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Abstract

In this thesis, we will use topological field theory to do an explicit compu-
tation of a one-loop partition function over a 6-dimensional manifold. This
is a topological invariant, which can be used to distinguish geometries. To
set us up for this task, we will introduce various topics in mathematics and
physics. The topics covered are; manifolds, differential forms, cohomology,
Hodge theory, Lagrangian formalism, and quantum field theory.
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Chapter 1

Introduction

This thesis is in the realm of mathematical physics, the cross-section between
mathematics and physics. Our goal for the thesis will be to compute a so-
called one-loop partition function over a 6-dimensional manifold. The reason
for looking at six dimensions stems from String Theory [1]. String theory is
an alternative description of how the universe works and one of the theories
that tries to unify the Standard Model together with general relativity. Since
the dawn of physics, one has tried to find one grand theory that describes
everything about how the universe works, a “theory of everything”. The
Standard Model has managed to do so to quite some extent. However, the
Standard Model fails at a rather crucial point. Namely, it does not include
gravity. Simply speaking, this theory fails to unify quantum field theory and
general relativity, which is where String Theory has tried to come up with
the solution. The driving force behind String Theory is to be a so-called
theory of everything and resolve the problem of a quantum description of
gravity. For String Theory to work out, we need more dimensions than our
four-dimensional spacetime. In fact, the theory requires ten dimensions to
work. Therefore, what one does in String Theory is to split up these ten
dimensions into our 4-dimensional spacetime and six dimensions which are
compactified and often modeled as a so-called Calabi-Yau manifold. This is
a complex 3-dimensional manifold, or one can view it as a 6-dimensional real
manifold.

To this date, String Theory is still governed as very theoretical. One of
the problems in String Theory is that one quickly runs into extremely com-
plicated mathematics. Therefore, one has tried to look for results that might
simplify the theory. Examples of such simplifying results are reductions of
the theory to topological sectors, where one can compute topological invari-
ants. This thesis will then focus on developing the tools needed in order to
look at topological invariants in the form of using topological field theories to

5



CHAPTER 1. INTRODUCTION 6

compute partition functions. These will be examples of topological quantum
invariants, which are topological invariants calculated using the partition
function defined in quantum field theory (QFT). These invariants will then
be related to local QFT.

This thesis is meant as a brief introduction to concepts in topological field
theory and computations of the one-loop partition function for topological
field theories. We will embark on the exciting topics of manifolds, differential
forms, cohomology, Hodge theory, Lagrangian formalism, and some quantum
field theory. Then we will use all of this to look at a topological field theory.
The goal of the thesis is to perform a one-loop computation of geometric
invariants using the one-loop partition function of certain topological field
theories inspired by String Theory. Hence most of the thesis will focus on
building up the required knowledge to be able to perform the computation.
For the sake of brevity, many of the proofs will be dropped, but the interested
reader can find the proofs in the references. The first chapter will cover
manifolds and what these mathematical objects are. They will be the spaces
for which we do our computations over. In the following chapter, we cover
differential forms that will act as our fields in the final theory. Then in the
third chapter, we take a look at something called de Rham cohomology, and
we will do some explicit computations of cohomology groups. These groups
will be our first encounter with topological invariants in this thesis. They
are so-called classical invariants and are related to classical field theory; from
cohomology, it is possible to count the solutions of equations of motion and
other types of differential equations. The next chapter covers Hodge theory
which is our final mathematical tool. We then make a visit to analytical
mechanics and quantum field theory for our final tools needed to compute the
partition function for a topological field theory. The last chapter will solely
be devoted to topological field theory, where we start with a discussion about
regularising before we go over to do some explicit computations of partition
functions.

The chapters regarding the mathematics, chapter 2-5, will closely follow
the books “An Introduction to Manifolds” by Loring W. Tu [2] and “Ge-
ometry, topology and physics” by M. Nakahara [3]. Chapter 6, regarding
analytical mechanics and quantum field theory, will closely follow “Geome-
try, topology and physics” by M. Nakahara [3] and “Quantum field theory
in a nutshell” by A. Zee [4].
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1.1 Prerequisites

This thesis will require the reader to be familiar with concepts introduced in
courses within mathematics and physics, such as courses on calculus, linear
algebra, abstract algebra, and quantum mechanics. We will also assume the
reader to be familiar with basic point-set topology. See appendix A of [2] if
you are not familiar with basic topology. Here we mention some of the most
important definitions from topology and linear algebra that will be used in
the upcoming chapters. Feel free to skip this chapter if you are familiar with
topology and tensors.

1.1.1 Topology

Definition 1 (Topological space, [2] definition A.2). A topological space con-
sist of a set X, and a set T consisting of open subsets U ⊂ X. Where

• Any ∪i Ui ∈ T if all Ui ∈ T.

• Any finite ∩i Ui ∈ T if all Ui ∈ T

• X and ∅ ∈ T, where ∅ is the empty set.

Definition 2 (Subspace Topology, [2] appendix A.2). If A ⊂ X and (X,T )
is a topological space,

TA := {U ∩ A|U ∈ T}

we call the subspace topology of A and any element of TA is said to be open
in A. (A, TA) is a topological space.

Definition 3 (Compact, [2] definition A.32). Any subset {Ui} ⊂ T is called
a cover of X if X ⊂ ∪iUi. A subset of cover which is itself a cover is called
a subcover. Then a topological space (X,T ) is called compact if every cover
of X has a finite subcover.

Definition 4 (Hausdorff, [2] definition 4.20). A topological space (X,T) is
called Hausdorff if ∀x, y ∈ X with x 6= y, ∃Ux, Uy ∈ T such that Ux∩Uy = ∅,
where x ∈ Ux and y ∈ Uy.

If (X,T) is Hausdorff, then for any A ⊂ X, (A,TA) is Hausdorff. Example
of a Hausdorff space is Rn w.r.t the standard topology. It then follows that
any subset of Rn is Hausdorff.

Definition 5 (Basis, [2] definition A.13). Any B ⊂ T in a topological space
(X,T) is called a basis (for T) if every U ∈ T is a union of elements in B.
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Definition 6 (Second countable, [2] definition A.17). A topological space is
called second countable if it admits a countable basis.

Rn with the standard topology is second countable with the countable
basis BQ = {Bε(x)|ε ∈ Q+, x ∈ Qn}. And if (X,T) is second countable, then
for any A ⊂ X, (A,TA) is second countable. So any subset of Rn is second
countable w.r.t. the standard topology.

Definition 7 (Homeomorphism, [2] definition A.39). A map f : X → Y
that is bijective is a homemorphism if both f and f−1 is continuous.

Definition 8 (Diffeomorphism, [2] definition 6.4). A bijective map f : U →
V where U, V ∈ Rn is called a diffeomorphism if it is smooth and has smooth
inverse f−1 : V → U .

1.1.2 Linear Algebra

Definition 9 (Dual Space, [2] chap. 3.1). Let V and W be two real vector
spaces, then the vector space of all linear maps f : V → W , is denoted
Hom(V,W ). Then the vector space of all real-valued linear functions on V is
called the dual space, denoted V ∗, i.e. V ∗ = Hom(V,R). We call the elements
of V ∗ covectors.

Definition 10 (Tensor, [2] chap. 3.3). For a vector space V a k-tensor on
V is a k-linear function

f : V k → R, (1.1)

where V k = V × · · · × V k-times.

Definition 11 (Alternating vector space, [2] chap. 18). Given a vector space
V we define Ak(V ) =

∧k(V ) = V ∧ V ∧ · · · ∧ V k-times, to be the vector
space of alternating k-linear functions or alternating k-tensors. A k-tensor f
is said to be alternating if for any permutation σ ∈ Sk

f(vσ(1), . . . , vσ(k)) = (sgn(σ))f(v1, . . . , vk). (1.2)

I.e. doing an odd number of permutations of the elements leaves a minus
sign and even number of permutations leaves a plus sign. An alternating
k-tensor is also called a k-covector. This wedge product ∧ is an alternat-
ing/antisymmetric product that will be discussed in more detail in chapter
3. A1(V ) = V and A0(V ) = R.



Chapter 2

Manifolds

(This chapter is based on [2] chap. 5 and 21 and [5] chap. 2)
Manifolds are one of the most important and fundamental concepts in

mathematics and physics. By studying mathematics or physics you are des-
tined to run into manifolds in some way or another. Throughout the studies
of maths and physics one gets familiar with the Euclidean space Rn, often
represented by the set of n-tuples (x1, ..., xn). The idea behind manifolds is
to have a space that can have complicated structure, with curves and non-
trivial topology globally, but that will look just like Rn locally. In other
words, a manifold is a mathematical structure that will look like Rn locally,
but not necessarily globally. Some examples of manifolds are:

• Euclidean space Rn.

• The n-sphere Sn.

• The n-torus T n.

• Lie groups like Gl(n,R), SO(n), U(n), etc.

After giving the definitions of a topological manifold, and a smooth manifold
in the upcoming sections we will show explicitly why some of these examples
are manifolds.

2.1 Topological manifold

(Based on [2] chap. 5.)
Before we define a manifold we have to give some definitions. We start of

by defining what locally Euclidean means. A topological space M is called
locally Euclidean if every pt. p ∈M is contained in an open set U ∈M that

9



CHAPTER 2. MANIFOLDS 10

is homeomorphic (with homeomorphism φ) to an open set φ(U) ⊂ Rm, for
some m ∈ N. The pair (U, φ) is called a (coordinate) chart about p, with
coordinate neighbourhood U and coordinate map φ. See figure 2.1.

Figure 2.1: Visualising a manifold M being locally Euclidean

If φ(p) = 0, then the chart (U, φ) is said to be centered at p. If m is the
same at each chart on M , then m is called the dimension of M, and we write
dim(M) = m.

Example 1. An intuitive example of something being locally Euclidean is
our earth. Since for us down on the surface of the earth it looks rather flat.
But when we go far enough out into space we see that it has the shape of a
sphere.

Example 2 ([2] example 5.3). Rm is locally Euclidean of dimension m w.r.t.
a single chart (Rm, idRm) (id is the identity map), and so is any open U ⊂ Rm
w.r.t. (U, idU).

Now we have what we need to define what a topological manifold is.

Definition 12 (Topological manifold, [2] definition 5.2). A topological space
M which is locally Euclidean, is called a topological manifold if it is Hausdorff
and second countable.

Let’s look at an example of a topological manifold.

Example 3 ([2] example 5.3). One of the examples we gave above of a
manifold was Rn. We have actually already showed all the steps necessary
to show that is a topological manifold. Rn is a topological space w.r.t. the
standard topology, and it is of course locally Euclidean as showed above.
We also saw in the previous chapter that Rn is both Hausdorff and second
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countable. Hence Rn is our first example of a topological manifold. It also
follows that any open set U ⊂ Rn is a topological manifold w.r.t. the chart
(U, idU).

2.2 Smooth manifolds

(Based on [2] chap. 5)
Before we can go on to define what a smooth manifold is, we need to

discuss what happens when we have charts overlapping. In this case the
points in the intersection will have more than one coordinate system.

Definition 13 (Compatible, [2] Definition 5.6). Two charts (U, φ) and (V, ψ)
on a topological manifold M is said to be compatible if

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

is a diffeomorphism.

Figure 2.2: Visualization of compatible charts.

Remark. U ∩ V is open in M so φ(U ∩ V ) and ψ(U ∩ V ) are open in Rm.
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The smooth maps ψ ◦ φ−1 and φ ◦ψ−1 are called the transition functions
between the two charts (U, φ) and (V, ψ). A collection A = {(Uα, φα)} of
pairwise compatible charts on a topological manifold M is called an atlas if
M ⊂ ∪αUα, i.e. A covers M . A given chart (V, ψ) is compatible with an
atlas A = {(Uα, φα)} if it is compatible with every chart (Uα, φα) of the atlas.

Lemma 1. ([2] Lemma 5.8) Let A = {(Uα, φα)} be an atlas on a locally
Euclidean space. If two charts (V, ψ) and (W,χ) are both compatible with the
atlas A, then they are compatible with each other.

We say that two atlases A = {(Uα, φα)} and B = {(Vβ, ψβ)} are compat-
ible if every (Uα, φα) and (Vβ, ψβ) are compatible. Note that A and B are
compatible if and only if A∪B is an atlas. An atlasM is called maximal if
it is not contained in any larger atlas, i.e. if A is some other atlas containing
M, then A =M.

Definition 14 (Smooth manifold [2] Definition 5.9). A C∞ or smooth man-
ifold is a topological manifold M equipped with a maximal atlasM, andM
is called a differentiable structure on M .

A smooth manifold M of dimM = m is a denoted as a m-manifold.
Describing manifolds of different dimensions, we then see that a 1-manifold
is just a curve, and a 2-manifold is a surface. In practice when we want to
check if a topological manifold M is a smooth manifold, it is not necessary
to have a maximal atlas. This follows from the following lemma.

Lemma 2. ([2], Proposition 5.10) Any atlas A = {(Uα, φα)} on a topological
manifold M is contained in a unique maximal atlas.

One can therefore check if a topological space M is a smooth manifold if
it satisfies;

1. M is Hausdorff and second countable.

2. M has a C∞ atlas (which does not have to be maximal).

For convenience we will from now on write just manifold when we mean
a smooth manifold. Now that we have established what a manifold is let us
look at some examples.

2.3 Examples of Smooth Manifolds

In this section we will see some examples of manifolds. Hopefully, you will
recognize a lot of these objects from math or physics courses.
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Example 4 (Rn, [2] example 5.11). The simplest and most well known
manifold is the Euclidean space Rn. Rn is a smooth manifold with a single
chart (Rn, idRn) = (Rn, x1, ..., xn) defining the atlas of Rn, w.r.t the standard
coordinates (x1, ..., xn).

Example 5 (Sub-manifold, [2] example 5.12). If M is a manifold and N ⊂
M is open, then N is also a manifold. Start by looking at the atlas A =
{(Uα, φα)} for M , then we can define an atlas for N as

AN = {(Uα ∩N, φα|Uα∩N)}.

Example 6 (Generalized linear group, [2] example 5.14). One of the Lie
groups that you probably have encountered in an abstract algebra course or
some similar course, is the real generalized linear group GL(n,R). The group
consisting of real n× n matrices with an inverse. This is in fact a manifold,
and we will take advantage of the previous example to show this.

We start of by identifying the set of real n× n matrices as Rn×n which is
isomorphic to the Euclidean space Rn2

. Let us equip this with the standard
topology. The determinant map

det : Rn×n → R

is continuous, since it is a polynomial. Another way of writing GL(n,R) is:

GL(n,R) = {A ∈ Rn×n| detA 6= 0} = det−1(R \ {0}).

The set R \ {0} is open as a subset of R. Hence Gl(nR) is open, so it is a
manifold of dimension n2.

Example 7 (S1 and Sn, [2] example 5.15). The circle is another example of
a manifold. We can denote the unit circle as x2 + y2 = 1 in R2. To make an
atlas for the circle we will cover it by four open sets. This will be the open
upper and lower semicircles, U1 and U2 respectively, and the open left and
right semicircles, U3 and U4 respectively.

We then define the homemorphisms to be:

φi : Ui → (−1, 1), (x, y) 7→ x, for i = 1, 2,

and
φj : Uj → (−1, 1), (x, y) 7→ y, for j = 3, 4.
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Figure 2.3: S1 atlas consisting of four charts.

It is then easy to check that the transition functions are smooth on all
the non-empty intersections Uα ∩Uβ. For example on U1 ∩U4, the transition
function is

φ4 ◦ φ−1
1 (x) = φ4(x,

√
1− x2) =

√
1− x2.

On U2 ∩ U3 it becomes,

φ3 ◦ φ−1
2 (x) = φ3(x,−

√
1− x2) = −

√
1− x2.

Both of these transition functions and their inverses are C∞ where they are
defined. One can check that the rest of the transition functions are smooth.
Hence {(Ui, φi)}4

i=1 forms an atlas for S1. So by using Lemma 2 we know
that this atlas is contained in a unique maximal atlas. So S1 is a manifold
of dimension 1.

In a similar way one can show that the n-sphere

Sn = {x1, . . . , xn+1 ∈ Rn+1|(x1)2 + · · ·+ (xn+1)2 = 1}

is a manifold of dimension n. To make an atlas for S2, the unit sphere, one
would need at least six charts to cover the sphere using the above method.
This could be the open upper and lower hemisphere (not containing the
equator). The open left and right hemispheres. Now we have covered almost
the whole sphere except for the two points (1, 0, 0) and (−1, 0, 0). Hence we
need at least two more charts which then can be the front and back open
hemispheres to cover these two remaining points.
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It is possible to use only two charts to cover S2 using different open
sets and homeomorphims. If one uses projection, then one could make a
homeomorphism between the open unit sphere not containing the north pole
and an open subset of R2, and a homemorphism using projection between
the open sphere not containing the south pole and an open subset of R2.
However, this is the minimum amount of charts one would need to cover S2.

The last example of a manifold we mentioned in the beginning of the
chapter was T 2, the torus. Before we can show that this is a manifold, we
have to look at what a product manifold is.

Lemma 3 (Product manifold, [2] proposition 5.17). If M and N are mani-
folds with atlas AM = {(Uα, φα)} and AN = {(Vβ, ψβ)}. Then

AM×N = {(Uα × Vβ, φα × ψβ)}

defines an atlas for M ×N . Hence M ×N is manifold.

Example 8 (T 2 and T n, [2] example 5.18). Now we can easily show that T 2

is manifold. Since by definition the torus is simply the product of two circles
S1,

T 2 = S1 × S1.

So by the above lemma T 2 is a manifold of dimension 2.
And this can of course be generalized to the n-torus;

T n = S1 × ...× S1 (n-times).

T n is a manifold of dimension n.

Figure 2.4: Torus as product of two circles.
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2.4 Other types of manifolds

Here we briefly mention some definitions of other types of manifolds that will
be useful for later.

Definition 15 (Compact manifold [6]). If M is a manifold, then M is a
compact manifold if it is compact as a topological space.

Definition 16 (Paracompact manifold, [3] definition 5.7). If you have a
manifold M for which you can take an open covering {Ui} such that all
points of M can be covered by a finite number of Ui. Then M is called
paracompact, if this is always possible.

Definition 17 (Contractible manifold, [2] definition 26.6). A manifold is
called contractible if it can be continuously deformed to a point, i.e. the
manifold has the homotopy type of a point.

An example of such a manifold is for instance an open hemisphere in R3.
Start of by S2 and cut it in two along the equator and remove the boundary.
Then you are left with two open hemispheres which both can be continuously
deformed to a point. Another example of a contractible manifold is an open
disk in R2. A manifold which would not be contractible is for example the
torus.

2.5 Manifolds with boundary

(Based on [2] chap. 21)
Just as you have seen in a course on standard topology, one can talk about

sets with boundaries. In much the same manner can manifolds also have
boundaries. If we have a manifold M with boundary, we denote the boundary
as ∂M . A closed manifold is a compact manifold without boundary. Some
examples of closed manifolds are for example the n-sphere and the n-torus.
If M is a compact m-manifold then ∂M is (m− 1)-manifold.

Let’s see how an atlas for ∂M can be defined, letting the manifold M
be of dimension m. We take an arbitrary chart (U, ψ) of M and by using
this we can denote ψ̃ = ψ|U∩∂M to be the coordinate map ψ restricted to
the boundary. Then it can be assumed that ψ̃ will map boundary points to
boundary points,

ψ̃ : U ∩ ∂M → ∂Hm = Rm−1. (2.1)

Here Hm denotes the closed upper half-space

Hm = {(x1, . . . , xm) ∈ Rm|xm ≥ 0}, (2.2)
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together with the subspace topology of Rm, this is one of the prime examples
of a manifold with boundary.

Figure 2.5: Visualization of the upper half plane H2 in R2.

Continuing with defining an atlas for ∂M . If M has two charts (U, ψ)
and (V, χ) then one can show that the following map is smooth

χ̃ ◦ (ψ̃)−1 : ψ̃(U ∩ V ∩ ∂M)→ χ̃(U ∩ V ∩ ∂M). (2.3)

Hence if M has an atlas {(Uα, ψα)}, then this will induce the following atlas
for ∂M ; {(Uα ∩ ∂M,ψα|Uα∩∂M)}. This also shows that ∂M is a manifold of
dimension (m − 1) without a boundary. In later chapters unless otherwise
stated we will deal with manifolds with ∂M = 0.

This concludes our discussion of manifolds. Manifolds are the objects for
which we will construct our final topological theory over. This theory will be
used to compute invariants for manifolds, which in turn can be used to tell
them apart.



Chapter 3

Differential forms

(This chapter is based on [2] chap. 4, 8, 17, 18 and 22, [3] chap. 5, and [7])
Now that we have defined what a manifold is, we wish to get a way to

do calculus on them, and this is where differential forms come into play.
Differential forms are interesting mathematical objects that will be defined
and discussed in this chapter. The critical feature of differential forms, in
terms of extending the machinery of multi-variable calculus to manifolds, is
that they are independent of coordinates. Hence differential forms allow us
a way to do calculus on curves, surfaces, and higher-dimensional manifolds.
They will play an important role in defining the final theory.

In fact, you have been working with differential forms throughout your
whole “calculus career” without knowing it. Roughly speaking, one can say
that differential forms are the objects that appear under an integral sign.
The theorems one sees in a course on multi-variable calculus, such as; Green’s
theorem, divergence theorem, etc., are all special cases of one grand theorem
called the generalized Stokes theorem or just Stokes theorem. This will be the
final punchline of this chapter. However, before we start rambling on about
differential forms, we take a look at a key ingredient in the definition of a
differential form, namely the tangent space.

3.1 Tangent Space

(Based on [2] chap. 8, and [7])
As the name suggests, a tangent space is a vector space that consists of

the tangent vectors at any given point. Take for instance a smooth curve,
C ∈ C∞(R2), and take a point p ∈ C. Then the tangent space of C at p is
simply the tangent at p, i.e., a line that just touches the curve C at p. The
slope of this tangent line, as you might guess, is just the derivative.

18
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Figure 3.1: Visualisation of the tangent space of a curve C, Tp(C), and the
tangent space of a surface M , Tp(M), represented as a plane.

Choosing an open set U ∈ Rn, we can assign to any point p ∈ U , a vector
v ∈ Rn, called a tangent vector at p. The tangent space, Tp(Rn), is the vector
space of all tangent vectors at p.

Let’s present a more formal definition in terms of derivations. Start of
with a smooth manifold M , and some smooth function f ∈ C∞(M). We
then take an arbitrary point p ∈ M . The definition of a derivation at p is
a linear map D : C∞(M) → R that satisfies the Leibniz rule, i.e. for any
smooth functions f and g, D satisfies

D(fg) = D(f)g + fD(g).

We can then obtain a vector space of the set of derivations at p by the
following addition and scalar multiplication rules;

• (D1 +D2)(f) := D1(f) +D2(f) and

• (α ·D)(f) := α ·D(f).

This vector space is denoted as Tp(M), the tangent space of M at p. A
basis for the tangent space Tp(M) can be expressed via the coordinates of
a chart (U, φ), φ : U → Rn, where p ∈ U . Using the charts coordinates
(x1 . . . xn) we may define the following ordered basis

{(
∂
∂x1

)
, . . . ,

(
∂
∂xn

)}
for

Tp(M). Where each of the basis elements of the tangent is defined such that
for any i ∈ {1, . . . , n}, and any f ∈ C∞(M) it satisfies;(

∂

∂xi

) ∣∣∣∣
p

(f) :=

(
∂

∂xi
(f ◦ φ−1)

)
(φ(p)).
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This gives us a way to express the tangent vectors v ∈ Tp(M) in a simple
way as

v =
n∑
i=1

vi ·
(
∂

∂xi

)
.

Where vi are scalars. Resembling a familiar way to express the tangent
vectors as linear combinations of the basis vectors

(
∂
∂xi

)
p
∈ Tp(M).

3.2 Differential k-forms on Euclidean Space

(Based on [2] chap. 4)
There are many ways to define or introduce differential forms. Here we

will state the definition in terms of looking at differential forms as objects
on Rn, and then later generalize it to manifolds. Above we claimed that you
have already been exposed to and worked with differential forms in calculus
courses. You have for instance seen things like, dx, dy, dz, which occur in
derivation dy

dx
and integration

∫
S
f(x, y) dxdy. These are examples of differ-

ential forms. Let’s start off by defining a differential form ω of degree k, also
called a k-form.

Definition 18 (Differential k-form [2] chap. 4.2). A general k-form is a
function on an open subset U ⊂ Rn that to every point p ∈ U assigns an
alternating k-linear function on the tangent space Tp(Rn), so ωp ∈ Ak(TpRn).

I.e. a differential k-form ω is as a k-linear function ωk :
∧k Tp(Rn) → R,

hence ωk ∈
∧k(T ∗p (Rn)).

You may also think of a k-form as a k-tensor. A slightly different version of
definition 10 is that a tensor is a (j, k) multi-linear map, mapping j elements
from T ∗p (M) and k elements from Tp(M) to real numbers. Hence a differential
forms is a (0, k) type tensor.

In the case when k = 1 we have that A1(TpRn) = T ∗p (Rn), which is the
cotangent space or the dual of the tangent space. Hence an element of the
cotangent space T ∗p (Rn) is a covector or a linear functional on the tangent
space Tp(Rn). So in this case when k = 1, a 1-form is a function on an open
subset U ∈ Rn that assigns to each point p in U a covector ωp ∈ T ∗p (Rn).
For example, if we take any smooth function f : U → R we can construct
a 1-form, df = ∂ifdx

i, called the differential of f . We denote a general
differential k-form on Rn by:

ωk =
1

k!
ai1,...,ikdx

i1 ∧ ... ∧ dxik
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Where ai1,...,ik are function coefficients: aI : U → R. The dxi’s are called
differentials, and they generate a basis for differential forms. The exterior
product is dxi ∧ dxj = −dxj ∧ dxi, and will be elaborated on below.

Remark. We will occasionally use a shorthand notation to denote a k-form:

ω = aIdx
I ,

where I is a multi-index set: dxI = dxi1 ∧ ... ∧ dxik . And using Einsteins
summation convention over repeated indices.

A k-form is called smooth if all the coefficient functions are smooth on the
subset U . And dxI = dxi1 ∧ ...∧ dxik forms a basis for the vector space of k-
forms, Ak(TpRn). The 1

k!
is for normalisation. We use Ωk(U) to denote vector

space of smooth k-forms on U . This is a vector space since differential forms
satisfy the axioms of a vector space with addition and scalar multiplication.

Example 9 ([2] Example 4.5). Let’s take a look at some examples of differ-
ential forms for some specific k:

• A 0-form is just a function since A0(Tp(Rn)) = R, hence a 0-form only
assigns scalars to each point p.

• A 1-form on Rn we can write as

ω1 = f1dx
1 + f2dx

2 + ...+ fndx
n.

• A 2-form on R3 we can write as

ω2 = f1dx
1 ∧ dx2 + f2dx

2 ∧ dx3 + f3dx
3 ∧ dx1.

• A 3-form on R3

ω3 = f1dx
1 ∧ dx2 ∧ dx3.

It seems natural that 1-forms can be integrated over curves. 2-forms we
can integrate over surfaces. And in general we can integrate k-forms over
k-manifolds. We will come back to this later when we discuss integration of
differential forms.
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3.3 Exterior product

(Based on [3] chap. 5.4.1)
Differential forms form an algebra w.r.t. ∧ called the exterior product or

wedge product. It is the same product as the one seen above in the previous
section (e.g. dx1 ∧ dx2). The exterior product is an anti-symmetric product,
that follows the following properties:

Let ω ∈ Ωp(Rn) and χ ∈ Ωq(Rn), then the product is ω ∧ χ ∈ Ωp+q(Rn)

1. Anti-commutative: ω ∧ χ = (−1)pqχ ∧ ω.

2. Associative: (dx1 ∧ dx2) ∧ dx3 = dx1 ∧ (dx2 ∧ dx3).

3. Distributive: (dx1 + dx2) ∧ dx3 = dx1 ∧ dx3 + dx2 ∧ dx3

dx3 ∧ (dx1 + dx2) = dx3 ∧ dx1 + dx3 ∧ dx2.

Remark. If ω is an odd-order form then:

ω ∧ ω = −ω ∧ ω =⇒ 2ω ∧ ω = 0 =⇒ ω ∧ ω = 0

3.4 Exterior derivative

(Based on [2] chap. 4)
Now that we have defined the exterior product, let’s define the exterior

derivative d also known as the de Rham operator. The exterior derivative is a
generalization of the ordinary derivative known from calculus. Together with
differential forms, the exterior derivative will make it possible to unify many
theorems of calculus in R3. It will allow us to differentiate differential forms
on manifolds. One of the most important features of d is that we can express
the derivatives in a coordinate-free manner. This will play an important role
in Stokes theorem at the end of this chapter.

We start by defining the exterior derivative for a function (0-form).

Definition 19 ([2] chap. 4.4). Let f be a smooth function on an open subset
U ∈ Rn, f ∈ C∞(U). Then its differential is;

df =
∑ ∂f

∂xi
dxi ∈ Ω1(U).

For a general k-form the differential is defined to be:

Definition 20 ([3] Definition 5.5). If ω = 1
k!
ai1,...,ikdx

i1 ∧ ... ∧ dxik ∈ Ωk(U),
then

dω =
1

k!

∂

∂xµ
(ai1,...,ik)dx

µ ∧ dxi1 ∧ ... ∧ dxik ∈ Ωk+1(U).
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We see that the exterior derivative is essentially a map from k-forms
to (k+1)-forms; d : Ωk(U) → Ωk+1(U). The exterior derivative obeys the
following properties.

Proposition 1 ([2] Proposition 4.13). Let ω ∈ Ωk(U) and χ ∈ Ωl(U).

(i) d(ω + χ) = dω + dχ.

(ii) d(ω ∧ χ) = dω ∧ χ+ (−1)k(ω ∧ dχ).

(iii) d2 = 0.

We follow the proof of [2] Proposition 4.13.

Proof. (i) Follows from linearity of the exterior derivative.

(ii) This equation is linear on both sides, hence it will be sufficient to check
for two 1-forms, ω = fdxI and χ = gdxJ . We then have;

d(ω ∧ χ) = d(fgdxI ∧ dxJ)

=
∑ ∂(fg)

∂xi
dxi ∧ dxI ∧ dxJ

=
∑ ∂f

∂xi
dxi ∧ dxI ∧ gdxJ +

∑
f
∂g

∂xi
dxi ∧ dxI ∧ dxJ .

From the second sum we obtain a (−1)k by anti-commutativity from
moving the 1-form ( ∂g

∂xi
)dxi across the k-form dxI . Hence

d(ω ∧ χ) = dω ∧ χ+ (−1)k
∑

fdxI ∧ ∂g

∂xi
dxi ∧ dxJ

= dω ∧ χ+ (−1)k(ω ∧ dχ)

(iii) Also to prove the third property we can use the linearity of d. Therefore
it will again be sufficient to check for ω = fdxI that d2ω = 0. Hence

d2(fdxI) = d(
∑ ∂f

dxi
dxi ∧ dxI)

=
∑ ∂2f

∂xj∂xi
dxj ∧ dxi ∧ dxI

In the sum we see that when i = j, then dxj ∧ dxi = 0. And if i 6= j
∂2f

∂xj∂xi
is symmetric in i and j, but dxj ∧ dxi is alternating in i and j,
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so the terms that arise from i 6= j pairs up and perfectly cancels out.
For example;

∂2f

∂x1∂x2
dx1 ∧ dx2 +

∂2f

∂x2∂x1
dx2 ∧ dx1

=
∂2f

∂x1∂x2
dx1 ∧ dx2 +

∂2f

∂x1∂x2
(−dx1 ∧ dx2) = 0

We claimed at the beginning of this section that the exterior derivative is
a generalisation of the derivative and can make it possible to unify theorems
from vector calculus. So let us have a glimpse at some examples of this.

Example 10 ([2] chap. 4.6). Recall that if you have a vector field on R3 it
is just a vector-valued function. In R3 we have three operators that can act
on scalar functions and vector-valued functions. These are the gradient, the
curl and the divergence. Scalar and vector-valued functions then forms the
following sequence together with the three operators:

{scalarfunc.} grad.−−−→ {vectorfunc.} curl−−→ {vectorfunc.} div.−−→ {scalarfunc.}

We use small letters to denote scalar functions and capital letters to denote
vector valued functions. Subscript denotes differentiation, fx = ∂f

∂x
.

grad f =

fxfy
fz

 ,

curl

UV
W

 =

 ∂
∂x
∂
∂y
∂
∂z

×
UV
W

 =

 Wy − Vz
−(Wx − Uz)
Vx − Uy

 ,

div

UV
W

 = Ux + Vy +Wz.

From vector calculus we are familiar with the following propositions.

Proposition 2 ([2] Proposition A, B and C, chap. 4). Let f be a scalar
function and U, V,W be vector fields.
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1. curl(grad f) =

0
0
0

 .
2. div

curl
UV
W

 = 0.

3. If the curl of a vector field F on R3 is equal to zero, curlF = 0, then F
is the gradient of a scalar function f . If we let F denote a force, then
if this requirement, curlF = 0, is met then F is a conservative force.

All 1-forms on R3 are linear combinations of function coefficients attached
to dx, dy and dz. So we can identify 1-forms with vector fields on R3 in the
following way:

Udx+ V dy +Wdz ←→

UV
W

 .
In the same way we can identify 2-forms too on R3 with vector fields.

Udy ∧ dz + V dz ∧ dx+Wdx ∧ dy ←→

UV
W

 .
Using the same identifications we can see what the exterior derivative

acting on a 0-form f corresponds to

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz ←→

∂f/∂x∂f/∂y
∂f/∂z

 = grad f.

Acting with the exterior derivative on a 1-form in R3 gives;

d(Udx+ V dy +Wdz)

= (Wy − Vz)dy ∧ dz − (Wx − Uz)dz ∧ dx− (Vx − Uy)dx ∧ dy,

which we see can be expressed as

curl

UV
W

 =

 Wy − Vz
−(Wx − Uz)
Vx − Uy


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Finally the exterior derivative acting on a 2-form is

d(Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy)

= (Px +Qy +Rz)dx ∧ dy ∧ dz,

corresponding to

div

UV
W

 = Ux + Vy +Wz.

Hence we have just identified that the exterior derivative acting on 0-
forms, 1-forms and 2-forms in R3, are the operators gradient, curl and diver-
gence respectively.

3.5 Differential forms on manifolds

(Based on [2] chap. 17 and 18, [3] chap. 5)
Now that we are familiar with the concept of differential forms on Rn,

let us generalize this to looking at differential forms on general manifolds.
This process of defining differential forms on a manifold M will require little
effort. As we saw in the chapter about manifolds, Rn is a special case of a
manifold. Hence most of what we have already seen about differential forms
will follow. One reason we want to look at differential forms on manifolds is
that forms make it possible to integrate on a manifold. In the final chapter,
we will express our theories in terms of an integral of differential forms over
a manifold, for which we will compute the partition function. However, let
us start by looking at the definition of a 1-form on a manifold.

Definition 21 (1-form on M , [2] chap. 17). Let p be an arbitrary point
p ∈ M , where M is smooth manifold. The cotangent space of M at p is
denoted in the usual way by T ∗p (M), also known as the dual space of the
tangent space Tp(M) ∼= Tφ(p)(Rn) using the chart φ. It is the elements of the
cotangent space T ∗p (M) that is known as covectors at p. As we saw when
looking at forms on Rn we can express a covector ωp at p as a linear function

ωp : TpM → R.

A differential 1-form on M is then what one can call a covector field. So
a 1-form on M is a function that assigns every p in M a covector at p. You
can therefore view 1-forms on a manifold as the dual to vector fields. Since
a 1-form assigns to every point a covector, and a vector field assigns to every
point a tangent vector.
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Then let’s have a look at the local expression of a 1-form. We let (U, φ) =
(U, x1, ..., xn) be a coordinate chart on M . Then the differentials dx1, ..., dxn

are 1-forms on U , just as when we looked at forms on Rn. From this follows
the following proposition:

Proposition 3 ([2] Proposition 17.3). We form a basis for the cotangent
space T ∗p (M) at each p ∈ U by the covectors (dx1)p, ..., (dx

n)p which is dual
to the basis for the tangent space TpM , (∂/∂x1)p, ..., (∂/∂x

n)p.

Now that we have defined a general 1-form on a manifold, let us define a
k-form on M . It will follow in much the same way as with k-forms on Rn.

Definition 22 (k-forms on M , [2] chap. 18). The vector space Ak(TpM),

often denoted
∧k(T ∗pM) is the vector space consisting of all alternating k-

tensor or k-covectors on the tangent space Tp(M). A k-covector field or
differential k-form on M is a function ω that assigns to each point p ∈M a
k-covector ω ∈

∧k(T ∗pM). Hence a k-form at a point p can be written as a
function

ωp :
k∧

(Tp(M))→ R.

Suppose again that we look at the coordinate chart (U, x1, ..., xn) on a
manifold M . Above we defined the 1-forms dx1, ..., dxn on U . We saw that
at each point p ∈ U we could form a basis for T ∗pM by (dx1)p, ..., (dx

n)p. We

can then construct a basis for
∧k(T ∗pM) by the set

(dxi1)p ∧ ... ∧ (dxik)p, 1 ≤ i1 < ... < ik ≤ n.

Hence we can express a k-form locally on U by a linear combination ω =∑
aIdx

I . Where aI are smooth functions on U . This way we can look at the
differential forms locally as forms on Rn.

A manifold can have overlapping charts. So a differential form lying in the
intersection will have multiple coordinates. In this case we can do a change
of coordinates, since differential forms are defined without any reference to
any specific coordinate system. For a point p ∈ Uk∩Ul of two charts (Uk, φk)
and (Ul, φl), we have for 1-forms;

ω = ωadx
a = ω̃bdy

b,

where x = φk(p) and y = φl(p). Using the exterior derivative dyb = ∂yb

∂xa
dxa,

we see that ωa = ω̃b
∂yb

∂xa
, defining the transformation rule for the coefficient

function between charts. A similar rule holds for higher forms. When we
look closer at how to integrate differential forms on manifolds this coordinate
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independence will be discussed further, and it is an important feature for us
to be able to integrate forms over manifolds. We will denote the vector space
of smooth k-forms on M by Ωk(M). If M is an n-dimensional manifold,
then an n-form is the highest differential form on M . Differential forms can
be added, multiplied, differentiated, and, as we will see later, integrated on
manifolds. The exterior product and exterior derivative can be extended to
a manifold. As mentioned, Rn is a special case of a manifold. Hence the
definition of the exterior product is defined in the same way as above for a
general manifold. The same holds for the exterior derivative. The exterior
derivative also induces the following sequence for an m-manifold;

0
i−→ Ω0(M)

d0−→ Ω1(M)
d1−→ ...

dm−2−−−→ Ωm−1(M)
dm−1−−−→ Ωm(M)

dm−→ 0.

Where i is the inclusion map 0 ↪−→ Ω0(M). This sequence is known as the de
Rham complex, and will be more closely investigated in the following chapter.
We already encountered a special case of this complex for R3 in example 10.

{scalarfunc.} grad.−−−→ {vectorfunc.} curl−−→ {vectorfunc.} div.−−→ {scalarfunc.}

An equivalent way of writing this sequence for an open subset U ∈ R3 is in
the following way;

Ω0(U)
d−→ Ω1(U)

d−→ Ω2(U)
d−→ Ω3(U).

We will use the de Rham complex later to compute cohomology groups,
which are important classical topological invariants of manifolds. There we
will also run into the notion of closed and exact forms. In short, a k-form
ω ∈ Ωk(M), is called closed if dω = 0, and ω is called exact if there exists
an (k − 1)-form τ such that ω = dτ . This will turn out to be closely related
to the de Rham complex. We easily see that the exact forms have to be a
subset of the closed forms since d2 = 0. Then if we go back to the 3. point
mentioned in proposition 2, it can be rephrased to; A 1-form on R3 is closed
if and only if it is exact. Nevertheless, this proposition need not be valid for
any sub-region of R3. Let us have a look at the following famous example.

Example 11 ([2] Example 4.16). Let U = R3 \ {z − axis}, and F is the
following vector field

F =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
on R3. We then have that curlF = 0, but F is not the gradient of any
smooth function on U . So expressed in terms of differential forms, we can
say that the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy
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is closed but not exact on U . We see that U is has non-trivial topology.
Hence it is not a contractible manifold. If F was the gradient of some smooth
function f on U , then the line integral∫

C

−y
x2 + y2

dx+
x

x2 + y2
dy,

over a closed curve C would evaluate to zero. However, if one chooses the
curve C to be the unit circle, with x = cos θ and y = sin θ, with 0 ≤ θ ≤ 2π.
The integral becomes;∫ 2π

0

−(sin θ)d(cos θ) + (cos θ)d(sin θ) = 2π 6= 0,

reflecting that U has non-trivial topology.

In general, one way to measure the failure of closed k-forms to be exact
is the quotient vector space

Hk(U) :=
{closed k-forms on U}
{exact k-forms on U}

which is called the k-th de Rham cohomology group of U . These cohomology
groups are topological invariants hence they depend only on the topology of
U . We will study cohomology in greater detail in the following chapter. The
generalization of the 3. point in proposition 2 is the following lemma.

Lemma 4 (Poincaré lemma, [3] theorem 6.3). Let M be a contractible man-
ifold, then every closed form is also exact.

Before we start talking abut integration of differential forms in the up-
coming section, we want to mention one last feature of differential forms.
Differential forms has the property that they can be pulled back.

Definition 23 (Pullback between manifolds [2] chap. 23.3). Let M and N
be manifolds. Then any smooth map φ : M → N will induce a pullback map
φ∗ : Ωk(N) → Ωk(M) of differential forms. Written out explicitly in local
coordinates: ω ∈ Ωk(N);

φ∗(ω) =
1

k!
ωi1,...,ik(φ(x))dφi1 ∧ ... ∧ dφik

where the basis dφil = ∂φil

∂xjl
dxjl is expressed in terms of the local coordinates

{xa} on M . The pullback φ∗ also commutes with d:

φ∗ ◦ d = d ◦ φ∗.
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It follows that the pullback induces a map φ∗ : Hk(N) → Hk(M). Pull-
backs are hence useful for comparing cohomology groups of different spaces.
E.g. if φ : M → N is a diffeomorphism, then the pullback induces an iso-
morphism φ∗ : Hk(N)→ Hk(M).

3.6 Integration of differential forms

(Based on [3] chap. 5.5)
Before we start of defining integration of differential forms, we have to take

a look into orientation. The reason for this is that integration of differential
forms over a manifold M is only possible in the case when M is orientable.
We therefore start of by discussing and defining what it means for M to have
an orientation and being orientable.

Orientation

On a manifold M we will often encounter points laying in the intersection of
two or more charts. Let’s say we have a point p ∈ Uα ∩ Uβ ⊂ M , for which
Uα∩Uβ 6= ∅. Uα being a chart with basis {ea} = {∂/∂xa} with xa as the local
coordinates. And Uβ being another chart with basis {ẽb} = {∂/∂yb} with
yb being the local coordinates. Then the tangent space Tp(M) can have its
basis spanned by either {ea} or {ẽb}. The basis will then change according
to;

ẽb =
(∂xa
∂yb

)
ea.

This leads us to how orientation is defined on a manifold.

Definition 24 (Orientation [3] chap. 5.5.1). If the Jacobian is positive
definite, J = det(∂xa/∂yb) > 0, on Uα ∩ Uβ, then {∂/∂xa} and {∂/∂yb}
admits the same orientation. If the Jacobian is negative, J < 0, then they
admit opposite orientation.

Definition 25 (Orientable manifold ([3] Definition 5.6)). Let M be a con-
nected manifold covered by {Uα}. M is called orientable if there exists local
coordinates {xa} for Uα and {yb} for Uβ , such that J = det(∂xa/∂yb) > 0,
for any overlapping charts Uα ∩ Uβ.

There of course also exist manifolds that are so-called non-orientable, and
probably the most famous example is the Möbius strip. A manifold is called
non-orientable if J is not positive in all intersections.

Given that M is m-manifold which is orientable, then there exists a m-
form ω such that ω is nowhere vanishing on M . Such a m-form ω is called a
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volume form or a top-form, and it is these forms that we use to integrate over
manifolds. It is only possible to integrate forms of the same degree as the
dimension of the manifold. I.e., integration over a 3-dimensional manifold
can only be done using a 3-form. The top-forms play the role of a measure
for when we integrate a smooth function f ∈ C∞(M) over M , i.e. we can
use the top-forms to integrate 0-forms over our manifold. Two top-forms ω
and ω̃ are said to be equivalent if there exists a strictly positive function
h ∈ C∞(M) such that ω = hω̃.

Remark. We can also have a function h̃ ∈ C∞(M) that is negative definite.
Hence it will result in an inequivalent orientation on M . Therefore, on any
manifold that is orientable, it admits two inequivalent orientations, which are
called right handed and left handed respectively.

Let us have a look at an example of a top-form. Taking a m-form ω on
an orientable manifold M of dimension m. We can then define ω in terms of
a positive definite smooth function h(p);

ω = h(p)dx1 ∧ ... ∧ dxm. (3.1)

Since M is an orientable manifold, we can extend ω throughout M such that
the component h is positive-definite on any chart Uα. Thus our m-form ω is
a top-form. To properly show that this is a top-form, we need to examine
that h is positive definite, independent of the coordinates. For instance, let
p ∈ Uα ∩ Uβ 6= ∅ and we let xa and yb be the local coordinates of Uα and Uβ
respectively. Then our top-form above becomes:

ω = h(p)
∂x1

∂ya1
dya1 ∧ ... ∧ ∂xm

∂yam
dyam = h(p) det(

∂xa

∂yc
)dy1 ∧ ... ∧ dym.

Where the determinant is just the Jacobian and since M is orientable, the
Jacobian has to be positive by definition. When M is not orientable it is
not possible to define a ω with positive-definite component on M . This is
the case for the Möbius strip. If we walk around the strip with our given
set of oriented coordinates, after having walked along the strip once, we
come back with opposite orientation. I.e. ω = dx ∧ dy changes signature,
dx ∧ dy → −dx ∧ dy, when we arrive back at the starting point. Hence a
positive-definite measure cannot be defined.

Integration of forms

After that discussion of orientation and orientable manifolds we are set to
define integration of a smooth function f : M → R, over an orientable m-
manifold M . We start of by taking a top-form ω. Then the integration of our
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m-form fω in a coordinate chart (Uα, φ) with local coordinates (x1, . . . , xm)
is defined as; ∫

Uα

fω :=

∫
φ(Uα)

f(φ−1
i (x))h(φ−1

i (x))dx1...dxm. (3.2)

The right hand side here is simply a multiple integral of a function con-
sisting of m variables that you probably recognize from some vector calculus
course. Now that we have defined the integral over a single chart Uα we
want to extend it to the whole manifold. The integral of f over the whole
manifold M can be done using something called the partition of unity that
will be defined now.

Definition 26 ([3] Definition 5.7). Let M be a paracompact manifold, then
we can take an open covering {Ui} of M s.t. every point of M is covered
with a finite number of Ui. Next if a collection {εi(p)} of functions εi(p) are
differentiable satisfying the following conditions:

1. 0 ≤ εi(p) ≤ 1,

2. εi(p) = 0 if p 6∈ Ui and,

3. ε1 + ε2 + ... = 1 for any point p ∈M .

{εi(p)} is then called a partition of unity subordinate to the covering {Ui}.

Remark ([2] chap 13.2). An equivalent way of defining the two first condi-
tions is that we require the functions εi(p) to have compact support, supp(εi) ⊂
Ui.

It then follows from the 3. point that

f(p) =
∑
i

f(p)εi(p) =
∑
i

fi(p)

where fi(p) := f(p)εi(p) vanish outside Ui by the 2. condition. Hence if we
assume M to be paracompact, so that for any p ∈ M the summation over i
only contains finite terms, we can define the integral for each fi(p) according
to 3.2. We then finally arrive at the integral of f on M given as∫

M

fω :=
∑
i

∫
Ui

fiω. (3.3)

This integral is independent of the choice of atlas, i.e. it would remain the
same when using a different atlas {(Wi, χi)} with a different partition of
unity. To get a feeling of the procedure let us take a look at a familiar
example of a manifold, and use the partition of unity to integrate a function.
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Example 12 ([3] Example 5.13). We revisit S1, but this time using the atlas
illustrated on the picture.

Figure 3.2: S1 with atlas composed of two charts (U1, ψ1) and (U2, ψ2).

We let the blue chart be (U1, ψ1) where U1 = S1 \ {(1, 0)}, and ψ1 :
U1 → (0, 2π). And the red chart be (U2, ψ2) where U2 = S1 \ {(−1, 0)}, and
ψ2 : U2 → (−π, π). We then use the following partition of unity ε1(θ) = sin2 θ

2

and ε2(θ) = cos2 θ
2
. Then we can for instance integrate f = sin2 θ using the

partition of unity:∫
S1

dθ sin2 θ =

∫ 2π

0

dθ sin2 θ sin2 θ/2 +

∫ π

−π
dθ sin2 θ cos2 θ/2 =

π

2
+
π

2
= π,

which is the correct answer to the integral of sin2 θ from 0 to 2π.

3.7 Stokes theorem

(Based on [2] chap. 22, and [8])
Finally, we arrive at the general Stokes Theorem. This theorem is one of

the most beautiful and powerful theorems in calculus. Especially since all the
theorems you know from multi-variable calculus, such as Green’s theorem,
divergence theorem, and so on, are all special cases of the Stokes theorem.
Before we present the theorem, we want to give an intuitive explanation of
what the theorem is saying. Stokes theorem says that: “the sum of the little
changes on the inside, equals the total change on the outside”[8]. This might
seem a little vague so let us have a look at a quick example:
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Example 13. Say you have a function f and you want to see how much the
function increase from a point a to a point b. Then if we substitute the words
“little change” with the derivative. We get that the sum of the derivative of
f from a to b, is equal to the total change on the outside, i.e. f(b) − f(a).
Or written more mathematically:∫ b

a

df(x)

dx
dx = f(b)− f(a).

Which is just the fundamental theorem of calculus or Stokes theorem in 1
dimension, and we can play the same game in higher dimensions.

Theorem 1 (Stokes Theorem ([2] Theorem 22.8)). If M is a compact ori-
entable manifold of dimension k, and ω ∈ Ωk−1(M) then:∫

M

dω =

∫
∂M

ω. (3.4)

We follow the proof to theorem 22.8 in [2].

Proof. We will omit some more general technical aspects for the sake of
clarity. We start off by choosing an atlas {(Ua, φa)} for our manifold M in
such a way that each of the open subsets Ua is diffeomorphic to either Rn
or Hn, ensuring that the diffeomorphism preserves the orientation. This is
easily done since there is a result stating that every open disk is diffeomorphic
to Rn. We then choose a smooth partition of unity {εa} that is subordinate
to {Ua}. Then let us assume that the Stokes theorem holds for Rn and Hn.
This then means that it holds for all the charts Ua in the atlas since these
are diffeomorphic either to Rn or Hn. A nice result that will be used is that
the boundary of the manifold intersected with a chart gives the boundary of
the chart, (∂M) ∩ Ua = ∂Ua.

We then have that∫
∂M

ω =

∫
∂M

∑
a

εaω

Rewriting, remembering that
∑
a

εa = 1,

=
∑
a

∫
∂M

εaω,

since
∑
a

εaω is finite we can interchange the sum and the integral sign.

This equals
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a

∫
∂Ua

εaω

which comes from the fact that εa = 0 outside Ua. Using our assumption,

we get∑
a

∫
Ua

d(εaω),

invoking Stokes theorem for Ua. This is further equal to∑
a

∫
M

d(εaω),

since the space where εa is nonzero is a subset of Ua.

We can rewrite this as∫
∂M

d(
∑
a

εaω),

interchanging since εaω is only non-zero for finitely many a. We finally get

=

∫
M

dω.

Therefore in order to prove Stokes theorem we have to prove the theorem
both for Rn and Hn. We only show the part for the upper half plane H2, the
general case of Hn follows in a similar fashion. The proof regarding Rn will
not be shown here. The interested reader may visit [2] problem 22.3 for a
proof of Rn.

We let x, y denote coordinates of H2. The orientation of H2 is then given
by dx ∧ dy, and the boundary is ∂H2 is oriented by dx. We then choose a
general 1-form

ω = f(x, y)dx+ g(x, y)dy

where f, g are smooth functions with compact support. Compact support is
an equivalent way of stating the two first axioms of a partition of unity 26.
Because f and g have compact support it means that they are finite and zero
outside some domain. We therefore choose some number a > 0 that is large
enough to capture the supports of f and g in the interior of the square made
up of the line segments [−a, a]× [−a, a]. To make the calculation simpler we
denote the partial derivatives of f w.r.t. x and y as fx and fy. Now acting
with the exterior derivative on ω gives

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy = (gx − fy)dx ∧ dy

We then get when integrating over H2
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∫
H2

dω =

∫
H2

gx|dxdy| −
∫
H2

fy|dxdy|

=

∫ ∞
0

∫ ∞
−∞

gx|dxdy| −
∫ ∞
−∞

∫ ∞
0

fy|dxdy|

=

∫ a

0

∫ a

−a
gx|dxdy| −

∫ a

−a

∫ a

0

fy|dxdy|.

(3.5)

Now since supp(g) lies in the interior of the square [−a, a] × [−a, a], the
integral over g gives ∫ a

−a
gx(x, y)dx = g(x, y)|a−a = 0

Since both g(a, y) = 0 and g(−a, y) = 0. Likewise the integral over f gives∫ a

0

fy(x, y)dy = f(x, y)|a0 = −f(x, 0) (3.6)

since like in the case of g, f(x, a) = 0. The equation 3.5 therefore just
becomes ∫

H2

dω =

∫ a

−a
f(x, 0)dx

For the boundary ∂H2 it lays along the x-axis, where dy = 0 on the boundary.
Therefore our 1-form takes the form ω = f(x, 0)dx when restricting to ∂H2,
hence we get ∫

∂H2

ω =

∫ a

−a
f(x, 0)dx.

This proves Stokes Theorem for the upper half-plane H2.

Example 14 (Divergence theorem). If we have a finite volume V in R3

with boundary ∂V being the surface of the volume. Our boundary ∂V has
orientation denoted by an outward pointing normal vector ~n. If we then want
to integrate a vector field F over the surface the divergence theorem states
that: ∫

V

∇ · FdV =

∫
∂V

F~ndS,

which we recognize as just Stokes theorem in 3D.

Example 15 (Integrating a 2-form over 3-manifold). Let’s have a look at
a rather simple example using Stokes theorem. We let M3 be compact ori-
entable 3-manifold with ∂M3 = 0, and we let ψ ∈ Ω2(M3). We then have
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from Stokes theorem ∫
M3

dψ =

∫
∂M3

ψ =

∫
0

ψ = 0.

More generally, integrating exact forms over compact manifolds without
boundary gives zero. This is useful later when we need to “integrate by
parts”.

This ends our discussion of differential forms in the sense of defining
them, and showing how to do calculus with them. Throughout the rest
of the thesis, differential forms will show up everywhere. In the upcoming
chapter, we discuss something slightly off-topic when it comes to doing the
final computation of a partition function. Namely, Cohomology, which we
saw some glimpse of earlier, and this will give us examples of topological
invariants, just as our final computation of a quantum partition function.
Cohomology groups are relevant for classical field theory, as they often count
solutions to equations of motion.



Chapter 4

Cohomology

(This chapter is based on [2] chap. 23-27, [9] chap.7, and [3] chap. 6)
In multi-variable calculus, one gets introduced to the divergence, the gra-

dient, and the curl. One also sees theorems like Green’s theorem, divergence
theorem, and Stokes theorem. For example, Stokes theorem one can use over
a surface if your vector field is the curl of another vector field. Therefore,
one is often interested to know whether a vector field is the gradient of a
function or if it is the curl of another vector field. This can then determine
which theorem to use. Vector fields can be expressed in terms of differential
forms, and with differential forms, the question above translates to whether
the form is exact. Henri Poincaré started to look for which conditions had
to be satisfied for a differential form ω to be exact on Rn. One necessary
condition is, of course, that the forms are closed. In 1887 Poincaré published
a proof that k-forms are exact iff it is closed for k = 1, 2, 3 on Rn. We
showed the Poincaré Lemma in the last chapter, which implies this. Two
years later, Vito Volterra published a proof of the Poincaré lemma for any k.
This question of whether a closed form on a manifold is exact comes down
to the topology of the manifold. An example is as we saw that on R2 every
closed form is exact, but if we look at the punctured plane R2 \{(0, 0)} there
will be closed 1-forms that are not exact. As mentioned, the way we measure
to which extent closed forms fails to be exact is done using the de Rham
cohomology. These de Rham cohomology groups are some of the most im-
portant topological invariants of manifolds. Using Hodge-theory, which we
will see in the next chapter, they can be used to count solutions of differential
equations, such as Maxwell’s equations.

In this chapter, we will start by defining de Rham cohomology. We will
then devote some sections to looking at some mathematical tools in the form
of cochain complexes. Together with the Mayer-Vietoris theorem, this will
give us a quite simple way to perform some exact computations of cohomology

38
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groups for some manifolds.

4.1 de Rham Cohomology

(Based on [3] chap.6.2)
We briefly touched upon cohomolgy in chapter 3.5. If we let M be a

smooth m-manifold, then the set of closed p-forms is denoted Zp(M). And
the set of exact p-forms is denoted Bp(M). Due to that closed forms are
defined as {α ∈ Ωp(M)|dα = 0} and the exact forms is defined as {α =
dβ|β ∈ Ωp−1(M)} it implies that every exact form is also closed since d2 = 0.
Hence the space of exact forms is a subspace of the closed forms, Bp(M) ⊂
Zp(M). These spaces have a group structure, so we may construct a factor
group, which lead us to the definition of the p’th cohomology group.

Definition 27 ([3] definition 6.2). The p’th de Rham cohomology group is
the factor group:

Hp(M) =
Zp(M)

Bp(M)
=
{α ∈ Ωp(M)|dα = 0}
{α = dβ|β ∈ Ωp−1(M)}

.

The cohomology groups works as a tool that “measures” to which extent
the closed forms fails to be exact, just as we saw in the example 11. These
groups are as we will see later on, another example of topological invariants,
meaning that they are invariant under any smooth geometric change.

Within the set of closed forms Zp(M), are two p-forms defined to be
equivalent if they only differ by an exact form;

ω = ω̃ + dτ.

In this case ω and ω̃ are called cohomologous. They also give rise to the same
cohomology class, [ω] = [ω̃]. Below is a definition and a few propositions
stated that will be helpful when we later want to explicitly calculate the
cohomolgy groups for a few simple manifolds.

Definition 28 ([3], page. 235). The dimension of the p’th cohomology
group of M is denoted bp(M) and is called p’th betti number, i.e bp(M) :=
dim(Hp(M)).

Proposition 4 ([3]). Let M be a smooth compact orientable manifold, then
Hp(M) ∼= Rk, for 0 ≤ k < ∞. Note that this is a topological property. In
fact, cohomology groups are invariant under continuous deformation (homo-
topy). It follows from various results in Nakahara [3].
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Proposition 5 ([2] Proposition 23.1). If M is a manifold consisting of k
connected components, then the zeroth de Rham cohomology is H0 ∼= Rk.

Proposition 6 ([2] Proposition 23.2). Let M be an m-dimensional manifold,
then the de Rham cohomology Hp(M) = 0, for p > m.

4.2 Long exact sequences in Cohomology

(Based on [2] chap. 24)
As mentioned, one of the powerful features of cohomology is that we can

use it to determine the solution space of differential equations. The betti
numbers often count the number of independent solutions, and they are usu-
ally easier to compute than constructing the solution explicitly. So through
cohomology, we can identify if there exists a solution for a particular differ-
ential equation without having to solve it! Nevertheless, before showing this,
we have to develop some mathematical tools; so-called cochain complexes,
short exact sequences (SES), and long exact sequences (LES).

A cochain complex is essentially a sequence of vector spaces, {V k}k∈Z,
connected by homomorphisms, dk : V k → V k+1. These homomorphisms have
to satisfy dk+1 ◦ dk = 0, or dropping indices d2 = 0. These homomorphisms
are often called differentials or boundary operators. A cochain complex can
then be written in the following way:

...
d−1−−→ V 0 d0−→ V 1 d1−→ V 2 d2−→ V 3 d3−→ ... (4.1)

Remark. A cochain complex is the dual of a chain complex, for which can
be written in much the same way but with homomorphisms going the other
way;

...
d−1←−− V−1

d0←− V0
d1←− V1

d2←− V2
d3←− V3

d4←− ...

We have already seen a special case of this notion of a cochain complex.
Because if we look at the vector space of differential forms on a manifold M ,
Ω∗(M), together with the exterior derivative d as our differential, we have
the de Rham complex of M :

0→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ Ω3(M)

d−→ ...

Back in chapter 3, we saw an example where M was R3. Let us go over now
to define a short exact sequence, but first, we need to define what an exact
sequence is.
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Definition 29 (Exact Sequence [2] Definition 24.1). Vector spaces connected
by homomorphisms in a sequence

A
f−→ B

g−→ C

is exact at B if im(f) =ker(g). It then follows that a sequence of vector
spaces and homomorphisms

A0
f0−→ A1

f1−→ A2
f2−→ ...

fn−1−−→ An

is an exact sequence if it is exact at each Ai, except for the first an last.

Definition 30 (Short exact sequence [2] Definition 24.1). If we have the
sequence

0→ A
f−→ B

g−→ C → 0,

where A, B and C are vector spaces. Cochain complexes are infinite di-
mensional in general. But the following proposition will be useful. f and g
are linear maps, and if we require f to be injective, g to be surjective and
Im(f) = ker(g) we get what is known as a short exact sequence (SES).

Proposition 7 ([2] appendix D.1). From linear algebra we have that for
finite dimensional vector spaces A and B with linear map f : A→ B;

dim(A) = dim(ker(f)) + dim(Im(f)).

When dealing with exact sequences the following proposition can also be
useful.

Proposition 8 ([2] Proposition 24.4). The sequence of vector spaces

0→ A
f−→ B → 0

is exact iff f is an isomorphism.

4.2.1 Cohomology of cochain complexes

(Based on chapter [2] chapter 24 and [9] section 25)
Now that we have gained some knowledge of what a cochain complex and

an exact sequence are, we can start discussing the cohomology of cochain
complexes. If we let V be a cochain complex then by the fact that dk+1◦dk = 0
we have that,

im(dk) ⊂ ker(dk+1).
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Thus we can construct the k’th cohomology vector space for a cochain complex
V , as the following quotient vector space

Hk(V) :=
ker(dk)

im(dk−1)
.

Just as we saw earlier with differential forms, the cohomology group measures
to which extent closed forms fails to be exact. Likewise, the cohomology of a
cochain complex measures to which extent the cochain complex V fails to be
exact at V k. The elements of ker(dk) and im(dk−1) are called k-cocycle and
k-coboundary respectively. The equivalence class [v] ∈ Hk(V) of a k-cocycle
v ⊂ ker dk we call the cohomology class of v. The subspaces of k-cocycles
and k-coboundaries of V we denote Zk(V) and Bk(V) respectively. Again
we simplify the notation and drop the subscript of dk if it does not cause
confusion.

Example 16 ([2] Example 24.5). As you probably noticed, we are using a
similar notation for the k-cocycles and k-coboundaries as we did for the closed
and exact forms when we discussed the cohomology group of a manifold
earlier on. This is because when we are talking about the de Rham complex,
a cocycle is simply a closed form, and a coboundary is an exact form.

If we have two cochain complexes A and B with their respective differen-
tials d and d̃. Then we define the following map, φ : A → B as a collection
of linear maps φk : Ak → Bk ∀k, such that they commute with d and d̃:

d̃ ◦ φk = φk+1 ◦ d,
then φ is called a cochain map. I.e. if φ is cochain map it implies that the
diagram below is commutative:

... Ak−1 Ak Ak+1 ...

... Bk−1 Bk Bk+1 ...

d d

φk−1

d

φk φk+1

d

d̃ d̃ d̃ d̃

.
Also in this case one usually omits the subscript in φk. One useful feature

of a cochain map φ : A → B is that it induces a linear map in cohomology;

φ∗ : Hk(A)→ Hk(B)

by φ∗[a] = [φ(a)].
Let’s have a look at an example of a cochain map that we have briefly

mentioned before.
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Example 17 ([9] example 25.4). If we have two manifolds M and N , with
a smooth map f : N → M , then the pullback map f ∗ : Ω∗(M) → Ω∗(N) is
a cochain map since f ∗ commutes with d due to the following proposition

Proposition 9 ([9] Proposition 19.5). If f : N → M is a smooth map
between manifolds. Then for a differential form ω ∈ Ωk(M), we have that
df ∗ω = f ∗dω.

Earlier we defined what a short exact sequence was when talking about
a sequence of vector spaces. In much the same way we define a short exact
sequence of cochain complexes.

Definition 31 (SES of cochain complexes, [2] chap. 24.3). The following
sequence of cochain complexes

0→ A i−→ B j−→ C → 0

is called short exact if i and j are cochain maps, and for every k we have
that the sequence of vector spaces;

0→ Ak
ik−→ Bk jk−→ Ck → 0

is a short exact sequence of vector spaces, i.e. if ik is injective, and jk is
surjective, and im(ik) = ker(jk).

We then have the following very useful lemma for calculating the coho-
mology of a cochain complex.

Lemma 5 (Snake Lemma, [2] Theorem 24.7). Given a short exact sequence
of cochain complexes

0→ A i−→ B j−→ C → 0

it gives rise to the following long exact sequence (LES) in cohomology

0→H0(A)
i∗−→ H0(B)

j∗−→ H0(C) d∗−→ H1(A)
i∗−→ H1(B)

j∗−→ H1(C) d∗−→ ...
d∗−→ Hk(A)

i∗−→ Hk(B)
j∗−→ Hk(C) d∗−→ ...

,

i and j are cochain maps that induces the maps i∗ and j∗ in cohomology, and
d∗ is a so-called connecting homomorphism.
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4.3 The Mayer-Vietoris sequence

(Based on [2] chap. 25)
Our final goal for this chapter has been to develop a way of calculating the

de Rham cohomology of a manifold. This type of calculation is, in general, a
pretty difficult task, which is why we have spent so much time discussing these
mathematical tools related to cochain complexes and sequences. Because
now, we will finally introduce what is known as the Mayer-Vietoris sequence,
which is a powerful tool when it comes to calculating de Rham cohomology.

The idea of calculating the de Rham cohomology of a manifold using
Mayer-Vietoris is as follows. Although it is often hard to calculate the co-
homology of the entire manifold M , it is often a simpler task to calculate
the cohomology of open subsets of M , Ui. So for simplicity let’s say that
two subsets of M , U1 and U2, cover M , i.e. U1 ∪ U2 = M . We then have
a map i = (i∗1(a), i∗2(a)) where i1/2 : U → M , i1/2(a) = a. And a map
j = j∗1(a) − j∗2(b), where j1/2 : U1 ∩ U2 → U1/2, j1/2(a) = a. Then the
following sequence is short exact:

0→ Ωk(M)
i−→ Ωk(U1)⊕ Ωk(U2)

j−→ Ωk(U1 ∩ U2)→ 0 (4.2)

And then from the “Snake lemma” above, we get that this SES, induces a
LES in cohomology.

Theorem 2 (Mayer-Vietoris, [2] chap. 25). Let M be a connected smooth
manifold, with open subsets U1 and U2 s.t. M = U1 ∪ U2. Then we have the
following SES;

0→ Ωk(M)
i−→ Ωk(U1)⊕ Ωk(U2)

j−→ Ωk(U1 ∩ U2)→ 0

gives rise to the LES in cohomology:

0→H0(M)
i∗−→ H0(U1)⊕H0(U2)

j∗−→ H0(U1 ∩ U2)
d∗−→

H1(M)
i∗−→ H1(U1)⊕H1(U2)

j∗−→ H1(U1 ∩ U2)
d∗−→ ...

d∗−→ Hk(M)
i∗−→ Hk(U1)⊕Hk(U2)

j∗−→ Hk(U1 ∩ U2)
d∗−→ ...

with d∗ being the connecting homemorphism; d∗ : Hk(U1 ∩ U2)→ Hk+1(M).

4.4 Computations of de Rham cohomology

Finally, we are ready to perform some calculations of cohomology groups for
some specific manifolds. We will look at the circle, S1, and the sphere, S2,
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as our examples. Before we start the calculations, we briefly mention the
following version of the Poincaré lemma.

Lemma 6 (Poincaré’s Lemma, [3] theorem 6.3 and example 6.4). If U is
contractible, meaning it can be continuously deformed to a point. Then the
cohomology of U is;

Hp(U) ∼=

{
R , p = 0

0 , otherwise.

Example 18 (Cohomology of S1). Let S1 = U1 ∪U2 where U1 = {x2 + y2 =
2|y > −1} and U2 = {x2 + y2 = 2|y < 1}.

Figure 4.1: Open subsets U1 and U2 constructing S1.

We then have the following LES form Mayer-Vietoris:

0→H0(S1) −→ H0(U1)⊕H0(U2) −→ H0(U1 ∩ U2)) −→
H1(S1) −→ H1(U1)⊕H1(U2) −→ H1(U1 ∩ U2) −→ 0

Using proposition 5 we have that H0(S1) ∼= R and H0(U1 ∩ U2) ∼= R2.
We then have from the Poincare lemma above, that H0(U1) ∼= H0(U2) ∼= R,
and that H1(U1) ∼= H1(U2) ∼= 0, and that H1(U1 ∩ U2) ∼= 0. Hence we are
left with;

0→ R α−→ R2 β−→ R2 γ−→ H1(S1)→ 0,
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for some maps α, β and γ. Then b1(S1) = dim(H1(S1)) = dim(im(γ)). We
also have

2 = dim(ker(γ)) + b1(S1)

=⇒ 2 = dim(im(β)) + b1(S1)

and 2 = dim(ker(β)) + dim(im(β))

=⇒ 2 = dim(im(α)) + dim(im(β)).

α is injective, so dim(im(α)) = 1, and

2 = 1 + dim(im(β))

=⇒ dim(im(β)) = 1

=⇒ b1(S1) = 1.

Hence the cohomology of S1 is:

Hp(S1) ∼=

{
R, p = 0

R, p = 1.

Example 19 (Cohomology of S2). We let S2 = U1 ∪ U2, where U1 and U2

are the open northern and southern hemisphere respectively, s.t. U1 ∩U2 are
contractible to S1 (See figure 4.2).

Figure 4.2: Open northern and southern hemisphere constructing S2.

Then we have the following LES for from Mayer-Vietoris

0→H0(S2) −→ H0(U1)⊕H0(U2) −→ H0(U1 ∩ U2) −→
H1(S2) −→ H1(U1)⊕H1(U2) −→ H1(U1 ∩ U2) −→
H2(S2) −→ H2(U1)⊕H2(U2) −→ H2(U1 ∩ U2) −→ 0

Then since U1 and U2 are contractible, we can again use Poincare lemma:
H0(U1) ∼= H0(U2) ∼= R, and H i(U1) ∼= H i(U2) ∼= 0, for i = 1, 2. Also, since
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U1 ∩U2 is contractible to S1, we get H0(U1 ∩U2) ∼= R, H1(U1 ∩U2) ∼= R and
H2(U1 ∩ U2) = 0 We then have the following sequence:

0 −→ R α−→ R2 β−→ R γ−→ H1(S2)
δ−→ 0

ε−→ R η−→ H2(S2) −→ 0,

for maps α, β, γ, δ, ε, η. We can then quickly see that since this is an exact
sequence, then we know that the last part of the sequence:

0
ε−→ R η−→ H2(S2) −→ 0

implies that H2(S2) ∼= R since η has to be an isomorphism. Hence b2(S2) =
dim(R) = 1.

Now to find b1(S2) we have to do a similar calculation as in the example
above with S1.

We have that b1(S2) = dim(H1(S2)) = dim(im(γ)).

=⇒ 1 = dim(ker(γ)) + b1(S2)

=⇒ 1 = dim(im(β)) + b1(S2)

Furthermore 2 = dim(ker(β)) + dim(im(β))

=⇒ 2 = dim(im(α)) + dim(im(β))

=⇒ 2 = 1 + dim(im(β))

=⇒ dim(im(β)) = 1.

The second line then gives us that: b1(S2) = 0.
Hence the cohomology of S2 is:

Hp(S2) ∼=


R , p = 0,

0 , p = 1,

R , p = 2.

One can show that this similarly generalizes to the following cohomology
of the n-sphere:

Hp(Sn) ∼=



R , p = 0,

0 , p = 1,
...

0 , p = n− 1

R , p = n.

As mentioned, cohomology groups can show whether solutions exist to certain
differential equations, particularly equations of motion. E.g., the two source-
less equations of Maxwell’s equations in electromagnetism can be expressed
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as the following dF = 0 where F is the electromagnetic field tensor, expressed
as a two form F = dA ∈ Ω2(M), and A is locally defined (but not global in
general). The other two of Maxwell’s equations in vacuum can be written as
d†F = 0, where d† will be defined in the next chapter. Solutions are then
given by so-called harmonic two-forms H2, and as we will see, H2 ∼= H2(M).
Now, as we see H2(S2) = R, i.e. there exist solutions to Maxwell’s equations
on the 2-sphere even if we do not know its explicit form. However, there do
not exist solutions on the 3-sphere S3 since H2(S3) = 0.



Chapter 5

Hodge theory

(This chapter is based on [3] chap. 7, [5] chap. 4 and 5, and [10])
We have gone through some fundamental concepts in differential geometry

and also looked at cohomology groups, which are examples of topological
invariants, as our final computation also will be. Before we can do the one-
loop computation, we have to look at a few more topics that will give us the
tools needed to tackle it. In this chapter, we take a look at something called
Hodge theory. We introduce an operator called the “Hodge star” and use
this to define the adjoint of the exterior derivative; d†. Then we will define
the Laplacian operator in terms of d and d†. This Laplacian operator will
be a key idea, and the solution to our final computation will be expressed in
terms of the determinants of different Laplace operators. We will also look
at the Hodge decomposition, which, together with the Laplacian, will be the
key topics for this chapter.

Before we can take a look at all of this, let us start by briefly mention-
ing what Hodge theory is. Hodge theory, developed by W. V. D. Hodge, is
a way to study cohomology groups of a smooth manifold by using PDE’s.
The main idea in Hodge theory is that given a Riemannian manifold with a
Riemannian metric, then every cohomology class has a particular represen-
tative. Such a representative is a differential form that, when acted upon by
the Laplacian operator, will vanish. We call these forms “harmonic”, they
solve the Laplace equation and are in 1-1 correspondence with the classical
topological invariants counted by the cohomology groups. So let us start this
chapter by defining what a Riemannian manifold is and what a Riemannian
metric is.

49
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5.1 Riemannian manifold

(Based on [3] chap. 7.1 and [5] chap. 4 and 5)
Riemannian manifolds and the study of them called Riemannian geometry

is a vast field in mathematics, and a proper introduction to this topic could
easily be a thesis on its own. For our purpose in this thesis, we will only cover
the very basics. Briefly mentioned, a metric, g, is something that allows us
to define distance on a manifold. Since we are looking at topological theories
here, we do not care too much about metrics. However, we need a metric for
the final computations for technical reasons. For instance, to show that our
result is topological, we have to perform a small variation w.r.t. the metric
and show that it vanishes. We also need a metric to define a Riemannian
manifold, which in turn also makes us able to define Hodge theory. We also
need the metric to define the adjoint operator to the exterior derivative.

In the geometry you know from Rn we define the inner product for two
vectors U and V as U · V =

∑n
i UiVi. However, on a manifold, the inner

product has to be defined at every tangent space. In order to define such
an inner product, we first have to define the metric tensor. A Riemannian
metric, often denoted g, is a type (0, 2)-tensor field on a manifold M , i.e. g
is a linear map; gp : TpM ⊗TpM → R. The metric also satisfies the following
axioms:

Let U , V ∈ TpM

1. gp(U, V ) = gp(V, U)

2. gp(U,U) ≥ 0, equality if and only if U = 0.

A Riemannian manifold is then simply a smooth manifold M equipped
with a metric, (M, g).

Example 20. An example of a Riemannian manifold is Rn. As we have
shown, Rn is a smooth manifold. The usual metric that Rn is equipped with
is δij, which when represented as a matrix is, of course, just the identity
matrix.

General Relativity (GR) is the field within physics where Riemannian
geometry is used the most. Strictly speaking, one is not using Rieman-
nian geometry but what is known as pseudo-Riemannian geometry. The
pseudo comes from the fact that one also includes time. This time coordi-
nate has to have the opposite sign to the coordinates regarding space. So
on a pseudo-Riemannian manifold, the second axiom above is swapped out
with: If gp(U, V ) = 0 for any vector U ∈ Tp(M), then vector V = 0.
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GR describes spacetime as a 4-dimensional pseudo-Riemannian manifold.
The simplest version of this is what is known as Minkowski Space and is
represented by R4 equipped with the Minkowski metric (setting c=1)

ηab =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
GR is essentially a study of Einstein’s equations

Rab −
1

2
gabR = 8πGTab,

which is a set of non-linear, coupled partial differential equations. For anyone
with some experience with differential equations, we see that these are tough
equations to solve. A huge part of the area of GR is finding solutions to these
equations, imposing various assumptions and approximations. The solution
to these equations is metrics. Probably one of the most famous solutions is
what is known as the Schwarzchild metric, which is the unique solution to
Einstein’s equations if one assumes Spherical symmetry and vacuum (Tab =
0). The fact that this solution is unique is stated by the Jebsen-Birkhoff
theorem ([11], chap. 10.15). The Schwarzchild metric takes the form

gab =


−(1− 2GM

r
) 0 0 0

0 1
1− 2GM

r

0 0

0 0 r2 0
0 0 0 r2 sin(θ)

 .
This solution is essentially an empty universe with only one static black hole.

We end our digression into GR here; this was only meant as a glimpse
into a field within physics where one uses pseudo-Riemannian geometry. For
our purpose, we will only look at Riemannian geometry from here on out.
Many results apply to Riemannian geometry, but fall apart when switching
to pseudo-Riemannian geometry. For example, one of the things that is
much better understood in Riemannian geometry is Cohomology. We have
discussed Riemannian manifolds and metrics in this thesis on topological field
theory because we will look at our final theory over a Riemannian manifold.
Nevertheless, our final result will be invariant under the metric, i.e. invariant
to curvature and distance on the manifold.

5.2 Invariant top-forms

(Based on [3] chap.7.9)
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When we introduced integration on a manifold, we saw that in order to
perform an integration over an m-dimensional manifold we needed a top-
form, i.e. a non-vanishing m-form. If a manifold M is orientable and
equipped with a metric g, then the following top-form exist

χM :=
√
|g|dx1 ∧ dx2 ∧ · · · ∧ dxm,

which is invariant under coordinate transformations: Here g denotes the
determinant, g = det gab, and xa is just the local coordinates of the chart
(U, φ). Let’s show that this top-form is in fact invariant under coordinate
transformations. For instance take another chart (V, ψ), with U ∩ V 6= ∅.
Then w.r.t to the local coordinates yd of (V, ψ), the invariant top-form takes
the form: √∣∣∣∣det

(
∂xa

∂yc
∂xb

∂yd
gab

)∣∣∣∣dy1 ∧ dy2 ∧ · · · ∧ dyn.

We know that we can express dyd = ∂yd

∂xa
dxa, hence we get the following;∣∣∣ det

(
∂xa

∂yc

) ∣∣∣√|g| det

(
∂yd

∂xb

)
dx1 ∧ dx2 ∧ · · · ∧ dxm

= ±
√
|g|dx1 ∧ dx2 ∧ · · · ∧ dxm.

If xa and yc define the same orientation, then the Jacobian det(∂xa/∂yc)
is positive definite on U ∩ V implying that the top-form χM is invariant
under coordinate transformations. With an invariant top-form, we can define
integration of a function f ∈ C∞(M) over M as:∫

M

fχM :=

∫
M

f
√
|g|dx1dx2 . . . dxm

This type of expression is very familiar in physics since many objects can
be expressed as these kinds of volume integrals. In fact, by doing ordinary
calculus, you have actually performed these integrals. It is just that your
manifold has usually been Rn or something embedded in Rn for which the
metric is just the identity matrix which results in

√
|g| = 1.

5.3 Operators in Hodge theory

(Based on [3] chap.7.9)
Back in chapter 3 we introduced differential forms, and along with this,

the de Rham operator, also known as the exterior derivative d. We saw
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that d gave us a way to define derivation of forms and was, in one sense, a
generalization of the derivative. The exterior derivative gave us the following
map: d : Ωp(M) → Ωp+1(M). Hence you might wonder if a similar map
exists from p-forms to (p − 1)-forms? Yes, is the short answer; this map is
called the adjoint of the derivative.

On an m-dimensional manifold M one can show that Ωp(M) is isomorphic
to Ωm−p(M). For a Riemannian manifold M with a metric g, we can define
such an isomorphism known as the Hodge star, ∗. ∗ is then simply a linear
map: ∗ : Ωp → Ωm−p. To properly define it, we have to define the following
totally anti-symmetric tensor:

εa1a2...am =


+1 , if (a1a2 . . . am)is an even permutation of (12 . . .m),

−1 , if (a1a2 . . . am) is an odd permutation of (12 . . .m),

0 , otherwise.

If we then take a look at a p-form

ω =
1

p!
ωa1a2...apdx

a1 ∧ dxa2 . . . dxap ∈ Ωp(M),

then the Hodge star acts in following way

∗ω =

√
|g|

p!(m− p!)
ωa1a2...apε

a1a2...ap
bp+1bp+2...bm

dxbp+1 ∧ dxbp+2 · · · ∧ dxbm

Notice that the invariant top-form is just the Hodge star acting on 1;

∗1 =

√
|g|
m!

εa1a2...amdx
a1 ∧ dxa2 · · · ∧ dxam =

√
|g|dx1 ∧ dx2 · · · ∧ dxm.

For the Hodge star one also have the following lemma

Lemma 7 ([3] Theorem 7.4). If (M, g) is a Riemannian manifold of dimen-
sion m with ω ∈ Ωp(M) then

∗ ∗ ω = (−1)p(m−p)ω.

Hence ∗∗ returns ω (with either a plus or minus sign).

One helpful feature of the Hodge star is that it allows us to define an
inner product for differential forms. We take two forms ω and χ, where
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ω, χ ∈ Ωp(M). Then we can create an m-form ω ∧ ∗χ with the exterior
product in the following way;

ω ∧ ∗χ =
1

(p!)2
ωa1...apχb1...bp

√
|g|

(m− p)!
εb1...bpap+1...am

× dxa1 ∧ . . . dxap ∧ dxap+1 ∧ · · · ∧ dxam

=
1

p!

∑
ab

ωa1...apχ
b1...bp

1

p!(m− p)!
εb1...bpap+1...am

× εa1...apap+1...am

√
|g|dx1 ∧ · · · ∧ dxm

=
1

p!
ωa1...apχ

a1...ap
√
|g|dx1 ∧ · · · ∧ dxm.

From this expression we see that the product has the property of sym-
metry:

ω ∧ ∗χ = χ ∧ ∗ω.
Since ω ∧ ∗χ is a top-form we can use it to integrate over M . Thus, we can
define the following inner product of two p-forms:

(ω, χ) :=

∫
ω ∧ ∗χ

=
1

p!

∫
M

ωa1...apχ
a1...ap

√
|g|dx1 ∧ · · · ∧ dxm.

(5.1)

This inner product is symmetric, (ω, χ) = (χ, ω) since ω ∧∗χ = χ∧∗ω. It is
also positive definite if (M, g) is Riemannian, (ω, ω) ≥ 0, where the equality
holds if and only if ω = 0.

We are now finally ready to define the adjonit map of the exterior deriva-
tive.

Definition 32 ([3] Definition 7.6.). Recall that d : Ωp(M)→ Ωp+1(M). The
adjoint exterior derivative operator d† : Ωp(M)→ Ωp−1(M) is defined as

d† = (−1)mp+m+1 ∗ d∗

when (M, g) is Riemannian.

Now that we have looked at the operators d, ∗ and d† we can summarize
all these operators in a single diagram as

Ωp(M) Ωp+1(M)

Ωm−p(M) Ωm−p+1(M)

d†

∗

±d

∗ .
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An important feature about d† is that it also squares to zero,

d†2 = ∗d ∗ ∗d∗ ∝ ∗d2∗ = 0.

The adjoint also satisfies an important equation stated in the following the-
orem.

Theorem 3 ([3] Theorem 7.5). Letting (M, g) be a Riemannian manifold that
is orientable and compact without boundary, and we have forms α ∈ Ωp(M)
and β ∈ Ωp−1(M), then the following equation is satisfied

(dα, β) = (α, d†β). (5.2)

5.4 Laplacian and Hodge decomposition

(Based on [3] chap. 7.9)
We are finally ready to define the Laplacian.

Definition 33 ([3] definition 7.7.). The Laplacian for differential forms on a
Riemannian manifold M is defined as follows: ∆ : Ωr(M)→ Ωr(M), where

∆ = (d + d†)2 = dd† + d†d.

Example 21. Let’s have a look at how the Laplacian acts on a smooth
function, f ∈ C∞(R). The Laplacian is then the following map: ∆ : Ω0(R)→
Ω0(R) on 0-forms. Since f is a scalar function we have that dd†f = 0 since
there are no such things as (-1)-forms. We therefore get

∆f = d†df = ∗d ∗ (∂afdx
a).

Which after some further calculation we end up with

∆f = − 1√
|g|
∂b(
√
|g|gba∂af).

However, since we are on R, the metric is just 1. Hence we get the final
familiar form of the Laplacian in 1-dimension

∆f = −∂
2f

∂x2
.

Example 22 ([3] Example 5.11 and 7.16). In electromagnetism one can
show that we can express the electromagnetic vector potential as a one form,
A = Aadx

a. The electromagnetic field tensor is a two form and can be written
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in the following way, F = dA, allowing us to rewrite Maxwell’s equations in
the following way: The two source-less equations ∇·B = 0 and ∇×E = −∂B

∂t

becomes the following equation in terms of differential forms;

dF = d2A = 0.

For the other two equations we first let ρ be the electric charge density
and j the electric current density. Together ρ and j constructs the current
one form j = ηabj

bdxa = −ρdt+ j · dx. The two remaining equations with a
source ∇ ·E = ρ and ∂ ×B− ∂E

∂t
= j can then be expressed as the following

in terms of differential forms;

d†F = d†dA = j.

We can also write it as (dd†+d†d)A = ∆A = j. Because we can always choose
an A that satisfies the Lorentz condition d†A = 0 since the electromagnetic
potential has a large gauge degree of freedom: A → A + dε. We will return
to study such gauge theories and gauge symmetry later when we come to
field theory.

Remember from the last chapter where we learned about cohomology, we
defined dω = 0 to be a closed form. In the same way we can now define a
coclosed form as d†ω = 0. Finally a p-form is called harmonic if ∆ω = 0.
Note that

∆ω = d†dω + dd†ω = 0

implies that dω = 0 and d†ω = 0. This is because you can think of the
components d†dω and dd†ω as orthogonal vectors. So ∆ω = 0 this implies
on a compact manifold

d†dω = 0 =⇒ dω = 0,

dd†ω = 0 =⇒ d†ω = 0.

Hence a form is harmonic if and only if it is closed and coclosed. We will
denote the set of harmonic p-forms as Hp. In cohomology we were interested
in constructing these cohomology groups where we had closed forms and
factored out the exact forms. In a similar way a p-form is called coexact if it
is written globally as;

ωp = d†αp+1

where αp+1 ∈ Ωp+1(M). The set of exact forms we denote dΩp−1(M) and
coexact as d†Ωp+1(M). Now we are ready to introduce the Hodge decompo-
sition theorem.



CHAPTER 5. HODGE THEORY 57

Theorem 4 (Hodge decomposition theorem, [3] Theorem 7.7). Let (M, g)
be a Riemannian manifold that is orientable and compact, without boundary.
Then p-forms, Ωp(M), can be uniquely decomposed:

Ωp(M) = Hp ⊕ dΩp−1(M)⊕ d†Ωp+1(M)

I.e. any p-form ωp can be written globally as

ωp = γp + dαp−1 + d†βp+1

where γp ∈ Hp(M), αp−1 ∈ Ωp−1(M) and βp+1 ∈ Ωp+1(M). Note that Hp ∼=
Hp(M).

This theorem, combined with the Laplacian, will be the most essential
takeaways from this chapter. They will both be heavily used in the final
one-loop computation of a partition function.



Chapter 6

Physics tools

(This chapter is based on [3] chap. 1 and [4] chap. 1)
We have finally covered what we need for the final computation regard-

ing mathematical knowledge and tools. This chapter will be devoted to some
tools and concepts from physics that will play an important role in the next
chapter. We start by giving a very rough introduction to classical/analytical
mechanics and field theory, and we only focus on a few ideas and concepts
that will be used later. The interested reader may consult e.g. [12]. Af-
ter that, we will pay quantum field theory (QFT) a short visit and, more
specifically, look at the path integral. This is a convenient computational
technique used in QFT all the time. The partition function, which we will
do some explicit computations of, is defined in terms of the path integral in
QFT.

6.1 Lagrangian formalism

(Based on [3] chap. 1.1)
Field theory is a framework heavily used within physics that resolves

many problems arising from ordinary Newtonian mechanics. Field theory is
used in analytical mechanics, QFT, and particle physics, to mention a few
branches of physics. For our purpose in this thesis, we will be interested in
what is known as the action. Before we introduce the action, let us briefly
recap some basic concepts from Newtonian mechanics.

We start by looking at a single particle. The particle has mass m, and
we denote the particle simply as m. Then we want to describe the motion of
m in three-dimensional space, let x(t) denote the position of m at some time
t. If the particle is being acted upon by some external force F (x), then x(t)
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will satisfy the following differential equation;

m
d2x

dt2
= F (x(t)).

which we know as Newton’s second law or simply Newton’s equation. In
physics, this is an example of what is known as the equation of motion.
Recall, that if the force F (x) is conservative, we can express it in terms of
a scalar function, V (x), in the following way; F (x) = −∇V (x). We call
this scalar function, V (x), the potential energy. Whenever the force F is
conservative, then the total energy is conserved;

E =
1

2
m

(
dx

dt

)2

+ V (x)

which is the sum of kinetic and potential energy.
Now that we have recalled some basic knowledge from Newtonian me-

chanics, let us jump into analytical mechanics. Two ways are heavily used
and often denoted as analytical/classical mechanics. The first one is called
the Lagrangian formalism, which is the most relevant formalism for our pur-
pose; hence it is the only one we will discuss in detail. The other is called the
Hamiltonian formalism and has quite a few similarities. However, the two
differ in how to obtain the equation of motion for a system. Therefore it often
depends on what problem you are looking at to determine which formalism
is more convenient. For example, the Hamiltonian formalism is often used
in particle physics and QFT. Nevertheless, let us get into the Lagrangian
formalism. We need this because our final computation will rely on a theory
expressed in terms of differential forms over a 6-dimensional manifold. This
theory is called an action, expressed in terms of the Lagrangian.

The Lagrangian is quite similar to the sum of the energy of a system.
The sum of energy and the Lagrangian only differ by a sign. The Lagrangian
is defined as the kinetic energy minus the potential energy, L = T −U . This
quantity is so fundamental in theoretical physics that if someone proposes
some new physical theory, the first question one will get is: “What is the
Lagrangian?”. The Lagrangian formalism uses something known as gener-
alized coordinates. Say that the state of our system (e.g. the positions of
particles) is described by the coordinates {qi : 1 ≤ i ≤ N}, where N is the
total number of coordinates. The coordinates {qi} is whats known as the
generalized coordinates, and they are elements of a manifold, {qi} ∈ M . M
is known as the configuration space for the generalized coordinates.

Example 23. An example of such a generalized coordinate is, for instance,
if you imagine your particle moving along a circle, S1, which will be our
configuration space, then the generalized coordinate q is the angle θ.
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Another example can be to take S2 as your configuration space. The
position of the particle moving on the surface can be completely determined
by the two angles θ and φ, where θ and φ are the polar and azimuthal angles,
respectively. Hence our generalised coordinates {qi : i = 1, 2} will be q1 = θ
and q2 = φ.

Notice that we do not need any radial coordinate r to describe the position
since S2 is only the shell of a sphere. Hence, we restrict the particle to move
strictly on the surface, keeping r constant.

In terms of the generalized coordinate qi one can define the generalized
velocity as q̇i = dqi

dt
. The Lagrangian is a function of the generalized coor-

dinate and generalized velocity, L(q, q̇). Now we can introduce the action S
which will lead us to a method of finding the equation of motion. Consider
our particle moving in a one-dimensional space to keep it simple (but gener-
alizing to higher dimensions is rather straight forward). The particle follows
the trajectory q(t) in the time span t ∈ [ti, tf ], with conditions q(ti) = qi and
q(tf ) = qf . The action is then defined to be the following functional;

S[q(t), q̇(t)] =

∫ tf

ti

L(q, q̇)dt. (6.1)

The action S[q(t), q̇(t)] is a functional that takes in some trajectory in
terms of the generalized coordinates and velocity and returns a real number.
It turns out that to obtain the equation of motion, one does not simply
solve the integral. To find the equation of motion, we must use what is
known as Hamilton’s principle. Hamilton’s principle also often referred to
as the principle of least action, says that: “the physically realized trajectory
corresponds to an extremum of the action”[3]. Hence the Lagrangian has to
be chosen in such a way that it satisfies Hamilton’s principle. The simplest
way to deal with Hamilton’s principle is in a local form as a differential
equation. Now let q(t) be some path that obtains an extremum of the action.
To find an extremum in ordinary calculus, we usually find the derivative of
our path/function and set this equal to zero. It is, in principle, the same thing
we want to do here with the action functional. We start of by considering
a small variation δq(t) of the particles trajectory with δq(ti) = δq(tf ) = 0.
The action then takes the following form under the variation:

δS =

∫ tf

ti

L(q + δq, q̇ + δq̇)dt−
∫ tf

ti

L(q, q̇)dt.

=

∫ tf

ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt.

(6.2)
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Since we are dealing with an extremum this integral must vanish. This result
of course holds for any variation δq hence the integrand must equal zero. We
then obtain the following result;

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (6.3)

This is known as the Euler-Lagrange equation and is one of the most impor-
tant results of analytical mechanics. If one has N degrees of freedom, then
the Euler-Lagrange equation takes the form;

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0, (1 ≤ k ≤ N). (6.4)

These are the equations of motion of the system. Let’s take a look at few
familiar examples from Newtonian mechanics to see how this new formalism
works.

Example 24. Let us see how we can obtain Newton’s equation of motion
using the Lagrangian formalism. Consider a particle with mass m moving
around under a conservative force F = −∇V . Meaning that we can express
the potential V (q) as a scalar function for some generalized coordinate q.
This particle also follows trajectories of ordinary mechanics, such that we
can express the kinetic energy as 1

2
mq̇2. The Lagrangian then takes the form

L = 1
2
mq̇2−V (q). Putting this into the Euler-Lagrange equation, it is simple

to show that it reduces to the following

mq̈k +
∂V

∂qk
= 0. (6.5)

Since we were dealing with a conservative force, we can rewrite this as F =
mq̈. Hence we obtained the ordinary equation of motion from Newtonian
mechanics.

Example 25. Another familiar example is, for instance, a mass m moving
under a restoring force. We might take a block of mass m attached to a spring
sliding on a friction-less table. Here we can choose the familiar Cartesian
coordinates. Since this block will only move back and forth, it is just a one-
dimensional motion. Hence we can choose our generalized coordinate to be
x, the direction along the motion. The kinetic energy then just takes the
familiar form 1

2
mẋ2. Since we are dealing with a restoring force F = −kx,

we can express the the potential as 1
2
kx2, giving us the Lagrangian L =

1
2
mẍ− 1

2
kx2. Using the Euler-Lagrange, this reduces to

mẍ+ kx = 0. (6.6)
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This is just the familiar equation of motion for a one-dimensional harmonic
oscillator.

Remark. It is interesting to see that the equation of motion comes from an
extremum of the action. However, the action is not only defined for these
trajectories but for any trajectory. In other words, the action is defined for
any imaginable trajectory for a particle moving from A to B.

The fact that the action is defined for any path will play a key role when
discussing the integral path. The path integral is essentially an integral used
in QFT where one integrates over all the possible paths the particle can take.
As you might guess, some of these paths will be more probable than others.
Hence, the answer is often called a probability amplitude. We will discuss
the path integral in greater detail in the next section. Before we head over
to QFT, we want to briefly discuss what kind of roles geometry and topology
play in physics. We mostly argue a bit about why it might be of interest to
study topological field theories, as we have been setting ourselves up for this
entire thesis.

Geometry and Topology

In physics, one cares both about the geometry and the topology. Geometry
is what gives you local information about the motion of the particles. For
instance, how a particle is moving on the surface of the earth comes down to
aspects regarding geometry. If the geometry is stretched, scaled, or twisted
in any way, this changes the geometry and hence the physics. The changes
to the geometry are devoted to the metric. One of the main theories in
physics is Einstein’s General Relativity (GR). GR is a theory about the
geometry and curvature of spacetime. It describes gravity not as a force but
as the curvature of spacetime. If you start with empty space (vacuum), the
spacetime will be what one calls flat. Then if one imagines placing an object
there, like a star, this will curve the space, which is what we feel as gravity.
This is one of the many ways within physics where geometry and curvature
are used to describe the physics.

When it comes to looking at topology within physics, it might seem like
a somewhat counter-intuitive thing to study. Topology, of course, does not
care about curvature and distance, meaning topological properties are left
invariant under the stretching and deforming of your space (as long as you
do not tear it). Therefore, studying topological field theories will not give
you any local information, only global information. Hence we cannot talk
about the exact paths a particle might trace out in a given space. Also, in
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almost every physics course at the undergraduate level and graduate level,
one is looking at physics on spaces where the topology is trivial; therefore,
there is not much point in studying topology in this context. However, there
are a few theoretical theories within physics, such as String Theory, where
topology becomes non-trivial. Therefore it makes sense to invest time into
exploring quantities regarding the topology. Furthermore, if a theory has
non-trivial topology, it can be challenging to study both the geometry and
the topology simultaneously. Therefore, it is a more manageable task to study
them separately. In a nutshell, when we are studying only the topological
properties, we are doing what is known as topological field theory.

The thing one is usually most interested in when it comes to topologi-
cal theories is finding and computing topological invariants. I.e. topological
properties that are left invariant under continuous deformation or stretching.
This can then contribute as a handy tool when trying to distinguish compli-
cated mathematical objects. String Theory is one example of such a theory
within theoretical physics which has many problems arising when trying to
distinguish objects and theories from each other. Moreover, topological in-
variants might also help simplify the theory for certain calculations within
the theory. Topological invariants are a massive field of study in mathe-
matics, so-called enumerative geometry. It can be approached from different
branches of mathematics like algebraic geometry and differential geometry,
for example. Two examples are Knot theory and Donaldson-Thomas invari-
ants [13],[14]. Our approach in this thesis is to use mathematical physics.
We have covered all the tools needed from mathematics in previous chap-
ters. Only a few more physics tools are needed to compute the topological
invariants in the form of a partition function of a topological theory on a
manifold. We have already looked at some topological invariants in the form
of cohomology. Within topological invariants, there are two main types of
invariants; Classical invariants and Quantum invariants. Classical invari-
ants arise from boundary conditions or cohomology related to PDE’s such
as Maxwell’s equations. Topological cohomology is, for instance, used to
classify solutions of local geometric differential equations. Hence there is a
relationship between topology and geometry where the classical invariants
can help to find and count solutions to classical equations of motion. The
other type, Quantum invariants, has been our main goal for this thesis. These
topological invariants are computed by the partition function, and just as for
the classical invariants, these types of invariants also give a relationship be-
tween topology and geometry. The topological quantum invariant is related
to quantum geometry aspects of local QFT. That is, the quantum geometry
of the moduli space of solutions.
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6.2 Path integral and partition function

(Based on [4] chap. 1)
The Path integral is one of the most useful tools one encounters in QFT,

and it is being used all the time. The Path integral also shows up in other
branches of physics like particle physics. Although there does not exist a
completely rigorous definition of the path integral, it is also used within a few
branches of mathematics, but mainly within mathematical physics (like this
thesis). In mathematical physics, one uses tools and computation techniques
from various branches of physics to find results within formal mathematics.
As mentioned, the path integral is used, for instance, to find topological
invariants.

For those unfamiliar with the path integral, you can think of it as doing
an integral and summing over all the possible paths a particle can take from
a point A to a point B. The path integral was first used by Dirac, but
the method was completed by Richard Feynman. He also developed what
is known as Feynman diagrams which are perturbation techniques used to
calculate more complicated path integrals with multiple interactions between
different particles. We will not discuss these diagrams since the computation
we are interested in is a one-loop computation of a partition function, for
which the use of Feynman diagrams is unnecessary. The goal and reason
for the path integral formalism are to generalize the action principle from
classical mechanics.

Before we look at the path integral in more depth, we take a little story
from Zee [4] chapter 1.2, giving an intuitive way of thinking of the path
integral. The story takes place during a quantum mechanics class, and the
Professor is teaching the students about the famous double-slit experiment,
with no other than Feynman in the class as a student. The experiment goes
in the following way: We have a source S from where our particle is emitted,
at time t = 0. It then passes through either one of the two holes A1 or A2

drilled in a screen, and then the particle is detected by a detector located
at D at time t = T . The superposition principle then gives the probability
amplitude of detection at D. I.e. the amplitude of detecting the particle at
D is given by the sum of the amplitude from the particle passing through A1

and going to point D, and the amplitude of the particle going through A2

and then going to point D.
After the Professor had introduced this idea, the student, Feynman, asked

what would happen if one drilled a third hole into the screen. The Professor
then replied with the answer that the amplitude would now be the sum of
three amplitudes. I.e. the particle passing through either A1, A2 or A3 and
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going to point D, and then sum over these three amplitudes. As the Professor
was about to continue, Feynman asked again about what would happen if
one drilled a fourth and fifth hole. Starting to get frustrated, the Professor
answered that it then would obviously be the sum over all the holes.

In a slightly more rigorous way, we can denote the amplitude of the
particle going from source S at time t = 0 passing through hole Ai then going
to D as A(S → Ai → D). The amplitude of the particle being detected at
D is given as

A(detected at D) =
∑
i

A(S → Ai → D).

Feynman continued asking; now, he wondered what would happen if one
put another screen behind the first one with some number of holes in it.
The Professor started to get very irritated this time; he then rambled on
that it would be the sum of all the paths;

∑
i,j A(S → Ai → Bj → D).

Nevertheless, Feynman continued, wondering what would happen if one put
in a fourth and a fifth screen. And then he asked the rather deep question:
“What if I put in a screen and drill an infinite number of holes in it so that
the screen is no longer there?”[4]. The Professor then just ignored Feynman’s
question and continued with the class.

This is a really deep idea and very amusing, although the Professor didn’t
give this much attention. Feynman basically showed that if we would just
have empty space between the source and the detector, the amplitude would
still be a sum of paths over an infinite amount of screens, each with an infinite
amount of holes. I.e. the amplitude will be the sum of all the possible paths
the particle can take from the source to the detector.

A(particle moving from S to D in time T ) =∑
(paths)

A(Particle going from S to D following a specific path in time T ).

In order to make this more rigorous, Feynman started following Newton
and Leibniz. That is taking a path, and then we approximate it by straight
line segments and then letting the segments go to zero. We see that this is
basically the same as Feynman’s argument of filling the empty space with
an infinite amount of screens, each with an infinite amount of holes, and
putting them infinitesimally close to each other. Although the path integral
isn’t completely rigorously defined, the idea of Feynman’s thought process
behind it intuitively makes sense.

Now that we have discussed the path integral more intuitively without
any mathematical expressions let’s construct the amplitude in a more math-
ematical way. Expressing the amplitude more mathematically is done using



CHAPTER 6. PHYSICS TOOLS 66

the unitarity of quantum mechanics. That is, if we know the amplitude of
each of the infinitesimal segments, we can obtain the amplitude of the path
by multiplying together the amplitudes of the segments. From quantum me-
chanics, we know that the amplitude for a particle propagating from a point
qI to a point qF in a time T is given by the unitary operator e−iHT , H here is
the Hamiltonian. The Hamiltonian is defined as the kinetic energy plus the
potential energy and usually takes the following form for a particle of mass
m moving in a potential as

H = T + V =
p2

2m
+ V (q).

Here p is the generalized momentum, and q is our usual generalized coor-
dinate. The corresponding familiar Hamiltonian operator used in quantum
mechanics is

Ĥ =
p̂2

2m
+ V (q̂).

Remark. The hat on the Hamiltonian operator will be omitted from here on
out, and later whenever we write Hamiltonian, we mean the operator.

We will use the bra-ket notation developed by Dirac. The state of the
particle at q we denote as a ket, |q〉, and the amplitude discussed above then
becomes 〈qF |e−iHT |qI〉. So the whole formalism of the path integral could
have been written down mathematically, starting from only this quantity, just
stating the amplitude as a postulate. In fact, this is how Dirac developed
the path integral formalism before Feynman.

We will now follow Dirac’s formulation to express the path integral math-
ematically. We start off by splitting the time T into N , giving us N time
segments lasting a time δt = T/N . We then rewrite the amplitude in the
following way

〈qF |e−iHT |qI〉 = 〈qF |e−iHδte−iHδt · · · e−iHδt|qI〉 . (6.7)

From quantum mechanics we know that |q〉 forms a complete set of of states,
i.e.

∫
dq |q〉 〈q| = 1. In the previous equation, we insert 1’s between all the

factors of e−iHδt we then can rewrite it in the form

〈qF |e−iHT |qI〉 =

(ΠN−1
j=1

∫
dqj) 〈qF |e−iHδt|qN−1〉 〈qN−1|e−iHδt|qN−2〉 · · ·

· · · 〈q2|e−iHδt|q1〉 〈q1|e−iHδt|qI〉 .

(6.8)

The result is as we see N −1 integrals from one state to the next. To be able
to keep track of everything, we focus our attention on one of these individual
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factors 〈qj+1|e−iHδt|qj〉. Starting with the case where the Hamiltonian takes
the form H = p̂2/2m, i.e., the free particle case. The hat denotes that p̂
is an operator. We then denote the eigenstate of p̂ as |p〉 and p is just the
eigenvalue, i.e. p̂p = p |p〉. From quantum mechanics, we also have the
following identity 〈q|p〉 = eipq. Just like for q the momentum p is normalized
such that

∫
(dp/2π) |p〉 〈p| = 1. We then do the same as above by inserting

the complete set of states represented by 1’s. The one factor we are focusing
on then takes the form

〈qj+1|e−iδt(p̂
2/2m)|qj〉 =

∫
dp

2π
〈qj+1|e−iδt(p̂

2/2m)|p〉 〈p|qj〉

=

∫
dp

2π
e−iδt(p

2/2m) 〈qj+1|p〉 〈p|qj〉

=

∫
dp

2π
e−iδt(p

2/2m)eip(qj+1−qj).

(6.9)

Here the hat has been removed from the momentum operator since it is
acting upon one of its eigenstates and hence can be replaced by the eigenvalue
p. This integral is known as a Gaussian integral. These types of integrals are
often encountered in a course on quantum mechanics and in QFT. Doing the
integral and putting it back into (6.8) with qI := q0 and qF := qN we obtain

〈qF |e−iHT |qI〉 =

(
−i2πm
δt

)N
2

ΠN−1
j=0

∫
dqj e

iδt(m/2)
∑N−1
j=0 [(qj+1−qj)/δt]2 . (6.10)

Now we rewrite in a form that would follow Newton Leibniz, i.e. going
to the continuum limit where δt→ 0. Replacing the [(qj+1 − qj)/δt]2 by the

derivative q̇2, and the sum δt
∑N−1

j=0 is replaced by an integral
∫ T

0
dt. Then it

is common in QFT to rewrite the integral over all the paths as∫
Dq(t) = lim

N→∞

(
−i2πm
δt

)N
2

ΠN−1
j=0

∫
dqj. (6.11)

The path integral representation of the amplitude is then

〈qF |e−iHT |qI〉 =

∫
Dq(t)ei

∫ T
0 dt 1

2
mq̇2 . (6.12)

Hence we have a result showing us that if we want to calculate the amplitude
for a particle, we have to integrate over all the possible paths q(t) with q(0) =
qI and q(T ) = qF . This was for the free particle case, but if we let the particle
act under a potential, the Hamiltonian takes the form H = p̂2/2m + V (q̂),
the path integral then becomes
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〈qF |e−iHT |qI〉 =

∫
Dq(t)ei

∫ T
0 dt( 1

2
mq̇2−V (q)). (6.13)

We recognize 1
2
mq̇2 − V (q) as the Lagrangian L(q, q̇) and the integral

of the Lagrangian
∫ T

0
dtL(q, q̇) is what we saw as the action S. Hence the

general representation of the path integral is

〈qF |e−iHT |qI〉 =

∫
Dq(t)eiS(q). (6.14)

Here the path integral is represented in terms of it starting and ending at
some initial and final position, qI and qF . One usually specifies the particle
starting and ending in an initial state I, and ending in a final state F . The
state which we are usually most interested in is the ground state; hence
we will denote the initial and final state |I〉 and |F 〉 as |0〉. Therefore, the
amplitude we are interested in is 〈0|e−iHT |0〉, which is denoted just as Z,

Z := 〈0|e−iHT |0〉 =

∫
Dq(t)eiS(q). (6.15)

This is what one usually refers to as a partition function. This version
is sometimes denoted as the Minkowskian partition function. As mentioned,
this path integral isn’t perfectly rigorous in the mathematical sense. The
main problem is that it intuitively spits out infinity as one is integrating
over infinitely many paths. Therefore, we are counting on and assuming
that the path integral converges due to some of the different paths canceling
each other out and that some paths are more probable than others. In
the cases where one still gets infinities, one can use mathematical tools like
regularisation, which will be briefly discussed in the next chapter. To make
the path integral more rigorous, it is common to do a so-called Wick rotation
to Euclidean time. We slightly modify the derivation by doing a substitution
t → −it and perform a rotation in the complex t plane. The integral then
takes the form

Z =

∫
Dq(t)e−SE(q). (6.16)

This is called the Euclidean Path integral. The action here is the Euclidean
action; SE :=

∫
dt(1

2
mq̇2 + V (q)). This path integral is only for a single

particle. However, generalizing this to a path integral that holds for many
particles is rather straightforward and will not be shown in-depth here. To
change the path integral from being valid for a single particle to N particles,
the Hamiltonian takes the form
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H =
∑
a

1

2ma

p̂2
a + V (q̂1, q̂2, . . . , q̂N). (6.17)

Then one basically goes through all the same steps that we just did above
for a single particle and obtains a path integral that looks very much the same

Z =

∫
Dq(t)e−S(q). (6.18)

However, now the action is no longer for a single particle, but for N particles.
So the Euclidean action can be written in the following form

S =

∫ T

0

dt
(∑

a

1

2
maq̇

2
a + V (q1, q2, . . . , qN)

)
. (6.19)

The potential V (q1, q2, . . . , qN) contains energy caused by both the exter-
nal potential and the energy caused by interactions between the individual
particle. Now we have a description of the path integral in terms of many
particles. However, we want a description in terms of fields. If we imagine
each of the particles uniformly distributed in some space where each of the
particles is a distance l from one another. We then go to the continuum
limit by letting the distance l → 0, creating what one refers to as a field in
QFT. We are no longer talking about the individual particles but instead a
sort of continuous jelly of some particle. Since we no longer have individ-
ual particles, the label a is replaced by a position vector x; hence we write
q(t,x). When we talk about fields, it is common to substitute the generalized
coordinates q with φ. A field is then the function φ(t,x). Then, to make the
partition function in terms of fields and not particles, we substitute the sums
in the action by integrals,

∑
a →

∫
dDx. And the individual positions of

particles are replace by a field, qa → φ(x). This field can further be general-
ized from functions to differential forms, which will be the main type of field
considered in this thesis. We end up with the final form of the Euclidean
partition function;

Z =

∫
Dφe−S(φ). (6.20)

This is the form of partition function we will look at in the final chapter.
However, let us first take a look at an example with a partition function
where the fields are differential forms.

Example 26. An example of such a partition function where our fields are
differential forms can for instance be the following action of abelian Chern-
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Simons theory [15]

S(α) =

∫
M3

α ∧ dα (6.21)

where α ∈ Ω1(M3). Here we can then think α as a field. The Partition
function then takes the form

Z =

∫
Dαe−S(α) (6.22)

Since we are only doing a one-loop computation, we can evaluate the result
using some useful integral results used in QFT and QM:

I1 =

∫
dx1 . . . dxn exp(−

∑
ij

xiSijx
j) ∝ 1√

det(S)
, (6.23)

I2 =

∫
dx1 . . . dxndy1 . . . dyn exp(−

∑
ij

xiAijy
j) ∝ 1

det(A)
. (6.24)

Then evaluating the path integral using I1, we get

Z =

∫
Dαe−S(α)

∝ Vol(Z1)

Vol(G)

1

det(d : Ω1
d†
→ Ω2

d)
1
2

.
(6.25)

Where Ω1
d†

denotes the set of coexact 1-forms, and likewise Ω2
d is the set of

exact 2-forms. The Vol(Z1) arises from∫
Dαe−S(α) =

∫
Z1

Dα
∫

Ω1
d†

Dαe−S(α)

= Vol(Z1)

∫
Ω1

d†

Dαe−S(α),

as S(α) is independent of the closed part of α. You can think of Vol(Z1) as
the volume of the space of all the closed 1-forms sitting on the manifold. This
is, in fact, something that is not only infinite but also infinite-dimensional.
This is why we have this Vol(G) that we use to cancel out these other vol-
umes. Vol(G) can be thought of as the “volume of all gauge-symmetries”(see
below). We will see below how to rewrite (6.25) in terms of determinants of
Laplacians.

Similar partition functions to this is what we will see in the last chapter.
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Remark. The “proportional to” symbol will be substituted with an equality
sign when doing the one-loop computations of the partition functions later.
An overall scaling of the partition function is irrelevant.

6.3 Gauge symmetry

(Based on [3] chap. 1.8)
Gauge theory has to do with geometry and symmetry. In today’s the-

oretical physics, basically, every branch is a gauge theory. EM, QM and
QFT are some examples of gauge theories, and even GR can be described
as a gauge theory. One of the main principles within gauge theory is that
the “physics should not depend on how one chooses to describe it”[3]. For
instance, choosing a different set of coordinates or different reference frames
are things that should not affect the physics in any way.

In EM, for example, we could describe the electromagnetic field tensor
F as F = dA, where A ∈ Ω1 is the electromagnetic potential. However,
we are free to do a so-called gauge transformation. Instead of choosing the
electromagnetic potential to be A, we could do the following gauge symmetry
transformation:

A→ A+ dφ (6.26)

Where φ ∈ Ω0. We see that this other potential leaves the electromagnetic
field tensor invariant;

F = d(A+ dφ) = dA+ d2φ = dA. (6.27)

As the physics (i.e. Maxwell’s equations) is given in terms of F , we see that
(6.26) will not affect the physics, i.e. it is a gauge-symmetry. Gauge theories
are, in principle, field theories where the forces that arise in the theories are
related to such symmetries. Like in particle physics, one describes the forces
that are acting between the particles as fields. If a theory is invariant under
some gauge transformation of the fields, we say that it is gauge invariant.

Example 27. Let’s have a look at a Topological field theory that will be
gauge invariant. We take M4 to be a 4−dim manifold that is compact and
orientable we have α ∈ Ω1 and χ ∈ Ω2 as our fields. We can then have a look
at the following theory

S =

∫
M4

α ∧ dχ. (6.28)

We notice that here we can do a gauge transformation of χ that will leave S
invariant. We can perform the following gauge transformation

χ→ χ+ dκ (6.29)
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where κ ∈ Ω1. Here we also have a gauge of gauge transformation, where

κ→ κ+ dψ, (6.30)

with ψ ∈ Ω0. Hence when looking at the theory, we don’t have to require
the field χ to be exactly the same over the manifold, but it might transform
according to the transformations above.

In example 26 and 27 the field transformations of α that preserves the
action, or gauge-transformations are

Z1 = H1 ⊕ dΩ0.

dΩ0 is the set of all globally exact 1-forms, while H1 are only locally exact
(by Poincaré lemma). In the local field theory, we usually only take the
globally exact forms dΩ0 as our actual gauge transformations, while H1 is
more related to global topology, equation of motion, and classical invariants.



Chapter 7

Topological field theory

We have now spent almost the entire thesis on developing a framework that
makes us able to do an explicit one-loop computation of a partition function.
The final ingredient is Zeta-regularised determinants. In mathematics and
physics, one will sometimes run into infinities that one needs to deal with. In
mathematics, for instance, one might wish to study ill-defined or divergent
series that give infinities. Or in physics, for instance, in QFT, one runs into
infinities when evaluating path integrals. One often takes advantage of the
famous Riemann Zeta function to handle these infinities. Our answer to the
partition function will be in terms of determinants of the Laplacian operator,
which will be equivalent to an infinite product of the eigenvalues. I.e. it will
diverge; hence one will have to use some type of regularization, and that’s
why one chooses to define the zeta regularized determinants. Now we will not
do the explicit regularization for the final theory to get an explicit number
out since that could have been a thesis on its own. Instead, we will only
discuss regularization and show a simple example.

The theory we will look at will be over a six-dimensional manifold. This
computation is inspired by String Theory. For String Theory to work, we
need ten dimensions. Therefore in String Theory, we decompose the ten
dimensions into four-dimensional spacetime and compactify the last six di-
mensions to a so-called Calabi-Yau manifold. So the partition function we
will be looking at over a 6-dimensional manifold will be related to these six
dimensions that one meets in String Theory.

Before we continue, we want to briefly mention more specifically what it
means for a field theory to be topological. The theories we will look at will
be in the form

S =

∫
X

α ∧ dβ,

where α and β are differential forms representing our fields. We see that

73
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this action is completely independent of any metric. For a topological field
theory, all quantities extracted from the action should be topological and
independent of the metric. In chap. 5 we discussed that we need a metric for
technical reasons in the computation of the partition function. A metric is
also needed to define the adjoint to the exterior derivative: d†, which appears
in the partition function. Since our theory is topological, it is independent
of the metric we choose, but we need to choose one. This is what topological
means in our context.

If we however take a look at the Einstein-Hilbert action [16] in GR:

S =

∫
dx4
√
−gR,

we see that this action depends heavily on the metric. As mentioned in
chap. 5, GR is a theory about the geometry and curvature of spacetime, so
the metric plays the primary role in the theory.

We also mention that the computations in this chapter can be formalised
through the BV-BRST formalism [17], [18]. This level of rigor is, however,
not required for the one-loop computations in this thesis and might even
serve to obscure the results.

7.1 Zeta regularised determinants

(Based on [19] Appendix B)
Here we will briefly discuss the zeta-regularized determinants just to get

a glimpse at how this type of regularization works. In the computations of
partition functions that will follow later in the chapter, we will get answers in
terms of the determinants of the Laplacian. This will be equivalent to an infi-
nite product of the eigenvalues. I.e. the answer will be infinite. However, us-
ing zeta-regularisation, one can extract meaningful finite answers from these
infinite products. We begin by looking at the Riemann Zeta function.

The Riemann Zeta function is one of the most famous functions in all
of mathematics and is host to many problems that are still unsolved today.
The most well-known being the millennium problem of the Riemann Hy-
pothesis. The Riemann Zeta function, also sometimes denoted as the Euler-
Riemann Zeta function, is defined as follows. For an increasing sequence
A = {a1, a2, . . . } of positive real numbers, the Riemann Zeta function is
defined as

ζA(s) =
∞∑
n=1

1

asn
=

1

as1
+

1

as2
+

1

as3
+ . . . (7.1)
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where s is a complex variable. It takes this form when Re(s) >> 1, but
by analytic continuation, it can be extended to being analytic over the en-
tire complex plane C. This function is important both within mathemat-
ics, physics, and even statistics. If one lets s = 1 and the sequence to be
B = {1, 2, 3, . . . }, then this is the famous harmonic series that is well known
for being divergent. For real numbers much larger than 1 the series will con-
verge to some finite number. If one lets the sequence be equal to the natural
numbers, B = {1, 2, 3, . . . } = N and choose s = −1 we get the following
divergent form of the zeta function ζB(−1) = 1 + 2 + 3 + . . . , which have the
famous result ζ(−1)N = − 1

12
for the analytically continued function. The

zeta-regularised product of a sequence A is defined as

exp(−ζ ′A(0)), (7.2)

where the prime here denotes the derivative w.r.t. the complex variable s.
It is easy to see that this becomes the products of the elements the sequence
A when A is finite.

If we have a vector space V and some operator O : V → V with
non-negative discrete real eigenvalues only, then one can define the zeta-
regularised determinant as:

d̃etO := exp(−ζ ′A(0)). (7.3)

Here the tilde is just to show that we are working with the regularised
determinant, and A is the sequence of eigenvalues. A useful identity when
it comes to computations is that if P : V → W where P is an operator, we
have formally that

| detP | := (detP †P )
1
2 . (7.4)

Omitting the zero eigenvalues, we also have the following formal identity

detP †P = detPP †. (7.5)

Here P † : W → V is the adjoint of P assuming a suitable inner-product. If
we have two operators P,Q : V → W that satisfy PQ = QP = 0, one can
show formally that

det(P +Q) = det(P ) det(Q) (7.6)

These formal results will come in handy when we look at the determinants
of the Laplacian on differential forms.

Recall that the Laplacian was defined as ∆ = d†d + dd†. We have men-
tioned earlier that our result of the partition function will be in terms of
determinants of the Laplacian. The reason to write the result in terms of the
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Laplacian is that it is positive (semi-)definite and elliptic [20]. This means it
has a discrete set of non-negative eigenvalues on a compact manifold, with
a finite-dimensional eigenspace at each level. Hence we can regularize its
determinant. We will ignore the zero-eigenvalues when computing det(∆).
These are related to harmonic forms, cohomologies, and classical invariants.
Recall, from Hodge decomposition, we have that

Ωp = Hp ⊕ dΩp−1 ⊕ d†Ωp+1. (7.7)

The harmonic forms Hp is the zero eigenspaces of the Laplacian, so these can
be omitted when we compute the regularized determinant of the Laplacian,
d̃et(∆). We formally write it in in the following way, using (7.6)

det(∆) = det(d†d + dd†) = det(d†d)det(dd†). (7.8)

Another useful identity we get by using (7.5) is

det(dd†|p) = det(d†d|p−1). (7.9)

The final identity comes from that the Laplacian commutes with the Hodge
star,

d̃et(∆p) = d̃et(∆n−p), (7.10)

which is true both formally, and for the regularised Laplacian. These iden-
tities and results will come in handy when we do the computation of the
partition function later.

Doing an explicit regularisation of the computations in the upcoming
chapter could, as mentioned, be a thesis on its own. The reason for this
section has been to discuss a possible way of obtaining finite results from the
computations of the partition functions in upcoming sections. The following
is a simple example of regularisation just to get a sense of how it is done.

Example 28. To get a feel for an explicit computation of zeta-regularized
determinants, we take a look at one dimensional manifold equal to the line
segment from 0 to π, where we identify 0 with π, giving the circle S1. In one
dimension the Laplacian is given as ∆ = − ∂2

∂x2
. The eigen-modes between 0

and π can be represented as sine functions, fn(x) = sin(nx), where n ∈ N.

Figure 7.1: Visualisation of the line with modes represented as sine functions.
Identifying the 0 with π gives an isomorphism between the line segment and
S1.



CHAPTER 7. TOPOLOGICAL FIELD THEORY 77

Acting with the Laplacian gives

∆ sin(nx) = n2 sin(nx). (7.11)

Hence the eigenvalues are λn = n2. So the determinant of the Laplacian is

|∆| = Π∞n=1n
2 = (Π∞n=1n)2. (7.12)

Where |∆| is just a short hand notation for the determinant. We denote
|D| =

√
|∆| = Π∞n=1n. Here D is the “square-root” of ∆, i.e. the Dirac

operator. Then we have that

ζD(s) = ζB(s), (7.13)

where B is the sequence above of the natural numbers, B = {1, 2, 3, . . . }.
The regularised determinant of D is then

˜|D| = exp(−ζ ′B(0)). (7.14)

The derivative of the zeta function evaluated at zero is one of the results that
has been explicitly computed for the zeta function and it is [21]

ζ ′B(0) = −1

2
log(2π). (7.15)

Hence we get the following result for the regularized determinant of D

˜|D| =
√

2π. (7.16)

So the regularised determinant of the Laplacian on S1 is

˜|∆| = 2π. (7.17)

7.2 One-loop computation of Partition func-

tion

We have finally got all the tools we need to compute quantum invariants
in terms of one-loop partition functions. Let’s start off by considering the
following toy-model example before moving to the main theory.

Remark. In the computation below there will arise volumes of harmonic and
exact forms related to different differential forms which will be treated as the
same volume, e.g. the action S =

∫
M3
α ∧ dβ will give rise to volumes of

harmonic 1-forms Vol(H1
α) and Vol(H1

β), for which we will think of as equal,
thus writing Vol(H1

α)Vol(H1
β) = Vol(H1)2. The same holds for the other

volumes. These subtleties can be ignored as the volumes will be canceled out
by the volume of the overall gauge group in the end.
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Example 29. Let’s have a look at the following topological field theory

S =

∫
M3

α ∧ dβ, (7.18)

for α, β ∈ Ω1(M3). Recall our useful results from QFT (6.23) and (6.24).
Here we will invoke (6.24)

I2 =

∫
dx1 . . . dxndy1 . . . dyn exp(−

∑
ij

xiAijy
j) ∝ 1

det(A)
.

For our 1-forms α and β we have the following gauge-transformations leaving
S invariant; α→ α + κ1 where dκ1 = 0, and β → β + κ2, where dκ2 = 0.

From Hodge decomposition theorem 4 we have that the set of 1-forms
can be decomposed into: Ω1 = H1 ⊕ dΩ0 ⊕ d†Ω2. Here dΩ0 = B1(M3), the
exact forms. The closed forms is then, Z1(M3) = H1 ⊕ dΩ0.

Z =
1

Vol(G)

∫
DαDβ exp(−S)

=
Vol(Z1)Vol(Z1)

Vol(G)

∫
DαDβ exp(−S)

=
Vol(Z1)2

Vol(G)

1

det(d : Ω1
d†
→ Ω2

d)

(7.19)

det(d : Ω1
d†
→ Ω2

d) := det(d†d : Ω1
d†
→ Ω2

d†
)
1
2 = |(d†d)1

d†
|
1
2 . (7.20)

For the shorthand notation the notation we will drop the subscript, |(d†d)1| 12 .
Here (d†d)n is the operator d†d on n-forms, not to the n’th power. The
partition function we can be written as:

Z =
Vol(Z1)2

Vol(G)

1

|(d†d)1| 12
. (7.21)

Recall that the Laplace operator was defined as ∆ : Ωp(M) → Ωp(M),
where ∆ := d†d + dd†.

Note that if ∆α = 0 =⇒ d†dα + dd†α = 0. This means that α is
harmonic, but if you struggle to see why you can think of the terms as
orthogonal vectors. Hence d†dα = 0 and dd†α = 0. So we have that

0 = (α, d†dα) = (dα, dα) = ||dα||2 = 0 =⇒ dα = 0

0 = (α, dd†α) = (d†α, d†α) = ||d†α||2 = 0 =⇒ d†α = 0
(7.22)
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The determinant of the Laplace operator we can write as:

|∆| = |d†d + dd†| = |d†d||dd†|

since the operators are orthogonal.
The partition function then becomes:

Z =
Vol(Z1)2

Vol(G)

1

|(d†d)1| 12
=

Vol(Z1)2

Vol(G)

|(dd†)1| 12
|(d†d)1| 12 |(dd†)1| 12

=
Vol(Z1)2

Vol(G)

|(dd†)1| 12
|∆1| 12

(7.23)
Now let’s try to rewrite |(dd†)1|. We have that dd†α = λα, for dα 6= 0,

where λ is the eigenvalues. Now this is iff d†dd†α = λd†α, we let γ = d†α,
hence γ ∈ Ω0(M). We then have that d†dγ = λγ, for d†γ = 0. Which means
that we can write (d†d + dd†)γ = λγ, but (d†d + dd†) in this case is just ∆0.
So ∆0γ = λγ. Hence the Partition function becomes:

Z =
Vol(Z1)2

Vol(G)

|(dd†)1| 12
|∆1| 12

=
Vol(Z1)2

Vol(G)

|∆0| 12
|∆1| 12

(7.24)

Let us work out Vol(Z1). From Hodge decomposition we know that Z1 =
H1 ⊕ dΩ0, so Vol(Z1) = Vol(H1)⊕ Vol(dΩ0). We then have a general result
for the volume of an operator O acting on a space A.

Vol(OA) = det(O)
Vol(A)

Vol(Ker(O))
(7.25)

So Vol(dΩ0) becomes

Vol(dΩ0) = det(d : Ω0 → Ω1)
Vol(Ω0)

Vol(H0)
= |(d†d)0|

1
2

Vol(Ω0)

Vol(H0)
= |∆0|

1
2

Vol(Ω0)

Vol(H0)
(7.26)

Continuing with the computation of the partition function;

Z =
Vol(Z1)2

Vol(G)

|∆0| 12
|∆1| 12

=
Vol(H1)2Vol(dΩ0)2

Vol(G)

|∆0| 12
|∆1| 12

=
1

Vol(G)

|∆0| 12
|∆1| 12

(|∆0| 12 )2Vol(H1)2Vol(Ω0)2

Vol(H0)2

=
1

Vol(G)

|∆0| 32
|∆1| 12

Vol(H1)2Vol(Ω0)2

Vol(H0)2
.

(7.27)



CHAPTER 7. TOPOLOGICAL FIELD THEORY 80

We have arrived at the final result of the partition function computation.
In the result, we do not care too much about all these volumes. These
are, in practice, usually factored out by the volume of the overall gauge
group, G. The interesting components are these determinants of the Lapla-
cian. The result we obtained here is a well known result and is often denoted

as TRS = |∆0|
3
2

|∆1|
1
2

, called the Ray-Singer Torsion [22]. The result is still formal

and infinite, but written in terms of elliptic Laplacians, it can be regularised
to a finite number using the methods described above. As we are studying
topological field theories and topological invariants, let us show that this
result is topological.

To show that it is topological we perform a small variation of TRS w.r.t.
the metric. We remember that ∆p : Ωp → Ωp, we then have a result that
a small variation w.r.t. the metric of log(|∆p|) is proportional to dim(Rp),
where Rp is the point-wise vector space of p-form on an m-dimensional man-
ifold. I.e. δg log |∆p| ∝ dim(Rp). See equation (8.5) in [23].

Figure 7.2: Point-wise vector space of 0- and 1-forms on a 3-manifold M

The dimension of R0, which is the point-wise vector space of 0-forms on
our 3-manifold, is dim(R0) =

(
3
0

)
= 1, and the dimension of R1 is; dim(R0) =(

3
1

)
= 3. So then we get:

δ log(TRS) ∝ 3

2
dim(R0)− 1

2
dim(R1)

=
3

2
dim(R)− 1

2
dim(R3)

=
3

2
× 1− 1

2
× 3 = 0

(7.28)
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Hence δ log(TRS) = 0 which means that TRS is topological! It thus defines a
quantum invariant for M3.

7.3 Final theory

For our final computation we want to have a look at the following action
inspired by String theory:

S =

∫
M6

β ∧ dγ (7.29)

where β ∈ Ω2(M6) and γ ∈ Ω3(M6). We quickly observe that Ω2 � Ω3,
therefore we instead look at the following theory:

S =
1

2

∫
M6

(β + γ) ∧ d(β + γ), (7.30)

which when we expand it out gives us;

S =
1

2

∫
M6

β ∧ dβ +
1

2

∫
M6

γ ∧ dγ

+
1

2

∫
M6

β ∧ dγ +
1

2

∫
M6

γ ∧ dβ.

(7.31)

We first observe that the first integral is the integral of a 2- wedge 3-form,
hence a 5-form over a 6-dimensional manifold, which is not a top-form; hence
this integral gives us zero. The same holds for the second integral. However,
here we have a 7-form over a 6-dim manifold, giving us zero. We are therefore
only left with the last two integrals

S =
1

2

∫
M6

β ∧ dγ +
1

2

∫
M6

γ ∧ dβ (7.32)

Applying Stokes theorem and integration by parts for the second integral
we get;

S =
1

2

∫
M6

β ∧ dγ +
1

2

(
γ ∧ β|∂M6 −

∫
M6

dγ ∧ β
)

=
1

2

∫
M6

β ∧ dγ − 1

2

∫
M6

dγ ∧ β

=

∫
M6

β ∧ dγ

(7.33)
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We are left with the original theory, but now we are set to take advantage of
(6.23). So we contemplate the action

S =
1

2

∫
M6

(β + γ) ∧ d(β + γ),

for the (2+3)−form β+γ. This then gives us the following partition function:

Z =
1

Vol(G)

∫
DβDγ exp (−S) (7.34)

Invoking (6.23) the partition function results in,

Z =
Vol(Z3)Vol(Z2)

Vol(G)

1

det(d : Ω2+3 → Ω3+4)
1
2

=
Vol(Z3)Vol(Z2)

Vol(G)

1

|(d†d)2| 14 |(d†d)3| 14
.

(7.35)

Then using Hodge decomposition to expand out Z2 and Z3:

Z =
Vol(H3)Vol(dΩ2)Vol(H2)Vol(dΩ1)

Vol(G)

1

|(d†d)2| 14 |(d†d)3| 14
(7.36)

Let’s now have a look at Vol(dΩ1) and Vol(dΩ2) individually before we
collect terms.

Vol(dΩ1) = det(d : Ω1 → Ω2)
Vol(Ω1)

Vol(Z1)

=
|(d†d)1| 12 Vol(Ω1)

Vol(H1)Vol(dΩ0)

Vol(dΩ0) = det(d : Ω0 → Ω1)
Vol(Ω0)

Vol(Z0)

=
|∆0| 12 Vol(Ω0)

Vol(H0)

=⇒ Vol(dΩ1) =
Vol(H0)Vol(Ω1)

Vol(H1)Vol(Ω0)

|(d†d)1| 12
|∆0| 12

Vol(dΩ2) = det(d : Ω2 → Ω3)
Vol(Ω2)

Vol(Z2)

=
|(d†d)2| 12 Vol(Ω2)

Vol(H3)Vol(dΩ1)
.

(7.37)
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We collect terms and simplify:

Z =
Vol(H3)Vol(H2)Vol(Ω2)Vol(dΩ1)

Vol(G)Vol(H2)Vol(dΩ1)

|(d†d)2| 12
|(d†d)2| 14 |(d†d)3| 14

=
Vol(H3)Vol(Ω2)

Vol(G)

|(d†d)2| 14
|(d†d)3| 14

.

(7.38)

Now we want to express the determinants in terms of the determinants
of the Laplacian.

|(d†d)1| = |∆1|
|(dd†)1|

=
|∆1|
|(d†d)0|

=
|∆1|
|∆0|

(7.39)

In the first equality we multiply with |(dd†)1|/|(dd†)1|, and then rewrite to
get the Laplacian on one forms over Laplacian on 0-forms in the denominator.
Then doing something similar for the other determinants we get.

|(d†d)2| = |∆2|
|(dd†)2|

=
|∆2|
|(d†d)1|

=
∆2

∆1
|(dd†)1| = |∆

2||∆0|
|∆1|

(7.40)

|(d†d)3| = |∆3|
|(dd†)3|

=
|∆3|
|(d†d)2|

=
∆3

∆2
|(dd†)2| = |∆

3||∆1|
|∆2||∆0|

. (7.41)

The Partition function then becomes

=⇒ Z =
Vol(H3)Vol(Ω2)

Vol(G)

(
|∆2||∆0||∆2||∆0|
|∆1||∆3||∆1|

) 1
4

=
Vol(H3)Vol(Ω2)

Vol(G)

(
|∆2|2|∆0|2

|∆1|2|∆3|

) 1
4

=
Vol(H3)Vol(Ω2)

Vol(G)

|∆2| 12 |∆0| 12
|∆1| 12 |∆3| 14

.

(7.42)

Then choosing the Vol(G) = Vol(H3)Vol(Ω2) we obtain our final result

Z =
|∆2| 12 |∆0| 12
|∆1| 12 |∆3| 14

. (7.43)

The Laplacians can again be regularised to a finite answer. Let us then
examine if this is topological: We have looked at a theory over a 6 dimensional
manifold. Point-wise on this manifold;
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Ω3 has dimension
(

6
3

)
= 20,

Ω2 has dimension
(

6
2

)
= 15,

Ω1 has dimension
(

6
1

)
= 6,

Ω0 has dimension
(

6
0

)
= 1.

A small variation with respect to the metric of the Partition function then
gives us:

=⇒ δg log(Z) ∝ (
1

2
· 15 +

1

2
· 1− 1

2
· 6− 1

4
· 20) = 0 (7.44)

Hence the Partition function is topological as expected. This result you can
think of as a six-dimensional version of the Ray-Singer Torsion.

Further discussion on the result

This discussion will require further knowledge than what we have covered
in this thesis. More specifically, knowledge about complex manifolds. For
example, chapter 8 in [3] will give the required background.

Usually, in String Theory, one looks at complex manifolds such as Calabi-
Yau’s, more specifically the three-dimensional complex version, which can be
modeled as a six-dimensional real manifold as we did for our final compu-
tation. For a three-dimensional complex Calabi-Yau, we have the following
Hodge diamond, with the determinants A, B, and C [24] given in figure 7.3.

Figure 7.3: The Hodge diamond for a three-dimensional complex manifold.
Here the numbers pq at each vertex refers to Ω(p,q). The determinant of the
Laplacian splits up into the factors A, B and C according to the figure [24]
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We obtained the result

Z(M6) =
|∆2| 12 |∆0| 12
|∆1| 12 |∆3| 14

. (7.45)

Now we want to express this result in terms of the determinants of a Calabi-
Yau. |∆3| we express in terms of the red determinants, i.e. |∆3| = A4B4C2.
|∆2| we express in terms of the blue determinants i.e. |∆2| = A3B4C. |∆1|
expressed in terms of the green determinants gives |∆1| = A2B2. And finally,
|∆0| = A in terms of the purple determinant. If we then have a look at our
result, we get (squaring to get rid of the square roots);

Z2 =
|∆2||∆0|
|∆1||∆3| 12

=
A4B4C

A2B2A2B2C
= 1. (7.46)

Hence our result is trivial on a Calabi-Yau! We can use this to test if a
manifold X can be a Calabi-Yau or not;

Z(X) 6= 1 =⇒ X 6= CY. (7.47)

Hence X cannot be a Calabi-Yau. So we have a sophisticated method to
check if a manifold X can be a Calabi-Yau. More speculatively, one can
imagine cooking up a similar partition function Z̃(X) which is trivial if X
is complex (but not Calabi-Yau in general). If one then computes this for
the six-sphere S6, and gets Z̃(S6) 6= 1 this would imply that S6 cannot
be complex, solving a famous open problem in differential geometry. This
shows that topological QFT can be a powerful tool to use for distinguishing
manifolds and geometry, in addition to its many applications in physics and
String Theory.
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