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Abstract

Prostate cancer is the second most occurring cancer and the sixth leading cause of cancer
among men worldwide. The number of cases are expected to increase due to population
growth and increase in expected lifetime. The screening test for prostate cancer is not
without risk and there is chance of over-diagnosis with the traditional screening. The
magnetic resonance imaging (MRI) examination is an essential tool and a comfortable
method for diagnosing cancer. If some of the screening methods can be replaced by
accurate MRI examinations it will be more comfortable for the patients.

This thesis will explore how masked autoencoders with a generative self-supervised
approach can improve diagnosis of prostate cancer from MRI images. Computer vision is
used in many ways in the field of medical imaging. Hopefully computer vision based on
deep learning and transformers can improve the field of medical imaging. However, the
state of the art deep learning models require pre-training on huge amounts of unlabeled
data and fine-tuning on large amounts of data. This thesis investigates if a masked vision
transformer can learn to predict prostate cancer lesions on a limited amount of data. The
final results suggest that a simple model of small size is not sufficient to for prediction
prostate cancer.
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Chapter 1

Introduction

1.1 Motivation

Prostate cancer is the second most common type among men and the fourth most

common among both sexes in 2020 [1]. In 2020 it was estimated a total of 1 414 259

new cases of prostate cancer and 375 307 deaths worldwide. Prostate cancer is a severe

disease for the male population, and it is expected that the worldwide prostate cancer

will increase to around 2.3 million new cases and 740 000 deaths by 2040 due to the

growth and aging of the population [2]

Because prostate cancer is a widely spread cancer around the world, it is normal to

perform screening on men in their fifties. The goal is to detect prostate cancer in an

early stage to offer treatment before it turns life-threatening. Most medical organizations

encourage men above fifty to discuss screening and the general pros and cons with

their general practitioner (GP). There are several screening tests performed, which

include digital rectal examination (DRE), prostate-specific antigen (PSA) test, and

transrectal ultrasound (TRUS)-guided biopsy [3]. If any of the screening tests detect

any abnormalities, the GP may refer to additional tests like magnetic resonance imaging

(MRI) or biopsy to determine if cancer is present.

The current screening tests and biopsies are not free of complication and may result in

harms that can be considered minor to major [3]. Common minor harms from screening

include bleeding, bruising and anxiety. Common major harms include over-diagnosis and

over-treatment, infection, and erectile dysfunction. MRI does not expose patients to the
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complications that can be experienced from the normal screening methods or a biopsy.

Recent studies show that risk assessment using MRI and MRI-targeted biopsy for men

with suspicion of prostate cancer is found to be superior to the TRUS-guided biopsy

[4]. Increased use of MRI has made the examination more comfortable and resulted in

an improved prostate gland examination and detection of malignant tumors. MRI can

also be more accurate in determining the extent and stage of the tumor compared to

traditional screening [5].

Radiologists interpret MRIs, and the results are as good as the radiologist that view the

MRI. The results and diagnosis may vary depending on the experience of the radiologist

who interprets the image. Today there are a lot of algorithms involved to help radiologists.

Software help to make the best contrast for viewing the MRI, and segmentation can

help mark out areas of special interest. The next step is to introduce computer vision in

MRI for prostate cancer diagnosis to help improve lesion localization and classification.

Machine learning (ML) might help classify patients with significant prostate cancer that

need the attention of specialists and the insignificant cases where no further treatment

is required. ML might help reduce over-diagnosing and over-treatment and potentially

make biopsy a redundant test.

1.2 Problem Definition

This thesis aims to classify prostate cancer tumors between those that are malignant and

those that are benign by use of T2 weighted MRI of the prostate. The approach will be a

simple, generative self-supervised approach, where the model is comparing reconstructed

images from an autoencoder with the original input. Due to the limited amount of data,

the first stage will be to perform self-supervised learning on the data set. In the second

stage, transfer learning will be applied with labeled data to train the model to distinguish

between malignant and benign tumors.

1.2.1 Objectives

• Implement a model for masked autoencoder to perform self supervised-training of

the neural network. The goal is for the encoder to learn important features from

T2-weighted MRI.
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• Apply transfer learning on the encoder part of the model. See of the model can

distinguish between clinically significant and insignificant lesions.

1.3 Outline

The thesis is structured into the following chapters, where the outline is presented in the

following description

• The first chapter gives a brief introduction and the motivation behind the thesis.

• Chapter two gives a short description of the medical background which is relevant

for understanding the motivation behind the subject and why machine learning is

relevant for medical images.

• Chapter three gives the technical background and contains most of the important

background theory related to the implementation of the model.

• Chapter four describes the data set and the image pre-processing performed on the

data set.

• Chapter five describes the solution approach and configuration of the model. How

was the model implemented and what are the limitations.

• Chapter six introduces the experimental setup and results of the model

• Chapter seven presents a discussion of the results and the limnitiations of the thesis.

• Chapter eight is the last one and presents the conclusion and further direction.

3





Chapter 2

Medical Background

This chapter will present the medical background, terminologies and concepts necessary

to understand the motivation behind the thesis and the goal of the thesis.

2.1 Prostate Cancer

Prostate cancer is the second most common type of cancer among men and the fourth

most commonly occurring cancer among both sexes worldwide. In 2020 it was estimated

a total of 1 414 259 new cases of prostate cancer and 375 307 deaths worldwide in 2020 [1].

Prostate cancer accounts for 7.3% of all incidents worldwide and 3.8% of all moralities

related to cancer. The number is estimated to increase to approximately 2.3 million new

cases by 2040 due to population growth and increased life expectancy[2].

Normal functional cells grow and divide to produce new cells in all living organisms.

When normal cells die, the human body disposes of the cells. The defining feature of

cancer is the rapid creation of abnormal cells that grow beyond the boundaries of normal

cells and spread to other parts of the body. In other words, cancer is the result of normal

cells that become abnormal and continue to live even if they are obsolete to the human

body. Damaged cells continue to grow and form a tumor. A tumor can be benign or

malignant. A benign tumor is an abnormal collection of cells but noncancerous. It can

develop anywhere on or within the body when cells multiply more than they should or

continue to live when they are abnormal. A benign tumor grows slowly, has even and

defined borders, and doesn’t spread to other parts of the body. Many benign tumors are

5



not dangerous and don’t require any treatment. Malignant tumors are cancerous. They

can grow quickly and have irregular borders, which again do not confine them to the

boundaries of normal cells. Malignant tumors often invade surrounding tissue and can

spread to other parts of the body.

The prostate is a male sex organ for reproductive anatomy located below the bladder.

It is a small and soft organ with the average size of a walnut. There are four basic

zones of the prostate which are relevant for prostate cancer, see figure 2.1. These are the

peripheral zone (PZ), the central zone (CZ), the transition zone (TZ), and the anterior

fibromuscular stroma (AFS). Most prostate tumors are found in the peripheral zone,

where 70-75% of the tumors arise [6]. In the transition zone, there are around 20-25%,

while only 10% arise in the central zone. It is very rare for tumors to arise in the

fibromuscular stroma.

Figure 2.1: Prostate Anatomy [7]

2.2 Prostate Cancer Examination Methods

There is no definitive method for detecting prostate cancer. The following methods may

be used in combination to detect prostate cancer if a patient is experiencing symptoms

or as part of a screening process. For a screening process, the patient and the GP should

discuss the benefits and the drawbacks, including the risks for the different methods.
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2.2.1 Prostate-Specific Antigen Test

Prostate-specific antigen (PSA) test aims to detect prostate cancer in an early stage by

taking a blood sample to determine the amount of PSA in the patient’s blood. PSA is a

substance that is excreted in small amounts from the prostate gland and released into

the semen and bloodstream, and is measured in nanograms per milliliter (ng/mL) units.

The original limit for normal PSA was 4 ng/mL based on an analysis of levels in 860

men and women without prostate cancer [8]. Prostate size increase with age and thus,

the concentration also rises with age, which suggests new ranges for normal PSA should

be made [9]. Suggested values are shown in table 2.1.

40 to 49 years 0 to 2.5 ng/mL
50 to 59 years 0 to 3.5 ng/mL
60 to 69 years 0 to 4.5 ng/mL
70 to 79 years 0 to 6.5 ng/mL

Table 2.1: Suggested age specific normal values of PSA [9]

2.2.2 Digital Rectal Exam

A digital rectal exam (DRE) is an early-stage prostate cancer screening test performed

when patients show symptoms of prostate cancer. It is most commonly done after a

PSA test. DRE can, in some cases, detect prostate cancer in men with normal PSA

levels, making it a viable extra method if PSA levels are normal with patients showing

symptoms. During a DRE, the doctor inserts a lubricated gloved finger into the rectum

of the patient and feels for abnormalities, see figure 2.2. The doctor will feel the size of

the prostate gland and for bumps, soft or hard spots, or other abnormalities.

2.2.3 Prostate Biopsy

If the GP suspects prostate cancer from either PSA or DRE, then the patient is referred

to a urologist for a biopsy of the prostate. The procedure is known as the transrectal

ultrasound (TRUS) guided biopsy. During TRUS, the doctor will guide an ultrasonic

probe into the rectum, see figure 2.3. The ultrasonic probe produces images of the

prostate to help the doctor guide where to take the samples from. A separate needle is

inserted next to the probe, and it is usually taken 10 to 12 small samples of tissue from
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Figure 2.2: Digital rectal exam [7]

different areas of the prostate [10]. TRUS biopsy is still very much non-targeted and

directed towards the peripheral zone. With 70-75% of prostate cancer finding place in

the peripheral zone, tumors arising in other zones may be missed. TRUS has a negative

predictive value of 70-80%, meaning that up to 20-30% of patients with a negative biopsy

may have prostate cancer [11]. The biopsy is not without risk of complications [3]. Minor

harms may include bleeding and bruising, while major harms may include infection and

erectile dysfunction.

Figure 2.3: Transrectal ultrasound guided biopsy [7]
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2.2.4 Magnetic Resonance Imaging

Recent advancements in magnetic resonance imaging (MRI) have led to including MRI

in prostate cancer detection. MRI might be used to locate abnormalities in the prostate

and help the urologist with areas to collect tissue samples from during TRUS. From

MRI images, the radiologist can make decisions on whether further investigations are

necessary at the time. Today, the radiologist predicts the probability of a lesion to be

clinically significant (malignant) based on findings from a multiparametric MRI. The

scoring is based on T2-weighted (T2W), diffusion-weighted imaging/apparent diffusion

coefficient (DWI/ADC), and the dynamic contrast enhancement (DCE) sequence. The

images are classified according to the Prostate Imaging Reporting and Data System

(PI-RADS) scoring system. The latest version, PI-RADS v2.1, was released in 2019

[12]. PI-RADS gives scores dependent on the zone the lesion is located. In the previous

version, the assessment criteria were provided for PZ and TZ, which accounts for most

cases of prostate cancer. Lesion located in the PZ is mainly determined by DWI/ADC,

while lesion located in TZ is mainly determined by T2W. In v2.1, there are updated

specifications for CZ and AFMS. For CZ and AFMS, it is an assessment based on T2W

and/or DWI/ADC. DCE has generally not had a very big role in scoring prostate cancer.

It may assist in the detection of prostate cancer in PZ and TZ. MRI before biopsy can

reduce the number of unnecessary biopsies and give better staging accuracy and help

determine the need for further treatment [11].

2.2.5 Gleason Grade Group

Donald Floyd Gleason developed and introduced the first pathological-based scoring

system for prostate cancer in 1966 [13]. The system was based on samples from 270

patients, and originally, there were a total of nine grades. Further development through

follow-up studies reduced the number to five grading categories based on the cell patterns

in the tissue. The Gleason score is the sum of the two most widespread patterns. This

gives a maximum score of ten. In 2014, the International Society of Urological Pathology

(ISUP) introduced an updated grading system with five Gleason grade groups (GGG)

[14]. GGG was introduced to simplify the prostate cancer grading prognosis. The GGG

groups and the corresponding Gleason scores are shown in table 2.2
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GGG Gleason Score Clinically Significant
Grade Group 1 Gleason Score ≤ 6 False
Grade Group 2 Gleason Score 7 (3+4) True
Grade Group 3 Gleason Score 7 (4+3) 6 True
Grade Group 4 Gleason Score 8 True
Grade Group 5 Gleason Score 9 and 10 True

Table 2.2: Gleason score and ISUP-Grading [14]

We see from the table that Gleason score of 6 or GGG of 1 is the lower bound for being

clinically significant. GGG 1 has features similar to normal tissue samples. The cells

have even and defined borders. GGG 4 and 5 have patterns with features indicating the

presence of aggressive cancer cells. The borders are irregular, and the risk of spreading

to other parts of the body is present.

Figure 2.4: Illustration of Glason score for different cancer cell patterns [15]
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Chapter 3

Technical Background and Theory

This chapter will present the technical background and theory which applies to the thesis

and the model implemented for prostate cancer diagnostics.

3.1 Neural Network

Neural network (NN), in the sense of machine learning, is a network composed of artificial

neurons or nodes. The concept of NN for computers was created in 1943 when Warren

Sturgis McCulloch and Walter Pitts created a computational model for neural networks

[16]. The model was based on input to a neuron and an activation function to determine

the output. The model was called logical threshold based on an activation function

of threshold. NN is inspired by the electrical signals between neurons in the human

brain nervous system, hence the name neural network. The backbone for the deep

learning algorithms used today is the deep feedforward network, also known as multilayer

perception (MLP). For classification, the feedforward network approximates some function

f∗ by mapping an input x to a category or label y [17, p.163-166]. A NN contains several

neurons in a network of layers that react to an input before transmitting an output.

Figure 3.1 illustrates a small feedforward NN with three input values (x = [x1, x2, x3]),

one hidden layer with four neurons, and one output layer. The input value x contains

the initial information that is fed to the NN and which propagates through the layers to

predict the output values ŷ.
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Figure 3.1: Illustration of neural network with one input layer, one hidden layer and one
output layer. Each circular node represents an artificial neuron and an arrow represents

a connection from the output of one artificial neuron to the input of another [18]

Figure 3.2 illustrates a neuron and the mathematical functions included to calculate

the output. A neuron has n numbers of input values received through n connections

to the neuron. Each connection from the input to the neuron has specific weights

w = [w1, w2, ...., wn], which are weights learned by the algorithm during training. It is

also common to have a bias (b) as input to the neuron. The bias is independent of the

input and allows the activation to be shifted to adjust the output value NEED SOME

REFERENCES. The neuron applies the activation function f on the weighted sum of

the inputs plus the bias. The output of the activation function is the input to the next

layer.

Figure 3.2: Input, activation and output of a neuron

Equation 3.1 is the calculation of the output value of the final hidden layer. Here f is the
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activation function, and z corresponds to the bias plus the weighted sum of the inputs.

The input, in this case, is the output of the previous layer.

ŷ = f(z) = f(b +
n∑

i=1
xiwi) (3.1)

3.1.1 Backpropagation and Gradients

A feedforward NN learns by minimizing a loss value and adjusting the prediction by

changing the weights for each neuron and the bias. When the neural network is initialized,

the weights are set to a random value. The goal of the learning algorithm is to adjust the

weights so that the predicted output is as close to, or similar to the expected value for

each input. The loss function will be some function that describes the difference between

the predicted output and the expected output. An example is the minimum square error

function given in equation 3.2.

L(w) = 1
2

c∑
k=1

(ŷk − yk)2 (3.2)

Here ŷ is the predicted value, and y is the expected value. In a feedforward network,

the flow is from input to output without any feedback connections. The method of

backpropagation became popular after David E. Rumelhart et al. showed that the loss

could be propagated back through the network to compute the gradient [19]. By utilizing

the chain rule, they progressed from knowing how a change in the total input to output

would affect the error, to seeing how the error is changing by affecting the states and

weights in the feedforward network. The method to compute the gradient uses the chain

rule for derivatives that compute the gradient of the loss function L(w) with respect to

the weights w as shown in equation 3.4.

∂L(w)
∂(wij) = ∂L(w)

∂(xj) ∗
∂xj

∂(wij) (3.3)

Here, xj corresponds to the j-th input, and wij is the weight for the i-th output towards

the j-th input. The backpropagation learning rule is based on gradient descent.
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Having the method to calculate the gradients of the loss function, the weights can be

changed in the direction that reduces the error. This gives the backpropagation learning

rule. The weights are initialized with random values and are changed in the direction

that will reduce the error,

△w = −ϵ
∂L

∂w (3.4)

where ϵ is the learning rate which indicates the relative size of the change in weights.

3.1.2 Optimizer algorithms

Deep learning algorithms involve optimization in many contexts. One of the most

important is the training as it is common to invest a long time to solve an instance of

the neural network training. The time can be days to months, depending on the input

and model size. Because the problem of training is both important and expensive, it

is developed optimizing techniques and algorithms for solving the problem. For deep

learning, the optimization problem relates to finding the parameters θ of a neural network

that reduces a cost function J(θ) [17, p.267-268]. The cost function can again be written

as an average over the training set as

J(θ) = E(x,y)∼p̂data
L(f(x; θ), y) = 1

m

m∑
i=1

L(f(x(i); θ), y(i)) (3.5)

where L is the loss function, f is the activation function, f(x; θ) is the predicted output

when the input is x and p̂data is the empirical distribution defined by the training set. θ

will, in our case, be the weights w and the bias b if it is included. A machine learning

problem can be converted to an optimization problem by minimizing the expected loss

on the training set. In this thesis, optimization is utilizing an optimizer algorithm to

minimize the loss function during training. The optimizer is gradient-based and uses the

gradient calculated by backpropagation to learn features that minimize the loss.

The goal of optimization is to find the global minimum. Figure 3.3 shows a function

with one global minimum but several local minimums. The global minimum is the lowest
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value of f(x) while the local minimum is a point where f(x) is lower than all neighboring

points on both sides of the curve.

Figure 3.3: Function f(x) including one global minimum and several local minimums

A neural network will have many local minimums, and finding the global minimum will

be an exhaustive process during learning. During training, the optimization algorithm

may find a local minimum. Finding a local minimum can be problematic if it has a

high cost compared to the global minimum. However, today it is not regarded as a big

problem for sufficiently large neural networks, and most local minima are regarded to be

sufficient[20]. In this thesis, we will use the Adam optimizer algorithm, which can be seen

as a combination of two optimizer algorithms named stochastic gradient descent (SGD)

with momentum and an algorithm with an adaptive learning rate named RMSProp.

Stochastic Gradient Descent with Momentum

Stochastic gradient descent with momentum is considered a basic algorithm for optimiza-

tion. The method of momentum [21] is designed to accelerate the learning when facing

high curvature, small but consistent gradients, or noisy gradients. The original SGD is

an iterative algorithm that starts with an initial guess for θ and updates θ as long as

the stopping criteria is not met. A vital part of the SGD is decreasing the learning rate

over time because the gradient estimator is based on a random sampling of m training

samples that introduces noise. The algorithm is popular for machine learning but can be

slow.

In SGD with momentum, an additional variable v is introduced. The algorithm accu-

mulates an exponentially decreasing moving average of previous gradients and proceeds
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in that direction [17, p.288-289]. This speeds the learning rate as the direction of the

update is more towards a minimum compared to standard SDG. SGD with momentum

does not require decreasing learning rate to converge. The updates during iteration is

given by equation 3.6 and 3.9.

v ← αv − ϵ∇θ

(
1
m

m∑
i=1

L(f(x(i); θ), y(i))
)

(3.6)

θ ← θ + v (3.7)

The parameter α determines how quickly the contribution of the previous gradient

exponentially decays. In other words, the larger the α is relative to ϵ, the more the

previous gradient affects the current direction.

RMSProp

RMSProp is an optimizer algorithm with an adaptive learning rate. The learning rate

is adapted for each of the parameters, and the idea is to have a moving average of the

magnitude of previous gradients for each weight. RRMSProp is an unpublished method

proposed by Geoff Hinton in Lecture 6e of his Coursera Class [22]. An advantage of

using RMSProp is the opportunity to use mini-batches. Mini-batches are a smaller batch

of the training data used to update the parameters during learning.

The moving average of the squared gradient for each weight is given by

MeanSquare(w, t) = 0.9 ∗MeanSquare(w, t− 1) + 0.1
(

∂E

∂wt

)
(3.8)

where w corresponds to weights and t resembles time or iterations. The factors 0.9 and

0.1 is weighted factors for the average squared gradient and the current gradient.

The updates of the weights are given by

w ← w − ϵ

MeanSquare(w, t)△E(w) (3.9)
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Adam

The name "Adam" originates from the phrase "adaptive moments" and is a combination of

the two previously mentioned optimizer algorithms. The momentum in Adam optimizer

is included directly as an estimate of the first-order moment of the gradient. Adam

includes a bias to the estimates of the first-order moments and the second-order moments,

considering their initialization at the origin [17]. The algorithm and pseudo-code to

describe the algorithm is presented in the original paper [23].

3.2 Activation Function

The activation function in an artificial neural network is used to transform an input value

into an output value which in turn is fed to the next layer in the neural network. The

input to the activation function is the weighted sum of all outputs from the previous layer

(see section 3.1). The activation function can be both linear and non-linear. There is no

manual for which activation function to use in a neural network, but the most commonly

used activation functions are non-linear. A neural network’s prediction accuracy is

defined by the activation function used [24]. If there is no activation function, then the

neural network works as a linear regression model where the predicted output is the

same as the weighted sum of the input. For a linear activation function, the network

can only learn and adapt to linear changes in the input. In the real world, there are

non-linear relations, and this is why non-linear activation functions are preferred.

3.2.1 Sigmoid

The sigmoid activation function gives an output between 0 and 1. It is commonly used in

machine learning because its range is (0, 1), which lies in the valid range of probability.

It is also referred to as the logistic sigmoid function and has an s-shaped curve, see figure

3.4. The sigmoid function saturates most of the argument. Large positive values saturate

towards one and negative values towards zero. The function, therefore, becomes very flat

and insensitive to small changes in the input, except around zero. The sigmoid function

is continuously differentiable and given by
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f(z) = 1
1 + e−z

(3.10)

Figure 3.4: Sigmoid activation function

3.2.2 Softmax

The softmax function is a combination of several sigmoid functions. The sigmoid function

returns values in the range 0 to 1 and is often used for binary classification problems.

The softmax activation function can be used for multiclass classification problems. The

function returns the probability for every data point of all the individual classes. The

softmax function is given by

f(z)j = 1 + ezj∑K
k=1 e−z

for j = 1, ...., K (3.11)

3.2.3 GELU

One of the most widely used activation functions in deep learning is the Rectified Linear

Unit (ReLU) [25]. ReLU is defined as f(x) = max(x, 0). It is a straightforward function

where the output is equal to the input for positive numbers and zero for negative numbers.

Deep neural networks with ReLU are more easily optimized and can train several times

faster than traditional activation functions like sigmoid or tanh units [26]. The Gaussian

Error Linear Unit (GELU) was introduced in 2016 as an alternative to the highly popular

ReLU [27]. Both functions is plotted in 3.5.
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Figure 3.5: GELU and ReLU activation function

The GELU activation function is defined as

GELU(x) = xP (X ≤ x) = xΦ(x) = x
1
2
[
1 + erf(x/

√
2)
]

(3.12)

Where erf is the error function. We can approximate the GELU with

GELU(x) ≈ 0.5x(1 + tanh
[√

2/π(x + 0.044715x3)
]
) (3.13)

We can see that the GELU activation function is similar to ReLU from the plot, where

the difference is approximately in the range of -2 to 2. It has a negative coefficient

that shifts toward positive. The interesting difference is in the derivative of the two

functions. For ReLU the derivative is 0 for negative numbers and 1 for positive numbers

as the derivative of 0 is 0, and the derivative of x is 1. This is also the reason for the

easy optimization because the gradients are able to flow when the input to the ReLU

function is positive. However, if several of the inputs are negative, the components

of the network are not updated during training. The derivative of the GELU is a

hyperbolic function shown in figure 3.6. It is continuous and is not equal to zero for

small negative numbers. The GELU activation function was shown to be state-of-the-art

in natural language processing (NLP) through bidirectional encoder representations from

transformers (BERT) for language understanding [28].
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Figure 3.6: GELU and ReLU activation function

3.3 Residual Learning

Deep convolutional neural networks led to a series of breakthroughs for image classification

[26, 29]. Deep networks can find features and relations on a lower and higher lever

compared to a network with one or two layers [30]. Learning better networks is not as

simple as just stacking more layers on top of each other. Experiments showed that the

training error increased with an increasing number of training layers, which was also the

reason for investigating deep residual learning [31]. Instead of letting each stack in the

layer directly fit an underlying mapping, the layers fit a residual mapping. The idea is

illustrated in figure 3.7

Figure 3.7: Residual learning building block. The figure is reprinted in unaltered form
from the paper written by Kaiming He et al. named "Deep residual learning for image

recognition" [31]

If the desired underlying mapping is H(x), the stacked nonlinear layers fit another

mapping of F (x) := H(x)− x. The original mapping is recast into F (x) + x. F (x) + x

can be achieved by skipping one or more layers. Residual learning can reduce the training

error, and results showed that the training error for large numbers of layers was close to

a smaller number of layers with residual learning [31]
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3.4 Supervised, Unsupervised, Self-Supervised and Semi-supervised

Learning

There are different methods of learning in machine learning. Every machine learning

model needs input information to learn, but the method applied for learning depends on

how structured the data is. Structuring data can be a major job, and in many cases, we

are working with unstructured data.

The term supervised learning corresponds to the process where the input x has an

expected output y and tries to predict the output ŷ equal to y. In this case, the expected

output y is labeled. The machine learning model is told what it is supposed to learn. A

typical example is feeding a model with many pictures of cats and dogs, and each picture

has a label that says cat or dog. After the model is trained, it is supposed to predict if a

new picture it has not seen is a cat or dog.

In unsupervised learning, the model is fed unstructured data. The data has no label to

tell the model what it is trying to predict. The model seeks to automatically discover

and learn patterns and features in the input data to produce the output. Unsupervised

is often associated with clustering, grouping, and dimensionality reduction. The model

learns to find similarities in the unstructured data and assigns the input data that

are similar into a cluster. Self-supervised learning can be considered a subcategory of

unsupervised learning. The model is fed unstructured data, but the goal is to label the

data itself.

Semi-supervised learning is a combination of supervised and unsupervised learning.

Generally, a machine learning model needs a huge amount of data to learn well. If

most of the data is unstructured, but some of the data is labeled, then we can apply

semi-supervised learning.

3.5 Autoencoder

Autoencoder is a part of deep learning where the neural network is trained to attempt to

copy the input to its output. The model is designed to encode the input into a compressed

yet meaningful representation and then decode it back so that the reconstructed output

is as similar as possible to the original input.
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The general structure of an autoencoder is simple to describe mathematically [17, p.493-

502]. There is a mapping from an input x to an output r (reconstructed) through an

internal representation h. An autoencoder has two components: the encoder f which

maps x to h and the decoder g that maps h to r. This is illustrated in figure 3.8.

Figure 3.8: Mathematical illustration of autoencoder

A more common description of the autoencoder is illustrated in figure 3.9. An input, in

this case, an image of a number, is run through the encoder, which outputs a compressed

representation of the data. The compressed data is a latent representation that would not

make much sense if trying to visualize it. The decoder takes the compressed representation

of the output and makes a reconstruction of the input.

Figure 3.9: Illustration of autoencoder [32]

An autoencoder that simply learns to make a perfect mapping from x to r is not

very useful for deep learning tasks. The goal is that the encoder learns to represent

features and important properties to the compressed representation h. This is why the

autoencoders are restricted, so the model is forced to learn useful properties to represent

the input. There are several techniques for restricting the model to enforce learning of

useful properties [17, p.493-502][33]. An undercomplete autoencoder h is constrained

to have a smaller dimension than the input x and is the simplest form of restriction.

For an under complete autoencoder the learning process is minimizing the loss function

L(x, g(f(x))) by penalizing g(f(x)) for not being similar enough to x. Undercomplete

autoencoders fail to learn useful properties if the encoder and decoder is given too much

capacity.
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3.5.1 Reqularized Autoencoders

The goal is to train any architecture of autoencoder by choosing the code dimension

and capacity of the encoder and decoder based on the complexity of the distribution

to be modeled. Regularized autoencoders give a method for learning useful properties

without introducing a small bottleneck like the undercomplete autencoder. Rather

than limiting the model capacity by creating shallow encoder and decoder, options for

regularization exist that will enforce the autoencoder to learn a different representation of

the input. One method is the sparse autoencoder which enforces sparsity on the hidden

activations [33]. The training criterion involves a sparsity penalty on the code layer h in

addition to the reconstruction error. Here we will present the denoising autoencoder as

an introduction to the masked autoencoder used in the thesis.

Denoising Autoencoders

The denoising autoencoder receives a corrupted version of the input and is trained to

predict the original, uncorrupted version of the input. The computational graph of a

denoising autoencoder is shown in figure 3.10. A training example is sampled from x

and run through a corruption process C(x̃|x). The corrupted version is the new training

example as input to the model. The model will minimize the loss L by comparing the

output g(h|f(x̃)) and the original input x.

Figure 3.10: Computational graph for denoising autoencoder

After the successful approach for training deep belief networks with more than one or

two layers [34], Vincent et al. proposed a denoising autoencoder in 2008 for extracting
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and composing robust features [35]. The success of deep belief network was based on an

unsupervised training criterion to perform a layer-by-layer initialization. Each layer is

first trained to produce a higher-level representation of the patterns based on the result

received from the previous layer. The results proved better than random initialization

of the layers. The denoising autoencoder was developed to investigate what is a good

representation for initializing deep architecture. Some information of the input needs to

be presented while still being constrained in some form. The idea of partially destroyed

input came from humans being able to recognize partially corrupted images. A good

representation should be able to capture dependencies from a combination of many inputs

and hence reconstruct a partially corrupted image. The corruption used by Vincent et al.

was to set a certain number of the input pixels to zero. The empirical results support that

unsupervised initialization of layers with denoising helps capture important features, and

in turn, helps transfer learning to new tasks like supervised classification. The corruption

process can involve many techniques like random dropping part of the image, randomly

replacing part of the image with other images, color distortion, blurring, and more [36].

3.6 Transformers

A transformer is a deep learning model that adopts the mechanism of self-attention,

deferentially weighting the significance of each part of the input data. The concept of

transformers was introduced by a team at google brain in 2017 [37] and the greatest

success is probably in natural language processing (NLP) with the implementation of

BERT [28]. The goal of the transformer architecture was to eliminate the issue of

sequential computation. For CNN the number of operations required to relate signals

from two arbitrary input or output positions grows with the distance between two

positions. This makes it harder to learn dependencies between distant positions [38].

Self-attention is a mechanism for relating different positions of a single sequence in order

to compute a representation of the sequence. In transformers, the sequential computation

is reduced to a constant number of operations [37]. In other words, transformers process

the entire input at once, and the attention mechanism provides context for any position

in the input sequence. For transformers in natural language processing, each word in the

input is a token, and each token is embedded to a vector of numbers to represent the

word and each token has positional embedding to represent the position in the text.
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3.6.1 Transformer Architecture

The original transformer architecture is given in the article, "Attention Is All You Need"

[37]. The transformer model architecture is shown in figure 3.11. It is built with an

encoder and a decoder structure where the encoder maps an input sequence of symbol

representation (x1, ..., xn) to a sequence of continuous representation z = (z1, ..., zn).

The decoder then generates an output sequence (y1, ..., yn) of symbols, one element at a

time. The figure show that the decoder takes the output of the encoder as additional

input after the first operation. The transformer has a fixed self-attention and point-wise

architecture for the encoder and decoder that are stacked in fully connected layers.

Figure 3.11: Illustration of the original transformer architecture. The figure is reprinted
in unaltered form from the original paper written by Ashish Vaswani et al. named

"Attention is all you need" [37]
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Encoder and Decoder Stack

The figure shows that the architecture of the encoder and decoder is similar. The encoder

consists of two sublayers, and the decoder consists of three sublayers. For the original

transformer, both the encoder and decoder were composed of a stack of N = 6 layers.

Each layer in the encoder is identical, and the same goes for the decoder. The first layer

in the encoder is a multi-head attention, and the second layer is a position-wise, fully

connected feed-forward network. Each of the two sublayers has a residual connection

before normalization. The output of each layer is LayerNorm(x + Sublayer(x)) The

decoder has three sublayers, where there is one additional multi-head attention taking

the output of the encoder in addition to the first multi-head attention.

Multi-Head Attention

Multi-head attention is several attention layers running in parallel. The attention module

splits the input parameters N-ways and passes each split independently through a separate

head. All the calculations in each head are then concatenated together to produce the

final attention. The multi-head attention gives the transformer greater power to encode

multiple relationships for each word in the input. Figure 3.12 shows an illustration of

multi-head attention with h heads.

Figure 3.12: Multi-head attention with h heads. The figure is reprinted in unaltered
form from the original paper written by Ashish Vaswani et al. named "Attention is all

you need" [37]
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The illustration for multi-head attention is for natural language processing where the

input is a set of queries packed into a matrix, Q, and the keys and value are represented

by the matrices K and V . This is split into h heads.

Positional Encoding

Since transformers do not have recurrence or convolution, there is a need for some

information about the position of the input relative to each other. Positional encoding

was implemented as an addition to the input embedding. Every word or token has

an embedding which is a vector of numbers. In addition, every token has a positional

embedding which is a vector of the same length as the token embedding. The original

transformer used sine and cosine functions of different frequencies for the positional

encoding of tokens. It was also experienced with learned positional embedding, but they

gave similar results. The result is the sum of the input embedding and the positional

embedding. An illustration of positional embedding is shown in figure

Figure 3.13: Positinal Embedding

3.6.2 Vision Transformers

Transformer became the go-to model in natural language processing, but for computer

vision, CNN has been the dominant architecture for machine learning models. In 2020

transformers were adapted to computer vision in the paper "An image is worth 16 x 16

words" [39]. Inspired by the scaling success of transformers in NLP, the goal was to apply
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the same architecture for images with as few as possible modifications. The resulting

vision transformer (ViT) architecture is shown in figure 3.14.

Figure 3.14: Visual transformer architecture. The figure is reprinted in unaltered form
from the original paper written by Alexey Dosovitskiy et al. named "An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale" [39]

The ViT only has the encoder, and the architecture is very similar to that of the original

transformer. It consists of two sublayers implemented with residual learning, where the

first is the multi-head attention and the second is the multi-layer perception (MLP).

MLP is a fully connected feed-forward network. For ViT, the MLP has two layers with

GELU activation function.

The standard Transformer receives input as a 1D sequence of token embeddings. To

apply the same architecture on 2D images, the images are reshaped into a sequence

of flattened 2D patches. A 2D image has the shape of (H ×W × C), where H is the

height, W is the width, and C is the number of channels. The sequence of the flattened

patch has shape (N × (P 2 ∗ C)), where P × P is the resolution of each image patch and

N = HW/P 2 is the number of patches.

The transformer uses a constant latent (often referred to as projected dimension) vector

size D through all of the layers. Each flatten patch is mapped to D dimensions with

a trainable linear projection. This is the patch embedding for the ViT, which serves

the same purpose as token embedding for transformer in NLP, where each token is

represented as a vector. Positional embedding is added to the patch embedding to

preserver positional information.
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Video Vision Transformers

Video Vision Transformers (ViViT) are developed based on the same architecture as ViT

[40]. In the case of ViVit the patches can be sampled as flattened 2D patches from all

the frames in uniform frame sampling, as shown in figure 3.15.

Figure 3.15: Uniform frame sampling from video frames

An alternative method is to extract non-overlapping tubes from the input volume. Tublets

can be achieved by 3D convolution on the input and flattening the 3D tube to a patch.

By extracting tublets, the patches are extracted from the temporal (time), height, and

width dimensions of the video. Tubelet embedding is illustrated in figure 3.16

Figure 3.16: Tubelet embedding from video frames
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3.7 Masked Autoencoder for Computer Vision

When deep models can overfit one million images and start to demand millions of labeled

images, there is a problem with attaining a large enough data set. BERT successfully

overcame the problem of demand for huge amounts of labeled data by introducing

self-supervised pre-training [28]. In BERT, a portion of the input is masked, and the

model learns to predict the masked tokens. The method made it possible for NLP models

to perform pre-training on huge amounts of text data without the manual task of labeling

all the data.

After the success of BERT, masked autoencoders (MAE) are developed for computer

vision on images [41] and videoMAE for videos [42]. The required architecture for

positional encoding was addressed in ViT [39]. MAE gives a method for learning features

on unlabeled images by masking a proportion of the image and learning by reconstructing

the image. The overall architecture for MAE is shown in figure 3.17

Figure 3.17: MAE architecture [41]. Published under free license.

For MAE the image is split into patches like in ViT. A proportion of the patches is

masked, and only the unmasked patches are fed as input to the encoder. The autoencoder

learns features by reconstructing the image. The input to the encoder is a portion of

the total image, hence it is possible to train very large encoders with a fraction of

computational power and memory. The original ViT is implemented with a MLP head

for classification after the transformer encoder, as illustrated in figure 3.14. In MAE,

there is one layer of normalization to produce the output to the encoder. The input to

the decoder is the encoded visible patches and the masked tokens, where each masked

token is a vector representing the patch to be predicted. Positional embedding is added

to all tokens in the full set to preserve the information about the location in the image.
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In MAE, the last layer in the decoder is a linear projection where the number of output

channels is the same as the number of pixel values in a patch. The decoder’s output is

reshaped to form a reconstructed image.

3.7.1 Masking in Vision vs. Text

Languages are human-generated signals with high semantics, and the information is

dense, while images are natural signals with high spatial redundancy. With spatial

redundancy, we mean elements that are repeated within a structure, and for images,

these are areas where the pixel value is similar. Compression of images utilizes the spatial

redundancy by removing redundancy while preserving the information. In the same way,

patches can be recovered from neighboring patches with little high-level understanding

of the different parts in the image. In NLP the model can learn sophisticated language

understanding by just masking a few words. To enforce a high-level understanding of the

image, a large proportion of the image is masked. Experiments showed that masking 75%

of the image gave good results [41]. This reduces the redundancy and enforces learning

beyond low-level image statistics. The goal is not a perfect reconstruction of the image

but to learn important features.

A video is made up of several frames of images which gives several alternatives for masking,

see figure 3.18. One option is to mask random patches in each frame as performed in

MAE (row 2 in the figure). Another option is to mask whole frames and keep a portion

of the frames unmasked (row 3 in the figure). The third option is to mask the same

patches in every frame, which is referred to as tube masking (row 4 in the figure).

Temporal correlation (correlation between frames in time) makes it easy to reconstruct

the missing pixels by finding the corresponding patches in adjacent frames for random

masking and frame masking [42]. Tube masking is suggested to prevent learning from

temporal correlation. Also, the temporal redundancy can be very high for video, making

VideoMAE in favor of an extremely high masking ratio (90 to 95%).
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Figure 3.18: Masking of video frame [42]. Published under open license.

3.8 Metrics and Loss Function

A loss function, often referred to as an error function, is a function that maps an event

of one or more variables onto a real number that represents some cost associated with

the event. In the case of an optimizing problem, we seek to minimize the loss function.

Generally, a machine learning problem is an optimizing problem where the model learns

by minimizing the loss function. Metrics, on the other hand, is used to measure the

performance of the model by measuring the difference between the predicted and expected

output. For a classification problem, it is a measure between the predicted label of the

test set and the actual label.

3.8.1 Loss Functions

Mean Square Error

The mean square error (MSE) is among the simplest and most common loss functions

in machine learning. MSE is calculated by taking the difference between the predicted

output and the expected output, squaring it, and averaging it out across the whole data

set. MSE is given by

32



MSE = 1
N

N∑
i=1

(yi − ŷi)2 (3.14)

where N is the number of samples we are testing against. MSE will never be negative

since the errors are squared.

Binary Crossentropy

Binary crossentropy is used for binary problems with two outcomes. Typical classification

problems often have two outcomes that can be reduced to yes or no, or often labeled 0

or 1. For prostate cancer classification, it can be if the lesion is clinically significant or

not. The binary crossentropy is given by

Loss = − 1
N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (3.15)

where N is the number of samples we are testing against. yi is the label, and p(yi) is the

predicted probability of the label. We see that the binary cross-entropy first takes the

label times the log probability of that label (log(p(yi))) and adds the other label times

the log probability of the other label log(1− p(yi). This is summed for every label and

divided by the number of samples to average out.

3.8.2 Categorical Crossentropy

While binary cross entropy is a good loss function for binary classification problems, the

categorical loss function is suitable for multiclass classification problems. The categorical

crossentropy is given by

Loss = −
N∑

i=1
yi ∗ log(ŷi) (3.16)

where ŷi is the predicted value from the model output and yi is the corresponding true

labeled value. We see that compared to binary crossentropy the categorical crossentropy

only considers the probability of the i-th label and averages over all samples.
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3.8.3 Metrics

Confusion Matrix

Many of the metrics measuring the performance of a machine learning model for classi-

fication is based on the values in the confusion matrix. The confusion matrix gives a

measure of the performance based on the predicted and actual values of the data. Table

6.6 represents a confusion matrix with n=2 classes. The term true positive (TP) stands

for the number of positive examples classified accurately. Similarly, true negative (TN)

stands for the number of predicted negatives that is actually negative. False negative

(FN) is the number of predicted negative values that are actually labeled positive and

false positive (FP) is the predicted positive values that are actually labeled negative.

Predicted Positive Predicted Negative
Actual Positive True Positive False Negative
Actual Negative False Positive True Negative

Table 3.1: Confusion matrix with n=2 classes

The confusion matrix can sometimes seem hard to understand. If we consider the case

where a clinical significant case of prostate lesions (cancer) is considered positive and not

clinical significant lesions are considered negative, then true positive is the case where the

model predicted clinical significant, and the image is clinical significant. True negative

will be where the model predicted not clinical significant, and the image was not clinical

significant.

When we understand the terms of the confusion matrix, it is easier to understand its

relevance to the classification problem. For example, the case of high false negative will

be problematic for prostate cancer classification. This means that the model predicts

many cases of not clinically significant lesions that are actually clinically significant and

require treatment. In the same way, a large amount of false positive may increase over

treatment as not clinically significant lesions are classified as clinically significant that

require treatment.

Accuracy

Generally, the accuracy measures the ratio of correct predictions over the total number

of instances evaluated [43]. The numerator involves the true positive and true negative,
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which are all the correct predictions, and the denominator is the sum off all predictions

for the data set. Accuracy is given by

Accuracy = TP + TN

TP + FP + TN + FN
(3.17)

Precision

Precision is a measure of the fraction of correctly predicted positive out of all the predicted

positive [43]. Precision is given by

Precision = TP

TP + FP
(3.18)

Recall

Recall is used to measure the fraction of positive patterns that are correctly classified

[43]. This metric is relevant for cases with an imbalanced data set. Recall will then give

an indication of how accurate the model is at correctly classifying relevant predictions.

Recall is given by

Recall = TP

TP + FN
(3.19)

F1

F1 represents the harmonic mean between recall and precision [43]. It considers both

parameters and gives out a single number as a metric of the performance. It can be

difficult to understand what F1 gives compared to precision and recall. Remember that

precision is the number of correct positives from all the positives that the model predicted,

while recall is the number of correct positives from all positives in the data set. Different

tasks can require different performance measurements for precision and recall, but the F1

gives a mean over how good the model is on predicting positive among all the positive

labels and how many of the predicted positive were predicted wrongly.
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F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(3.20)

Area under the ROC curve (AUC)

AUC is a very popular ranking metric and is considered a better metric of evaluation

than accuracy [44]. AUC is defined as

AUC = Sp − np(nn + 1)/2
npnn

(3.21)

where sp is the sum of all positive examples ranked, while np and nn are the numbers

of positive and negative examples. The higher the AUC, the better the model is for

distinguishing between positive and negative classes. If AUC=1, the classifier is able

to perfectly distinguish between positive and negative classes for every data point. For

AUC=0 it will be the opposite, where every data point is classified wrongly. When

AUC=0.5, the model is not able to distinguish between the two classes, and it would be

like tossing a coin to predict the class. The closer the AUC is to 1, the better the model

is at predicting the correct class.

3.9 Software and Packages

The technical part of this thesis is implemented with the programming language named

Python. Python is a high-level, general-purpose programming language. A high-level

programming language makes the implementation easier by leaving hardware configura-

tions to automated systems. Python is a very popular language for data scientist because

of its simplicity and easy integration with powerful packages to speed up computational

time and pre-defined functions for machine learning. In the implementation of the model,

there is applied several external libraries which comes with premade functions to boost

computational time and utilizing GPU hardware.
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3.9.1 TensorFlow

TensorFlow is an interface for expressing machine learning algorithms and execute them

[45]. The library can be used to implement a wide variety of algorithms for a deep NN,

and can be executed on a wire variety of systems. Ranging from mobile devices up to

large-scale distributed system and thousands of computational devices such as GPU

cards. Tensorflow is applied for its capacity and option to run on GPU.

3.9.2 Keras

The deep learning application programming interface (API) used in this thesis is Keras.

The Keras library uses TensorFlow to enable fast implementation and experimentation

of deep learning ideas [46].

3.9.3 Numerical Python

The Numerical Python (NumPy) library is developed for Python programming language

and supports high-level scientific computing and data analysis for numbers and multi-

dimensional array. The library supplies functions for storing large quantity of information

in arrays, and fast execution of mathematical operations. This library have been used

to generate random integers, generate and store information in arrays, and execute

mathematical functions [47].

3.9.4 OpenCV - cv2

OpenCV, cv2, supports NumPy and the objects are returned as NumPy objects [48].

Cv2 is a library for images and includes several functions to manipulate images. Cv2 is

used to resize and crop images.
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Chapter 4

Data Set and Image Pre-Processing

This chapter presents the data set used for the thesis and filtering to obtain the relevant

T2-weighted series. Finally, the image pre-processing to prepare the data for training

and evaluation is described.

4.1 Data Set

The data set of prostate MRI used in this thesis is a part of PROSTATEx Challenges

(PROSTATEx) [49] which was collected for research on computer-aided detection of

prostate cancer in MRI [50]. The MRI was collected by performing a clinical examination

at the Radboud University Medical Centre (Radboudumc), Netherlands, in the Prostate

MR Reference center. It was collected a total of 165 consecutive studies with prostate

cancer (187 lesions) and 183 cases with prostate cancer for a total of 347 patients. Each

MR study was read and reported by or under the supervision of an expert radiologist

(prof. Dr. Barentsz). The radiologist indicated areas of suspicion, and if an area was

considered likely to have cancer, a MR-guided biopsy was performed to verify. Biopsy

specimens were graded by a pathologist, which makes up the results for the ground

truth. The dataset was collected and curated for research in computer-aided diagnosis of

prostate MR under the supervision of Dr. Huisman, Radboudumc. All the studies include

T2-weighed (T2W), proton density-weighted (PD-W), dynamic contrast-enhanced (DCE),

and diffusion-weighted (DW) imaging. Images were acquired on two different types of

Simens 3T MR Scanners, the MAGNETOM Trio and Skyra.
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The T2-weighted images which are relevant for this study were acquired using a turbo

spin echo sequence and had a resolution of around 0.5 mm in plane and a slice thickness

of 3.6mm.

The data is downloaded from the SPIE-AAPM-NCI PROSTATEx Challenge [51], focusing

on the classification of significantly significant prostate cancer. The data is collected

from 246 participants and consists of 18,321 series, giving a total of 309 251 images. The

details of the data are summarized in table 4.1

Collection Statistics
Modalities MR

Number of Participants 346
Number of Studies 349
Number of Series 18,321
Number of Images 309,251
Images Size (GB) 15.1

Table 4.1: Detailed description of PROSTATEx Challenge Data Set

4.2 Data Filtering

4.2.1 Downloading Data

The data is downloaded through NBIA data retriever. All the images can be downloaded

for the 346 patients, but there is also an option to download a training cohort of 204

subjects and a test cohort of 140 subjects which is set up for the challenge. The images

are provided in DICOM encoding, which provides a lot of metadata like patient ID,

sex, age, series description, and much more. The images are downloaded in a folder

structure with a folder for each patient ID containing folders for each series. Afterward,

the relevant series are loaded and analyzed for further processing in Jupyter Notebook

using the pydicom library to work with DICOM files in Python. Figure 4.1 shows a

random slice from axial T2-weighted series.

4.2.2 T2-Weigthed Ground Truth

Lesion information for the data can be downloaded as .csv files for the train and test

cohort. The relevant files are ProstateX-Findings and ProstateX-Images for the training
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Figure 4.1: T2-weighted MRI slice of Prostate

cohort and similar files for the test cohort. The findings file contains information about

findings id, the position of the lesion, which prostate zone the lesion is in, and if the

finding is clinically significant or not. The test file contains the same information, except

whether the clinically significant or not is not given. The ProstateX-Images file contains

information about images with findings. The following relevant information is

• ProxID - Patient ID

• fid - Findings id

• pos - Scanner Coordinate position of the finding

• ijk - image col,row,slice coordinate of finding

• DCMSerDescr – The original DICOM Series Description

Each row represents an image that contains the lesion, which is why there can be multiple

rows with the same ProxID and fid. The same lesion can be detected in multiple slices.

The ProstateX-Images-Train makes up the ground truth for the data. The file lists

images with a finding, and the ground truth can be obtained by comparing them against

the finding file. By filtering on series description, we can obtain the information for

the axial T2-Weighted images. Table 4.2 shows a detailed description of lesion findings,

anatomical zone and classification distribution of the data set and number of ground

truth for T2-weighted.

We can see that the ground truth is not balanced between clinically significant and

insignificant. Further, there are MRI slices that contains more than one finding. For the
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Training cohort Insignificant Clinically Significant Total
lesion 254 76 330

lesion (%) 76.96% 23.04% 100%
TZ 73 9 82
PZ 155 36 191

AFS 24 31 55
Ground Truth 316 96 412

Ground Truth (%) 76.69% 23.31 100%

Table 4.2: Distribution of lesion findings, anatomical zone location and classification
with respect to clinically significant or not in the prostate data set

final filtering, a slice can only be passed as an input once. The following final filtering is

performed:

• If there is a slice with clinically significant finding and insignificant finding, then

the slice will be classified as clinically significant and given as input once.

• If a slice have several insignificant findings, it will be classified as insignificant and

only be given as input once.

• For patients with several series of axial T2-weighted, only the first series will be

chosen.

Final ground truth distribution is given in table 4.3

Training cohort Insignificant Clinically Significant Total
lesion 254 76 330

lesion (%) 76.96% 23.04% 100%
TZ 73 9 82
PZ 155 36 191

AFS 24 31 55
Ground Truth 256 78 334

Ground Truth (%) 76.64% 23.36 100%

Table 4.3: Final ground truth distribution of the data

4.3 Image Pre-Processing

4.3.1 Image Resizing

The majority of the T2-weighed images are given with a resolution of 384x384 pixels. A

few images are stored with a resolution of 320x320 and 640x640. The model requires
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each image to have the same width and height as the input. Due to memory capacity,

the most normal resolution of 384x384 is too big for the model to handle. Each image is

resized to a width and height of 128x128 pixels. The images are resized utilizing OpenCV

for python with the built-in resize function. Interpolation is given as INTER_AREA,

which uses pixel area relation for resampling.

4.3.2 Grey Scale Filtering and Image Normalization

DICOM 16-bit images have pixel values ranging from [-32768, 32768]. The large range

of values in DICOM is useful as they correlate with the Hounsfield scale, which is

a quantitative scale for describing radio density. A random slice of 128x128 with a

corresponding histogram of pixel value distribution is shown in figure 4.2.

Figure 4.2: Visualize a random slice from the original dataset without any filter or
normalization

Normalization is applied to each image to convert it to grayscale images with pixel values

ranging from [0, 255]. The normalization is given by equation 4.1

IN = (I −Min)NewMax−NewMin

Max−Min
+ NewMin (4.1)

where [Min, Max] is the minimum and maximum pixel value in the input image I and

[New Min, New Max] represents the desired new min and max pixel value in the output

image IN . The image is also filtered with outlier removal filter to remove possible image

noise. The darkest and brightest 1% pixel values are replaced with their neighboring

values. The same random slice and distribution of pixel value after greyscale filtering

and outlier removal is shown in figure 4.3

Before an image is ready for input to the machine learning model the values need to be

normalized to a value between 0 and 1. The normalization is performed by dividing each
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Figure 4.3: Visualize a random slice from the original data set with grayscale filtering
and outlier removal filter

pixel value by the max pixel value 255. This is also the reason for first normalizing to

grey-scale. If not, each image is divided by the max pixel value from the slice containing

the highest pixel value, which can be much higher than the current slice.

4.3.3 Organizing Data Sets

There are two data sets made up for the training and evaluation of the model. The first

data set is for the autoencoders and consists of all axial T2-weighted slices for patients.

Where patients have more than one series, only the first series is chosen. This makes up

a total of 7060 slices for the autoencoder. The complete data set is divided into training,

validation, and test sets with a distribution of 70%, 10%, and 20%, respectively. To

acquire a balanced distribution of slices from the whole prostate, slices from one patient

can only exist in one set.

The second data set is made up for the transfer learning and classification of insignificant

and clinically significant lesions. The distribution of ground truth slices is given in section

4.2.2 and makes up 334 slices. The data is divided into training, evaluation, and test

sets with the same 70%, 10%, and 20% distribution. To get a balanced distribution of

clinically significant and insignificant slices, the images are first organized into two arrays,

with all the clinically significant in one array and the insignificant in another. Arrays

with corresponding labels 0 and 1 are equally made. After this, the clinically significant

and insignificant images and labels are distributed into the train, evaluation, and test

set. Each set of images and corresponding labels are randomly shuffled, with the same

shuffle for images and labels in the same set before being passed as input to the model.
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Chapter 5

Solution Approach and Configuration

5.1 Model Architecture

The model is based on the implementation of masked autoencoder given as code examples

in Keras home page [52], which is an implementation of the masked autoencoder given

in the paper [41]. The code is updated from handling color images with three channels

to grayscale images with one channel. Generally, since there are very few labeled images

for the ground truth data set, the model is implemented with an autoencoder for pre-

training on the MRI images and only an encoder for the classification task. The overall

architecture for the autoencoder is illustrated in figure 5.1. In the classification task, the

weights from the encoder during pre-training are kept, and one additional dense layer of

one neuron with sigmoid activation is added for binary classification.

Figure 5.1: Model architecture for the autoencoder
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5.1.1 Patches

The patches are extracted as regular non-overlapping by 2D convolution over the image.

The stride is set to the patch size in both x and y directions to get all the pixels in

the image. The patches class is implemented with functions to show the patched image

and reconstruct the image from patches. The reconstructed image is used to verify the

masked image during training. Illustration of the original image, patched image, and the

reconstructed image for a random slice is illustrated in figure 5.2

Figure 5.2: Original image at top, patched image in middle and reconstructed image at
bottom

5.1.2 Patch Encoding and Masking

Downstream patch encoding

The patch encoder makes the patch embedding for all patches by a linear projection

of the patch and added positional encoding, see figure 5.3. The patch encoder is split

between pre-training and downstream tasks. If downstream equals true, patch projection

and positional encoding will be made for every patch in the image. The patch projection

and positional encoding are summed up to be the patch embedding. The whole image is

input to the model when performing classification.
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Autoencoder masked patch encoding

For the pre-training, the projection and positional encoding is a little different. A masked

token is initialized randomly from a normal distribution and is trainable. The masked

token is a vector of the same size as pixels in a patch (patch size x patch size), which

represents a flattened masked patch. This is the token the decoder will try to reconstruct.

Next, the patch projection and positional encoding will be made for all the patches in

the image and summed up to patch embedding as shown in figure 5.3.

Figure 5.3: Patch embedding for downstream classification task

The difference is that now the projection and positional encoding will be split between the

masked and unmasked patches. Figure 5.4 illustrates the process for masked embedding.

A vector of random indices for the number of patches is made from an uniform distribution.

These indices are split into a masked and unmasked vector according to the proportion

of masking. The unmasked embedding is made from gathering the patch embedding for

the unmasked indices. Unmasked position embedding is also gathered as this will be

needed for the decoder. For the masked embedding, the first part is to gather masked

tokens equal to the number of masked patches. The masked tokens are then projected

to form up masked projection. The masked position encoding is gathered from the full

position encoding for the masked indices. The masked embedding is made by summing

the masked projection and masked position encoding.
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Figure 5.4: Masked patch embedding for pre-training

5.1.3 Autoencoder Architecture

Encoder

The encoder follow the architecture of the original architecture of ViT [39] and is shown

in figure 5.5.

Figure 5.5: Encoder architecture

The encoder takes as input the embedded patches. The same two sub-layers from the

original ViT are present in the gray box and are stacked in the desired number of layers.

There is a residual connection for the multi-head attention and one residual connection for

the MLP. The MLP has two layers with hidden dimension [encoder projected dimension
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x 2, encoder projected dim] with Gelu activation. The only difference is the additional

normalization of the output from the stacked number of layers. Where the original ViT

has an additional MLP head for classification, the encoder for the autoencoder has a

final normalization before the output of the encoder is fed to the decoder.

Decoder

The decoder has a similar architecture for the stacked layers as the encoder. There

is one additional dense layer with the numbers of units equal to the image size and

channels. For grayscale images, the number of channels is one. The dense layer has

sigmoid activation to return a value between 0 and 1 to represent the normalized pixel

values which are input to the autoencoder. The output of the dense layer is reshaped

to make up the image. From the reconstructed image, we can again sample patches to

compare patches from the original image and the reconstructed image.

Figure 5.6: Decoder architecture
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Loss function

The loss is only calculated for masked indices. Patches from the original image and

reconstructed image are gathered from the masked indices. The mean square error

function does not include patches which, where unmasked in the input.

5.1.4 Downstream Model Architecture

For the downstream model there is an additional module of linear probing. The encoder

is taken from the masked autoencoder and the weights from the pre-training is kept.

Figure 5.7: Decoder with additional linear probing

Instead of the additional MLP head in ViT used for classification, we keep the nor-

malization from the autoencoder as it is common practice to normalize the input to a

linear classifier [53]. The normalized output is further processed by batch normalization

according to [54]. Pre-trained features can degenerate to all activations collapsing to

zero. The network will not be able to tune the lower-level features. Batch normalization

will force the network activation to vary across examples [54]. A global average pooling

is performed before the final layer to make a feature map for each class. The final layer

is implemented as a dense layer with one neuron, which is the classification layer. The
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neuron has sigmoid activation to produce an output between 0 and 1 which corresponds

to the labels 0 and 1.

5.2 Configuration

5.2.1 Width and depth of the network

Autoencoder

The width of a deep neural network is often given as the number of neurons in the widest

layer, and the depth is given as the number of layers. For the autoencoder, the stacked

layers of multi-head attention and MLP have the same architecture for encoder and

decoder. The width of the multi-head attention is the encoded projection dimension of

the flattened patches. The MLP has two layers. The width of the first hidden layer of

the MLP is two times the projected dimension, and the output layer has the width of the

projected dimension. The decoder has an additional layer with the number of neurons

equal to the number of pixels in the image times the number of channels. In the case of

greyscale MRI, there is only one channel, resulting in the number of neurons being the

number of pixels in the image.

The depth of the network is the number of layers. For the hyperparameters, the number

of layers decides the number of layers for the stacked multi-head attention and MLP

shown as the two sub-layers in figure 5.5 and 5.6. The decoder has one additional layer

to produce values equal to the number of pixels.

The autoencoder follows the main ideas of a smaller decoder compared to the encoder

[41]. The goal of the autoencoder is to enforce learning of useful features from the MRI

image and not reproduce a good representation of the image. The projected dimension

for the decoder is half of the encoder, meaning that the width of the decoder is half

of the encoder. This greatly reduces the computational and memory requirements for

pre-training. The number of layers of the decoder is also equal to or less than half the

layers of the encoder. Table 5.1 shows the number of parameters for the autoencoder

in the different layer types for an image of 128×128 pixels, patch size of 16, encoder

projected dimension of 128, decoder projected dimension of 64 and number of layers in

the encoder and decoder equal to 6 and 2. We see that the number of parameters is
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dominated by the decoder, even though the width and number of layers are half of the

encoder. The decoder takes in all the trainable masked tokens compared to the encoder,

and the last layer with neurons equal to the number of pixels in the image adds on a lot

of parameters in the decoder.

Layer (type) Parameters
Patches 0

Patch encoder 41,344
MAE encoder 1,981,696
MAE decoder 67,300,032

Total parameters 69,323,072

Table 5.1: Number of parameters for autoencoder with image size = 128x128, patch
size = 16x16, encoder projected dimension = 128, decoder projected dimension = 64,
number of heads = 4, number of layers for encoder = 6, and number of layers for decoder

= 2

Downstream model

The downstream model extracts the trained encoder from the autoencoder and adds

the batch normalization, global average pooling, and the additional layer of one neuron

for classification. The total width of the downstream model will be the same as the

autoencoder, but there is one additional layer for classification. By keeping the weights

from the encoder and only allowing the last additional layer to be trainable, we get the

following number of parameters and trainable parameters presented in table 5.2.

Layer (type) Parameters
Patches 0

Patch encoder 41,344
MAE encoder 1,981,696

Batch normalization 512
Global average pooling 1D 0
Dense layer classification 129

Total parameters 2,0123,681
Trainable parameters 129

Non-trainable parameters 2,023,552

Table 5.2: Number of parameters for downstream model with image size = 128x128,
patch size = 16x16, encoder projected dimension = 128, number of heads = 4, number

of layers for encoder = 6
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5.3 Augmentation

Image augmentation is a well-established method to artificially expand the training data

set. The data set is not expanded to more samples of images, but alternative variations

of the images are fed as input to the model for each epoch1 or batch2. Augmentation is

implemented through the Keras layers API [46]. Masked autoencoders for images are

not dependent on augmentation and work well with little to no augmentation [41]. The

following image augmentation is implemented for the model during training.

• Random crop: The images are resized a little compared to input size of 128×128

pixels. After the resizing, random crop is implemented where the location for

cropping is randomly chosen to crop the images down to target size. All the images

in the same batch are cropped to the same location.

• Random flip: Randomly flips images horizontally during training. This is equal to

reverse all rows of pixels.

During testing the images are only resized to the same size as random cropping.

5.4 Hyperparameters

Image Size

Image size is the size of the image fed as input to the model and is given as one side of

the image. The images have the same height and width as input to the model. During

training, the input image is resized to a larger width and height and then cropped down

to image size. During testing, the input image is simply resized to image size.

Patch size

Patch size is the size of the patches extracted from the image. The patch size gives the

height and width of the patch, meaning that every patch is a square. The patch size and
1One epoch represents that the full data set is passed through the network once.
2Batch size is the number of training samples simultaneously passed through a neural network. Each

batch size is an iteration in one epoch.
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image size correlate so that the image can be divided into the exact number of patches

with no overlap or gap between the patches.

Masking ratio

The masking ratio decides how many percent of the image is masked. From the masked

ratio images will masked randomly from an uniform distribution according to the masking

ratio.

Learning rate

Learning rate is the tuning parameter for the optimizer algorithm. The learning rate is

initially set to a small value. The model is implemented with an adaptive cosine decay

learning rate [55] and warmup steps [56]. The warmup slowly increases the learning rate

at the beginning of training to avoid rapid changes in the network and early optimization

issues. The cosine decay learning rate gradually decreases the learning rate after reaching

the top after warmup. The goal of the adaptive learning rate is for the optimizer algorithm

to find the global minimum and not converge towards a local minimum. Adaptive learning

rate for one simulation is shown in figure 5.8.

Figure 5.8: Adaptive learning rate with warmup and cosine decay

Batch Size

Batch size decides how many images are processed through the model for each iteration

in the epoch. Batch size times iteration is processing all images in one epoch.
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Encoder and decoder

There are several hyperparameters deciding the configuration of the network according

to section 5.2.1.

• Encoder projected dimension: Sets the projected dimension for the patch encoder

and the width for the layers in the encoder.

• Decoder projected dimension: Sets the width of the decoder

• Encoder number of head: Sets the number of heads for the multi-head attention in

encoder

• Decoder number of head: Sets the number of heads for the multi-head attention in

decoder

• Encoder layers: Number of stacked layers in encoder

• Decoder layers: Number of stacked layers in decoder

5.5 Limitations

The configuration of the model is mostly restricted by the memory capacity given by

google colab. The time limitation of 12 hours running time was not an issue when the size

of the model was limited. The biggest limitations were image size, projected dimension,

and patch size. With a larger image, the number of patches does not increase linearly but

exponentially. As the projected dimension increase, the width of the network increase

in every layer. Also, the patch embedding increase with the projected dimension. The

limit was 128 for the encoder projected dimension. With this size, the model was able to

run a batch size of 32. Increasing the projected dimension would surpass the memory

capacity, even with a batch size of 1. For a patch size of 16, the projected dimension is

smaller than a patch. For a patch size of 10, the projected dimension is a little larger

than the flattened patch. However, decreasing patch size would also exhaust the memory

capacity. With a patch size of 10, the batch size needed to be reduced to 4.
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Chapter 6

Experimental Evaluation

This chapter presents the experimental setup, results, and performance measures for

masked autoencoder on prostate MRI.

6.1 Experimental Setup

The masked autoencoder and downstream model used to test the proposed approach

is based on the masked autoencoder given in the paper[41] and implemented according

to code examples in Keras home page [52]. The last layer of the downstream model is

changed from multiclass classifier with softmax activation to a single neuron with sigmoid

activation for binary classification. The code for extracting the images, filtering the data,

pre-processing, and labeling is implemented from scratch.

The autoencoder is implemented as a generative self-supervised pre-training model to

train an encoder to encode the input into an explicit vector and a decoder to reconstruct

the input. The loss function used to optimize the autoencoder is the mean square error

on the masked patches only, and the evaluation measure is the mean average error. The

optimization algorithm for the pre-training is Adam with an adaptive learning rate and

weight decay of 1e−4. The base learning rate is 5e−3, and warmup with a start learning

rate of 0 and cosine decay is implemented for adaptive learning rate. The pre-training is

trained with epochs between 150 and 750 with a batch size of 32 for a patch size of 16

and a batch size of 4 with a patch size of 10.
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The downstream model is implemented with the encoder and weights from the pre-

training and added layers with batch normalization, global average pooling, and a layer

with a single neuron for classification of significantly significant and insignificant lesions.

The loss function is binary crossentropy for classification, and the evaluation measure is

accuracy and AUC during training. The optimizer algorithm for the downstream task

is SGD with an adaptive learning rate and 0.9 momentum. The base learning rate is

increased to 0.1, inspired by the original paper [41]. Training is performed with epochs

from 30 to 250.

The proposed method is generative self-supervised pre-training on the unlabeled MRI

slices to learn useful features in prostate MRI. With the small amount of labeled data,

the goal is for the encoder to learn general useful features from a larger data set. Transfer

learning is then applied with the downstream model. The downstream model keeps the

learned weights from the encoder and trains the last layer to classify clinically significant

lesions and insignificant lesions.

6.2 Experimental results

6.2.1 Result of Pre-Training

As the goal of the pre-training is not to reconstruct the image, but for the encoder to

learn useful features, the evaluation of the autoencoder through the evaluation metric

does not give a clear understanding of which features it has learned. The development of

the loss function can indicate that the model is learning during training as it is punishing

dissimilarities between the original patches, which are masked, and the reconstructed

masked patches. More similarities will reduce the loss function. A random reconstructed

patch is also printed at a certain epoch interval so we can see the development during

training. As the model is small and the decoder has half the width and fewer layers than

the encoder, we do not expect good reconstructed images.

The development of the loss function and reconstructed images are illustrated for a few

hyperparameters. The fixed parameters that are not changed for the described results

are listed in table 6.1.
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Parameter Value
Encoder projected dimension 128
Decoder projected dimension 64

Encoder number of heads 4
Decoder number of heads 4

Optimizer Adam
Base learning rate 5e−3

Warmup learning rate 0

Table 6.1: Constant hyperparameters for all simulations

Autoencoder Model 1

The parameters for the first simulation is shown in table 6.2

Parameter Value
Epochs 750

Masking ration 0.75
Number of layers encoder 6
Number of layers decoder 2

Image size 128
Patch size 16
Batch size 32

Table 6.2: Hyperparameters for simulation 1

The corresponding development of the loss function is shown in figure 6.1.

Figure 6.1: Loss during training for model 1

We see that the loss is decreasing fast and then moving almost horizontally after 100

epochs. The loss on the training set decreases negligibly after 200 epochs, while the loss

on the evaluation set (labeled test in figure) increases slightly. There is not necessarily

much gain from running many epochs. Figure 6.2 shows printout of the reconstructed

image for epoch 1 and 746. The image in the left column is the original image, the image
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in the middle column shows the masked input, and the image in the right column is the

reconstructed.

Figure 6.2: Model 1 - Reconstructed image for epoch 1 at top row and epoch 746 at
bottom

The figure clearly shows that the autoencoder has learned during training. The top row

representing the first epoch has a lot of noise and is not a good reconstruction of the

slice. The light area covering the pixel range ([80,40], [120,90]) seems more like the slice

in the bottom row. At epoch 746, the reconstructed image has a decent representation of

the dark and light areas in the original slice. None of the details in the MRI is preserved

in the reconstructed image. However, the goal is not to reproduce the details but for the

details to preserved in the latent space of the encoder.

Autoencoder Model 2

The parameters for the second model is shown in table 6.3. The image size is increased

to 160 and the batch size is reduced to 8 to compensate for memory restrictions.
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Parameter Value
Epochs 250

Masking ration 0.75
Number of layers encoder 6
Number of layers decoder 2

Image size 160
Patch size 16
Batch size 8

Table 6.3: Hyperparameters for simulation 1

The development of the loss function during training is shown in figure

Figure 6.3: Loss during training for model 2

It takes around 40 epochs before the loss of the validation set starts to increase. The

loss on the training set continues to decrease until around epoch 230, before it increases.

An increase in loss may suggest overfitting of the data with too many epochs. Figure

6.4 and 6.5 shows reconstructed images for model 2. In figure 6.4 the top row is the

first epoch and second rows is epoch 176. We see that the reconstruction is not similar

for the first epoch, while for epoch 175 the model can reconstruct the contours of the

light and dark area decently. We can distinguish the rectum in the lower middle part,

and prostate gland in the middle of the slice. The same applies for figure 6.5 where the

rectum is clearly more correct for epoch 111 compared to epoch 11.
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Figure 6.4: Reconstructed image for epoch 1 at top row and epoch 176 at bottom

Figure 6.5: Model 2 - Reconstructed image for epoch 10 at top row and epoch 111 at
bottom
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6.2.2 Results from Downstream Model

The downstream model is not able to distinguish between clinically significant and

insignificant lesions. Several configurations and different runs changing the hyperparame-

ters and the number of trainable layers in the downstream model were completed without

producing satisfactory results. Some of the runs are presented to show the evaluation of

the model.

Downstream Model 1

Using the decoder from autoencoder model 1 in section 6.2.1. For the downstream model

the parameters are given in table 6.4.

Parameter Value
Epochs 50

Optimizer SGD with momentum = 0.9
Base learning rate 0.1

Warmup learning rate 0
Number of layers trainable 1

Table 6.4: Downstream model 1 - Hyperparameters

The development of the loss for model 1 is given in figure 6.6

Figure 6.6: Loss during training of downstream model 1

We see that the loss for the training set is decreasing almost throughout the training. The

loss for the validation set is, however, increasing after 5 epochs and stabilizing around

0.75. The corresponding accuracy is shown in figure 6.7.
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Figure 6.7: Accuracy during training of downstream model 1

The accuracy is steadily increasing for the training set towards 0.85. The accuracy for the

validation set is first increasing the first 5 epochs and then decreasing before stabilizing

at approximately 0.68. The AUC is showing similar trends in figure 6.8

Figure 6.8: AUC during training of downstream model 1

The AUC is increasing for the training set, which should suggest that the model is able

to distinguish between classes. However, the AUC for the validation set is over 0.5 for a

few epochs before decreasing to below 0.5. The validation set suggests that the model

can not distinguish between the two classes and that the model is more likely to predict

around 50/50 or predict more wrong than correct.

The resulting performance score on the test set is presented in table 6.7

Accuracy AUC Precision Recall F1
0.58 0.46 0.125 0.125 0.125

Table 6.5: Downstream model 1 - performance score
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The model predicts several significant lesions, but out of the predicted significant cases,

only two are predicted correctly as true positive. The confusion matrix is shown in table

6.6

Predicted Positive Predicted Negative
Actual Positive TP=2 FN=14
Actual Negative FP=14 TN=37

Table 6.6: Confusion matrix for downstream model 1

To check the model, the number of trainable layers was first increased to 3. By this, we

mean the last 3 trainable layers. The downstream model was also initialized from the

start without preserving the weights from the autoencoder. This corresponds to a ViT,

which is implemented with an encoder, except the last MLP head is replaced with single

neuron with sigmoid activation. The results are summarized in table

Trainable layers Accuracy AUC Precision Recall F1
3 trainable layers 0.76 0.26 0 0 0

Initialized with random weights 0.71 0.41 0.285 0.125 0.173

Table 6.7: Downstream model 1 - performance score with 3 trainable layers and
initialized from start

The result of increasing the last three layers to trainable was that non of the predictions

were true positive. When initialized with random weights from the start, there are a few

less false positive. Reduced from 14 to 5, which gives a little higher precision and recall.

The higher accuracy comes from fewer predictions of false positive. Since there are very

few clinically significant samples in the test set, the accuracy will increase if almost all

predictions are insignificant.

Downstream Model 2

The downstream model is based on an image size of 160 pixels and a patch size of 10

pixels. The number of layers is increased to 10 for the encoder and 5 for the decoder.

The parameters for the autoencoder and downstream model are given in table 6.8.
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Parameter autoencoder Value
Epochs 250

Masking ration 0.75
Number of layers encoder 10
Number of layers decoder 5

Image size 160
Patch size 10
Batch size 4

Parameter downstream Value
Epochs 250

Masking ration 0.75
Optimizer SGD with momentum = 0.9

Base learning rate 0.1
Warmup learning rate 0

Number of layers trainable 1, 3 and intialized by random weights

Table 6.8: Downstream model 2 - Hyperparameters

The same trends as model one can be seen in the results. The development of the AUC

is shown in figure 6.9. The AUC on the training set is increasing while the AUC on the

validation set is decreasing.

Figure 6.9: AUC during training of downstream model 1

The AUC on the validation set suggests that the model is not able to distinguish between

the two classes. This is confirmed by the performance measures for the model shown in

table 6.9

Trainable layers Accuracy AUC Precision Recall F1
1 trainable layer 0.76 0.5 0.125 0.125 0.125
3 trainable layers 0.76 0.5 0.125 0.125 0.125

Initialized with random weights 0.71 0.4 0.125 0.125 0.125

Table 6.9: Downstream model 2 - performance score with 3 trainable layers and
initialized from start
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With all configurations of trainable layers, the model results in two true positives. Same

confusion matrix as table 6.6 for downstream model 1.

6.2.3 Cropping the Image Around Prostate Gland

Due to unsatisfying results for the full slice, the images are cropped to remove unnecessary

information in the slice. Taking the full slice, the prostate gland is a very small part of

the image. The cropped image is shown in figure 6.10.

Figure 6.10: Reproduced image when cropping around prostate gland. Prostate gland
marked in red.

The prostate gland is marked in red. The rectum is below in the image, and the bladder

is the dark area above. The results are still very similar to the previous. With the same

parameters as downstream model 1, the number of true positives was increased to 3.

However, the number of false positives was also increasing.
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Chapter 7

Discussion

This chapter presents a discussion of the proposed approach and model, the achieved

results, limitations and alternative approaches.

7.1 Approach and Model

As publicly available labeled images are very limited for prostate cancer, a self-supervised

approach was attempted to improve prostate cancer diagnosis. Public labeled images

are generally limited for medical diagnosis with assisted machine learning. In most

countries, there are strict regulations for reviling patient medical information, and it is

often required with written consent from each patient. The idea is based on promising

results in NLP and machine vision, where models are pre-trained on large amounts

of unlabeled data and then apply transfer learning on the limited available labeled

data. The masked autoencoder outperformed previous best results when pre-training on

ImageNet and apply transfer learning on iNat and Places dataset [41]. Self-supervised

vision transformer based on denoising has also proven to outperform models based on

ResNet [36]. The results are based on simple self-supervised learning methods.

The same simple approach of masked autoencoders was implemented to try and improve

prostate cancer diagnostics. The autoencoder performs pre-training on a larger dataset of

unlabeled images for the encoder to learn the latent representation of the image. Transfer

learning is then applied to the labeled images by keeping the trained encoder and adding

simple linear transformation through batch normalization, global average pooling, and a

69



final layer with one neuron for classification. Compared to implementation of ViT and

masked autoencoder model applied in this thesis is very small due to limitations on GPU

memory. The original ViT-Huge was implemented with 32 layers, a projected size of

1280 and 16 heads adding up to 632 million parameters [39]. The masked autoencoder

is based on the same encoder as ViT and is implemented with projected dimensions

ranging from 768 for ViT-Base up to 1280 for ViT-Huge [41]. The model applied in this

thesis has a projected dimension of 128 and a maximum of 12 layers for the encoder.

7.2 Image Pre-Processing and Augmentation

Little image pre-processing was performed before inputting the images to the model.

The standard normalization of converting DICOM images to grayscale with pixel values

between 0 and 255 and then normalization to values between 0 and 1 by dividing

each image by 255 was performed. An additional outlier removal filter is applied to

replace the darkest and brightest 1% pixel values. This was considered reasonable image

pre-processing as the histogram shows a good spread on the pixel values. Histogram

equalization is an option to spread pixel values over the range between 0 and 255. The

biggest impact of the pre-processing might be the resizing of the images. Resizing from

384x384 to 128x128 will affect the details in the image. When an image is downscaled by

a factor of three, it will affect the details in the image.

Basic augmentation was implemented to artificially expand the dataset a little during

training. Augmentation is usually a vital part of increasing the performance of neural

networks. Based on the masked autoencoder where augmentation gave little to no increase

in performance [41], only random cropping and random horizontal flip were implemented.

Using augmentation or not had no impact on the results for the downstream model.

7.3 Results and Classification

The results are not satisfactory, and the model is not able to distinguish between

clinically significant lesions and insignificant lesions. The autoencoder seems to learn the

features distinguishing between tissue that gives the light and dark areas in the MRI.
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The reconstruction improves with training, and more features are represented in the

reconstructed image.

The model is not suitable for classification. By tuning the model, it will predict more

clinically significant cases, but almost all of them are false predictions of clinically

significant. Even when cropping the image to remove unnecessary information and

focusing on the prostate gland, the model is far from being able to classify the lesions.

The size of the model is a huge disadvantage. The width and depth of the model

are several times smaller than the ViT and masked autoencoder, which are starting

to outperform other deep neural networks for image classification. It is also hard to

pinpoint how large a data set is required to train the model. Ian Goodwill’s book Deep

Learning suggests that there should be at least 5000 ground truth examples for achieving

acceptable performance [17]. This is almost seventeen times more than is available for

prostate MRI. The self-supervised approach is implemented to overcome the issue, but

ViT and masked autoencoders were pre-trained on tens of thousands to millions of images

and fine-tuned or applied transfer learning on several thousands or more images.

Several variations of hyperparameters extending the results presented in section 6.2 were

explored without reaching better performance. Longer and shorter runs with number of

epochs, fixed learning rate which was higher and lower than the base rates for adaptive

learning rate, decoder with the same size as encoder and other. The masking ratio was

also lowered considerably to 50% to see if it would alter the results. None showed results

where the model was able to predict clinically significant lesions. Another approach could

have been object detection and segmentation to see if the model could have produced

better results.

Classification of lesion in the prostate is not directly comparable with the evaluation

performed on ImageNet, and other data set available to measure the evaluation on deep

learning models for computer vision. The prostate is small, and covering a very tine part

of the image. There is usually much more information and features defining different

animals and vehicles in images. Here we are searching for small abnormalities in a small

area of the image. This would suggest the requirement of more data and larger model.
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7.4 Limitations

7.4.1 Model size

One of the biggest limitations was the available memory on google colab. Colab is a very

nice and free tool for machine learning. You can upload a jupyter notebook directly into

google lab and code and print out results runtime while having access to gpu or tpu.

Since it is free, it have restrictions on runtime and memory. It is possible to upgrade to

a paid subscription for better hardware, more memory, and increased run time. This

option is unfortunately not available in Norway. Due to the limited memory, there were

several limitations to the model. The width of the layers was narrow, and the projected

dimension of the patches was small. The image size also had to be downsized by a factor

of three to run the model.

7.4.2 Data Set Size

The data set contains ground truth for 204 individual patients, with 300 lesions distributed

on 334 two-dimensional slices. There should probably be ground truth in the order of

5000 labeled slices to achieve acceptable results [17]. The data set contains 256 slices

with insignificant lesions and only 78 slices that are clinically significant. This is most

likely far from a reasonable size data set. Evaluating the model on validation and test

set produces different results. Both the sets are very small, with the validation set only

containing 10% and the test set containing 20% of an already small data set.

The data set is also very unbalanced and has an unequal distribution between classi-

fications. This unbalanced data set is probably culminating in inadequate predictive

performance, especially for the clinically significant class, which we have seen from the

results. The clinically significant images only represent 23.36% of the data.

7.4.3 Other Approaches with 2.5D and 3D MAE

The problem was tried to be approached with a 2.5-dimensional and 3-dimensional

approach. For the 2.5D approach, all the slices for one patient are fed as input to the

model instead of one and one slice. The implementation proved challenging to implement.
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The positional encoding was the difficult part. For one slice, the image is divided into

patches, and masking is performed by random indices from a uniform distribution. When

extracting patches from a volume and applying the same approach, the distribution of

masking is not equal on each slice. An algorithm for distributing the masking equally was

implemented with the help of numpy, supplying the required tools, and not via tensorflow.

The distribution of masked patches was correct, but the model could not run on GPU

with this fix. Another approach is 3D MAE. The goal would then be to get the depth

information from the slices by tubelet embedding. Instead of looking at the temporal

information which is applicable for video we want to extract the depth information of

lesion through several slices. The patches were extracted by 3D convolution, but it was

not time to implement the full 3D model.
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Chapter 8

Conclusion and Future Direction

This thesis explores the potential to use masked autoencoders to classify lesions in T2-

weighted MRIs of the prostate. The backbone of the model is ViT, and it was implemented

as an autoencoder for pre-training and a downstream model for the classification of

labeled images. The images are masked with a high masking ratio to limit the input to

the model instead of limiting the model itself. A high masking ratio is also chosen to

challenge the model into learning useful features in the latent space of the decoder, and

not being able to utilize redundancy in the image to learn an easy way to reconstruct

the image.

Several experiments were conducted to find the configuration, hyperparameters, image

pre-processing, and augmentation to generate the best possible data and train a model

that can predict prostate cancer in an MRI image. Much time was spent on trying to

implement a functional, 3-dimension masked autoencoder. This was also a reason for

choosing google colab as the GPU hardware. It is very easy to test the implementation on

small models and data sets with the option to print out results during training and edit

code during runtime. With valuable time passing, the model had to be completed as a

2-dimensional masked autoencoder. The results from the experiments show that a small,

masked autoencoder with limiting data set is not a viable option for lesion classification.

The proposed method could not be configured to predict clinically significant lesions.

The final classification score had an accuracy of 76%. The high accuracy comes from the

small amount of clinically significant slices in the test set. Predicting insignificant on all

slices would give an accuracy of over 70%. The bad performance can be measured through
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the other metrics. Best AUC score of 46% means that the model can not distinguish

between the classes. Precision and recall score of 0.285 and 0.125 shows how few true

positive the model was able to predict. The thesis results suggest that bigger models

when in comes to depth and width is required. The thesis doesn’t give solid results on

if the pre-training has an impact. The result was similar for a pre-trained downstream

model and a model initialized with random weights. It is hard to conclude on the size of

the data set, but it would require a bigger set to compare the results.

8.1 Future Directions

Transformers have become a popular topic within deep learning for NLP and machine

vision, and it is still improving. The architecture is very young and was first introduced

in 2017. For machine vision, it was introduced only in 2020, and there has been good

progress in only a few years. The architecture has proven to compete with CNN and

recurrent neural networks, and in some cases, outperformed. The future direction would

be to test a full-size model on the scale of ViT-Basic or ViT-Huge to see if it would

improve the results.

Another interesting approach would be to test a 3-dimensional masked autoencoder on

the prostate MRI volume. Tublets can be extracted from all the slices of the patients to

gain depth knowledge on top of the 2-dimensional positional encoding for a slice. There

are working examples for video ViT, and lesions may be more visible for the model over

several slices.

The model is only considering one mode of the prostate MRI, the axial T2-weighted

images. The data set contains images of other modes like proton density-weighted,

dynamic contrast-enhanced, and diffusion-weighted images. Looking into a multi-modal

architecture would automatically increase the size of the data set. In the actual ProstateX

challenge, you can apply all the MRI modes for both classification and segmentation.

The current leader-board have an AUC score of 0.95.
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