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Abstract 

One of the most useful features of decision analysis is its ability to distinguish between 

constructive and wasteful information gathering. Value-of-information (VOI) and sequential 

information gathering (Value-of-Flexibility, VOF) analyses evaluate the benefits of collecting 

additional information before making a decision. 

Traditionally, VOI has been assessed by constructing a decision tree or influence diagram 

model where a Bayesian framework has been used to update probabilities given new information. 

In this research, we evaluate the use of machine learning (ML) methods such as Ordinary-Least-

Square (OLS), Random Forest (RF), K-Nearest Neighbor (KNN), Support Vector Regression 

(SVR), and Extreme Gradient Boost (XGB) for VOI calculations.  

In this study, VOI will be estimated using a simulation-regression approach. In the simulation-

regression approach, VOI is computed by simulating the model parameters, the data, and prospect 

values, then regressing the prospect values on the data (Eidsvik, et al., 2015, Eidsvik, Dutta, et al., 

2017, Dutta, et al., 2019). Simulation-regression approach is considered to be one solution to 

overcome the computational issue by constructing efficient approximations for the VOI.  

In addition, VOI and Value-of-Flexibility (VOF) analyses are implemented in a case study of 

estimating the 𝐶𝑂! storage capacity of Utsira formation located in the North Sea using the 

simulation-regression approach. 
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Chapter 1 - Introduction 

An essential element in every decision making situation which makes decision making difficult 

is uncertainty (Bratvold and Begg, 2010). As illustrated and discussed by Bratvold and Begg,  

(2010), and Eidsvik, et al. (2015), information can be gathered to further inform the decision. 

However, information sources usually have a cost that must be balanced with the value the 

information might provide in the given decision context. Value of information analysis (VOI) is 

being used for this issue. Most influence diagram applications use decision trees, or convert the 

model to a decision tree, and calculate the VOI. However, where the distributions of probabilities 

are continuous, discretization methods such as value discretization, CDF discretization, three-point 

shortcuts, etc. are needed to calculate VOI (Modeling for Decision Insights, lecture notes, 2021). 

In these cases, the decision tree has a lot of branches which makes VOI analysis suffer from the 

curse of dimensionality and does not scale well with the number of uncertainties (Modeling for 

Decision Insights, lecture notes, 2021). The simulation-regression method using Monte Carlo 

simulation is one method that has the potential to reduce the curse of dimensionality with an 

approximation of VOI relative to a decision tree calculated VOI. Therefore, simulation-regression 

approach is considered to be one solution for the computational issue in VOI calculation. In this 

study, the simulation-regression approach, and the impact of the regression method on VOI 

calculation are evaluated. 

Carbon Capturing and Storage (CCS) is a much-discussed approach to reduce carbon 

emissions. The higher the 𝐶𝑂! concentration, the higher the greenhouse effect, and the more rapid 

is the resulting climate change (Nordbotten, Celia, 2012). Many projects have been suggested and 

some have been initiated for CCS. Site selection for storage is one of the challenges in these 

projects. Utsira formation is a known saline formation suitable for CCS, which is located in the 

North Sea. However, CCS is very expensive, and any investment in 𝐶𝑂!	injecting and storage 

comes with significant uncertainties related to the reservoir, formation properties, and costs.  

Gathering information can bring value to the decision making and help to make good decisions. 

However, this information can be costly and the decision maker should take it into account before 

choosing to have the information or not (Bratvold and Begg, 2010). In some cases, we can bring 

value to the decision making by investing in flexibility like gathering information sequentially and 

having multiple decision points instead of having only one decision to make for gathering 
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information (Begg, et al., 2002). For instance, in sequential information gathering cases, if the first 

decision is “have the first test”, we can observe the result of the test and then decide whether we 

should have a second or third test. In some cases, after choosing to have the first test, based on the 

observed result of it, the additional value that the further tests bring is not worth its cost, and the 

decision maker can say no to further tests.  

This thesis consists of 4 chapters. Following this introduction, Chapter 2 explains the concepts 

of VOI and the simulation-regression approach, studies and evaluates the simulation-regression 

approach, and studies the impact of the regression methods on VOI calculation in the simulation-

regression method. Chapter 3 includes a workflow provided for VOI calculation using the 

simulation-regression approach to have satisfactory accuracy, and a case study of 𝐶𝑂! storage 

using this workflow. Lastly, Chapter 4 contains the conclusions and future recommendations of 

this thesis. 
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Chapter 2 –VOI Analysis and Simulation-Regression Approach 
This chapter starts with the concept of VOI and examples. Then, the simulation-regression 

approach and different regression methods are introduced. Lastly, we focus on the simulation-

regression accuracy, study the impact of regression methods on VOI calculation, and discuss the 

importance of selecting the best regression method for VOI calculation in the simulation-

regression approach in order to have the maximum accuracy with this approach. 

2.1 Monte Carlo Simulation 

Uncertainty means not being sure about the trueness of a statement or outcome of a system 

(Bratvold and Begg, 2010). When we face uncertainty in a variable that influences the outcome 

we are interested in, for example, market demands when we want to produce a product, since it is 

mostly impossible to assess the uncertainties directly, a good approach is modeling the uncertainty. 

Monte Carlo Simulation (MCS) can be used to model and quantify uncertainties (Bratvold and 

Begg, 2010). According to Bratvold and Begg, (2010), MCS is a very popular mathematical 

technique that helps construct a model of uncertainties (Kenton, 2021). MCS works by randomly 

sampling probability distribution functions (PDF) representing uncertain input variables, using 

them to calculate the value of interest, which can be the net present value (NPV), based on the 

Figure 2.1 - Schematic of Monte Carlo simulation procedure (Bratvold and Begg, 2010) 
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model, and then repeating these steps multiple times with different inputs to the model (Bratvold 

and Begg, 2010, Eidsvik, et al., 2015). With MCS we can produce a large number of samples of 

possible outcomes based on the probability models (Kenton, 2021). Bratvold and Begg, (2010) 

showed these steps in Figure 2.1. 

 

The MCS method has the following advantages: 

• It is easy to use, and it can include complicated, non-linear mathematics without additional 

complexity. 

• There is no need to estimate input variables distributions while using MCS because it is not 

limited to working with theoretical probability distributions. 

• It can also cover extreme outcomes. 

• It is able to solve complex problems where an analytical solution is not available. 

• It is possible and easy to define dependencies among uncertainties in the model by this method. 

• There is commercial software available to implement it. 

• The probability of making errors using it in solving problems might be lower compared to the 

analytical approach. 

• It is easy to make changes to the model quickly and investigate its performance. 

• It is a well-known approach that both decision makers and analysts are familiar with it, and 

they are more likely to accept its results (Bratvold and Begg, 2010). 

And, disadvantages of MCS method are: 

• The probability distributions of samples are likely to have errors in comparison with the 

distributions they come from. 

• It is computationally demanding since it is needed to be implemented on a large dataset in 

order to increase the accuracy (Bratvold and Begg, 2010). 

2.2 Value of Information 

According to Bratvold and Begg (2010), minor uncertainties are not the uncertainties making 

decisions difficult. With uncertainties holding the potential to affect the outcome severely, making 

decisions would be a hard task (Eidsvik, et al., 2015, Bratvold and Begg, 2010). We might think 
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of uncertainty as something that must be avoided or reduced as much as possible. Therefore, 

getting more information on uncertain variables might help in making decisions. However, 

information gathering might not be worth it since it might not change the initial decision (Bratvold 

and Begg, 2010). For example, let’s assume the data available now about a reservoir, results in an 

initial decision to invest in a 𝐶𝑂! injection project, and the decision maker is risk neutral, and 

hence she uses expected value as the decision metric. After conducting a sensitivity analysis on 

expected value by varying an uncertain input from its minimum to maximum, the decision might 

remain “Invest”, where she shouldn’t consider gathering more information, or change to “Not 

Invest”, where there might be value in gathering information considering its cost. Information 

gathering comes with costs and efforts, and can inform about the uncertain variable (Bratvold and 

Begg, 2010). If the decision remains as the initial decision after gathering more information, 

information gathering was nothing but an extra and unnecessary cost. It didn’t change the initial 

decision, it just made the decision maker more confident about her decision. VOI is not for 

improving confidence in decision making or reducing uncertainties (Bratvold, et al. 2009). These 

two do not bring value to the outcome (Bratvold, et al., 2009). 

Therefore, Information must have 4 attributes to be considered valuable (Bratvold, et al. 2009, 

Eidsvik, et al., 2015): 1- Relevant. It must be dependent on and related to the distinction of interest. 

It must be able to change our beliefs. 2- Material. The Information must have the ability to change 

the initial decision. If the decision is still the same as before, the information is not reasonable to 

be gathered. 3- Economic. The value that the information brings, must be greater than its cost. 4- 

Observable. The results of the test must be observable to be used in the decision making process 

(Bratvold, et al., 2009, Eidsvik, et al., 2015).  

As discussed by Eidsvik, et al. (2015); there are four steps for VOI analysis. First, introducing 

the decision situation with clarity, uncertainty 𝑥, and possible alternatives 𝐴. Without being clear 

and understanding what the situation is, making a good decision would be impossible. Second, 

identifying possible information gathering methods and the type of information that can be helpful. 

Third, making a spatial model of the situation. And forth, VOI analysis to see whether the 

information to be received is worth its costs (Eidsvik, et al., 2015). 
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Assuming the decision maker is risk neutral, VOI is the difference between expected value 

without (prior value) and with information (posterior value) (Bratvold, et al., 2009, Bratvold and 

Begg, 2010, Eidsvik, et al., 2015). 

𝑉𝑂𝐼 = 	 )		
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	
𝑤𝑖𝑡ℎ	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
(𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑣𝑎𝑙𝑢𝑒)

		? − )		
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒

𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
(𝑝𝑟𝑖𝑜𝑟	𝑣𝑎𝑙𝑢𝑒)

		?. 

𝑉𝑂𝐼 = 𝑃𝑜𝑉(𝑥) − 𝑃𝑉. 

VOI cannot be negative and its lower bound is always zero because the decision maker can 

always say “No” to new information and not pay for it (Bratvold and Begg, 2010). 

2.2.1 Prior Value 
Assuming the decision maker is facing a decision situation with an uncertain variable 𝑥 with a 

prior probability distribution 𝑝(𝑥). She must choose an alternative 𝑎, which maximizes the 

expected value, from available alternatives 𝐴 (Eidsvik, et al. 2015). Thus, the Prior value can be 

calculated as: 

𝑃𝑉 = max
"#$

E𝐸G𝑣(𝑥, 𝑎)IJ = max
"#$

KL𝑣(𝑥, 𝑎)𝑝(𝑥)𝑑𝑥
.

&

M. 

 

Consider a case where a decision maker is facing an uncertain situation whether to invest in a 

𝐶𝑂! storage project. The target value is net present value and is a function of the storage capacity 

and costs.  
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She is uncertain about whether this project is profitable. She assumes a discrete probability 

distribution [0.2, 0.8] for having positive or negative NPV respectively. Now, she can structure 

this decision tree as: 

 

The bold line shows the optimal decision in this case where not investing is the best choice. If 

we define 𝑎 = 1 the “Invest” and 𝑎 = 0 the “Not Invest” alternative, the prior value is: 

𝐸[𝑣(𝑥, 𝑎	 = 	1)] = 	0.8 × −47.3	 + 	0.2 × 113 = 	−15, 

𝐸[𝑣(𝑥, 𝑎	 = 	0)] = 	0. 

𝑃𝑉	 = max{𝐸|𝑣(𝑥, 𝑎	 = 	1), 𝐸|𝑣(𝑥, 𝑎	 = 	0)} = max{−15, 0} = 	0	

2.2.2 Posterior Value 

Now, the decision maker is considering gathering information to see whether it can increase 

the possibility of having good outcomes and change the initial decision (Bratvold and Begg, 2010). 

This information can be tests, studies, data, or experiments and as mentioned before, this 

information must be higher than its cost, be able to change the decision, observable, and relevant 

to the uncertainties (Bratvold and Begg, 2010). Based on the accuracy of the test, this information 

is defined by a likelihood probability 𝑝(𝑦|𝑥) which is the probability of test	𝑦 given uncertainty 𝑥 

(Eidsvik, et al., 2017).  
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Perfect Information 

Perfect information is when the data is always correct, i.e., 100% accurate as the information 

𝑦 removes all uncertainty about 𝑥 (Bratvold and Begg, 2010). Posterior value (𝑃𝑜𝑉) is: 

𝑃𝑜𝑉(𝑥) = 	Lmax
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦)}𝑝(𝑥) 𝑑𝑥
.

&

, 

According to Bratvold and Begg (2010) the concept of perfect information can be really helpful 

as the value of perfect information is the most the decision maker is willing to pay for any kind of 

information. Perfect information is a hypothetical calculation to assess the maximum any other 

information should be worth it, and it gives a limit on value of any information gathered by a 

survey, test, human, etc. (Bratvold and Begg, 2010). In addition, as mentioned earlier, VOI cannot 

be negative. Therefore, VOI must be in the range of zero and the expected value of perfect 

information (Bratvold and Begg, 2010). 

 

Imperfect Information 

All available tests and studies provide imperfect information and are inaccurate due to 

instrument accuracy limit, human error, etc. (Bratvold and Begg, 2010). Thus, the posterior value 

and VOI with imperfect information 𝑦 is calculated by: 

𝑃𝑜𝑉(𝑦) = 	Lmax
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦)}𝑝(𝑦) 𝑑𝑦
.

'

. 

To calculate the posterior value, pre-posterior, or the total probability 𝑝(𝑦), is needed. Pre-

posterior probabilities are the probabilities that the test will indicate the high or low values, and is 

given by: 

𝑝(𝑦) = L𝑝(𝑦|𝑥)𝑝(𝑥)𝑑𝑥
.

&

.	

And the expectation is given by: 

𝐸[𝑣(𝑥, 𝑎)|𝑦] 	= L𝑣(𝑥, 𝑎)𝑝(𝑥|𝑦)𝑑𝑥,
.

&
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𝑝(𝑥|𝑦) is the posterior and is calculated by Bayes’ rule: 

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦) . 

In the 𝐶𝑂! storage investment case, the PoV with perfect information is: 

𝑃𝑜𝑉(𝑥) = 	^max
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦)}𝑝(𝑥)
.

&

	 

=	max
.
{𝑣(0,0), 𝑣(0,1)}𝑝(𝑥 = 0) +		max

.
{𝑣(1,0), 𝑣(1,1)}𝑝(𝑥 = 1)	 

=		max
.
{0, −43.7}(0.8) + max

.
{0,113.5}(0.2) 	= 22.7. 

The VOI is then: 

𝑉𝑂𝐼 = 𝑃𝑜𝑉(𝑦) − 𝑃𝑉, 

𝑉𝑂𝐼(𝑥) = 𝑃𝑜𝑉(𝑥) − 𝑃𝑉	 = 	22.7 − 0 = 22.7. 

This shows that the maximum the decision maker should pay for any information is 22.7. This 

is a relatively high VOI and thus the decision maker may want to assess the value of imperfect 

information. If the value of perfect information had been very small (less than what any relevant 

information gathering activity would cost), the decision maker should now conclude that it is not 

worthwhile gathering more information before making the decision.  

In order to consider this case with imperfect information, the decision maker needs a likelihood 

probability for the test. Assume there is a test available that has an accuracy of 90%, the likelihood 

probabilities are given by 𝑝(𝑦 = 1|𝑥 = 1) = 𝑝(𝑦 = 0|𝑥 = 0) = 0.9.  

First, pre-posteriors, should be calculated for each outcome of the test and since this example 

is discrete, pre-posteriors are calculated by: 

𝑃(𝑦) = ∑ 𝑃G𝑦a𝑥(I𝑃(𝑥().
( , 

Therefore, pre-posteriors are: 

𝑝(𝑦 = 0) =^𝑝(𝑦|𝑥)𝑝(𝑥)
.

&

= 𝑝(𝑦 = 0|𝑥 = 0)𝑝(𝑥 = 0) + 𝑝(𝑦 = 0|𝑥 = 1)𝑝(𝑥 = 1) 
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= 	0.9 × 0.8 + 0.1 × 0.2 = 0.74, 

𝑝(𝑦 = 1) =^𝑝(𝑦|𝑥)𝑝(𝑥)
.

&

= 𝑝(𝑦 = 1|𝑥 = 0)𝑝(𝑥 = 0) + 𝑝(𝑦 = 1|𝑥 = 1)𝑝(𝑥 = 1) 

= 	0.1 × 0.8 + 0.9 × 0.2 = 0.26. 

Second, posteriors for each outcome of 𝑥 given the different outcomes of 𝑦 are calculated as: 

𝑝(𝑥 = 0|𝑦 = 0) =
𝑝(𝑦 = 0|𝑥 = 0)𝑝(𝑥 = 0)

𝑝(𝑦 = 0) 	=
0.9 × 0.8
0.74 = 0.97, 

And correspondingly for the rest: 

𝑝(𝑥 = 1|𝑦 = 0) = 0.03, 𝑝(𝑥 = 0|𝑦 = 1) = 0.3, 𝑝(𝑥 = 1|𝑦 = 1) = 0.7. 

 

These results can also be illustrated by flipping the decision tree using Bayes’ rule: 
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The decision situation after having information is then shown as: 

 

 

And then, PoV(y) can be calculated: 

𝑃𝑜𝑉(𝑦) = 	^max
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦)}𝑝(𝑦)
.

'

	 

=	max
.
{𝐸[𝑣(𝑥, 𝑎)|𝑦 = 0]}𝑝(𝑦 = 0) +		max

.
{𝐸[𝑣(𝑥, 𝑎)|𝑦 = 0]}𝑝(𝑦 = 1)	 

=		max
.
{0, −42.47}(0.74) + max

.
{0,65.26}(0.26) 	= 16.96.	 

Thus, if the test with 90% accuracy costs more than 16.96, the decision maker should reject it. 

And as we can see from the decision tree above, the information is 1-Relevant since it is informing 

about the uncertainty, 2- Material since the decision can change based on the result of the test, 3-

Economic if it costs less than 16.96, and 4-Observable since the result of the test is observable as 

“−“ and “+”. 
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The VOI will be reduced if the accuracy of the test is reduced. The more accurate the test, the 

more valuable it becomes (assuming that the specificity and sensitivity of the test are the same) 

(Modeling for Decision Insights, lecture notes, 2021). The minimum value of the test is when the 

accuracy is 50% since it doesn’t give any information about the uncertainty and cannot change 

prior probabilities, i.e., the test is not relevant for the underlying uncertainty. If it doesn’t matter 

what the test indicates, it cannot change the prior probability. Having a test with accuracy less than 

50% is more informative, since we would know whatever test says, it is likely to be wrong. In the 

Figure 2.2, a sensitivity analysis is done for VOI as a function of accuracy. 

Figure 2.2 shows that with increase in accuracy of the test result, the VOI is elevated and with 

accuracy below 60%, the information doesn’t have value.  

2.3 Value Discretization 

The probability distribution of parameters in decision making situations can be discrete or 

continuous depending on the situation at hand. If continuous distributions are used, they need to 

be discretized for use in decision trees and perform mathematical operations. There are multiple 

methods to discretize a continuous distribution such as 3-Point Shortcuts and N-Point 

Discretization methods including Value Discretization, CDF Discretization, and Moment 

Matching. Each of these methods has its advantages and disadvantages. For instance, 3-point 

shortcuts are simple to use but have limitations in approximating the tails of the distribution and 

should not be used where the extreme values and their probabilities need to be identified from the 

Figure 2.2 - The sensitivity analysis on effect of test accuracy on VOI for 𝐶𝑂! storage investment case 
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distribution (Modeling for Decision Insights, lecture notes, 2021). In the Moment Matching, 

optimization is needed for the probabilities which might need complex calculations. The CDF 

discretization also cannot capture values around the tail, and the value discretization method is 

computationally demanding when the number of uncertain variables and the number of value 

points increase. However, it can capture values from the tails of the distributions (Modeling for 

Decision Insights, lecture notes, 2021).  

In value discretization method, the value range is discretized into N sections. Then, the mid-

value of each section 𝑖 is used to calculate the probability density using this mid-value (𝑥)) and 

PDF, 𝑓) = 𝑓(𝑥)). Then, 𝑓) is normalized to find the probability for 𝑥), 𝑃) =
*!

∑ *!"
!#$

 and ∑ 𝑃),
)-. = 1. 

Value discretization is a great approach to cover the PDF shape including the tails and extreme 

values (Modeling for Decision Insights, lecture notes, 2021). In this study, value discretization 

method is selected among other methods due to its ability to represent the distribution and accuracy 

which are both important elements in VOI analysis. 

2.4 Simulation-Regression Approach 

Simulation-regression approach is based on using Monte Carlo simulation with regression 

methods to calculate PoV and VOI (Eidsvik, et al., 2017).  In this study, we use simulation-

regression approach to calculate VOI for a sequential information gathering scheme. As discussed 

by Eidsvik, et al. (2017) and Eidsvik, et al. (2015), the simulation-regression method includes 

multiple steps: 

1. Generate 𝐵 samples of parameter	𝑥	based on prior probability 𝑝(𝑥) as 𝑥., … , 𝑥/. the 

parameter 𝑥 represents uncertainties, which are porosity, thickness, pressure, depth, 

temperature, and cost in the case study of this thesis.  

2. For each sample of 𝑥 (𝑥0), and for each alternative 𝑎, generate values 𝑣"0 =

𝑣(𝑥0 , 𝑎)	and data samples 𝑦0 by using forward modeling. In our case study, values are 

calculated with NPV functions mentioned in Chapter 3. 

3. Fit a regression model for each alternative 𝑎 values: 

𝑣e"0 = 𝐹"(𝑦0), 

Which approximates the conditional expectation 𝐸[𝑣(𝑥, 𝑎)|𝑦0], and the regression 

method is chosen by a 10-fold cross-validation. 
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4. Calculate the prior value. Prior value (PV) ensures that the value of information never 

gets negative. PV is calculated as (Eidsvik, et al. 2015): 

𝑃𝑉	 = 	max
"#$

g
1
𝐵^ 𝑣"0

/

0-.
h , 

5. Approximate posterior value by: 

𝑃𝑜𝑉(𝑦) 	= 	Lmax
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦)}𝑝(𝑦) 𝑑𝑦
.

'

 

≅
1
𝐵^max

"#$
𝐸[𝑣(𝑥, 𝑎)|𝑦0]

/

0-.

 

≅	
1
𝐵^ max

"#$
𝑣e"0

/

0-.
. 

6. Calculate VOI: 

𝑉𝑂𝐼 = 𝑃𝑜𝑉(𝑦) − 𝑃𝑉. 

The regression function depends on the number of samples 𝐵, and the regression method 

chosen, which we discuss in the following sections. In addition, VOI should be compared with the 

cost of the information to see if the information is worthwhile.   

Imperfect information in the simulation regression approach can be represented by adding a 

measurement error as a noise value to change the test results, 𝑦0, before building the regression 

model. In this study, the noise value is represented by a normal distribution MCS with a mean of 

𝑥0 and standard deviation of samples variable’s average multiplied by the percentage error as: 

𝑦0 	= 	 𝑥0 	+ 	j
1
𝐵^ 𝑥0

/

0-.
k .
%𝑛𝑜𝑖𝑠𝑒
100 . 
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Thus, when the noise is 0%, the information would be perfect as it represents the actual value 

of uncertainty 𝑥0, 𝑦0 = 𝑥0. By using MCS, correlation effects and biased results can be produced 

since each repetition of VOII calculation has a different result. Therefore, we need to repeat the 

calculation of VOII and then find the average. In this study, we used 100 repetitions for calculating 

VOII. A sensitivity analysis should be done on the number of iterations to minimize the computing 

time needed balanced with getting reasonable result. For example, for the 𝐶𝑂! storage investment 

example, Figure 2.3 shows the histogram of VOII with 10% noise to show the range of calculated 

VOII.  

2.5 Regression methods 

Regression methods are important elements in the simulation-regression approach. In this 

section, we introduce and evaluate 6 different regression methods, Ordinary Least Square Linear 

Regression (OLS), K-Nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting 

(XGB), Support Vector Regression (SVR), and Piecewise Regression, on different types of 

datasets and focus on their impact in VOI calculation in the simulation-regression approach.  

Regression methods are models built to relate independent variables to a target variable 

(dependent or response variable) and based on these models, we would be able to describe the 

relationship between these variables and predict the target variable with some new inputs (Agami 

Reddy, 2011). Given datasets including both independent and dependent variables, we can fit a 

regression model and use this model for another dataset to predict target values based on regressor 

Figure 2.3 - Histogram of VOII with 100 iterations 
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variables of a new dataset (Agami Reddy, 2011). In doing this, we need to find a suitable regression 

model. Factors like the type of data, shape of the data, number of variables, and error metrics 

should play into this choice (Chugh, 2020). As an aid in selecting a suitable model, scatter plot 

data underlying each uncertainty and calculated values can provide an initial understanding of the 

behavior of the system. For example, by plotting the 2D or 3D scatter plots we might observe 

linearity or non-linearity making the dependency structure clearer.  

2.5.1 Ordinary Least Squares Linear Regression (OLS) 

Ordinary least squares is one of the most common methods (Agami Reddy, 2011). This method 

is based on minimizing the sum of squared errors or differences between data and model which is 

given by (∑ 𝐷)!1
)-. )

$
%. This method is also called Method of the Moments Estimation since it is 

related to squared errors (Agami Reddy, 2011). 

A multivariate linear model (Polynominal) is given by: 
 

𝑦e 	= 	𝛽2 	+ 	𝛽.𝑋. + 𝛽!𝑋! +⋯+ 𝛽)𝑋) + 𝜀	,			𝑖 = 1,… , 𝑛 
 

Where 𝜀	is the error in the model. The goal of this method is to determine 𝛽2	, 𝛽.,…, 𝛽1 

parameters to be able to relate 𝑦 to 𝑋., 𝑋!,…,	𝑋1 variables in the best way. This model is simple 

and works well for linear systems. It finds single or multivariate linear regression models from 

data (Agami Reddy, 2011). If one finds the linear regression the best regression model for a 

specific dataset, she can also use forward, backward, and stepwise regression methods as a features 

selection technique to remove features with less influence on the target variable and reduce 

dimensionality of the system, making the regression faster.  

Figure 2.4 - Least Square method 
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2.5.2 K-Nearest Neighbors (KNN) 

K-Nearest Neighbor is a pattern recognition method that is commonly used in regression and 

classification (Agami Reddy, 2011). The KNN method is a great tool for modeling non-linear 

systems. It is based on a distance measure that with a given 𝑘, finds the distance of the specific 

input from its 𝑘 nearest neighbors (Agami Reddy, 2011). This method needs 1- a definition of 

distance, and 2- a number of neighbors (𝑘) to take into account. The KNN algorithm is easy to 

understand, fast, and is described as follows (Gupta, Sehgal, 2021): 

1. Select the 𝑘, as the number of neighbors. 

2. Calculate the distance between the test point and each data point. 

3. Sort the distances. 

4. Select the k-nearest neighbors from sorted distances. 

5. Calculate the average of k-nearest neighbors values to assign the value for the test point in 

regression.  

KNN method is extremely sensitive to k values which makes it easy to overfit the model with 

a very small k. In addition, by selecting a very large k, the regression model cannot capture the 

behavior of the dataset. Thus, 10-fold cross-validation must be done on the regression to find the 

k producing the best fitted model while preventing overfitting. In this study, a different number of 

k in the range [1,500] is assigned to 10-fold cross-validation to find the best fit.  
 

2.5.3 Random Forest (RF) 

Random Forest Regression is one of the supervised learning algorithms which uses the 

ensembling learning method (Bakshi 2020). The ensembling method merges machine learning 

algorithms’ predictions to provide an accurate prediction. In the random forest workflow, several 

independent trees run in parallel during training time and use the mean of the classes as the 

prediction of all trees. RF regression models are suitable for capturing non-linear relationships. 

One disadvantage of RF is that it can easily be overfitted and the number of trees should therefore 

be chosen carefully (Bakshi, 2020). 

The RF regression is made by growing trees based on independent and identically distributed 

random vectors (Θ), averaging over k of the trees {ℎ(𝑥, 𝛩3)}, controlling overfitting, and 
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improving the prediction accuracy (Breiman, 2001). In summary, RF regression method tries to fit 

trees on several sub-samples of the whole dataset, improves accuracy, and prevents overfitting by 

averaging (Pedregosa, et al. 2011). A different number of maximum leaf nodes in the range [1,100] 

is assigned to 10-fold cross-validation. 
 

2.5.4 Extreme Gradient Boosting (XGB) 

Gradient Boosting method is based on making a strong model in predicting using a loss 

function from multiple weak models (Natekin and Knoll 2013). According to Natekin and Knoll 

(2013), the main concept of the gradient boosting family is building a model sequentially and by 

iterations. At each iteration, a new weak model is produced using the errors of the model built so 

far and making it more accurate. The loss function for this model can be customized by the user. 

Friedman, (2001) introduced the gradient boosting algorithm as below: 

1. Initialize the model with a constant as a first guess. 

2. Compute the negative gradient. 

3. Fit a new base-learner function. 

4. Find the best gradient decent step. 

5. Update the model. 

6. Repeat from step 2. 

XGB is based on the gradient boosting algorithm with some improvements in prediction and 

accuracy. It is a combination of classification and regression tree (CART) (Babajide, Saeed 2016), 

and is a powerful method built to be useful for large and complicated datasets. A different number 

of the hyperparameter maximum depth in the range [1,10] is assigned to 10-fold cross-validation. 
 

2.5.5 Support Vector Regression (SVR) 

The support vector algorithm looks for non-linearity in the data to provide a model to predict 

(Raj, 2020). SVR uses Support Vector Machines (SVM) which is a supervised machine learning 

method in classification and regression (Raj, 2020). In support vector regression, the hyperplane 

is the straight line needed to fit the data and the SVM tries to generate it where the data point on 

both sides of it are called support vectors. Thus, support vectors can change the hyperplane 

position.  
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The SVR method considers a threshold instead of minimizing the error that other regressions 

do (Raj, 2020). This method is slow such that for large datasets, linear SVR is being used even 

though it only considers a linear kernel. Another disadvantage of this method is that it cannot 

perform well on data with noise. We used scikit-learn SVR regressor in this study (Pedregosa et 

al., 2011). SVR cannot handle more than 10,000 data. Since in this study we are generating 100,000 

samples and this is a large dataset for SVR, we should split the data set into at least 10 splits to 

have a maximum of 10,000 data in each split.  

2.5.6 Piecewise regression 

Piecewise regression splits the dataset and does a regression, mostly linear regression, on each 

split. In this study, we implemented this technique with linear and support vector regression. We 

used KBinsDiscretizer of scikit-learn library for splitting datasets and then fitted a regression 

model for each split. The whole process is done by mlinsights extensions of scikit-learn library. 

2.6 Cross-Validation 

Overfitting and underfitting are very common concepts in machine learning methods. In 

underfitting cases, the model cannot capture the relation between the independent variables and 

the target variable, resulting in low scores on both training and test scores. This can happen due to 

either the model being too simple, the need for more features, or the need for less regularization 

(Nikolaiev, 2021). In overfitting cases, the model also captures part of the noise in the data and 

fits to it, which can cause a poor prediction for new data (Agami Reddy, 2011). In these cases, the 

Figure 2.5 - Piecewise regression with linear regression (Kalvelagen, E, 2018) 
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model works well on the training data but performs poorly on the test. Hyperparameters in 

regression models are to control models from overfitting and underfitting. A method to control 

hyperparameters and find the best regression fitted to the data is 𝑘-fold cross-validation. 𝑘-fold 

cross-validation can tell if the model is overfitted or underfitted and shows the prediction ability 

of the model (Agami Reddy, 2011). In this study, we use 𝑘 = 10, which becomes 10-fold cross-

validation and is a common approach in machine learning field (Grootendorst, 2019). 

2.6.1 Error Metrics 

In every machine learning model, one of the most important steps is to check how well the 

model is fitted and what the error of the model is (Chugh, 2020). There are different methods to 

evaluate the model regressed such as Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), R-squared score, etc. each of these methods brings insight 

to the regressed model and evaluates its performance. For example, MSE represents the difference 

between the actual value and the value predicted, and R-squared shows how well the model is able 

to predict the values. In this study, the R-squared measure is selected as cross-validation score. 𝑅! 

score, is calculated by: 

𝑅! = 1 − ∑($"%$&)#

∑($"%$()#
. 

Where, 𝑦v is the average of data and 𝑦e is the predicted value, and 𝑦) actual value of data points. 
The 𝑅! score closer to 1, the better the model represents the dataset (Chugh, 2020). 

2.6.2 Comparing Different Regression Methods 

In this section, we discuss the impact of the regression method on different data types and show 

how selecting the best regression method is affecting VOI calculation in the simulation-regression 

approach.  

In VOI calculation in the simulation-regression method, the regression method chosen should 

be a function of the dataset and its behavior. For example, in a 𝐶𝑂! capacity estimation case with 

only one uncertainty (thickness) which has a linear relationship with the target value (NPV), 

regression results using different methods are shown in Figure 2.6. Before comparing different 



Reihaneh Shahali – Master Thesis Spring 2022 21 

regression results to find the best fit, cross-validation is used in each regression to identify the best 

fit each method can build. 

As expected, the OLS result is a perfect fit to a linear system while the RF does not result in 

nearly as good fits to the dataset. KNN and XGB also provide good results for a linear function.  

(e) 

(a) (b) 

(c) (d) 

Figure 2.6 - Different regression methods results on a linear function with thickness as the only 

uncertainty 
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In Figure 2.6, light blue markers represent the data for the regression and dark blue lines the 

regressed model. (a) KNN, (b) XGB, (c) OLS, (d) RF, and (e) Piecewise SVR with 10 splits.  

We use the value discretization method for comparison purposes as the correct answer. Value 

discretization’s accuracy increases with an increase in the number of values. Thus, we increase the 

number of value points in the range of 3 to 100 to find where the VOI calculated stops changing 

by 2 decimal digits. After doing sensitivity analysis on the number of values in the value 

discretization, 30 as the number of values is selected as the correct answer for VOI calculation. In 

Table 2.1, there is still a difference between linear regression results and the value discretization 

which is due to using MCS and it decreases by increasing the number of samples in the simulation-

regression method. Moreover, the expected value without information (EVwoI) of regressions 

using the simulation-regression method is different from the one calculated using value 

discretization. This difference is also a result of using MCS and gets smaller with increasing the 

number of samples. All of the variations of the simulation-regression method have the same 

EVwoI since we used the same set of MC samples for all the methods. It is obvious that we can 

achieve different EVwoI each time running MCS and this value gets closer to the value 

discretization by increasing the number of samples. In addition, each regression method can 

provide a reasonable fit in a specific running time which can be time-consuming for some methods. 

For example, XGB can provide a perfect fit to a linear function with a 2.9% error in VOI 

calculation, which takes 182.8 seconds to run, but a simple linear regression takes only 0.8 seconds 

with the same accuracy in VOI calculation. It is not reasonable to use XGB to regress a linear 

function. 

Table 2.1 - VOI analysis of regression methods with uncertain thickness 

 
Value 

Discretization 
30 values 

OLS XGB KNN RF SVR 
Piecewise 

EVwoI 390.68 390.58 390.58 390.58 390.58 390.58 
EVwI 407.47 407.85 407.85 407.85 406.75 407.85 
VOI 16.79 17.26 17.26 17.26 16.16 17.26 

VOI Error - 2.9% 2.9% 2.9% 3.7% 2.9% 
Running time (s) 0.1 0.8 182.8 0.67 1.2 154 
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Lastly, the accuracy of the regression increases with an increase in the number of samples. A 

sensitivity analysis is done on the number of samples on linear regression result, and Figure 2.7 

shows how the accuracy of a linear regression increases with the number of samples. Thus, the 

error resulting from too few samples in the MCS contributes to the overall error in the VOI. For 

example, with 10,000 and 10,000,000 samples, the percentage error in VOI calculation is 25% and 

1% respectively. 

 

 

 

 

 

 

 

 

 

Figure 2.7 - The sensitivity analysis on number of Monte Carlo samples vs linear regression accuracy on a 

linear function. 
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Figure 2.8 shows an example where the NPV is not a linear function of the underlying 

uncertainty, which in this case is pressure. 

As we can see from Figure 2.8, linear regression cannot fit a non-linear relationship of 

dependent and independent variables. In this case, KNN, Piecewise SVR, and XGB are the best 

(a) (b) 

(d) 

 (e) 

(c) 

Figure 2.8 - Different regression methods results on a non-linear function with pressure as the only uncertainty 
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fitting methods, and RF provides a slightly better fit than OLS. These results are also achieved in 

𝑅! scores achieved by cross-validation which are 0.92, 0.99, 0.99, 0.96, and 0.99 for Linear, XGB, 

KNN, RF, and Piecewise SVR respectively.  

As discussed earlier, in piecewise regression we split the dataset and fit a regression for each 

split. The piecewise linear correlation approach identifies linearity in smaller parts of the overall 

system. As shown in Figure 2.9, we split the dataset into 2, and 10 splits and then used linear 

regression for each set, compared the predicted result with value discretization, and the case with 

a single linear regression for the entire range. In this case, the correct VOI about pressure from the 

value discretization calculation is 3.61, while with simple linear regression, which is shown in 

Figure 2.8, VOI is 2.85 with a 21% error. With piecewise regression, VOI is 3.30 and 3.37 with 2 

and 10 splits, and 8% and 6% errors respectively.  Thus, piecewise regression can be a very 

powerful approach to deal with non-linearity. The accuracy of the models in piecewise regression 

improves with an increase in the number of splits. In Appendix 2, a sensitivity analysis of the 

number of splits on the prediction results is presented including cases with a large number of splits. 

The splits have an equal number of data points and the way they have been split shows the higher 

density of the data in the middle of the plots than in the tails which explains the inaccurate results 

in tails. 

 

 

Figure 2.9 - Piecewise OLS regression with 2 and 10 splits 
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Results of the regression methods are sensitive to their hyperparameters. We should do 10-fold 

cross-validation to find optimal values for these hyperparameters, which are k in KNN, maximum 

leaf nodes in RF, maximum depth in XGB, and regularization parameter C in SVR, to avoid 

overfitting and underfitting. For instance, 10-fold cross-validation is done on RF regression with 

only pressure as the uncertainty to study its behavior and find the optimal leaf nodes. A range of 

[1,100] for maximum leaf nodes is given for cross-validation, and as shown in Figure 2.10, 

maximum leaf nodes in a range of [30,100] are having the highest test score where no overfitting 

or underfitting is happening. We selected 30 to avoid long running time while having satisfactory 

accuracy. 

 

 

As shown in Figure 2.10, RF result depends on maximum leaf nodes and its accuracy enhances 

with an increase in the maximum leaf nodes hyperparameter. We can choose between 30 and 100 

based on the running time of regression and accuracy needed since having more leaf nodes results 

in a longer running time. In Appendix 1, 𝑅! scores of all regression methods with 3 uncertainties 

and features, thickness, pressure, and porosity are shown. 

Figure 2.10 - Cross-validation on hyperparameter maximum leaf nodes for RF regression with 

pressure as an uncertainty and feature 
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Figure 2.11 shows RF regression results for a non-linear relationship where pressure is the only 

uncertainty and we use the maximum leaf nodes of (a) 5, (b) 15, and (c) 30. 

In addition, cross-validation is done on hyperparameter C, which is the regularization 

parameter in SVR. C must be positive, and a sensitivity analysis is done on it with values in a 

range of [1,50]. The plots of results are shown in Figure 2.12, for (a) 𝐶 = 1, (b) 𝐶 = 10, and (c) 

𝐶 = 40. Lastly, 𝐶 = 40  is selected. 

(a) (b) 

(c) 

Figure 2.11 - The sensitivity analysis on effect of hyperparameter maximum leaf nodes in RF 

regression results 
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As shown in Figure 2.12, decreasing C leads to decreasing accuracy of the prediction and 

regression cannot cover tail and extreme values very well which play important roles in VOI 

analysis.  

Now, to further investigate the different regression methods’ abilities in fitting and predicting 

different data types and impacting VOI, the case with both uncertainties (thickness and pressure) 

is considered, and multivariate regression models are constructed. The relationship between target 

and independent variables is now non-linear. For RF, KNN, SVR, and XGB, 10-fold cross-

validation is conducted to control overfitting and underfitting by the hyperparameters the 

maximum leaf nodes, k,  C regularization parameter, and the maximum depth, respectively. Plots 

of multivariate regression results are shown in Figures 2.13, 2.14, and 2.15. 

(c) 

(a) (b) 

Figure 2.12 - The sensitivity analysis on hyperparameter regularization parameter in SVR with values of (a) 

1, (b) 10, and (c) 40. 
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Figure 2.14 - Multivariate regression plots. (a) XGB, (b) KNN. 

(a) (b) 

Figure 2.13 - Multivariate regression plots. (a) OLS, (b) Piecewise OLS with 4 splits 

(a) (b) 
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 As shown in Figures 2.13, 2.14, and 2.15 linear regression cannot capture the behavior of the 

system as well as other regression methods like KNN and XGB. The relationship between the 

uncertain inputs and the NPV is a curved surface (orange dots) while the regressed surface using 

linear regression is a linear and flat surface. However, Piecewise OLS with 4 splits improves the 

result of simple OLS. In Table 2.2, the predicted results are compared with the value discretization 

method and 𝑅! scores confirm the conclusion based on the figures. SVR is weak in capturing the 

tail values as shown in Figures 2.12 and 2.15, which are important in VOI analysis. We should 

also mention the difference between the expected values without information in two cases where 

only thickness is uncertain in Table 2.1 and where thickness and pressure are both uncertain in 

Table 2.2. This is the result of including pressure uncertainty in the system which is material and 

influences the NPV. In addition, VOI is not additive (Bratvold and Begg, 2010), which means that 

the VOIs achieved by value discretization for thickness and pressure are 16.79 and 3.61, 

respectively but the VOI for having both at the same time is 24.37 which is higher than the sum of 

3.61 and 16.79. 

 

 

Figure 2.15 - Multivariate regression plots. (a) Piecewise SVR, (b) RF 

(b) (a) 



Reihaneh Shahali – Master Thesis Spring 2022 31 

 

Table 2.2 - VOI analysis of multivariate regressions with uncertain thickness and pressure 

 
Value 

Discretization 
70 values 

OLS OLS 
Piecewise 
10 splits 

XGB 
5 max 
depth 

KNN 
K=50 

RF 
70 max leaf 

nodes 

SVR 
Piecewise 

C=40  
10 splits 

EVwoI 353.73 353.92 353.92 353.92 353.92 353.92 353.92 
EVwI 378.10 373.67 376.42 376.46 376.39 375.26 375.75 
VOI 24.37 19.75 22.50 22.54 22.47 21.34 21.83 

R! scores - 0.93 0.99 0.99 0.99 0.96 0.99 

Run Time (s) 319.5 2.1 7.3 418.7 1.2 2.8 396.8 

VOI Error - 19.6% 7.6% 7.5% 7.7% 12.4% 10% 
 

In addition, the running time for these two approaches (value discretization and simulation-

regression) can also be informative for evaluating the simulation-regression approach. Value 

discretization becomes computationally demanding with an increase in the number of uncertainties 

and discretized value points. With the same sensitivity analysis on the number of value points in 

value discretization we had earlier, 70 as the number of values is selected as the correct answer. 

With 2 uncertainties and 70 value points for each, there would be 70 × 70 data points. For cases 

with more than 2 uncertainties, like the 𝐶𝑂! storage capacity estimation problem with 6 

uncertainties, or cases with more value points, VOI calculation becomes highly computationally 

demanding. Thus, when the number of uncertainties increases, we can find the best regression 

model fitted using 10-fold cross-validation and assess the running time before conducting VOI 

analysis with the simulation-regression approach. All these methods are comparable with each 

other when cross-validation has been done to find the best possible fit for each method. For 

example, SVR with 2 different values for its hyperparameter (a) 𝐶 = 4, and (b)	𝐶 = 40 yields 

different results as shown in Figure 2.16. As we can see, the model fit is better with a higher C and 

the regression improves. Thus, we cannot compare the best case of one regression method with a 

medium accurate case for another.  
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Figure 2.17, shows the sensitivity analysis of the number of splits in Piecewise OLS with (a) 2 and 

(b) 10 splits, with an increase in the number of splits, the model gets the shape of the data better. 

The number of splits is chosen by 10-fold cross-validation. First, we split the data set with the 

given number of splits. Second, we conduct a regression on each split and calculate the 𝑅! scores. 

Then, we increase the number of splits and repeat the previous steps to find the best fit which in 

(a) (b) 

(a) (b) 

Figure 2.16 - The sensitivity analysis on hyperparameter C for Piecewise SVR 

Figure 2.17 - The sensitivity analysis on number of splits in Piecewise OLS Regression 
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this case is 10 splits. Increasing the number of splits by more than 10 is not improving the 𝑅! 

scores in this case and causes overfitting.  
 

2.7 Value of Flexibility (VOF)  

Flexibility can bring value in 4 general situations (Begg, et al., 2002): 1- when it has less cost 

than information gathering. 2- gathering the information is not possible. 3- when there is a need to 

manage the residual uncertainty after having information. And 4- when it actually creates value. 

Flexibility is combined with creativity and brings new solutions to the problem. Flexibility 

provides the opportunity to learn from intermediate outcomes and then apply this learning in 

making the decision. This is dynamic decision making which differs from static decision making 

where there is no such learning. It can create value since the main decision can be split into multiple 

steps where the decision at each step uses the learning from the outcomes of the previous decisions 

(Begg, et al., 2002). 

As mentioned, decision making can be static or sequential (dynamic). Similarly, the 

information-gathering scheme can be categorized as being static or sequential (Eidsvik, et al., 

2015, Eidsvik, et al., 2017). There are some cases where the information gathering is not done at 

a single point in time and is not limited to only one decision (Eidsvik, et al., 2015). For example, 

gathering information relevant for multiple uncertainties at the same time, or making a decision 

sequentially for each test after receiving information from the previous one. Gathering information 

sequentially brings flexibility and value to the decision situation since tests for information are 

having costs (Eidsvik, et al., 2015).  

There are three models representing sequential decision making and information-gathering 

schemes (Modeling for Decision Insights, lecture notes, 2021). 1- myopic model, where we ignore 

future decisions and information. 2- naïve model, where we only ignore the future information and 

learning concept, and 3- dynamic decision making, introduce the full model of the decision 

situation, and there is nothing ignored (Alyaev, et al., 2019, Modeling for Decision Insights, lecture 

notes, 2021). Each model has its pros and cons. Moving from myopic to dynamic, the calculation 

becomes more complex, and more value adding. In a dynamic decision making model, with an 

increase in the number of decision points, decision alternatives at each point, number of 

uncertainties, and number of the possible outcome of uncertainties, the complexity increases 
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exponentially, resulting in the curse of dimensionality (Modeling for Decision Insights, lecture 

notes, fall 2021. Eidsvik, et al. 2017). In this study, we apply a dynamic decision making model to 

reveal the inherent value of sequential decision making. 

For instance, assume there is a case with two uncertainties, 𝑥1	and 𝑥2, related to a profit of an 

investment situation and tests are available for these uncertainties, 𝑦1 and	𝑦2, with specific costs 

for each test, 𝑃1 and 𝑃2, respectively. The decision maker can decide if they want information 

about both uncertainties before investing in the project. This information-gathering scheme is 

called static where all the information is gained at the same time (Eidsvik, et al., 2015). Another 

option she has is to include flexibility (Begg, et al. 2002). She might think of obtaining information 

sequentially. For instance, perform the test for one of the uncertainties now, observe the results of 

the test, and then decide whether they want to continue with the second test or not (Eidsvik, et al., 

2015). This way of thinking can reduce costs as it also considers the case with only one test.  

Figure 2.18 illustrates the situation. In the first step, the decision maker observes the results of 

the first test and decides whether to continue with the second test, or stop gathering information 

and a make decision to invest or not. Posterior value at this point is: 

𝑃𝑜𝑉(𝑦.) = 	 Lmax"#$
{𝐸(𝑣(𝑥, 𝑎)|𝑦.)}𝑝(𝑦.) 𝑑𝑦.

.

'$

,	 

Observation of 𝑥1 affects the decision about whether to observe 𝑥2. The decision maker should 

only go on with the second test if the additional value considering its cost, 𝑃2, is more than the 

value with having only the first test (Eidsvik, et al., 2015).  

 

Figure 2.18 - Sequential information gathering schematic 
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Lmax
"#$

{𝐸(𝑣(𝑥, 𝑎)|𝑦., 𝑦!)}𝑝(𝑦!|𝑦.) 𝑑𝑦!

.

'%

	− 	𝑃! 	> 	max"#$
{𝐸(𝑣(𝑥, 𝑎)|𝑦.)}, 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	 − 𝑃! 	> 	𝑆𝑡𝑜𝑝	𝑡𝑒𝑠𝑡𝑖𝑛𝑔, 

 

Thus, the PoV of the sequential information gathering with having only two uncertainties is 

calculated by: 

𝑃𝑜𝑉456(𝑦!|𝑦.) = Lmax
.
{
L max

"∈$
{𝐸(𝑣(𝑥, 𝑎)|𝑦., 𝑦!)} 𝑝(𝑦!|𝑦.)𝑑𝑦!

.

'%
−	𝑃!,

max
"∈$

{𝐸(𝑣(𝑥, 𝑎)|𝑦.)}																																			
| 𝑝(𝑦.)𝑑𝑦., 

 

Then, the VOI must be calculated using PoV and PV. This VOI should be compared with the 

cost of test 1, 𝑃.. If VOI is larger than the cost 𝑃., the decision maker should choose this sequential 

information gathering scheme. This approach can also be extended to different available test 

sequences. For example, start with test 1, continue with test 2, or start with test 2 and continue 

with test 1. 
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 In this study, we used flexibility in information gathering using the simulation-regression 

method to assess the VOI. We considered all possible sequences for information gathering to find 

the best information gathering sequence. For example, for a situation where we have 3 

uncertainties 𝑥., 𝑥!, 𝑥8, and 3 tests available, 𝑦., 𝑦!, 𝑦8, there are	3! = 6 possible sequences for 

information gathering, 𝑦.𝑦!𝑦8, 𝑦.𝑦8𝑦!, 𝑦!𝑦.𝑦8, 𝑦!𝑦8𝑦., 𝑦8𝑦.𝑦!, and 𝑦8𝑦!𝑦.. Consider the first 

sequence, 𝑦.𝑦!𝑦8. The sequential decision making of this case is illustrated in Figure 2.19. In this 

study, for 𝐶𝑂! storage capacity estimation, we calculate value of flexibility with tests for thickness, 

pressure, and porosity since they are material uncertainties. 

 

 

 

 

 

 

 

Figure 2.19 - Sequential information gathering decision tree 
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Therefore, we repeat this decision making process in Figure 2.19 for all other sequences as 

well and find the VOI for each of them. Lastly, the last step would be comparing these VOIs to 

find the best sequence as shown in the diagram in Figure 2.20. 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 - Illustration of sequential information gathering scheme 
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2.8 Conclusions 

In this chapter, we introduced the value of information analysis, the value discretization 

method, and the simulation-regression approach. We introduced different regression methods and 

evaluated their ability to predict different data types in VOI analysis by simulation-regression 

method.  

We evaluated the simulation-regression’s accuracy in VOI calculations influenced by the 

regression methods and the number of Monte Carlo samples. The simulation-regression method’s 

accuracy in VOI calculations depends on the regression method selected. The regression method 

selected for the simulation-regression method must be evaluated based on the data before VOI 

calculations, and we introduced 𝑅! scores as a great means to find the best fit. Thus, in order to 

have the best accuracy possible for the simulation-regression method, one should find the best 

fitted model for specific data.  

In addition, since the simulation-regression method uses MCS, and MCS is sensitive to the 

number of samples, a large number of samples is needed to increase the accuracy of the VOI 

calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reihaneh Shahali – Master Thesis Spring 2022 39 

Chapter 3 – Case Study at Utsira Formation  

In this chapter, we introduce a workflow for the simulation-regression approach based on the 

conclusions of the previous chapter, frame a sequential decision making situation for the Utsira 

formation 𝐶𝑂! capacity storage estimation with related uncertainties, implement our workflow on 

the case, and calculate the VOI and VOF.  

3.1 Utsira Formation Reservoir Model 

In CCS projects, 𝐶𝑂! is being stored in deep underground geological storage, deep ocean 

storage, and mineral carbonation (Aminu, et al., 2017). According to Allen, et al. (2018), Utsira is 

a saline aquifer that has the largest storage capacity compared with other geologic formations 

(Temitope, et al., 2016) with an average top-surface depth of almost 900 meters (ranging from 300 

to 1400 meters) and a critical point of 31°C and 73.8 bars.  

There are some parameters affecting the capacity estimation of saline aquifers for 𝐶𝑂! storage 

such as porosity, pressure, temperature, thickness, and depth. Porosity is one of the important rock 

properties for estimating the 𝐶𝑂! storage capacity. The average porosity of Utsira is about 0.2112 
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Figure 3.1 - Utsira Formation figure with thickness range. (Source: MRST, SINTEF, 2016b, Lie, 2019) 
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(Norwegian Petroleum Directorate, 2019). Porosity samples in this study are represented by a 

Gaussian distribution with a standard deviation of 0.04. Aquifer initial conditions such as 

temperature and pressure influence the density of 𝐶𝑂!, and this impacts the storage capacity. 

Warmer aquifers decrease 𝐶𝑂! density resulting in lower 𝐶𝑂! storage volume. Pressure and 

temperature are calculated using depth (Allen, et al., 2018):  

𝑃 = (𝜌9𝑔𝑧 + 𝑃4),	

𝑃2 = 𝑃 +
∑ 𝑝𝑣)𝑃) 	1
)
∑ 𝑝𝑣)1
)

𝑑
100 ,	

𝑇 = 𝑇0 + 𝛻𝑇(𝑧 − 𝑧0	),	

Where 𝑃2 is initial hydrostatic pressure, 𝜌9 water density, 𝑔 gravitational acceleration, 𝑧 

caprock depth, 𝑃4 surface pressure, 𝑝𝑣 pore volume, 𝑑 is the deviation in percent, 𝑇 is initial 

caprock temperature, 𝑇0 is seafloor temperature, (𝑧	–	𝑧0) is depth below seafloor, and ∇𝑇 is the 

thermal gradient in the vertical direction. Pressure samples are produced with a mean and standard 

deviation of [0,5]% deviation (𝑑) which means a standard deviation of 12 bars as the model 

reference pressure is 80 bars. Also, the samples of temperature are produced with sampling the 

thermal gradients (∇𝑇) with mean and standard deviation of [37.5, 3.36] °C/km. 

According to the Norwegian Petroleum Directorate (NPD), the Utsira formation has an average 

depth of 900 m, a horizontal area of 110 km and 430 km in the vertical direction, with a storage 

efficiency factor of 4%.  

MATLAB Reservoir Simulation Toolbox (MRST) 

MRST is an open-source software implemented in MATLAB for reservoir simulation and 

modeling. It includes simulation tools, datasets from real aquifers such as Utsira, and examples. 

But it is also possible to create your own simulations with specific values (Lie, 2019). In this study, 

we used available datasets for the Utsira formation to quantify uncertainties’ ranges and averages.  
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3.2 Decision Frame  

In this study, we assume a company that has an opportunity to invest in a 𝐶𝑂! injection and 

storage project at the Utsira formation. There are two alternatives 𝑎 ∈ {0,1}, invest in the project 

(𝑎 = 1), and do not invest (𝑎 = 0) for the company. The goal is to maximize the Net Present 

Value (NPV). In this case, we assume the 𝐶𝑂! storage is a commercial service of the company, 

and NPV is the profit of the company calculated from its revenue and costs. In other cases, the 

company that produces 𝐶𝑂! emissions must pay a carbon tax. Carbon tax is like a charge that 

governments require 𝐶𝑂!	emitters to pay for each ton of greenhouse gas emissions they produce. 

In Norway, carbon tax started in 1991 (Jason, 2013). Therefore, the profit can be considered as a 

carbon tax reduction. The injection period in this study is considered 40 years with equal injection 

rates based on the estimated capacity. In addition, the trapping capacity of the formation and the 

capturing costs are uncertain.  
 

3.2.1 𝑪𝑶𝟐 Storage Capacity Estimation and Uncertainties 

As discussed by Aminu, et al. (2017), 𝐶𝑂! storage capacity estimation is not easy. There are 

some methods suggested to calculate capacity such as the Carbon Sequestration Leadership Forum 

(CSLF). The CSLF model is a volumetric approach and is calculate as: 

𝑀;<% = 𝐴𝐻𝜑𝜌;<%(1 − 𝑆9)==)𝐶> 

Where 𝐴 is trap area, 𝐻 average thickness, 𝜑 porosity, 𝐶> capacity coefficient, 𝑆9)== irreducible 

water saturation and 𝜌;<%is 𝐶𝑂! density. (1 − 𝑆9)==)𝐶> is equal to storage efficiency factor. 𝐶𝑂! 

density has a non-linear relationship with temperature and pressure which we use as uncertainties 

in our model. In this study, we estimated the storage capacity of the Utsira formation with porosity, 

depth, thickness, temperature, and pressure of the rock as uncertainties.  

According to the NPD, 𝐶𝑂! that is being injected in Utsira is in supercritical liquid form. 𝐶𝑂! 

density behavior needed to be implemented to account for the influence of temperature and 

pressure since they are important features in determining the 𝐶𝑂! storage capacity. Bahadori, et 

al. (2009) has introduced a new model to predict 𝐶𝑂! density as a function of temperature and 

pressure. In his suggested correlation, 𝜌, 𝑃, 𝑇 , are density, pressure, and temperature respectively 

and are presented as: 
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𝜌 = 𝛼 + 𝛽𝑇 + 𝛾𝑇! + 𝜃𝑇8. 

Where, 

𝛼 = 𝐴. + 𝐵.𝑃 + 𝐶.𝑃! + 𝐷.𝑃8, 

𝛽 = 𝐴! + 𝐵!𝑃 + 𝐶!𝑃! + 𝐷!𝑃8, 

𝛾 = 𝐴8 + 𝐵8𝑃 + 𝐶8𝑃! + 𝐷8𝑃8, 

𝜃 = 𝐴? + 𝐵?𝑃 + 𝐶?𝑃! + 𝐷?𝑃8. 

All coefficients 𝐴.,…	𝐴?,	𝐵.,…,	𝐵?,	𝐶.,…,	𝐶?,	𝐷.,…,	𝐷?	are	constant	but	varies	in	2	different	
pressure	zones	of	25-100	bar	and	100-700	bar.	In	this	study,	we	used	this	model	to	consider	

the	effect	of	pressure	and	temperature	as	uncertainties.	

3.2.2 Decision Frame and Influence Diagram 

To define a decision frame, we determine NPV, uncertainties affecting it, and decision points. 

With these all, the influence diagram of the case study can be shown as below where uncertainties 

are temperature, pressure, thickness, porosity, depth, and storage cost, which all are impacting the 

NPV.	

 
 

Figure 3.2 - Influence Diagram of 𝐶𝑂! capacity estimation case study 
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To convert storage capacity to value and do the VOI calculations, price of 𝐶𝑂! and total cost, 

capital expenditure (CAPEX) and storage cost, are needed. The annual profit is gained by average 

carbon price of the first quarter of 2021, which is $38/t𝐶𝑂! (Quandl 2021), minus total cost. In 

Zero Emissions Platform 2011 document, CAPEX for an offshore saline aquifer without re-usable 

wells is $330 million and cost of storage is $[6, 20]/t𝐶𝑂! (Zero Emissions Platform, 2011).  We 

assumed area of injection to be 100	𝑘𝑚! and discount rate of 10% per year. Using 𝐶𝑂! injection 

capacity (𝑀;<%) and costs, NPV is calculated as: 

𝑁𝑃𝑉(𝑥, 𝑎 = 0) = 0, 

𝑁𝑃𝑉(𝑥, 𝑎 = 1) =
𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑐𝑜𝑠𝑡

(1 + 𝑖)1 − 𝐶𝐴𝑃𝐸𝑋 

where, 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 =
$38
𝑡𝐶𝑂!

×
𝑀;<%
𝑛 , 

𝑐𝑜𝑠𝑡 = $(𝑐𝑜𝑠𝑡@**4A@=5	4C@="D5)/𝑡𝐶𝑂! ×
𝑀;<%
𝑛 , 

𝑛 = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑	𝑝𝑒𝑟𝑖𝑜𝑑, 𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝑟𝑎𝑡𝑒. 

3.3 Workflow 

After modeling uncertainties and choosing their distributions and ranges, we generate 100,000 

random samples of each uncertainty, which we are going to use as inputs in the next step, the 

simulation-regression. After generating samples of uncertainties, we do choose the most important 

and dominant uncertainties in NPV value using a Tornado diagram. Then, we consider multiple 

regression methods to find the model best fitted to the dataset. In this study, we look at OLS, 

Piecewise OLS, KNN, XGB, RF, and Piecewise SVR as regression model possibilities. We use 

10-fold cross-validation to find out which method is a better method for prediction and controlling 

the potential overfitting of the regression models, e.g., k neighbors in KNN. We use the value 

discretization method to compare the results of the regression with the correct VOI value, assuming 

as discussed in Chapter 2 that we have used enough values in the value discretization method to 

make it correct within the required number of decimal digits. After identifying the most suitable 

model to fit the dataset, we calculate the value of perfect and imperfect information. Then, we 
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move on and consider a sequential information gathering scheme to bring flexibility to the decision 

making and calculate the value of flexibility (VOF), and lastly, we implement sensitivity analyses 

on VOF.  

 

Figure 3.3 - Workflow of the 𝐶𝑂! capacity estimation case study 

3.3.1 Generate samples 

To start with regression, after determining uncertainties, their value ranges, and value function, 

we generated 100,000 samples. We used vectorization from the Numpy library for samples and 

calculated the NPVs related to them. This approach reduced the running time of the code 

significantly. Time taken by list comprehension is 180 seconds per loop with 7 runs and 1 loop for 

each, and time taken by Numpy vectorize method is 6 seconds per loop with 7 runs and 1 loop for 

each.  
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3.3.2 Feature Selection 

Feature selection techniques provide insight into the data and the model using sensitivity 

analysis on ranges of output value with change in one variable at a time (Bratvold and Begg, 2010), 

and are useful for dimensionality reduction. In this study, a Tornado diagram is implemented on 

the value function to find the features with the highest impact on the NPV as a feature selection 

method. This chart, shown in Figure 3.4, provides a means for assessing the NPV impact of each 

of the underlying variables. As seen in Figure 3.4, pressure, porosity, thickness, and depth are 

material as they can change the decision by influencing the NPV to give negative values. 

Moreover, as depth has only a very small chance of being material, we focus on the top three 

variables in the Tornado diagram - porosity, thickness, and pressure - in our analysis. Note that no 

conclusion of the VOI for the variables can be made based on the NPV impact indicated in the 

Tornado graph. The Tornado graph as shown here is a deterministic analysis tool as no 

probabilities have been assigned to the possible outcomes and, hence, VOI analysis cannot be 

conducted.  

3.3.3 Regression Method Selection 

In previous step, we selected thickness, pressure, and porosity as uncertain variables and will 

use the average values for the remaining variables. Then, 𝑅! scores of different regression methods 

Figure 3.4 - Tornado Diagram, features vs NPV 
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with these three uncertainties are compared. Table 3.1 includes VOI, run time, VOI percentage 

error, and 𝑅! scores for each regression. In addition, cross-validation on hyperparameters for each 

regression is done. Therefore, each method is at its best possible fit. We use value discretization 

results with 30 value points for each uncertainty as the correct answer which is also included in 

the table. 
 Table 3.1 - VOI analysis of multivariate regressions with uncertain thickness, pressure, and porosity 

 

 

XGB regression is chosen as the best model fitted in this case (uncertain thickness, pressure, 

porosity) based on its high 𝑅! score and the VOI calculated of 27.28 with a 3.2% error. However, 

there should be a balance between VOI calculation accuracy and running time. In some cases, 

there might be a limit in running time which must be considered while selecting the best regression 

model for a specific dataset. In this case, we assume we have no limitation in time and 422 seconds 

for our decision is reasonable for our case and also it is less than the value discretization method 

which is 12,108 seconds. Thus, XGB is selected as the best regression method for our dataset with 

3 uncertainties. 

3.3.4 VOII Analysis 

The VOI analysis with perfect and imperfect information with 𝑛𝑜𝑖𝑠𝑒 = {10%, 20%, 30%,

50%, 70%, 100%} is done on data for four information gathering schemes where we receive 

information on: 

1. All three uncertainties (thickness, pressure, and porosity), 

 Value 
Discretization 

30 values 

 
OLS 

OLS 
Piecewise 
10 splits 

 
XGB 

 
KNN 

 
RF 

SVR 
Piecewise 
10 splits 

EVwoI 353.44 353.20 353.20 353.20 353.20 353.20 353.20 
EVwI 379.86 376.68 380.54 380.48 375.92 376.73 378.00 
VOI 26.42 23.48 27.34 27.28 22.72 23.53 24.80 

R! scores - 0.91 0.99 0.99 0.87 0.97 0.98 
VOI Error - 11.1% 3.4% 3.2% 14% 10.9% 6.1% 
Run time 12,108 0.3 13.5 422 0.5 2.7 917 

Hyperparameter - - - 7 100 90 50 
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2. Information on thickness, 

3. Information on pressure, 

4. Information on both thickness and pressure.  

Noise is implemented with a normal distribution and as a measurement error before regression, 

affecting the 𝑅! scores as shown in Figure 3.5. 

XGB regression method is chosen due to its high 𝑅! score which has been calculated 

previously for the three uncertainties case in Table 3.1, and for two uncertainties case based on 

Table 2.2. OLS is selected for the case with only thickness as uncertainty based on Table 2.1, and 

SVR for uncertain pressure based on Figure 2.8. As mentioned earlier, the regression with 

Figure 3.5 - The sensitivity analysis of noise vs 𝑅! score 

Figure 3.6 - The sensitivity analysis of VOII vs noise 
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imperfect information is repeated 100 times. As we can see from Figure 3.6, the VOI drops when 

noise is included in the information. 

 

3.3.5 VOF Analysis 

The VOF analysis for this study is done using uncertainties in thickness, pressure, and porosity. 

As mentioned earlier, in this example information is gathered sequentially which allows for 

flexibility and increases the value of information (Begg, et al. 2002). The VOF cannot be less than 

the static case with all information at once. Sequential information gathering can bring value when 

there are costs for available tests related to uncertainties and we split the decision for gathering 

information into multiple steps. In addition, in this study, we implemented a sensitivity analysis 

on test cost to observe its effect on VOF and VOI.  

First, the static case (have all tests at once) is implemented with XGB regression since it is 

selected as the best regression for these three uncertainties in Table 3.1. This case has a value of 

free information of 27.28. The costs of the tests must be subtracted from this value to find the VOF 

with costs. Then, based on the sequential information gathering structure shown in Figures 2.19 

and 2.20, there are multiple regressions needed in the process which are chosen based on the 

dataset. Cross-validation is done on hyperparameters of each regression method to find the optimal 

fitted model. Then, 𝑅! scores of all regression methods are compared to find the optimal method 

among them. These 2 steps are done in each step of the sequential information gathering process. 

There are 6 possible sequences for sequential information gathering with 3 available tests. The 

number of possible sequences grows with the number of tests available. With 𝑛 information 

sources (tests), 𝑛! sequences are possible. For each sequence, depending on the number of 

alternatives 𝑎 ∈ 𝐴, and the number of features 𝑛,  there will be (𝑎 + 2)𝑛 − 2 regressions required. 

Finally, 10 regressions are needed in our case study where two are 3-variates, four are 2-variates, 

and four are univariates. In this study, after the cross-validation steps mentioned, XGB for 3-

variates with 𝑚𝑎𝑥	𝑑𝑒𝑝𝑡ℎ = 7, Piecewise OLS for 2-variates, and OLS for univariates are selected 

based on their high 𝑅! scores and running time. 𝑅! scores of all regression methods at all steps 

resulting in these selections are presented in Appendix 3.  
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After selecting the best models fitted for each step in the sequential information gathering, a 

sensitivity analysis is done on the impact of tests cost on the VOF. Four different cost sets are used 

for information about thickness, pressure, and porosity. First, the test costs for thickness and 

pressure are kept constant at $8 and $2 million respectively. The sensitivity analysis is done on the 

cost of information about porosity with values of $2, $8, $15, and $40 million. The optimal 

sequence including the cost scenarios is thickness-pressure-porosity. In Figure 3.7 costs are 

represented with this sequence. For instance, a cost set of [8, 2, 15] is [thickness test cost of $8, 

pressure test cost of $2, porosity test cost of $15] million. VOI of the static case is also 

$27.28	𝑚𝑖𝑙𝑙𝑖𝑜𝑛 − (𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑒𝑠𝑡𝑠) since we are having information about all 

uncertainties at once. For instance, with [8, 2, 2], 𝑉𝑂𝐼4C"C)> = 27.28 − (8 + 2 + 2) = 15.28.  

 In Figure 3.7, different costs for porosity and its effect on decisions are shown. According to 

this figure and Bar plots of decisions in Figure 3.8,  

1- VOF is higher than VOI with static information gathering. 

2- Differences between VOF and static VOI increases with an increase in costs which means 

that with expensive tests, flexibility brings more value because the decision maker can say 

no to further information gathering when the cost of the information is higher than its value. 

 

Figure 3.7 - VOF analysis with sensitivity analysis on tests costs 



Reihaneh Shahali – Master Thesis Spring 2022 50 

VOF results can also show which information is having the most effect on NPV. For example, 

by comparing 2 different sequences with costs set of [2, 2, 2], for thickness, pressure, and porosity 

respectively, the best sequence is thickness-pressure-porosity, with decisions of 1- “having 

information” in all samples, 2- “continue to have more than one test” in 80% of samples, and 3- 

“have all three tests” in 20% of samples. But in another sequence with pressure-porosity-thickness, 

decisions are 1- “having information” in all samples, 2- “continue to have more than one test” in 

95% of samples, and 3- “have all three tests” in 95% of samples. This means if we choose this 

sequence, with a probability of 95% we should continue with the 3rd test as well which is for 

thickness, and we should pay for all tests. This difference shows how thickness is effective in NPV 

and its information is bringing the highest value to the decision making. 

Figure 3.8 - The sensitivity analysis on tests costs vs decisions 

(c) 

(a) (b) 

(d) 
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Therefore, a sensitivity analysis is done on the cost of thickness to find at which cost of 

thickness test, the best sequences changes. As shown in Table 3.2, the best sequence of gathering 

information changes when the cost of information increases between $10 and $15 million. 

Table 3.2 - Senitivity analysis on tests costs vs best information gathering sequence 

 

Results of the sequential information gathering sequence depend very much on the regression 

method for which overfitting and underfitting should be avoided. In this study, we also considered 

2 different cases of sequential information gathering with: 

1- Specifying the regression methods at each step and having a mixture of methods. 

2- Conducting all the steps with only one regression method.  

The first case is the case we have discussed up until now. 

For the case with using only one regression method in sequential decision making, costs for 

thickness, pressure, and porosity are $2, $2, and $2 million respectively. We have calculated the 

VOF with these costs in the previous section as 22.21 with specifying regression methods for each 

step in Table 3.2. Now, we consider cases with not specifying a regression method for each step, 

and use only XGB, OLS, Piecewise OLS, and RF for all the steps in sequential information 

gathering. As mentioned, we have two 3-variate (3V), four 2-variate (2V), and four univariate (1V) 

regressions in our sequential information gathering case. The alternative “Not Invest” values in 

our case are zero, and the regressions for this alternative have the highest possible 𝑅! score of 

1.00, no matter which regression method we choose. According to the sequential information 

gathering decision tree in Figure 2.19, one 3-variate, one 2-variate, and one univariate of 10 

regressions needed are regressing the “Not Invest” alternative values. Thus, in this study, we do 

not include them in the regression method selections, which are colored red in Table 3.3. 

Costs 
 

Best Sequence 
 

VOF 
[2, 2, 2] Thickness Pressure Porosity 22.21 
[10, 2, 2] Thickness Pressure Porosity 14.21 
[13, 2, 2] Pressure Thickness Porosity 11.38 
[15, 2, 2] Pressure Porosity Thickness 9.94 
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In Figure 3.9 and Table 3.3, 𝑅! scores of each regression in the sequential information 

gathering is presented with test cost of $[2,2,2] million. The optimal information gathering in this 

sequence is thickness-pressure-porosity as shown in Table 3.2. “2V_3” in Figure 3.9 and Table 

3.3 is the third 2-variate regression of the sequential information gathering, and these orders are 

the same order in solving the decision tree in Figure 2.19. As we can see from Figure 3.9 and Table 

3.3, in mixing regression methods case 𝑅! scores of all regressions are higher than other cases, 

and as we discussed in Chapter 2, the higher the 𝑅! scores, the more accurate the result of the 

regression.  

Table 3.3 - 𝑅!  scores of sequential information gathering - cost $[2,2,2] million 

 Mix Piecewise OLS OLS RF XGB 

3V_1 0.99 0.97 0.91 0.88 0.98 

3V_2 1.00 1.00 1.00 1.00 1.00 

2V_1 0.86 0.85 0.81 0.84 0.84 

2V_2 1.00 1.00 1.00 1.00 1.00 

2V_3 0.84 0.83 0.75 0.82 0.83 

2V_4 0.84 0.83 0.75 0.82 0.82 

1V_1 0.64 0.63 0.63 0.63 0.64 

1V_2 1.00 1.00 1.00 1.00 1.00 

1V_3 0.60 0.60 0.60 0.59 0.59 

1V_4 0.60 0.59 0.59 0.59 0.59 

Figure 3.9 – Sequential information gathering with different regression method selection 

scenarios - cost $[2,2,2] million 



Reihaneh Shahali – Master Thesis Spring 2022 53 

In addition, going step by step in sequential information gathering, the number of features is 

decreasing, which as mentioned before, means the regressed model is getting underfitted and 

would perform poorly since it needs other uncertainties as well to fit a model, and therefore, the 

𝑅!  scores are getting worse step by step, which we can see from Figure 3.9. 

In Table 3.4, the percentage errors of VOF calculation with different regression method 

selections are provided. VOF with specifying regression methods for each step (Mix of 

regressions) is the correct answer for comparison purposes. There will be some errors in VOF 

calculation when the regression method is not selected based on the data type of each step. In 

summary, regression methods for each step of the sequential information gathering must be 

selected in a way that they build the best model fitted. 
 

Table 3.4 - VOF analysis with different regression method selection scenarios- cost $[2,2,2] million 

 

 

 

 

 

There are some critical points in costs that the optimal sequence changes in sequential 

information gathering. For example, $[14,2,2] is one of these critical points in our case. With costs 

between $12 and $14 million about thickness, the optimal sequence is pressure-thickness-porosity, 

and for costs more than $14 million, the optimal sequence changes to pressure-porosity-thickness. 

At critical points like this, we might have different results if we do not specify the optimal 

regression method for each step. Thus, we also consider another case with a cost set of [14, 2, 2], 

which results are in Table 3.5. 

 

 

 

 

 

 

 

  
Mix 

 
All OLS 

 
All Piecewise OLS 

 
All XGB 

 
All RF 

VOF 22.21 18.66 22.46 21.38 20.76 

VOF Error - 15.6% 1.1% 3.7% 6.5% 
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Table 3.5 - VOF analysis with different regression scenarios with cost set of $[14,2,2] million  

 Optimal sequence VOF VOF Error 

Mix pressure – thickness - porosity 10.59 - 

All OLS pressure - porosity - thickness 8.99 15% 

All Piecewise OLS pressure – thickness - porosity 10.84 2.3% 

All XGB thickness - pressure - porosity 9.38 11.4% 

All RF pressure – thickness - porosity 9.22 12.9% 

 

As shown in Table 3.5, in this case, when we used only XGB or OLS for all 10 regressions, 

the best sequence is different from the case where we specified regression methods for each step. 

Therefore, in critical points, where the optimal sequence changes, it is important to use the optimal 

regression method at each step of sequential information gathering to achieve accurate and correct 

results in VOF calculation and optimal sequence selection.  
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3.4 Summary 

Simulation-regression approach can approximate the expected value with and without 

information to calculate VOI and its accuracy is highly dependent on the regression method, the 

number of samples, and the linearity or non-linearity of the relation between uncertainties and the 

value function. Therefore, k-fold cross-validation is a necessary step to choose the best model fitted 

and to control the hyperparameters of regression models to avoid overfitting and underfitting. 

Each regression method has advantages and disadvantages based on the dataset. Simulation-

regression approach can handle a large number of uncertainties in the model while this can be 

extremely complex with decision trees and Bayes’ rule.  

In cases with sequential information gathering, an optimal regression method must be chosen 

for each step to calculate VOF to ensure accuracy in VOF calculation and the optimal sequence 

selected. Lastly, simulation-regression approach has the potential to reduce the curse of 

dimensionality with an approximation of VOI relative to a decision tree calculated VOI. 
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Chapter 4 - Conclusions and Recommendations 

In this research, we have proposed a workflow for using the simulation-regression method to 

assess VOI and VOF that can be implemented in many decision making situations including 𝐶𝑂! 

storage capacity estimation. The workflow includes (1) identifying uncertainties, (2) generating 

samples, (3) selecting the most important features, (4) selecting the regression method suited to 

the data, and (5) approximating expected value with and without information to calculate the VOI.  

In this study, we compared six different regression methods and showed how they can affect 

the VOI and VOF. We also illustrated the importance of selecting the best model to fit in order to 

achieve satisfactory accuracy in the calculations. We used value discretization as a means for 

comparison and to evaluate the advantages and disadvantages of the simulation-regression 

approach. However, there are many other machine learning regression methods, e.g., moving 

window, piecewise regression which we only implemented briefly on OLS and SVR regression, 

and neural networks that could also be implemented to find the best model for VOI analysis. We 

implemented the workflow for assessing the VOI for 𝐶𝑂! storage capacity estimation with a small 

number of uncertainties but the simulation-regression approach is perhaps most powerful when 

working with a larger number of uncertainties.  

The analysis and workflow can be implemented for VOI and VOF calculations in real-world 

investment situations with a large number of uncertainties for which classical methods like 

decision trees or value discretization are suffering from the curse of dimensionality. This analysis 

and workflow are not limited to this field and can be used in any decision making situation in all 

fields.  
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Appendix 1 – Cross-Validation on Hyperparameters 

With 3 uncertainties and 3 features for regression. 

1- KNN cross-validation on hyperparameter k 2 - SVR cross-validation on hyperparameter C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 – XGB cross-validation on hyperparameter 
maximum depth  

 
4 – RF cross-validation on hyperparameter 
maximum leaf nodes 
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Appendix 2 – Sensitivity analysis on SVR and OLS performance 
using Piecewise Regression 

 

5 – 3 splits, OLS 6 – 100 splits, OLS 
  

1 - 10 splits, C=1 2 – 100 splits, C=1 

3 - 10 splits, C=10 4 - 100 splits, C=10 
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7 – Multivariate 3 splits, OLS 
 

8 – Multivariate 100 splits, OLS 
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Appendix 3 – 𝑹𝟐 scores of Utsira case study 
3 uncertainties – thickness, pressure, porosity Info about one variable at a time– OLS is 

chosen 
  

3 uncertainties – thickness, pressure, porosity Info about two variables at a time – 
Piecewise OLS is chosen 

  

 
  

 

 

 

 


