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Abstract 

Drilling performance is directly related to fundamental aspects such as drilling 

variables that can affect the performance of the operation, the well stability, efficiency 

of drilling equipment, use of new technologies and operational parameters. 

Approximately 30% of the total time of construction of a well corresponds to the time 

rotating and sliding, in this order of ideas the optimization of the rate of penetration 

“ROP” has a direct impact on time and cost reduction. This reduction has as an added 

value: making viable economically the drilling campaigns and development of the 

fields. That is why one of the main objectives of the operating companies is to reduce 

the total time in which the true depth is reached, to reduce the costs of the operation 

but without affecting the main objective of the well drilling operations. To consider a 

good performance of the operations, many factors are involved being the rate of 

penetration one of the most important, without leaving behind the HSE performance, 

the stability of the well, integrity of the formation and final cost of the project. 

 

On the other hand, the data driven machine learning models are significantly different 

in conception process from physics-based models. The physic-based models try to 

understand the problem and propose proper models resembling he problem under 

certain assumptions and constraints. They seek methodology to reasonably determine 

the results given input. On the contrary, the machine learning models consider little 

about the details of the problem but train a working model mapping directly from 

inputs (knowns) to outputs (unknowns) through a black box of neutral networks. After 

that, researchers try to unveil the black box to analyze what happens there and 

enlighten what knowledge learned from there as to improve the model interpretability.  

 

Along the project, the relevant parameters for the machine learning predictive model 

were chosen considering the correlation and their dependency to ROP, the model was 

fed up, trained, and tested with the data set of one well and its accuracy was improved 

using hyperparameter tunning. After it, the algorithm was tested with five different 

data sets keeping constant the chosen parameters. Among them it was possible to 

determine that the Random Forest, Gradient Boosting and K Neighbors regressor were 

the ones with the highest coefficient of determination and the best performance, 

considering that any model in general can be improved reckoning also the importance 

of the learned lessons or field experience from petroleum engineering knowledge to 

enhance the quality of the inputs and the outputs of the model. 
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Chapter 1. 

Introduction 

1. INTRODUCTION 

1.1. Background, Motivation, and Challenge 

Drilling performance is directly related to fundamental aspects such as drilling 

variables that can affect the performance of the operation, the well stability, efficiency 

of drilling equipment, use of new technologies and operational parameters. 

Approximately 30% of the total time of construction of a well corresponds to the time 

rotating and sliding, in this order of ideas the optimization of the rate of penetration 

“ROP” has a direct impact on time and cost reduction. This reduction has as an added 

value: making viable economically the drilling campaigns and development of the 

fields. 

 

According to the above, it can be said that one of the main objectives of the operating 

companies is to reduce the total time in which the TD is reached, to reduce the costs of 

the operation but without affecting the main objective of the well drilling operations. 

To consider a good performance of the operations, many factors are involved being the 

rate of penetration one of the most important, without leaving behind the HSE 

performance, the stability of the well, integrity of the formation and final cost of the 

project.  

 

Many theoretical and practical studies have been developed previously giving a 

technical way of what happens operationally, being now, an investigation with so much 

future since different models with different variables can be developed in order to meet 

the final objective, to achieve an increasingly accurate prediction of ROP. Lately, the 

interest in data science and machine learning has been increasing and many studies, 

not only in the oil and gas industry, have focused their methodology on model 

development with the aim of finding adequate solutions to different problems. 
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The motivation of this study is to perform and implement a code to select the relevant 

parameters from a general data set and to generate a model able to predict ROP and 

compare these values to the real data obtained from the drilled well. 

1.2. Objectives and Scopes 

The main objective of the present study is to compare and identify the parameters that 

can affect the accuracy of ROP prediction modelling process. Taking into account that 

the general objective can address too many years of research, conditions and methods, 

the specific objectives of this project are considered below: 

 

• Understand all the parameters and factors that can be involved or affect the ROP 

behavior during the drilling phase of a well.  

• Identify the importance and relevancy of some of the parameters measured 

during drilling operations. 

• Use a well data set to train and test the model and to predict ROP, choosing an 

appropriate data set that contains relevant and consistent information. 

• Make a comparison among all methods considering their accuracy. 

• Build the model and verify the prediction accuracy with never-before-seen data 

taken from other drilled wells, predicted ROP vs actual ROP. 

 

The first objective is very important since it is relevant to understand everything that 

can affect the ROP of the wells and factors that can become relevant in their behavior, 

after being clear about the above, a decision can be made on its relevance and 

importance.  

Currently, service companies have been developing high-tech tools that allow having 

as much data as possible, both in memory and in real time, which help to make 

decisions, but it is important to determine and classify which of the measured 

parameters are relevant to have a good prediction and optimization of ROP. 

 

One of the wells, the well N-NA_F-9_Ad, was selected with the aim of training and 

testing the model so that it could later be implemented in the other wells to be studied.  

Finally, and as the last objective, it was defined which of the techniques evaluated are 

the ones that deliver a better prediction of the ROP having as baseline the actual 

information. 

1.3. Tool Box and Structure 

The base of this project is coding and building a machine learning model that helps to 

analyze ROP behavior and a way to predict. Jupyter Notebook [1] will be the 

application of choice as it is user-friendly, handles the selected programming language 

Python [2], and is helpful to analyze the results from the data. 

Several packages were installed and used as a tool to develop the coding work related 

to the project, see Appendix A. 
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One of the main steps was to review, collect and select the input data. Collecting the 

data depends on the number of sensors run in the BHA and the quality and continuity 

of the information given by them since the accuracy and quality of the built model 

depends on that. Along the Chapter 4, a Machine Learning model was developed using 

random forest algorithm where the inputs were identified, data set was split into 

testing and training data set and a hyperparameter tuning was performed in order to 

improve the accuracy and to reduce the coefficient of determination. Finally, the 

Machine Learning model was implemented to verify its accuracy against never-before-

seen data to make an analytical comparison of the results explained in Chapter 5.  
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Chapter 2. 

Theoretical background 

2. THEORETICAL BACKGROUND 

2.1. Drilling Operations 

To understand the topics that are going to be developed throughout the project, 

performing a short briefing can be considered very important.  Despite not being the 

first step when it comes to exploration and exploitation of oil basins, drilling a well is 

one of the most important steps during the productive life of a field.  

 

2.1.1. Drilling Rig Components – Surface 

A drilling rig, no matter if it is offshore or onshore operations, consists of five (5) main 

components: 

 

2.1.1.1. Rotary System 

The term rotary comes from the physical movement of the drill string and bit, which 

applies a rotary shear force to the rock at the bottom of the hole. The rotation can be 

applied on the surface to the entire string or by a downhole motor to a part of the 

assembly bottom (Bottom hole assembly, BHA). The drill string consists of a steel pipe 

that conducts the drilling fluid inside it to the drilling bit. This pipe or string is a mix 

of standard drill pipe, heavyweight drill pipe, drill collars, or pipes of different 

diameters and caliber. 

 

It is also very important to have an efficient rotation system, that mainly includes a 

swivel, Kelly rotary drive, and rotary table. The working principle of the rotation 

system is the Kelly, which is connected to the drill pipe driven by the rotary table and 

then the whole drilling string can be rotated for drilling the well [3]. 
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2.1.1.2.  Circulation System 

The drilling fluid is normally called drilling mud and it is the first barrier when talking 

about well control operations. The drilling fluid is stored in tanks or pools, and from 

there the mud can be pumped through the standpipe to the swivel where it enters into 

the Kelly or the top drive, then down the drill string to the bit. After it, the fluid is 

recirculated returning to the surface through the annulus.  When fluid is returned to 

the surface, the mud is passed through various elements of the solid control system, 

such as screens, desanders, or centrifuges in order to remove all drilling cuttings before 

returning to being treated with certain chemicals and sending it back to mud tanks to 

complete de cycle.  

 

2.1.1.3. Power System 

The power system basically provides all the necessary power to carry out the drilling 

work. Normally this power is generated from local combustion generators. 

 

2.1.1.4. Well Control and Monitoring System 

Formations in the shallow section of a well are generally isolated by a casing which 

must be cemented in place. The annular space through which the mud returns to the 

surface is now the space between the inside of the casing and the outside of the drill 

string. To this liner preventer valves or BOPs (Blow Out Preventers) are connected, a 

series of valves and seals that can be used to shut off the annulus or the full head of the 

well in order to control high bottom-hole pressures when they occur. If there is a 

sudden pressure change in the well which pushes the formation fluid up to the surface, 

BOP will be closed the seal the well from a blowout [4]. 

 

2.1.1.5. Hoisting System 

The rig has a system that has the responsibility of running in the hole (RIH) or pulling 

out of the hole (POOH) the drill string or casing, this system is called the hoisting 

system. It consists of the derrick, tackle and block system, and deadline anchor system. 

Tackles and blocks do the vertical movement of the pipe. The deadline anchor mainly 

helps the replacement of the drilling line when it was subjected to wearings. 

 

2.2. Downhole Components 

The configuration and setting of the BHA is a very important thing when talking about 

designing a drilling well program since the tools are going to be run can improve or 

affect the drilling performance, give information about the well, or simply have a 

successful operation. The importance of having downhole measurement tools is a 

reliable source of information to make decisions on the well site.  

Measure While Drilling (MWD) systems allow the driller to gather and transmit 

information from the bottom of the hole back to the surface without interrupting 

normal drilling operations. This information can include some of the parameters that 
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are going to be analyzed through the development of the project, which are directional 

deviation data, data related to the petrophysical properties of the formations, and 

drilling data such WOB and torque. [5] The data is transmitted through the mud 

column in the drill string, to the surface, this transmission system is called mud pulse 

telemetry. All those tools are in constant improvement and can provide directional 

information, drilling parameters, and geological data. The latter tools are generally 

referred to as Logging While Drilling (LWD) and Wired Drill Pipe (WDP). 

 

According to Lesso et al., “WDP allows data to flow at approximately 10,000 times 

the rate of fast mud telemetry", this allowed much-needed improvements in real-time 

data analysis to be implemented in areas as petrophysical properties, drill string 

positioning, directional drilling control, drilling mechanics and drilling dynamics [6]. 

 

Some of the parameters or measurements that are going to be analyzed through the 

project include weight on bit (WOB), standpipe pressure (SPP), rate of penetration 

(ROP), average rotary speed or revolutions per minute (RPM), mudflow volume, 

mudflow density, the diameter of the hole, average hook load, measure depth, hope 

depth and gamma-ray (GR). 

2.3. Drilling Performance 

The operations involved in drilling a well can be illustrated by considering the sequence 

of events involved in drilling the well shown in  Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Typical hole and casing size [5]. 
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Drilling a well normally starts drilling a 36” hole using an 18 ½” bit and 36” hole 

opener. The hole is drilled with seawater, with the drilled cuttings settling onto the 

seabed because there is no riser or BOP installed at this stage. Then a 30” casing is run 

and cemented in the hole.  

The 26” hole will generally be drilled with seawater. In most cases, this hole section is 

drilled without circulation back to the rig and in this case, the drilled cuttings are 

deposited on the seabed.  The 26” hole is drilled by first drilling a small diameter (12 

¼”) pilot hole, logging the open formations, removing the diverter assembly, and then 

opening out to 26” diameter. The logging operation is performed to ensure there are 

no open hydrocarbon-bearing sand in the pilot hole section. Having drilled the 26" hole 

the diverter, riser, and hydraulic latch are recovered and laid down. The required 

length of 18 5/8" casing string is made up. Then the casing is run and cemented in the 

hole.  

Before drilling the next section, BOP stack must be installed. The operation continues 

drilling de 17 ½” hole taking mud returns to the surface. When the casing setting depth 

is reached, the hole is circulated clean and the drilling assembly is recovered in 

preparation for running, setting, and cementing the 13 3/8” casing.  

Then the 12 ¼” bit and BHA are made up and run to just above the cement inside of 

the 13 3/8” casing where a casing pressure test must be done to check the integrity of 

the casing shoe. The next section of the hole is drilled to the desired o required depth, 

cleaned out, and the 9 5/8” casing is run and cemented.  

If more sections are required, the procedure drilling an 8 ½” hole and run and cement 

7” casing [5]. 

 

2.3.1. Rate Of Penetration (ROP) 

One of the main parameters registered and used to show the drilling performance is 

the rate of penetration, which is recorded as the well is being drilled and can be 

measured according to the drilling depth in a certain period, for example, meters per 

hour or feet per hour. This measurement is usually done by reading the chart on the 

geolograph or using a digital encoder that is attached to a part of the rig that moves in 

proportion to the movement of the drill string. Common attachment points are the drill 

line, drawworks drum, or crown sheaves.  

Generally, ROP increases in fast drilling formations such as sandstone which can be 

called a positive drill break and, decreases in slow drilling formations such as shale also 

called a reverse break. ROP decreases in shale due to diagenesis and overburden 

stresses. Over pressured zones can give twice of ROP as expected which is indicative of 

a kick. If the main objective is optimizing the cost of the project, having a high ROP is 

normally an advantage [7]. 

 



Field-Scale Generality of the Machine Learning Models 

 

 8  
 

2.3.2. Applications of ROP Measurements 

ROP logs or track, serve as historical records of drilling performance and can help 

optimize drilling performance and formation evaluation [8]. Some of the applications 

are listed below. 

 

2.3.2.1. Bit Selection 

Rate of penetration logs will help to choose the best bit type with an appropriate 

mechanic and hydraulic parameters. Registered information from previous wells can 

help to correlate formations, ROP, and bit used in order to have a good selection of the 

bit for the new well to be drilled. 

 

2.3.2.2. Mud Weight Adjustment  

The drilling rate of shale is very sensitive to the pressure balance between the shale and 

wellbore. Shales drilled underbalanced are characterized by fast drilling, high gas 

readings, and large cuttings. Shales drilled overbalanced are characterized by slow 

drilling, low gas readings and, small cuttings. Recognizing this relation can aid in the 

selection of a mud weight to optimize drilling speed [8]. 

 

2.3.2.3. Correlation 

The ROP log is the first source of data that can be used to correlate to nearby wells. 

This is done by comparing ROP to gamma ray or SP curves. This correlation can help 

determine structural and stratigraphic and stratigraphic position and is normally used 

to predict when the well will reach a zone of interest. 

 

2.3.2.4. Lithology 

Shales generally drill slower than sandstones or carbonates, and as a result, ROP logs 

tend to reflect indirectly the lithology of the formation [8]. 

 

2.3.2.5. Drilling Breaks 

Another factor that is important to mention is called “the drilling breaks” which is 

basically a noticeable increase in the ROP. When it is a decrease, is called a negative 

drilling break. 

The importance of the drilling break shape is that if ROP changes and there are no 

changes in the drilling parameters as WOB or RPM, so it can be said that a new 

formation is being drilled or there is a change in the lithology.  

If there is a drilling break, there is a change in the porosity which can result in an 

increase of the formation pressure and having an influx, that is why, according to the 

ROP measure, it is recommendable to perform flow checks.  
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2.3.3. Factors affecting ROP 

In order to develop an ROP model, looking at the factors affecting the ROP is very 

important. According to some research and experience, the relevant variables to take 

into account are listed below. 

  

2.3.3.1. Bit Type 

The penetration rate is highest when using bits with long teeth and large cone offset 

angle, but those bits are normally used and efficient in soft formations. The lowest cost 

per foot drilled usually is obtained by using the longest teeth that are consistent with 

bearing life at optimum bit operating conditions. 

Fixed-cutter bits give a wedging-type rock destruction mechanism in which the bit 

penetration per revolution depends on the number of blades and the bottom-cutting 

angle. Diamond and PDC bits are designed for a given penetration per revolution by 

the selection of the size and number of diamond or PDC cutters. Developments in PDC 

bits have helped in achieving higher ROPs and longer bit life, but also involve a 

compromise between open, light-set bits for speed and heavy-set bits for durability. 

Hydraulic design improvements prevent bit balling, while mechanical-design 

enhancements increase the ROP [8]. 

 

2.3.3.2. Formation Characteristics 

Many characteristics of the formation affect directly the ROP, one of the most 

important is the elastic limit and the ultimate strength of the formation. Mohr failure 

criterion is often used to characterize the strength of a formation. [9] 

Another characteristic that can be mentioned is the mineral composition of the rock 

since it can have some effect on the penetration rate. Rocks that contain abrasive 

minerals can cause rapid dulling of the bit teeth but rocks that contain gummy clays 

can cause the bit to ball up and drill inefficiently. 

Permeability of the formation, for example, allows the fluid to filtrate into the rock 

ahead of the bit and equalize the pressure differential acting on the chips formed 

beneath each tooth. The nature of fluids contained in pore spaces of the rock also 

affects the mechanism since more filtrate volume will be required to equalize the 

pressure in a rock containing a lighter fluid that a rock containing heavy fluid. [8] 

Properties that affect ROP include mineralogy and hardness (if the rock is harder, the 

ROP is low), porosity (if the porosity of the rock is higher, the ROP is high), 

consolidation against cementation (if the rock is well consolidated, the ROP is low) 

mineral inclusions such as pyrite and chert, etc. 

Additionally, but not least important, as much depth is the hole, the lithology is more 

compact, so the porosity decreases. This results in a decreased ROP and increased 

difficulty in drilling. 

 

2.3.3.3. Drilling Fluid Properties 

The properties of the drilling fluid that affect the ROP are density, rheological 

properties, filtration characteristics, solids content and, chemical composition.  
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ROP tends to decrease with increasing fluid density, viscosity, and solids content, and 

tends to increase with increasing filtration rate. The density, solids content, and 

filtration characteristics of the mud control, the pressure differential across the zone 

of crushed rock beneath the bit. The fluid viscosity controls the parasitic frictional 

losses in the drill string and, thus, the hydraulic energy available at the bit jets for 

cleaning. Increasing viscosity reduces ROP even when the bit is perfectly clean [8].  

The chemical composition of the fluid also influences ROP by the hydration rate and 

bit balling tendency of some clays that are affected by the contact with some chemical 

components of the fluid. 

An increase in drilling mud density causes an increase in the bottom hole pressure 

beneath the bit, due to the hydrostatic pressure of the column, and then an increase in 

the pressure differential between the borehole pressure and the formation fluid 

pressure, so if the differential pressure is positive, is correct to affirm the well is being 

drilled in overbalanced. 

On the other hand, if the differential between the borehole pressure and the formation 

fluid pressure is negative, the well is being drilled in underbalanced condition, which 

is a very good way when talking about improve ROP. 

 

2.3.3.4. Bit Operating Conditions 

The operation conditions or drilling conditions also have a relevant effect on the 

improvement of ROP.  

 

• Revolutions per minute (RPM). If the RPM is increased, then the ROP will 

increase. In soft formations ROP, is directly proportional to RPM and shows a 

linear increase. However, in hard formations, the ROP increase is not linear and 

will decrease with RPM increasing. The exception is, again, with the diamond 

bits or PDC when, even in hard formations, the ROP will increase linearly with 

the rotary speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it is shown in Figure 2 where (R) is the ROP and (N) is the RPM, ROP 

increases linearly when the value of RPM increases. In the (b) point, the 

Figure 2. Relationship between ROP and RPM [8]. 
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foundering point is when the linearity is lost. This phenomenon is basically due 

to less efficient bottom hole cleaning, and it is also dependent on drilling fluids 

parameters. 

 

• Weight On Bit (WOB) The WOB also affects the ROP. The relationship is 

linear since the WOB is duplicated, and the ROP will be duplicated too. The 

WOB is a parameter that must be controlled to avoid the bit tooth wear. See 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, in the plot of ROP vs WOB (See Figure 4) where tooth wear 

is not assumed and ROP is represented by “R” and WOB by “W”, no significant 

ROP is obtained until the threshold formation stress is exceeded (See point a). 

ROP increases gradually and linearly with increasing values of WOB for low 

values of WOB (segment from a to b). A linear curve is observed at higher WOB 

(segment from b to c), where the segment has a much steeper slope which 

represents an increased drilling efficiency. Point “b” is the transition point 

where the rock failure mode changes from scraping or grinding to shearing. 

Beyond point “c”, subsequent increases in WOB cause only slight improvements 

in ROP (segment from c to d). Sometimes a decrease in ROP is observed at 

extremely high values of WOB (segment from d to e). 

 

The poor response of ROP at high WOB values is normally because of a less 

efficient hole cleaning related to a higher rate of cuttings generation, or because 

of complete penetration of a bit’s cutting elements into the formation being 

drilled, without clearance for fluid bypass [8]. 
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Figure 3. ROP vs RPM and ROP vs WOB [8]. 
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2.3.3.5. Formation Pressure 

A high formation pressure results in a higher differential of pressure which leads to a 

slower ROP but high values of formation pressure such a result of retention of 

formation fluids can lead to high porosity and an increase in ROP.   

It is good to mention that ROP is a valuable indicator of lithology and a valuable aid 

for correct correlation.   

 

2.3.3.6. Bit Hydraulics 

Taking into account the relevance of cleaning the new drilling cuttings from the bottom 

of the hole, to maintain an optimal ROP, the cleaning of the hole must be effective since 

the cuttings can clog the bottom of the hole, in turn reducing the cutting surface of the 

hole. the bit, which would affect the ROP. 

An important factor during drilling operations is the equivalent circulating density or 

ECD (An increase in mud density measured on the surface), due to frictional pressure 

losses in the annular differential pressure will increase. As well as an increase in the 

actual density of the drilling mud, these pressure losses will increase if the flow rate 

increases or if the flow regime is turbulent [4]. 

  

2.3.3.7. Bit Tooth Wear 

Most bits are designed with certain footage or life cycle so as soon as they are run in 

the hole, the performance can be very good, but it will be decreasing because of tooth 

wear.  

The tooth length of milled tooth rolling cutter bits is reduced continually by abrasion 

and chipping. The teeth are altered by hard facing to promote a self-sharpening type of 

tooth wear. However, while this tends to keep the tooth pointed, it does not 

compensate for the reduced tooth length. The teeth of tungsten carbide insert-type 

rolling cutter bits and PDC bits fail by breaking rather than by abrasion. Often, the 

entire tooth is lost when breakage occurs. Reductions in ROP due to bit wear usually 

Figure 4. Relationship between ROP and WOB [8].. 
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are not as severe for insert bits as for milled tooth bits unless many teeth are broken 

during the bit run [8]. 

The change in ROP is one of the main conditions to decide when the BHA needs to be 

pulled out of the hole because the bit must be changed for a new one.  

 

2.3.3.8. Personal Efficiency 

Manpower skill and experience of the driller are the keys to the success or failure of 

those operations and ROP is one of them. Overall, well costs as a result of any drilling 

problem can be extremely high; therefore, continuous training for personnel directly 

or indirectly involved is essential in order to achieve desired ROP [8]. 

2.4. ROP Models 

The traditional models are empirical correlations developed based on regression 

analysis, and the data-driven models are developed based on machine learning 

techniques.  

 

2.4.1. Traditional ROP Models 

Traditional ROP models have been used for the prediction of ROP in drilling with some 

success. According to Hegde et al. [10], these traditional models have disadvantages 

such as the use of empirical coefficients, the requirement for auxiliary data such as bit 

properties, mud properties, bit design, among others, low accuracy in ROP predictions, 

and their conformity to one facies (since the empirical coefficients are highly 

dependent on lithology). These models remain unchanged; however, the empirical 

coefficients are continuously varied according to the calibration data. 

It is important to investigate the equations of the physics-based models. This will lead 

to the understanding of the input parameters, and their importance in drilling, also 

reducing the overall cost of the drilling project by improving drilling operations. 

 

2.4.1.1. Bingham’s Model (1964) 

The first major study was performed in the 1950s, where empirical relationships from 

WOB and RPM (R-W-N models) were developed [11]. The models are normally 

designed to work either for roller-cone bits or fixed-cutter bits.  See Equation 1. 

 

 

 

 

 

Where:  

𝐾 = Constant of proportionality.  

𝑊 = Weight on Bit [klbf]. 

𝑑𝑏 = Bit diameter. 

𝑎 = Bit weight exponent. 

𝑅𝑂𝑃 = 𝐾 (
𝑊

𝑑𝑏
)

𝑎

∗ 𝑁 

 
Equation 1. Bingham’s Model 
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𝑁 = Rotary speed of RPM. 

 

For the previous equation, the results are highly dependent on the value of 𝑎5, but the 

determination of such an exponent is not an easy task because it requires relatively 

constant values of N and W for a certain lithology and a formation change could be 

experienced before the test is completed [12]. 

 

2.4.1.2. Bourgoyne and Young’s Model (1974) 

One of the ROP models which was widely accepted was presented by Bourgoyne [13]. 

This model estimates ROP as a function of eight parameters as it is shown in 

Equation 2.  

 

 

 

 

 

Where:  

 

𝑓1 =  𝑒2.303∗ 𝑎1 =  𝐾𝑠 

 

𝑓2 =  𝑒2.303∗ 𝑎2∗(10000−𝐷)  

 

𝑓3 =  𝑒2.303∗ 𝑎3∗𝐷0.69∗(𝑔𝑝−9.0) 

 

𝑓4 =  𝑒2.303∗ 𝑎4∗𝐷∗(𝑔𝑝−𝜌𝑐) 

 

𝑓5 =  [

(
𝑊
𝑑𝑏

) − (
𝑊
𝑑𝑏

)
𝑡

4 − (
𝑊
𝑑𝑏

)
𝑡

]

𝑎5

 

 

𝑓6 =  (
𝑁

60
)

𝑎6

 

 

𝑓7 =  𝑒−𝑎7∗ℎ 

 

𝑓8 =  (
𝐹𝑗

1,000
)

𝑎8

 

 

𝐷 = True vertical depth [ft]. 

𝐾𝑠 = Constant of proportionality.  

𝑁 = Rotary speed of RPM. 

𝑔𝑝 = Pore pressure gradient [lbm/gal]. 

𝑅𝑂𝑃 =  (𝑓1) (𝑓2) (𝑓3) … (𝑓𝑛) 
 

Equation 2. Bourgoyne and Young’s Model 
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𝜌𝑐 = Equivalent circulating density [psi]. 

𝐹𝑗 = Hydraulic impact force beneath the bit [lbf]. 

𝑎𝑖 = Chosen constants according to drilling conditions. 

(
𝑊

𝑑𝑏
)

𝑡
 = Threshold bit weight per inch of bit diameter at which the drill begins to 

drill [1,000lbf/in]. 

 

The multiple constants assigned to “a” refers to 𝑎1 is the formation strength parameter, 

𝑎2 is the normal compaction trend exponent, 𝑎3 is the under compaction exponent, 𝑎4 

is the pressure differential exponent, 𝑎5 is the bit weight exponent, 𝑎6 is the rotary 

speed exponent, 𝑎7 is the tooth wear exponent, and 𝑎8 is the hydraulic exponent. 

Coefficients 𝑎1 through 𝑎8 are determined with multiple regression techniques, using 

several data points to determine the eight unknowns that best fit a specific set of field 

data [14]. 

The Bourgoyne’s Model was designed for roller-cone bits, as was mentioned before, 

but in recent years it has been applied for wells drilled with PDC bits [15]. 

 

2.4.1.3. Hareland’s Model (1994) 

Hareland proposed a bit-specific model which is specific to the drag bit. The model is 

defined by Equation 3. 

 

 

 

 

 

 

Where:  

𝐴𝑣 = Area of the rock compressed ahead of a cutter [𝑖𝑛2]. 

𝑁𝑐 = Number of cutters. 

𝐷𝑏 = Bit diameter. 

𝑅𝑃𝑀= Revolutions per minute. 

 

𝐴𝑣 is set based on the type of drag bit, in the case of a polycrystalline diamond cutter 

bit can be formalized as Equation 4. 

 

 

 

 

 

 

Where:  

𝑑𝑐 = Cutter diameter [in]. 

𝜎𝑐 = Unconfined compressive strength [psi]. 

𝛼 = Cutter side rake angle [degrees]. 

𝑅𝑂𝑃 = 14.14 ∗  𝑁𝑐 ∗ 𝑅𝑃𝑀 ∗  
𝐴𝑣

𝐷𝑏
 

𝐴𝑣 = 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝜃 ቌ(
𝑑𝑐

2
) 𝑐𝑜𝑠−1 ቆ1 −

4𝑊𝑂𝐵

cos (𝜃𝜋)𝑁𝑐𝜎𝑐𝑑𝑐
2ቇ − ቆ

2𝑊𝑂𝐵

𝑐𝑜𝑠(𝜃𝜋)𝑁𝑐𝜎𝑐
−

4𝑊𝑂𝐵

cos (𝜃𝜋)𝑁𝑐𝜎𝑐𝑑𝑐
2ቇ

0.5

(
𝑊𝑂𝐵

cos (𝜃𝜋)𝑁𝑐𝜎𝑐
)ቍ 

 Equation 4. Area of rock compressed ahead of a cutter. 

Equation 3. Hareland's Model 
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𝜃 = Cutter back rake angle [degrees]. 

 

2.4.1.4. Motahhari Model (2010) 

Motahhari introduced a PDC bit specific model and incorporated it within a wear 

function and the effect of rock strength of ROP. This model takes into account perfect 

bit cleaning conditions and is defined by Equation 5 [16]. 

 

 

 

 

 

 

Where:  

𝑆 = Confined rock strength. 

𝑊𝑓 = Wear function. 

𝑅𝑃𝑀𝑡 = Rotary speed or RPM. 

𝐷𝑏 = Bit diameter. 

𝑊𝑂𝐵 = Weight on Bit. 

𝛼 = ROP model exponent. 

𝛾 = ROP model exponent. 

 

The wear function is shown in Equation 6.  

 

 

 

 

 

 

Where: 

𝑁𝑐 = Number of cutters on the bit face. 

𝑘𝑤𝑓 = Wear function constant. 

𝜌 = Wear function exponent. 

𝜏 = Wear function exponent. 

𝐴𝑤= It defines PDC cutter characteristics which are a function of wear, it is 

important to note that wear of bit can only be measured after the arrangement 

has been pulled out of the hole using IADC dull grading, so to find this factor it 

needs to be estimated by a constant degradation factor as a function of depth.  

 

The application of this model is highly dependent on the value of 𝑊𝑓, which is difficult 

to implement as it has been shown to introduce various fitting parameters [17]. 

 

The confined rock strength used in the previous model requires laboratory testing at 

different confining pressures which are seldom undertaken. Field based correlations 

and rock failure envelopes can be used to determine the confined rock strength. 

𝑅𝑂𝑃 = 𝑊𝑓  ቆ
𝐺 ∗ 𝑅𝑃𝑀𝑡

𝛾 ∗  𝑊𝑂𝐵𝛼

𝐷𝑏 ∗ 𝑆
ቇ 

Equation 5. Motahhari’s Model 

𝑊𝑓 =  𝑘𝑤𝑓 (
𝑊𝑂𝐵

𝑁𝐶
)

𝜌

∗
1

𝑆𝜏 ∗  𝐴𝑊
𝜌+1 

Equation 6. Wear function. 
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Unconfined compressive rock strength (UCS) data in this dataset come from 

calculations using field-based correlations on sonic log measurements [10]. 

 

2.4.2. Data Driven ROP Models 

Data-driven modeling’s successful application in different industries has caused an 

increasing interest in the subject from the Oil and Gas Industry and is regarded as the 

future of the segment due to its potential for optimizing drilling operations [18].  

When talking about data driven models, is important to mention that different ML 

models can be applied according to what is going to be analyzed and for each well or 

case, its data should be analyzed independently. 

 

2.4.2.1. Ensemble Methods 

According to Géron et al. [19] "a group of predictors is called a ensemble... and an 

Ensemble Learning Algorithm is called an Ensemble method". Ensemble methods are 

techniques that create multiple models and then combine them looking to get 

improved results. They usually give more accurate solutions than the solutions given 

by a single model.  

 

Ensemble uses two types of methods, one of them is called bagging, that works creating 

different training subset from sample training data with replacement and the final 

output is based on majority voting, for example random forest. On the other hand, is 

boosting method, that combines weak learners into strong learners by creating 

sequential models such that the final model has the highest accuracy, for example Ada 

Boost. 

 

The type of base learners used will define the classification of the ensemble model. The 

ensemble is called homogeneous when all learners belong to the same type, and it is 

called heterogeneous when there are different types of learners. One example of 

homogenous learners can be Random Forest, that is based on Decision Trees (DT) and 

it is used to get a single result from the different possibilities provided by each tree. RF 

is a well-known and powerful ML algorithm [6]. 

 

One of the unwritten ML "best practices", is that there is no reason for using complex 

models when simple models can do the work. As mentioned, RF is regarded as one of 

the most powerful ML algorithms and its implementation is not complex. 
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Chapter 3. 

Machine Learning Models 

3. MACHINE LEARNING MODELS 

3.1. Machine Learning Models 

Supervised learning is a method where a computer algorithm is trained on input data 

that has been labeled for a particular output. The model is usually trained until it can 

detect the underlying patterns and relationships between the input data and the output 

labels, enabling it to yield accurate labeling when presented with never-before-seen 

data [20].  Supervised learning is normally defined by Equation 7, where the goal is 

to approximate the mapping function so well that when you have new input data you 

can predict the output variables for that data. 

 

 

 

 

 Where: 

 𝑋 = Input variables. 

𝑌 = Output variables. 

 

Supervised learning cases can be further grouped into regression and classification 

cases. Through this project, regression cases are going to be developed. 

 

3.1.1. Random Forest Algorithm 

Random Forest is a supervised ML algorithm that is normally used in classification and 

regression problems, also it is one of the best techniques with high performance which 

is widely used for its efficiency. It can handle binary, continuous, and categorical data. 

 

𝑌 = 𝑓(𝑋) 

Equation 7. Supervised Learning. 
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RF is based on bagging or bootstrap aggregation as an ensemble technique. Bagging 

chooses a random sample from the data set. Hence each model is generated from the 

samples provided by the original data with replacement known as row sampling. This 

step of row sampling with replacement is called bootstrap. Since each model is trained 

independently which generates results. The final output is based on majority voting 

after combining the results of all models, this step which involves combining all the 

results and generating output based on majority voting is known as aggregation.  

 

3.1.2. Gradient Boosting Regressor. 

GB builds an additive model in a forward stage-wise fashion, it allows for the 

optimization of arbitrary differentiable loss functions. In each stage, a regression tree 

is fit on the negative gradient of the given loss function [21]. Regression trees are most 

teamed with boosting. See Figure 5. 

 

  

Hyperparameter tuning is a way to set the parameters to improve the results of the 

model and it consists of setting the value of parameters that the algorithm cannot learn 

on its own. In order to find these parameters, this process is carried out where it is 

commonly sought to make the algorithm use various combinations of values until it 

finds the values that are best for the model [23]. 

 

Considering the above, there are several hyperparameters that we need to adjust, and 

they are as follows [21]. 

• Number of Estimators. Show the total number of trees in the ensemble or 

the number of boosting stages to perform. Gradient boosting is fairly robust to 

over-fitting, so a large number usually results in better performance. 

• Maximum depth. Refers to the number of leaves of each tree or the maximum 

depth of the individual regression estimators. Tuning this parameter is 

recommended to have a better performance since the best value depends on the 

interaction of the input variables. 

Figure 5. Schematical representation of gradient boosting regression 
regarding algorithm iterations   [22]. 
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• Learning Rate. Hyperparameter scales the contribution of each tree. There is 

a trade-off between the learning rate and the number of estimators. 

• Subsample. The fraction of samples to be used for fitting the individual base 

learns. If it is smallest than 1.0 this results in Stochastic Gradient Boosting. 

Choosing a subsample number less than one (1) leads to a reduction of variance 

and an increase in bias. 

• Random State. Controls the random seed given to each tree estimator at each 

boosting iteration also it controls the random permutation of the features at 

each split. 

 

3.1.3. Random Forest Regressor 

RF regressor is a meta estimator that fits several classifying decision trees on various 

sub-samples of the dataset and uses averaging to improve the predictive accuracy and 

control over-fitting [21]. See Figure 6 [24].  

 

In the case of a random forest, hyperparameters include the number of decision trees 

in the forest and the number of features considered by each tree when splitting a node. 

Hyperparameter tuning relies more on experimental results than theory, and thus the 

best method to determine the optimal settings is to try many different combinations to 

evaluate the performance of each model. However, evaluating each model only on the 

training set can lead to one of the most fundamental problems in machine learning: 

overfitting [25]. 

 

If the model is optimized for the training data, it will score very well on the training set, 

but it will not be able to generalize to new data such as in a test set. According to 

Koehrsen et al. [25] “When a model performs highly on the training set but poorly on 

the test set, this is known as overfitting, or essentially creating a model that knows 

the training set very well but cannot be applied to new problems. It’s like a student 

who has memorized the simple problems in the textbook but has no idea how to apply 

concepts in the messy real world.”.  

Figure 6. Random Forest Regressor [24]. 
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When an overfitting model is found (See Figure 1) it can look perfect on the training 

set, but it will be useless in a real application that is why a cross-validation should be 

done looking to improve the hyperparameter results. 

 

There are some hyperparameters that we need to adjust, and they are as follows. 

• Number of Estimators. So, like the one mentioned in GB regressor, the 

number of estimators refers to the number of trees in the forest. 

• Random State. Controls both the randomness of the bootstrapping of the 

sample used when building trees. 

• Maximum Depth: It is the maximum depth of the tree or the longest path 

between the root node and the leaf node. 

 

3.1.4. Multi-Layer Perceptron Regressor 

A perceptron is recognized as an algorithm, but it was initially intended as an image 

recognition machine. It gets its name from performing the human-like function of 

perception, seeing, and recognizing images. 

 

The multilayer perceptron (MLP) has input and outputs layers, and one more hidden 

layer with many neurons stacked together. It falls under the category of feedforward 

algorithms because inputs are combined with the initial weights in a weighted sum and 

subjected to the activation function, just like the perceptron. 

Each layer is feeding the next one with the result of their computation, their internal 

representation of the data. This goes all the way through the hidden layers to the output 

layer [26].  

 

Backpropagation is the learning mechanism that allows the MLP to iteratively adjust 

the weights in the networks, with intending to minimize the cost function [27]. The 

function that combines inputs and weights in a neuron, for instance, the weighted sum, 

and the threshold function, for instance, ReLU, must be differentiable. See Figure 7 

[26].   

 

In each iteration, after the weighted sums are forwarded through all layers, the 

gradient of the MSE is computed across all input and output pairs. Then, to propagate 

it back, the weights of the first hidden layer are updated with the value of the gradient. 

That is how the weights are propagated back to the starting point of the neural network. 



Field-Scale Generality of the Machine Learning Models 

 

 22  
 

 

There are several hyperparameters that needs to be adjusted, the first one to tune is 

the number of neurons in each hidden layer. 

 

• Hidden Layer Sizes. Determining this parameter is possible to specify the 

number of layers and the number of nodes that are required to have in the 

Neural Network Classifier. Each element represents the number of nodes at the 

ith position, where i is the index of the tuple. Thus, the length of the tuple 

indicates the total number of hidden layers in the neural network [28]. 

• Alpha: L2 penalty (regularization term) parameter [21]. 

• Activation. Represents the activation function for the hidden layers. It can be 

identity (linear bottleneck), logistic (logistic sigmoid function), tanh (hyperbolic 

tan function) or relu (rectified linear unit function). 

• Learning Rate: schedule for weight updates. It can be constant, invscaling or 

adaptive. 

• Solver: This parameter specifies the algorithm for weight optimization over the 

nodes, it can be ‘lbfgs’ which is an optimizer in the family of quasi-Newton 

methods, ‘sgd’ which refers to stochastic gradient descent or, ‘adam’ which 

refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, 

and Jimmy Ba.  

According Scikit learn et al. [21] “The default solver ‘adam’ works pretty well 

on relatively large datasets (with thousands of training samples or more) in 

terms of both training time and validation score. For small datasets, however, 

‘lbfgs’ can converge faster and perform better.”  

 

Figure 7. Multilayer Perceptron, highlighting the Feedforward and 
Backpropagation steps [26]. 
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3.1.5. AdaBoost Regressor 

An AdaBoost Regressor [29] is a meta-estimator that begins by fitting a regressor on 

the original dataset and then fits additional copies of the regressor on the same dataset 

but where the weights of instances are adjusted according to the error of the current 

prediction. As such, subsequent regressors focus more on difficult cases. This 

algorithm is sensitive to outliers and is thus useful to check for outliers in the data set. 

See Figure 8 [30].  

 

Some of the hyperparameters need to be adjusted, they are [21]: 

• Number of estimators: It is the maximum number of estimators at which 

boosting is terminated. In the case of a perfect fit, the learning procedure is 

stopped early. 

• Learning Rate: There is a trade between the learning rate and the number of 

estimators.  Weight applied to each classifier at each boosting iteration, a higher 

learning rate increases the contribution of each classifier. 

• Random State: Control the random seed given at each base estimator at each 

boosting iteration. 

 

3.1.6. K-Neighbors Regressor 

The k-Nearest Neighbors (kNN) algorithm is one of the simplest ML algorithms 

because building the model just consists of storing the training dataset. To predict for 

a new data point, the algorithm finds the closest data points in the training dataset, its 

“nearest neighbors” [31].  

K-Neighbors Regressor is a variant of kNN where the target is predicted by local 

interpolation of the targets associated with the nearest neighbors in the training set 

[21].   

 

Figure 8. AdaBoost Regressor  [30]. 
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Some of the hyperparameters need to be adjusted, they are [21]: 

• Number of neighbors: It is the, as your name said, the number of neighbors 

to use by default for kneighbors queries. Using only a single neighbor, each point 

in the training set has an obvious influence on the predictions, and the predicted 

value goes through all the data points. This leads to a very unsteady prediction. 

Considering more neighbors leads to smoother predictions, but these do not fit 

the training data as well. In Figure 9 , the blue points are the responses to the 

training data, while the red line is the prediction made by some model for all 

points on the line [31].  

 

• Weights: It is the weight function used in prediction. The possible values are 

[21]: 

o Uniform, uniform weights. When all points in each neighborhood are 

weighted equally. 

o Distance, weight points by the inverse of their distance. In this case, 

closer neighbors of a query point will have a greater influence than 

neighbors which are further away. 

o Callable: a user-defined function that accepts an array of distances and 

returns an array of the same shape containing the weights. 

 

3.1.7. Linear Regression 

Linear models are a class of models that make a prediction, as its name said, using a 

linear function of the input features. One of the simplest and most classic linear 

methods for regression is called Ordinary Least Squares (OLS). 

 

Linear regression finds the parameters “w” and “b” that minimize the mean squared 

error between predictions and the true regression targets on the training set. Linear 

regression has no parameters, which is a benefit, but it also has no way to control model 

complexity [31]. See Figure 10. 

 

 

Figure 9. Behavior according to the number of neighbors [31]. 
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3.1.8. Advantages and Disadvantages 

Some of the general advantages and disadvantages when talking about regression 

models are shown in Table 1. 

 

Regression Model Advantages Disadvantages 

Linear Regression 

 

• Works well irrespective 

of the dataset size. 

• Gives information about 

the relevance of features. 

 

 

• The assumption of 

Linear Regression. 

Decision Tree 

Regression 

 

• Interpretability. 

• Works well on both, 

linear and non-linear 

problems. 

• No need to apply feature 

scaling. 

 

 

• Poor results on small 

datasets. 

• Overfitting can easily 

occur. 

Random Forest 

Regression 

 

• Powerful. 

• Accurate. 

• Good performance on 

many problems 

including non-linear. 

 

 

• No interpretability. 

• Overfitting can easily 

occur. 

• Number of trees has to 

be chosen. 

Table 1. Advantages and disadvantages of regression models 

Figure 10. Linear Regression in Machine 
Learning [31]. 
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3.2. Training and Testing Data Set 

Machine learning algorithms work in two stages, they are called training data set and 

test data set.  

The training set is a portion of the actual dataset that is fed into the ML model to 

discover and learn patterns, so it is the one in charge of training the model, it is typically 

larger than testing data because the main objective is to feed the model with as much 

data as possible in order to find and learn meaningful patterns. Once data from the 

dataset are fed to an ML algorithm, it learns patterns from the data and makes 

decisions.  

According to Barkved et al. [32] “Algorithms enable machines to solve problems based 

on past observations. Kind of like learning from example, just like humans. The only 

difference is that machines require a lot more examples in order to be able to see 

patterns and learn. As machine learning models are exposed to more relevant 

training data, the more they improve over time”.  

 

Once the ML model is built and fed with the training data, the model needs to be tested 

with unseen data. This data is known as testing data, and it can be used to evaluate the 

performance and progress of the algorithms’ training and adjust or optimize looking 

for improving results. 

The data set for testing has to be different from the training set because the model 

already knows the training data, so testing data is helpful to see if the model is working 

accurately or if it requires more training data to perform to the desired specifications.  

To conclude, the main difference between the training and testing set is that one trains 

a model and the other confirms it works correctly. 

 

3.2.1. Splitting Data.  

In Data science, it is common to split the data into 80% for training and 20% for 

testing. According to Barkved et al. [32] “…In supervised learning, the outcomes are 

removed from the actual dataset when creating the testing dataset. They are then fed 

into the trained model. The outcomes predicted by the trained model are compared 

with the actual outcomes. Depending on how the model performs on the testing 

dataset, we can evaluate the performance of the model…”. 

Train/test is a method to measure the accuracy of the ML model, where the data set is 

split into two sets in order to train and test the model. 

 

“As a reminder, the reason we split our data into training and test sets is that we are 

interested in measuring how well our model generalizes to new, unseen data. We are 

not interested in how well our model fits the training set, but rather, how well it can 

make predictions for data that was not observed during training.” [31] 
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Scikit-learn contains a function that shuffles the dataset and splits it. The function 

extracts some percentage of the rows to be used as a training set and the remaining 

data are declared as the test set. 

 

3.2.2. Underfitting vs. Overfitting  

To understand the root cause of poor model accuracy is important to know the model 

fit. Through it, it is possible to determine whether a predictive model is underfitting or 

overfitting the training data by looking at the prediction error in the training and 

evaluation data [33]. 

The model is underfitting the training data when it performs poorly on the training 

data, it happens because the model is not able to capture the relationship between the 

input and the target values. 

 

On the other hand, the model is overfitting the training data when the model performs 

well on the training data but does not perform well on the evaluation data, it happens 

because the model is memorizing the data it has seen and is not able to generalize to 

unseen examples. See Figure 11. 

 

3.3. Model Evaluation and Improvement 

Evaluation models and selecting parameters is one of the most important tips to qualify 

the accuracy of the model in supervised learning, that is why, after splitting, testing the 

data and, building the model, it is important to evaluate it. 

 

3.3.1. Cross-Validation 

The technique of Cross-validation (CV) consists of further splitting the training set into 

K numbers of subsets, called folds, then iteratively fitting the model K times, each time 

training the data on K-1 of the folds and evaluating on the Kth fold (called the validation 

data).  

When talking about hyperparameter tuning, it has to be performed many iterations of 

the entire K-fold CV process, each time using different model settings, Then to compare 

Figure 11. Model Fit: Underfitting vs. Overfitting [33]. 
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all of the models, select the best one, train it on the full training set and, then to evaluate 

on the testing set, everything can be done using Scikit-Learn [21]. 

Using Scikit-Learn’s RandomizedSearchCv method, it is possible to define a grid of 

hyperparameter ranges and randomly sample from the grid, performing K-Fold CV 

with each combination value.  

According to Guido and Muller [31], there are several benefits of using cross-

validations instead of a single split into a training and test set. One of them is that when 

cross-validation is used, each example will be in the training set exactly once: each 

example is in one of the folds, and each fold is the test set once. Therefore, the model 

needs to generalize well to all the samples in the data set for all the cross-validation 

scores to be high. 

 

3.3.2. Grid Search 

Grid search is a method for adjusting the parameters in supervised models for the best 

generalization performance. Since finding the values of the important parameters of a 

model is a necessary task, it must be done for almost all models and datasets. 

There is a huge risk to overfit the parameters so splitting the data into training and test 

data set in the first place has to be performed and after it, evaluate the model with an 

independent data set to the one used to create the model. 

 

3.3.3. Grid Search with Cross-validation 

For a better estimate of the generalization performance, instead of using a single split 

into a training and a validation set, using cross-validation to evaluate the performance 

of each parameter combination, is recommended [31].  

According to Guido and Muller et al. [31]  “...the best parameter setting is selected. For 

each parameter setting, accuracy values are computed, one for each split in the cross- 

validation. Then the mean validation accuracy is computed for each parameter 

setting. The parameters with the highest mean validation accuracy are chosen…”. 

 

3.3.4. Metrics and Scoring 

There are three (3) different APIs for evaluating the quality of a model’s prediction 

[21]: 

• The estimators’ score method: The estimators have a score method providing a 

default evaluation criterion for the problem they are designed to solve. 

• Scoring parameter: Model evaluation tools using cross-validation rely on an 

internal scoring strategy. 

• Metric functions: The sklearn.metrics module implements functions assessing 

prediction error for specific purposes.  
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3.3.5. Regression Metrics 

Evaluating for regression can be done by analyzing over-predicting the target versus 

under-predicting the target. In some cases, using 𝑅2 in the scoring method of all 

regressors is enough.  

 

Below are some metrics for evaluating the performance of the regression model: [34] 

 

3.3.5.1. Mean Absolute Error (MAE).  

It measures the average magnitude of the errors in a set of forecasts, without 

considering their direction.  It is not very sensitive to outliers compared to MSE. It 

measures accuracy for continuous variable data.  

It gives a linear value, which averages the weighted individual differences equally. The 

lower the value, the better is the model’s performance. 

It is identified by Equation 8. 

 

 

 
 

 

Where: 

𝑛 = Number of samples. 

�̂�𝑖 = Predicted value of i-th sample. 

𝑦𝑖 = The corresponding true value. 

 

3.3.5.2. Mean Squared Error (MSE).  

It is one of the most used in metrics, but least useful when a single bad prediction would 

ruin the entire predicting abilities of the model. It can be like MAE but differs from it 

in that it squares the difference before summing instead of just taking the absolute 

value. See Equation 9. Mean Squared Error [35]. 

MSE is most useful when the dataset contains outliers or unexpected values. 

 

 

 

 

 

 

Where:  

𝑛 = Number of samples.  

�̂�𝑖 = Predicted value of i-th sample. 

𝑦𝑖 = The corresponding true value. 

 

Equation 8. Mean Absolute Error 

𝑀𝐴𝐸 =  
1

𝑛
 ȁ𝑦𝑖−�̂�𝑖ȁ 

𝑛

1

 

𝑀𝑆𝐸 =  
1

𝑛
 (𝑦𝑖 − �̂�𝑖)

2 

𝑛

1

 

 Equation 9. Mean Squared Error 
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Since the difference is squared, the MSE generally is greater than the MAE and for this 

reason, MSE cannot be directly compared to the MAE, also the effect of the quadratic 

term in the MSE equation is most apparent when there are outliers in the data set. 

MSE is like a combination measurement of bias and variance of the prediction. 

 

3.3.5.3. Root Mean Squared Error (RMSE).  

In RMSE the errors are squared before they are averaged. This implies than RMSE 

assigns a higher weight to large errors, so RMSE is much more useful when large errors 

are present, and they affect the performance of the model. The common goal between 

MSE and RMSE is to measure how large the residuals are distributed. Their values lie 

in the range between zero and positive infinity and in this metric also, the lower is the 

value the better is the performance of the model. 

 

Max Error. The max error function computes the maximum residual error. It is a 

metric that measure the worst case error between the predicted value and the true 

value, see Equation 10.  

 

Where: 

�̂�𝑖 = Predicted value of i-th sample. 

𝑦𝑖 = The corresponding true value. 

 

This metric shows the extent of error that the model had when it was fitted. 

 

3.3.5.4. Mean Absolute Percentage Error (MAPE).  

Also known as mean absolute percentage deviation (MAPD). Here, each prediction is 

scaled against the value it is supposed to estimate, MAPE is the percentage equivalent 

of MAE, see Equation 11. Mean Absolute Percentage Error.  

 

 

Where: 

𝑛 = Number of samples.  

�̂�𝑖 = Predicted value of i-th sample. 

𝑦𝑖 = The corresponding true value. 

𝜖 = Arbitrary small yet strictly positive number to avoid undefined results when 

𝑦 is zero. 

 

𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(ȁ𝑦𝑖 − �̂�𝑖ȁ) 

Equation 10. Max Error 

𝑀𝐴𝑃𝐸 =  
100

𝑛
 

ȁ𝑦𝑖 − �̂�𝑖ȁ 

𝑚𝑎𝑥 (𝜖, ȁ𝑦𝑖ȁ)

𝑛

1

 

 Equation 11. Mean Absolute Percentage Error 
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3.3.5.5. Median Absolute Error (MedAE).  

It is robust to outliers. The loss is calculated by taking the median of all absolute 

differences between the target and the predictions [21]. See Equation 12.  

 

 

 

 

 

Where:  

�̂�𝑖 = Predicted value of i-th sample. 

𝑦𝑖= The corresponding true value. 

 

3.3.5.6. Coefficient of determination (𝑹𝟐).  

The value R² tells us how much variance in the outcome variable can be explained by 

the predictors. 

It shows the proportion of variance that has been explained by the independent 

variables in the model. It also indicates of how well fits the model and it is a measure 

of how well-unseen samples are likely to be predicted by the model, through the 

proportion of explained variance. [21]  

The best possible score is 1.0.  

The coefficient of determination is defined as (see Equation 13). 

 

 

 

 

 

 

 

Where: 

�̂�𝑖 = The predicted value of i-th sample. 

𝑦𝑖 = The corresponding true value. 
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1

𝑛
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1
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2 

𝑛

1
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3.4. Selection of Parameters 

Analyzing the traditional ROP models, it is noticeable that besides the Bingham ROP 

model (Equation 1) just requires few inputs. Other ROP traditional models like 

Burgoyne and Young (Equation 2Equation 2. Bourgoyne and Young’s Model) and 

𝑀𝑒𝑑𝐴𝐸 =  𝑚𝑒𝑑𝑖𝑎𝑛(ȁ𝑦𝑖 − �̂�𝑖ȁ, … , ȁ𝑦𝑛 − �̂�𝑛ȁ) 

Equation 12. Median Absolute Error 

𝑅2 =   1 −
σ (𝑦𝑖 − �̂�𝑖)

2 𝑛
1

σ (𝑦𝑖 − �̅�)2 𝑛
1

 

 
Equation 13. Coefficient of determination. 
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Motahhari (Equation 5) are dependent of many inputs, and much of them are 

difficult to find so they need to be estimated which can end up in lack of accuracy 

predicting ROP.  

 

When ROP is predicted using ML models, the information that can be used to feed up 

the model can be as much as possible, taking into account the availability of data, and 

how much ROP is affected by each of the parameters considered.  

 

 

Depending on the availability the sensors or measures taken, configuration of the 

equipment or tools a large number of measurements can be stored. Barbosa shows in 

Figure 12. Amount of inputs employed to feed ROP data-driven models [36], from 

fifty three (53) different works analyzed, ten (10) reported the use of three (3) or four 

(4) inputs, twelve (12) works used five (5) or six (6) inputs, also twelve (12) works used 

seven (7) or weight (8) inputs Considering that five (5) works did not report the number 

of input data for their models, it can be said that almost 70% of the studies worked with 

less than nine inputs for their respective models [6].  

 

This provides an interesting statistic to select the number of inputs, and to understand 

why even though many possible inputs are available most researchers prefer to select 

just a number of them. 

 

 

 

 

 

 

 

 

 

 

Figure 12. Amount of inputs employed to feed ROP data-driven models  [36]. 
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Chapter 4. 

Methodology 

4. METHODOLOGY 

4.1. Methodology in general 

In order to develop this research project, it will be carried out the following 

methodology in their respective order. Step by step of this chat is going to be mentioned 

and explained along this chapter. 

 

All the methodology in general was summarized in four steps, that are going to be 

describe below, which were: 

• Select the training data set from the whole data set: Data set from Well 1 was 

used to train the model, keeping a ratio of 80/20 (80 training/20 testing). 

Figure 13. Methodology. 
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• Develop the model with different ML models. 

• Test the model on unseen single wells where the model was tested with never-

before-seen data from Well 2, 3, 4 and 5. 

• Evaluate the model taking into account the results given by the metrics. 

4.2. Volve Data Set 

In 2018 Equinor and the partners of the society working for Volve field, have decided 
to make public all the downhole and production data from the field [37]. All the data 
is located in a repository at the Equinor’s web site and is completely available for 
access for researching purposes. 
 

4.2.1. Volve Field 

Volve field is located in Block 15/9 in the southern part of the Norwegian North Sea, 
and it is situated approximately 200 km west of Stavanger and 8 km from Sleipner Ost 
Field. Oil was discovered in 1993, but the development was approved in 2005, and the 
field and the oil is located in the middle Jurassic sandstone formations. Recoverable 
reserves are estimated at 78.6 million barrels of oil and 1.5 billion cubic meters of gas. 
 
The field started production in 2008 from the Maersk Inspirer jack-up rig. The oil 
produced from the field was stored and shipped to export from the Navion Saga FSO, 
the gas was piped to the Sleipner A platform. The plateau production of Volve was 
around a daily production of 56,000 barrels of oil a day with a total recovery of 63 
million barrels.  
 

4.2.2. Wells Information 

Six wells were taken to make the analysis and development of the current project. In 
the Table 2 is possible to identify the wells and a nomenclature that is going to be 
used along the project 
 

Well Date Set Project nomenclature 

USROP_A 0 N-NA_F-9_Ad Well 1 

USROP_A 1 N-S_F-7d Well 2 

USROP_A 2 N-SH_F-14d Well 3 

USROP_A 3 N-SH-F-15d Well 4 

USROP_A 4 N-SH_F-15Sd Well 5 

USROP_A 5 N-SH-F-5d Well 6 
Table 2. Complete wells data set 

4.3. Data Analysis 

In order to set up the ML model, some data was required. The data set used came from 

drilling information of six (6) wells, showed in Table 2. This information is saved in a 

comma-separated value (csv) format archive, so the handling, selection, and 

processing data to execute the study was easier. 
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The data was pre-processed and normalized in previous research works to improve the 

accuracy of the model, so it can be used to feed the different ML algorithms.  

As it was mentioned before, all the work that is going to be described is performed 

using Jupyter Notebook as a main application and Python as a programming language.  

 

4.3.1. Importing and Visualizing the Data 

The first step into the analysis is importing and visualizing the data. The raw data 

contains information from drilling operations organized according to the depth of the 

well and some parameters that are shown in Table 3. 

 

Number Variables Units Data Type 

1 Measured Depth [m] float64 

2 Weight on Bit [kkgf] float64 

3 Average Standpipe Pressure [kPa] float64 

4 Average Surface Torque [kN.m] float64 

5 Rate of Penetration [m/h] float64 

6 Average Rotary Speed [rpm] float64 

7 Mud Flow In [L/min] float64 

8 Mud Density In [g/cm3] float64 

9 Diameter [mm] float64 

10 Average Hookload [kkgf] float64 

11 Hole Depth (TVD) [m] float64 

12 USROP Gamma [gAPI] float64 
Table 3. Features from data sets. 

Using pandas, the main data frame was generated looking to visualize the data frame 

with all data set is going to be analyzed along the project. For example, in the Table 4 

 is shown the complete data with all its features. The process that is going to be 

described was done for each one of the wells in order to get the initial conditions of the 

data set. 

Table 4. Complete data set, Well 1 (13746 rows x 12 columns). 
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After having the features that are going to be taken into account, it was performed a 

check to verify if there are some missing values inside of the data set so in case of being 

found, perform a correct handling of them. Also, as it can see in Figure 14 Figure 14. 

Probability density distributions., there are probability density distribution plots of the 

data of all wells to be studied. According to Fernández et al, [38] “The drilling data is 

not always distributed and intuitive to understand since it is usually skewed. 

Nevertheless, data that follows certain distributions can be valuable, and identifying 

its probability distribution is critical for further analysis.” 

 

On the other hand, another tool that is widely used for data visualization is the heat 

map, by means of which it was possible to visualize the correlation of the parameters 

with respect to the ROP for each of the wells. This is especially useful since it is 

necessary to analyze many variables and choose the ones that are related to the ROP.  

The heat map was performed in each one of the wells and according to the results a 

summary table was performed.  

Figure 14. Probability density distributions. 
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The Figure 15 presents the heat map, for the well that is used as an example, where 

the diagonal set of squares going from top left to bottom right are in the darkest blue, 

this represents the intersection between the same variables, and that is why its 

relationship value is the highest one. Numerically, this will represent a Pearson 

correlation coefficient of one, where the values can be from negative one (-1) to one 

(+1), being one the value related to the highest correlation between same parameters 

or variables. Negative values indicate that the variables tend to move in opposite 

directions being a clear example of no direct correlation between both of them. 

The intensity of the color will decay depending on the correlation level between 

variables.  

For the study case, the variables with darkest color found in the “Rate of Penetration” 

row, are the ones which are going to be selected as main features (See red square in 

Figure 15).  

 

After doing the heat maps for each well, the data was collected and summarized in the 

Table 5 where all the variables are shown in the columns and the wells in the rows. 

According to the relationship value given by the heatmap, it was assigned a number for 

each parameter from 1 to 5, being “5” the one that has the highest value of correlation. 

Figure 15. Heatmap, raw data of variables for Well 1 
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The row denotated as “Count” contains the number of times that the parameter was 

found as a parameter with high correlation to ROP, and the row “Sum” shows the total 

sum of the values assigned according to the correlation, with the aim of being able to 

weight and select the most relevant parameters according to the data of the wells that 

are available. 

 

For example, for the heat map shown in Figure 15 (Well 1), the variable with the 

highest correlation is Average Standpipe Pressure, with a value of 0.42 in the heat map 

and five (5) in the Table 5. ROP dependent variables according to heat maps into 

about different wells. following the same criteria, six (6) variables were selected as the 

dependent variables, those which had more ponderation and correlation to ROP for 

each heat map, in the example case, they were Average Standpipe Pressure, Average 

Rotary Speed, Weight on Bit, Average Surface Torque and Mud Density In and leaving 

ROP as an independent variable.  All heat maps for wells are shown in the Appendix 

B.2. 

 

After choosing the variables for each well, and give a value, as a final result it was found 

that the selected six (6) variables to develop the ML model will be those which got the 

highest values. 

 

ROP DEPENDENT VARIABLES  

WELL Well 1 Well 6 Well 5 Well 4 Well 3 Well 2 COUNT SUM 

Measured Depth  - - - 5 - 3 2 8 

Weight on Bit  3 - - 2 1 - 3 6 

Average Standpipe Pressure  5 3 1 - 5 - 4 14 

Average Surface Torque  2 2 - 3 - 5 4 12 

Average Rotary Speed  4 4 2 1 - - 4 11 

Mud Flow In  - 5 5 - 3 - 3 13 

Mud Density In  1 - - - 4 2 3 7 

Diameter  - - 4 - 2 - 2 6 

Average Hookload - - - - - - 0 0 

Hole Depth (TVD)  - - - 4 - 4 2 8 

USROP Gamma  - - 3 - - 1 2 4 

Table 5. ROP dependent variables according to heat maps into about different wells. 

According to experience, some of the variables taken into account in the initial data are 

relevant at the time of optimizing the ROP, such as Average Hook load, the results 

obtained by the analyzed data show that the highest levels of correlation are found in 

those that are shown in the Table 6. Since Measure Depth and Hole Depth refers to 

depth of the well, Weight on Bit (WOB) is going to be included into the variables to 

evaluate. It is important to mention than in Table 6, the variables are organized 

according to the one which got a higher ponderation being 5 the one with maximum 

value and one the variable that have less correlation. 
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5 1. Average Standpipe Pressure 

4 2. Mud Flow In 

3 3. Average Surface Torque 

2 4. Average Rotary Speed 

1 
5. Measure Depth (MD) 

6. Weight on Bit (WOB) 
Table 6. Selected variables to develop ML model 

The heat maps and well statistics for all wells can be found in the Appendix B. 

 

4.3.2. Data Selection 

After select the variables that are going to be taken into account to feed the model 

according to its correlation to ROP, it was performed a validation to verify the 

continuity of the information and its behavior for each of the wells.  The Figure 16, 

shows the measure depth in the “x” axis vs the selected variables in the “y” axis for the 

Well 1 (Other wells’ plots can be found in the Appendix B.) 

 

In the plots, it can be seen that despite the fact that the Average Rotary Speed is 

oscillating between 100 to 150 rpm, the ROP tends to have the same tendency since 

Figure 16. Measure depth vs. Selected variables (Well 1) 



Field-Scale Generality of the Machine Learning Models 

 

 40  
 

they are directly proportional parameters as it was mentioned in Chapter 2. At the end 

of the well, between 1000 m to 1200 m there is a high value of Average Rotary Speed, 

but the ROP average is the same that in the shallower section of the well, so we can 

assume that they were drilling a hard formation probably with a tricone bit.  

Taking a deep look into the WOB behavior vs the ROP, normally if the WOB is high, 

the ROP tends to increase unless there is an inefficient hole cleaning related to a higher 

rate of cuttings generation, or because of complete penetration of a bit’s cutting 

elements into the formation being drilled, without clearance for fluid bypass [8], which 

can be a reason to explain the behavior of the plots at 680 m depth, where the WOB 

values are high, but the ROP kept constant or even with a small decrease of the rate 

with respect to the previous behavior and in turn, at the same depth, there is a peak in 

the average standpipe pressure which can explain an inefficient hole cleaning of the 

wellbore.   

 

In the previous analysis it can be seen a summary of how the parameters are related to 

the ROP, and the way in which a good analysis of them in real time can lead to good 

decision making on the way.  

4.4. ROP modeling 

As it was mentioned before, Chapter 2, a data driven model is going to be implemented, 

using the data measured while drilling to predict ROP. The model building process 

incorporates feature engineering to ensure that the model is built in a robust fashion. 

Feature engineering is imperative to the success of the model since the input 

parameters used to build the model completely determine its outcome. 

 

The model will be built as a function of feature vectors (pre-selected variables) to 

determine or predict the property “y”, being ROP for this study work. The RF algorithm 

was used since the RF regression is a supervised learning algorithm that uses the 

ensemble learning method for regression, it is a technique that combines predictions 

from multiple machine learning algorithms to make a more accurate prediction than a 

single model.  

 

4.4.1. Machine Learning Implementation 

To perform the Machine Learning procedures of the project, Python [39] was used as 

the main tool, where different techniques were implemented using the selected 

features (See Table 7). Also, Scikit Learn [21], which is a module that contains RF 

algorithm, was used to implement the regressor models. The parameters or variables 

used as inputs to feed the model and compare its performance are shown in Table 7. 
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Number Variables Units Data Type 

1 Average Standpipe Pressure [kPa] float64 

2 Mud Flow In [L/min] float64 

3 Average Surface Torque [kN.m] float64 

4 Average Rotary Speed [rpm] float64 

5 Measured Depth [m] float64 

6 Weight on Bit [kkgf] float64 
Table 7. Selected features (variables). 

As a first step, the relevant libraries were imported (See Appendix A) and additionally 

some model and tools from Scikit Learn. The Figure 17, show how the data was 

imported from the .CSV file to build a data frame getting a better visualization and 

dimension of the data that was used to feed up the model. The rows were organized, 

leaving the ROP measure at the end to avoid it being include into the prediction data.  

 

After importing the data, it was filtered leaving only the selected features and having 

a data frame with 13746 rows and 6 columns (See Figure 18). 

Figure 17. Initial data Well 1 (Screenshot from the main code) 

Figure 18. Selected variables and data frame (Screenshot from the main code). 
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4.4.2. Splitting Data 

One of the most important things to start is splitting the data to train and test the 

model, as it was mentioned in the theoretical background. Working with machine 

learning models, the data should be divided into two or three parts to avoid overfitting 

and model bias, it could be training set (which is normally the largest one), testing set 

and in some cases the validation set.  

For the data used to build the model, it was taking into account a ratio of splitting data 

of 80-20 percent, where 80 percent was used to train the model and 20 percent to test 

it.  

Graphically, the split ratio could be represented in the Figure 19, where the red points 

are the values taken as a training data and the black ones are the testing data points.  

 

Once the percentages of information to be assigned to the training and testing data 

were defined, a random sampling was considered to define the performance of the 

model.  

 

The Table 8 summarize the number of values and how the data was split into training 

and data set. For the inputs, there is 10996 rows taken as a training data set times six 

(6) columns which refers to the selected features. On the other hand, there is the 20% 

of the total data which corresponds to the testing data set (2750 rows) times the six 

columns mentioned before. 

As the ROP is the output, and, in this case the data that will be taken into account to 

compare how the accuracy of the model regarding to its prediction is, it has only one 

column which is in turn the value of the penetration rate.  

 

 

 

 

Figure 19. Example testing and training data. 
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Type Amount (rows) Amount (Columns) 

Train data set (input) 10996 6 

Test data set (input) 2750 6 
Table 8. Testing and training data set. 

Random Sampling basically consists of randomly select 80% of the data and assign 

them for the training set, and the 20% residual for the testing set. Random sampling is 

a good way to select how to split the data, since the behavior of the ROP tends to be 

“constant” according to the formations being drilled, type of bit or simply depth of the 

well, so if the main objective is predicting the ROP involving many parameters or 

environments, a random sampling is one of the best options to split the data. 

On the other hand, one of the main disadvantages of this approach is that, it is hard to 

determine if the model has learned to find correlations, allowing it to make predictions 

or it has just memorized some points [6], for this reason, the accuracy of the model was 

tested with never-before-seen data. 

 

4.4.3. Grid Cross-validation 

For each one of the regressors that are going to be used, the grid cross-validation was 

performed because grid search with CV is a commonly used method to adjust the 

parameters. The first step was specifying the parameters to search, then grid search CV 

will perform all the necessary model fits. 

Fitting the grid search CV object, not only searches for the best parameters, it also 

automatically fits a new model on the whole training data set with the parameters that 

yielded the best cross-validation performance. 

Parameters that were found, are called as “best parameter” and the best cross 

validation accuracy (the mean accuracy over the different splits for this parameter 

setting) is called “best score”. 

 

4.4.4. Gradient Boosting Regressor. 

The first one of the regressors to be used was gradient boosting regressor (See code on 

Appendix A.3). 

 

The parameters evaluated were: 

• Number of estimators: 50, 200, 500 or 1000 

• Learning Rate: 0.01 or 0.1 

• Maximum depth of the three: 1, 2 or 4 

• Subsample: 0.5, 0.75 or 1 

• Random State: 1     

 

Using the random sampling, the Figure 20, shows the results of the GB regressor 

when randomly selected data, and it is possible to see the difference before and after 

the hyperparameter tuning is set, starting with a coefficient of determination of 0.8999 
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before and ending up in 0.9969, after setting the hyperparameter tuning, which means 

that this model has a high prediction accuracy. 

The search uses the suggested parameters mentioned above, but also includes other 

hyperparameters of the model, the result of this search was implemented in the model.  

As a result of the grid search CV, the best parameters were learning rate: 0.1, max 

depth: 4, number of estimators: 1000, random state: 1, and subsample: 0.5. In the 

Figure 21, it can be observed the difference between before and after and how the 

model fits the points after adjusted the hyperparameters. 

 

Figure 21. Predicted vs. Original Testing Data Set GB. 

Figure 20. Gradient Boosting Regressor 
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4.4.5. Random Forest Regressor 

When the RF regressor was evaluated, the parameters evaluated were just two: 

• Number of estimators: 10, 30, 50 or 70 

• Maximum depth of the three: 10, 20 or 30 

The Figure 22, shows the result of the RF regressor when randomly selected data, 

and it is possible to see the difference before and after the hyperparameter tuning is 

set, starting with a coefficient of determination of 0.9973 before and ending up with a 

coefficient of determination of 0.997 which means that this model has a high prediction 

accuracy too. 

Figure 23. Predicted vs. Original Testing Data Set RF. 

Figure 22.  Random Forest Regressor 
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Having a result of the best parameters, a max depth: 30, number of estimators: 50 and 

a random state:0. In the Figure 23, it can be observed the difference between before 

and after and how the model fits the points after adjusted the hyperparameters. 

 

4.4.6. Multi-Layer Perceptron Regressor 

Talking about the MLP regressor, the parameters evaluated were: 

• Hidden Layer Sizes: (50,50,50), (50,50,100) or (100,1). 

• Activation: Relu, tanh, or logistic 

• Alpha: 0.0001 or 0.05 

• Learning rate: constant or adaptive 

• Solver: adam 

 

The Figure 24, shows the result of the MLP regressor when randomly selected data, 

the coefficient of determination obtained in this case is lower than the one from 

previous regressors, starting with a coefficient of determination of 0.56165 before and 

ending up with a coefficient of determination of 0.6032 

Having a result of the best parameters, Hidden Layer Sizes: (50,50,50), activation: 

Relu, alpha: 0.05, learning rate: adaptive and solver: adam.  

 

In the Figure 25, it can be observed the difference between before and after and how 

the model fits the points after adjusted the hyperparameters. 

 

Figure 24. Multi-Layer Perceptron Regressor 
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4.4.7. AdaBoost Regressor 

AdaBoost Regressor was evaluated under the follow parameters: 

• Number of estimators: 500, 1000 or 2000 

• Learning rate: 0.001, 0.01 and 0.1 

• Random State: 1 

The Figure 26, shows the result of the AdaBoost regressor when randomly selected 

data, the coefficient of determination obtained in this case starts with a coefficient of 

determination of 0.647 before and ending up with a coefficient of determination of 

0.666. 

Figure 25. Predicted vs. Original Testing Data Set MLP. 

Figure 26. AdaBoost Regressor 
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The result of the grid search CV gave a result of the best parameters, learning rate: 

0.001, number of estimators: 2000 and a random state: 1. 

 

In the Figure 27, it can be observed the difference between before and after and how 

the model fits the points after adjusted the hyperparameters. 

 

4.4.8. K-Neighbors Regressor 

Same as the other regressors evaluated before, the K-Neighbors regressor was 

evaluated under just the following parameters: 

• Number of neighbors: 2, 3, 4, 5 or 6. 

• Weights: uniform or distance.  

 

Using the random sampling, the Figure 28, shows the results of the KN regressor 

when randomly selected data, and it is possible to see the difference before and after 

the hyperparameter tuning is set, starting with a coefficient of determination of 0.939 

before and ending up in 0.997, after setting the hyperparameter tuning, which means 

that this model has a high prediction accuracy. 

Figure 27. Predicted vs. Original Testing Data Set AdaBoost 
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The search uses the suggested parameters mentioned above, but also includes other 

hyperparameters of the model, the result of this search was implemented in the model.  

After the best parameters were found being a number of neighbors: 4 and weight: 

distance, the Figure 29 shows the difference between before and after and how the 

model fits the points after adjusted the hyperparameters. 

 

Figure 29. Predicted vs. Original Testing Data Set K-Neighbor 

Figure 28. K-Neighbors Regressor. 
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4.4.9. Linear Regression 

The linear regression was the last one being evaluated. In the Figure 30, it is possible 

to observe how is the correlation between the testing data and the prediction 

performed by the model. 

In this case there were not hyperparameter tuning done, and the coefficient of 

determination has a value of 0.5774 which means that this regressor has a low 

prediction accuracy. See Figure 31. 

4.5. Metrics 

Some of the metrics mentioned in the Chapter 2, were evaluated for each one of the 

regressions performed in order to have a better understanding of the results and 

accuracy of the models to predict data. The results were summarized in the Table 9. 

Taking a look into the coefficients of determination (R2) the one with highest accuracy 

is the K-Neighbors regressor, having a coefficient of 0.996, since they memorized 

points instead of created correlations and the one with the lowest one is MLP regressor 

with a coefficient value of 0.603. 

Figure 30. Predicted vs. Original Testing Data Set Linear Regression 

Figure 31. Linear Regression 
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Regressor Gradient 

Boosting 

Random 

Forest 

MLP AdaBoost K-

Neighbors 

Linear 

Mean Absolute 

Error 

0,42225 0,15859 5,253 5,077843 0,03804 5,60324 

Mean Absolute 

Percentage Error 

0,014704 0,00669 0,23884 0,228753 0,001269 0,26654 

R2 0,99693 0,997 0,60321 0,666618 0.996897 0,57741 

Mean Squared 

Error 

0,43971 0,42938 56,8379 47,8187 0,4444921 60,5336 

Root Mean 

Squared Error 

0,66311 0,65527 7,53909 6,915106 0,666702 7,78033 

Median Absolute 

Error 

0,29761 0,01883 4,09340 3,711090 0,00000 4,340323 

Table 9. Regression metrics of the trained model 
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Chapter 4. 

Results and Discussion 

5. RESULTS AND DISCUSSION  

5.1. Results 

As testing the trained model with unseen data, to verify its accuracy, is one of the main 

objectives of the project, 5 of the 6 wells data set were used as a test data set. In that 

order of ideas Well 2, 3, 4, 5 and 6 were used to test the trained and adjusted model. 

The distribution of probability of each one of the wells is shown in Appendix B and 

along this chapter, the Well 2 is going to be used as an example to show the procedure 

step by step. By the end, comparative results and metrics are shown to verify the results 

and accuracy of the model. 

 

5.1.1. Metrics Analysis 

In the Figure 32, is possible to identify which one of the models have a better accuracy 

according with the data used for training and testing it. In those cases, the three (3) 

best options to evaluate the model with never-before-seen data, it will be Random 

Forest, Gradient Boosting and K-Neighbors Regressor. 

 

In the Table 1, a summary of advantages and disadvantages was summarized, where 

it was said that the decision tree regression and random forest models work well being 

so accurate but sometimes can result in overfitting. The Figure 32 confirms it, since 

the highest values of the coefficient of determination bellow to these types of 

regressions.  
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5.1.2. Testing the model with other wells data set 

In order to evaluate the accuracy of the prediction given by the model, it is important 

to test the defined model with never-before-seen data, 100% new data, in this case the 

data is provided by other wells drilled nearby the well that was used to train the model.  

After the model was trained with the data set from Well 1, and with a working ratio of 

80% training data size vs 20% testing data size, the program was run for each one of 

the models according to each well data set, using the 100% of the data for testing the 

trained model, the results that are going to be shown below are just for one of the wells 

analyzed, to see the other wells’ data plots, see Appendix B.4. 

 

The well data set “USROP_A 1 N-S_F-7d” which is the Well 2, is going to be used as an 

example to show the procedure to evaluate the model. First of all, the data was 

imported keeping the same structure as the training data set. After importing the data, 

just a small test was run in order to check the difference between running a 

predetermined model, without hyperparameters defined, and running the model 

tested with the previous data set. 

 

The Figure 33 shows that comparison, having in the right side the one without the 

trained model, and in the right side, the one which was evaluated with the defined 

model.  

 

 

 

 

 

 

 

Figure 32. Metrics Analysis 
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After it, the predicted data was plotted to find the accuracy to the model. In the Figure 

34, is possible to see the original values for ROP (field/operational data) in color green, 

the prediction performed without the model implementation in black color, and in 

purple, the predicted data provided by the model after performing the hyperparameter 

tunning (HT). 

 

 

For this case, the model gave a coefficient of determination of 0.8186.  Perhaps the 

lines are not so close, it is possible to determine that the trend is constant which can 

result in a good but not perfect prediction.  

After doing this procedure with each one of the wells, and each one of the regressions 

evaluated, the predictions were plotted to define graphically its behavior and accuracy. 

(See Figure 35, Figure 36, Figure 37, Figure 38 and Figure 39). In the plots is 

possible to identify and compare the accuracy of the models, and how each one of the 

evaluated regressions, fits or does not fit with the predicted ROP. 

 

 

Figure 33. AdaBoost regressor model prediction Well 2 

Figure 34. AdaBoost regressor predicted data set Well 2 
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Due to the depth of the Well 2, in the Figure 35 is possible to see the difference 

between the accuracy of each one of the predictions given by the different models, for 

example the AdaBoost regressor, represented in green color, is keeping the trend of the 

original prediction (color black), but the values are not as accurate as the gradient 

boosting regressor prediction (pink color) that is even hidden by the perfect accuracy. 

It is important to mention that one of the most relevant things when talking about 

machine learning, is having as much data as possible to improve the accuracy and 

applicability of the model. 

 

 

 

 

 

 

Figure 35. ROP predictions Well 2 

Figure 36. ROP predictions Well 3 
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Figure 39. ROP predictions Well 6 

Figure 38. ROP predictions Well 5 

Figure 37. ROP predictions Well 4 
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Since the plots can be not very clear because of the amount of analyzed data, plots were 

generated considering only the selected models, ones which have a higher coefficient 

of determination. For those cases, in the following plots is shown the ROP predicted by 

GB regressor, K Neighbors and RF regressor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Plot predicted ROP selected models, Well 2 

Figure 41. Plot predicted ROP selected models, Well 3 

Figure 42. Plot predicted ROP selected models, Well 4 
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The Figure 40, Figure 41, Figure 42, Figure 43 and Figure 44, show the ROP 

predicted in each one of the wells by using GB regressor, K Neighbors and RF regressor. 

Despite the accuracy of the model is very good, there are some points (red circle) where 

there is some noise or simple the prediction is not very accurate, but it is always close 

to the main prediction which means that these models can be used in different type of 

wells.  

 

The main question after visualizing the plots is which one should be selected as the 

best model prediction ROP? Having a look back to the Table 9 and the comparison 

made in the Figure 32, GB regressor, K Neighbors and RF regressor are the ones 

which have the highest coefficient of determination since they memorized points 

instead of created correlations. As described by Gulli et al. [40] "traditional multilayer 

perceptron neural networks make the assumption that all inputs are independent of 

each other. This assumption breaks down in the case of sequence data". 

 

An important factor to take into account, is that since the model can have a very good 

accuracy, many external factors that were not consider during the study can affect the 

Figure 44. Plot predicted ROP selected models, Well 6 

Figure 43. Plot predicted ROP selected models, Well 5 
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behavior of the prediction if it is implemented in another well. A model can be more 

and more accurate if each single time it is adjusted until get 100% of reliability. 

 

To conclude the final results and show why it was said that the GB regressor, K 

Neighbors and RF regressor are the ones which have the highest coefficient of 

determination or accuracy to the model tested on non-before-seen data, the metrics of 

each well were compilated in Table 10, Table 11, Table 12, Table 13 and Table 14. 

If the reader takes a seen on the values, for example the coefficient of determination 

has the highest values for GB, K Neighbor and RF regressor in all tested data set of the 

six wells.  

On the other hand, or another metric that can give good information regarding to the 

accuracy of the model is the MSE (Mean Squared Error), where the lowest values are 

the ones regarding to the GB, K Neighbor and RF regressor in all tested data set of the 

six wells.  

 

WELL 2 

  AdaBoost GB K Neighbor Linear Regression MLP RF 

MAE 5,7483 0,01547 0 9,6954 10,1278 0,02052 

MAPE 0,1345 0,000299 0 0,2638 0,3091 0,00495 

R2 0,8186 0,9999 1 0,346 0,25136 0,9997 

MSE 46,5892 0,001583 0 168,221 192,281 0,07462 

RMSE 6,8256 0,03978 0 12,97 13,866 0,27317 

MedAE 5,5276 0,00644 0 7,19423 7,53235 2,84E-14 
Table 10. Metrics, testing model Well 2 

WELL 3 

  AdaBoost GB K Neighbor Linear Regression MLP RF 

MAE 5,9347 0,3791 0 7,8425 10,254 0,0044 

MAPE 0,5192 0,0194 0 0,5178 0,4594 0,0002 

R2 0,729 0,9985 1 0,4979 0,1285 0,999 

MSE 47,826 0,2706 0 88,607 153,809 0,005 

RMSE 6,9156 0,5202 0 9,1413 12,402 0,0711 

MedAE 6,0685 0,2848 0 7,2189 9,5187 1,42E-14 
Table 11. Metrics, testing model Well 3 

WELL 4 

  AdaBoost GB K Neighbor Linear Regression MLP RF 

MAE 4,8515 2,4895 0 5,0329 7,5903 0,0266 

MAPE 0,3547 0,1758 0 0,3439 0,4122 0,00137 

R2 0,5992 0,8339 1 0,4311 0,0703 0,9994 

MSE 37,1435 15,3975 0 52,7275 86,172 0,0533 

RMSE 6,0945 3,9239 0 7,2614 9,2829 0,2309 

MedAE 3,6999 1,4958 0 4,3275 7,6099 2,40E-04 
Table 12. Metrics, testing model Well 4 
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WELL 5 

  AdaBoost GB K Neighbor Linear Regression MLP RF 

MAE 6,3748 2,0163 0 4,2685 5,4668 0,0607 

MAPE 0,6615 0,1874 0 0,3769 0,4199 0,00419 

R2 0,3156 0,8603 1 0,5428 0,4299 0,99854 

MSE 53,869 11,0027 0 35,9957 44,884 0,11493 

RMSE 7,3396 3,31704 0 5,9997 6,6995 0,33901 

MedAE 6,2857 1,0936 0 3,06172 4,3677 1,28E-03 
Table 13. Metrics, testing model Well 5 

WELL 6 

  AdaBoost GB K Neighbor Linear Regression MLP RF 

MAE 7,9429 2,8285 0 8,3846 12,4141 0,00854 

MAPE 0,71926 0,16786 0 0,5647 0,8095 0,000294 

R2 0,6587 0,9359 1 0,50808 0,0787 0,9999 

MSE 86,486 16,2282 0 124,643 233,442 0,0194 

RMSE 9,2998 4,0284 0 11,1644 15,279 0,1393 

MedAE 7,9693 2,01076 0 6,6847 11,7 1,42E-14 
Table 14. Metrics, testing model Well 6 

5.2. Discussions 

Despite the amount of data that has been available for many years, people in the oil 

industry do not know what to do with it, it has been stored and, in some cases, purged 

without knowing all the benefits that can be obtained from it. It can be said that much 

of the value and economic benefit that can be obtained from the correct management 

and implementation of this information can be too high. 

 

A good use of data and its analysis will always be a good tool to strengthen planning 

and make predictions that help and contribute to decision making, especially in real 

time. A good start for this is to carry out a diagnostic analysis where the reason for 

having high or low rate of penetration values is explained and where the descriptive 

statistics take a value that is too strong, and where analytics shows that it is possible to 

stop assuming to begin with to read the data thanks to a much faster processing, and 

in the same way make decisions that will contribute to the predictions when the same 

conditions are present, or inputs in cases of modeling and machine learning. 

 

There is no commercial tool or application that exactly predicts the ROP that is going 

to be obtained according to the different parameters, for which predictive analysis is a 

very good tool. After performing the predictive analysis, it is suggested to move on to 

the prescriptive analysis where it is sought to get to, How to make it happen?  How to 

optimize it? and What parameters do I need so that the ROP is the maximum? In the 

study carried out throughout this project, base information has been taken which has 

been a key piece to develop the models, but despite this there are more factors or 
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parameters which, through experience, have shown that they can affect or vary the 

ROP noticeably. These factors were mentioned in Chapter 1. 

 

If the objective is to optimize the ROP prediction to the maximum, one of the key 

factors to take into account without a doubt is the lithological properties of the column 

to be drilled, added to a correct selection and design of the bit. It is clear that, in most 

cases, especially when it comes to drilling exploratory wells, where the geological 

column is unknown, which leads to obtaining values different from those expected, the 

performance of the drill bit may not be as expected, or the footage may be less than 

planned.  Normally a drill bit is chosen expecting a certain performance according to 

how its behavior has been in other wells and other formations, but there is no tool that 

exactly predicts the ROP that it will have according to the various parameters, for this, 

predictive analyzes are a very good tool.  

 

At this point, another question is part of the scoop for future studies or projects, it is 

which parameters should be considered at the time of well planning and which should 

be taken into account during the operation if the objective is to feed a built model with 

the information obtained in real time considering as a relevant factor, the 

incorporation of rapid data acquisition tools such as wired drill pipe. 

 

After running the models and analyzing the information shown in the graphs, it can be 

concluded that the database is biased and it is taken into account that it is a model for 

which it predicts better taking into account the parameters chosen according to their 

relationship with the ROP and how these affect it, therefore when the model was 

implemented in the new wells, and using the same type of parameters as input, the 

prediction had an optimal behavior, but when talking about real cases, where the 

decision making must be as fast as possible, you must follow and read the information 

given by the well. 

 

Analytically predicting the ROP can contribute positively when it comes to drilling a 

well as fast as possible, but empirically, the ideal is to have as input to the predictions 

factors that can be controlled in real time, or with which the operation can be 

optimized. In the case of this study, the factors used as inputs were, for the most part, 

data measured throughout the operation that can hardly be programmed or controlled 

and that in turn depend on external factors, such as the average surface torque that 

depends on type of level of vibrations, geometry of the hole, hook load, elasticity, and 

hardness of the formation with respect to the cutting properties of the bits, among 

others. The selected variables according to the correlation and impact on the ROP, can 

be read during operations and keys to understand what is happening in the well, but 

considering an ideal case in which the objective is to automate the drilling of a well, the 

operational properties should be adjusted considering the values of the variables as 

input. 

Since an important factor is the knowledge of expertise of people involved in drilling 

operations looking forward to improving and to enhance the quality of the inputs and 
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the outputs of the model, some opinions regarding to why modelling ROP is a 

challenging topic were taken considering the different point of view of professionals 

with experience in drilling jobs. Some of them are mentioned below.  

 

“The analytically calculated ROP is made based on assumptions that are far from 

reality, in most of the cases. On the other hand, in places where geological uncertainty 

weighs heavily at the time of defining the prognosis of the lithological column, the 

real results definitely differ from the theoretical ones”. 

W. Carreño,  

Company Man (Onshore drilling operations) 

Colombia.  

 

“In well drilling planning, offset wells are analyzed as a starting point for the 

expected ROP, in development wells where the area is known, it is expected to develop 

an ROP close to the plan, however differences in this value may occur by BHA design, 

BHA hanging or differences in lithology.” 

P. Perez, 

Drilling Engineer, development wells (Onshore drilling planning) 

Colombia. 

 

“ROP can hardly be predicted with a high level of reliability. In my experience as a 

tool pusher, driller, and rig manager, one of my biggest goals is to drill the hole as 

fast as possible, while keeping in mind optimal penetration rates. I must not say that 

it is a matter of luck, since I consider that the operational parameters should be 

adjusted according to what the data shows us, and that is why among colleagues the 

phrase "The well speaks to you" is very well known. Data is a key factor in making 

decisions, but the expertise of the people in charge of analyzing it and knowing what 

to do with it is key”. 

G. Bonilla, 

Rig Manager (Onshore drilling operations) 

Colombia. 

 

“When planning a well, the engineering team assumes ideal conditions while 

considering margins of error, as a rule of thumb. Regardless of the expected 

performance of both the drill bit and the downhole tools, external factors such as 

geological structures and faults result in changes in plans, operating conditions, and 

penetration rates far from those expected. Surprisingly, in some cases we have 

benefited when we encounter soft formations, but we have also incurred additional 

time for small layers of hard formations that must be drilled with bits designed for 

soft formations. As a directional engineer I must reach the desired depth, but the path 

does not always behave as per planned”. 

C. Vorkinn, 

Directional Driller (Offshore drilling operations) 

Norway. 
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Chapter 6. 

Conclusions and Future Work 

6. CONCLUSIONS AND FUTURE 

6.1 Conclusion 

Another important point to consider is finding a way to optimize the parameters to the 

maximum so that they can be managed and controlled during drilling obtaining 

optimal ROP. In the same way take into account the specific mechanical energy and its 

impact on the efficiency of drilling. 

Along the planning, execution and development of the project, many questions and 

point of views were considered to find a good approach to improve the performance 

given by the machine learning models and how the accuracy of the model can be 

affected by choosing some parameters. According to the objectives set, the conclusions 

of the work are: 

 

• A complete data set from six wells was used to select the variables to develop the 

machine learning model. 

• The most relevant parameters for the machine learning predictive model were 

chosen considering the correlation and their dependency to ROP, they were: 

Average standpipe pressure, mud flow in, average surface torque, average rotary 

speed, measured depth and weight on bit.  

• The data set from one of the wells was used to train and test the models and to 

establish the accuracy of the model. 

• Hyperparameter tunning was performed to improve the accuracy of the model as 

much as possible adjusting the metrics and coefficients of determination. 

• The algorithm was tested with five different data sets, using the same parameters 

chosen for training and testing the model, observing that the regressions with the 

best performance were Random Forest, Gradient Boosting and K Neighbor 

Regressor with a coefficient of determination around 90%. 
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• The performance of the model and any model in general can be improved by 

considering learned lessons or field experience from petroleum engineering 

knowledge to enhance the quality of the inputs and the outputs of the model. 

6.2 Future Work 

It is known that a large number of investigations related to machine learning and data 

analysis always have something to improvise, either in terms of information, 

considerations or the use of new technologies capable of providing excellent quality 

data. Due to the scope of this project, several points remain open for future research, 

for example: 

 

• Feeding up the model with as much information as possible, not only from the 

same field or cluster, but also with data from non-adjacent wells. 

• As it was mentioned in the conclusions, use the information related to the 

stratigraphic column, field properties, geology, properties of the bit, among 

others can lead up into a very good performance of machine learning models 

and why not an optimal automatization of the drilling operations. 

• Split the data obtained along the well, in order to predict the next sections to be 

drilled, considering that it can be applied just when the geological data used to 

train the model match with the new well to be drilled.  
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Appendix A Python Code 

 

Appendix A  

Python Code 

 

A.1 Installed Packages 

Package Version Package Version 
absl-py 1.0.0 numpydoc 1.1.0 

alabaster 0.7.12 oauthlib 3.2.0 

anaconda-client 1.7.2 olefile 0.46 

anaconda-navigator 2.1.4 openpyxl 3.0.7 

anaconda-project 0.9.1 opt-einsum 3.3.0 

anyio 2.2.0 packaging 20.9 

appdirs 1.4.4 pandas 1.2.4 

argh 0.26.2 pandocfilters 1.4.3 

argon2-cffi 20.1.0 paramiko 2.7.2 

asn1crypto 1.4.0 parso 0.7.0 

astroid 2.5 partd 1.2.0 

astropy 4.2.1 path 15.1.2 

astunparse 1.6.3 pathlib2 2.3.5 

async-generator 1.10 pathspec 0.7.0 

atomicwrites 1.4.0 pathtools 0.1.2 

attrs 20.3.0 patsy 0.5.1 

autopep8 1.5.6 pep8 1.7.1 

Babel 2.9.0 pexpect 4.8.0 

backcall 0.2.0 pickleshare 0.7.5 
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backports.functools-lru-

cache 

1.6.4 Pillow 8.2.0 

backports.shutil-get-

terminal-size 

1.0.0 pip 21.0.1 

backports.tempfile 1.0 pkginfo 1.7.0 

backports.weakref 1.0.post1 plotly 5.3.1 

bcrypt 3.2.0 plotly-express 0.4.0 

beautifulsoup4 4.9.3 pluggy 0.13.1 

bitarray 1.9.2 ply 3.11 
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A.2 General Well Statistics Python Code  
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A.3 Training and Testing the model  

• Gradient Boosting Regressor 
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• K Neighbors Regressor 
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• Linear Regression 
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• Multi-Layer Perceptron Regressor 
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•  Random Forest Regressor 
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A.4 Implementation of the model 

• AdaBoost Regressor 
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• Gradient Boosting Regressor 
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• K Neighbors Regressor 
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• Linear Regression 
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• Multi-Layer Perceptron Regressor 
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• Random Forest Regressor 
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• AdaBoost Regressor 
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A.5 Predictions 
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B.1 General Statistics 

1. Well 1, USROP_A 0 N-NA_F-9_Ad3 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count             13 746              13 746              13 746              13 746              13 746              13 746              13 746              13 746              13 746              13 746              13 746              13 746  

mean           844,155                9,289       11 562,065                5,937              39,101           143,320         2 714,106                1,207           269,962              92,707            781,324          103,791  

std           216,075                4,450         2 779,706                3,282              11,969              41,557            777,596                0,010              47,190                4,393            157,351            64,629  

min           491,033                0,005         3 592,720                0,014                0,549                      -           1 506,518                1,190           215,900              84,727            490,760            11,270  

25 %           653,009                5,711       10 266,862                2,510              31,797           104,000         1 895,507                1,198           215,900              87,970            644,362            26,310  

50 %           808,030                9,472       11 498,973                7,389              40,717           143,190         3 226,269                1,200           311,150              94,030            776,790          144,720  

75 %        1 043,332              11,861       14 132,901                8,677              47,512           193,000         3 447,223                1,210           311,150              96,815            929,222          158,570  

max        1 205,999              20,102       15 664,406              10,616              88,441           204,170         3 734,574                1,230           311,150            104,304         1 013,143          204,761  

Table B. 1. Well Statistics, USROP_A 0 N-NA_F-9_Ad 

2. Well 2, USROP_A 1 N-S_F-7d 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration 

m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389 

mean 472,31 4,65 12311,97 3,83 55,27 176,79 3915,37 1,03 444,50 98,78 472,27 83,04 

std 98,16 1,59 2293,93 1,17 16,03 39,59 477,31 0,00 0,00 2,32 98,11 18,70 

min 301,23 0,01 8949,00 0,31 8,77 103,00 3433,90 1,03 444,50 91,99 301,22 2,42 

25 % 385,12 3,59 9997,00 3,45 44,79 143,00 3434,86 1,03 444,50 97,06 385,11 79,75 

50 % 474,00 4,60 11723,00 3,94 57,34 192,00 3732,15 1,03 444,50 98,58 474,02 86,99 

75 % 563,21 5,74 14636,00 4,51 63,95 212,00 4426,36 1,03 444,50 100,37 563,18 94,24 

max 633,54 10,02 17754,00 7,22 98,11 212,00 4431,42 1,03 444,50 104,33 633,32 120,83 

Table B. 2. Well Statistics, USROP_A 1 N-S_F-7d 
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3. Well 3, USROP_A 2 N-SH_F-14d 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration 

m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645 

mean 2279,192 5,667 17083,348 11,147 24,571 137,107 3179,510 1,295 340,994 132,833 2199,297 65,181 

std 733,447 2,638 3294,108 2,665 13,285 35,336 1038,328 0,070 107,498 13,508 638,556 36,397 

min 987,948 0,469 4509,000 1,610 0,330 0,000 432,050 1,020 215,900 87,216 987,460 0,000 

25 % 1617,223 4,171 15233,000 9,380 12,460 119,790 1984,990 1,270 215,900 128,953 1616,733 37,223 

50 % 2277,889 5,364 17405,000 11,240 23,320 159,190 3523,390 1,310 444,500 138,284 2276,386 60,543 

75 % 2931,021 6,547 18242,999 12,760 34,860 160,320 4155,930 1,350 444,500 140,435 2827,336 94,433 

max 3466,033 15,092 24907,001 26,550 56,310 181,550 4538,450 1,380 444,500 152,927 2993,804 260,899 

Table B. 3. Well Statistics, USROP_A 2 N-SH_F-14d 

4. Well 4, USROP_A 3 N-SH-F-15d 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration 

m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041 

mean 2640,153 6,183 17777,027 19,147 21,577 130,629 2933,601 11,453 303,343 129,058 2333,879 74,797 

std 883,692 4,657 4138,872 7,894 9,628 19,348 1090,260 0,443 111,101 4,541 633,089 58,569 

min 1306,525 0,005 4363,623 1,098 0,786 0,000 1083,309 10,682 215,900 114,795 1283,159 0,000 

25 % 1668,576 1,891 14705,635 11,443 15,597 129,500 2077,184 11,183 215,900 126,136 1618,122 27,690 

50 % 2845,860 5,080 15767,427 19,213 19,687 139,736 2121,383 11,266 215,900 128,303 2619,993 51,765 

75 % 3302,752 9,430 22788,690 26,708 29,688 139,736 4408,794 11,934 444,500 130,839 2860,925 135,690 

max 4065,346 19,858 24993,309 36,489 99,206 140,351 4453,121 12,017 444,500 149,743 3189,315 256,164 

Table B. 4. Well Statistics, USROP_A 3 N-SH-F-15
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5. Well 5, USROP_A 4 N-SH_F-15Sd 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration 

m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708 

mean 2928,763 5,782 19160,422 14,434 17,326 174,271 2572,733 1,369 247,425 134,654 2484,778 57,162 

std 815,094 4,231 3485,707 2,685 8,874 59,162 1037,703 0,066 44,822 6,947 519,979 49,610 

min 1400,550 0,002 1432,662 0,008 0,399 0,000 185,421 1,300 215,900 84,048 1367,019 0,000 

25 % 2183,961 3,080 15718,164 12,121 10,022 120,000 1705,919 1,320 215,900 129,147 2055,263 15,640 

50 % 3056,812 4,345 20246,145 14,630 17,090 179,236 2016,073 1,320 215,900 135,112 2652,020 42,161 

75 % 3664,481 7,440 21835,421 16,822 24,954 217,770 3987,856 1,450 311,150 140,435 2900,238 90,350 

max 4090,001 31,411 24998,459 24,228 96,660 290,560 4173,644 1,480 311,150 152,213 3171,809 255,462 

Table B. 5. Well Statistics, USROP_A 4 N-SH_F-15Sd 

6. Well 6, USROP_A 5 N-SH-F-5d 

  
Measured 

Depth m 

Weight on Bit 

kkgf 

Average 

Standpipe 

Pressure kPa 

Average 

Surface 

Torque kN,m 

Rate of 

Penetration 

m/h 

Average 

Rotary Speed 

rpm 

Mud Flow In 

L/min 

Mud Density 

In g/cm3 
Diameter mm 

Average 

Hookload kkgf 

Hole Depth 

(TVD) m 

USROP 

Gamma gAPI 

count 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548 

mean 3333,935 6,700 20923,118 23,852 26,481 177,861 2040,051 1,409 2.159e+02 137,693 2930,595 42,091 

std 296,633 3,190 2483,364 3,951 15,918 75,932 187,352 0,066 6.443e-11 5,600 223,785 41,121 

min 2828,239 0,010 9782,000 5,570 1,360 24,160 1056,920 1,280 2.159e+02 114,055 2530,262 0,000 

25 % 3007,302 4,456 20841,000 21,780 12,620 129,940 2066,940 1,350 2.159e+02 132,767 2679,852 12,320 

50 % 3363,657 6,312 21162,000 23,930 24,100 179,860 2089,570 1,450 2.159e+02 136,938 2974,288 29,490 

75 % 3592,875 8,657 22205,000 27,130 40,670 262,530 2090,060 1,450 2.159e+02 143,117 3129,706 54,600 

max 3792,200 14,847 24997,000 30,880 79,140 311,230 2774,260 1,470 2.159e+02 148,379 3248,390 260,060 

Table B. 6. Well Statistics, USROP_A 5 N-SH-F-5d 
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B.2 Heat Maps. 

1. Well 1, USROP_A 0 N-NA_F-9_Ad 

 

 

 

 

 

 

Figure B. 1. Heat Map USROP_A 0 N-NA_F-9_Ad 
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2. Well 2, USROP_A 1 N-S_F-7d 

 

 

 

 

 

 

 

Figure B. 2. Heat Map USROP_A 1 N-S_F-7d 
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3. Well 3, USROP_A 2 N-SH_F-14d 

 

 

 

 

 

 

 

 

 

Figure B. 3. Heat Map USROP_A 2 N-SH_F-14d 
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4. Well 4, USROP_A 3 N-SH-F-15d 

 

 

 

 

 

 

 

 

 

 

Figure B. 4. Heat Map USROP_A 3 N-SH-F-15d 
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5. Well 5, USROP_A 4 N-SH_F-15Sd  

 

  

 

 

 

 

 

 

Figure B. 5. Heat Map USROP_A 4 N-SH_F-15Sd 
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6. Well 6, USROP_A 5 N-SH-F-5d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 6. Heat Map USROP_A 5 N-SH-F-5d 
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B.3 Probability Distribution  

1. Well 1, USROP_A 0 N-NA_F-9_Ad 

 
 
 
 

Figure B. 7. Probability Distribution Well 1 
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2. Well 2, USROP_A 1 N-S_F-7d 

 

 

 

 

 
 
 

Figure B. 8. Probability Distribution Well 2 
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3. Well 3, USROP_A 2 N-SH_F-14d 

 

 

 

 

 

 

 

 

 

 

Figure B. 9. Probability Distribution Well 3 
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4. Well 4, USROP_A 3 N-SH-F-15d 

 
 
 
 
 
 

Figure B. 10. Probability Distribution Well 4 
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5. Well 5, USROP_A 4 N-SH_F-15Sd  

 
 
 
 
 
 
 
 
 

Figure B. 11. Probability Distribution Well 5 
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6. Well 6, USROP_A 5 N-SH-F-5d 

 

 
 
 
 
 
 

Figure B. 12. Probability Distribution Well 6 
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B.4 Plot Measure Depth (MD) vs Selected Variables. 

1. Well 1, USROP_A 0 N-NA_F-9_Ad 

Figure B. 13. Measure depth vs. Selected variables Well 1 
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2. Well 2, USROP_A 1 N-S_F-7d 

 

Figure B. 14. Measure depth vs. Selected variables Well 2 
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3. Well 3, USROP_A 2 N-SH_F-14d 

 

Figure B. 15. Measure depth vs. Selected variables Well 3 
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4. Well 4, USROP_A 3 N-SH-F-15d 

 

Figure B. 16. Measure depth vs. Selected variables Well 4 
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5. Well 5, USROP_A 4 N-SH_F-15Sd 

 

Figure B. 17. Measure depth vs. Selected variables Well 5 
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6. Well 6, USROP_A 5 N-SH-F-5d 

 

Figure B. 18. Measure depth vs. Selected variables Well 6 
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C.1 Implementation of the Model. 

1. Well 2, USROP_A 1 N-S_F-7d  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. 1 AdaBoost Reg, Model_Well 2 

Figure C. 3 Linear Regression Model_Well 2 

Figure C. 6 Random Forest Regressor 
Model_Well 2 

Figure C. 2 MLP Reg, Model_Well 2 

Figure C. 4 K- Neighbors Reg, Model_Well 2 

Figure C. 5 Gradient Boosting Regressor 
Model_Well 2 
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Figure C. 7 Multi-Layer Perceptron Regressor data set prediction_Well 2 

Figure C. 8 AdaBoost Regressor data set prediction_Well 2 

Figure C. 9 K-Neighbors Regressor data set prediction_Well 2 

Figure C. 10 Linear Regression data set prediction_Well 2 

Figure C. 11 Gradient Boosting Regressor data set prediction_Well 2 

Figure C. 12 Random Forest Regressor data set prediction_Well 2 



Field-Scale Generality of the Machine Learning Models 
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2. Well 3, USROP_A 2 N-SH_F-14d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. 14 MLP Regressor Model_Well 3 Figure C. 13 AdaBoost Regressor Model_Well 3 

Figure C. 15 K- Neighbors Reg Model_Well 3 Figure C. 16 Linear Regression Model_Well 3 

Figure C. 17 Gradient Boosting Regressor 
Model_Well 3 

Figure C. 18 Random Forest Regressor 
Model_Well 3 



Field-Scale Generality of the Machine Learning Models 
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Figure C. 19 Multi-Layer Perceptron Regressor data set prediction_Well 3 

Figure C. 20 AdaBoost Regressor data set prediction_Well 3 

Figure C. 21 K-Neighbors Regressor data set prediction_Well 3 

Figure C. 22 Linear Regression data set prediction_Well 3 

Figure C. 23 Gradient Boosting Regressor data set prediction_Well 3 

Figure C. 24 Random Forest Regressor data set prediction_Well 3 



Field-Scale Generality of the Machine Learning Models 
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3. Well 4, USROP_A 3 N-SH-F-15d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. 26 MLP Regressor Model_Well 4 Figure C. 25 AdaBoost Reg Model_Well 4 

Figure C. 28 K-Neighbors Reg. Model_Well 4 Figure C. 27 Linear Regression Model_15d 

Figure C. 29 Gradient Boosting Regressor 
Model_Well 4 

Figure C. 30 Random Forest Regressor 
Model_Well 4 



Field-Scale Generality of the Machine Learning Models 
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Figure C. 31 Multi-Layer Perceptron Regressor data set prediction_Well 4 

Figure C. 32 AdaBoost Regressor data set prediction_Well 4 

Figure C. 33 K-Neighbors Regressor data set prediction_Well 4 

Figure C. 34 Linear Regression data set prediction_Well 4 

Figure C. 35 Gradient Boosting Regressor data set prediction_Well 4 

Figure C. 36 Random Forest Regressor data set prediction_Well 4 



Field-Scale Generality of the Machine Learning Models 
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4. Well 5, USROP_A 4 N-SH_F-15Sd 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. 37 MLP  Regressor Model_Well 5 Figure C. 38 AdaBoost Regressor Model_Well 5 

Figure C. 39 K-Neighbors Reg. Model_Well 5 Figure C. 40 Linear Regression Model_Well 5 

Figure C. 42 Gradient Boosting Regressor 
Model_Well 5 

Figure C. 41 Random Forest Regressor 
Model_Well 5 



Field-Scale Generality of the Machine Learning Models 
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Figure C. 43 Multi-Layer Perceptron Regressor data set prediction_Well 5 

Figure C. 44 AdaBoost Regressor data set prediction_Well 5 

Figure C. 45 K-Neighbors Regressor data set prediction_Well 5 

Figure C. 46 Linear Regression data set prediction_Well 5 

Figure C. 47 Gradient Boosting Regressor data set prediction_Well 5 

Figure C. 48 Random Forest Regressor data set prediction_Well 5 



Field-Scale Generality of the Machine Learning Models 
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5. Well 6, USROP_A 5 N-SH-F-5d 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. 50 AdaBoost Regressor Model_Well 6 

Figure C. 51 K-Neighbors Reg. Model_Well 6 Figure C. 52 Linear Regression Model_Well 6 

Figure C. 53 Gradient Boosting Regressor 
Model_Well 6 

Figure C. 54 Random Forest Regressor 
Model_Well 6 

Figure C. 49 MLP Regressor Model_Well 6 



Field-Scale Generality of the Machine Learning Models 
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Figure C. 55 Multi-Layer Perceptron Regressor data set prediction_Well 6 

Figure C. 56 AdaBoost Regressor data set prediction_Well 6 

Figure C. 57 K-Neighbors Regressor data set prediction_Well 6 

Figure C. 58 Linear Regression data set prediction_Well 6 

Figure C. 59 Gradient Boosting Regressor data set prediction_Well 6 

Figure C. 60 Random Forest Regressor data set prediction_Well 6 


