system was functional and running according to the results given in the manual. 



46 | P a g e  
 

 

Parameter NREL 5 MW Wind Turbine 

Power Production Rating 5 MW 

Number of Blades 3 

Rotor Orientation Upwind 

Rotor Diameter 126 m 

Hub Height 90 m 

Cut in, Rated, Cut out Wind speed 3 m/s, 11,4 m/s ,15 m/s 

Cut in, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Table 10 Properties of NREL 5MW Turbine (Jonkman, 2009). 

4.1.2 TurbSim 
TurbSim, developed by Jonkman & Kelley from NREL, is a computational simulator that allows the 

generation of stochastic, full-field turbulence flow used mainly in wind models. It differs from the IEC 

Normal Turbulence Model as it can give additional details, such as spatiotemporal turbulent velocity 

field relationships as seen with nocturnal boundary layer flows. The turbulent model developed by 

TurbSim can better depict the dynamic wind features which affect wind turbines' aeroelastic loading 

and responses unfavourably (Jonkman, 2014b). TurbSim applies the power-law wind and coherent 

profiles to generate the Normal Turbulence Model wind flow. The simulator integrates the different 

formulas discussed in Section 2.1 to Section 2.10. 

4.1.3 Wind Simulation Model (MATLAB) 
The steady-state wind and normal turbulent models were generated using the MATLAB and Turbsim 

respectively in the three different directions (u, v, and w). The functions used differing input variables 

such as parameters, frequency, coefficients, Y-Z grid, and spectra. The simulation also was repeated 

based on the same conditions and different wind speeds for all the different cases 

 

Figure 25 Typical wind turbine power output with wind speed (Knight, 2019) 
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Three different speed was selected to run this stimulation: the below-rated, rated and above-rated 

speeds. The three speeds were determined by the functionality of the turbine at these speed. Turbines 

are designed to aim maximize power extraction. Thus, the focus is centered on cut-in to the rated wind 

speeds (Region II). Region I is known as the cut-in speed, while Region IV is known as the cut-out speed, 

Figure 25. Within these two regions (Region I and IV) the turbine does not operate as the wind is too 

weak to move the blades efficiently or the wind is too fast and would damage the blade and the turbine 

if switched on (Lackner, 2013). In Region III, the wind turbine ensures that the rated power is 

maintained for power efficiency. The power efficiency of the turbine during lower or higher speed can 

be maintained by pitching the blade to optimize the angle of attack (Figure 26). 

 

Figure 26 Typical wind turbine blades and its aerodynamics (Bahraminejad, 2014) 

4.1.4 Wind Field Grids 
The synthetic turbulent wind field input is represented in a 3-dimensional vector box (3D box) 

consisting of grid points.  Each of these grid points is a spatial location in the 3D box that carries the 

wind speed along with all the 3 directions (v, v, w) locally. The 3D box only covers the rotor swept area, 

and the forces accounted for in this calculation are derived from this area. The other parts of the 

turbine are considered to have no significant impact on the results.  This assumption is considered 

sound as it is safe to ignore the force acting on other parts of the turbine-like the tower, as the force 

excreted by the wind fields on the other parts is insignificant compared to the force excreted by the 

wind on the rotor area. The speed approaching the vector box is similar as the mean speed as the 

turbine’s hub (DTU, 2016). However, an acceptable number of grid points and spacing must be used 

to represent a good turbulent wind field. 
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Figure 27 : Y-Z Grid Diagram (Whirlopedia) 

The turbulence box used will have - 2𝑛 grid points (DTU, 2016), making 𝑁𝑥=2𝑛𝑥, 𝑁𝑦=2𝑛𝑦, and 𝑁𝑧=2𝑛𝑧, 

real and positive float numbers. Values needed for this simulation are as follows (DTU, 2016):  

 

4.1.5 Simulink 
In this thesis, the control system for both the torque controller and pitch controller was developed on 

the SIMULINK graphical programming environment inbuilt within the Matrix Laboratory (MATLAB) 

system. It was after that, coupled with the FAST program with the goal to integrate it with the 

aerodynamic and mechanical models within FAST. The generator controller was made using a low pass 

filter, generator speed-torque curve, and saturation and rate limiters. Values for the generator speed-

torque were extracted from the graph (Jonkman, 2019). While, the pitch controllers were made using 

a proportional–integral–derivative controller (PID controller) together with saturation and rate 

limiters. The values used for the proportional and integral gains were obtained from the (Jonkman, 

2019). Sub-sections 4.1.5.1 to 4.1.5.4  will discuss the basic controller design used in this system, and 

sections 4.1.6 and 4.1.7 discuss the newly developed controllers. 

4.1.5.1 Control Design - Overview 
A wind turbine controller's primary function is to control generator torque or blade pitch. The 

generator controllers used in Paper-I are modelled after the (Jonkman, 2019) to ensure consistency, 

see Section 0 and Section 4.1.5.4.  

The pitch controller is later modified to include the bending moments' errors into the control loop 

feedback mechanism. By varying only one of the two controller’s setups, we can study any 

improvement in bending moment changes more accurately. The error of the bending moments is 

added to the PID controller's error because it is expected that the controller would be able to correct 
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the bending moment better due to the increase in sensitivity. Even if this method is primitive, we will 

still need it to observe and establish the relationship between the inputs and the outputs. The setup 

of the newly developed controllers is described below in Section 4.1.6 and Section 4.1.7. 

4.1.5.2 PID Controller 
This thesis reviewed the well-developed and newly developed control algorithms for both the torque 

and pitch demands. First, we tested the classical PID algorithms for a single input signal to generate a 

pitching change on the blades. At the same time, the torque demand was implemented independently 

using the output turbine speed. After that, the following idea was developed: 

• Controlling the blade pitch and torque response using the shaft speed, moments and 

generator speed which attempts to minimize both the load and energy differences. 

PID controllers are commonly used in various industries, including WT applications, to regulate speed, 

pressure or other process variables. It acts as a control loop feedback mechanism that can regulate the 

process variable and has been used in many applications due to its stability and accuracy. A PID 

controller is described using a Laplace variable as: 

Time Domain: 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
  

Frequency Domain: 𝑢(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠)𝑒(𝑠) 

Where 𝑒: tracking error, 𝐾𝑃: proportional gain, 𝐾𝐼: integral gain, 𝐾𝐷: derivative gain 

 

 

( 18 ) 

In a pitch-regulated turbine: In an above-rated condition, x is an error, or a combination of errors, 

evaluated as a summation of differences between the measured input and the demanded or rated 

input (e.g., shaft speed), while the output value (y) is the demanded pitch angle. The equation 

mentioned above's integral value restricts the mean value of x to zero, thus ensuring that y would not 

become indefinitely high or low. While in a below-rated condition, the demanded pitch is limited to 

the fine position since x becomes a negative value. 

It is crucial to study and access the effectiveness of a new controller as it enables further optimization 

of the controller's algorithm. However, it can often be challenging due to the unpredictability of the 

wind. It is therefore essential to ensure that field trails supplement the simulation trails. 
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4.1.5.3 Controller Design – Original Generator Controller 
 

 

Figure 28 Original Generator Controller 

As recommended by (Jonkman, 2019), in the generator controller (Figure 28), the generator speed is 

taken as an input, and its values are sent through a low pass filter. A single-pole low-pass filters the 

input by removing the high-frequency excitation with exponential smoothing. Afterwards, the signal is 

sent to a generator torque-speed lookup table before being saturated and limited. The signal is 

multiplied according to the generator efficiency and is reported as an output both for generator torque 

and power. Table 11 shows the values used in this controller. 

Low-pass filter 

Passband edge frequency (Hz): 0.25 

Stopband edge frequency (Hz): 5 

Maximum passband ripple (dB): 0.1 

Minimum stopband attenuation (dB): 80 

Input sample rate (Hz): 200 

Saturation 

Upper/Lower Limit (+/-) 47402.91 

Rate Limiter 

Rising/Falling Slew Rate (+/-) 15000 

Generator 

Efficiency 0.944 

Table 11 Original Generator Controller Variables 
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4.1.5.4 Controller Design – Original Pitch Controller 

 

Figure 29 Original Pitch Controller 

As recommended by (Jonkman, 2019), the original pitch controllers (Figure 29) receive the filtered low-

speed-shaft speed error as an input (x, as described above in the PID section) into the PID controller. 

The error is the summation of differences between the measured input speed and the rated speed. 

The proportional and integral gain is inputted into the PID controller using a blade pitch-gain 

scheduling lookup table as reported in (Jonkman, 2019). The input blade pitch is also filtered before 

using the lookup table. The output signal (y, as described above in the PID section) is saturated and 

limited before it becomes the final pitch output which is then sent back to the FAST simulation. 

The original pitch controller design will be modified and becomes the novel change introduced that 

helps reduce the bending moment of the shaft. The details of this novel change will be described in 

the following sections. 

4.1.6 Compensation scheme 

The compensation scheme is presented in Figure 30 together with the original blade pitch controller. 

The original blade pitch controller corrects only for shaft speed error. In contrast, the compensation 

scheme adds the correction of the main shaft bending moment error. The scheme only modifies the 

blade pitch control, i.e., the generator control is not modified.  



52 | P a g e  
 

 

Figure 30 Modified pitch controller (Original controller with compensation scheme) 

 

The collective blade pitch command, θcom is calculated as: 

𝜃𝑐𝑜𝑚 = 𝑘𝑝 ∙ 𝑒𝑡𝑜𝑡 + 𝑘𝑝 ∙ ∫ 𝑒𝑡𝑜𝑡 𝑑𝑡 
( 19 ) 

 

where etot is the total error, kp is the proportional gain coefficient, and ki is the integral gain coefficient. 

The derivative gain is zero. There are saturation and rate limiters placed on the commanded pitch.   

The total error, etot is calculated as: 

𝑒𝑡𝑜𝑡 = 𝑒𝑅𝑃𝑀 + 𝑘𝐵𝑀 ∙ 𝑒𝐵𝑀  ( 20 ) 

 

where eRPM is the shaft speed error, eBM is the bending moment error, and kBM is the compensation 

weight factor applied on eBM. The values of kBM studied are presented in Table 13. When kBM is set to 

0, the errors of the moment are not added to the PID controller. While when kBM is set to 1, it 

hypothetically means that all the bending moment errors are sent into the PID controller. 

The main shaft bending moment is the combined bending moment, M and is calculated as: 

 

𝑀 = √𝑀𝑦
2 + 𝑀𝑧

2 
( 21 ) 

 

where M is the combined bending moment, My and Mz are the non-rotating bending moments. 
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4.1.7 Simulink implementation 

The compensation scheme is implemented in Simulink/FAST (Jonkman, 2005) and is presented in 

Figure 31. The original blade pitch controller is modified to include the compensation scheme (shaded 

in Figure 31). 

In the implementation, the y and z directional low-speed-shaft bending moments are squared and 

added together. Next, the root of this summation vector is calculated using the equation ( 21 ), before 

passing the signal through a low pass filter. The error of the moment is then calculated as a summation 

of the differences between the measured input moment and the ideal moment of 0. The signal is then 

multiplied by the compensation weight factor (KBM). Finally, these two errors are added and then used 

as inputs into the PID controller. Table 12 shows the Simulink implementation variables. 
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Figure 31 Simulink implementation 

 

Saturation 

Upper Limit 90/180*pi 

Lower Limit 0 

Rate Limiter 

Maximum Absolute Blade Pitch Rate 8 º/s 

Rising/Falling Slew Rate (+/-) 8/180*pi 

KBM 0, 0.0001, 0.0002, 0.00032, 0.0004, 

0.00072 

Table 12 Simulink implementation Variables 
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4.2 Results and Discussion 
Case studies: 

The cases studied in this paper are presented in Table 13. Three wind speeds corresponding to below-

rated, rated and above-rated regions are studied for both steady wind and normal turbulent wind 

(NTM) conditions for a wide range of KBM values. This gives a total of 72 simulation cases. The 

simulation times for each case are 300 s for both steady and NTM wind conditions. 

 

Case no. Values 

Wind speed (m/s) 8, 11.4, 20 

Wind condition Steady, NTM 

KBM 0, 0.0001, 0.0002, 0.00032, 0.00064, 0.00072, 

0.0001, 0.0002, 0.00032, 0.00064, 0.00072, 0.001 

Table 13 Case studies 

The variables studied are the non-torque bending moment (BM) equation ( 21 ) , the low-speed shaft 

speed (RPM) and the generator power (Power). Percentage differences, i.e., %BM, %RPM and %Power 

are also calculated and investigated. As an example, the % difference in BM is calculated as: 

%𝐵𝑀 =
𝐵𝑀𝑐𝑜𝑚𝑝 − 𝐵𝑀𝑜𝑟𝑔

𝐵𝑀𝑜𝑟𝑔

× 100% 
( 22 ) 

 

where BMcomp is the bending moment obtained when the compensation scheme is applied and BMorg 

is the bending moment obtained with the original controller scheme with no modifications applied.  

4.2.1 Steady Wind 
The steady wind cases' results are presented in Figure 32 and Figure 33. When calculating the shaft 

RPM, generator power and torque, their average values of the last 100 seconds were computed. 
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Figure 32 Steady state wind results at 3 different speeds with varying KBM; a. BM (top-left), b. RPM (top-right) and c. Power 
(bottom) 

At the underrated wind speed (8 m/s), the pitch controller is not activated, therefore there are no 

changes to the results for all values of KBM. At the rated wind speed (11.4 m/s), the bending moment 

drops with increasing KBM but plateaus after it reaches 0.001. While at the above-rated speed (20 m/s), 

an interesting phenomenon is observed as the BM drops for the lower KBM values and increases for the 

higher values. This phenomenon can be explained by the fact that as KBM increases, the error is added 

to the PID from the bending moments that become significantly larger than the shaft RPM. This causes 

the system to start behaving erratically as errors are corrected incorrectly. Similar erratic behaviour 

can similarly be expected at other speeds in the above the rated speed ranges (e.g., 15 or 18 m/s) as 

the KBM approaches 1). The bending moment drops with a negative gradient from 0 to 0.0002. This is 

as expected since the bending moments that is added at these KBM suits their shaft error proportionally. 

Thus, a good proportionality allows the errors to be corrected more accurately. Further detailed 

analysis is conducted for KBM values (between 0 and 0.0001) in the above-rated speed to garner 

improved efficiency of the bending moment values in that region. This detailed analysis is shown in 

Figure 33. 

The shaft RPM values drop steadily for an increasing KBM value for the rated and above-rated wind 

speeds. As these two lines decrease, in both cases, the shaft RPM error corrects the system to achieve 
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its optimal shaft speed, which is the primary controller objective. The result shows a significant drop 

in power at the higher KBM at both the rated and above-rated wind speeds. However, at the lower KBM 

the power loss can be potentially better controlled and minimized. 

 

Figure 33 Steady state wind results (percentage (%) change for BM, RPM and Power) with varying KBM; a. Rated (top), b. 
Above-rated (bottom-left) and c. Above-rated with KBM scheduling(bottom-right) 

The results from Figure 33 show that at rated speed (11.4 m/s) and above rated speed (20 m/s), all the 

percentage changes of bending moments, shaft RPM and generator power are dropping with an 

increasing KBM, except for the above-rated speed (20 m/s) bending moment which reasoning was 

explained in the previous section. For the rated speed (11.4 m/s), Figure 33 (a) indicates that 0.0001 

gives the minimal proportion of losses between the percentage change of bending moments, shaft 

RPM and generator power. While for the above-rated speed (20 m/s), a more detailed analysis was 

done in the ranges of 0.00001 to 0.00015 (boxed-up region: Figure 33 (b)) to identify the best KBM 

values. Figure 33 (c) shows the results of the detailed gain scheduling. Figure 33 (c) indicates that 

0.00001 gives the minimal proportion of losses between the percentage change of bending moments, 

shaft RPM and generator power. More importantly, in Figure 33 (c) at 0.00001, the bending moment 

loss is more significant than the power loss. Therefore, even though the percentage change might be 

small, it gives an ideal situation since the turbine reduction in bending moments is more than the loss 

in power. 
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4.2.2 NTM Wind 
The results of the steady wind cases are presented in Figure 34 and Figure 35. Like the steady wind 

cases presented in Section 4.2.1, when calculating the shaft RPM, generator power and generator 

torque, their average values of the last 100 seconds were computed. 

 

Figure 34 NTM wind results at 3 different speeds with varying KBM; a. BM (top-left), b. RPM (top-right) and c. Power 
(bottom)  

Similarly, for the NTM wind cases, at the under-rated wind speed (8 m/s), the bending moment, shaft 

RPM and generator power change are assumed to be zero due to the inactivation of the pitch 

controller. However, in the normal turbulent wind model the drop in the bending moments, shaft RPM 

and power seem to be relatively linear for both the rated and above-rated wind speeds. This is 

expected since, with the turbulent wind model, the wind's speed varies differently and averages out 

at the selected wind speed. The wind's net effect on the bending moment in this model clearly shows 

the steady dropped experienced with increasing KBM. 

The turbulent models rated or above-rated speeds produce very similar shapes for the shaft RPM and 

power in all measured KBM values. The bending moment values of the above-rated speed are also lesser 

than the rated speed (using KBM = 0 as reference). This is accounted for correctly because as the blade 

pitches at above the rated speed, the bending moment acting on the turbine body and shaft is reduced. 
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Figure 35 NTM wind results (percentage (%) change for BM, RPM and Power) with varying KBM; a. Rated (top), b. Above-
rated (bottom-left) and c. Above-rated with KBM scheduling(bottom-right) 

 
For the rated speed (11.4 m/s), in Figure 35 (a), it can be seen clearly that the percentage change in 

bending moment and power decreases at the same rate while the power is more significantly affected 

with increasing KBM. While for the above-rated speed (20 m/s), in Figure 35(b), further investigation 

was done in the boxed-up region to find an appropriate KBM value that can minimize the losses between 

the bending moments, RPM and power. These results are shown in Figure 35(c). In Figure 35(c), the 

best KBM values are identified when there is more percentage loss of bending moment than power. A 

similar pattern was observed in the steady-state model. However, the turbulent model's KBM value 

(0.000032) is different from the steady-state model. 

4.2.3 Best KBM values 
To estimate the best KBM values for each wind speed, the best ratio for the percentage bending 

moment and percentage RPM is calculated. The higher the ratio, the maximum decrease in bending 

moment has been achieved with minimal change in RPM or power (P). The change is 0 at under-rated 

wind speed (8 m/s) is insignificant and assumed to be zero. The results are presented in Table 14. 
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Wind speed (m/s) 8 11.4 20 

% difference, BM mean 0 -3.0041 -1.7701 

% difference, RPM mean 0 -2.3144 -0.5079 

Best ratio (%BM/%RPM) 0 1.29 3.48 

Best ratio (%BM/%P) 0 0.33 1.62 

KBM 0 0.00015 0.000032 

Table 14 Best KBM values 

The percentage BM / percentage P ratio is less than 1 at the rated speed (11.4 m/s) and more than 1 

at the above-rated speed (11.4 m/s). Even though it might be questionable if the benefits are 

worthwhile at the rated speed, it is unquestionably beneficial at the above-rated speed. The ability to 

minimize the bending moments acting on the shaft and eventually the gearbox will significantly 

increase the gearbox's life span as described by the S-N curve. Furthermore, the KBM value can be 

scheduled to 0 at the rated speed if cost analysis research shows that it gives the most positive results. 

Finally, it can be summarized that varying KBM values and adding the BM errors positively affect the 

reduction of the structural load oscillations. Furthermore, changing the KBM values and thus the BM 

errors magnitudes seem to have a linear relationship within the examined ranges of 0.00001 to 0.001. 

However, it is essential to acknowledge that it does not necessarily mean that this relationship holds 

to different wind speeds or different ranges of KBM values. Furthermore, it must be emphasized that 

the control algorithms used only considered the pitch angle controller for one blade and cumulated 

the results used for all three blades. 

4.3 Conclusion 
Control algorithms that can reduce the bending moment in the low-speed shaft will eventually reduce 

the internal drive train loads within the gearbox, thus extending its lifespan. This paper has shown that 

adding a bending moment error into the pitch controller can positively affect the bending moment 

acting on the low-speed shaft. The bending moment can be reduced by about 3 % for the rated wind 

speed (11.4 m/s) and 1.8 % for the above-rated wind speed (20 m/s) while only losing 2.3 % and 0.5 % 

of the shaft’s rotational speed, respectively. Furthermore, a linear relationship was observed between 

the gain scheduled bending moment errors and the reduction of total bending moments if the KBM 

values are scheduled/optimized in an appropriate range. However, further studies need to be done to 

ensure consistency of such reduction at different wind speeds. It is also vital to ensure that lifespan 

extension does not substantially reduce the turbine’s power, torque, or rotational speed.  
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5 Paper-II - Characterization of Extreme Load 

Responses using ACER1D and ACER2D 
Two different methods can be applied to evaluate extreme wind turbine loads. The first method 

involves running a simulation for rare occurrences that leads to a high structural load. In contrast, the 

second method simulates the wind turbine operating under normal conditions. The results are then 

extrapolated with a probability distribution, and the extreme tail is analyzed (Dimitrov, 2016). The 

second method is more commonly used as it uses a full statistical distribution instead of an individual 

event.  

Even as researchers can now estimate extreme loads more accurately than ever, they had to develop 

a better statistical distribution to help them extrapolate the extreme load (Veers, 1998). Thus, many 

researchers worked on numerous probabilistic methods to increase the precision of the estimated 

loads. In (Madsen, 1999), the author developed a non-linear parametric model to extrapolate and 

estimate long-term fatigue loading. In (Ronold, 1999; Ronold, 2000), the authors developed techniques 

to calibrate partial safety factors which could predict extreme loads through extrapolation and showed 

that these extreme loads follow the Gumbel distribution. While in the study (Manuel, 2001), the author 

continued fine-tuning probabilistic methods and parametric models and executed a detailed 

uncertainty analysis. While to achieve a more accurate estimation for the moment, (Fitzwater 2002; 

Moriarty 2002) attempted to compile and simplify the different techniques mentioned above. In 

(Agarwal, 2008), the authors attempted to estimate extreme loads through statistical extrapolation of 

limited field data. Many studies have recently focused on estimating the wind turbine's extreme loads 

more precisely. Examples include (Barreto, 2022), where the author used statistics and modelling to 

estimate long-term extreme responses on an offshore wind turbine. While in (McCluskey, 2021), the 

author used extreme value statistics to estimate flow-induced responses from a small sample size, 

(Fogle, 2009) estimated loads using the global and block maxima extrapolation. And in (Ernst, 2012), 

the authors used the threshold extrapolation method to estimate the extreme loads and turbulent 

intensity. In (Graf, 2016), the authors used the Monte Carlo method to estimate the long-term fatigue 

loads. In contrast, many authors such as (Fitzwater, 2001; Moriarty, 2004; Freudenreich 2007; Ragan, 

2008; Peeringa, 2009; Abdallah, 2015) have attempted to match different statistical distribution 

models with extreme load patterns. However, the methods mentioned above fit an assumed extreme 

value distribution to the empirical data and do not precisely represent the actual characteristics of the 

data. It can lead to less reliable results, which is even more critical in extreme value prediction. The 

results are derived at the tail of the probability distribution and are sensitive to uncertainties and 

errors.  
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This paper proposes a novel averaged conditional exceedance rate approach based on two-

dimensional design points (ACER2D) instead of traditional one-dimensional characteristic design 

values. ACER2D is a non-trivial approach compared to the classic method, given that there is a non-

linear correlation between different response components. The proposed method can predict extreme 

loads in a 10 MW large floating wind turbine (FWT) more efficiently and reliably. The ACER method 

combines the structural load statistics with appropriate parametric functions that provide a reliable 

description of the extreme load distribution's tail behaviour. ACER has been applied in earlier studies 

on various marine structures (Zhang, 2019; Gaidai, 2018; Gaidai, 2016) and (Naess, 2008; Naess, 2009; 

Naess, 2010; Naess, 2013). This method provides a statistical depiction and its error bounds of the 

extreme value distribution inherent in the data, offering a unique approach to estimating the extreme 

values (Karpa, 2013). The ACER method sets itself apart from other commonly known methods, e.g., 

the Gumbel and Weibull distribution. ACER method is not purely based on the asymptotic distribution, 

thus avoiding incorporating generalized extreme value distribution (GEV). The latter allows the values 

obtained from the ACER method to be more versatile as it represents real-life values that are typically 

not genuinely asymptotic. Furthermore, the margin of errors for irregularity is reduced as it avoids 

superposing asymptotic behaviour onto actual non-asymptotic data. The ACER method has been 

described as having more accurate and reliable results than the peaks-over-threshold or annual 

maxima methods. The effectiveness of the ACER method has fueled further research to develop a 

modified ACER method with the adaptive Markov Chain Monte Carlo simulations to estimate the short-

term extreme mooring tension. 

More efficient and reliable estimations of extreme responses will better help predict the effects these 

loads have on the components allowing the development and implementation of a better design or 

control system for the FWT. Optimal wind turbine parameters would minimize potential FWT 

mechanical damage due to excessive environmental loadings (Xu, 2019). Accurately predicted extreme 

loads will also make the components more optimally sized. It contributes to more refined designs and 

lower failure rates, which is particularly important for the offshore wind industry as it advances the 

design, manufacturing, and deployment of large FWTs (>10 MW) in the coming decade.  

In this part of this thesis, Paper-II, the aim is to characterize the reliability of the ACER2D approach as 

it is fitted and compared against other classic methods (Asymmetric logistic and Gumbel logistic 

models) and to predict the 50- and 100-year return period ACER1D responses. The ACER methods 

would need to be optimized by investigating an appropriate k value. 
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5.1 Methodology 

5.1.1 Wind Turbine Properties 
This paper presents the methodology for estimating the DTU 10-MW RWT-OO-Star's extreme loads 

during operating conditions. The simulations done on MATLAB/ Simulink on this project used the DTU 

10 MW wind turbine, which follows the original project. A DTU 10MW FWT is used as a standard and 

connected to three blades at a hub height towering 119m on a floater. The turbine has a 178.3m rotor 

diameter and an operational speed between 4 to 25 m/s (cut-in and cut-out, respectively). The rated 

speed for this model was 11.4 m/s. This thesis will focus on three wind speeds, 8, 12 and 16 m/s (below, 

rated and above the rated scenario, respectively). The figure below represents the wind turbine used 

for this simulation. 

 

Figure 36 Design of DTU 10MW wind turbine 

5.1.2 Load cases and environmental conditions 

The environmental data (wind and wave data) used in this paper are established based on hindcast 

data from an offshore site in the Northern North Sea from 2001 to 2010.  The long-term joint wind and 

wave distribution were developed in (Li, 2013), which considers a one-hour mean wind speed at the 

position that is 10 meters above the sea level (U10), wave spectral peak period (Tp) and the significant 

wave height (Hs). The joint distribution of U10, Hs and Tp is expressed as below: 

 

𝑓𝑈10,𝐻𝑠,𝑇𝑝
(𝑢, ℎ, 𝑡) = 𝑓𝑈10

(𝑢) ∙ 𝑓𝐻𝑠ǀ𝑈10
(ℎǀ𝑢) ∙ 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠

(𝑡ǀ𝑢, ℎ) ( 23 ) 

where 𝑓𝑈10
(𝑢) , 𝑓𝐻𝑠ǀ𝑈10

(ℎǀ𝑢) and 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠
(𝑡ǀ𝑢, ℎ) represents the marginal distribution of U10, the conditional 

distribution of Hs for given U10 and the conditional distribution of Tp for given U10 and Hs. 

 



64 | P a g e  
 

 

Figure 37 An example of in situ Hs, Tp scattered diagram, used to assign probabilities to individual sea states 

 

Load cases 𝑼𝒘 (m/s) 𝑻𝑰 𝑯𝒔 (m) 𝑻𝒑 (s) Samples Simulation length (s) 

LC1 8 0.1740 1.9 9.7 20 4000 

LC2 12 0.1460 2.5 10.1 20 4000 

LC3 16 0.1320 3.2 10.7 20 4000 

Table 15 Three representative load cases 

Three representative load cases with a high probability of occurrence in the normal operating 

conditions are used in the present work and listed in Table 15. The mean wind speed selected for this 

paper is based on the turbine operating ranges (wind speeds ranging within the cut-in, rated and cut-

out zones) with an increment size of 4 m/s. The most probable wave height and spectra peak period 

in each wind speed condition is selected based on the joint distribution expressed in Eq. ( 23 ). 

The turbulent wind and irregular waves are modelled and considered to be directionally aligned in all 

the load cases. The normal turbulence and normal wind profile models are employed, and wind turbine 

Class C is applied. The wind power-law formulation is used to model the wind speed profile, as 

represented below: 

𝑈𝑤(𝑧) =  𝑈ℎ𝑢𝑏 (
Z

𝑍ℎ𝑢𝑏
)𝛼 

( 24 ) 

where Uw(z) is the mean wind speed at the height 𝑧 above the still water level, uhub represents the mean wind 

speed at the hub height, zhub denotes the hub height above the still water level and is 119 m for the 10-MW 

FWT. α is the power-law exponent, and it is taken as 0.14 for offshore locations based on the recommendation 

in IEC 61400-3-2, see (IEC, 2019) 

 

The Kaimal turbulence model generates the three-dimensional turbulent wind fields, simulated using 

a stochastic turbulent-wind simulator, Turbsim (Jonkman, 2014b). In addition, time-varying irregular 

waves are generated using the JONSWAP (Joint North Sea Wave Project) spectrum according to the 
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specified Hs and Tp. Detailed descriptions for the models of turbulent wind and irregular waves can be 

found in IEC 61400-3-2 (IEC, 2019). 

For the three environmental conditions, 20 different random samples of wind and wave are applied 

for each sea state. Each simulation lasts 4000s, where the first 400s is removed to reduce the transient 

effect induced by the wind turbine start-up. Therefore, 1-h data in each simulation is formed and is 

used for extreme value analysis in this work. The results shown in this work are based on the average 

of 20 1-h simulations to reduce the stochastic variability. 

5.1.3 Extreme Value Distribution 
Extreme values distributions are distributions of random stochastic process X(t) that focuses on the 

smallest extreme or the largest extreme variables. For example, it can be either the smallest minimum 

or the largest maximum from a sequence of individual minima/ maxima. 

Z𝑒  =  max {Z𝑚1, . . . , Z𝑚𝑛}  ( 25 ) 

 

where Ze is the largest maximum value and Zm1, Zm2,… Zmn are all the individual maxima similar to that 

shown in Figure 38. 

Know if it is identically distributed and independent with a common distribution function FXm(x), the Xe 

distribution becomes: 

 

FXe(x)  =  Prob {X𝑒 ≤  x}  =  (F𝑋𝑚(x))𝑛  

 

( 26 ) 

 

Numerous methods can be used to predict extreme value distribution, e.g., Gumbel, Fréchet or Weibull 

distribution and the newly developed ACER (average conditional exceedance rate) method. In this 

thesis, we will be using the Gumbel fitting method and ACER (average conditional exceedance rate) 

method. 
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Figure 38 Global maxima (Xu, 2019) 

 

5.1.3.1 Gumbel Distribution 
Extreme value distribution. Eq. ( 25 ), has been proven on numerous occasions to converge to the 

Gumbel, Fréchet or Weibull distribution if the sample size (n) is large enough. These distributions, as 

mentioned previously, are also recognized as the type I, II and III extreme value distributions, 

respectively and are a family of cumulative distribution probability that combines for the generalized 

extreme value (GEV) distribution (Xu, 2019). 

FX𝑒(x)  =  exp [−1 +  γ( 
x −  µ

σ
  )

− 1 
γ  ]  

( 27 ) 

 

Where σ describes the scale parameter, γ describes the shape parameter, and μ describes the location 

parameter. The limiting of γ→0 allows the approximation to fit the Gumbel distribution, which has 

been commonly used as a recommendation when modelling marine structures (Næss, 2013). 

FX𝑒(x)  =  exp [− exp [−α(x −  µ) ]]  ( 28 ) 

 

Where α describes the scale parameter and μ is the location parameter established using a Gumbel 

probability paper. Eq. ( 28 ) can be rewritten by using a logarithm on the equation to becoming a linear 

function. 

− ln(−ln(FXe(x)))  =  α(x −  µ) ( 29 ) 
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The parameters α and μ can be approximated from the original data using the least-square fitting 

method from the cumulative distribution probability, which is characterized as a straight line on a 

probability paper (Fu, 2017). Figure 39 shows an example of a Gumbel paper as described in (Xu, 2019). 

 

Figure 39 Gumbel Comparison (Xu, 2019) 

 

5.1.4 Extreme value prediction - ACER1D method 
Various statistical methods have been used to approximate the extreme value distribution of a 

recorded time series in its tail. Examples of the extreme value methods used in the study of wind 

turbines include an estimation of extreme structural responses in floating vertical axis wind turbines, 

see (Cheng, 2017) and extreme responses due to wave nonlinearity on a semi-submersible floating 

wind turbine, see (Xu, 2019).  

The ACER method used in this paper as in (Naess, 2010; Naess, 2008; Xu, 2021; Zhao, 2021; Galambos, 

1999; Naess, 2013; Naess, 2009), and in (Gaidai, 2017; Xu, 2021; Xu, 2020; Naess, 2015; Karpa, 2015; 

Gaidai, 2016) has numerous advantages when estimating extreme values from a recorded time series. 

One of these includes the ability to identify the effect of dependency between the time series data on 

the extreme value distribution. Also, the whole time series can be used as input data without de-

clustering (i.e., no requirement to use independent data). However, the most prominent feature of the 

ACER method is its ability to provide a non-parametric depiction of the extreme value distribution 

inherent in the data. Therefore, this circumvents the need for explicit modelling due to seasonal effects 

as this method automatically accounts for it. Also, using the ACER method and an appropriate 



68 | P a g e  
 

parametric function for tail modelling allows for an explicit description of the extreme value 

distribution suitable for deep tail extrapolation. Furthermore, this method also seeks to approximate 

the extreme value distribution in the non-asymptotic regime, which differs from the most commonly 

known extrapolation methods, i.e., Gumbel, POT (peaks over threshold) or Weibull distribution. Recent 

studies using the ACER method include the study of vessels extreme roll assessment (Xu, 2021) and 

extreme response in a mooring system, see (Zhao, 2021). 

When extrapolating extreme values distributions, the most commonly used distributions are faced 

with obstacles as they require an asymptotic behaviour. This behaviour cannot be entirely 

substantiated; thus, its choice is based on convenience. Wrongly selected asymptotic distributions can 

result in errors when extrapolating to long return period design values. For example, in (Galambos, 

1999), the authors explained that a Gumbel distribution might be wrongly interpreted as a Weibull 

distribution since the data used partially fits the upper bound of the Weibull distribution. The result is 

a wrongly fitted asymptotically inconsistent distribution, resulting in wrongly approximated values 

(i.e., wind speed or extreme values). 

X(t) is the long-term global response of a floating wind turbine measured between the time interval 

(0,T). The discrete-time interval in (0,T) is defined as t1, …, tN, while process measurement X(t) at this 

discrete-time interval is defined as X1, …, XN to approximate the distribution function of the extreme 

value  𝑀𝑁 = max { 𝑋𝑗  ; 𝑗 = 1, … , 𝑁}, especially to estimate cumulative density function (CDF) 𝑃(𝜂) =

Prob(𝑀𝑁 ≤ 𝜂) for large values of the response 𝜂. 

Therefore, the below mentioned random functions are presented: 

𝐴𝑘𝑗(𝜂) = 𝟏{𝑋𝑗 > 𝜂, 𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

𝐴𝑘𝑗(𝜂) = 𝟏{𝑋𝑗 > 𝜂, 𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

 𝐵𝑘𝑗(𝜂) = 𝟏{𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

( 30 ) 

Where, when 𝒜 is true, 𝟏{𝒜} = 1; if not it is 0. As mentioned in (Naess, 2010; Naess, 2008; Xu, 2021; 

Zhao, 2021; Galambos, 1999; Naess, 2013; Naess, 2009): 

𝑃𝑘(𝜂) ≈ exp ( − ∑
𝔼(𝐴𝑘𝑗(𝜂))

𝔼(𝐵𝑘𝑗(𝜂))

𝑁

𝑗=𝑘

) ≈ exp ( − ∑ 𝔼

𝑁

𝑗=𝑘

(𝐴𝑘𝑗(𝜂))), 𝜂 → ∞ ( 31 ) 

The recorded time series can be further divided into short-term K subsequent blocks where 𝔼(𝐴𝑘𝑗(𝜂)) 

remains almost constant for each block. Such that ∑ 𝔼𝑗∈𝐶𝑖
(𝐴𝑘𝑗(𝜂)) ≈ ∑ 𝑎𝑘𝑗𝑗∈𝐶𝑖

(𝜂) for a large enough 

range of 𝜂-values. Hence,∑ 𝔼𝑁
𝑗=𝑘 (𝐴𝑘𝑗(𝜂)) ≈ ∑ 𝑎𝑘𝑗

𝑁
𝑗=𝑘 (𝜂), where 𝐶𝑖 indicates the set of indices for 

block numbered as 𝑖; from 𝑖 = 1, … , 𝐾, and where 𝑎𝑘𝑗(𝜂) are the realised values of 𝐴𝑘𝑗(𝜂) for the 
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calculated time series. Therefore, for a given stationary process (short-term sea current state), the 

following is: 

𝑃𝑘(𝜂) ≈ exp ( − (𝑁 − 𝑘 + 1)𝜀�̂�(𝜂))  ( 32 ) 

 

where, 

𝜀�̂�(𝜂) =
1

𝑁 − 𝑘 + 1
∑ 𝑎𝑘𝑗

𝑁

𝑗=𝑘

(𝜂)  ( 33 ) 

 

In the above equations, to make an approximation of the short-term expected values, the observed 

values of the 𝑎𝑘𝑗(𝜂) functions were used together with the assumption of ergodicity for each short-

term section of the recorded time series. Another way of describing the long-term extreme value 

distribution in Eq. ( 32 ) can be realised since the empirical probability distribution of, 𝑚 = 1, . . , 𝑀, of 

sea current states has probabilities 𝑝𝑚, and ∑ 𝑝𝑚
𝑀
𝑚=1 = 1. 

Thus, the long-term ACER function of order k is:  

ACERk(𝜂) ≡ ∑ 𝜀�̂�(𝜂, 𝑚)

𝑀

𝑚=1

𝑝𝑚 ( 34 ) 

 

where 𝜀�̂�(𝜂, 𝑚), which is restricted to a specific sea state with number 𝑚, is the same type of function 

as in Eq. ( 33 ), but the averaging is restricted to the short-term block of data with number m. 

As mentioned in (Naess, 2010; Naess, 2008; Xu, 2021; Zhao, 2021; Galambos, 1999; Naess, 2013; 

Naess, 2009), the long-term extreme value distribution of 𝑀(𝑇), can then be described according to 

the ACER function of order k: 

𝑃(𝜂) ≈ exp(−𝑁∙ACERk(𝜂)) ( 35 ) 

where 𝐴𝐶𝐸𝑅𝑘(𝜂) is defined as the long-term empirical function for ACER in the order of k, where k 

"𝑁; 𝑁 is the number of all the data points from the recorded time series included to approximate the 

ACER functions. Stereotypically, these are local peaks from the measured time series.  

The accuracy of Eq. ( 35 ) improves as the order k increases; it is observed that the ACERk(𝜂) functions 

converge rapidly with an increasing k, also mentioned in (Naess, 2010; Naess, 2008; Xu, 2021; Zhao, 

2021; Galambos, 1999; Naess, 2013; Naess, 2009). The advantage of the ACER method can be observed 

when increasing the conditioning level k. The probable data clustering effects can be accounted for, 



70 | P a g e  
 

thus improving and refining the accuracy of the estimates of the extreme values, and this also 

circumvents an otherwise over-conservative design value. 

In high response values of 𝜂, ACERk as functions of the level, 𝜂 are usually in the tail end. Especially for 

𝜂 ≥ 𝜂0, when the tail behaves like exp{−a(𝜂 + 𝑏)𝑐 + 𝑑} with 𝑎, 𝑏, 𝑐, 𝑑 becomes suitable constants. 

It is possible to do optimisation for the log-level when the mean square error function F is minimised 

with respect to the four arguments: 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘. 

   𝐹(𝑎𝑘 , 𝑏𝑘, 𝑐𝑘 , 𝑑𝑘)= ∫ 𝜔(𝜂)
𝜂1

𝜂0

{ln(ACERk(𝜂)) − 𝑑𝑘 + 𝑎𝑘(𝜂 + 𝑏𝑘)𝑐𝑘}

2

𝑑𝜂, 𝜂 ≥ 𝜂0 ( 36 ) 

where 𝜂1is a suitable data cut-off value, i.e., the largest 𝜂 response value, which allows calculation of 

the confidence interval. The weight function (ω) is defined as 𝜔(𝜂)={ln𝐶+(𝜂) − ln𝐶−(𝜂)}−2with 

(𝐶−(𝜂),  𝐶+(𝜂)) with a 95% CI, empirically approximated from the measured data. The comprehensive 

procedure for additional parameters optimisation  𝑎𝑘 , 𝑏𝑘, 𝑐𝑘 , 𝑑𝑘   has been described in (Zhang,2019; 

Gaidai, 2018; Gaidai, 2016; Naess, 2008; Naess, 2009; Naess, 2010; Naess, 2013; Karpa, 2013) and, 

(Naess, 2010; Naess, 2008; Xu, 2021; Zhao, 2021; Galambos, 1999; Naess, 2013; Naess, 2009). 

 

5.1.5 Extreme value prediction – ACER2D method 
Now, the 2D (bivariate) Average Conditional Exceedance Rate, or briefly ACER2D method, has been 

applied to analyse FWT blade root and tower bottom bending moment due to environmental wind and 

wave loads. A brief introduction of the bivariate ACER2D method is outlined below; see (Naess, 2013; 

Karpa, 2015; Gaidai, 2016; Jian, 2018) for more details. Note that both of the stochastic response 

processes (blade root and tower bottom bending moments) are time-synchronous. The latter is 

undoubtedly beneficial for coupling effects and bivariate statistics study.  

This paper studies a bivariate stochastic process 𝑍(𝑡) = (𝑋(𝑡), 𝑌(𝑡)), having two scalar processes 

𝑋(𝑡), 𝑌(𝑡),  simulated synchronously, over a time span (0, 𝑇). The bivariate data points 

(𝑋1, 𝑌1), … , (𝑋𝑁 , 𝑌𝑁) correspond to equidistant time instants 𝑡1, … , 𝑡𝑁.  

The joint CDF (cumulative distribution function)  𝑃(𝜉, 𝜂): =  Prob (�̂�𝑁 ≤ 𝜉, �̂�𝑁 ≤ 𝜂) of the maxima 

vector (�̂�𝑁 , �̂�𝑁), with �̂�𝑁 = max{𝑋𝑗 ; 𝑗 = 1, … , 𝑁}, and  �̂�𝑁 = max{𝑌𝑗 ; 𝑗 = 1, … , 𝑁} is introduced. In 

this paper, 𝜉 and 𝜂 are blade root and tower bottom mooring bending moments, M1 and M3 in Figure 

40) respectively.  

Next, the non-exceedance event is introduced: 𝒞𝑘𝑗(𝜉, 𝜂): = {𝑋𝑗−1 ≤ 𝜉, 𝑌𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤

𝜉, 𝑌𝑗−𝑘+1 ≤ 𝜂} for 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 + 1. Based on the definition of the joint CDF 𝑃(𝜉, 𝜂) 
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𝑃(𝜉, 𝜂) =   Prob (𝒞𝑁+1,𝑁+1(𝜉, 𝜂))

=   Prob (𝑋𝑁 ≤ 𝜉, 𝑌𝑁 ≤ 𝜂 | 𝒞𝑁𝑁(𝜉, 𝜂)) ⋅ Prob (𝒞𝑁𝑁(𝜉, 𝜂))

= ∏

𝑁

𝑗=2

  Prob (𝑋𝑗 ≤ 𝜉, 𝑌𝑗 ≤ 𝜂 | 𝒞𝑗𝑗(𝜉, 𝜂)) ⋅ Prob (𝒞22(𝜉, 𝜂))

 ( 37 ) 

 

The CDF 𝑃(𝜉, 𝜂) can be expressed as in (Naess, 2013; Karpa, 2015; Gaidai, 2016; Jian, 2018), 

   𝑃(𝜉, 𝜂) ≈ exp {− ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))} ( 38 ) 

for a suitably large conditioning level parameter 𝑘, and large 𝜉 and 𝜂 with 𝛼𝑘𝑗(𝜉; 𝜂) ≔  Prob (𝑋𝑗 >

𝜉 | 𝒞𝑘𝑗(𝜉, 𝜂)), 𝛽𝑘𝑗(𝜂; 𝜉) ≔ Prob (𝑌𝑗 > 𝜂 |𝒞𝑘𝑗(𝜉, 𝜂)) , 𝛾𝑘𝑗(𝜉, 𝜂) ≔ Prob (𝑋𝑗 > 𝜉, 𝑌𝑗 > 𝜂 | 𝒞𝑘𝑗(𝜉, 𝜂)). 

Next, the 𝑘-th order bivariate average conditional exceedance rate (ACER2D) functions can be 

introduced 

 

 ℰ𝑘(𝜉, 𝜂) =  
1

𝑁 − 𝑘 + 1
 ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))     ( 39 ) 

 

for 𝑘 = 1, 2, …; when 𝑁 ≫ 𝑘  

𝑃(𝜉, 𝜂) ≈ exp{ – (𝑁 − 𝑘 + 1)ℰ𝑘(𝜉, 𝜂)} ;  for large 𝜉 and 𝜂. ( 40 ) 

 

From Eq. ( 40 ), it follows that an accurate estimate of the bivariate CDF 𝑃(𝜉, 𝜂) = 𝑃(𝜉, 𝜂) relies on the 

equally accurate estimation of ACER2D functions ℰ𝑘. 
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5.2 Results and Discussion 
The empirical data is based on accurate numerical simulations using a FAST model on the DTU 10MW 

FWT as presented in Section 3.3.3. The ACER1D and ACER2D (bivariate averaged conditional 

exceedance rate) methods used for the extreme load prediction are presented in Sections 5.1.4 and 

5.1.5, respectively.  

The loads at the two measurement points presented in Figure 40 are considered. These are the blade 

1 root flapwise bending moment (RootMyb1) and tower bottom fore-aft bending moment (TwrBsMyt). 

  

Figure 40 Location of points where bending moments are measured 

5.2.1 Power Spectral Density based on time responses 

Figure 41 shows the location of M1, M3. From Figure 41, it is observed that the PSD (Power Spectral 

Density) peaks at the frequencies (f) at 3P, 6P and 9P. This information is used in the ACER functions' 

choice of conditioning level k. 
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Figure 41 PSD of RootMyb1 – M1 and TwrBsMyt – M3 

 

5.2.2 Extreme responses: univariate and bivariate analysis 
This section presents statistical analysis results for M1 and M3 bending moments using the univariate 

and bivariate methods, i.e., ACER1D and ACER2D, respectively. The focus is on accurate predicting 

extreme responses, which is vital for safety and reliability at the design stage. The conditioning level k 

is set to be 10, as it was observed that ACER functions have converged at that level in the distribution 

tail. 

Figure 42 presents a univariate extreme response 5-year return period prediction with a 95 % 

confidence interval (CI); the 1-year return period is chosen purely as an example. The predicted 

extreme probability level corresponds to a 5-year return period. 

From Figure 42, the ACER1D method gives a smaller confidence interval and better results as it does 

not assume any distribution. It shadows the data point as presented Figure 42 for M1 and M3. Paper-

II only presents the ACER1D results without comparing them with another extreme value distribution, 

as this is done with detail in Paper III. Paper-II presents the results and moves on together to do the 

ACER2D novel investigation. The ACER2D results will be presented in the next sections. 
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Figure 42 Univariate ACER1D extreme response 5-year prediction with 95% CI (dotted lines). Top: RootMyb1 – M1; Bottom: 
TwrBsMyt – M3; decimal log scale 

 

Figure 43 presents the phase space of responses M1 over M3, along with the bivariate empirical ACER2D 

function ℰ̂𝑘 . It is clearly seen that there is a non-linear correlation between responses M1 and M3. The 
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bivariate empirical ACER2D surface, ℰ̂𝑘 obviously marginally corresponds to univariate ACER1D 

functions presented in Figure. 

 

 

 

Figure 43 Top: phase space, response M1 vs M3; Bottom: bivariate empirical ACER2D function E _̂k, decimal log scale 

Figure 44 presents ACER2D fit to the empirical data along with the bivariate predicted contours with 

return periods in years (lower figure). Figure 44 presents contour lines for the optimized Asymmetric 

logistic (AL) 𝒜𝑘(𝑀1, 𝑀3) and optimized Gumbel logistic (GL) 𝒢𝑘(𝑀1, 𝑀3) models, optimally matched 

to the corresponding empirical bivariate ACER2D function ℰ̂𝑘(𝑀1, 𝑀3), 𝑘 = 10, see (Naess, 2013; 

Karpa, 2015; Gaidai, 2016; Jian, 2018) for GL and AL definitions. The contour lines' negative labelling 

numbers in Figure 44 indicate decimal logarithmic scale probability levels of 𝑃(𝑀1, 𝑀3). Figure 44 
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clearly shows that the empirical bivariate ACER2D surface ℰ̂10 well captures the strong correlation 

between load/response components. The optimized models 𝒢10 and 𝒜10 exhibit smooth contours 

along with matching ACER2D empirical contours. The later models may be better suited for bivariate 

extreme value distribution response processes. Figure 44 shows good agreement between the 

estimated optimized AL and GL surfaces and the bivariate ACER2D surface. This means that the 

correlation between responses M1 vs M3 is a crucial non-negligible factor influencing the shape of the 

bivariate contour lines. 

 

 

 

 

Figure 44 Top: ACER2D fit to empirical data; Bottom: predicted bivariate contours with return periods 

in years 
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The lowest probabilities in Figure 43 and Figure 44 correspond to the value 𝑁−1 where 𝑁 is the number 

of equidistant time points in the studied time series, see Eqs. ( 30 )  to ( 37 ). Figure 43Figure 44 

(bottom) presents the predicted bivariate contours with 50- and 100-year corresponding return 

periods. Note that the return period of a few years is quite long compared to the short duration of the 

analysed measured record. As seen in Figure 44 (bottom), the fitted lines match well with the empirical 

data (when seen with the Asymmetric logistic and Gumbel logistic models), highlighting the accuracy 

of the ACER method. Further, the ACER method is efficient, requiring only 20 1-hour realisations to 

generate accurate results.  

Furthermore, Figure 45 shows that the univariate design point lies outside the safe 50-year zone 

(dashed area) and is outside the 2D design zone. This means that the 1D method is not conservative. 

 

 

Figure 45 Design safe zone (dashed) due to bivariate analysis, versus univariate design point, based on the previous Figure 
44 Asymmetric logistic  𝒜𝑘(𝑀1, 𝑀3) 50-year contour line. 

  

 50 yr 100 yr 

M1 (Nm) 4.8 x 104 4.9 x 104 

M3 (Nm) 4.5 x 105 4.6 x 105 

Table 16 50- and 100-year return period response ACER1D predictions 
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Thus, it is clear from the discussion above that the ACER method gives reliable data, compared with 

the AL and GL models, with very good ACER2D fitting with minimal data set. It is comparable with the 

empirical data verifying the accuracy of the ACER method. 

5.3 Conclusion 
A novel approach that is based on a 2D design point instead of the traditional 1D characteristic design 

values has been introduced. The proposed methodology provides an accurate bivariate extreme value 

prediction, utilizing all available data efficiently. Based on the overall performance of the proposed 

method, it was concluded that the ACER2D method could incorporate environmental input and provide 

a more robust and accurate bivariate prediction based on proper numerical simulations. The method 

uses only a relatively small amount of data to provide reasonable predictions with long return periods.  

The FWT blade root and tower bottom bending moments due to environmental wind and wave loads 

were studied for three operating conditions of mean wind speeds of 8, 12 and 16 m/s. The bivariate 

ACER2D method was briefly described and applied to account for the coupled load effects, namely 

dynamic moment and force simulated synchronously in time. Bivariate extreme value distribution low 

probabilities (or equivalently high quantiles) contours were estimated by adopting various bivariate 

copula models. Potential outliers present in the data set are also well managed by being neglected in 

the distribution tail through the proposed extrapolation and copula fit technique.  

Regarding the safety and reliability of FWT operations, the multivariate analysis is a more proper 

approach than the classic univariate approach. The presented technique has the following advantages: 

• Unlike IFORM/ SORM, the ACER2D method does not simplify model nonlinearities.   

• Various kinds of coupled data can be studied: measured or numerically simulated. 

• Clustering effects can be accounted for. 

• The univariate estimation of design values may not be conservative, as indicated through the 

comparison to a bivariate analysis as presented in this paper.  

• ACER2D method may provide an efficient way of identifying practical design appropriate 

bivariate copula models. 

The described approach may be used at the design stage of a large FWT to provide the opportunity of 

defining FWT parameters that would minimize extreme loads and potential damages. It is also noted 

that the study is limited to the quality of the data itself. This limitation applies for any type of statistical 

method.  
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6 Paper III - Characterization of Extreme Load 
Responses using Gumbel and ACER1D 

The area of interest in the third part of the thesis is to complete the characterization of extreme load 

responses of a 10-MW floating semi-submersible type wind turbine. Since sizes of offshore wind 

turbines have been increasing over the past two decades (1.5MW to 6 MW), it has become more 

critical than ever to start analyzing the loads acting on the very large offshore wind turbine (10 to 15 

MW class). The larger the turbine, the larger structural flexibility, aero-hydrodynamics and the more 

complex the controller dynamics, which all result in a more complex structural response. Thus, the 

structural load effects in an FWT become more severe than in the previously used smaller turbines. 

Thus, more accurate quantification of the extreme load responses becomes important in the Ultimate 

Limit State (ULS), especially with a fully coupled interaction between the system and environmental 

conditions.  

Accurate quantification of the extreme values is critical when studying dynamic motion in FWT 

systems. It becomes even more critical when designing a wind turbine based on the Ultimate Limit 

State (ULS). Furthermore, the responses are expected to be dynamic and nonlinear due to the fully 

coupled reaction between the wind turbine and the environment. Thus, ensuring that the extreme 

load effects are all addressed in the requirements is essential. Doing many dynamic simulations to 

obtain accurate results in an ideal situation might be useful. However, such a process is time-

consuming and expensive. Therefore, a statistical extrapolation method is suggested to mitigate such 

a limitation in IEC 61400-3 when analyzing extreme loads, as it requires a much smaller pool of data to 

estimate these values accurately. Many studies have been conducted to assess the effectiveness of 

the ACER1D or ACER2D model, as discussed in the previous chapter. In (Saha, 2014), the author 

examined the sensitivity of the extreme responses to sample sizes and discovered that the up-crossing 

rate method outperformed both the Gaussian and non-Gaussian responses. While in (Dimitrov, 2006), 

the author showed that the statistical load extrapolation method could accurately predict the 

statistical distribution (under normal operating conditions) of extreme values. 

Similar to the second section (Paper-II), the focus of the work was on the DTU 10 MW semi-submersible 

types floating FWT. However, in Paper III, motivated by previous success from accurate prediction for 

other statistical methods, the author focused on predicting, characterizing and comparing the extreme 

responses using the ACER1D and Gumbel methods. The ACER methods would need to be optimized by 

investigating an appropriate k value. The primary aim of this paper is done with the hope that the 

results of this paper will steer future research on very large FWTs.  
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6.1 Methodology 
 

The simulations done on MATLAB/ Simulink on this project used the DTU 10 MW wind turbine, which 

follows the original project. A 10MW offshore wind turbine from the DTU was used with similar wind 

turbine properties, load cases and environmental conditions from the methodology section from 

Paper-II. The characterization of extreme load responses was done with ACER1D and Gumbel 

prediction and fitting. Additionally, the blade one's root flapwise bending moment (RootMyb1) was 

added as a third measurement point in this part of the thesis. The Gumbel and ACER1D methods 

presented in Sections 5.1.3.1 and 5.1.4 respectively, are used in this paper. 

 

Like Paper II, the wind is generated using Turbsim (Jonkman, 2014b), and irregular waves are generated 

using the JONSWAP (Joint North Sea Wave Project) spectrum. The same load cases (LC1, LC2 and LC3) 

was also used to maintain consistency. For further information, see Section 5.1. 

6.2 Results and Discussion 
The empirical data is based on accurate numerical simulations using a FAST model on the DTU 10MW 

FWT as presented in Section 3.3.3. The extreme load prediction of the Gumbel and ACER1D methods 

are presented in Sections 5.1.3.1 and 5.1.4 respectively.  

The loads at the three measurement points presented in Figure are considered. These are the blade 

one root flapwise's bending moment (RootMyb1), main shaft tip up-down bending moment 

(LSSTipMys) and tower bottom fore-aft bending moment (TwrBsMyt). 

 

Figure 46 Location of measured bending moments 
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6.2.1 Time-domain responses, PSD, and maximum values 
The time-domain responses for one portion, the power spectral distributions (PSDs) and the maximum values 

for the different realizations are presented in Figure 47, Figure 48 and Figure 49, Figure, respectively. The results 

from the different load cases LC1, LC2 and LC3 are generated, and one of each is displayed. In addition, the wind 

and wave elevation time series and PSDs are plotted in the figure as a reference. 

 

  

  

 

Figure 47 Time domain results. Figures Identity - Top-left: LSSTipMys; Top-right:TwrBsMyt; Centre-left: RootMyb;  Centre-

right: Wind velocity (Downwind at hub); Bottom: Wave elevation 
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Figure 48 Power-Spectral-Distributions. Figures Identity - Top-left: LSSTipMys; Top-right:TwrBsMyt; Centre-left: RootMyb;  

Centre-right: Wind velocity (Downwind at hub); Bottom: Wave elevation  
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Figure 49 Maximum value in each realization. Figures Identity - Top-left: LSSTipMys; Top-right:TwrBsMyt; Centre-left: 

RootMyb;  Centre-right: Wind velocity (Downwind at hub); Bottom: Wave elevation 

 

6.2.2 Extreme load responses using ACER and Gumbel methods  
The figures and table below show the ACER and Gumbel extreme load responses for the different cases 

(Table 15). shows an example for the ACER extrapolation and Gumbel fitting for TwrBsMyt under LC1. 

While Figure 50 and Figure 51 show all the three moments with ACER and Gumbel fitting at 95 % CI for 

all the three cases. K = 6 is used for the ACER method in the stimulations. 
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Figure 50 ACER extrapolation plot for TwrBsMyt for LC1 

 

Figure 51 Gumbel fitting, TwrBsMyt, for TwrBsMyt for LC1 

It can be seen that with a smaller confidence interval, the ACER1D method gives better results as it 

does not assume any distribution. Instead, it shadows the data point as presented in Figure 50. While 

it can be seen from Figure 51 that the Gumbel distribution is deviating away as the data points move 

towards the left, this result is an overestimation of extreme values in the Gumbel distribution, which 

clearly illustrates the benefits of the ACER1D method. 

The respective extreme load responses and their respective 95% confidence intervals for both the 

ACER and Gumbel methods are plotted. Figure 52, Figure 53 and Figure 54 represents the  RootMyb, 

LSSTipMys and TwrBsMyt, respectively, and each figure has all three cases (LC1, LC2 and LC3) plotted 

in them.  
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Figure 52 Blade 1 RootMyb. ACER and Gumbel (95 % CI); Top-left: LC1; Top-right: LC2; Bottom: LC3 

 

  

 

Figure 53 LSSTipMys. ACER and Gumbel (95 % CI); Top-left: LC1; Top-right: LC2; Bottom: LC3 
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Figure 54 TwrBsMyt. ACER and Gumbel (95 % CI); Top-left: LC1; Top-right: LC2; Bottom: LC3 

 

We can see from the figures that the 1, 2 and 5-year extreme values are about 1.2 x larger than the 

one-hour stimulation. Therefore, it is crucial to use extrapolation and accurate prediction methods 

when estimating extreme values with such high variation. This becomes especially important in design 

engineering. Furthermore, it is clearly observed that the 95 % confidence interval with the ACER1D 

method is clearly much smaller and thus better than that of the Gumbel distribution. This better 

ACER1D result can be attributed to the fact that the ACER1D does not impose any distribution on the 

values. While the Gumbel distribution shows a larger confidence interval indicating that it does not fit 

with the extreme value responses as well. Additionally, the 1, 2, and 5-year extreme values that the 

Gumbel method calculated were almost alike because of the inaccurate fitting at the upper tail end of 

the probability distribution. The slope of the Gumbel distribution is very steep at the upper end which 

results in a very small change for every minute change in probability.  

  



87 | P a g e  
 

6.2.3 Choice of k value in ACER method 
Sensitivity analyses for the k values are recommended when studying new responses (Næss, 2009b). 

Thus, different options of k-value are investigated with the q value held at 10-6. The results of the 

different k values (2,4 ad 6) are present in Table 17. Additionally, ACER1D function plots with k values 

ranging from1 to 6 is shown in Figure 55 for all three moments and cases. 

 

Load Case 

q value 10-6 

k value 2 4 6 

LC1, Vhub = 8 m/s 

RootMyb (kNm) 36103 36441 37018 

LSSTipMys (kNm) 11509 11580 11592 

TwrBsMyt (kNm) 380076 368822 390514 

LC2, Vhub = 12 m/s 

RootMyb (kNm) 44536 44626 44951 

LSSTipMys (kNm) 19511 19228 19607 

TwrBsMyt (kNm) 476606 479938 480159 

LC3, Vhub = 16 m/s 

RootMyb (kNm) 38980 40385 40214 

LSSTipMys (kNm) 20747 20803 20670 

TwrBsMyt (kNm) 450802 447620 450217 

Table 17 Extreme values calculated from the ACER1D method considering different values of k. 

 

The Figure 55 show that the extreme values do not vary much with the different k values used. 

However, a k value of 1 resulted in incorrect answers. Furthermore, the extreme values estimated also 

increased with an increase in k values. Similarly, it was seen that the responses tend to converge when 

k > 2. Thus, k = 6 was used for analysis in this paper.  
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Figure 55 ACER functions for various k values. Top: LC1; Centre: LC2; Bottom: LC3,; Left: RootMyb; Centre: LSSTipMys; Right: 
TwrBsMyt 

6.3 Conclusion 
Paper III examined the differences with the extreme responses for a DTU 10 MW semi-submersible 

type FWT using the ACER1D and Gumbel methods. The results showed the benefits of the ACER1D 

over Gumbel methods, as the ACER1D method gave better-fitted predictions. The results align with 

the theory as using the Gumbel distribution led to an overestimation of the extreme values. ACER1D 

gave better results as the method is not confined to a particular distribution, resulting in better and 

more accurate results. Furthermore, to reinforce the ACER1D results, its 95% confidence interval was 

much smaller than the Gumbel results. The studies also verified that the k values do not affect the 

ACER1D results, and any value above 2 gave very similar results. However, k = 1 should be avoided as 
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it gave incorrect results. Furthermore, it is advised that sensitivity studies should be performed on k 

whenever a new response is being studied. 

7 Conclusion 
In this study, two main strategies to optimize the efficiency of wind turbines for future design were 

adopted. In the first strategy, a compensation scheme in the control system was implemented to 

reduce the bending moment in the low-speed shaft. The novel change implemented in this scheme 

introduced the errors of the bending moment in the pitch controller and was observed, and the control 

system's response to the new input was characterized. An in-depth analysis of the PID controllers was 

performed, and different gains were introduced in the compensation scheme to understand the 

system better. The analysis showed that optimizing the gain values gave better results and minimized 

the bending moment. Fine-tuning was also required to ensure that the best K-values varied according 

to the wind speed. The compensation scheme proved useful and was successful in reducing the 

bending moment. 

In the second part of the thesis, extreme load analysis using ACER1D and ACER2D was performed. The 

results were then compared with the Gumbel distribution for the ACER1D univariant analysis, and the 

ACER1D analysis proved superior to a Gumbel distribution even with a small data set. ACER1D also 

gave a small difference in its confidence interval, which indicates a very effective measure in predicting 

reliable extreme loads. The K-values in the ACER1D univariant analysis were optimized to ensure that 

the best possible K-value was selected in this study. As for ACER2D bivariant analysis, the dataset was 

correlated with the Asymmetric and Gumbel logistic model, and it was found that the former method 

of analysis provided more robust data points to work with. This is an assertion of the model's reliability, 

especially when dealing with a minimum dataset.  

The characterization and optimization of both the strategies used in this thesis thus proved useful and 

can be used for further research and recommended for use in designing newer and better wind 

turbines. 

7.1 Future Studies 
Further research on developing a more contemporary control system like the Linear–quadratic 

regulator controller (LQR) or Model predictive control (MPC) to reduce the bending moment in the 

low-speed shaft should be undertaken as it has a direct impact on the drive train loads. In addition, 

the load analysis of the drive train and the effect these controllers have on the drive train load can be 

examined in much more detail. 
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For the extreme load analysis, new ACER1D and ACER2D analyses can be done on the gearbox to 

characterize and optimize the effectiveness of the ACER methods. Such studies will be beneficial for 

optimizing the gearbox as they can facilitate a better and more reliable design of future gearboxes. 
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control for the reduction of non-torque main shaft loads 
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Abstract. It has been well established that non-torque main shaft loads influence the internal 
drive train loads. This paper proposes a scheme that compensates for non-torque loads in the 
blade pitch controller. The compensation scheme is implemented on a dynamic model developed 
in FAST/Simulink. Three wind conditions of 8, 11.4 and 20 m/s are examined. The dynamic 
analysis of the bending moment in the low-speed shaft showed a reduction in bending moment 
by 3 % for the rated wind speed (11.4 m/s) and 1.8 % for the above-rated wind speed (20 m/s), 
highlighting the effectiveness of the proposed scheme. However, a reduction in bending moment 
also slightly decreased the shaft’s speed by 2.3 % and 0.5 %, respectively. Similarly, the turbine 
power was decreased by 9 % and 1 %, respectively. In comparison, further gain scheduling 
within the compensation scheme reduces the power loss to as low as 0.3 %. The 2 to 3 % 
reduction in the low-speed shaft bending moment can significantly influence the drive train loads 
and easily outweigh any loss resulting in the shaft rotational speed and turbine power. Thus, this 
paper shows that using bending moment error as feedback within the compensation scheme 
positively affects the low-speed shaft’s bending moment with the eventual potential of reducing 
drivetrain loads. 

1. Introduction
Wind energy is a key driving force in achieving the net-zero emissions target 2050 set forth by many
countries, including Norway [1]. As more turbines are being built worldwide to achieve this target, it
has become ever more equally essential to keep the cost of developing and servicing these turbines to a
minimum. An essential aspect in keeping the cost low is ensuring wind turbines failure rates are
minimized, as such failure can easily have extended downtime (varying from months to years) and
heavily depends on the availability of the materials or manpower [2][3][4]. Furthermore, since some
parts within the wind turbines are more susceptible to damages or are expensive to replace, it can
significantly affect their base cost due to warranties. One such important example is the gearbox which
makes up about 15 % of the cost involved in manufacturing a wind turbine, making it one of the more
expensive components to service and replace during failure [3]. Even with better design and
manufacturing processes, many gearboxes are still only commonly achieving lifespans of less than 20
years [4][5]. An estimate of about one gearbox failure occurs for every 145 wind turbines per year.
Additionally, excessive loading also drives up the operations and maintenance costs for the
manufacturers [3][4]. Therefore, uncertainty in failure rates within the gearbox naturally drives up the
total cost of the turbines and the insurance cost involved in protecting them against damages [4].

The National Renewable Energy Laboratory (NREL) estimates that about 75 % and 15 % of 
gearboxes failures can be accredited to the bearing (abrasion and adhesion) or gear parts (bending fatigue 
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and corrosion), respectively. In addition, gearboxes experience different loads such as twisting moment 
or torque, transverse load, and axial load. Therefore, minimizing any of these loads will also vastly help 
reduce the total load acting on the gearbox. However, with very little room for better design 
improvements, today’s research on the gearboxes focuses on better materials or reducing loads acting 
on the gearbox by modifying the control systems. Innovating the control systems focuses on improving 
its controls, and example includes varying shaft speed or individual blade pitch to reduce the loads acting 
on the turbine shaft connected to the gearbox. 

It has been well established that non-torque main shaft loads influence the internal drive train loads. 
In Xing et al. [6], the authors showed that changes in floating wind turbine support led to a reduction in 
the non-torque main shaft loads, gear-teeth loads and bearing loads. While in three different papers 
[7][8][9], the authors confirmed that non-torque loads induced by overhang weight significantly 
influence the drive train loads and their response. The authors attempted to change the drive train design 
to reduce the effect of the load caused by the shaft. The authors also identified that both gravity and non-
torque loads cause excitations within the carrier frame, leading to gearbox loading. In Link et al. [10], 
the authors confirmed that bending moment (BM) in the main shaft resulted in the planet-ring gear 
misalignment, which led to an increase in edge loading. Edge loading eventually led to an increase in 
contact stress which gave a shorter gear lifespan. 

Wind turbines have long used active control to mitigate loads and increase power production under 
a wide variety of wind conditions. In Bossanyi [11][12][13][14], the author suggested that it is possible 
to further metamorphose controllers (limit pitch controllers), limiting certain types of mechanical loads.  
The author further discussed the possibility of using a control system and actuators to adjust the different 
pitch angles of each individual blade to reduce the loads on the systems. The authors illustrated a 
straightforward addition to the pitch control algorithm of each individual blade to reduce the peak load 
on some of the fixed components, which in turn led to a substantial amount of load reduction in the 
whole structure. At the same time, Henriksen [15], investigated the possibility of creating a model 
predictive controller (MPC) through gain scheduling or re-linearization. In this paper, the author only 
verified the ability of the MPC to control the turbines subjected to both physical and artificial constraints. 
However, the author did not focus on the effect the controllers had on the loads. While in the doctoral 
thesis written by Korber [5], the author found that a preview MPCs performed better in reducing both 
the mechanical extreme and fatigue loads than a non-preview MPCs and classical baseline controller. 
Much of this existing research did not focus on reducing non-torque main shaft loads.  

This paper aims to focus on improving an existing control algorithm on the NREL 5 MW reference 
turbine which will reduce the bending moment in the low-speed shaft which will eventually lead to the 
reduction of the gearbox or drivetrain loads. This is performed via a simple but highly effective scheme 
that directly compensates the non-torque main shaft loads in the blade pitch control system.  

2.  NREL 5 MW reference turbine 
The NREL 5 MW reference turbine [16] is used as the study object in this paper. It is a three-bladed, 
variable pitch-to-feather bladed, upwind, and variable-speed controlled megawatt wind turbine 
developed to study concepts surrounding wind technology.  The following method applied on this 
turbine will help envisage the reduction in non-torque bending moment in the turbine’s low-speed shaft. 
The NREL 5 MW reference turbine’s control system algorithm [16] is executed in the Simulink/FAST 
framework [17] and is presented in Section 3.1.   

3.  The compensation scheme 
The compensation scheme is presented in Figure 1 together with the original blade pitch controller. The 
original blade pitch controller corrects only for shaft speed error. In contrast, the compensation scheme 
adds the correction of the main shaft bending moment error. The scheme only modifies the blade pitch 
control, i.e., the generator control is not modified.  
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Figure 1. Modified pitch controller (Original controller with compensation scheme). 

The collective blade pitch command, θcom is calculated as: 

𝜃𝜃𝑐𝑐𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑝𝑝 ∙ 𝑒𝑒𝑡𝑡𝑜𝑜𝑡𝑡 + 𝑘𝑘𝑝𝑝 ∙ � 𝑒𝑒𝑡𝑡𝑜𝑜𝑡𝑡 𝑑𝑑𝑑𝑑 ( 1 ) 

where etot is the total error, kp is the proportional gain coefficient and ki is the integral gain coefficient. 
The derivative gain is zero. There are saturation and rate limiter placed on the commanded pitch.   

The total error, etot is calculated as: 

𝑒𝑒𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑘𝑘𝐵𝐵𝑅𝑅 ∙ 𝑒𝑒𝐵𝐵𝑅𝑅 ( 2 ) 

where eRPM is the shaft speed error, eBM is the bending moment error and kBM is the compensation weight 
factor applied on eBM. The values of kBM studied are presented in Table 1. When kBM is set to 0, the errors 
of the moment are not added to the PID controller. While when kBM is set to 1, it hypothetically means 
that all the bending moment errors are sent into the PID controller. 
The main shaft bending moment is the combined bending moment, M and is calculated as: 

𝑀𝑀 = �𝑀𝑀𝑦𝑦
2 + 𝑀𝑀𝑧𝑧

2 ( 3 ) 

where M is the combined bending moment, My and Mz are the non-rotating bending moments. 

3.1.  Simulink implementation 
The compensation scheme is implemented in Simulink/FAST [17] and is presented in Figure 2. The 
NREL 5 MW blade pitch controller [16] is modified to include the compensation scheme (shaded in 
Figure 2). 
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Figure 2. Simulink implementation. 

In the implementation, the y and z directional low-speed-shaft bending moments are squared and 
added together. Next, the root of this summation vector is calculated using equation ( 3 ) before passing 
the signal through a low pass filter. The error of the moment is then calculated as a summation of the 
differences between the measured input moment and the ideal moment of 0. The signal is then multiplied 
by the compensation weight factor (KBM). Finally, these two errors are added and then used as inputs 
into the PID controller. 

4.  Case studies 
The cases studied in this paper are presented in Table 1. Three wind speeds corresponding to below-
rated, rated and above-rated regions are studied for both steady wind and normal turbulent wind (NTM) 
conditions for a wide range of KBM values. This gives a total of 72 simulation cases. The simulation 
times for each case are 300 s for both steady and NTM wind conditions.  
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Table 1. Case studies 

Case no. Values 

Wind speed (m/s) 8, 11.4, 20 
Wind condition Steady, NTM 
KBM 0, 0.0001, 0.0002, 0.00032, 0.00064, 0.00072, 

0.0001, 0.0002, 0.00032, 0.00064, 0.00072, 0.001 

The variables studied are the non-torque bending moment (BM) (equation ( 3 )), the low-speed shaft 
speed (RPM) and the generator power (Power). Percentage differences, i.e., %BM, %RPM and %Power 
are also calculated and investigated. As an example, the % difference in BM is calculated as: 

%𝐵𝐵𝑀𝑀 =
𝐵𝐵𝑀𝑀𝑐𝑐𝑜𝑜𝑜𝑜𝑝𝑝 − 𝐵𝐵𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜

𝐵𝐵𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜
× 100% ( 4 ) 

where BMcomp is the bending moment obtained when the compensation scheme is applied and BMorg is 
the bending moment obtained with the original controller scheme with no modifications applied.  

5.  Results and discussions 

5.1.  Steady wind 
The results of the steady wind cases are presented in Figure 3 and Figure 4. When calculating the shaft 
RPM, generator power and generator torque, their average values of the last 100 seconds were computed. 

 
Figure 3. Steady state wind results at 3 different speeds with varying KBM; a. BM (top-left), b. 

RPM (top-right) and c. Power (bottom). 
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At the underrated wind speed (8 m/s), the pitch controller is not activated, therefore there are no 
changes to the results for all values of KBM. At the rated wind speed (11.4 m/s), the bending moment 
drops with increasing KBM but plateau after it reaches 0.001. While at the above-rated speed (20 m/s), 
an interesting phenomenon is observed as the BM drops for the lower KBM values and increases for the 
higher values. This phenomenon can be explained by the fact that as KBM increases, the error is added to 
the PID from the bending moments that become significantly larger than the shaft RPM. This causes the 
system to start behaving erratically as errors are corrected incorrectly. Similar erratic behaviour can 
similarly be expected at other speeds in the above the rated speed ranges (e.g., 15 or 18 m/s) as the KBM 
approaches 1). The bending moment drops with a negative gradient from 0 to 0.0002. This is as expected 
since the bending moments that is added at these KBM suits their shaft error proportionally. Thus, a good 
proportionality allows the errors to be corrected more accurately. Further detailed analysis is conducted 
for KBM values (between 0 and 0.0001) in the above-rated speed to garner improved efficiency of the 
bending moment values in that region. This detailed analysis is shown in Figure 4. 

The shaft RPM values drop steadily for an increasing KBM value for the rated and above-rated wind 
speeds. As these two lines decrease, in both cases, the shaft RPM error corrects the system to achieve 
its optimal shaft speed, which is the primary controller objective. The result shows a significant drop in 
power at the higher KBM at both the rated and above-rated wind speeds. However, at the lower KBM the 
power loss can be potentially better controlled and minimized. 

 

Figure 4. Steady state wind results (percentage (%) change for BM, RPM and Power) with varying 
KBM; a. Rated (top), b. Above-rated (bottom-left) and c. Above-rated with KBM scheduling(bottom-

right). 
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The results from Figure 4 show that at rated speed (11.4 m/s) and above rated speed (20 m/s), all the 
percentage change of bending moments, shaft RPM and generator power are dropping with an increasing 
KBM, except for the above rated speed (20 m/s) bending moment which reasoning was explained in the 
previous section. For the rated speed (11.4 m/s), Figure 4(a) indicates that 0.0001 gives the minimal 
proportion of losses between the percentage change of bending moments, shaft RPM and generator 
power. While for the above rated speed (20 m/s), a more detailed analysis was done in the ranges of 
0.00001 to 0.00015 (boxed-up region: Figure 4(b)) to identify the best KBM values. Figure 4(c) shows 
the results of the detailed gain scheduling of Figure 4(b). Figure 4(c) indicates that 0.00001 gives the 
minimal proportion of losses between the percentage change of bending moments, shaft RPM and 
generator power. More importantly, in Figure 4(c) at 0.00001, the bending moment loss is more 
significant than the power loss. Therefore, even though the percentage change might be small, it gives 
an ideal situation since the turbine reduction in bending moments is more than the loss in power 

5.2.  NTM wind 
The results of the NTM wind cases are presented in Figure 5 and Figure 6. Like the steady wind cases 
presented in Section 5.1.  , when calculating the shaft RPM, generator power and generator torque, their 
average values of the last 100 seconds were computed. 

  
Figure 5. NTM wind results at 3 different speeds with varying KBM; a. BM (top-left), b. RPM (top-

right) and c. Power (bottom). 

Similarly, for the NTM wind cases, at the under-rated wind speed (8 m/s), the bending moment, shaft 
RPM and generator power change are assumed to be zero due to the inactivation of the pitch controller. 
However, in the normal turbulent wind model the drop in the bending moments, shaft RPM and power 
seem to be relatively linear for both the rated and above-rated wind speeds. This is expected since with 
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the turbulent wind model the speed of the wind is varying at differently and averages out at the selected 
wind speed. The wind's net effect on the bending moment in this model clearly shows the steady dropped 
experienced with increasing KBM. 

The turbulent models’ rated or above-rated speeds produce very similar shapes for the shaft RPM 
and power in all measured KBM values. The bending moment values of the above rated speed is also 
lesser than the rated speed (using KBM = 0 as reference). This is accounted for correctly by the fact that 
as the blades pitches at above the rated speed, the bending moment acting on the turbine body and shaft 
is reduced. 

  
Figure 6. NTM wind results (percentage (%) change for BM, RPM and Power) with varying KBM; 
a. Rated (top), b. Above-rated (bottom-left) and c. Above-rated with KBM scheduling(bottom-right). 

For the rated speed (11.4 m/s), in Figure 6(a), it can be seen clearly that the percentage change in 
bending moment and power decreases at the same rate while the power is more significantly affected 
with increasing KBM. While for the above rated speed (20 m/s), in Figure 6(b), further investigation was 
done in the boxed-up region to find an appropriate KBM value that can minimize the losses between the 
bending moments, RPM and power. These results are shown in Figure 6(c). In Figure 6(c), the best KBM 
values are identified when there is more percentage loss of bending moment than power. A similar 
pattern was observed in the steady-state model. However, the KBM value (0.000032) in the turbulent 
model is different from the steady-state model. 

5.3.  Best KBM values 
To estimate the best KBM values for each wind speed, the best ratio for the percentage bending moment 
and percentage RPM is calculated. The higher the ratio would imply that the maximum decrease in 
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bending moment has been achieved with minimal change in RPM or power (P). The change is 0 at under 
rated wind speed (8 m/s) is insignificant and assumed to be zero. The results are presented in Table 2. 
 
 

Table 2. Best KBM values 

Wind speed (m/s) 8 11.4 20 

% difference, BM mean 0 -3.0041 -1.7701 
% difference, RPM mean 0 -2.3144 -0.5079 
Best ratio (%BM/%RPM) 0 1.29 3.48 
Best ratio (%BM/%P) 0 0.33 1.62 
KBM 0 0.00015 0.000032 

 
The percentage BM / percentage P ratio is less than 1 at the rated speed (11.4 m/s) and more than 1 

at the above rated speed (11.4 m/s). Even though it might be questionable if the benefits are worthwhile 
at the rated speed, it is unquestionably beneficial at the above rated speed. The ability to minimize the 
bending moments acting on the shaft and eventually the gearbox will increase the gearbox's life span 
significantly as described by the S-N curve. Furthermore, the KBM value can be scheduled to 0 at the 
rated speed if cost analysis research shows that it gives the most positive results. 

Finally, it can be summarized that varying KBM values and then adding the BM errors positively affect 
the reduction of the structural load oscillations. Furthermore, changing the KBM values and thus the BM 
errors magnitudes seem to have a linear relationship within the examined ranges of 0.00001 to 0.001. 
However, it is essential to acknowledge that it does not necessarily mean that this relationship holds to 
different wind speeds or different ranges of KBM values. Furthermore, it must be emphasized that the 
control algorithms used only considered the pitch angle controller for one blade and cumulated the 
results which were used for all three blades. 

6.  Conclusions 
Control algorithms that can reduce the bending moment in the low-speed shaft will eventually reduce 
the internal drive train loads within the gearbox, thus extending its lifespan. This paper has shown that 
adding a bending moment error into the pitch controller can positively affect the bending moment acting 
on the low-speed shaft. The bending moment can be reduced by about 3 % for the rated wind speed 
(11.4 m/s) and 1.8 % for the above-rated wind speed (20 m/s) while only losing 2.3 % and 0.5 % of the 
shaft’s rotational speed, respectively. Furthermore, a linear relationship was observed between the gain 
scheduled bending moment errors and the reduction of total bending moments if the KBM values are 
scheduled in an appropriate range. However, further studies need to be done to ensure consistency of 
such reduction at different wind speeds. It is also vital to ensure that lifespan extension does not 
substantially reduce the turbine’s power, torque, or rotational speed.  
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 10 

Abstract 11 

Offshore structures are constructed to withstand extreme wind and wave-induced loads, so 12 
studying these extreme loads is vital as it allows offshore structures, e.g., wind turbines, to be 13 
designed and operated with minimal disruption. A novel statistical model that is precise and 14 
meticulous will facilitate these extreme load values to be estimated accurately. Therefore, the 15 

recently developed bivariate average conditional exceedance rate (ACER2D) method is utilized 16 
in this paper. This multivariate statistical analysis is more appropriate than a univariate 17 

statistical analysis for complete structures, e.g., wind turbines, since it can extrapolate the 18 
extreme values with better accuracy. This paper uses this ACER2D method to explore a novel 19 

approach to estimating the extreme load responses of a 10-MW semi-submersible type floating 20 
wind turbine (FWT). Two cases are considered to understand the feasibility of the ACER2D on 21 

the extreme load responses.  The first case analyses the blade root flap wise bending moment, 22 
while the second one analyses the tower bottom fore-aft bending moment. The numerical 23 

bending moments used in this study are obtained from the FAST simulation tool (developed by 24 
the National Renewable Energy Laboratory) with the load cases simulated at under-rated, rated 25 
and above-rated speeds. Then, the ACER2D method is applied to model an extreme response 26 

for both these cases for a 5-year return period prediction with a 95 % confidence interval (CI). 27 
The proposed methodology permits accurate estimation of the bivariate extreme value. In 28 

conclusion, based on the performance of the proposed novel method, the ACER2D method can 29 
offer better robust and precise bivariate predictions of the bending moments of the FWT.  30 

Keywords: Floating wind turbine, FAST, ACER2D method, Extreme responses, Bivariate 31 

probability distribution. 32 

 33 

1. Introduction 34 

Developing more efficient wind turbines is a driving force enabling engineers to achieve the 35 
net-zero emissions target 2050 [1]. According to International Electrotechnical Commission 36 

(IEC) standards, wind turbines must be designed to operate in the highly stochastic wind and 37 
wave environments for at least 20 years [2]. Since both larger and more wind turbines are 38 
constructed, especially offshore, it has become extensional to minimise construction, 39 
maintenance, and operational costs. Turbines and their components are vulnerable to various 40 
cyclic loads such as axial and transverse loading, bending moments and torque. Furthermore, 41 

the loads acting on the wind turbines are also influenced by the wind's stochastic behaviours in 42 
speed, direction, shear, and vorticity, making extreme load analysis imperative for wind 43 

turbines design and operation. Any failure in the turbine system can result in unnecessary 44 
downtime, which can be extremely expensive, see [3]-[5]. Despite this, engineers in the 1970s 45 
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believed that it was unnecessary to conduct detailed modelling, resulting in the design of wind 46 
turbines with huge safety margins. However, this changed with the further development of 47 
larger wind turbines as it became more expensive to maintain similar safety margins. On top of 48 

that, inaccurate estimation of design loads led to unnecessary failures. These led to an industry 49 
revamp, where a better accurate prediction technique was developed by the 1990s using 50 
dynamic structural models, turbulence models, aerodynamic models, and control algorithms, 51 
see [6]. 52 

Two different methods can be applied to evaluate extreme wind turbines loads. The first method 53 

involves running a simulation for rare occurrences that leads to a high structural load. In 54 
contrast, the second method simulates the wind turbine operating under normal conditions. The 55 
results are then extrapolated with a probability distribution, and the extreme tail is analysed, see 56 
[7]. The second method is more commonly used as it uses a full statistical distribution instead 57 

of an individual event.  58 

Even as researchers could now estimate extreme loads more accurately than ever before, they 59 
still had to develop a better statistical distribution to help them extrapolate the extreme load [6]. 60 

Thus, many researchers worked on numerous probabilistic methods to increase the precision of 61 
the estimated loads. In [8], the author developed a non-linear parametric model to extrapolate 62 
and estimate long term fatigue loading. In [9], [10], the authors developed techniques to 63 
calibrate partial safety factors which could predict extreme loads through extrapolation and 64 

showed that these extreme loads follow the Gumbel distribution. While in the study [11], the 65 
author continued fine-tuning probabilistic methods and parametric models and executed a 66 

detailed uncertainty analysis. While to achieve a more accurate estimation for the moment, [12],  67 
[13] attempted to compile and simplify the different techniques mentioned above. In [14], the 68 

authors attempted to estimate extreme loads through statistical extrapolation of limited field 69 
data. Many studies have recently focused on more precise estimation of the wind turbine's 70 
extreme loads. Examples include [15], where the author used statistical and modelling to 71 

estimate long-term extreme responses on an offshore wind turbine. While in [16], the author 72 
used extreme value statistics to estimate flow-induced responses from a small sample size, [17] 73 

estimated loads using the global and block maxima extrapolation. While in [18], the authors 74 
used the threshold extrapolation method to estimate the extreme loads and turbulent intensity. 75 
In [19], the authors used the Monte Carlo method to estimate the long-term fatigue loads. In 76 
contrast, many authors such as [20]-[26] have attempted to match different statistical 77 

distribution models with extreme load patterns. However, the methods mentioned above fit an 78 
assumed extreme value distribution to the empirical data and do not precisely represent the 79 
actual characteristics of the data. It can lead to less reliable results, which is even more critical 80 

in extreme value prediction. The results are derived at the tail of the probability distribution and 81 
are sensitive to uncertainties and errors.  82 

This paper proposes a novel averaged conditional exceedance rate approach based on two-83 
dimensional design points (ACER2D) instead of traditional one-dimensional characteristic 84 

design values. ACER2D is a non-trivial approach compared to the classic method given that 85 
there is non-linear correlation between different response components. The proposed method 86 
can more efficiently and reliably predict extreme loads in a 10 MW large floating wind turbine 87 
(FWT). The ACER method combines the structural load statistics with appropriate parametric 88 
functions that provide a reliable description of the extreme load distribution's tail behaviour. 89 

ACER has been applied in earlier studies on various marine structures, see [27]-[29], and [30]-90 
[33]. This method provides a statistical depiction and its error bounds of the extreme value 91 
distribution inherent in the data, offering a unique approach to estimate the extreme values [34]. 92 

The ACER method sets itself apart from other commonly known methods like e.g. the Gumbel 93 
and Weibull distribution. ACER method is not purely based on the asymptotic distribution, thus 94 
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avoiding incorporating generalised extreme value distribution (GEV). The latter allows the 95 
values obtained from the ACER method to be more versatile as it represents real-life values that 96 
are typically not genuinely asymptotic. The margin of errors for irregularity is reduced as it 97 

avoids superposing asymptotic behaviour onto actual non-asymptotic data. The ACER method 98 
has been described to give more accurate and reliable results when compared to the peaks-over-99 
threshold or annual maxima methods. The effectiveness of the ACER method has fuelled 100 
further research [35] to develop a modified ACER method together with the adaptive Markov 101 
Chain Monte Carlo simulations to estimate the short-term extreme mooring tension. 102 

More efficient and reliable estimations of extreme responses will better help predict the effects 103 
these loads have on the components allowing the development and implementation of a better 104 
design or control system for the FWT. Optimal wind turbine parameters would minimise 105 
potential FWT mechanical damage due to excessive environmental loadings [36]. Accurately 106 

predicted extreme loads will also allow the components to be more optimally sized. It 107 
contributes to more refined designs and lower failure rates, which is particularly important for 108 
the offshore wind industry as it advances the design, manufacturing and deployment of large 109 

FWTs (>10 MW) in the coming decade.  110 

 111 

2. System description 112 

A 10-MW FWT system [37] is used in this work, which is illustrated in Figure 1. The FWT 113 

system will be expounded in two parts in the following sections. Firstly, the reference wind 114 
turbine will be described, then the properties of the semi-submersible floater and the mooring 115 

system will be introduced.  116 

 117 

Figure 1 The LIFES50+ OO-Star Wind Floater Semi 10MW structure [37]. 118 

 119 
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2.1. DTU 10-MW Reference Wind Turbine  120 

The DTU 10-MW reference wind turbine (RWT) [37] is used in this paper, designed from the 121 
NREL 5-MW RWT [37]. The wind turbine was designed per the International Electrotechnical 122 

Commission (IEC) Class 1A wind regime and is a traditional three-bladed, clockwise rotation-123 
upwind turbine, equipping with a variable speed and collective pitch control system. The DTU 124 
10-MW RWT numerical model has been successfully developed and studied in many academic 125 
works, e.g., [39]-[42]. The summary of the DTU 10-MW RWT is shown in Table 1. 126 

Table 1 Key parameters of the DTU 10-MW RWT  [37]. 127 

Parameter Value 

Rating 10-MW  

Type Upwind/3 blades 

Control Variable speed, collective pitch 

Drivetrain Medium-speed, multiple stage gearbox 

Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25 

Minimum and maximum rotor speed (rpm) 6.0, 9.6 

Maximum generator speed (rpm) 480 

Rotor diameter (m) 178.3 

Hub height (m) 119.0 

Rotor mass (kg) 227962 

Nacelle mass (kg) 446036 

Tower mass (kg) 1.257 x 106 

 128 

2.2. OO-Star Semi-submersible Wind Floater and mooring system 129 

This work uses a semi-submersible floating structure to support the DTU 10-MW RWT . It was 130 
introduced by Dr.techn. Olav Olsen AS in the LIFES 50+ project [37]. The floater comprises 131 
post-tensioned concrete, hosting a central column with three outer columns. The four columns 132 
are mounted on a star-shaped pontoon, where a slab is attached at the bottom. Three catenary 133 
mooring lines are used to maintain the floater in position, and in each line, a clumped mass is 134 

attached, separating the line into two segments. Greater details of the OO-Star Wind Floater 135 
and the mooring system are shown in Table 2 and Table 3, respectively.  136 

 137 
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 138 

Figure 2 Main dimensions of the OO-Star floater of the LIFES50+ OO-Star Wind Floater 139 
Semi 10MW structure [37]. 140 

 141 

Table 2 The main properties for the LIFES50+ OO-Star Wind Floater Semi 10MW structure 142 
wind floater [37]. 143 

Parameter Value 

Water depth (m) 130 

Draft (m) 22 

Tower-base interface above mean sea level (m) 11 

Displacement (kg) 24158 

Overall gravity, including ballast (kg) 21709 

Roll and pitch inertia about center of gravity (kg∙m2) 1.4462 x 1010 

Yaw inertia about center of gravity (kg∙m2) 1.63 x 1010 

Center of gravity height below mean sea level (m) 15.23 

Center of buoyancy height below mean sea level (m) 14.236 

 144 
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 145 

Figure 3 Sketch of the mooring system in the LIFES50+ OO-Star Wind Floater Semi 10MW 146 

structure (left: top view; right: side view) [37]. 147 

 148 

Table 3 The main properties for the mooring system of the LIFES50+ OO-Star Wind Floater 149 
Semi 10MW structure [37].  150 

Parameter Value 

Radius to anchors from platform centerline (m) 691 

Anchor position below MSL (m) 130 

Initial vertical position of clump mass below MSL (m) 90.45 

Initial radius to clump mass from centerline (m) 148.6 

Length of clump mass upper segment (kg) 118 

Length of clump mass lower segment (kg) 585 

Equivalent weight per length in water (N/m) 3200.6 

Extensional stiffness (N/m) 1.506 x 109 

 151 

3. Methodology 152 

This section describes the methodology adopted by authors to address engineering challenges 153 
related to safe and reliable design of FWTs (floating wind turbines). Note that the proposed 154 
ACER (Average Conditional Exceedance Rate) method along with the FAST simulation tool 155 

[70] was already recently successfully used by the authors, see e.g., [70]. 156 

3.1. Aero-hydro-elastic-servo dynamic analysis of the 10-MW FWT 157 

FAST (Fatigue, Aerodynamics, Structures and Turbulence) (version8, v8.16.00a-bjj), an open-158 

source WT simulation tool developed by the National Renewable Energy Laboratory (NREL), 159 
is utilized in this work for the fully coupled aero-hydro-elastic-servo dynamic analysis for the 160 
10-MW FWT. The FAST code couples together five computer codes: AeroDyn [44], HydroDyn 161 
[45], ServoDyn, and MoorDyn [46], to account for the aerodynamic loads on rotor blades, 162 
hydrodynamic loads on floaters, control dynamics, structural dynamics and mooring system 163 

dynamics. In addition, FAST provides the interface for reading the time-varying stochastic wind 164 
for time-domain simulations. The FAST simulation tool has been successfully used in other 165 
well-known projects such as OC3: Offshore Code Comparison Collaboration [47] and OC4: 166 

IEA Task Wind 30 [48], and its modelling capability has been authenticated using multiple 167 
floating structures in the Netherlands [49].  168 
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 169 

3.2. Extreme value prediction by ACER1D and ACER2D methods 170 

ACER1D method 171 

Various statistical methods have been used to approximate the extreme value distribution of a 172 
recorded time series in its tail. Examples of the extreme value methods used in the study of 173 
wind turbines include an estimation of extreme structural responses in floating vertical axis 174 
wind turbines, see [53] and extreme responses due to wave nonlinearity on a semi-submersible 175 
floating wind turbine, see [36].  176 

The ACER method used in this paper as in [54]-[60], [68]-[1] has numerous advantages when 177 
estimating extreme values from a recorded time series. One of these includes the ability to 178 

identify the effect of dependency between the data of the time series on the extreme value 179 
distribution. Also, the whole time series can be used as input data without de-clustering (i.e., 180 
no requirement to use independent data). However, the most prominent feature of the ACER 181 
method is its ability to provide a non-parametric depiction of the extreme value distribution 182 
inherent in the data. Therefore, this circumvents the need for explicit modelling due to seasonal 183 

effects as this method automatically accounts for it. Also, using the ACER method and an 184 
appropriate parametric function for tail modelling allows for an explicit description of the 185 
extreme value distribution suitable for deep tail extrapolation. Furthermore, this method also 186 
seeks to approximate the extreme value distribution in the non-asymptotic regime, which differs 187 

from the most commonly known extrapolation methods, i.e., Gumbel, POT (peaks over 188 
threshold) or Weibull distribution. Recent studies using the ACER method include the study of 189 

vessels extreme roll assessment [56] and extreme response in a mooring system, see [57]. 190 

When extrapolating extreme values distributions, the most commonly used distributions are 191 

faced with obstacles as they require an asymptotic behaviour. This behaviour cannot be entirely 192 
substantiated, and thus, its choice is based on convenience. Wrongly selected asymptotic 193 
distributions can result in errors when extrapolating to long return period design values. For 194 

example, in [58], the authors explained that a Gumbel distribution might be wrongly interpreted 195 
as a Weibull distribution since the data used partially fits the upper bound of the Weibull 196 

distribution. The result is a wrongly fitted asymptotically inconsistent distribution, resulting in 197 
wrongly approximated values (i.e., wind speed or extreme values). 198 

X(t) is the long-term global response of a floating wind turbine measured between the time 199 
interval (0,T). The discrete-time interval in (0,T) is defined as t1, …, tN, while process 200 

measurement X(t) at this discrete-time interval is defined as X1, …, XN to approximate the 201 

distribution function of the extreme value  𝑀𝑁 = max { 𝑋𝑗  ; 𝑗 = 1, … , 𝑁}, especially to estimate 202 

cumulative density function (CDF) 𝑃(𝜂) = Prob(𝑀𝑁 ≤ 𝜂) for large values of the response 𝜂. 203 

Therefore, the below mentioned random functions are presented: 204 

 205 

𝐴𝑘𝑗(𝜂) = 𝟏{𝑋𝑗 > 𝜂, 𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

𝐴𝑘𝑗(𝜂) = 𝟏{𝑋𝑗 > 𝜂, 𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

 𝐵𝑘𝑗(𝜂) = 𝟏{𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} , 𝑗 = 𝑘, … , 𝑁, 𝑘 = 2, 3, …  

( 1 ) 

 206 

Where, when 𝒜 is true, 𝟏{𝒜} = 1; if not it is 0. As mentioned in [54]-[60]: 207 

 208 
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𝑃𝑘(𝜂) ≈ exp ( − ∑
𝔼[𝐴𝑘𝑗(𝜂)]

𝔼[𝐵𝑘𝑗(𝜂)]

𝑁

𝑗=𝑘

) ≈ exp ( − ∑ 𝔼

𝑁

𝑗=𝑘

[𝐴𝑘𝑗(𝜂)]), 𝜂 → ∞ ( 2 ) 

 209 

The recorded time series can be further divided into short term K subsequent block where 210 

𝔼[𝐴𝑘𝑗(𝜂)] remains almost constant for each block. Such that ∑ 𝔼𝑗∈𝐶𝑖
[𝐴𝑘𝑗(𝜂)] ≈ ∑ 𝑎𝑘𝑗𝑗∈𝐶𝑖

(𝜂) 211 

for a large enough range of 𝜂 -values. Hence, ∑ 𝔼𝑁
𝑗=𝑘 [𝐴𝑘𝑗(𝜂)] ≈ ∑ 𝑎𝑘𝑗

𝑁
𝑗=𝑘 (𝜂) , where 𝐶𝑖 212 

indicates the set of indices for block numbered as 𝑖; from 𝑖 = 1, … , 𝐾, and where 𝑎𝑘𝑗(𝜂) are the 213 

realised values of 𝐴𝑘𝑗(𝜂)  for the calculated time series. Therefore, for a given stationary 214 

process (short term sea current state), the following is: 215 

 216 

𝑃𝑘(𝜂) ≈ exp ( − (𝑁 − 𝑘 + 1)𝜀�̂�(𝜂))  ( 3 ) 

 217 

where  218 

 219 

𝜀�̂�(𝜂) =
1

𝑁 − 𝑘 + 1
∑ 𝑎𝑘𝑗

𝑁

𝑗=𝑘

(𝜂)  ( 4 ) 

 220 

In the above equations, to make an approximation of the short term expected values, the 221 

observed values of the 𝑎𝑘𝑗(𝜂) functions were used together with the assumption of ergodicity 222 

for each short-term section of the recorded time series. Another way of describing the long-223 

term extreme value distribution in Eq. ( 3 ) can be realised since the empirical probability 224 

distribution of, 𝑚 = 1, . . , 𝑀, of sea current states has probabilities 𝑝𝑚, and ∑ 𝑝𝑚
𝑀
𝑚=1 = 1. 225 

Thus, the long-term ACER function of order k is:  226 

 227 

ACERk(𝜂) ≡ ∑ 𝜀�̂�(𝜂, 𝑚)

𝑀

𝑚=1

𝑝𝑚 ( 5 ) 

 228 

where 𝜀�̂�(𝜂, 𝑚), which is restricted to a specific sea state with number 𝑚, is the same type of 229 
function as in Eq. ( 4 ), but the averaging is restricted to the short-term block of data with 230 
number m. 231 

As mentioned in [54]-[60], the long-term extreme value distribution of 𝑀(𝑇), can then be 232 
described according to the ACER function of order k: 233 

 234 

𝑃(𝜂) ≈ exp(−𝑁∙ACERk(𝜂)) ( 6 ) 

 235 

where 𝐴𝐶𝐸𝑅𝑘(𝜂) is defined as the long-term empirical function for ACER in the order of k, 236 

where k "𝑁; 𝑁 is the number of all the data points from the recorded time series included to 237 

approximate the ACER functions. Stereotypically, these are local peaks from the measured time 238 
series.  239 
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The accuracy of Eq. ( 6 ) improves as the order k increases; it is observed that the ACERk(𝜂) 240 

functions converges rapidly with an increasing k, also mentioned in [54]-[60]. The advantage 241 

of the ACER method can be observed when increasing the conditioning level k. The probable 242 
data clustering effects can be accounted for, thus improving and refining the accuracy of the 243 
estimates of the extreme values, and this also circumvents an otherwise over-conservative 244 
design value. 245 

In high response values of 𝜂, ACERk as functions of the level, 𝜂 are usually in the tail end. 246 

Especially, for 𝜂 ≥ 𝜂0 , when the tail behaves like exp{−a(𝜂 + 𝑏)𝑐 + 𝑑}  with 𝑎, 𝑏, 𝑐, 𝑑 247 
becomes suitable constants. 248 

It is possible to do optimisation for the log-level when the mean square error function F is 249 

minimised with respect to the four arguments: 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘. 250 

 251 

                  𝐹(𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘, 𝑑𝑘)= ∫ 𝜔(𝜂)
𝜂1

𝜂0

{ln(ACERk(𝜂)) − 𝑑𝑘 + 𝑎𝑘(𝜂 + 𝑏𝑘)𝑐𝑘}

2

𝑑𝜂, 𝜂 ≥ 𝜂0 ( 7 ) 

 252 

where  𝜂1 is a suitable data cut-off value, i.e. the largest 𝜂  response value, which allows 253 

calculation of the confidence interval. The weight function (ω) is defined as 𝜔(𝜂)={ln𝐶+(𝜂) −254 

ln𝐶−(𝜂)}−2with (𝐶−(𝜂),  𝐶+(𝜂)) with a 95% CI, empirically approximated from the measured 255 

data. The comprehensive procedure for additional parameters optimisation  𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘  has 256 
been described in [27]-[34], [54]-[60]. 257 

 258 

ACER2D method 259 

Now, the 2D (bivariate) Average Conditional Exceedance Rate, or briefly ACER2D method, 260 
has been applied to analyse FWT blade root and tower bottom bending moment due to 261 
environmental wind and wave loads. A brief introduction of the bivariate ACER2D method is 262 

outlined below; see [61]-[64] for more details. Note that both of the stochastic response 263 
processes (blade root and tower bottom bending moments) mentioned above, are time-264 

synchronous. The latter is undoubtedly beneficial for coupling effects and bivariate statistics 265 
study.  266 

This paper studies a bivariate stochastic process 𝑍(𝑡) = (𝑋(𝑡), 𝑌(𝑡)) , having two scalar 267 

processes 𝑋(𝑡), 𝑌(𝑡),  simulated synchronously, over a time span (0, 𝑇). The bivariate data 268 

points (𝑋1, 𝑌1), … , (𝑋𝑁, 𝑌𝑁) correspond to equidistant time instants 𝑡1, … , 𝑡𝑁.  269 

The joint CDF (cumulative distribution function)  𝑃(𝜉, 𝜂): =  Prob (�̂�𝑁 ≤ 𝜉, �̂�𝑁 ≤ 𝜂) of the 270 

maxima vector (�̂�𝑁, �̂�𝑁), with �̂�𝑁 = max{𝑋𝑗 ; 𝑗 = 1, … , 𝑁}, and  �̂�𝑁 = max{𝑌𝑗 ; 𝑗 = 1, … , 𝑁} is 271 

introduced. In this paper, 𝜉 and 𝜂 are blade root and tower bottom mooring bending moments, 272 
M1 and M3 in  respectively.  273 

Next, the non-exceedance event is introduced: 𝒞𝑘𝑗(𝜉, 𝜂): = {𝑋𝑗−1 ≤ 𝜉, 𝑌𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤274 

𝜉, 𝑌𝑗−𝑘+1 ≤ 𝜂} for 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 + 1. Based on the definition of the joint CDF 𝑃(𝜉, 𝜂) 275 

 276 
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𝑃(𝜉, 𝜂) =   Prob (𝒞𝑁+1,𝑁+1(𝜉, 𝜂))

=   Prob (𝑋𝑁 ≤ 𝜉, 𝑌𝑁 ≤ 𝜂 | 𝒞𝑁𝑁(𝜉, 𝜂)) ⋅ Prob (𝒞𝑁𝑁(𝜉, 𝜂))

= ∏

𝑁

𝑗=2

  Prob (𝑋𝑗 ≤ 𝜉, 𝑌𝑗 ≤ 𝜂 | 𝒞𝑗𝑗(𝜉, 𝜂)) ⋅ Prob (𝒞22(𝜉, 𝜂))

 ( 8 ) 

 277 

The CDF 𝑃(𝜉, 𝜂) can be expressed as in [61]-[64] 278 

 279 

𝑃(𝜉, 𝜂) ≈ exp {− ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))}   ( 9 ) 

 280 

for a suitably large conditioning level parameter 𝑘 , and large 𝜉 and 𝜂  with  𝛼𝑘𝑗(𝜉; 𝜂) ≔281 

 Prob (𝑋𝑗 > 𝜉 | 𝒞𝑘𝑗(𝜉, 𝜂)), 𝛽𝑘𝑗(𝜂; 𝜉) ≔ Prob (𝑌𝑗 > 𝜂 |𝒞𝑘𝑗(𝜉, 𝜂)) , 𝛾𝑘𝑗(𝜉, 𝜂) ≔ Prob (𝑋𝑗 >282 

𝜉, 𝑌𝑗 > 𝜂 | 𝒞𝑘𝑗(𝜉, 𝜂)). 283 

Next, the 𝑘-th order bivariate average conditional exceedance rate (ACER2D) functions can be 284 

introduced 285 

 286 

ℰ𝑘(𝜉, 𝜂) =  
1

𝑁 − 𝑘 + 1
 ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))     ( 10 ) 

 287 

for 𝑘 = 1, 2, …; when 𝑁 ≫ 𝑘  288 

 289 

𝑃(𝜉, 𝜂) ≈ exp{ – (𝑁 − 𝑘 + 1)ℰ𝑘(𝜉, 𝜂)} ;  for large 𝜉 and 𝜂. ( 11 ) 

 290 

From Eq. ( 11 ), it follows that an accurate estimate of the bivariate CDF 𝑃(𝜉, 𝜂) = 𝑃(𝜉, 𝜂) 291 

relies on the equally accurate estimation of ACER2D functions ℰ𝑘. 292 

 293 

3.3. Load cases and environmental conditions 294 

The environmental data (wind and wave data) used in this paper are established based on 295 

hindcast data from an offshore site in the Northern North Sea from 2001 to 2010.  The long-296 
term joint wind and wave distribution were developed in [65], which considers a one-hour mean 297 
wind speed at the position that is 10 meters above the sea level (U10), wave spectral peak period 298 
(Tp) and the significant wave height (Hs). The joint distribution of U10, Hs and Tp is expressed as 299 
below: 300 

 301 

𝑓𝑈10,𝐻𝑠,𝑇𝑝
(𝑢, ℎ, 𝑡) = 𝑓𝑈10

(𝑢) ∙ 𝑓𝐻𝑠ǀ𝑈10
(ℎǀ𝑢) ∙ 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠

(𝑡ǀ𝑢, ℎ) ( 12 ) 

 302 



11 
 

where 𝑓𝑈10
(𝑢) , 𝑓𝐻𝑠ǀ𝑈10

(ℎǀ𝑢) and 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠
(𝑡ǀ𝑢, ℎ) represents the marginal distribution of U10, 303 

the conditional distribution of Hs for given U10 and the conditional distribution of Tp for given 304 

U10 and Hs. Figure 4 illustrates in situ Hs, Tp scattered diagram, used to assign probabilities to 305 
individual sea states. 306 

 307 

 308 

Figure 4 An example of in situ Hs, Tp scattered diagram, used to assign probabilities to 309 

individual sea states. 310 

Table 4 Load cases for numerical simulations. 311 

Load 

cases 
𝑼𝒘 (m/s) 𝑻𝑰 𝑯𝒔 (m) 𝑻𝒑 (s) Samples Simulation length (s) 

LC1 8 0.1740 1.9 9.7 20 4000 

LC2 12 0.1460 2.5 10.1 20 4000 

LC3 16 0.1320 3.2 10.7 20 4000 

 312 

Three representative load cases with a high probability of occurrence in the normal operating 313 

conditions are used in the present work and listed in Table 4. The mean wind speed selected to 314 
be used in this paper is based on the turbines operating ranges (wind speeds ranging within the 315 

cut-in, rated and cut-out zones) with an increment size of 4 m/s. The most probable wave height 316 

and spectra peak period in each wind speed condition is selected based on the joint distribution 317 

expressed in Eq. ( 12 ). 318 

The turbulent wind and irregular waves are modelled, and they are considered to be 319 
directionally aligned in all the load cases. The normal turbulence and normal wind profile 320 
models are employed, and wind turbine Class C is applied. The wind power-law formulation is 321 
used to model the wind speed profile, as represented below: 322 

 323 

𝑈𝑤(𝑧) =  𝑈ℎ𝑢𝑏 (
Z

𝑍ℎ𝑢𝑏
)𝛼 ( 13 ) 

 324 
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where Uw(z) is the mean wind speed at the height 𝑧 above the still water level, uhub represents 325 

the mean wind speed at the hub height, zhub denotes the hub height above the still water level 326 

and is 119 m for the 10-MW FWT. α is the power-law exponent, and it is taken as 0.14 for 327 
offshore locations based on the recommendation in IEC 61400-3-2, see [66].  328 

The Kaimal turbulence model is used to generate the three-dimensional turbulent wind fields, 329 
simulated using a stochastic turbulent-wind simulator, Turbsim [67]. Time-varying irregular 330 
waves are generated using the JONSWAP (Joint North Sea Wave Project) spectrum according 331 

to the specified Hs and Tp. Detailed descriptions for the models of turbulent wind and irregular 332 
waves can be found in IEC 61400-3-2 [66]. 333 

For the three environmental conditions, 20 different random samples of wind and wave are 334 
applied for each sea state. Each simulation lasts 4000s, where the first 400s is removed to reduce 335 

the transient effect induced by the wind turbine start-up. Therefore, 1-h data in each simulation 336 
is formed and is used for extreme value analysis in this work. The results shown in this work 337 
are based on the average of 20 1-h simulations to reduce the stochastic variability. 338 

 339 

4. Results and discussions 340 

This paper presents the methodology for estimating the DTU 10-MW RWT-OO-Star's extreme 341 
loads during operating conditions. The empirical data is based on accurate numerical 342 

simulations using a FAST model as presented in Section 3.1. The ACER2D (bivariate averaged 343 
conditional exceedance rate) method is presented in Section 3.2.  344 

Response variable: 345 

The loads at the two measurement points presented in  are considered. These are the blade 1 346 

root flapwise bending moment (RootMyb1) and tower bottom fore-aft bending moment 347 
(TwrBsMyt). 348 

  349 

Figure 5 Location of points where bending moments are measured. 350 
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 351 

4.1. Power Spectral Density based on time responses 352 

Figure 7 of M1, M3. It is seen that there are PSD (Power Spectral Density) peaks at the 353 
frequencies f at 3P, 6P and 9P as observed in Figure 6. This information should be reflected in 354 
the ACER functions' choice of conditioning level k. 355 

 356 

 357 

 358 

Figure 7 PSD of RootMyb1 – M1 and TwrBsMyt – M3 359 

4.2. Extreme responses: univariate and bivariate analysis 360 

This section presents statistical analysis results for M1 and M3 bending moments using the 361 
univariate and bivariate methods, i.e., ACER1D and ACER2D, respectively. The focus is on 362 

accurate predicting extreme response, which is vital for safety and reliability at the design stage. 363 
The conditioning level k is set to be 10, as it was observed that ACER functions have converged 364 

at that level in the distribution tail. 365 

Figure 8 presents univariate extreme response 5-year return period prediction with 95 % 366 
confidence interval (CI); the 1-year return period is chosen purely as an example. The predicted 367 

extreme probability level corresponds to 5-year return period. 368 
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Figure 8 Univariate ACER1D extreme response 5-year prediction with 95% CI (dotted lines). 369 
Top: RootMyb1 – M1; Bottom: TwrBsMyt – M3; decimal log scale. 370 

Figure 9 presents the phase space of responses M1 over M3, along with the bivariate empirical 371 

ACER2D function ℰ̂𝑘 . It is clearly seen that there is a non-linear correlation between responses 372 

M1 and M3. The bivariate empirical ACER2D surface, ℰ̂𝑘 obviously marginally corresponds to 373 
univariate ACER1D functions presented in Figure 8. 374 
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 375 

 

 

 

Figure 9 Top: phase space, response M1 vs M3; Bottom: bivariate empirical ACER2D 376 

function ℰ̂𝑘, decimal log scale. 377 

Figure 10 presents ACER2D fit to the empirical data along with the bivariate predicted 378 
contours with return periods in years (lower figure). Figure 10 presents contour lines for the 379 

optimized Asymmetric logistic (AL) 𝒜𝑘(𝑀1, 𝑀3)  and optimized Gumbel logistic (GL) 380 

𝒢𝑘(𝑀1, 𝑀3) models, optimally matched to the corresponding empirical bivariate ACER2D 381 

function ℰ̂𝑘(𝑀1, 𝑀3), 𝑘 = 10, see [61]-[64] for GL and AL definitions. The contour lines 382 

negative labelling numbers in Figure 10 indicate decimal logarithmic scale probability levels 383 

of 𝑃(𝑀1, 𝑀3). Figure 10 clearly shows that the empirical bivariate ACER2D surface ℰ̂10 well 384 

captures the strong correlation between load/response components. The optimized models 𝒢10 385 

and 𝒜10 exhibit smooth contours along with matching ACER2D empirical contours. The later 386 

models may be better suited for bivariate extreme value distributions response processes. 387 
Figure 10 shows good agreement between the estimated optimized AL and GL surfaces and 388 
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the bivariate ACER2D surface. This means that the correlation between responses M1 vs M3 is 389 
a crucial non-negligible factor influencing the shape of the bivariate contour lines. 390 

 

 

 

 

Figure 10 Top: ACER2D fit to empirical data; Bottom: predicted bivariate contours with 391 

return periods in years. 392 
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The lowest probabilities in Figure 9 and Figure 10 correspond to the value 𝑁−1 where 𝑁 is the 393 
number of equidistant time points in the studied time series, see Eqs. ( 1 ) to ( 8 ). Figure 8 394 

(bottom) presents the predicted bivariate contours with 50- and 100-years corresponding return 395 
periods. Note that the return period of a few years is quite long compared to the short duration 396 
of the analysed measured record. As seen from Figure 10 (bottom), the fitted lines match the 397 
empirical data well, highlighting the accuracy of the ACER method. Further, the ACER method 398 
is efficient as it requires only 20 1-hour realisations to generate accurate results.  399 

Figure 11 shows that the univariate design point lies outside the safe 50-year zone (dashed 400 
area) and is outside the 2D design zone. This means that the 1D method is not conservative. 401 

 402 

403 
Figure 11 Design safe zone (dashed) due to bivariate analysis, versus univariate design point, 404 

based on Figure 10. Asymmetric logistic  𝒜𝑘(𝑀1, 𝑀3) 50-year contour line. 405 

 406 

Table 5 presents 50- and 100-year return period ACER1D response predictions in meters.  407 

Table 5 50- and 100-year return period response ACER1D predictions 408 

 50 yr 100 yr 

M1 (Nm) 4.8 x 104 4.9 x 104 

M3 (Nm) 4.5 x 105 4.6 x 105 

 409 

 410 

5. Conclusions 411 

A novel approach that is based on a 2D design point instead of the traditional 1D characteristic 412 
design values has been introduced. The proposed methodology provides an accurate bivariate 413 

extreme value prediction, utilizing all available data efficiently. Based on the overall 414 
performance of the proposed method, it was concluded that the ACER2D method could 415 
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incorporate environmental input and provide a more robust and accurate bivariate prediction 416 
based on proper numerical simulations. The method uses only a relatively small amount of data 417 
to provide reasonable predictions with long return periods.  418 

The FWT blade root and tower bottom bending moments due to environmental wind and wave 419 
loads were studied for three operating conditions of mean wind speeds of 8, 12 and 16 m/s. The 420 
bivariate ACER2D method was briefly described and applied to account for the coupled load 421 
effects, namely dynamic moment and force simulated synchronously in time. Bivariate extreme 422 
value distribution low probabilities (or equivalently high quantiles) contours were estimated by 423 

adopting various bivariate copula models. Potential outliers present in the data set are also well 424 
managed by being neglected in the distribution tail through the proposed extrapolation and 425 
copula fit technique.  426 

Regarding the safety and reliability of FWT operations, the multivariate analysis is a more 427 
proper approach than the classic univariate approach. The presented technique has the following 428 
advantages: 429 

• Unlike IFORM/ SORM, the ACER2D method does not simplify model nonlinearities.   430 

• Various kinds of coupled data can be studied: measured or numerically simulated. 431 

• Clustering effects can be accounted for. 432 

• The univariate estimation of design values may not be conservative as indicated through 433 
the comparison to a bivariate analysis as presented in this paper.  434 

• ACER2D method may provide an efficient way of identifying practical design 435 

appropriate bivariate copula models. 436 

The described approach may be used at the design stage of a large FWT to provide the 437 
opportunity of defining FWT parameters that would minimize extreme loads and potential 438 
damages. It is also noted that the study is limited to the quality of the data itself. This limitation 439 

applies for any type of statistical method.  440 

 441 
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Abstract 11 

Offshore wind turbines have been steadily increasing in size, with the global average size 12 
increasing from 1.5 MW to 6 MW from 2000 to 2020. With this backdrop, the research 13 
community has recently looked at very large offshore wind turbines (OWTs) in the 10 to 15 14 
MW class. The larger rotor, nacelle structure and tower have larger structural flexibility. The 15 

larger structural flexibility, controller dynamics, aero, hydrodynamics, and various 16 

environmental conditions result in complex structural responses. The structural load effects of 17 
a very large OWT could be more severe than that of the lower MW classes. Accurate 18 
quantification of the extreme dynamic responses of OWT systems is essential in the Ultimate 19 

Limit State (ULS) based design due to the fully-coupled interaction between the OWT system 20 
and environmental conditions. Motivated by this, this paper uses the average conditional 21 

exceedance rate (ACER) and Gumbel methods to predict the extreme responses of the 10 MW 22 
semi-submersible type floating OWT under the operating conditions of 8, 12, and 16 m/s mean 23 

wind speed, representing the below-rated, rated and above-rated regions, respectively. The aim 24 
is to guide future research on very large OWTs by indicating the ULS loads expected. 25 

 26 

Keywords: Floating wind turbine, FAST, Extreme value analysis, ACER method, Gumbel 27 

method 28 

 29 

1. Introduction 30 

Offshore wind has been developing quickly from the past decade. From the global wind report 31 

2021 [1] issued by the global wind energy council, it is seen that the cumulative offshore 32 
installations have grown on average by 22 % annually in the past decade. The cumulative 33 
installed wind energy was 35 GW in 2020, 14 times higher than a decade ago. Further, it is 34 

estimated that there will be over 235 GW new installations over the next decade, which 35 
demonstrates a great prospect.  36 

One observation over the years in the technological development of wind turbines is that wind 37 
turbine capacities have consistently increased. This is particularly true of offshore wind turbines 38 
(OWTs). Larger wind turbine sizes enable the same power output with fewer turbines, 39 

foundations, converters, and cables and lower maintenance costs, thus reducing the overall cost 40 
of energy. The global average offshore wind turbine size has increased from 1.5-MW in 2000 41 
to 6.0-MW in 2020 [1]. The trend continues with the research community recently starting 42 

conceptual studies for 15-20 MW-class offshore turbines, such as the IEA 15-MW offshore 43 
reference wind turbine [2].  44 
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Accurate quantification of the extreme dynamic responses of OWT systems is essential in the 45 
Ultimate Limit State (ULS) based design. Due to the fully-coupled interaction between the 46 
OWT system and environmental conditions, the responses are strongly nonlinear and highly 47 

dynamic. A robust set of design requirements must ensure that the extreme load effects over 48 
the entire design lifetime are correctly assessed with corresponding structural capacities 49 
designed in the OWT. Estimating these extreme load effects can be challenging. Direct 50 
calculation of extreme structural responses could obtain accurate results, but this method needs 51 
many dynamic simulations and substantial computational costs. A statistical extrapolation 52 

method, as proposed in IEC 61400-3 [3], for ultimate strength analysis makes it possible to 53 
evaluate the extreme load effects of OWTs by using a much smaller amount of data, thereby 54 
saving a great deal of computational time.  55 

Many studies have evaluated the effectiveness of various statistical extrapolation methods when 56 

used for the extreme load and load effect analysis for OWTs. Saha et al. [4] studied the extreme 57 
short-term responses of a jacket foundation of a 5 MW OWT. The authors studied the sensitivity 58 
of the extreme responses to sample sizes. Three extreme value analysis methods were 59 

investigated: the mean up crossing rate method, the Weibull tail method, and the global maxima 60 
method. It was found that the up crossing rate method performs better for both Gaussian and 61 
non-Gaussian responses than the other two methods. Dimitrov [5] compared three different 62 
methods for extracting independent responses peaks of wind turbine loads. Low-speed shaft 63 

torsion moment, tower base side-side bending moment, and flapwise blade root bending 64 
moment were compared. The results showed that the statistical load extrapolation method could 65 

reasonably estimate the statistical distribution of extreme loads under normal operating 66 
conditions. In contrast, uncertainties in the extrapolation approach exist in other conditions such 67 
as emergency stops, faults, grid drops, storms. Further, the behaviour is influenced by the 68 

turbine controller strategy. Using measurement data, Lott and Cheng [6] presented different 69 
methods to perform statistical extrapolations of extreme loads at wind turbine tower base and 70 

blade root. It was shown that the choices of the distribution function and the fitting method, and 71 
the database selection are important in determining the extrapolated extreme loads. Cao et al. 72 

[7] proposed a stochastic programming formulation based on statistical extrapolation 73 
techniques to mitigate long-term extreme loads in wind turbines. It is found that significant 74 
improvements in power extraction can be obtained while within the extreme mechanical loads. 75 
Cheng et al. [8] compared the extreme structural response and fatigue damage of a 5 MW 76 

horizontal axis floating wind turbine and a 5 MW vertical type. Li et al. [9] estimated the 77 
extreme values of the tower base fore-aft bending moments and mooring line tension forces of 78 
an integrated wind, wave and tidal energy system based on an extrapolated up-crossing rate 79 
method. Xu et al. [10] investigated the effect of wave nonlinearity on the fatigue damage and 80 

extreme responses of a 5MW semi-submersible floating wind turbine. Gumbel fitting and 81 
average conditional exceedance rate (ACER) methods were used to estimate the extreme 82 
responses of the tower base bending moments and mooring line tensions in extreme conditions.  83 

Most studies on extreme structural response were performed on small-scale or medium-scale 84 
OWTs. Minimal effort has been devoted to very large (10-15 MW) floating OWTs. Very large 85 
floating OWT has longer blades, larger swept areas, and taller tower heights, leading to larger 86 
aerodynamic loads. In addition, it has a heavier rotor-nacelle-assembly (RNA) system and a 87 
larger support structure which leads to larger inertial loads. Further, studies performed by Wang 88 

et al. [11]-[12] indicated that larger wind turbines could be at risk of resonance. The larger rotor, 89 
nacelle structure and tower could be sufficiently flexible so their natural frequencies can be 90 
close to the low-frequency wind and wave excitations. The generally larger load effects mean 91 

that the structural load effects of a very large OWT could be more severe than that of the lower 92 



   
 

   
 

MW classes. This highlights the importance of accurately quantifying the dynamic load effects 93 
of these very large OWTs, which is paramount in their ULS design.  94 

Motivated by the above, the present work will characterise the extreme structural responses of 95 

a 10-MW floating semi-submersible OWT using the widely used Gumbel fitting and ACER 96 
methods. The paper will investigate the critical locations at the blades-hub, rotor-main shaft, 97 
and the tower base-floating platform interfaces. Representative operating conditions at below-98 
rated, rated, and above-rated wind speeds are studied. The aim is to guide future research on 99 
very large OWTs by indicating the ULS loads expected.  100 

 101 

2. System description 102 

A 10-MW floating wind turbine (FWT) system [13] which is illustrated in Figure 1, is used in 103 
this work. The FWT system will be expounded in two parts in the following sections. Firstly, 104 
the reference wind turbine will be described, then the properties of the semi-submersible floater 105 
and the mooring system will be introduced.  106 

 107 

Figure 1 The 10-MW OO-Star floating wind turbine [13]. 108 

 109 

2.1. DTU 10-MW Reference Wind Turbine  110 

The DTU 10-MW reference wind turbine (RWT) [14] is used in this paper. The wind turbine 111 
was designed following International Electrotechnical Commission (IEC) Class 1A wind 112 

regime. It is a traditional three-bladed, clockwise rotation-upwind turbine and uses a variable 113 
speed and collective pitch control system. The DTU 10-MW RWT numerical model has been 114 

developed and studied by many researchers such as Muggiasca et al. [15], Yu et al. [16], Wang 115 
et al. [17], and Hu et al. [18]. The summary of the DTU 10-MW RWT is presented in Table 1. 116 



   
 

   
 

 117 

Table 1 Key parameters of the DTU 10-MW reference wind turbine [14]. 118 

Parameter Value 

Rating 10-MW  

Type Upwind/3 blades 

Control 

Drivetrain 

Variable speed, collective pitch 

Medium-speed, multiple stage gearbox 

Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25 

Minimum and maximum rotor speed (rpm) 

Maximum generator speed (rpm) 

6.0, 9.6 

480 

Rotor diameter (m) 178.3 

Hub height (m) 119.0 

Rotor mass (kg) 227962 

Nacelle mass (kg) 446036 

Tower mass (kg) 1.257 x 106 

 119 

2.2. OO-Star Semi-submersible Wind Floater and mooring system 120 

This paper considers the 10-MW RWT mounted on the semi-submersible developed by 121 

Dr.techn. Olav Olsen AS [13]-[14] in the LIFES 50+ project [13]. The floater is constructed 122 
using post-tensioned concrete. It has a central main column and three outer columns located 123 
radially outwards. The four columns are mounted on a star-shaped pontoon through a slab 124 

attached at the bottom. Three catenary mooring lines are used for station keeping. Clumped 125 
masses are attached at the middle of each mooring line for increased mooring tension. More 126 

details of the OO-Star Wind Floater and its mooring system are shown in Table 2 and Table 3, 127 
respectively.  128 

 129 



   
 

   
 

 130 

Figure 2 Main dimensions of the OO-Star floater of the 10-MW wind turbine [19].   131 

 132 

Table 2 The main properties for the 10-MW OO-Star wind floater. 133 

Parameter Value 

Water depth (m) 130 

Draft (m) 22 

Tower-base interface above mean sea level (m) 11 

Displacement ( kg) 24158 

Overall gravity, including ballast ( kg) 21709 

Roll and pitch inertia about center of gravity (kg∙m2) 1.4462 x 1010 

Yaw inertia about center of gravity (kg∙m2) 1.63 x 1010 

Center of gravity height below mean sea level (m) 15.23 

Center of buoyancy height below mean sea level (m) 14.236 

 134 



   
 

   
 

 135 

Figure 3 Sketch of the mooring system in the 10-MW FWT (left: top view; right: side view) 136 

[19].   137 

 138 

Table 3 The main properties for the mooring system of the 10-MW FWT.  139 

Parameter Value 

Radius to anchors from platform centerline (m) 691 

Anchor position below MSL (m) 130 

Initial vertical position of clump mass below MSL (m) 90.45 

Initial radius to clump mass from centerline (m) 148.6 

Length of clump mass upper segment ( kg) 118 

Length of clump mass lower segment ( kg) 585 

Equivalent weight per length in water (N/m) 3200.6 

Extentional stiffness (N/m) 1.506 x 109 

 140 

3. Methodology 141 
3.1. Aero-hydro-elastic-servo dynamic analysis of the 10-MW FWT 142 

The simulation tool used to simulate a wind turbine is an open-source code called FAST 143 
(v8.16.00a-bjj) developed by the National Renewable Energy Laboratory (NREL). FAST is an 144 

acronym for Fatigue, Aerodynamics, Structures and Turbulence. As its name suggests, it is a 145 

coupled aero-hydro-elastic-servo tool that has been used to execute the dynamic analysis of the 146 

10-MW FWT. The five codes are implemented via MATLAB, and they work concurrently 147 
together to produce the aerodynamic and hydrodynamic loads, and control, structural and 148 
mooring system dynamics are commonly known as AeroDyn [20], HydroDyn [21], ServoDyn, 149 
and MoorDyn [22]. Furthermore, FAST can accept and analyse time-varying stochastic wind 150 
as an input for its time-domain simulations. FAST has been successfully used to execute various 151 

projects such as the OC3: Offshore Code Comparison Collaboration [23] and OC4: IEA 152 
(International Energy Agency) Task Wind 30 [24], with its modelling capability verified in the 153 
Netherlands [25]. 154 

Aerodynamics 155 

In a wind turbine, the blades aerodynamic loads are measured using the quasi-steady Blade 156 

Element Momentum (BEM) theory, where the momentum and blade element theory are used 157 
together. The BEM method includes various corrections such as tip loss, hub loss, skewed 158 



   
 

   
 

inflow, and dynamic stall corrections in its calculation. While the Pitt and Peters' model 159 
minimises the error by correcting the skewed inflow, the Boddoes-Leishman model helps 160 
correct the dynamic stall. Similarly, the Prandtl corrections and Glauert correction account for 161 

the blade's hub, tip losses, and induction factors. The AeroDyn theory manual can be used as a 162 
reference to understand the calculation of the aerodynamic load executed by the FAST code 163 
[20]. 164 

Hydrodynamics 165 

The drag term from Morison's equation and potential flow theory are used together to calculate 166 

the hydrodynamic loads present in the semi-submersible floater. The wave pressures and 167 
viscous loads are accounted for in this method. Next, the panel code, WAMIT [26], as per the 168 
potential flow theory, is used to estimate the hydrodynamic coefficient and first-order wave 169 

excitation load transfer function. The hydrodynamic coefficient is made up of the added mass 170 
and damping coefficients. After that, the convolution technique is initiated to transform the 171 
hydrodynamic coefficients to obtain the solutions in the time domain [27].  172 

Structural dynamics 173 

To ensure that the structural dynamics of the FWT is accounted for in the FAST code uses the 174 
combined multi-body and modal structural approach. The blades, tower, and driveshaft are 175 
designed as flexible bodies in this approach. In contrast, the nacelle, hub, and floater are 176 
designed as rigid bodies. A coupled dynamics equation from Kane's approach is used to 177 

calculate the structural dynamic responses for the time-domain [28]. At the same time, the 178 
Rayleigh damping coefficient is used in design for the blade's inherent structural damping in 179 

both the blades and tower. 180 

Control system dynamics  181 

The 10-MW FWT's control system functions differently according to its operational modes. 182 
These modes are primarily called the below-rated or full-rated regions. In the below-rated 183 
region, speeds that are lower than the FWT's rated speed, the generator torque-speed curve 184 

controls the rotational speed of the rotor according to the optimal tip speed ratio, allowing the 185 
turbine to reach its maximum power. While at the full-rated region, speeds higher than the 186 

FWT's rated speed, the blade pitch is adjusted using a proportional-integral (PI) algorithm to 187 
control the rotational speed of the rotor to maintain the rated power generation. The PI 188 
parameters used in the FWTs differ from those used in land-based RWT since it is vital to avoid 189 
the negative damping effects that can significantly affect the FWTs.  190 

 191 

3.2. Extreme value prediction 192 

In any stochastic process X(t) taken across a time period (T), the extreme value is classified as 193 
the largest maxima extracted from a group of individual maxima. 194 

 195 

𝑋𝑒 = 𝒎𝒂𝒙{𝑋𝑚1, 𝑋𝑚2, 𝑋𝑚3, … . , 𝑋𝑚𝑛}  , 𝑖 = 1, … , 𝑛   ( 1 ) 

 196 

where Xe describes the largest maximum value and Xmi describes the individual maxima. 197 
Therefore, from this assumption, it is observed that the individual maxima are independently 198 
and identically distributed across the common distribution function FXm(x). Therefore, from the 199 
equation below, the distribution of Xe is labelled as: 200 

 201 



   
 

   
 

𝐹(𝑥) = 𝑷𝒓𝒐𝒃{𝑋𝑒 ≤ 𝑥} =  [𝐹𝑋𝑚(𝑥)]𝑛  , 𝑖 = 1, … , 𝑛   ( 2 ) 

 202 

Various statistical methods have been used to approximate an extreme value distribution. 203 
Examples of the extreme value methods used in the study of wind turbines includes an 204 
estimation of extreme structural responses in a floating vertical axis wind turbines by Cheng et 205 
al. [29] and extreme responses due to wave nonlinearity on a semi-submersible floating wind 206 
turbine by Xu et al. [30]. The two methods used in this paper are the ACER method (Section 207 

3.3) and the Gumbel method (Section 3.4). 208 

 209 

3.3. ACER (Average Conditional Exceedance Rate) 210 

This paper uses the ACER method to estimate extreme structural responses. The method was 211 
proposed by Naess and Gaidai [31], and it is derived for a discretely sampled response process. 212 
The cascade of conditional approximation is the basis for calculating the exceedance probability 213 
for extreme value estimation. The primary purpose of the ACER method is to accurately 214 

determine the distribution function of the extreme value, which is denoted as 𝑀𝑁 =215 

𝑚𝑎𝑥{𝑋𝑗;  𝑗 = 1,  ⋯ ,  𝑁}. Let 𝑃𝜂 = 𝑃𝑟𝑜𝑏(𝑀𝑁 ≤ 𝜂) denotes the probability of the occurrence of 216 

the extreme value 𝜂 and it follows: 217 

 218 

𝑃𝜂 = 𝑃𝑟𝑜𝑏(𝑀𝑁 ≤ 𝜂) = 𝑃𝑟𝑜𝑏(𝑋1 ≤ 𝜂,  ⋯ ,  𝑋𝑁 ≤ 𝜂) ( 3 ) 

 219 

To solve this equation efficiently, a cascade of conditional approximation 𝑃𝑘(𝜂) is used, where 220 

𝑃𝑘(𝜂) tends to close to 𝑃𝜂 as 𝑘 increases. For 𝑁 ≫ 1 and 𝑘 = 1,2, ⋯, 𝑃𝑘(𝜂) is represented as: 221 

 222 

𝑃𝑘(𝜂) ≈ 𝑒𝑥𝑝(− ∑ 𝛼𝑘𝑗(𝜂)

𝑁

𝑗=𝑘

) ( 4 ) 

 223 

where 𝛼𝑘𝑗(𝜂) = 𝑃𝑟𝑜𝑏(𝑋1 >  𝜂|𝑋𝑗−1 ≪ 𝜂,  ⋯ ,  𝑋𝑗−𝑘+1 ≤ 𝜂), and it represents the exceedance 224 

probability conditional on 𝑘 − 1 previous non-exceedances. 225 

Equation ( 4 ) will be calculated based on the ACER, which is defined as: 226 

 227 

 228 

𝜀𝑘(𝜂) =
1

𝑁 − 𝑘 + 1
∑ 𝛼𝑘𝑗(𝜂)

𝑁

𝑗=𝑘

, 𝑘 = 1,2, ⋯ ( 5 ) 

 229 

For 𝑘 ≥ 2, 𝜀�̃�(𝜂) is used instead of 𝜀𝑘(𝜂) because it is easier to use for nonstationary or long-230 
term statistics, and it is defined as: 231 

 232 



   
 

   
 

𝜀�̃�(𝜂) =  lim
𝑁→∞

∑ 𝑎𝑘𝑗(𝜂)𝑁
𝑗=𝑘

𝑁 − 𝑘 + 1
 ( 6 ) 

 233 

where 𝑎𝑘𝑗(𝜂) is the realised values for the observed time series, and lim
𝑁→∞

�̃�𝑘(𝜂)

𝜀𝑘(𝜂)
= 1. 234 

For both stationary and nonstationary time series, the sample estimate of the ACER can be 235 
denoted as: 236 

 237 

𝜀�̂�(𝜂) =
1
𝑅

∑ 𝜀�̂�
(𝑟)(𝜂)

𝑅

𝑟=1

 ( 7 ) 

 238 

where R is the number of samples, and  239 

 240 

�̂�𝑘
(𝑟)(𝜂) =  

∑ 𝑎𝑘𝑗
(𝑟)(𝜂)𝑁

𝑗=𝑘

𝑁 − 𝑘 + 1
 ( 8 ) 

 241 

where r denotes the realisation number.  242 

When the realisations are sufficiently numerous and assumed to be independent, then the 95 % 243 

confidence interval (CI) for the ACER can be estimated as: 244 

 245 

𝐶𝐼(𝜂) = �̂�𝑘(𝜂) ± 1.96
�̂�𝑘(𝜂)

√𝑅
⁄  ( 9 ) 

 246 

where �̂�𝑘(𝜂) refers to the standard deviation of samples and can be estimated by: 247 

 248 

�̂�𝑘(𝜂) 2 =
1

𝑅 − 1
∑(�̂�𝑘

(𝑟)(𝜂) − �̂�𝑘(𝜂))2

𝑅

𝑟=1

 ( 10 ) 

 249 

The above equations for estimation of average exceedance rate are based on direct numerical 250 
simulations. In contrast, an extrapolation technique can reduce the computational time.  251 

Assuming the mean exceedance rate in the tail behaves similarly to 𝑒𝑥𝑝{−𝑎(𝜂 − 𝑏)𝑐}(𝜂 ≥252 

𝜂0 ≥ 𝑏), where a, b and c are suitable constants. The ACER will therefore be assumed by: 253 

 254 

𝜀𝑘(𝜂)  ≈ 𝑞𝑘(𝜂)𝑒𝑥𝑝{−𝑎𝑘(𝜂 − 𝑏𝑘)𝑐𝑘}, 𝜂 ≥ 𝜂0 ( 11 ) 

 255 

where the function 𝑞𝑘(𝜂) varies slowly compared to the exponential function 𝑒𝑥𝑝{−𝑎𝑘(𝜂 −256 

𝑏𝑘)𝑐𝑘} in the tail region, thus it can be replaced by a constant for a suitable choice of the tail 257 

marker 𝜂0.  258 



   
 

   
 

Finally, the Levenberg-Marquardt least-squares optimisation method can be used to determine 259 
the constants a, b, c and q. Based on this, the probability of the occurrence of the extreme value 260 
can be obtained by the ACER method. In the studies of Naess et al. [32] and Chai et al.[33]  it 261 

is shown that the extrapolation technique can achieve a satisfactory estimation of the extreme 262 
values but saves significant simulation time. Detailed descriptions of the ACER method can be 263 
found in the reference [34].  264 

 265 

3.4. Gumbel fitting method 266 

Extreme value distribution Eq. ( 2 ) has been proven on numerous occasions to converge to the 267 
Gumbel, Fréchet or Weibull distribution if the sample size (n) is large enough. Therefore, these 268 
distributions are also recognised as the Type I, II and III extreme value distributions, 269 

respectively and are a family of cumulative distribution probability that combines the 270 
generalised extreme value (GEV) distribution. 271 

 272 

                  𝐹𝑋𝑒
(𝑥) = 𝑒𝑥𝑝 (− (1 + 𝛾 (

𝑥 − 𝜇

𝛽
))

−
1
𝛾

) ( 12 ) 

 273 

where β describes the scale parameter, γ describes the shape parameter, and μ describes the 274 
location parameter. The limiting of γ→0 allows the approximation to fit the Gumbel 275 

distribution, commonly used as a recommendation when modelling marine structures [35]. 276 

 277 

                  𝐹𝑋𝑒
(𝑥) = 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝛽
)) ( 13 ) 

 278 

Eq. ( 13 ) can be rewritten by using logarithm on the equation, allowing it to become a linear 279 
function. 280 

 281 

                −𝑙𝑛 (𝑙𝑛 (𝐹𝑋𝑒
(𝑥)))  =

𝑥

𝛽
−

𝜇

𝛽
 ( 14 ) 

 282 

The parameters β and μ can be approximated from the original data using the least-square fitting 283 

method from the cumulative distribution probability, i.e., a straight line on a probability paper 284 
[36].  285 

 286 

3.5. Load cases and environmental conditions 287 

In this paper, the wind and wave data were generated using the hindcast data obtained from the 288 

North Sea from 2001 to 2010. The long-term joint wind and wave distribution consisted of 1-289 
hour mean wind speed located 10 m above the sea level (U10), wave spectral peak period (Tp) 290 

and significant wave height (Hs) [37]. The long-term joint wind and wave distribution are 291 
described below: 292 



   
 

   
 

 293 

𝑓𝑈10,𝐻𝑠,𝑇𝑝
(𝑢, ℎ, 𝑡) = 𝑓𝑈10

(𝑢) ∙ 𝑓𝐻𝑠ǀ𝑈10
(ℎǀ𝑢) ∙ 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠

(𝑡ǀ𝑢, ℎ) ( 15 ) 

 294 

where the marginal distribution of U10 is described by 𝑓𝑈10
(𝑢)  , 𝑓𝐻𝑠ǀ𝑈10

(ℎǀ𝑢)  and 295 

𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠
(𝑡ǀ𝑢, ℎ), the conditional distribution of Hs for given U10 and the conditional distribution 296 

of Tp for given U10 and Hs. Figure 4 shows a scattered diagram for the in situ values of Hs and 297 
Tp that are used to assign probabilities for the individual sea states. 298 

 299 

 300 

Figure 4 Scattered diagram: In situ values of Hs and Tp used to assign probabilities for the 301 
individual sea states. 302 

 303 

Table 4 Load cases for numerical simulations. 304 

Load 

cases 
𝑼𝒘 (m/s) 𝑻𝑰 𝑯𝒔 (m) 𝑻𝒑 (s) Samples Simulation length (s) 

LC1 8 0.1740 1.9 9.7 20 4000 

LC2 12 0.1460 2.5 10.1 20 4000 

LC3 16 0.1320 3.2 10.7 20 4000 

 305 

To replicate a highly probabilistic normal operational condition experienced by the turbine, 306 
three closely related load cases were selected, shown in Table 4. The wind speed used varied 307 
according to the turbine operating ranges, cut-in, rated and cut-out zones. The three-speed 308 

increased in blocks of 4 m/s. Each speed had its significant wave height and spectra peak period, 309 
and these values were measured using the joint distribution described in Eq. ( 15 ). In 310 
comparison, the turbulent wind and irregular waves used for all three cases were directionally 311 
aligned. Wind turbine Class C is used with normal turbulence and normal wind profiles. The 312 
wind speed profile is modelled using the wind power-law formulation described in Eq. ( 16 ). 313 

 314 



   
 

   
 

𝑈𝑤(𝑧) =  𝑈ℎ𝑢𝑏 (
Z

𝑍ℎ𝑢𝑏
)𝛼 ( 16 ) 

 315 

where Uw(z) is the mean wind speed taken from height 𝑧 above the still water level, uhub is the 316 

mean wind speed w.r.t hub height, zhub is the hub height w.r.t the still water level (119 m for the 317 
selected 10-MW FWT). α (power-law exponent) is equal to 0.14. These recommendations are 318 

from IEC 61400-3-2, see [38], used for offshore locations. 319 

The 3-D wind turbulent fields generated using Turbsim is derived from the Kaimal's turbulence 320 
model [39]. At the same time, the JONSWAP (Joint North Sea Wave Project) spectrum allowed 321 
the modelling of the time-varying irregular waves with the respective Hs and Tp values.  322 

Every simulation was conducted for a period of 4000s. The initial 400s of these simulations 323 
were disregarded to account for the transient effect often present during a turbine's start-up. 324 
Consequently, only 3600s of data is used to analyse the extreme value. Accordingly, each 325 

environmental condition had sea states with 20 random wind and wave conditions samples. 326 

 327 

4. Response variables 328 

The loads at the three measurement points presented in Figure 5 are considered. These are the 329 

blade 1 root flapwise bending moment (RootMyb1), main shaft tip up-down bending moment 330 
(LSSTipMys) and tower bottom fore-aft bending moment (TwrBsMyt). 331 

 332 

 333 

Figure 5 Location of points where bending moments are measured. 334 

 335 

5. Results and discussions 336 



   
 

   
 

This paper presents the methodology for estimating the 10 MW DTU WT-OO-Star's extreme 337 
loads during operating conditions. The empirical data is based on accurate numerical 338 
simulations using a FAST model as presented in Section 3.1. The Gumbel and ACER methods 339 

presented in Sections 3.3 and 3.4 are used.  340 

 341 

5.1. Time-domain responses, PSD, and maximum values 342 

The time-domain responses for one portion of a realisation, the power spectral distributions 343 
(PSDs) for a full realisation and the maximum values of each realisation are presented in Figure 344 

6, Figure 7, and Figure 8, respectively. These results of each load case, i.e., LC1, LC2 and LC3 345 
are taken from one of the 20 realisations calculated. The wind and wave elevation time series 346 
and PSDs are also plotted for reference.  347 

 348 

  

  

 



   
 

   
 

Figure 6 Example time domain results. Top-left: Main shaft tip up-down bending moment 349 
(LSSTipMys); Top-right: Tower bottom fore-aft bending moment (TwrBsMyt); Centre-left: 350 

Blade 1 root flapwise bending moment (RootMyb);  Centre-right: Downwind wind velocity at 351 

hub height; Bottom: Wave elevation 352 

 353 

  

  

 

Figure 7 Power spectral distributions. Top-left: Main shaft tip up-down bending moment 354 
(LSSTipMys); Top-right: Tower bottom fore-aft bending moment (TwrBsMyt); Centre-left: 355 

Blade 1 root flapwise bending moment (RootMyb); Centre-right: Downwind wind velocity at 356 
hub height; Bottom: Wave elevation 357 

 358 



   
 

   
 

  

 
 

 

Figure 8 Maximum value in each realisation. Top-left: Main shaft tip up-down bending 359 

moment (LSSTipMys); Top-right: Tower bottom fore-aft bending moment (TwrBsMyt); 360 
Centre-left: Blade 1 root flapwise bending moment (RootMyb); Centre-right: Downwind 361 

wind velocity at hub height; Bottom: Wave elevation 362 

 363 

5.2. Extreme load responses using ACER and Gumbel methods 364 

This section presents the extreme load responses using the ACER and Gumbel methods for the 365 
three operating conditions (LC1 – LC3) presented in Table 4. k = 6 is used. For illustration, 366 
example plots of the ACER extrapolation and Gumbel fitting are presented in Figure 9 and 367 
Figure 10, respectively.  368 



   
 

   
 

 369 

Figure 9 Example plot of ACER extrapolation,TwrBsMyt, LC1 – Vhub =8 m/s, Realisation #1 370 

 371 

 372 

 373 

Figure 10 Example plot of Gumbel fitting, TwrBsMyt, LC1 – Vhub = 8 m/s, Realisation #1 374 

 375 

As illustrated by the significantly smaller confidence intervals, the ACER method can lead to 376 
more accurate results as it does not assume a distribution. The ACER method does not assume 377 

any extreme value distribution. Instead, it follows the exact shape of the data points as presented 378 
in Figure 9. On the other hand, from Figure 10, it is observed that the Gumbel distribution does 379 
fit the upper-end tail well. The data points tend to curve up towards the left for increasing 380 
response values and are above the Gumbel line. This means the Gumbel distribution will tend 381 
to overpredict the extreme value responses. This example shows the advantages of the ACER 382 

method.    383 

The extreme load responses together with the 95 % CIs from both ACER and Gumbel methods 384 
are then plotted in Figure 11, Figure 12 and Figure 13 for RootMyb, LSSTipMys and 385 

TwrBsMyt, respectively. The numerical values of the results are also presented in Table 6 and   386 



   
 

   
 

Table 7 of the Appendix for extreme values calculated by the ACER and Gumbel methods, 387 
respectively.  388 

 389 

  

 

Figure 11 Blade 1 root flapwise bending moment. ACER and Gumbel with 95 % CI; Top-390 
left: LC1, Vhub = 8 m/s; Top-right: LC2, Vhub = 12 m/s; Bottom: LC3, Vhub = 16 m/s.  391 

 392 

  



   
 

   
 

 

Figure 12 Main shaft tip up-down bending moment. ACER and Gumbel with 95 % CI; Top-393 

left: LC1, Vhub = 8 m/s; Top-right: LC2, Vhub = 12 m/s; Bottom: LC3, Vhub = 16 m/s. 394 

 395 

  

 

Figure 13 Tower bottom fore-aft bending moment. ACER and Gumbel with 95 % CI; Top-396 

left: LC1, Vhub = 8 m/s; Top-right: LC2, Vhub = 12 m/s; Bottom: LC3, Vhub = 16 m/s. 397 

 398 

The following observations are made:  399 

• The 1, 2 and 5-year extreme values are generally 1.1-1.3 times larger than the 400 
maximums of single 1-hour realisations. The relatively large range of values (about 20 401 
%) indicates the importance of using extrapolation methods that are accurate in 402 

predicting extreme values that can be used to define appropriate design values that can 403 

be utilised in deterministic engineering design.  404 



   
 

   
 

• The 95 % CIs of the results calculated using the ACER method are significantly smaller 405 

than those of the Gumbel method. This highlights the benefits of the ACER in not 406 
assuming a distribution in the extrapolation of extreme values.  407 

• The 95 % Cis of the results calculated using the Gumbel method are larger. This 408 
indicates that the Gumbel distribution does not fit the extreme value responses very 409 
well. 410 

• Further, the 1, 2, and 5-year extreme values calculated using the Gumbel method are 411 
relatively similar. This is due to the inaccurate fit of the probability distribution at the 412 
upper tail end. The fitted Gumbel probability density distribution slope is too steep at 413 

the upper tail end. This leads to very small changes in the response values for a unit 414 
change in probability.  415 

 416 

5.3. Choice of k value in ACER method 417 

It is recommended to perform sensitivity analyses of the k values used when studying new 418 
responses [31]. Therefore, the choice of k value is investigated in this section for a q value of 419 
10-6. The results for k = 2, 4 and 6 are presented in Table 5. The ACER function plots for k = 1 420 

to 6 are presented in Figure 14.  421 

 422 

Table 5 Extreme values calculated from the ACER method considering different values of k. 423 

Load Case 
q value 10-6 

k value 2 4 6 

LC1, Vhub = 8 m/s 

RootMyb (kNm) 36103 36441 37018 

LSSTipMys (kNm) 11509 11580 11592 

TwrBsMyt (kNm) 380076 368822 390514 

LC2,  Vhub = 12 m/s 

RootMyb (kNm) 44536 44626 44951 

LSSTipMys (kNm) 19511 19228 19607 

TwrBsMyt (kNm) 476606 479938 480159 

LC3 , Vhub = 16 m/s 

RootMyb (kNm) 38980 40385 40214 

LSSTipMys (kNm) 20747 20803 20670 

TwrBsMyt (kNm) 450802 447620 450217 

 424 

 
 

 
 

 
 



   
 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 14 ACER functions for various k values. Top: LC1, Vhub = 8 m/s; Centre: LC2, Vhub = 425 

12 m/s; Bottom: LC3, Vhub = 16 m/s; Left: Blade 1 root flapwise bending moment 426 
(RootMyb); Centre: Mainshaft tip up-down bending moment (LSSTipMys); Right: Tower 427 

bottom fore-aft bending moment (TwrBsMyt).  428 

 429 

In general, the extreme values calculated do not vary significantly with the value of k used. A 430 
k value of 1 was found to lead to incorrect results. The extreme values estimated also increase 431 
for increasing values of k used. It was observed that the responses converged for k > 2. 432 

Therefore, it was decided to use k = 6 for the analyses in this paper.  433 

 434 

6. Conclusions 435 

This paper investigated the extreme responses for a 10 MW semi-submersible type FWT using 436 
ACER and Gumbel methods. The responses are based on fully coupled nonlinear numerical 437 

analysis, including structural flexibility, aero, hydrodynamics, control dynamics, interaction 438 
with combined turbulent wind and stochastic waves. The following conclusions are made: 439 

• The 1, 2 and 5-year responses of the FWT were in general 1.1-1.3 times larger than the 440 
maximums of single 1-hour realisations. This reinforces the importance of using 441 
extrapolation methods to determine extreme loads to be used as ULS loads.  442 

• The ACER results have a smaller 95 % CI than the Gumbel results. This means the 443 

ACER method is more accurate than the Gumbel method.  444 

• The 1, 2 and 5-year responses predicted by the Gumbel method are quite similar. This 445 
is due to poor Gumbel fitting of the data at the upper tail. On the other hand, the ACER 446 

does not assume any distributions and therefore does not have the same poor fit issue at 447 
the tail end.  448 

• The better performance of the ACER method is because, in contrast to Gumbel, it does 449 

not assume that the extreme responses follow a designated probability distribution.¨ 450 

• Lastly, it was found that k = 1 would lead to incorrect results and cannot be used, but 451 

otherwise, the choice of the k values does not affect the ACER results. When new 452 



   
 

   
 

responses are studied, it is also recommended to perform sensitivity studies on the k 453 
values.  454 

 455 
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Appendix  559 

 560 

Table 6 Extreme value responses using ACER method for various return periods; 95 % 561 

confidence interval in paratheses.  562 

Load Case 

Return period 1 yr  2 yr  5 yr 

Exceedance 

probability, q 
7.19×10-5 5.71×10-5 2.28×10-5 

LC1  

Vhub = 8 m/s 

RootMyb (kNm) 
30726 

(29149, 31682) 

31084 

(29393, 32082) 

32479 

(30315, 33645) 

LSSTipMys 

(kNm) 

9245 

(8673, 9616) 

9390 

(8792, 9768) 

9937 

(9241, 10351) 

TwrBsMyt 

(kNm) 

328555 

(318797, 336312) 

332314 

(322130, 340328) 

346662 

(334792, 355663) 

LC2 

Vhub = 12 

m/s 

RootMyb (kNm) 
41445 

(40752, 42073) 

41662 

(40934, 42338) 

42485 

(41615, 43372) 

LSSTipMys 

(kNm) 

15061 

(14140, 15677) 

15327 

(14349, 15973) 

16357 

(15136, 17122) 

TwrBsMyt 

(kNm) 

437049 

(428032, 444853) 

439643 

(429627, 446865) 

449561 

(436751, 457982) 

LC3 

Vhub = 16 

m/s 

RootMyb (kNm) 
33406 

(32141, 34231) 

33790 

(32440, 34657) 

35293 

(33587, 36335) 

LSSTipMys 

(kNm) 

17054 

(16567, 17449) 

17282 

(16780, 17688) 

18144 

(17584, 18591) 

TwrBsMyt 

(kNm) 

359140 

(343069, 367411) 

364244 

(347041, 372826) 

384245 

(362296, 394070) 

 563 

  564 



   
 

   
 

Table 7 Extreme value responses using Gumbel method for various return periods; 95 % 565 
confidence interval in paratheses. 566 

Load Case 

Return period 1 yr  2 yr  5 yr 

Exceedance 

probablity, q 
7.19×10-5 5.71×10-5 2.28×10-5 

LC1, Vhub = 

8 m/s 

RootMyb (kNm) 
29772 

(23844, 37194) 

29772 

(22344, 37194) 

29772 

(23844, 37195) 

LSSTipMys 

(kNm) 

9061 

(6870, 11953) 

9061 

(6870, 11953) 

9061 

(6870, 11953) 

TwrBsMyt 

(kNm) 

314083 

(229636, 429680) 

314083 

(229636, 429680) 

314084 

(229636, 429681) 

LC2, Vhub = 

12 m/s 

RootMyb (kNm) 
41593 

(28380, 61026) 

41593 

(28380, 61026) 

41593 

(28380, 61026) 

LSSTipMys 

(kNm) 

15321 

(11801, 19903) 

15321 

(11801, 19904) 

15321 

(11801, 19904) 

TwrBsMyt 

(kNm) 

491364 

(368347, 655777) 

491364 

(368347, 655778) 

491365 

(368348, 655779) 

LC3, Vhub = 

16 m/s 

RootMyb (kNm) 
46542 

(36896, 58215) 

46542 

(37218, 58215) 

46542 

(37218, 58215) 

LSSTipMys 

(kNm) 

17168 

(13676, 21530) 

17168 

(13676, 21530) 

17168 

(13676, 21530) 

TwrBsMyt 

(kNm) 

466508 

(384880, 566002) 

466510 

(384880, 566003) 

466510 

(384882, 566004) 

 567 

 568 
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