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“Prediction is very difficult, especially about the future.”

Danish Proverb



Abstract

Machine Learning has become more and more prominent in our daily lives as the
Information Age and Fourth industrial revolution progresses. Many of these machine
learning systems are evaluated in terms of how accurately they are able to predict the
correct outcome that are present in existing historical datasets. In the last years we
have observed how evaluating machine learning systems in this way has allowed decision
making systems to treat certain groups unfairly. Some authors have proposed methods
to overcome this. These methods include new metrics which incorporate measures of
unfairly treating individuals based on group affiliation, probabilistic graphical models
that assume dataset labels are inherently unfair and use dataset to infer the true fair
labels as well as tree based methods that introduce new splitting criterions for fairness.
We have evaluated these methods on datasets used in fairness research and evaluated if
the results claimed by the authors are reproducible. Additionally, we have implemented
new interpretability methods on top of the proposed methods to more explicitly explain
their behaviour. We have found that some of the models do not achieve their claimed
results and do not learn behaviour to achieve fairness while other models do achieve
better predictions in terms of fairness by affirmative actions. This thesis show that
machine learning interpretability and new machine learning models and approaches are
necessary to achieve more fair decision making systems.
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Chapter 1

Introduction

1.1 Background and Motivation

Presently, we are undergoing both the Information Age and the fourth industrial revo-
lution [1, 2]. The information age has been characterised by the commercialisation of
computer power resulting from technological advances in transistor technology and global
communication technologies [1, p. 30]. The fourth industrial revolution is marked by
growing connectivity and intelligent automation [3]. Modern smart technology, large-scale
machine-to-machine communication (M2M), and the internet of things (IoT) are causing
fundamental shifts in the global production and supply network as old manufacturing
and industrial methods continue to be automated.

In this broader technological advancement, machine learning has become only one
of several fields. In particular, machine learning is replacing manual labour through
automation and robotics, as well as higher-level decision-making by quantifying large-
scale data and applying this information to provide insight to human decision-makers
[2].

The way we do business is changing rapidly. Machine learning is becoming more embedded
into our lives, working behind the scenes in diverse scenarios, from optimising production
yield to recommending products and more. This shift has enhanced awareness about
the implications of using machine learning in numerous processes, as well create more
demand to make machine learning powered decisions more fair and interpretable.

These transformations are required to meet many of the UN-defined sustainability goals,
such as affordable and clean energy, decent work and economic growth, and industry,
innovation, and infrastructure (goals 7, 8, and 9, respectively) [3]. In addition to these
goals, the United Nations has outlined two others: gender equality and reduced disparities,

1
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goals 5 and 10, respectively [4]. In machine learning research, equality and fairness are
consequently receiving a great deal more focus than in the past [5].

Discrimination is when people are treated unfairly because of the groups, classes, or
other categories to which they belong or are seen to belong. In terms of machine learning,
there are many distinct definitions of discrimination [6] and the fairness that one wants
to attain to avoid this prejudice [7].

According to Dressel and Farid [8], a real world example of discrimination in terms of
machine learning is COMPAS (Correctional Offender Management Profiling for Alter-
native Sanctions). A frequently used technique for determining criminal risk. Since its
inception in 1998, it has been used to examine over 1 million offenders. COMPAS uses
137 factors about a person and their criminal history to forecast whether they would
commit a misdemeanour or felony within two years of being assessed.

One would think that ignoring sensitive groups, classes, or other categories would be an
easy method to avoid discrimination. Counterintuitively, omitting sensitive attributes is
insufficient to eliminate prejudice. The discriminatory decision rule is learned indirectly
by the machine learning model from qualities that correlate to the sensitive one [8, 9].
This process is called redlining. The sensitive attribute must be included to penalise the
machine learning model when it discriminates.

The source of bias and discrimination often comes from the data that the machine
learning algorithm is trained on. According to Mehrabi et al. [5] some prominent sources
of bias are

• Historical Bias: Historical bias is the already existing bias and sociotechnical
issues in the world. This affect the data generation process. Imagine trying to make
a decision-making system for accepting people to a certain education institution.
This system looks at data on previous admissions. From this data, it seems that
men dominates studies like engineering. While this data is correct and reflects
the current reality, the question remains on whether the system should reflect this
reality in its decision-making.

• Representation Bias: Lack of representation of certain groups in datasets skew
the dataset from the real-world distribution. This bias arises when the sample
does not reflect the subgroups in the population that we make inference on. A
well known example of this is in image classification, where men, white people and
people from the western world have dominated image datasets. This means that
other ethnicities, especially black women, suffer from discrimination from systems
using image data for training [10].
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• Simpsons Paradox: Bias originating from the analysis of heterogeneous data that
is composed of subgroups or individuals with different behaviours. The best known
example of this bias is from the University of California, Berkeley. Examination of
aggregate data on graduate admissions to the University of California, Berkeley, for
fall 1973 shows a clear but misleading pattern of bias against female applicants. The
problem was that the analysis did not take into account that women tended to apply
for departments that were very competitive and men applied for departments that
were less competitive. When disaggregating the data this relationship disappears
and a small favour towards women was shown [11].

Data, especially big data, is often heterogeneous, generated by subgroups with their own
characteristics and behaviours. The heterogeneity can bias the data. A model learned
on biased data may lead to unfair and inaccurate predictions.

There are currently several challenges in the field of fair machine learning to face. Since
ignoring the sensitive attributes does not help to mitigate bias, one must discover how to
best employ these sensitive attributes to achieve fairness. In the literature, there exists
several statistical and mathematical definitions of fairness. Rather concerning is the fact
that some of these definitions are mathematically impossible to satisfy simultaneously
[12].

As of the time of writing this thesis, there is no gold standard on how to train fairness-
aware machine learning algorithms, and there exists several approaches on how to achieve
this [5]. The goal of this thesis is to explore some of these approaches and see how they
compared to others.

1.2 Objectives

The goal of this thesis is to explore certain models and approaches to achieve fairness-
aware machine learning systems. Specifically, the thesis has the following objectives

• Discover how probabilistic machine learning and graphical models can be used to
model the discrimination process.

• Discover how probabilistic machine learning and graphical models can be used to
quantify uncertainty in the model and its fairness.

• Explore what definitions of fairness are most appropriate for probabilistic machine
learning.
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• How does the probabilistic approach compare to traditional machine learning
methods?

• Are the fair machine learning models explainable?

1.2.1 RQ1: What probabilistic graphical model is most appropriate to model
the discrimination process?

Probabilistic machine learning models come in many different forms. In this thesis
we want to use probabilistic machine learning to model the discrimination and data
generation process. This is explained in further detail in Section 2. At the end, a specific
probabilistic graphical model should be provided.

1.2.2 RQ2: Are the proposed models explainable?

Training a machine learning model to be able to learn decision rules that minimise some
mathematical definition of fairness is one thing, but how does the model use the sensitive
attributes in its decisions? The proposed fairness-aware models should be evaluated in
terms of fairness and explainability as well.

1.2.3 RQ3: Are probabilistic machine learning models cost-effective?

The probabilistic model proposed in this thesis should be compared to baseline methods
to see if there are any benefits in terms of performance, accuracy, fairness as well as
adding the Bayesian perspective to the problem. There should be a statistically significant
increase in accuracy and fairness to justify the additional complexity in computation to
be considered cost-effective. At the end, simulations should be presented with both real
world datasets and synthetic datasets and their respective performance metrics.

1.3 Approach and Contributions

In this thesis, different algorithms and methods have been explored. These have all been
made into a python package for ease of use. This python package has been named Forseti,
named after the Norse god of justice and reconciliation. This python package has several
modules with implemented algorithms. The code and relevant documentation is available
in the following github repository 1, as well as attached to this thesis when submitted.

1https://github.com/bcwein/Forseti

https://github.com/bcwein/Forseti
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Later, the machine learning models are investigated whether they are interpretable.
Feature Importance is calculated and Individual Conditional Expectation Plots are
performed on the models to explain how the models are using the sensitive attributes in
their decision making. This way we hope to gain better insight into how the fair models
change their decision compared to their traditional counterparts.

We find that while models satisfy some definition of fairness, when one looks into the
models decision making, one quickly realise if this increase in fairness scores is due to
reducing model accuracy and predicting randomly or if the model actively uses the data
in its decision making and is trying to learn fairer predictions.

1.4 Outline

In this section we have discussed the broader picture of machine learning and the
current technological and economic developments in the world. Especially how fairness
is becoming evermore important in society as a whole. Through this we have defined
some research questions (RQs) that we want to explore.

In chapter 2 we go into more detail on the related works and previous methods already
developed. We go into detail on how they work and what described the mechanisms
behind them. Chapter 2 serves to give you the necessary background knowledge to
understand the workings in later chapters.

Chapter 3 describes the approach that is used in this thesis. We describe the software
developed and how it is organised, how the experiments have been set up and how you
can set this up on your own system. This chapter gives you the necessary insight to
follow the approach yourself and understand exactly how the work in this thesis has been
done.

Next in chapter 4 we show the results from the approach described in chapter 3. This
includes data exploration, experimental results, presentation of hypothesis tests and
discussion of these results.

Finally in chapter 5 we draw the final remarks. Including what we have found out, what
has been good about the approach and our results and what are the limitations of this
study. And finally, we conclude and propose possible future work.





Chapter 2

Background and Related Work

One of the most cited and comprehensive articles out there for getting to know the field
of fairness in machine learning is the survey paper by Mehrabi et al. [5]. This paper
elaborates numerous concerns about the fairness of the models’ outputs. It serves as a
gateway to a lot of the current research in the field, a lot of which will be summarised in
this section of the thesis.

2.1 Algorithmic Fairness

Many definitions of discrimination exist, and while there is no gold-standard, it is often
defined as an absence of any prejudice or favouritism towards individuals or groups based
on some intrinsic traits [5, 13]. These definitions are core in the many mathematical
definitions of fairness. Some of these are summarised below

Equalized Odds: According to Mehrabi et al. [5], Hardt et al. [14] A predictor Ŷ

satisfies equalised odds with respect to a sensitive attribute A and outcome Y if Ŷ and
A are conditionally independent on Y . i.e.

P (Ŷ |A = 0, Y = y) = P (Ŷ |A = 1, Y = y), y ∈ 0, 1

Equal Opportunity: According to Mehrabi et al. [5], Hardt et al. [14] A binary predictor
Ŷ satisfies equal opportunity with respect to A and Y if

P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1)

7
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Demographic Parity: According to Mehrabi et al. [5], Dwork et al. [15] A predictor Ŷ

satisfies demographic parity if

P (Ŷ |A = 0) = P (Ŷ |A = 1) (2.1)

And many more metrics exist. A challenge is that according to Mehrabi et al. [5], Kleinberg
et al. [12] it is impossible to satisfy some of these fairness constraints. One should therefore
be considerate when using a certain metric. Synthesising these definitions to one gold-
standard remains an open RQ. For this thesis. Demographic parity is especially important
as it is fundamental to the model described in Section 2.6.

Strong Demographic Parity: According to Barata and Veenman [16], this is a parity
score that extends demographic parity by considering fairness throughout the entire range
of possible decision thresholds. It was proposed by Jiang et al. [17]. When learning a fair
classifier to satisfy strong demographic parity, the predictor Ŷ must satisfy demographic
parity for any threshold t and sensitive attribute A

∀t ∈ Ŷ : P (Ŷ ≥ t|A = 0) = P (Ŷ ≥ t|A = 1)

This assumes that the model output Ŷ is a probability or score of belonging to the class
of interest and t is a selected threshold for classifying.

2.2 Methods for Fair Machine Learning

Machine Learning is a large domain, encompassing many subdomains. These include
Classification, Regression, PCA, Clustering, Deep Learning and many more. In this
thesis, the focus will be on fair classification.

Fair Classification: Some of the most important works in the field of fair classification
are summarised by [5]. Of special importance for this thesis is the naïve Bayes approach
for fair classification by Calders and Verwer [9] In this work the authors investigated how
to modify the naïve Bayes classifier in order to perform classification that is independent
of the sensitive attributes. In this paper they measure discrimination by discrimination
score which is defined as

P (C = +|S+)− P (C = +|S−)
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Which assumes that a classifier is fair if the outcome is independent of the sensitive
attribute. i.e., Demographic Parity as described above. The main limitation of this
paper is that the classifier on the non-sensitive attributes is a naïve Bayes classifier. This
means it assumes that all the features are independent. This makes it one of the simplest
Bayesian networks out there as well as scalable since the number of parameters scales
linearly with the number of features. We address this limitation further in Section 2.3.

Other important works are the works of [18] and Dwork et al. [19]. Zafar et al. [18]
introduced new notions on how to define fairness, arguing that the traditional parity
based notion is quite stringent, limiting the overall decision-making accuracy. They tie
in elements from envy-freeness literature in economics and game theory and propose
preference-based notions of fairness.

Dwork et al. [19] provide a simple and efficient decoupling technique, which can be added
on top of any black-box machine learning algorithm, to learn different classifiers for
different groups. Using transfer learning to mitigate the problem of having too little data
on any one group.

Important to this thesis is the work of Choi et al. [20] Which is a follow-up paper to [9].
They have generalised the limitation of the first paper, where a naïve Bayes classifier
was necessary. Their framework can be generalised to any local probabilistic network.
This will be described in more detail in section 3.5. The work of Barata and Veenman
[16] and their development of a fair tree based classifier using strong demographic parity
is also important for this thesis and is described in more detail in section 2.7.

2.3 Probabilistic Machine Learning

In this thesis, we will focus on probabilistic machine learning, therefore a brief introduction
to this field is in place. According to Murphy [21], machine learning is usually divided
into two main types. In Predictive or Supervised learning approach, the goal is to
learn a mapping from inputs x to outputs y given a labelled set of input-output pairs
[21, p. 2]

D = (xi, yi)N
i=1

The second type is the descriptive or unsupervised learning where we are only given
the data itself without labels
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D = xi
N
i=1

here the goal is to find interesting patterns in the data that are inherent to the data itself
without the need for labels. This problem is not as well-defined as the predictive case,
and there is no obvious error metric. The third type is reinforcement learning, where
you let an agent explore a space and reward desired behaviour through a performance or
reward metric.

A common way to perform supervised learning is to treat y as a random variable and
estimate a mapping

f : x→ y

One example of this is Linear Regression. Which maps input vectors x to outputs y

using the following mapping [21, p. 19]

f : y = wT x + ϵ =
N∑

j=1
wjxj + ϵ

and often ϵ is assumed to be Gaussian and the model can be rewritten as

p(y|x, θ) = N (y|µ(x), σ2(x))

One common way to estimate the parameters of a statistical model is to calculate the
maximum likelihood estimate of the model parameters [21, p. 217]

θ̂ = arg max
θ

log p(D|θ)

and for linear regression, minimising the sum of squared errors has an explicit solution
[21, p. 220]

ŵOLS = (XTX)−1XTy

This estimate gives us a point estimate of the model parameters. This is traditionally
what many machine learning algorithms do, take a dataset and calculate the most likely
point estimate of the model parameters. It is reasonable to assume that the model
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parameters that are returned from one dataset are different to the true model parameters,
and it would in many cases be beneficial to know how uncertain the model parameters
are. This is where the probabilistic approach comes in.

In a probabilistic approach, we treat the input data and labels as random variables,
but also the model parameters. After training, we will have a distribution of model
parameters which we can sample from and simulate different realisations of our models.
One example of this is Bayesian Linear Regression

In Bayesian linear regression, the likelihood of y is given by [21, p. 232]

p(y|X, w, µ, σ2) = N (y|µ + Xw, σ2IN)

and using a Gaussian prior distribution since it is a conjugate prior, the posterior becomes
[21, p. 232]

p(w|X, y, σ2) ∝ N (w|w0, V0)N (y|Xw, σ2I)

And we have a full distribution of model parameters, which gives us insight into the
uncertainty of the model. This property is desired for assessing fairness and uncertainty
later in this thesis.

2.4 Graphical Models

A graphical model is a way to represent a joint probability distribution. Nodes represent
random variables and the edges between the random variables represent dependencies,
and the lack of edges means the random variables are conditionally independent [21,
p. 308]. There are many graphical models, and all of them tie probability theory and
graph theory together comprehensively. We describe some different models in this section.

2.5 Bayesian Networks

Graphical models give us a graphical way to represent the joint PDF. It models the
conditional dependencies between random variables. From this graph, we see that the
joint probability distribution of this classifier is

p(y, x1, x2, x3, x4) = p(y)p(x1|y)p(x2|y)p(x3|y)p(x4|y)
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y

x1 x2 x3 x4

Figure 2.1: Bayesian network with 4 features representing the naïve Bayes classifier

2.5.1 Naïve Bayes Classifier: Baseline Method

The naïve Bayes classifier is the simplest Bayesian network, assuming that all features
are independent conditionally on the class variable, hence the name naïve Bayes. This
naïve assumption gives the model few parameters to learn, and it requires little training
data to achieve good performance. From the work by Zhang [22] we know that naïve
Bayes classifiers perform well despite the assumption of independence among features
due to the dependencies cancelling each other out and dependencies distributing evenly
among classes.

According to Ankan and Panda [23, p. 217], assume that we have a dataset X =
(x1, x2, . . . , xN ) with N independent features and k classes Ck that we want to classify
the data to. naïve Bayes does this by modelling the posterior distribution in terms of
the joint probability

P (Ck|X) ∝ P (Ck, X) = P (Ck)
n∏

i=1
P (xi|Ck)

Where the naïve assumption is that P (xi|X \ xi, Ck) = P (xi|Ck) i.e., the features are
mutually independent conditioned on Ck. Different naïve Bayes methods exist for the
assumptions on the priors and likelihoods, i.e. if they are Gaussian, binomial, categorical
etc. The model classifies the data to the class that has the highest posterior probability.

2.5.2 pgmpy: naïve Bayes

We have used the naïve Bayes classifier implemented in pgmpy and is used as a baseline
method in the experiment described in section ??. The implementation in pgmpy
implements a naïve Bayes method and assumes categorical distributions on all parameters.
We calculated the probabilities as conditional probability tables (CPD Tables) using the
MLE estimate from data. I.e. calculating probabilities from the dataset by counting
occurrences conditioned on the class label. For more detail on how this is implemented,
see pgmpy’s documentation 1.

1https://pgmpy.org/index.html

https://pgmpy.org/index.html
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2.5.3 Structure Learning: Hill Climb Search

According to Koller and Friedman [24, p. 811] finding a maximum-score graphical network
evaluated under any decomposable scoring function is NP-hard. Thus, we have to resort
to a heuristic algorithm that attempt to find the best network, but are not guaranteed to
do so. We have used Hill-Climb search which try to find the best graph Gbest by selecting
an initial network G∅, which in pgmpy is a network with no edges. Then we search
through all possible search operations O to the network (delete, add, reverse in pgmpy)
and score them. We perform the change that gives the best score until convergence or
the maximum number of iterations is reached. The algorithm is shown below:

Algorithm 2.1 Hill Climb Searched with Data Perturbation
Input: G∅ = Initial Network, D = fully observed dataset, score = scoring function,

O = search operations, search = search procedure, t0 = initial perturbation size, γ =
Reduction in perturbation size.

Output: Gbest = Best network structure found.
G← Search(G∅, D, Score, O)
Gbest ← G
t← t0
for i ∈ {1, . . . , until convergence} do

D′ ← Perturb(D, t)
G← Search(G, D′, Score, O)
if Score(G : D) > Score(Gbest : D) then

Gbest ← G
end if
t← γ · t

end for

For more information about the algorithm and Hill Climb Search, see [24, p. 816–819]
and the implementation in pgmpy which also adds some parameters like red-listed edges
and non-changable edges.2

2.5.4 Parameter Learning: Expectation Maximization

After we have learned the model structure, we will have to learn the parameters of the
model given its structure. Since we will use a model with latent variables, Expectation
Maximisation is the algorithm of choice. The expectation maximisation algorithm in
general as described by Murphy [21], Bishop and Nasrabadi [25] is as follows:

Consider a probabilistic model in which we collectively denote all the observed variables
by X and the latent variables Z. The joint distribution p(X, Z|θ) is governed by the
parameters θ. We want to maximise the likelihood given by

2https:/Z/pgmpy.org/_modules/pgmpy/estimators/HillClimbSearch.html#HillClimbSearch.
estimate

https:/Z/pgmpy.org/_modules/pgmpy/estimators/HillClimbSearch.html#HillClimbSearch.estimate
https:/Z/pgmpy.org/_modules/pgmpy/estimators/HillClimbSearch.html#HillClimbSearch.estimate
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p(X|θ) =
∑
X

p(X, Z|θ)

Which is not computable, as Z is unknown. Therefore the expectation step is introduced
which is to compute Q

Q(θ, θold) = E[log L(θ; X, Z)]

In the M step we optimise Q w.r.t. θ

θnew = arg max
θ

Q(θ, θold)

this is done iteratively until a certain threshold is achieved. For more details on how
exactly this is implemented in pgmpy, see the documentation.3

2.6 Modelling Discrimination Process

Now that probabilistic machine learning and graphical models have been introduced, it
is time to introduce the work of Choi et al. [20] in more detail. As discussed previously
in this section. There are many sources of bias in data and it is reasonable to assume
that almost all datasets out there is biased Choi et al. [20]. describes a way of learning
fair probability distributions from biased data by explicitly modelling a latent variable
that represents a hidden, unbiased label. In particular, they aim to achieve demographic
parity by enforcing certain independencies in the learned model.

S Df

X D

Figure 2.2: Bayesian network structures that represent the proposed fair latent variable
approach from [20]

In other words, they model the process on how biased datasets are generated. The biased
labels present in the dataset are dependent on the sensitive attributes S and the true
fair labels Df . The latent variable Df is used for decision making on future instances by
inferring P (Df |e) given some evidence.

3https://pgmpy.org/_modules/pgmpy/estimators/EM.html#ExpectationMaximization

https://pgmpy.org/_modules/pgmpy/estimators/EM.html#ExpectationMaximization
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The paper states that any probabilistic model can be used but that this model needs to
satisfy the independence assumptions in the Bayesian network.

2.7 Fair Tree Classifier

The paper by Barata and Veenman [16] has been implemented in this thesis and the
related python module. They introduce a new splitting criterion that evaluates splits
in terms of the Area under curve (AUC) w.r.t. the predicted value and the sensitive
attribute. Assume that we want to learn a classifier f that learns a mapping from features
X and predictor Ŷ which outputs a probability of belonging to the predicted class

f : X → Ŷ

The AUC for this predictor w.r.t. the true labels Y can be calculated as

AUCY (Ŷ , Y ) =
∑

t0∈Y−

∑
t1∈Y+ 1[Ŷt0 < Ŷt1 ]
|Y−| · |Y+|

where Y− and Y+ are the set of indexes for negative and positive instances in the true
labels. 1 denotes the indicator function. The authors calculate the AUC score for the
predicted labels using scikit-learn [26] and the method called roc_auc_score [27]. When
calculating the AUC w.r.t. the sensitive attribute, denoted AUCs the authors have
derived the following formula

AUC(Ŷ , S) = max(1−AUC(Ŷ , S), AUC(Ŷ , S)) (2.2)

The max operator maps the bounds to the range [0.5, 1]. The authors then introduce
the splitting criterion used in their tree algorithm, Splitting Criterion AUC for Fairness
(SCAFF). Which is calculated as

SCAFF (Ŷ , Y, S, Θ) = (1−Θ) ·AUCY (Ŷ , Y )−Θ ·AUCS(Ŷ , S)

Θ is here a hyperparameter of the tree classifier. When Θ = 1 splits are only evaluated
in terms of fairness and vice versa. As is typical with tree learning, the architecture is
learned by evaluating splits at each depth and selecting the split that maximises the
splitting criterion. Other hyperparameters as maximum depth, number of bins etc are
also used.
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2.8 Interpretable Machine Learning

Up until this point in the thesis, we have discussed fair machine learning models and
sources of bias in the data. Another important field in machine learning that is important
regarding fairness is Interpretable Machine Learning. Many methods for fairness rely
on either pre-processing of the datasets to make the datasets more fair or in-processing
methods that change the machine learning algorithm to reduce discrimination during
training [5].

Interpretable Machine Learning methods instead focus on understanding the mechanisms
behind the decision that the machine learning model makes. This way, we can investigate
how the machine learning model uses the data to make a prediction. According to Miller
[28] interpretability is how well a human could understand the decisions in the given
context. The notion of interpretability is domain-specific and depends on the purpose
of the interpretable component in the first place. The higher the interpretability of a
machine learning model, the easier it is for someone to comprehend why certain decisions
or predictions have been made [29].

2.8.1 Example of interpretability

Examples of interpretable machine learning models are Linear Regression, Logistic
Regression and Decision Trees among many others. Linear Regression is especially
interpretable, as we shall describe in this section. According to Molnar [29], linear models
can be used to model the dependence of a regression target y on some features x. The
learned relationships are linear and can be written for a single instance i as follows

y = Xβ + ϵ

Where β1 is the weight associated with feature X1. These weights can be interpreted in
several ways depending on the nature of the feature.

• Numerical Features: Increasing the feature by a unit of one increases the estimated
outcome by βi.

• Binary Feature: Changing the binary feature form the reference category to other
category increases the outcome by βi

• Categorical Feature: Create dummy variables. Interpretation of each dummy
variable is the same as for binary features.
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As you see, linear regression models are structured in such a way that it is easy to
explicitly describe how the predictions of the models are made. Other models are also
interpretable, which is described in more detail by Molnar [29].





Chapter 3

Approach

3.1 Overall Approach

To answer the three RQs mentioned in section 1.2 we want to compare some models
find in literature. Mainly the fair Bayesian network and the fair tree classifiers. These
should be evaluated on datasets used in machine learning research. We then will perform
experiments evaluating the performance metrics of the models, as well as new performance
metrics reflecting fairness. After collecting the data on the performance of the models,
hypothesis testing will be done to evaluate whether the differences are significant.

3.2 Python Code Repository: Forseti

We manage the code through GitHub, a python module named Forseti as well as some
Jupyter notebooks. In figure 3.1 the structure of the module is shown. It has the following
modules:

• Bayesnet: This module contains classes of Bayesian networks.

• Datasets: This module contains functions for generating synthetic datasets.

• Datproc: Data processing module.

• Fairness: Fairness metrics and fairness reports.

• Tree: Tree based methods and classifiers.

19
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Figure 3.1: Setup of Forseti Python Module

The code and its documentation is available at GitHub1. The aim of organising the code
in such a way was to make it as easy as possible to let others run the code on their own
systems. How to do this is described in the next section.

3.2.1 Setup

The environment used in Forseti is available in the file environment.yml and one can
setup the environment using Anaconda. See the documentation 2 on how to do this.

If one prefers to not use anaconda, the necessary packages are as follows:

• Python

• Pytest

• Black

• Jupyter
1https://github.com/bcwein/forseti
2https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.

html#creating-an-environment-from-an-environment-yml-file

https://github.com/bcwein/forseti
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
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• ipykernel

• Pandas

• Seaborn

• pip

• pgmpy

3.3 Data Exploration and Selection

For this thesis, exploration of approaches to achieve fairness and interpretability in
machine learning algorithms is the goal. The Adult dataset 3 was selected for this topic.
Before beginning on implementing machine learning methods and experiments, some
preliminary data exploration is in order.

3.3.1 Adult Dataset

To select the features of interest and as an initial data exploration. We will investigate
the correlation between the features and the dependent variable income. Since almost all
the attributes are categorical, we calculate correlation using dummy variables. Which
means, transforming categorical attributes to columns of binary attributes. We then
explore which dummy variables have the highest absolute correlations. We interpret the
weight of each variable as the absolute sum of its dummies.

3.3.2 COMPAS Dataset

The COMPAS dataset contains records for defendants from Broward County indicating
their jail and prison times, demographics, criminal histories and COMPAS risk scores
from 2013 to 2014 [5]. This dataset is high dimensional with a mix of categorical,
numerical and date time columns. For this thesis, the focus has not been to implement
the best model out there, but rather compare the fairness between models. Therefore,
we have limited ourselves to the following attributes when training our algorithms

• Sex: Gender of individual (binary)

• Age: Age of individual (positive integer)
3https://archive.ics.uci.edu/ml/datasets/adult

https://archive.ics.uci.edu/ml/datasets/adult
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Figure 3.2: Visualisation of overlapping groups.

• Race: Ethnicity of individual (6 categories)

• Priors Count: Prior Crimes (positive integer)

• Juvenile felony count: Felonies as a juvenile (positive integer)

• Juvenile misdemeanour count: Misdemeanours as a juvenile (positive integer)

• Juvenile other count: Other charges as a juvenile (positive integer)

• Charge degree: Degree of current charge (binary)

• Two year recidivism: Whether individual reoffended within two years (binary)

We selected these attributes mainly due to these being the only attributes in the dataset
that are not recorded after rearrest and were not in a date time format. The point is not
to make the best performing classifier, but to compare classifiers with regard to fairness.

3.4 Metric for fair machine learning

Using demographic parity as described in equation 2.1 is the metric of choice for evaluating
the model fairness in this thesis. The main reason for this is that the metric does not
assume that the dataset labels are fair. Demographic parity is appropriate to use when
we want our predictions to be more in line with a state of nature that we want to see
in the world and when we are aware of historical biases that affect the data. 4. In the
case of the adult dataset described in section 4.1, we have the binary sensitive attributes
gender and the categorical sensitive attribute race, both of which are known to experience
discrimination in income.

4https://bit.ly/3Ko10sL

https://bit.ly/3Ko10sL
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A challenge when working with multiple sensitive attributes and multivariate sensitive
attributes is that you get overlapping groups. See figure 3.2 for an example. There we
see that we have the binary attribute Gender and the categorical Race we have several
subgroups, i.e., Black Women, White Male etc. An algorithm can be independently
group fair when you calculate fairness for each sensitive attribute independently, and/or
intersectional group fair when you calculate fairness for all subgroups [30]. In this thesis,
we use both approaches to calculate parity.

3.4.1 Scoring Function: Demographic Parity Score

We defined a new scoring function based on demographic parity in equation 2.1, where
Ŷ is the predictor and S the sensitive attribute. This equation can be generalised to the
case where we have a categorical sensitive attribute with K classes.

P (Ŷ |Si) = P (Ŷ |Sj) i, j ∈ {0, . . . , K − 1}, i ̸= j

When calculating the probabilities, we want to condense these probabilities to a single
metric between 0 and 1. I.e, when we have the likelihood of a positive outcome for the
different classes of a sensitive attribute in a list of probabilities L like so

L = {P (Ŷ = 1|S = 0), . . . , P (Ŷ = 1|S = K − 1)}

We want a function f that takes such a list and maps it to a real number between 0 and
1

f : L→ [0, 1]

It is important that this function works for a list of likelihoods of arbitrary length,
since we want to evaluate demographic parity for both binary and categorical sensitive
attributes as well as all intersections of the sensitive attributes. Given the definition
of demographic parity, we want the likelihoods to be as equal as possible. The scoring
function derived is shown below

f = 1− 2σ(L)

where σ denotes the standard deviation. We plotted the scoring function in figure 3.3.
The scoring function receives a list of two probabilities which slowly diverges from being
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L f

[0.5, 0.5] 1
[0.6, 0.7] 0.9
[0.6, 0.8, 0.4] 0.67
[0, 1, 0, 1] 0

Table 3.1: Example of values of f given different lists of likelihoods.

Figure 3.3: Scoring function for a list of two diverging probabilities

equal at 0.5 to the complete opposite, i.e [0, 1]. When the probabilities are equal, the
score is 0 and if they are very different, the score is 0. See the examples of scores in
table 3.1

3.5 Fair Bayesian Network

Based on the fair Bayesian network described by Choi et al. [20], the following algorithm
was derived.

This method uses two methods implemented in pgmpy [31]. These are Hill Climb
Search for learning the structure which is described in section 2.5.3 and Expectation
Maximisation which is described in section 2.5.4. The resulting Bayesian network on the
adult dataset is shown below in figure 3.4.

Inference has been performed by evaluating P (F |A, E, Re, C, M, W, H, O) on a test
dataset of unobserved labels.
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Algorithm 3.1 Latent Label Classifier Training
Input: D = Training Dataset, S = Sensitive Attributes, L = attribute to predict. t =

tolerance for expectation maximisation.
Output: M = Trained Bayesian network.

Set of blacklisted nodes: B = {(x, y) ∀x ∈ D.columns, ∀y ∈ S}
M .structure = HillClimbSearch(D.columns \L, B)
M.structure∪{(x, L) ∀x ∈S}
initialise fair node F
M.structure∪{(F, x) ∀x ∈ D.columns}
M.structure∪{(F, L)}
M.parameters = ExpectationMaximisation(M .structure, D)
return M

R G F

CReEA M W H O I

Figure 3.4: latentFairClassifier trained on Adult Dataset. The nodes are R: race, G:
gender, F : latent fair labels, A: Age, E: Education, Re: Relationship, C: Capital gain,
M : Marital Status, W : Work class, H: Hours-per-week, O: Occupation and I: Income.

3.6 Fair Tree Classifier

The fair tree classifier, described in detail in section 2.7. Barata and Veenman [16] kindly
provided their code on GitHub, which made implementing this over to Forseti a bit easier.
The code is available in their repository5. We added their decision tree classifier and
fair random forest classifier classes to Forseti and train and test the models on the same
datasets as the fair tree classifier.

5https://bit.ly/3x937Nr

https://bit.ly/3x937Nr
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3.7 Experiment 1: Test Models on COMPAS and Adult Dataset

After implementing the Fair Bayesian Network and the Fair Tree Classifier. We wanted to
evaluate the models on the Adult Dataset and COMPAS Dataset. To evaluate the models
we had to choose some performance metrics. A combination of traditional performance
metrics and a fairness score was desired. The fairness score used is the one described in
section 3.4.1. For the traditional metrics there were several pros and cons for each of
them. We will go through each one of them and explain the motivation for using that
particular scoring method.

3.7.1 Accuracy

We use the accuracy score as implemented in Scikit-Learn. Which follows the following
formula

A(y, ŷ) = 1
nsamples

nsamples−1∑
i=0

1(ŷi = yi)

Accuracy is a very intuitive coring function for predictions, as it can be interpreted as
the ratio of correct classifications. The problem with accuracy as a scoring function is
when datasets are imbalanced, the scoring function also suffers and are biased toward
the most prominent class.

3.7.2 Balanced Accuracy

Balanced Accuracy is calculated as follows

BA(y, ŷ) = 1∑
ŵi

∑
i

1(ŷi = yi)ŵi

where ŵi is sample weight of the i-th sample and the weight is adjusted to

ŵi = wi∑
j 1(yj = yi)wj

Balanced Accuracy is equal to the arithmetic mean of the sensitivity and specificity in
the binary case. Since this accuracy score scales with imbalanced datasets it gives a
more clear picture of how well the classifier performs and adjusts if the classifier takes
advantage of the imbalance.
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3.7.3 F1 Score

The F1 score is defined as the harmonic mean of precision and recall and thus reflect. We
chose to add F1 score as it is a commonly used score in machine learning and the score
reflects how well the model is able to maximise precision and recall and not have a huge
disparity between them. One challenge with F1 score is that it ignores true negatives.

3.7.4 Specificity

And lastly, we calculate the specificity (true negative rate). Which is calculated from the
confusion matrix as follows

TNR(ŷ, y) = TN

N

We mainly chose this metric since F1 score ignores true negatives and by having this in
our fairness report we have some information with regard to true negatives.

3.7.5 ROC Curve

We also want to calculate the ROC curve and plot it to see the threshold independent
performance of the model. This requires us to also get the predicted probability of
positive outcome for the models. When we have the predicted probabilities and the true
class labels. We use the different probability scores as thresholds, sort them and calculate
the TPR and FPR for each probability score and plot TPR with FPR to produce the
ROC curve. We use the method plot_roc_curve in sklearn.

3.7.6 Model Selection

For the first experiment, we also want to compare our fair models with some baseline
models. Additionally, we want to explore the hyperparameter-space of models that have
hyperparameters. This led us to the following models to evaluate

• FairBN : Training a Fair Bayesian Network and doing inference on the latent fair
variable.

• IncomeBN : Same model as FairBN. prediction is done on the variable Income
instead of the latent fair attribute.
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• NBSens is a naïve Bayes classifier trained on all of the attributes available.

• NB is a naïve Bayes classifier trained on the dataset without the sensitive attributes.

• FRFC03 : Fair Random Forest classifier with Θ = 0.3

• FRFC05 : Fair Random Forest classifier with Θ = 0.5

• FRFC07 : Fair Random Forest classifier with Θ = 0.7

naïve Bayes with and without serves as the baseline method. Removing the sensitive
attributes serves as a first attempt at achieving fairness by not allowing the model to
explicitly use the sensitive attributes for prediction. We expect to see that the fair
machine learning methods performs better in regard to fairness to the naïve Bayes model.
Otherwise, there is no reason to use the fair methods. The results of the first experiment
are shown in section 4.2.

3.8 Experiment 2: Performance on synthetic dataset and com-
parison of performance metrics.

3.8.1 Motivation for experiment

The results in the first experiment shed some light on the challenge of calculating
fairness. The fair Bayesian network classifier got higher parity scores as expected but
for the random forest classifier, unexplained behaviour of the model with respect to the
hyperparameter was observed. Since the parity score used in this experiment is a new
and self proposed metric of fairness, this should be investigated further to evaluate its
validity.

Barata and Veenman [16] claim that they have made a classifier able to give more fair
predictions, and using a hyperparameter Θ that give more accurate predictions when
Θ → 0 and more fair predictions when Θ → 1. We fail to reproduce these results
when calculating parity score for the models. The authors themselves do not calculate
intersectional parity score, but rather AUCS with respect to the individual sensitive
attributes. Due to these observations, we chose to focus on how to calculate fairness
and what are the limitations of the respective fairness metrics for the next iteration of
experiments.

The two models that have been implemented in the first round of experiments, namely
the fair Bayesian network introduced by and the Fair Tree Classifier introduced by.
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These classifiers have two different ways of evaluating fairness that is the motivation
behind their design. In the work of Choi et al. [20] the model was designed in terms of
demographic parity by modelling a Bayesian network in such a way that the sensitive
attributes are independent of the predictions but still used for learning the parameters of
the distribution of fair labels. In the work of Barata and Veenman [16] they use strong
demographic parity as motivation for their model. They implement a tree based method
where splits are evaluated using the threshold-independent measure of AUC with respect
to the labels of the dataset and regularised using AUC with respect to the sensitive
attributes.

3.8.2 Experiment Design

There are some questions that have arisen from the first round of experiments and some
improvements that we wanted to implement. These are

1. Does demographic parity score capture fairness?

2. What other measures of fairness can we introduce that are more well established?

3. How do the different performance metrics used by the different authors compare?

4. Collect enough samples to perform hypothesis testing.

3.8.3 Generating Synthetic Data

To address question 1, we wanted to generate a synthetic dataset where we are in control
of the bias in the data to see how the fairness measures fares. We implemented an
algorithm for generating synthetic datasets with numerical (Gaussian) features as well
as two sensitive features, gender, and race. The dataset can be either informative or
non-informative. If the dataset is informative, the features are dependent on the sensitive
attributes. I.e., there is bias in the data with respect to the sensitive attributes. We
generate the dataset in the following way. The first attribute, gender Gs, is assumed to
follow a Bernoulli distribution

Gs ∼ B(n, p)

where n = 1 and p = 0.5. I.e. we assume that it is equally likely to be a male or female.
The second attribute, Race Rs is assumed to follow a categorical distribution
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Figure 3.5: KDE of the bivariate features of the synthetic dataset..

Rs ∼ C(k, θ)

Which has PMF

fRs(Rs = i) = θi, i ∈ {1, . . . , k}

where θ is a vector of k event probabilities pi. (pi ≥ 0,
∑

pi = 1). We want to initialise
θ randomly and this is done by sampling k numbers from τ which follows the standard
half-normal distribution

τ ∼ |N(0, 1)|

And θ is then calculated by arranging the k samples from τ in a vector and transforming
them to probabilities

θ = (τ1, . . . , τk) · 1∑
τ

The numerical values of the sensitive attributes are mapped to strings using a dictionary
in python. Now that the sensitive attributes are sampled, we will sample the non-sensitive
features. To simulate the discrimination process, we sample the features from Gaussian
distributions that depend on the sensitive attributes. There are 4 numerical features
where the first two depend on the gender and the last two depend on the race. Let’s
denote these features X1, X2, X3 and X4.

We define a separator parameter Θ which is used to model the separation between the
sensitive classes. We sample X1 and X2 the following way conditionally on the sensitive
attribute Gs
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X1|Gs = Female ∼ N(1, 1)

X1|Gs = Male ∼ N(1 + Θ, 1)

And the same for X2. The same principle is used for X3 and X4 but with a slight twist.
There are k races in the dataset and a random sign variable R following the discrete
uniform distribution over the set {−1, 1}.

X3|Rs = k ∼ N(1 + Θ ·R · k, 1)

and the same for X4. Then lastly, to calculate the labels of the dataset we take the sum
of all the numerical features X = {X1, X2, X3, X4} and calculate the median of all the
sums for each data point. If the sum is above the median, it gets labelled 1, otherwise, 0.

This can be summarised in algorithm 3.2

Algorithm 3.2 Synthetic dataset generation
Input: I = Informative. True or false, Θ = Separability, N = Number of samples.
Output: D = Synthetic Dataset.

Sample N samples from Gs ∼ B(1, 0.5)
k = 5
τk = {τ1, . . . , τk} with τj ∼ |N(0, 1)|
θ = τ · 1∑

τk

Sample N samples from Rs ∼ C(k, θ)
Sample NFemale samples from X1 ∼ N(1, 1)
Sample NMale samples from X1 ∼ N(1 + Θ, 1)
Sample NFemale samples from X2 ∼ N(1, 1)
Sample NMale samples from X2 ∼ N(1 + Θ, 1)
for all i ∈ {1, . . . , k} do

Select R uniformly from the set {−1, 1}
Sample Ni samples from X3|Rs = i ∼ N(1 + Θ ·R · i, 1)
Select R uniformly from the set {−1, 1}
Sample Ni samples from X4|Rs = i ∼ N(1 + Θ ·R · i, 1)

end for
t =

∑
X for all data points in the dataset

if t ≥ Median(X) then
Y = 1

else
Y = 0

end if
D = {Gs, Rs, X1, X2, X3, X4, Y }
return D
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3.8.4 Fairness Performance Measure

The performance metric used for the models up to this point is the parity score metric
as described in section. 3.4.1. This score is based on the notion that the likelihood of
positive outcome is independent of the sensitive attributes. There is another measure
that is similar to this. That is Kullback-Leibler divergence. Which according to MacKay
et al. [32] is calculated as

DKL(P ||Q) =
∑

x

log P (x)
Q(x)

Kullback-Leibler divergence is a measure of how different two distributions P and Q

are. It is not strictly a metric as it is not symmetric and is instead a divergence. While
metrics are symmetric and linear in distance, divergences are asymmetric and generalise
square distance. For our work, we want to use Kullback-Leibler divergence as a measure
of unfairness. The general idea is that we want P and Q to denote different distributions
conditional on sensitive attributes. Assume that we have a dataset with model predictions
Y and a binary sensitive attribute S. Then we define

P ∼ Y |S = 0

and

Q ∼ Y |S = 1

Under demographic parity, we want Q ⊥⊥ P, S and thus a Kullback-Leibler Divergence
of 0. Kullback-Leibler Divergence is limited to two distributions, though there are
generalisations. For this round of experiments, we limit ourselves to the binary case and
calculate the divergence in the binary cases and compare them to the other metrics.

3.8.5 Hypothesis Tests

We want to perform hypothesis testing on the performance metrics of different models.
Assume that we have samples of an unspecified performance metric for two different
models trained on the same dataset. Let us denote the two distributions X and Y .

We have chosen to use non-parametric hypothesis tests, as we do not want to make
assumptions on the kind of distribution the samples have. Since the samples are of model
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Hypothesis H0 H1 α

FairBN (Y ) has a better intersectional parity score than
naïve Bayes (X) without sensitive attributes

X = Y X < Y 0.01

FRFC (Y ) has a better intersectional parity score than naïve
Bayes (X) without sensitive attributes

X = Y X < Y 0.01

FairBN (Y ) has a better intersectional parity score than
FRFC (X)

X = Y X < Y 0.01

FairBN (Y ) has a better KLD w.r.t. Gender than FRFC
(X)

X = Y X > Y 0.05

Table 3.2: List of hypothesis

performance of two machine learning models trained on the same dataset, the samples
will be dependent on each other. We therefore select the Wilcoxon signed-rank test as
the testing method of choice. This test was introduced and named after Wilcoxon [33].
The Wilcoxon signed-ranked test calculates the differences between the ranked samples
and test whether or not the differences are symmetric around zero. We will test the
following hypotheses, shown in table 3.2.

3.8.6 Experiment Setup

We ran 100 synthetic dataset generations and trained the models on the synthetic datasets
and evaluated them on a test dataset. For each iteration the train-test split is 70% for the
training set and 30% for the test dataset. We calculated the same performance metrics
as in the first experiment. Additionally, we also introduce Kullback-Leibler Divergence
w.r.t. Gender.

After the performance metrics have been calculated and collected. We will visualise the
distributions of the performance metrics as well as the correlation between parity score,
KL Divergence and AUC score. The results are shown and discussed in section 4.3

3.9 Experiment 3: Interpretable Machine Learning

We have been able to show that the models we have trained are able to satisfy some
mathematical notion of fairness in their predictions. But we want to investigate this
further. By employing interpretable machine learning methods, we can try to explain
how the model uses the sensitive attributes in their predictions and try to explain their
behaviour.



Abbreviations Chapter 3 Approach

3.9.1 Experiment Design

For this experiment, we want to implement the following in an attempt to explain the
decisions made by machine learning models

• Train a baseline interpretable model and investigate the decision rules it learns.

• Interpret the models that are interpretable by default.

• Use model agnostic interpretable methods for models that are not interpretable.

In the following sections, we will describe the methods chosen to answer the above points.

3.9.2 Interpreting Decision Trees

To address the first point, we want to train a baseline interpretable model. Our choice
landed on Decision Trees. According to Molnar [29] the interpretation of decision trees,
while quite similar for all algorithms, differ by the kind of algorithm for building the tree
is used. The interpretation described here is for the CART algorithm, which is the one
implemented by Scikit-learn [26].

The interpretation of decision trees works as follows: Starting from the root node, you
go to the next nodes and the edges tell you which subsets you are looking at. Once
you reach the leaf node, the node tells you the predicted outcome [29]. To calculate the
feature importance. We calculate the reduction in the split. In our case, we have used
entropy and information gain to evaluate splits which is defined as

IG(T ) = H(T )−
2∑

i=1

ni

n
H(Ci)

Where T is the node being split and Ci is child node i. H denotes Shannon entropy
introduced by Shannon [34]. Go through all the splits for which the feature was used
and measure how much it has reduced the information gain. Scale all the sums to 1,
then you can calculate the share of a features importance as an percentage.

We will do this for the datasets that have been used in the previous experiments to
uncover what attributes are used in the model prediction.
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3.9.3 Interpreting naïve Bayes

As described in section 2.5.1, the naïve Bayes classifier assumes that all features are
mutually independent, conditioned on the class labels. We can therefore interpret the
contributions of the different attributes through the conditional probabilities that the
naïve Bayes classifier has learned [29, p. 142].

The way we have chosen to do this is like so: Assume that a feature Xi in a dataset X

is informative. Then we would expect that the likelihood on Xi is very different given
the class Y

P (Xi|Y = 0) ̸= P (Xi|Y = 1)

In the case that Xi is categorical with k categories. We have a conditional dependency
table on the form


P (X0|Y = 0) P (X0|Y = 1)
P (X1|Y = 0) P (X1|Y = 1)

...
...

P (Xk|Y = 0) P (Xk|Y = 0)


Then we denote the first column P = P (Xi|Y = 0) and the second column Q = P (Xi|Y =
1). We assume that the more informative Xi is as a feature, the difference in these
distributions should increase. To calculate the feature weight we define the weight as

DKL(P ||Q)

This should also be validated using permutation importance to compare the weights.
Introduced by 3.3 is used and is based on the one used by Scikit-learn [26]

This algorithm returns a dataset of importances, as we want to see the distribution of
importances for each feature.

3.9.4 Interpreting Bayesian Networks

Bayesian Networks are to some extent interpretable machine learning models, dependent
on the complexity of the conditional dependencies. Naïve Bayes is an interpretable
machine learning model and is the simplest Bayesian network. It is very intuitive
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Algorithm 3.3 Permutation Importance Algorithm
Input: C = Classifier, D = Test Dataset. K = No of permutations.
Output: I = Dataset of importances.

Compute reference score S on the test dataset D.
for all columns i ∈ D do

for j ∈ {1, . . . , K} do
Permute (shuffle) column Di and denote the corrupted dataset D̃j

Compute score sij on test dataset D̃j

Set Iij = S − sij

end for
end for
return I

for humans to explain how much each attribute contributes, as they are conditionally
independent given the class label. As the complexity of the conditional dependencies
increase, they are more demanding to understand.

In our case, from the fair Bayesian network as shown in figure 2.2. We see that the
sensitive attributes are independent of the true latent dataset labels. Meaning that the
sensitive attributes should not be used explicitly in the prediction. To investigate this, we
want to use the permutation importance algorithm to see how important the features are
for getting accurate predictions. We will also apply counterfactual generation described
in section 3.9.6 on the fair Bayesian network for further interpretability.

3.9.5 Interpreting Fair Random Forest

Random Forests are not interpretable as the many different trees used for predictions are
not immediately intuitive to explain, and in many cases so many that the interpretation
is incomprehensible in human terms. Therefore, one has to resort to model agnostic
interpretability methods if one wants to gain some insight. We have chosen to use feature
importance here as well in an effort to understand the model.

There is one challenge with the approach by Barata and Veenman [16], and that is the fact
that the sensitive attributes are only used during training of the model. Meaning that one
cannot infer how the model uses the sensitive attributes neither using the permutation
importance method nor counterfactual generation. We will resort to investigating how
the model uses the non-sensitive attributes in their prediction to investigate how the
model achieves fairness.
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3.9.6 Counterfactuals

According to Molnar [29], a counterfactual explanation should describe the smallest
change to the feature values that changes the prediction to a predefined output. In our
case for the Adult and the COMPAS dataset, we want to generate the smallest changes
to get a positive outcome (being classified as high income or not likely to reoffend).
Counterfactuals should follow these criteria

• Counterfactuals should be as similar as possible to the instance regarding feature
values.

• Counterfactual instances should have feature values that are likely.

• Change as few features as possible.

Various methods exist for generating counterfactuals, while we will get inspiration from
the method proposed by Dandl et al. [35], specifically the NSGA-II algorithm introduced
by Deb et al. [36]. We want to generate counterfactuals that satisfy the following
objectives

o1(f̂(x), Y ′) =


0 iff̂(x) ∈ Y ′

inf
y′∈Y ′

|f̂(x)− y′0|, else

Which is the distance between the desired prediction y′ and the predicted value f̂(x).
The second objetive o2 reflect that counterfactuals should be as equal to the instance x

that we want to flip the prediction for

o2(x, x′) = 1
p

p∑
j=1

Ixj ̸=x′
j

Which uses the indicator function, as the models implemented in pgmpy uses categorical
data. Numerical values are also categorical as they are discretised. Next, we introduce
o3 which measures the amount of features that have been changes.

o3(x, x′) = ||x− x′||0 =
p∑

j=1
Ixj ̸=x′

j

Lastly, we want the counterfactual to have attributes that are likely to occur. We measure
this by searching for the closest sample in the training dataset and calculate the distance
between the candidate and the closest point.
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o4(x′, Xobs) = 1
p

p∑
j=1

I
xj ̸=x

[1]
j

And we try to minimise all these objective functions at once. To do this we will have to
resort to a genetic algorithm as we do not want to collapse the four objectives into one
but optimise all at the same time.

3.9.7 Nondominated Sorting Genetic Algorithm: NSGA-II

The NSGA-II algorithm introduce by Deb et al. [36] works as a four step iterative
algorithm. The steps are as follows:

Initially, we generate a parent population that consists of N number of mutated copies
of x, the data point we want to change the outcome for. The mutations in the beginning
are quite extensive so that we explore the optimisation space thoroughly. Then, we use
fast-non-dominated-sort algorithm [36, p. 184] to rank the population into frontiers.

Then, we add each frontier in decreasing order into the new population Pnew until there
is no room to add the next frontier. Then we apply the crowding-distance-assignment
method to add the remaining number of slots from the last frontier into Pnew [36, p. 185]

We then have a new population P = Pnew and we create a new generation R which
consists of mutated samples from P . We then rank R ∪ P using nondominated sorting
and reiterate the steps above until the specified amount of iterations is completed.

The code for NSGA-II is added to the classes interpretableNaiveBayes and latentLabel-
Classifier as a method in Forseti.
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Experimental Evaluation

4.1 Adult Dataset Data Exploration

• Age: The age of the individual (Positive integer)

• Work class: The sector the individual works in (8 Categories)

• fnlgwgt: A weight determined by the census bureau (Positive integer)

• Education: Highest educational degree (16 categories)

• Educational-num: Enumerated education (16 categories)

• Marital Status: Marital status of individual (7 Categories)

• Occupation: General type of occupation (15 categories)

• Relationship: What kind of relationship the individual is to others (6 categories)

• Race: What race the individual belongs to (6 Categories)

• Gender: Biological sex of the individual (2 Categories)

• Capital gain: Capital gain of individual (Positive integer)

• Capital loss: Capital loss of the individual (Positive integer)

• Native country: Native country of the individual (42 categories)

• Income: Whether individual makes more than 50K or not (2 Categories)

This dataset consists of mostly categorical attributes which are not ordinal. This makes
analysis quite challenging. Many models assume Gaussian distributions, which is not

39
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Attribute Correlation

marital-status.Never-married -0.318782
relationship.Own-child -0.225691
relationship.Not-in-family -0.190372
occupation.Other-service -0.155254
relationship.Unmarried -0.143642
education.HS-grad -0.130706
race.Black -0.090448
education.11th -0.086728
occupation.Adm-clerical -0.086475
relationship.Other-relative -0.085601

Table 4.1: Features that are negatively correlated with income.

Attribute Correlation

education.Masters 0.174184
education.Bachelors 0.180371
occupation.Prof-specialty 0.188793
occupation.Exec-managerial 0.210938
gender.Male 0.214628
capital-gain 0.223013
hours-per-week 0.227687
age 0.230369
marital-status.Married-civ-spouse 0.445853

Table 4.2: Features that are positively correlated with income.

present in the dataset. In this dataset, there are also some sensitive attributes, most
notably Gender and Race. One could also argue that Marital Status and Relationship
could also be sensitive attributes.

In a fair machine learning system, we would expect that the outcome in terms of income
does not depend on the race, gender, marital status or relationship or at the very least
that the decision by the model is independent of the sensitive attributes.

4.1.1 Attributes correlated with income

We see in that there are some categories in the following attributes that are correlated
with income

• Marital Status

• Age

• Hours per week
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Figure 4.1: Intersectional Parity Score for fair Bayesian network vs naïve bays.

• Capital Gain

• Occupation

• Relationship

• Education

• Gender

• Race

We observe that our identified sensitive attributes are correlated with income. The
challenge now is that we have to learn a model that does not treat individuals belonging
to different classes in the sensitive attribute unfairly.

4.2 Experiment 1: FairBN, FairTreeClassifier vs NB

Below we will go through the different results of the first round of experiments. To see
the detailed results, these are available in the appendix. See A.1

4.2.1 Fair Bayesian Network

After training the fair Bayesian network classifier on the adult and COMPAS dataset,
we get an intersectional parity score of 0.87 and 0.91 respectively. This is better than
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Figure 4.2: ROC curve for fair Bayesian network vs naïve Bayes.

the inherent parity score in the dataset labels, which is 0.81 and 0.51 respectively. These
results and how the different methods compare to one another is shown in figure 4.1.

In terms of accuracy and traditional performance of the model, we observe that there
is a tradeoff between performance and fairness. This is best shown in the ROC curve
shown in figure 4.2. There is a slight drop in the fair Bayesian network compared to the
naïve Bayes method.

We also observe a quite significant performance difference between the adult dataset
and the COMPAS dataset. Why this is is not explored further in this thesis, as we are
interested in seeing differences in performance with respect to fairness.

4.2.2 Fair Random Forest Classifier

We ran the same experiments using their classifier on the adult dataset and COMPAS
dataset. Rather interestingly, we do not observe any improvement in intersectional parity
in the adult dataset for any of the methods, with the inherent intersectional parity for
the dataset being 0.810 and the best fair random forest classifier with Θ = 0.3 having an
intersectional parity of 0.78, which is counterintuitive to the claimed meaning behind the
hyperparameter Θ stated by the authors.

For the COMPAS dataset, things are looking better with the models with Θ ∈ {0.3, 0.7}
having higher intersectional parity scores than is inherent in the dataset labels. Still,
the results given the stated meaning behind Θ is counterintuitive. The parity scores are
shown in figure 4.3. The ROC curve for the different datasets is shown in figure 4.4
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Figure 4.3: Parity score for fair random forest classifier.

Figure 4.4: ROC curve for fair random forest classifier.

4.3 Experiment 2: Results

4.3.1 F1 Score

When evaluating the models in terms of F1 Score, we observe that the fair methods have
lower but acceptable F1 Scores. For the fair Bayesian network classifier 95% of the F1
scores is at 0.4 or higher with mean at 0.6. For the fair random forest classifier, these
values are 0.0 and 0.63. We see from the plot in figure 4.5 that the F1 score of the fair
Bayesian network is on average lower than for fair random forest classifier but with lower
variance.
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Figure 4.5: F1 Scores of the different models on 100 synthetic datasets. Higher is better.

Figure 4.6: Specificity of the different models on 100 synthetic datasets. Higher is
better
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Figure 4.7: Intersectional Parity Score of the different models on 100 synthetic datasets.
Higher is better.

4.3.2 Specificity

Since F1 Score is biased with respect to true negatives, we calculate the Specificity of
the models as well. The distribution of specificity for the different models are shown in
figure 4.6. We observe that the fair methods has a higher variance in their specificity
as compared to the naïve Bayesian methods as well as the unfair predictions of the fair
Bayesian network. 95% of the specificity values are at 0.3 or higher with mean at 0.61.
For fair random forest classifier, these values are 0.0 and 0.44 respectively.

4.3.3 Intersectional parity score

In terms of intersectional parity score, i.e. average demographic parity across all subgroups
of sensitive attributes, we see that the fair Bayesian network is able to consistently have
more fair decisions. See figure 4.7. The mean parity score for the FairBN classifier is
0.70 with the 5th percentile at 0.50. For the fair random forest classifier these values are
0.54 and 0.0 respectively.

4.3.4 AUC Gender

In the paper by Barata and Veenman [16] they propose use AUC w.r.t. gender to evaluate
splits which are more fair. Interestingly, while the fair random forest method is based
on selecting splits that minimise the AUC w.r.t. gender, the model fares quite similarly
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Figure 4.8: AUC w.r.t. Gender of the different models on 100 synthetic datasets. Lower
is better.

to the Naïve Bayes models and incomeBN. See figure 4.8 The AUC is even higher than
what is inherent in the labels of the dataset itself and predictions are in this sense more
discriminatory than what is present in the true labels. The only model to minimise AUC
more than the inherent dataset labels is FairBN. FairBN has a mean AUC of 0.56 and a
5th percentile of 0.51. While for the fair random forest classifier, these values are 0.72
and 0.51 respectively.

4.3.5 Kullback-Leibler Divergence

Lastly, we evaluate the models in terms of Kullback-Leibler Divergence. Here we see a
significant difference between the methods. See figure 4.9The best performing model
here is FairBN. With a 5th percentile value of 4.67× 10−5 and mean 0.025. For the fair
random forest classifier this is 0 and 0.21 respectively

4.3.6 Correlation between scoring methods

Demographic Parity v KL Divergence

From figure 4.10 we see that demographic parity and KL divergence are inversely related.
As the parity score increases the divergence decreases. This gives us further confidence
that both measure fairness in terms of demographic parity.
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Figure 4.9: Kullback-Leibler Divergence of the different models on 100 synthetic datasets.
Lower is better.

Figure 4.10: Demographic Parity and KL Divergence
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Figure 4.11: AUC and KL Divergence w.r.t. Gender

4.3.7 AUC and KL Divergence

From figure 4.11 we see that these scores are also correlated with one another, though
not as strongly as with Parity Score and KL Divergence. This gives some validity to the
use of AUC to train a fair random forest classifier.

4.3.8 Hypothesis Tests

As we see from the table above, we reject the null-hypothesis in all cases. This implies
that both fair machine learning models have more fair predictions than the baseline
method of using naïve-Bayes without the sensitive attributes. Additionally, we find that
the fair Bayesian network has a more consistent and statistically significantly better score
than the fair random forest classifier in terms of both parity score and KL Divergence.
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Hypothesis p Reject H0 T

FairBN (Y ) has a better intersectional parity
score than naïve Bayes (X) without sensitive
attributes

4.13× 10−18 Yes 25

FRFC (Y ) has a better intersectional parity
score than naïve Bayes (X) without sensitive
attributes

1.93× 10−9 Yes 812

FairBN (Y ) has a better intersectional parity
score than FRFC (X)

1.41× 10−6 Yes 1163

FairBN (Y ) has a better KLD w.r.t. Gender
than FRFC (X)

2.13× 10−10 Yes 4341

Table 4.3: Result of hypothesis tests

Attribute Importance

marital-status_Married-civ-spouse 0.529924
capital-gain 0.347748
education_Bachelors 0.041893
hours-per-week 0.040666
age 0.038778
education_Preschool 0.000992

Table 4.4: Decision Tree: Adult Dataset - Feature Importance

4.4 Experiment 3: Results

4.4.1 Decision Tree: Adult Dataset

To gain insight into how the decision tree uses the attributes in its decisions, we calculate
the feature importance of all attributes and show the ones that have positive feature
importance. Feature importance is calculated as the normalised amount of reduction
in entropy brought on by that attribute in the model. After training the decision tree
classifier in Scikit-learn on the adult dataset. We got the following feature importance
shown in table 4.4.

On the adult dataset we see that the decision rules considers whether or not someone has
a civilian spouse as the most important variable to consider when classifying someone
as high income or not. No sensitive attributes are considered important and when
investigating the tree structure, no nodes employ the sensitive attributes.

4.4.2 Decision Tree: COMPAS Dataset

On the other hand, when training the decision tree classifier on the COMPAS dataset,
we see that whether someone is male or considered to belong in the Other race category
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Attribute Importance

0 priors_count 0.524409
1 age 0.417728
2 sex_Male 0.030951
3 juv_misd_count 0.011672
4 c_charge_degree_M 0.006723
5 race_Other 0.005893
6 juv_fel_count 0.002624

Table 4.5: Decision Tree: COMPAS Dataset - Feature Importance

Figure 4.12: KLD and Permutation weights of naïve Bayes with and without sensitive
attributes. Adult Dataset.

is used in prediction. This implies that there is a significant gender and racial bias in the
data.

4.4.3 Naive Bayes: Feature Importance

To interpret the naïve Bayes models we look at the conditional distributions for the
different attributes and compare calculate the KLD between the distribution P =
p(X|Y = 0) and Q = p(X|Y = 1). We also calculate the permutation feature importance
by calculating the loss in accuracy by permuting a specific column. The resulting weights
are shown in figure 4.12 for the adult dataset and figure 4.13.

4.4.4 Fair Tree Classifier: Feature Importance

We also calculate the feature importance of the fair tree classifier. We see a similar
relationship in the feature weights as in Naive Bayes but age and work class is completely
neglected. Also, as Θ increases, overall weight of the attributes decreases.
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Figure 4.13: KLD and Permutation weights of naïve Bayes with and without sensitive
attributes. COMPAS Dataset.

4.4.5 Individual Conditional Expectation

We have implemented ICE calculations for the classifiers Naive Bayes and Fair Tree
Classifiers. As the sensitive attributes are not numerical but categorical, we do not resort
to line plots of the predicted probability but rather categorical plots. Therefore, the
distribution of predicted probability given the certain values is shown for the different
models and datasets. Figure 4.15 shows how gender is treated by the different models in
the Adult and COMPAS dataset. Figure 4.16 show how race is treated by the different
models.

4.4.6 Counterfactuals

naïve Bayes With Sensitive Attributes

For the following data point:

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week

46343 (31.6, 46.2] Private Assoc-voc Divorced Tech-support Unmarried Black Female (-4460.355, 16515.0] (20.6, 40.2]

Got the following counterfactuals:

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week O1 O2 O3 O4

155 (31.6, 46.2] Private Assoc-voc Married-AF-spouse Tech-support Unmarried Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.7 3 0.0
162 (31.6, 46.2] Private Assoc-voc Divorced Adm-clerical Unmarried Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.7 3 0.0
100 (31.6, 46.2] Private Assoc-voc Married-AF-spouse Adm-clerical Unmarried Black Male (58257.0, 79128.0] (20.6, 40.2] 0.000000 0.6 4 0.0
167 (31.6, 46.2] Private Assoc-voc Married-AF-spouse Adm-clerical Unmarried Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.6 4 0.0
176 (31.6, 46.2] Private Assoc-voc Married-AF-spouse Adm-clerical Unmarried Black Male (58257.0, 79128.0] (20.6, 40.2] 0.000000 0.6 4 0.0
2 (60.8, 75.4] Local-gov Doctorate Divorced ? Not-in-family Amer-Indian-Eskimo Female (79128.0, 99999.0] (59.8, 79.4] 0.000000 0.2 8 0.0
177 (31.6, 46.2] Private Assoc-voc Married-AF-spouse Tech-support Unmarried Black Female (16515.0, 37386.0] (20.6, 40.2] 0.419303 0.8 2 0.0

naïve Bayes Without Sensitive Attributes

For the following data point:

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week

23356 (16.927, 31.6] ? HS-grad Separated ? Unmarried Black Female (-4460.355, 16515.0] (20.6, 40.2]
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Figure 4.14: Feature importance for fair tree classifier on adult dataset
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Figure 4.15: ICE distribution for Gender in the different datasets.

Figure 4.16: ICE distribution for Race in the different datasets

We get the following counterfactuals:

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week O1 O2 O3 O4

128 (16.927, 31.6] State-gov HS-grad Separated ? Unmarried Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.7 3 0.0
97 (31.6, 46.2] ? HS-grad Separated ? Not-in-family Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.6 4 0.0
147 (16.927, 31.6] State-gov Doctorate Separated ? Unmarried Black Male (79128.0, 99999.0] (20.6, 40.2] 0.000000 0.6 4 0.0
136 (31.6, 46.2] State-gov Doctorate Married-AF-spouse ? Husband Amer-Indian-Eskimo Female (-4460.355, 16515.0] (20.6, 40.2] 0.165877 0.4 6 0.1

Fair Bayesian Network

For the following counterfactual

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week

23356 (16.927, 31.6] ? HS-grad Separated ? Unmarried Black Female (-4460.355, 16515.0] (20.6, 40.2]

We get the following counterfactuals

age workclass education marital-status occupation relationship race gender capital-gain hours-per-week O1 O2 O3 O4

111 (16.927, 31.6] ? 11th Separated ? Unmarried Black Female (79128.0, 99999.0] (79.4, 99.0] 0.000000e+00 0.7 3 0.0
114 (16.927, 31.6] ? HS-grad Separated ? Unmarried White Female (79128.0, 99999.0] (79.4, 99.0] 0.000000e+00 0.7 3 0.0
162 (16.927, 31.6] ? 11th Separated ? Unmarried White Female (79128.0, 99999.0] (20.6, 40.2] 0.000000e+00 0.7 3 0.1
58 (16.927, 31.6] Never-worked HS-grad Separated ? Unmarried Asian-Pac-Islander Female (58257.0, 79128.0] (79.4, 99.0] 0.000000e+00 0.6 4 0.0
118 (16.927, 31.6] ? Assoc-acdm Separated ? Unmarried Black Male (79128.0, 99999.0] (79.4, 99.0] 0.000000e+00 0.6 4 0.0
172 (16.927, 31.6] Never-worked 11th Separated ? Unmarried White Female (58257.0, 79128.0] (20.6, 40.2] 0.000000e+00 0.6 4 0.1





Chapter 5

Conclusions

5.1 Summary of the thesis

There is no question that fairness is important to incorporate in machine learning
and decision-making systems if one wants to have the benefits of automation while
at the same time achieve equality and sustainability for a better world. Machine
learning model fairness and interpretability are vital for data scientists, researchers
and developers to explain their models and understand the value and accuracy of their
findings. Interpretability is also important to debug machine learning models and make
informed decisions about how to improve them. While there exists many methods of
achieving fairer systems, the field is still new and no state of the art exists. In this
thesis, we have sought to investigate some current proposed methods for fair machine
learning proposed in literature and try to shed some light on fairness in machine learning
and what methods look promising or not. We have mainly focused on two approaches.
The probabilistic Bayesian network approach and the fair tree classifier approach, which
utilises two different methods for achieving fairness and also makes different assumptions.

5.1.1 Fair Bayesian Network

The fair Bayesian network, proposed by Choi et al. [20], which we have implemented in
python using pgmpy in Forseti, makes the following assumptions

• Training Data is biased

• The true fair class affiliation is a hidden attribute and must be inferred rather than
measured.
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• Demographic Parity is the definition of choice for fairness.

• Sensitive attributes are important in the decision-making process as they contain
necessary information of context.

5.1.2 Fair Tree Classifiers

While the fair tree classifier makes the following assumptions

• Training data is used as the true state of nature.

• Strong Demographic Parity is the definition of choice for fairness.

• Sensitive attributes should not be used during inference and used to evaluate splits
during the training phase. Penalising the split if the sensitive attribute depends on
the outcome.

5.1.3 Approach

We have trained these models extensively on the Adult dataset and COMPAS dataset
which are established datasets in fairness research. We have proposed new performance
metrics that incorporate fairness and evaluated models in terms of this. To validate these
new metrics, we have proposed new algorithms for generating datasets where we are in
control of the bias in the data to further evaluate these metrics.

In addition to training models and evaluating them in terms is new proposed fairness
measures, we have tried to explicitly explain and understand the behaviour of the
models to validate that models satisfying fairness measures actually truly achieves fair
behaviour. In addition we have implemented an genetic algorithm approach to generate
counterfactual data points that highlight what attribute changes flip the outcome of an
individual. Which gives a quite intuitive overview of the inner workings of the models.

5.2 Findings

We have observed quite different behaviour from the two approaches investigated, while
both claim to achieve fairness in their predictions, we have only been able to replicate
these results with the approach proposed by Choi et al. [20]. In the approach proposed
by Barata and Veenman [16] we have not been able to replicate the results presented in
their paper.
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From our work, we have shown that the fair Bayesian network is able to achieve fairer
predictions while not suffering too much from the fairness-accuracy tradeoff. There is still
a tradeoff, and the model does not achieve the same performance in terms of traditional
performance measures as the naïve Bayes model. This is reasonable and expected from
the model given that the model assumes that the dataset labels are biased and incorrect
and only used to infer the true state of nature.

By employing machine learning interpretability methods, we have also shown that the
fair Bayesian network achieves its fairness through affirmative actions. This is done by
increasing the predictive probability of a fairer outcome, while giving neglected groups
a higher chance of a positive outcome than expected from their representation in the
training data.

From the same approach when looking at the fair tree classifier, we see a very high variation
in the performance of the model in terms of fairness while traditional performance metrics
are not high enough to confidently determine that the distribution of predictions better
than predicting at random. Suggesting that the model achieves its fairness performance
by predicting randomly.

This shows that Demographic Parity as an performance metric might at first seem
intuitive and well defined, but as with any optimisation problem, it is very hard defining
good objective function that makes a model achieve what you really want. The easiest
way to achieve demographic parity is to reject any model and just sample predictions
at random, giving predictions that are independent of the sensitive attributes but in no
sense an informed prediction.

5.3 Research Questions

5.3.1 RQ1: What probabilistic graphical model is most appropriate to model
the discrimination process?

We believe that we have demonstrated the power of graphical models through their
intuitive design and graphical representation of their conditional probabilities and depen-
dencies between variables to make them fit for use for fair machine learning. Inferring
latent class affiliations from datasets that are assumed to be biased is probably a quite
reasonable assumption, and a necessary one to achieve fairness. Probabilistic Graphical
Models may have a future as the model of choice when it comes to fair machine learning.
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5.3.2 RQ2: Are the proposed models explainable?

The proposed models are not fully interpretable. The fair random forest is not inter-
pretable and given that the model does not use the sensitive attributes in it’s predic-
tions, it is hard to infer the inner workings and decision making of the model through
model-agnostic interpretability methods. The fair Bayesian network is to a more extent
interpretable, dependent on the complexity of the Bayesian network. In the case that
the model is an naïve Bayes classifier it is quite intuitive for a human to understand how
each attribute contributes to the outcome. As the complexity of the Bayesian network
increases, this becomes more difficult.

5.3.3 RQ3: Are probabilistic machine learning models cost-effecitive?

While we have not discussed this in detail, the biggest challenge to the probabilistic
graphical model approach is that inference is a NP-Hard problem and requires quite a
lot of computing resources. The inference is thus very slow. For some real-world cases
out there this could make such models infeasible. This is the biggest drawback to these
models.

5.4 Future Directions

For future work, exploring new graphical models should be encouraged. The number of
possible graphical models out there is vast and given the performance these can achieve
this could lead to some interesting new models. Additionally, while inference in the
graphical models used here is NP-Hard, sum-product networks do not suffer with this
problem having very fast inference and probabilistic calculations. Implementing fair
graphical models as sum-product networks and developing libraries for this could improve
the ease of implementation as well as increase the cost-effectiveness of such models.

From our results we also see that demographic parity alone as a definition of fairness can
lead to models having undesired behaviour. Investigating further definitions of fairness
for machine learning should be in focus. If one would find a performance metric that truly
achieve fairness, a lot of models could very quickly be adapted to incorporate fairness.

We have also shown that until a state of the art fair performance metric exist, machine
learning interpretability will be necessary to evaluate models in terms of fairness and to
avoid accidentally deploying bad models even though they achieve good performances.
Developing a framework and methods for incorporating fair machine learning methods
together with machine learning interpretability should be explored further.



Appendix A

Experimental results, figures and
poster

A.1 Experiment 1 Results
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A.2 Poster



Fairness and Interpretability in Machine Learning
Models

Introduction and Problem Statement
Problem:
Careless use of machine learning models can do more harm than
good. The canonical example being COMPAS.
▶ Decisions might explicity depend on group membership.
▶ Decisions might be biased but decisions are hidden.
▶ Datasets are biased.
Approaches:
▶ Introduce new loss functions.
▶ Probabilistic inference.
▶ Explaining model decision.
Goal: Explore some fairness aware classifiers, evaluate them on
datasets in fairness research and use interpretable machine
learning methods to explain how the models achieve fairness.

Method
The thesis has focused on implementing three models:
▶ Fair Bayesian Network with Latent Fair Decisions proposed by

Choi et al. [1]
▶ Fair Tree Classifier proposed by Barata and Veenman [2]
▶ Naive Bayes trained with and without sensitive attributes.
Datasets:
▶ Adult dataset
▶ Compas dataset
▶ Synthetic dataset

Interpretable Machine Learning:
▶ Global Model Agnostic Methods

• Feature Importance.
▶ Local Model Agnostic Methods

• Individual Conditional Expectation Plots
• Counterfactual Explanation Generation

Conclusion
While there exists many models out there that claim to achieve
fairness when classifying individuals. This might not always be
the case.
▶ Methods rely on predictions being independent of sensitive

groups.
▶ Just predicting randomly achieves this.
▶ The model might learn a good prediction function but keeps

predictions independent of the sensitive attributes (with a
fairness-accuracy tradeoff)

▶ The might learn a prediction function that just predict
randomly the outcome (leading to predictions that are
independent of sensitive attributes)

▶ When a model is evaluated we would like to know which of
the above cases are present.

How the models performed:
▶ Fair Bayesian Network with Latent Fair Decision achieves

fairness by affirmative actions.
▶ The Fair Tree Classifiers achieves fairness by predicting

randomly.
How to achieve true fairness:
▶ Explain the decision that the model makes using

interpretability methods.
▶ Alternatively, researching loss functions for machine learning

algorithms that reflect fairness.

Results

Figure: Roc-Curve of Fair Bayesian Network and Fair Tree Classifier on
the Adult Dataset

Figure: Roc-Curve of Fair Bayesian Network and Fair Tree Classifier on
the Compas Dataset

Figure: Balanced Accuracy vs Intersectional Parity Score

Figure: Intersectional Parity Score for models.

Figure: ICE Plot of Fair Bayesian Network

Naive Bayes

As a baseline method, we train Naive Bayes models both with and
without the sensitive attributes in the datasets.

y

x1 x2 x3 x4

Figure: Bayesian network with 4 features representing the Naive Bayes classifier

Fair Bayesian Network with Latent Fair
Decisions

S Df

X D

Figure: Bayesian network structures that represent the proposed fair latent
variable approach from [1]

R G F

CReEA M W H O I

Figure: latentFairClassifier trained on Adult Dataset. The nodes are R: race, G:
gender, F : latent fair labels, A: Age, E: Education, Re: Relationship, C: Capital
gain, M : Marital Status, W : Work class, H : Hours-per-week, O: Occupation and
I : Income.

The Fair Bayesian Network proposed by Choi et al. [1] tries to
simulate the discrimination process. It assumes that the labels D
in the dataset are biased and generated through some
distribution dependent on the sensitive attributes S and the latent
true and fair labels Df

P (D,Df , S) = P (D |S,Df )P (S)P (Df )
While the non-sensitive features X are generated through some
distribution

P (X ,Df , S) = P (X |S,Df )P (S)P (Df )

Fair Tree Classifier
The fair tree classifier proposed by Barata and Veenman [2]. They
introduce a new splitting criterion that evaluates splits in terms of
the Area under curve (AUC) wrt the predicted value and the
sensitive attribute.
The AUC wrt the true labels Y can be calculated as

AUCY (Ŷ , Y ) =
∑

t0∈Y−
∑

t1∈Y+ 1[Ŷt0 < Ŷt1]
|Y− | · |Y+ |

where Y− and Y+ are the set of indexes for negative and positive
instances in the true labels. When calculating the AUC wrt the
sensitive attribute, denoted AUCs, the authors have derived the
following formula

AUC (Ŷ , S) = max(1 − AUC (Ŷ , S),AUC (Ŷ , S)) (1)

The max operator maps the bounds to the range [0.5, 1]. The
authors then introduce the splitting criterion used in their tree
algorihm, Splitting Criterion AUC for Fairness (SCAFF). Which is
calculated as

SCAFF (Ŷ , Y , S,Θ) = (1 − Θ) · AUCY (Ŷ , Y ) − Θ · AUCS (Ŷ , S)
Where Θ is a parameter for balancing accuracy and fairness.
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Appendix B

Instructions to Compile and Run
System

B.1 Installation Instructions

The code used in this thesis is organised in Jupyter notebooks and it is programmed
using python. A range of libraries is used and these are managed using Anaconda1. To
make it as easy as possible to recreate the environment, we suggest that Anaconda is
installed so the environment can be recreated easily. Installing anaconda is explained in
detail in the documentation2.

B.1.1 The Python Environment

It is not mandatory to install anaconda to run the code. The libraries that are necessary
are as follows:

• Python

• Pytest

• Flake8 (Used for linting)

• Black (Used for linting and formatting)

• jupyter

• ipykernel
1https://www.anaconda.com/
2https://docs.anaconda.com/anaconda/install/
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• pandas

• seaborn

• pip

• installed using pip: pgmpy

As long as these libraries are installed the code should work.

B.1.2 Setting up the environment using Anaconda

After installing Anaconda. The environment is set up as follows.

1. Navigate to the root folder of the code repository. There you should find a file
named environment.yml.

2. Run the command: conda env create -f environment.yml

3. When the previous command is complete. Run conda acitvate forseti to activate
the environment.

Now the environment is active and running and ready to execute the code.

B.1.3 Notebooks

We will go through each of the notebooks and their purpose so you know which notebook
to use if you want to reproduce results.

• Bayesian-net-adult: Notebook used to train the fair bayesian network and naive
bayes classifiers as well as saving predictions on the adult dataset.

• Counterfactuals: Runs the generateCounterfactuals method on the trained naive
bayes and fair bayesian networks and export the results to latex

• data_exploration: Early notebook for exploring the adult dataset. Calculate
correlation for dummy variables and plot the results.

• experiment2-visualisation: Generates a synthetic dataset, traind models on the
synthetic dataset and visualises their scores.
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• fairtree: Training the fair tree classifier on the adult dataset and COMPAS dataset
and store its predictions.

• Interpretability: Training of simple interpretable models, and calculating feature
importance for implemented models.

• Local-agnostic: Visualise ICE plots for implemented models.

• Model-evaluation: Calculate fairness scores for adult dataset on the implemented
models.
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