
 FACULTY OF SCIENCE AND TECHNOLOGY

 MASTER THESIS

 Study programme / specialization:
 Computer Science: Secure and Reliable
 Systems The spring semester, 2022

 Open Access
 Author: Vera Yaseneva

 ……………………………… ………
 (signature author)

 Supervisor(s): Hein Meling

 Thesis title: QuickFeed Security: Redesigned Authentication and Authorization
 Architecture

 Credits (ECTS): 30

 Keywords:
 authentication, access control,
 token-based authentication,
 gRPC-web, authentication tokens,
 Go, application security, JWT

 Pages: 63
 + appendix: 1

 Stavanger, 15.06.2022
 date/year

 Approved by the Dean 30 Sep 21
 Faculty of Science and

 Technology

VERA YASENEVA
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

QuickFeed Security: Redesigned
Authentication and Authorization Architecture

Master's Thesis - Computer Science - June 2022

I,Vera Yaseneva, declare that this thesis titled, “QuickFeed Security: Re-
designedAuthentication andAuthorizationArchitecture” and thework presented

in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

“Now you people have names. That’s because you don’t
know who you are. We know who we are, so we don’t need
names.”

– Neil Gaiman, Coraline

Abstract

QuickFeed (former Autograder) is a software project developed at the University

of Stavanger. The application performs automated grading of coding assignments

and provides nearly instant feedback to the students in programming courses.

Authentication (establishing the identity of a user) and authorization (defin-

ing what types of data a user can access or modify) comprise an essential part of

any web-based application.

QuickFeed went through multiple reworks and updates, but the authentica-

tion module remained unchanged. As a result, it is necessary to keep extra steps

to ensure interoperability between the authentication module and the rest of the

application.

This makes the affected parts of the QuickFeed codebase unnecessary com-

plex, somewhat redundant, and hard to understand and maintain.

This thesis work is dedicated to redesigning the authentication and authoriza-

tion architecture ofQuickfeed in order to enhance security and improvemaintain-

ability and scalability of the project.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor and mentor, Pro-

fessor Hein Meling, for helping me grow academically, professionally, and as a

person.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 2

1.1 QuickFeed’s evolution . 2

1.2 Motivation . 3

1.3 Contributions . 5

1.4 Outline . 5

2 Background 7

2.1 Authentication and authorization 7

2.1.1 Password-based and passwordless authentication 8

2.2 Single sign-on . 8

2.2.1 Security Assertion Markup Language (SAML) 9

2.2.2 OAuth 2.0 . 9

2.2.3 OpenID Connect . 9

2.3 Stateful and stateless authentication 10

2.4 Encryption . 10

2.4.1 Symmetric and asymmetric algorithms 10

2.4.2 Message Authentication Codes 11

3 Token-based authentication 12

3.1 Current design: session-based authentication 12

3.2 New design: token-based authentication 14

3.2.1 QuickFeed user claims . 15

3.2.2 Token security . 16

v

3.2.3 Token manager . 18

4 Interceptors 21

4.1 Middleware . 21

4.2 Interceptors . 23

4.3 Authentication interceptors . 24

4.3.1 Validating tokens . 24

4.3.2 Working with gRPC metadata 25

4.3.3 Updating tokens . 26

4.3.4 Interceptor to update tokens 29

4.3.5 Interceptor to validate tokens 31

4.4 Authorization interceptor . 32

5 GitHub integration 37

5.1 Single sign on with GitHub . 38

5.2 GitHub integration: OAuth app . 39

5.3 GitHub integration: GitHub app 40

6 Supplementary architecture changes 44

6.1 Proxyless gRPC-web . 44

6.2 Centralized configuration package 46

6.3 Protofiles . 47

6.4 Encrypting access tokens . 49

6.5 Dependencies . 51

7 Discussion 54

7.1 Token based authentication . 54

7.1.1 Replacing sessions and http middleware 54

7.1.2 Token size . 56

7.1.3 JWT security . 56

7.1.4 Updating tokens . 57

7.1.5 Alternative solutions . 57

7.2 GitHub integration: access tokens 58

7.3 Proxyless gRPC-web . 59

7.4 Access control . 59

7.5 Signing JWTs . 60

8 Conclusion 62

A Source code 64

List of Figures

3.1 A redundant structure linking session ID to user ID ensures com-

munication between APIs. 13

3.2 JSONWeb Token structure. 14

3.3 Session cookie in the browser with encoded JWT string. 16

4.1 Two middleware functions performing two redundant checks. . . 22

4.2 Login options: GitHub and GitLab. 22

4.3 Architecture of the interceptor chain. 23

4.4 Example of metadata header sent with a gRPC request. 25

5.1 Single Sign On with a GitHub account. 38

5.2 Authentication flow with GitHub. 39

5.3 QuickFeed architecture with OAuth app. 40

5.4 QuickFeed architecture with GitHub app integration. 43

6.1 Quickfeed architecture with Envoy proxy. 45

6.2 QuickFeed architecture with a multilplex server wrapper. 45

7.1 User login sequence with http middleware and sessions. 55

7.2 User login sequence with tokens and interceptors. 55

viii

Listings

3.1 An example key-value structure with session ID to user IDmappings. 13

3.2 QuickFeed user claims. 15

3.3 QuickFeed enrollment status . 16

3.4 Verifying the correct signing method. 18

3.5 Token manager type struct. 18

3.6 Checking that all required fields are set. 19

3.7 Fields of the User message. 19

3.8 Populating token update list from the database on the server start. 20

3.9 Creating new JWT claims. 20

4.1 Interceptor for token validation. 24

4.2 Token validation when parsing a JWT. 25

4.3 Helper method to extract values from gRPC metadata. 26

4.4 Token update list. 27

4.5 New field in the User message. 27

4.6 Creating a new instance of token manager. 27

4.7 Populating token list. 28

4.8 Adding new ID to the token list. 28

4.9 Removing ID from the list after a successful token update. 28

4.10 Updating a user record in the database. 29

4.11 List of methods that change privileges of a user. 29

4.12 Interceptor for token updates. 30

4.13 Token validator interceptor. 31

4.14 Checking whether the JWT needs an update. 32

4.15 Custom error to return when access to the server is denied. 32

4.16 Access control checks inside an API method. 33

4.17 New role types. 33

4.18 Access control user roles. 33

ix

4.19 Restricted API methods and roles. 34

4.20 New interface. 35

4.21 Example of FetchID method . 35

4.22 Access control checks for different user roles. 36

5.1 SCMMaker is used to create and store scm clients. 41

5.2 Creating a new instance of SCMMaker. 41

5.3 GitHub app configuration. 41

5.4 Setting up GitHub configuration parameters. 42

5.5 Verifying that the configuration parameters are not empty. 42

5.6 Creating a new installation client for a course organization. 42

6.1 Server configuration struct. 46

6.2 Collection of URL endpoints. 46

6.3 Collection of file paths. 47

6.4 Collection of secrets. 47

6.5 Example of message types in types.proto. 48

6.6 Messages used in API calls are kept in requests.proto. 48

6.7 Command-line option to encrypt access tokens 49

6.8 Reading encryption key only if encryption is enabled. 49

6.9 Reading the passphrase key from the environment or a user input. 50

6.10 Helper method that indicates whether encryption is enabled. . . . 50

6.11 Encrypting a string. 50

6.12 Encrypting access tokens during authentication. 51

6.13 The original user authentication handler. 52

6.14 The reworked authentication handler. 53

List of Tables

3.1 Token manager fields. 18

4.1 List of methods that affect roles of a user in the QuickFeed system. 29

xi

Chapter 1

Introduction

Authentication and authorization comprise an essential part of the modern web-

based software that can have a significant impact on the security of an application

and, at the same time, its overall usability. When developing authentication and

authorization processes for a software project it is important to achieve a balance

between these two sides. On the one hand, a sign-in process must be fast and

simple, otherwise it can be perceived as too cumbersome and complicated by the

end user. On the other hand, the main goal of authentication and authorization

is to provide security and this function cannot be compromised on.

The current authentication and authorization flow of the QuickFeed (former

Autograder) software project is both robust, secure, and user-friendly but it still

has a few weaknesses that can be improved upon. The goal of our thesis work is

to address these weaknesses, evaluate possible solutions and, finally, choose and

implement those that fit best the current architecture and future development

goals of the project. These changes aim to not only improve security, but also

make future development of the project easier by designing more simple, clear,

and structured code.

1.1 QuickFeed’s evolution

The QuickFeed web application has evolved over multiple generations including

one complete rewrite and a multitude of refactorings and feature additions.

The original Autograder was designed and implemented as part of a master’s

thesis by Heine Furubotten in 2014 [1]. The second generation Autograder was

2

designed and implementedby a teamof three students supervised byProf. Meling

in the summer of 2017.

The application was intended to assist in assignment grading by automated

downloading, testing, and grading of code submitted by students in programming

courses.

Integration with GitHub is an essential part of the application. Users sign in

to Autograder with their GitHub accounts, courses are based on GitHub organi-

zations, and students submit code by uploading it to GitHub repositories.

To automate Autograder’s integration with GitHub it was necessary to store

personal access tokens in the database. Tokens would be used to authenticate

GitHub API clients that performed actions on the course repositories.

To keep track of authenticated users, the Autograder server kept a session

store with a session for each user.

The second generation Autograder has evolved substantially since its initial

design in 2017. The http-based original REST API has been replaced with gRPC

calls in order to improve the application’s scalability, maintainability, and per-

formance.

In 2020, the project was renamed to QuickFeed to better reflect the goal to

provide rapid feedback to students, and not only an automated grading tool.

While not strictly accurate, we will refer to QuickFeed as the version that con-

tains the redesigned security architecture to be presented in this thesis. We will

refer to Autograder when discussing the version prior to this thesis.

1.2 Motivation

While the Autograder’s web interface and general purpose APIwent throughmul-

tiple reworks, the authentication architecture remained unchanged. As a result, it

is challenging tomaintain interoperability between the http-based authentication

endpoints and gRPC-based business logic API.

The original Autograder was designed to integrate with GitHub as an OAuth

appwhich was the only option back when the application was developed. The app

is responsible for the initial user authentication with GitHub accounts. When a

user logs in with GitHub credentials, a personal access token is collected from

GitHub and stored in the Autograder’s database. The token is later used to access

course information and students’ code stored in GitHub repositories.

Storing and sending tokens with each request to GitHub is a security risk.

Access tokens are strings of random characters and numbers and are stored in

the Autograder database as plaintext. If a token is stolen due to a database exploit

or a network attack, it can be used by the attacker to access, modify or steal some

personal data of the authorized user.

Autograder creates and maintains a session for each logged in user. Session-

based authentication was convenient back when both authentication and general

API were based on http endpoints. Now the gRPC API cannot access the sessions

directly. To allow gRPC method to access information about the logged in users

it is necessary to maintain an additional map structure that links each session ID

to the corresponding user ID.

As a result, there are two redundant structures for user sessions that make

this part of the authentication architecture unnecessarily complex, hard to un-

derstand and maintain. Moreover, a session-based authentication process can

have a negative impact on the scalability of the application. Memory consumption

overhead grows in proportion to the number of users and can affect performance.

Sessions are also poorly compatible with any kind of distributed architecture as

it would be necessary to keep an additional session store for each service.

In the original Autograder both authentication and business logic APIs were

based on http endpoints. Two middleware methods were developed back then to

perform similar authorization checks for each API. Now that the general purpose

API is gRPC-based the second middleware method serves no purpose and is yet

another source of redundancy in the code.

The original Autograder performs access control checks on a per-method ba-

sis. As a result, even if a request comes from a user who is not authorized to call

the method, it will still start executing, perform the necessary checks and only

then return an error. To ensure the privileges of a user it is necessary to query

the database. As a result, even a successful request has its turnaround time lim-

ited by the database read operation. Moreover, access restrictions are difficult to

track, maintain and update as the required user privileges are only mentioned in

the comments for each method.

Finally, QuickFeed uses an external Envoy proxy to allow browser clients to

send gRPC requests to the server. The proxy requires an obscure configuration

file that has to be changed in order to run the application locally which com-

plicates the development process for every new team that starts working on the

project.

1.3 Contributions

This thesis contributes a substantial redesign ofQuickFeed’s security architecture

to resolve the issues highlighted in Section 1.2. The redesigned security architec-

ture includes the following features and updates:

1. Redesignedauthenticationprocess. We replace stateful session-based

user authenticationby a stateless alternativewith JSONWebTokens (JWTs).

JWTs serve as portable units of user identity and can be used directly by

both http and gRPC APIs. Tokens are signed to ensure the integrity of user

claims and can be safely used in access control. There is no need for redun-

dant structures and methods.

2. Modified QuickFeed’s integration with GitHub. GitHub app is a

modern solution for integration with GitHub. it can access GitHub API di-

rectly without relying on personal access tokens of authenticated users.

3. Implemented centralized access control. Access controlmodule con-

firms the user’s role in a specific course before granting access to the server.

All restricted methods and required roles are collected into a single table

which tomake the code responsible for authorization checks easier tomain-

tain and update.

4. Encrypted access token storage. For situations where storing access

tokens in the database is still requiredwe add an option to encrypt all tokens

before saving. Even if a database is eventually exposed to an attack, tokens

cannot be used to access information belonging to the users.

5. Proxyless server-client communication. Clients can now send re-

quests directly to the QuickFeed server. There is no need to keep a complex

proxy configuration up to date. It is now easy to run and test the application

on a local machine.

1.4 Outline

The rest of the thesis is organized as follows:

• Chapter 2 introduces the theoretical background relevant to our thesis work

• Chapter 3 is dedicated to the replacement of session-based authentication

patter with stateless JSONWeb Tokens.

• Chapter 4 presents gRPC interceptors and the updated centralized access

control service.

• Chapter 5 covers changes to QuickFeed’s integration with GitHub.

• Chapter 6 describes and explains other security-related changes made to

the QuickFeed architecture as a result of our thesis work.

• Chapter 7 discusses challenges encountered in the course of this thesis work

and alternative solutions for the problems addressed in this the previous

chapters.

• Chapter 8 concludes the thesis.

Chapter 2

Background

2.1 Authentication and authorization

Identity and access management (IAM) is an important set of security policies.

IAM aims to ensure that only users whose identities have been verified will re-

ceive access to the system. Another goal of IAM is to guarantee that only users

belonging to certain user groups will be granted authority to access application

services and perform actions changing the state of the system.

Two major parts of any IAM are authentication and authorization. Authenti-

cation is the process of verifying the user’s identity. Authorization validates per-

missions and restrictions of an authenticated user to access different resources

and perform actions.

Different approaches to authentication:

• single-factor (primary) authenticationwith username andpassword or PIN.

• two-factor authentication (2FA) with a password and one-time code.

• physical device-based authentication with a smart card or a USB device.

• biometric authentication with a face or fingerprint scan.

• certificate-based authentication with digital certificates issued by a certifi-

cation authority.

• Single sign-on (SSO) where a single set of credentials can be used to access

multiple independent applications and services. The credentials are issued

7

by a trusted source (identity provider) and usually are connected to a single

user’s account, for example, a Google, Facebook, or GitHub account.

2.1.1 Password-based and passwordless authentication

Password-based authentication patterns are considered ”outdated” as they pro-

vide low levels of security and usability compared to the passwordless methods.

A user who is required to have different passwords for each application or ser-

vice is bound to reuse the same password over and over again, compromising its

security.

Purely passwordless approaches like biometric or hardware-based authenti-

cation have high security, as there is no password to be stolen or kept by the user

in an insecure manner. But usability is lower as the user is supposed to keep a

certain item like a smart card available at all times. This is a reasonable approach

for organization-level authentication processes but impractical for more general

use.

Single sign-on (SSO) authentication offers the best trade-off between security

and usability as long as the identity provider can be trusted [2]. The password

is still needed to sign in to the identity provider account. However, the service

providers that the user can access with thismethod do not know or store the pass-

word to the main account.

2.2 Single sign-on

With SSO a single digital identity can be used to sign in to multiple independent

service providers [2].

Advantages of SSO:

• Simple (and cleaner) system design: ”outsourced” authentication can be

decoupled from authorization.

• Better security: user credentials don’t need to be stored (or even accessed)

by applications other than the identity provider itself.

• Convenient for users: don’t need to create and remember multiple pass-

words. There is also no need to enter the credentials when logging into

other service providers as long as the user is already logged into the identity

provider system.

Modern SSO solutions rely on the idea of federated identity: a set of standards

and agreements thatmake it possible to use and share a single user identity across

multiple applications and systems.

Identity provider (IdP) is the system responsible for the creation and man-

agement of user identities. Popular IdPs are Google, Microsoft, Apple, Facebook,

GitHub.

The three most known federated identity management protocols are Security

Assertion Markup Language (SAML), OpenID Connect, and OAuth.

2.2.1 Security Assertion Markup Language (SAML)

SAML is a set of definitions designed for the exchange of security information

like user credentials between online domains [3]. Its purpose is to provide single

sign-on for enterprise consumers. There are three actors in the SAML protocol:

the principal (the user who wants to log into a system), the service provider (the

system the user is trying to log into), and the identity provider (the entity that

knows or can verify the user’s identity). Messages in SAML are XML-based.

2.2.2 OAuth 2.0

OAuth 2.0 is an authorization standard focused on granting a delegated access

based on an access token to applications, APIs and remote services [4]. Its main

purpose is authorization between applications. OAuthmessages are in JSON for-

mat. Main actors in OAuth are resource owner (user or entity), OAuth provider

(the entity hosting the resource), and OAuth consumer (the entity asking for au-

thorization to use the resource in question) [5].

2.2.3 OpenID Connect

OpenID Connect adds the authentication layer on top of the OAuth 2.0 protocol

[6]. Its purpose is to authenticate users into service provider systems with third-

party identity providers. In the OpenID authentication workflow, the identity

provider sends to the service provider a unique authorization code which later

can be used to request the user’s identity details.

2.3 Stateful and stateless authentication

After the identity of a user has been established, there is the problem of keep-

ing this information such that the user could access different services of the same

application multiple times without a need to re-establish the identity. There are

twomain approaches to this problem: stateful and stateless. In stateful authenti-

cation pattern server keeps sessions for authenticated users. In stateless pattern

there is some kind of a bearer token with user credentials that is created during

the authentication process and then passed with each user request to serve as a

proof of the user’s identity.

The standard approach to stateless authentication is using JSON WEB To-

kens (JWTs) [7]. JWT is an open standard for the exchange of a JSON object with

claims between applications and services. The data contained in claims is cryp-

tographically signed for increased security. Structurally a JWT has three parts:

• Header specifies the token type and signing algorithm.

• Payload is a JSON object with claims. It contains information used in the

authentication process to identify a user.

• Signature of concatenated Header and Payload encoded with Base64URL

encoding with a secret key or RSA certificate to guarantee the token in-

tegrity.

2.4 Encryption

Encryption is used to conceal information in a way that it only can be revealed by

the person in possession of a correct key [8].

2.4.1 Symmetric and asymmetric algorithms

A symmetric encryption algorithm (cipher) uses the same key to encode and de-

code. An asymmetric algorithm uses a secret key to encrypt and a public key to

decrypt the information.

2.4.2 Message Authentication Codes

A Message Authentication Code (MAC) is a cryptographic checksum that is used

to confirm the integrity of a message [8]. A MAC is produced by applying a sign-

ing algorithm with a secret key to the message. The resulting MAC can later be

verified to ensure that the message has not been modified. A symmetric signing

algorithm uses the same secret key to sign and verify a message. An asymmet-

ric algorithm uses a private and public key pair. The message is signed with the

private key while the public key can be used for verification.

Hash-based MAC (HMAC) is a symmetric signing algorithm based on cryp-

tographic hash functions. As a result, its security relies on the underlying hash

function [9].

Chapter 3

Token-based authentication

In this chapter, we explain changes introduced to components of the QuickFeed

architecture in charge of authenticating users with external identity providers,

maintaining user identity information internally, and performing user authoriza-

tion.

Autograder has two APIs, one for user authentication, another for the server’s

business logic. In the first version of the project, both were http-based REST

APIs. Later the general purpose API has been re-implemented as gRPC calls.

However, the main purpose of the authentication API is to exchange requests

with GitHub. GitHub does not support gRPC. Thus this API cannot be replaced

with gRPC endpoints and has to stay as it is.

Keeping interoperability between the two APIs is essential as gRPC methods

require user information gathered by the http endpoint handlers for authoriza-

tion checks. One of themajor goals of our thesis is redesigning the authentication

process to better align with the rest of the QuickFeed architecture and, as a result,

simplify how the two APIs are communicating with each other.

3.1 Current design: session-based authentication

The original Autograder uses sessions to keep track of the logged in users. Ses-

sions are started andmaintained in an http session store. However, onlymethods

of the http API can access the store directly.

To ensure interoperability between gRPCandhttpAPIs it is necessary tomain-

tain a redundant key-value structure that maps IDs of user sessions to the IDs of

12

the corresponding users. An example structure is demonstrated in listing 3.1.
1 map[string]uint64{
2 "MTY1MjcwNTY1M3xE...": 12,
3 "MTY1MnjYxe4wCc6X...": 48,
4 "MTYcJeX3WjnMxw2K...": 137,
5 ...
6 }

Listing 3.1: An example key-value structure with session ID to user IDmappings.

Figure 3.1 illustrates the redundant session store kept to maintain communi-

cation between gRPC and http APIs.

Figure 3.1: A redundant structure linking session ID to user ID ensures commu-

nication between APIs.

Session-based authentication pattern has several downsides. A session cookie

only contains the ID of a session. Autograder acquires ID of the user associated

with this session from themap structure. However, the ID itself does not give any

information about the type of access the user can be granted. Details about user’s

roles in the Autograder system must be retrieved from the database.

As a result, each time a gRPC request is sent to the server, there will be a

database lookup to performanauthorization check. Thisway each request-response

completion time is limited to the speed of a database read operation.

Moreover, once created, a session will be kept inmemory as long as the server

is running even if the user is no longer active. There are two redundant structures

that store session-related information and both will grow in size and consume

more memory as more and more users sign in.

Finally, there are scalability issues. Sessions are not directly compatible with

any kind of distributed architecture. It would be necessary tomaintain a separate

session store for each instance of the server or each service and, possibly, solve

the synchronization problem.

3.2 New design: token-based authentication

We replace the Autograder’s session-based authentication process with stateless

JSONWeb Tokens (JWTs).

A JWT consists of three parts, as illustrated in figure 3.2: a header, a payload

and a signature.

Figure 3.2: JSONWeb Token structure.

The header has information about the token type and signing method.

The payload of a JWT has a set of mandatory fields that store essential infor-

mation about the token, such as issuer or expiration time. A JWT can also include

custom user claims that can be adjusted to store and pass around necessary in-

formation about the user, such as, for example, admin role or ID.

The signature contains base64 encodedheader andpayload concatenatedwith

the secret key separated with dots and signed.

The flexibility of JWTclaims can be utilized to perform server-side user autho-

rization without any additional database lookups. This can speed up client-server

interactions when compared to the session-based solution, making web-based

user interface to appear more responsive.

When using a token-based authentication pattern there is no need for redun-

dant structures in the codebase or memory as JWTs are stateless and the server

has no information about tokens that have been issued.

3.2.1 QuickFeed user claims

JWT claims are used to uniquely identify the currently logged in user. Claims can

contain any number of custom fields. Doing database look-ups on each request,

which happens in the original implementation of the access control mechanism,

essentially limits the request-response round-trip time to the database I/O speed.

To allowQuickfeed server to perform user authorization checks without database

queries, we include information about user privileges in the claims.

There are several roles in the Quickfeed system that determine what kind of

data a user can access or what methods can be called from the client while the

user is logged in.

A user can be an admin, a student enrolled in a certain course, or a member

of the teaching staff in a certain course. We store this information in JWT claims,

encode it, and set it as an http-only browser cookie.

QuickFeed JWT claims contain details about admin status and courses the

user is enrolled in, as can be seen in listing 3.2.
1 type Claims struct {
2 jwt.StandardClaims
3 UserID uint64 `json:"user_id"`
4 Admin bool `json:"admin"`
5 Courses map[uint64]pb.Enrollment_UserStatus `json:"courses"`
6 }

Listing 3.2: QuickFeed user claims.

To keep information about the status of a user in different courses we use a

map[uint64]pb.Enrollment_UserStatus structure, where the course ID serves as

a key, and the status of the user as a value. The UserStatus enumerated type of

the Enrollment message serves as identifier of the enrollment status of a user.

Implementation of the status is presented in listing 3.3.

1 message Enrollment {
2 enum UserStatus {
3 NONE = 0;
4 PENDING = 1;
5 STUDENT = 2;
6 TEACHER = 3;

Listing 3.3: QuickFeed enrollment status

3.2.2 Token security

AJWTuniquely identifies aQuickFeed user. The access controlmodule trusts the

information about the user stored in the JWT claims. Therefore, it is important

to ensure that the token is used in a secure, reliable manner.

We set up several security measures to restrict access to the JWT cookie and

ensure the authenticity and integrity of a token [10] [11].

To create a new JWT, the authentication module requests information about

the user’s roles in the system from the database. This information is encapsu-

lated inside new JWT claims. The JWT is then signed and set as a secure browser

cookie as illustrated in figure 3.3. Each following http or gRPC request from the

authenticated client will also include this cookie.

Figure 3.3: Session cookie in the browser with encoded JWT string.

We explicitly enable the Secure cookie option. A secure cookie will never be

sent over an unprotected http connection, only over https, which makes a man-

in-the-middle attack much harder to perform.

A man-in-the middle is a type of attacks where an unauthenticated person

attempts to intercept a token cookie sent in a client-server request to get access

to a service by impersonating the bearer of the stolen token.

Moreover, HttpOnly cookie field is also enabled making the cookie inacces-

sible to the JavaScript API. This helps to mitigate a possible cross-site scripting

(XSS) attack where a malicious script is injected into a client. In this case a script

will not be able to access the authentication cookie.

When a request from the client reaches the server, the signed token will be

decoded and verified before the request is allowed to reach the intended service.

Failed verification indicates that the content of a token has been altered and will

result in the immediate denial of access. This guarantees that the contents of a

JWT has not been altered by an attacker as long as the security of the signing key

hasn’t been compromised.

A token is signed to further prevent man-in-the-middle type of attacks where

an attacker could intercept a token and change its content. Signature allows the

server to verify that there were no changes to any parts of the token [11]. There

are multiple signing algorithms that can be used to sign a token. Choosing an

algorithm is an important decision, as there is always a tradeoff between security

and speed of an algorithm.

In case of Quickfeed it seems sufficient to use a symmetric algorithm, as it

is the same service that sings and verifies tokens and thus there is no need to

share the signing key between parties. Therefore an asymmetric algorithm with

a private and public key pair would only add complexity of managing two keys

without contributing to the security of the application.

We chose hash-based message authentication code (HMAC) to sign Quick-

feed authentication JWTs [9]. The security of a MAC signature depends on the

cryptographic strength of the underlying hash function [8]. We will use SHA-256

hashing algorithm from the SHA-2 family [12].

SHA-256 is considered secure enough as with the modern level of technology

it is resistant to collisions and exhaustive brute-force searches [13] [8]. However,

compared to the alternatives like SHA-512, SHA-256 produces a shorter output

that results in lower overhead when sent over the network. It is also more widely

supported then the alternatives in the SHA-2 family.

In addition,HMACoffers better performancewhen signing and verifying com-

pared to the asymmetric signing algorithms and is easier to use as there is only

one key to consider.

When validating a token signature it is also important to verify that the field

indicating the signing method hasn’t been altered [14]. We perform the check

when we parse the JWT cookie received with the request to the server, as shown

in listing 3.4.

Finally, tokens have limited lifetime and expire after 15 minutes. A short life-

time aims to reduce the period of time during which a potentially stolen token can

1 if token.Header["alg"] != hashFunction {
2 return nil, fmt.Errorf("incorrect hash function in the header:
3 expected %s, got %s", hashFunction, token.Header["alg"])
4 }

Listing 3.4: Verifying the correct signing method.

be used by an unauthorized attacker to access the service.

3.2.3 Token manager

Several methods are involved in management of JWTs. We need to create new

tokens with user’s data retrieved from the database. We need to update tokens

that have expired or about to expire. We also need to validate tokens that are sent

with client requests.

To keep all token-related types and operations in one placewe develop a token

manager structure and a set of methods that can be called on an instance of this

manager.
1 type TokenManager struct {
2 tokens []uint64
3 db database.Database
4 expireAfter time.Duration
5 secret string
6 domain string
7 cookieName string
8 }

Listing 3.5: Token manager type struct.

The token manager is presented in listing 3.5. A new instance of the manager

is created just once when the QuickFeed server starts. Later the manager can be

accessed by other modules to issue or verify a JWT, modify a list of tokens that

need an update, or check if the current JWT is in this list.

Table 3.1 explains the purpose of the fields in a token manager.

tokens A list of IDs of users that need a token update.

db Database.

expireAfter Lifetime of a token.

secret A key used to sign and verify tokens.

domain Domain the server is running on.

cookieName Name of the authentication cookie, currently ”auth”.

Table 3.1: Token manager fields.

It is important to add an extra check to ensure that secret and domain are not

empty strings during the creation of a new manager, as shown in listing 3.6.
1 func NewTokenManager(db database.Database, expireAfter time.Duration, secret, domain string)
2 (*TokenManager, error) {
3 if secret == "" || domain == "" {
4 return nil, fmt.Errorf("failed to create token manager:
5 missing secret (%s) or domain (%s)", secret, domain)
6 }

Listing 3.6: Checking that all required fields are set.

The field tokens of a token manager is used to store a list of user IDs that

need their JWT re-issued on the next connection to the server. This condition

is indicated by a Boolean field in the User database table. This guarantees that

information about token updates is persistent across server restarts or possible

crashes.

In QuickFeed, Protobuf messages are saved directly to the database Listing

3.7 shows the User message that serves as the schema for the User table in the

database.
1 message User {
2 uint64 ID = 1;
3 bool isAdmin = 2;
4 string name = 3;
5 string studentID = 4;
6 string email = 5;
7 string avatarURL = 6;
8 string login = 7;
9 bool updateToken = 8;

Listing 3.7: Fields of the User message.

Methods that can be called on an instance of the token manager allow us to

create and validate JWTs, construct authentication cookies, check whether the

user’s token needs an update, and, finally, add and remove entries from the list

and update the corresponding database User entries.

TheUpdatemethod is called when creating a new tokenmanager at the server

start. It collects IDs of all users in the database who have their updateToken field

set to True, as illustrated in listing 3.8.

When issuing a new JWT, the token manager fills the standard JWT fields

first, then constructs the new Quickfeed claims with relevant user roles out of the

data fetched from the database.

1 // Update fetches IDs of users who need token updates from the database
2 func (tm *TokenManager) Update() error {
3 users, err := tm.db.GetUsers()
4 if err != nil {
5 return fmt.Errorf("failed to update JWT tokens from database: %w", err)
6 }
7 var tokens []uint64
8 for _, user := range users {
9 if user.UpdateToken {
10 tokens = append(tokens, user.ID)
11 }
12 }
13 tm.tokens = tokens
14 return nil
15 }

Listing 3.8: Populating token update list from the database on the server start.

As shown in listing 3.9, we set token creation and expiration time and add in-

formation about the user’s admin role and course enrollment status to the claims.

Audience JWT field is not necessary now that we use the same token across the

whole QuickFeed service. However, with multiple services, it is possible to limit

access of a token bearer to a single service by setting this field and adding corre-

sponding authorization checks.
1 // NewClaims creates new JWT claims for user ID
2 func (tm *TokenManager) NewClaims(userID uint64) (*Claims, error) {
3 usr, err := tm.db.GetUserWithEnrollments(userID)
4 if err != nil {
5 return nil, err
6 }
7 newClaims := &Claims{
8 StandardClaims: jwt.StandardClaims{
9 ExpiresAt: time.Now().Add(tm.expireAfter).Unix(),
10 IssuedAt: time.Now().Unix(),
11 Issuer: "Quickfeed",
12 },
13 UserID: userID,
14 Admin: usr.IsAdmin,
15 }
16 userCourses := make(map[uint64]pb.Enrollment_UserStatus)
17 for _, enrol := range usr.Enrollments {
18 userCourses[enrol.GetCourseID()] = enrol.GetStatus()
19 }
20 newClaims.Courses = userCourses
21 return newClaims, nil
22 }

Listing 3.9: Creating new JWT claims.

It is also easy to log out a user by setting a new cookie with the same name

and empty content.

Chapter 4

Interceptors

In this chapter, we cover the development of a set of gRPC interceptors that will

perform authentication and authorization checks and replace the original http

middleware.

Http middleware and gRPC interceptors are very similar concepts [15]. Both

are API wrappers that aim to intercept and inspect a client-server communica-

tion before a request reaches the server. The goal of such interception is to apply

some additional logic to multiple API methods. A typical use of middleware or

interceptors is logging, different validation checks, and user authentication.

4.1 Middleware

Http middleware wraps a group of API endpoints and inspects every request that

is sent to one of these endpoints.

Middleware in the original Autograder has been designed to support the http

API architecture. Themiddlewarewas intended for internal authentication checks.

It would verify that there is an active session for the current user and that a record

for this user exists in the database.

There are currently two middleware methods. The PreAuth method was in-

tended only for the API group in charge of user authentication with GitHub. The

AccessControlmiddlewarewas designed towrap all httpmethods including those

that the PreAuth already takes care of.

Both middleware methods perform two identical checks, as can be seen in

figure 4.1.

21

Figure 4.1: Two middleware functions performing two redundant checks.

At first, each middleware checks the session store to ensure that an active

session for this user exists. If the session is found, the middleware then queries

the database to make sure that there is a record for the user. If both checks are

successful, the request is allowed to proceed to the Autograder server.

The main difference between the two middleware methods is in the way they

handle a request from a new user. The PreAuthmethodwould start a new session

and redirect the unauthenticated user to GitHub to initiate a new sign in. The

AccessControl howeverwould just immediately deny an unauthorized user access

to the server.

Now that the general purpose API has been reimplemented as gRPC calls it

never invokes the AccessControl middleware. It is only called together with the

PreAuthmiddleware when a user logs in with one of sign in buttons in the Auto-

grader’s user interface, as shown in figure 4.2

Figure 4.2: Login options: GitHub and GitLab.

As a result, the AccessControl middleware is already redundant and can be

safely removed. Now that there is no sessions, the PreAuthmiddleware no longer

serves a purpose. We completely remove the Autograder’s http middleware and

transfer its intended authentication responsibilities to gRPC interceptors.

4.2 Interceptors

Just like the http middleware, interceptors inspect each gRPC API request before

deciding whether it can be allowed to proceed to the server.

Autograder already has two interceptors. The first one inspects gRPCmessage

in the request payload to ensure that the required fields of the message are not

empty. We leave this interceptor unchanged.

The second interceptor,UserVerifier, assists in communication between http

and gRPC APIs. It reads the ID of a user session from the session cookie and

fetches the ID of the user from the structure that links session and user IDs.

UserVerifier then sets the user ID in the gRPCmetadata for internal consumption

by gRPC methods.

Now that the Quickfeed’s authentication process does not rely on sessions,

this interceptor becomes unnecessary. We replace it with a pair of new intercep-

tors designed for the token-based authentication pattern.

Finally, we replace the per-method access control performed inside of each

APImethodwith another interceptor to completely prevent unauthorized requests

from reaching the server.

The complete interceptor chain is presented in figure 4.3

Figure 4.3: Architecture of the interceptor chain.

4.3 Authentication interceptors

In a token-based authentication pattern, it is important to validate the integrity of

a token. There are also situations where an already issued JWT needs an update

because it has outdated information or is about to expire.

We implement two authentication interceptors to manage issuing, updating,

and validating JWTs.

4.3.1 Validating tokens

Once a user has authenticated with GitHub account, QuickFeed will create a new

JWT with user information. A token will then be set as a safe browser cookie and

later sent to the server with each following request.

To ensure that information inside a JWT has not been changed, we sign the

token following the JWS standard before sending it to the client [16]. The dedi-

cated ValidateToken interceptor method will then verify the token signature on

each request to the server. The interceptor method is outlined in listing 4.1.
1 func ValidateToken(logger *zap.SugaredLogger, tokens *auth.TokenManager) grpc.UnaryServerInterceptor {
2 return func(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler)
3 (interface{}, error) {
4 start := time.Now()
5 token, err := GetFromMetadata(ctx, "cookie", tokens.GetAuthCookieName())
6 if err != nil {
7 logger.Error(err)
8 return nil, ErrAccessDenied
9 }
10 claims, err := tokens.GetClaims(token)
11 if err != nil {
12 logger.Errorf("Failed to extract claims from JWT: %s", err)
13 return nil, ErrAccessDenied
14 }

Listing 4.1: Interceptor for token validation.

The interceptor calls a token manager method, GetClaims.

As can be seen in listing 4.2, inside this method the token is decoded and the

signature is verified with an additional check to make sure that a correct signing

algorithm is declared in the token.

This step aims to circumvent a critical vulnerability in JWT spec [14]. A JWT

header includes a string that indicates the algorithm used to sign the token. How-

ever, an attacker can change the value to ”none”. As a result, a JWT with any

content constructed by the attacker would always be recognized as valid.

1 // GetClaims returns user claims after parsing and validating a signed token string
2 func (tm *TokenManager) GetClaims(tokenString string) (*Claims, error) {
3 token, err := jwt.Parse(tokenString, func(t *jwt.Token) (interface{}, error) {
4 if t.Header["alg"] != alg {
5 return nil, fmt.Errorf("incorect signing algorithm, expected %s, got %s", alg, t.Header["alg"])
6 }
7 if _, ok := t.Method.(*jwt.SigningMethodHMAC); !ok {
8 return nil, fmt.Errorf("failed to parse token: incorrect signing method")
9 }
10 return []byte(tm.secret), nil
11 })
12 if err != nil {
13 return nil, err
14 }
15 if claims, ok := token.Claims.(*Claims); ok && token.Valid {
16 return claims, nil
17 }
18 return nil, fmt.Errorf("failed to parse token: validation error")
19 }

Listing 4.2: Token validation when parsing a JWT.

The expected hashing algorithm is set as a package constant and verified on

each request.

4.3.2 Working with gRPCmetadata

As can be seen in listing 4.1, the token validator interceptor extracts the encoded

and signed token string from the gRPC metadata.

Metadata is a nested dictionary sent with each gRPC request. All browser

cookies are stored in the ”cookie” field of the metadata, as shown in figure 4.4.

Figure 4.4: Example of metadata header sent with a gRPC request.

1 // GetFromMetadata extracts a value from a filed of incoming metadata
2 // by the given key. Used to extract JWT tokens.
3 func GetFromMetadata(ctx context.Context, field, key string) (string, error) {
4 if field == "" {
5 return "", fmt.Errorf("missing metadata field name (%s)", field)
6 }
7 meta, ok := metadata.FromIncomingContext(ctx)
8 if !ok {
9 return "", fmt.Errorf("failed to read metadata")
10 }
11 content := meta.Get(field)
12 // if there is no key, a field is expected to have only one element
13 if key == "" {
14 if len(content) != 1 {
15 return "", fmt.Errorf("incorrect metadata content length: %d", len(content))
16 }
17 return content[0], nil
18 }
19 for _, c := range meta.Get(field) {
20 _, content, ok := strings.Cut(c, key+"=")
21 if !ok {
22 return "", fmt.Errorf("missing %s cookie", key)
23 }
24 return strings.TrimSpace(content), nil
25 }
26 return "", fmt.Errorf("missing metadata field %s", field)
27 }

Listing 4.3: Helper method to extract values from gRPC metadata.

We implement a new helper method, GetFromMetadata, to simplify retriev-

ing metadata information, as demonstrated in listing 4.3.

Two other helper methods are used to set new metadata values. The set-

ToMetadatamethod adds a given value to the inbound context for internal con-

sumption by the gRPC API. The setCookiemethod adds a new JWT cookie to the

outbound context when a response is sent back to the web client.

4.3.3 Updating tokens

The major downside of JWT is that, once a token has been generated and set

as a browser cookie, it is nearly impossible to revoke it. However, it might be

necessary if the user details in JWT claims are no longer correct.

For example, claims can be issued for a non-admin user who afterwards is

promoted to admin. As a result, if the user sends another request before the user’s

JWT has expired, he will be treated as a non-admin despite the promotion. Even

worse, if an admin user gets demoted, he will still have access to admin services

as long as the JWT with admin claims is still valid.

However, there exists an easy solution to this problem. There is a limited set

of methods that can change the role of a user. To keep track of such changes, the

tokenmanagermaintains a list of users whose token needs an update because the

1 type TokenManager struct {
2 tokens []uint64

Listing 4.4: Token update list.

access privileges have changed and information in the JWT claims is no longer

correct. This list is stored in a field of a token manager instance, as can be seen

in listing 4.4.

In addition, each user record gets a new Boolean field updateToken which

indicates whether a new JWT has to be generated for the user next time they

send a request to the server. The updated user message is shown in listing 4.5.

This field in a database record guarantees that the list is persistent across server

restarts of possible failures.
1 message User {
2 uint64 ID = 1;
3 ...
4 string avatarURL = 6;
5 string login = 7;
6 bool updateToken = 8;

Listing 4.5: New field in the User message.

When a new instance of the token manager is created when the Quickfeed

server starts, the list will be populated with user IDs.

As shown in listing 4.6, the new method calls the Update function before re-

turning a new instance of the token manager.
1 // NewTokenManager creates a new token manager, populating
2 // the token list with user IDs from the database
3 func NewTokenManager(db database.Database, expireAfter time.Duration, secret, domain string)
4 (*TokenManager, error) {
5 ...
6 // Collect IDs of users who require token update from database.
7 if err := manager.Update(); err != nil {
8 return nil, err
9 }
10 return manager, nil
11 }

Listing 4.6: Creating a new instance of token manager.

As can be seen in listing 4.7, if a user has UpdateToken field set to True, the

ID of this user will be added to the list. The method is called only once when the

QuickFeed server starts.

We also implement three other tokenmanagermethods that help synchronize

the database with the token list.

1 // Update fetches IDs of users who need token updates from the database
2 func (tm *TokenManager) Update() error {
3 users, err := tm.db.GetUsers()
4 if err != nil {
5 return fmt.Errorf("failed to update JWT tokens from database: %w", err)
6 }
7 var tokens []uint64
8 for _, user := range users {
9 if user.UpdateToken {
10 tokens = append(tokens, user.ID)
11 }
12 }
13 tm.tokens = tokens
14 return nil
15 }

Listing 4.7: Populating token list.

1 // Add adds a new UserID to the manager and updates user record in the database
2 func (tm *TokenManager) Add(userID uint64) error {
3 if tm.exists(userID) {
4 return nil
5 }
6 if err := tm.update(userID, true); err != nil {
7 return err
8 }
9 tm.tokens = append(tm.tokens, userID)
10 return nil
11 }

Listing 4.8: Adding new ID to the token list.

The Addmethod shown in listing 4.8 puts a new user ID into the list. Remove

in listing 4.9 deletes the ID from the list after a successful update.
1 // Update removes user ID from the manager and updates user record in the database
2 func (tm *TokenManager) Remove(userID uint64) error {
3 if !tm.exists(userID) {
4 return nil
5 }
6 if err := tm.update(userID, false); err != nil {
7 return err
8 }
9 var updatedTokenList []uint64
10 for _, id := range tm.tokens {
11 if id != userID {
12 updatedTokenList = append(updatedTokenList, id)
13 }
14 }
15 tm.tokens = updatedTokenList
16 return nil
17 }

Listing 4.9: Removing ID from the list after a successful token update.

The update method will update the corresponding User record, as shown in

listing 4.10.

Database lookups are often slow and we would like to avoid doing them for

each request. However, updates to user roles are very infrequent. Most of the

time the list will be empty.

1 // update updates user record in the database
2 func (tm *TokenManager) update(userID uint64, updateToken bool) error {
3 user, err := tm.db.GetUser(userID)
4 if err != nil {
5 return err
6 }
7 user.UpdateToken = updateToken
8 if err := tm.db.UpdateUser(user); err != nil {
9 return err
10 }
11 return nil
12 }

Listing 4.10: Updating a user record in the database.

4.3.4 Interceptor to update tokens

We implement the UpdateTokens interceptor that will manage the update list.

The interceptor keeps a list of the four methods that change user roles in the

QuickFeed system. The list is shown in listing 4.11.
1 var methods = []string{
2 "UpdateUser",
3 "CreateCourse",
4 "UpdateEnrollments",
5 "UpdateGroup",
6 }

Listing 4.11: List of methods that change privileges of a user.

Themethods and the way they can affect user privileges are described in table

4.1.

UpdateUser Called by admin to grant or revoke admin status.

CreateCourse User creating a course is granted full access to the course information.

UpdateEnrollments User enrolled into a new course or promoted to TA.

UpdateGroup Adds or removes group members.

Table 4.1: List of methods that affect roles of a user in the QuickFeed system.

The interceptor ignores requests that invoke methods not included in the list.

If a listed method is going to be invoked, the interceptor lets the request through

and inspects the response.

If a listed method returns an error, it is also ignored. Only if the request was

successful the interceptor will add the relevant user IDs to the token update list.

The UpdateTokens interceptor is presented in listing 4.12.

1 // UpdateTokens adds relevant user IDs to the list of users that need their token refreshed
2 // next time they sign in because their access roles might have changed
3 // This method only logs errors to avoid overwriting the gRPC responses.
4 func UpdateTokens(logger *zap.SugaredLogger, tokens *auth.TokenManager)
5 grpc.UnaryServerInterceptor {
6 return func(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler)
7 (interface{}, error) {
8 sort.Strings(methods)
9 method := info.FullMethod[strings.LastIndex(info.FullMethod, "/")+1:]
10 idx := sort.SearchStrings(methods, method)
11 if idx < len(methods) && methods[idx] == method {
12 resp, err := handler(ctx, req)
13 // We only want to add the user ID to the list of tokens to update
14 // if the request was successful.
15 if err == nil {
16 switch method {
17 // User has been promoted to admin or demoted.
18 case "UpdateUser":
19 // Add id of the user whose info has been updated.
20 if err := tokens.Add(req.(*pb.User).GetID()); err != nil {
21 logger.Error(err)
22 }
23 // The signed in user gets a teacher role for the new course.
24 case "CreateCourse":
25 token, err := GetFromMetadata(ctx, "token", "")
26 if err != nil {
27 logger.Error(err)
28 }
29 claims, err := tokens.GetClaims(token)
30 if err != nil {
31 logger.Error(err)
32 }
33 if err := tokens.Add(claims.UserID); err != nil {
34 logger.Error(err)
35 }
36 // Users has been enrolled into a course or promoted to TA.
37 case "UpdateEnrollments":
38 for _, enrol := range req.(*pb.Enrollments).GetEnrollments() {
39 if err := tokens.Add(enrol.GetUserID()); err != nil {
40 logger.Error(err)
41 }
42 }
43 // Group is approved or modified.
44 case "UpdateGroup":
45 for _, user := range req.(*pb.Group).GetUsers() {
46 if err := tokens.Add(user.GetID()); err != nil {
47 logger.Error(err)
48 }
49 }
50 }
51 }
52 return resp, err
53 }
54 return handler(ctx, req)
55 }
56 }

Listing 4.12: Interceptor for token updates.

4.3.5 Interceptor to validate tokens

To validate JWTs in client requests and issue new tokens in case of an update we

design another interceptor.

The ValidateToken interceptor checks whether the user who sends a request

to the server needs a new JWT. If it is the case, the updated user information is

requested from the database, and a new token is generated and set as a new token

cookie. The interceptor is presented in listing 4.13.
1 // ValidateToken validates the integrity of a JWT in each request. It will also create and set a new JWT
2 // if the current token is in the update list or about to expire.
3 func ValidateToken(logger *zap.SugaredLogger, tokens *tokens.TokenManager) grpc.UnaryServerInterceptor {
4 return func(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler)
5 (interface{}, error) {
6 token, err := GetFromMetadata(ctx, "cookie", tokens.GetAuthCookieName())
7 if err != nil {
8 logger.Error(err)
9 return nil, ErrAccessDenied
10 }
11 claims, err := tokens.GetClaims(token)
12 if err != nil {
13 logger.Errorf("Failed to extract claims from JWT: %s", err)
14 return nil, ErrAccessDenied
15 }
16 // If the token is about to expire or the user ID
17 // is in the update token list, generate and set a new JWT.
18 if tokens.UpdateRequired(claims) {
19 updatedToken, err := tokens.NewTokenCookie(claims.UserID)
20 if err != nil {
21 logger.Errorf("Failed to generate new user claims %v", err)
22 return nil, ErrAccessDenied
23 }
24 if err := tokens.Remove(claims.UserID); err != nil {
25 logger.Errorf("Failed to update token list: %s", err)
26 return nil, ErrAccessDenied
27 }
28 if err := setCookie(ctx, updatedToken.String()); err != nil {
29 logger.Errorf("Failed to set auth cookie: %s", err)
30 }
31 token = updatedToken.Value
32 }
33
34 ctx, err = setToMetadata(ctx, "token", token)
35 if err != nil {
36 logger.Error(err)
37 return nil, ErrAccessDenied
38 }
39 return handler(ctx, req)
40 }
41 }

Listing 4.13: Token validator interceptor.

The interceptor calls the UpdateRequired token manager method presented

in listing 4.14. The method returns True if the user ID is in the token update list,

or the JWT has expired or is about to expire.

1 // JWTUpdateRequired returns true if JWT update is needed for this user ID
2 // due to updated user role or token expiration time
3 func (tm *TokenManager) UpdateRequired(claims *Claims) bool {
4 for _, token := range tm.tokens {
5 if claims.UserID == token {
6 return true
7 }
8 }
9 if claims.ExpiresAt - time.Now().Unix() < refreshTime.Milliseconds() {
10 return true
11 }
12 return false
13 }

Listing 4.14: Checking whether the JWT needs an update.

Finally, we define a new error type. The ErrAccessDenied error will be re-

turned if a check performed by any interceptor fails. This way we can avoid re-

dundant code in error handlers. The new error can be seen in listing 4.15.
1 var ErrAccessDenied = status.Errorf(codes.Unauthenticated, "access denied")

Listing 4.15: Custom error to return when access to the server is denied.

4.4 Authorization interceptor

QuickfeedAPImethods request information about users, user groups, and courses

from the database. Authorization is the process of confirming that the user call-

ing the API method has permission to access this specific information. A student

shouldn’t be able to request or update the data of another student. Likewise, a

course teacher shouldn’t be able to access assignments or a list of members of

another course.

In the original Autograder’s authorization architecture, access control is per-

formed on a per-method basis inside each API method. As a result, a client re-

quest always reaches the server, even when the user sending the request is not

authorized to.

An example of an access control check in the original Autograder is presented

in listing 4.16

TheUpdateUsermethod shown in the listing can be called by a user to update

their information like student number or e-mail. It also can be called by an admin

to grant or revoke admin status. Because of that, there is a check that ensures that

the user is either an admin or that the user record that will be updated belongs to

the same user. Only if one of the checks passes the method can advance.

1 // UpdateUser updates the current users's information and returns the updated user.
2 // This function can also promote a user to admin or demote a user.
3 // Access policy: Admin can update other users's information and promote to Admin;
4 // Current User if Owner can update its own information.
5 func (s *AutograderService) UpdateUser(ctx context.Context, in *pb.User) (*pb.Void, error) {
6 usr, err := s.getCurrentUser(ctx)
7 if err != nil {
8 s.logger.Errorf("UpdateUser failed: authentication error: %v", err)
9 return nil, ErrInvalidUserInfo
10 }
11 if !(usr.IsAdmin || usr.IsOwner(in.GetID())) {
12 s.logger.Errorf("UpdateUser failed to update user %d: user is not admin or course creator", in.GetID())
13 return nil, status.Error(codes.PermissionDenied, "only admin can update another user's information")
14 }
15 if _, err = s.updateUser(usr, in); err != nil {
16 s.logger.Errorf("UpdateUser failed to update user %d: %v", in.GetID(), err)
17 err = status.Error(codes.InvalidArgument, "failed to update user")
18 }
19 return &pb.Void{}, err
20 }

Listing 4.16: Access control checks inside an API method.

This implementation makes it difficult to keep track of privileges required by

each method as this information is only stated in the comments.

We reassign the access control process to a dedicated gRPC interceptor.

A special enumerated type describes different roles that can limit what kinds

of data a user is allowed to access. The new type can be seen in listing 4.17.
1 type (
2 role int
3 roles []role
4)

Listing 4.17: New role types.

There are several well-defined user roles in the QuickFeed system, as pre-

sented in listing 4.18.
1 const (
2 // user role implies that user attempts to access information about himself.
3 user role = iota
4 // group role implies that the user is a course student + a member of the given group.
5 group
6 // student role implies that the user is enrolled in the course with any role.
7 student
8 // teacher: user enrolled in the course with teacher status.
9 teacher
10 // courseAdmin: an admin user who is also enrolled into the course.
11 courseAdmin
12 // admin is the user with admin privileges.
13 admin
14)

Listing 4.18: Access control user roles.

A user can only access or modify their own information. The group role in-

dicates that the user is a member of a certain student group. A student has read

access to the course information and own grades. A teacher has read and write

access to the course information. A courseAdmin is a QuickFeed admin who is

also enrolled in a certain course but not necessary as a teacher. An admin can

promote new admins and create new courses.

All the restricted API methods and required roles are now stored in a single

structure that is displayed in listing 4.19.
1 // If there are several roles that can call a method, a role with the least privilege must come first.
2 // If method is not in the map, there is no restrictions to call it.
3 var access = map[string]roles{
4 "GetEnrollmentsByCourse": {student, teacher},
5 "UpdateUser": {user, admin},
6 "GetEnrollmentsByUser": {user, admin},
7 "GetSubmissions": {user, group, teacher, courseAdmin},
8 "GetGroupByUserAndCourse": {group, teacher},
9 "CreateGroup": {group, teacher},
10 "GetGroup": {group, teacher},
11 "UpdateGroup": {teacher},
12 "DeleteGroup": {teacher},
13 "IsEmptyRepo": {teacher},
14 "GetGroupsByCourse": {teacher},
15 "UpdateCourse": {teacher},
16 "UpdateEnrollments": {teacher},
17 "UpdateSubmission": {teacher},
18 "RebuildSubmissions": {teacher},
19 "CreateBenchmark": {teacher},
20 "UpdateBenchmark": {teacher},
21 "DeleteBenchmark": {teacher},
22 "CreateCriterion": {teacher},
23 "UpdateCriterion": {teacher},
24 "DeleteCriterion": {teacher},
25 "CreateReview": {teacher},
26 "UpdateReview": {teacher},
27 "UpdateSubmissions": {teacher},
28 "GetReviewers": {teacher},
29 "UpdateAssignments": {teacher},
30 "GetSubmissionsByCourse": {teacher, courseAdmin},
31 "GetUserByCourse": {teacher, admin},
32 "GetOrganization": {admin},
33 "CreateCourse": {admin},
34 }

Listing 4.19: Restricted API methods and roles.

Methods that are not in the list have no restrictions and can be called by any

user.

The roles are ordered according to the Principle of Least Privilege, lowest to

highest access level. The reasoning behind this order is that there are significantly

more students than teachers using theQuickFeed application at anymoment, and

there are even fewer admins.

Therefore it is better to start the case switch withmore frequent roles, as there

is a higher chance that the first case will result in a hit. This can improve the

average time the access control interceptor takes before it lets the request with

sufficient authority proceed to the server.

When inspecting a request from an interceptor, the type of the request mes-

sage can only be guessed from themethod signature. However, we need to access

some ID values inside the message to perform the authorization check.

For example, the message can contain the ID of a course and we want to make

sure that the calling user is enrolled in the course as a student or teacher. Like-

wise, we might want to retrieve the IDs of a user or a group from the request.

To simplify the process of extracting a correct ID from an unknown message

type, we add a dedicated interface that all the relevant message types will imple-

ment.
1 idRequest interface {
2 FetchID(string) uint64
3 }

Listing 4.20: New interface.

The interface shown in listing 4.20 must implement a method that takes the

role string and returns the corresponding ID. There is no need to know exactly

the message type as long as it implements the FetchIDmethod.
1 // FetchID returns user, group, or course ID
2 func (r *SubmissionRequest) FetchID(role string) uint64 {
3 switch role {
4 case "user":
5 return r.GetUserID()
6 case "group":
7 return r.GetGroupID()
8 case "course":
9 return r.GetCourseID()
10 }
11 return 0
12 }

Listing 4.21: Example of FetchID method

Listing 4.21 demonstrates an example implementation of the FetchID inter-

face method for the SubmissionRequest message type.

There are three different types of IDs wemight need to extract. If a user wants

to access an individual submission we need to extract the user’s ID from the mes-

sage to compare it to the ID of the sender.

In the samemanner, we want the ID of the group when a group submission is

requested to confirm that the sender is indeed a member of this group.

Finally, a teacher can request all submissions for the course. In this case, we

want to fetch the ID of the course and verify that the sender is enrolled in the

course as a teacher.

As a result, we can now retrieve the correct type of ID from a request based

on the expected user role, as demonstrated in listing 4.22.

1 switch role {
2 case user:
3 if m, ok := req.(requestID); ok {
4 if m.FetchID("user") == claims.UserID {
5 return handler(ctx, req)
6 }
7 } else {
8 logger.Debugf("Method %s does not implement FetchID method", method)
9 }
10 case student:
11 if m, ok := req.(requestID); ok {
12 courseID := m.FetchID("course")
13 status, ok := claims.Courses[courseID]
14 if ok && status == pb.Enrollment_STUDENT {
15 return handler(ctx, req)
16 }
17 } else {
18 logger.Debugf("Method %s does not implement FetchID method", method)
19 }
20 case admin:
21 if claims.Admin {
22 return handler(ctx, req)
23 }
24 ...

Listing 4.22: Access control checks for different user roles.

Now that all the restricted API methods and expected user roles are collected

in one place, it is easy to identify which user groups can call a certain method. It

also should be easier to maintain and update the access control logic.

Chapter 5

GitHub integration

In this chapter, we present changes we introduce to the components of the Quick-

Feed architecture in control of communication with GitHub.

Integration with GitHub constitutes a significant part of the QuickFeed func-

tionality. A QuickFeed user is based on a GitHub account. A QuickFeed course

is connected to a GitHub organization. Student enrolled in a course get personal

repositories to submit their solutions to coding assignments. A student group is

a GitHub team.

To submit a solution to an assignment, students push the solution code to per-

sonal or group repositories. After each new push, QuickFeed receives an event

notification from GitHub. QuickFeed then downloads, builds and tests the sub-

mitted code and returns feedback to the students.

There are three distinct components of the QuickFeed architecture respon-

sible for communication with GitHub. The web/auth package supports user

authentication with GitHub accounts. The scm package is responsible for gen-

eral GitHub API calls. Theweb/hooks package provides support for the GitHub

event subscriptionmechanism,webhooks. Changes introducedby this thesis only

affect the first two modules. We leave the webhook functionality unchanged.

Additionally, Quickfeed offers some limited support for GitLab API and sign

in. Integration with GitLab is beyond the scope of this thesis. However, we make

sure that the proposed solution can be easily made compatible with GitLab in the

future.

37

5.1 Single sign on with GitHub

The single sign on (SSO) authentication pattern allows a user to sign in tomultiple

independent service providers with the same ID from a trusted identity provider.

In QuickFeed, users log in using their GitHub accounts.

Figure 5.1: Single Sign On with a GitHub account.

QuickFeed uses GitHub OAuth 2.0 protocol to authenticate users and autho-

rize the application to perform a limited set of actions on the user’s behalf. Quick-

feed serves as the Service Provider in theOAuth scheme, whileGitHub is the iden-

tity provider, as illustrated in figure 5.1.

The message exchange between the user, QuickFeed, and GitHub is outlined

in figure 5.2. An unauthorized user who attempts to sign in to QuickFeed will be

redirected to the GitHub log in page. Note that if the user is already logged in to

GitHub account, the redirect happens in the background and does not affect the

web client interface at all.

GitHub then redirects back to QuickFeed with a unique identification code.

QuickFeed exchanges the code to a personal access token and then uses the token

to verify user information with GitHub.

When the identity of the user is confirmed, QuickFeed creates a new JSON

Web Token (JWT) with user details and sets it as a browser cookie. Next time the

user client sends a request to the QuickFeed server, the JWT cookie is sent along

and the user is recognized as authenticated by the QuickFeed API.

Figure 5.2: Authentication flow with GitHub.

5.2 GitHub integration: OAuth app

GitHub offers two integration options for applications like QuickFeed: an OAuth

app and a GitHub app [17]. When the original Autograder was designed, OAuth

apps were the only solution. Thus the Autograder’s GitHub integration is imple-

mented as an OAuth app.

The main downside of an OAuth app is that its functionality is limited to user

authentication. In order to access the GitHub API, it was necessary to store users’

personal access tokens in the database. Autograder would create GitHub API

clients based on these access tokens in order to access and update course infor-

mation on GitHub.

Storing and sending tokens over the network is problematic. If the database

file is compromised or a request to GitHub is intercepted by an attacker, an access

token can be used to impersonate the user to get access to GitHub services.

Moreover, because the OAuth app is only responsible for authentication with

GitHub, and the Autograder’s scmmodule that communicates with GitHub API

must use access tokens, these two GitHub-related components of the application

architecture are completely disconnected, as demonstrated in figure 5.3.

Figure 5.3: QuickFeed architecture with OAuth app.

We propose replacing the OAuth app in the Autograder’s architecture with

another, more modern integration option, a GitHub app.

5.3 GitHub integration: GitHub app

GitHub apps support the OAuth 2.0 authentication pattern just like OAuth apps.

But in addition, aGitHubapp canbe installed on a course organization and granted

read orwrite permissions to the organization’s content. When installed, a GitHub

app can invoke GitHub API on this organization directly, without personal access

tokens.

To support the newGitHub integration type, we expand the QuickFeed’s scm

package with several new methods and types. SCM is an abbreviation for Source

Control Manager. An scm client is a client used to access GitHub or GitLab APIs.

We implement a newSCMMaker type to create and store scm clients. The new

type is shown in listing 5.1. It is easy to add GitLab functionality in the future by

simply adding an extra field with GitLab specific configuration.
1 type SCMMaker struct {
2 scms *Scms
3 githubConfig *GithubConfig
4 }

Listing 5.1: SCMMaker is used to create and store scm clients.

Quickfeed creates an instance of SCMMaker and a set of clients for each active

installationwhen the server starts by calling theNewSCMMakermethod that can

be seen in listing 5.2.
1 func NewSCMMaker() (*SCMMaker, error) {
2 config := newAppConfig()
3 if !config.Valid() {
4 return nil, fmt.Errorf("error configuring GitHub App: %+v", config)
5 }
6 appKey, err := key.FromFile(config.keyPath)
7 if err != nil {
8 wd, _ := os.Getwd()
9 return nil, fmt.Errorf("wd %s error reading key from file: %s", wd, err)
10 }
11 appClientConfig, err := app.NewConfig(config.appID, appKey)
12 if err != nil {
13 return nil, fmt.Errorf("error creating GitHub application client: %s", err)
14 }
15 config.appConfig = appClientConfig
16 return &SCMMaker{
17 githubConfig: config,
18 scms: NewScms(),
19 }, nil
20 }

Listing 5.2: Creating a new instance of SCMMaker.

GitHub app parameters are stored in theGithubConfig structure presented in

listing 5.3.
1 type GithubConfig struct {
2 appID string
3 clientID string
4 secret string
5 keyPath string
6 appConfig *app.Config
7 }

Listing 5.3: GitHub app configuration.

Application ID, client ID, and secret are all generated by GitHub when a new

app is created. These parameters must be provided as environmental variables

together with a path to the file with the app’s private key. Method to create a new

instance of the configuration is shown in listing 5.4.

1 func newAppConfig() *GithubConfig {
2 return &GithubConfig{
3 appID: os.Getenv(AppEnv),
4 clientID: os.Getenv(KeyEnv),
5 secret: os.Getenv(SecretEnv),
6 keyPath: os.Getenv(KeyPath),
7 }
8 }

Listing 5.4: Setting up GitHub configuration parameters.

Each parameter is necessary to communicate with GitHub API.We add a new

valid()method that can be used to confirm that all the parameters are set.
1 func (conf *GithubConfig) valid() bool {
2 return conf.appID != "" && conf.keyPath != "" &&
3 conf.clientID != "" && conf.secret != ""
4 }

Listing 5.5: Verifying that the configuration parameters are not empty.

Toperformactions andmodify the content of a course organization onGitHub,

we need to create an installation client for each course.
1 // Creates a new scm client with access to the course organization.
2 func (sm *SCMMaker) NewInstallationClient(ctx context.Context, courseOrg string) (*github.Client, error) {
3 resp, err := sm.githubConfig.appConfig.Client().Get(InstallationAPI)
4 if err != nil {
5 return nil, fmt.Errorf("error fetching installations for GitHub app %s: %w", sm.githubConfig.appID, err)
6 }
7 defer resp.Body.Close()
8 body, err := io.ReadAll(resp.Body)
9 if err != nil {
10 return nil, fmt.Errorf("error reading installation response: %w", err)
11 }
12 var installations []*github.Installation
13 if err := json.Unmarshal(body, &installations); err != nil {
14 return nil, fmt.Errorf("error unmarshalling installation response: %w", err)
15 }
16 var installationID int64
17 for _, inst := range installations {
18 if *inst.Account.Login == courseOrg {
19 installationID = *inst.ID
20 break
21 }
22 }
23 if installationID == 0 {
24 return nil, fmt.Errorf("cannot find GitHub app installation for organization %s", courseOrg)
25 }
26 install, err := sm.githubConfig.appConfig.InstallationConfig(strconv.Itoa(int(installationID)))
27 if err != nil {
28 return nil, fmt.Errorf("error configuring github client for installation: %w", err)
29 }
30 return github.NewClient(install.Client(ctx)), nil
31 }

Listing 5.6: Creating a new installation client for a course organization.

As shown in listing 5.6, to create a new installation client GitHub app takes

the organization name, retrieves a list of all active installations, and, if the app is

already installed, creates and returns a new client.

Because all the current scm methods are designed for a token-based client,

we also update these methods to use the new client type. Finally, we update the

related tests and add a new set of tests to cover the new SCMMaker methods.

The final QuickFeed architecture based on aGitHub app is illustrated in figure

5.4.

Figure 5.4: QuickFeed architecture with GitHub app integration.

Nowboth components of theQuickFeed architecture that rely on communica-

tion with GitHub are assisted with the QuickFeed’s GitHub app. As a result, both

auth and scm are now closely connected and easier to supervise and maintain.

Chapter 6

Supplementary architecture

changes

In this chapter, we explain other changes introduced to the QuickFeed architec-

ture by this thesis.

6.1 Proxyless gRPC-web

To enable gRPC requests from a browser client the original Autograder relied on

an external Envoy proxy. Proxy separated gRPC and http requests and redirected

these to the predefined ports.

Envoy was configured with two separate clusters to which it redirected http

and gRPC-web requests.

Correspondingly, Autograder runs two separate servers. An http webserver

was serving static files and handling authentication API calls. A gRPC backend

service served business logic gRPC API endpoints.

The client-proxy-server architecture of the original Autograder is outlined in

figure 6.1.

Envoy runs as a separate process and thus needs to be started manually or

with a script each time the QuickFeed server starts.

44

Figure 6.1: Quickfeed architecture with Envoy proxy.

Envoy reads configuration from a YAML file. However, this configuration

must be changed depending on whether the server runs in production or locally.

This has always been a challenging step in the development of the server for each

new student team that would start working on the project.

Moreover, when some configuration options are discontinued or replaced, the

proxy stops working and it is difficult to debug the cause.

We replace the original gRPC-web solution based on Envoy proxy with the al-

ternative server wrapper developed by Improbable Engineering [18]. The wrap-

per implements an http router that allows multiplexing gRPC and http requests

on the same port. The updated architecture can be seen in figure 6.2.

Figure 6.2: QuickFeed architecture with a multilplex server wrapper.

With the server wrapper, it is now possible to compile and run QuickFeed

directly on a localmachine without any additional steps. However, in production,

it might still be recommended to use a proxy for load balancing. However, there

will be no need for configuration modifications in order to support gRPC-web

requests.

6.2 Centralized configuration package

QuickFeed requires multiple parameters to configure and start the server. Some

of them are passed as command-line options, some are stored in files, and some

must be read from the environment.

In the original Autograder, constants with paths to the files, URL endpoints,

and names of the expected environmental variables are scattered across the code-

base. Keeping track of all of them is inconvenient, andwe need to add several new

parameters to support the updated architecture.

To simplify parameter management we introduce a new centralized config

package. The new config will collect all the required parameters when the Quick-

Feed server starts and keep them for later use.

Config is a single structure that divides the storedparameters into three groups:

endpoints, paths, and secrets. The definition of Config can be seen in listing 6.1.
1 type Config struct {
2 Endpoints *Endpoints
3 Secrets *Secrets
4 Paths *Paths
5 }

Listing 6.1: Server configuration struct.

The Endpoints group is a collection of all http URL endpoints that QuickFeed

uses to run the server and exchange information with GitHub. The collection can

be seen in listing 6.2.
1 type Endpoints struct {
2 BaseURL string
3 LoginURL string
4 CallbackURL string
5 LogoutURL string
6 WebhookURL string
7 InstallAppURL string
8 Public string
9 PortNumber string
10 }

Listing 6.2: Collection of URL endpoints.

The Paths group collects paths to the files with certificates and keys, as shown

in listing 6.3.

1 type Paths struct {
2 CertPath string
3 CertKeyPath string
4 AppKeyPath string
5 }

Listing 6.3: Collection of file paths.

The Secrets group is a collection of verification codes and keys. It can be seen

in listing 6.4.
1 type Secrets struct {
2 WebhookSecret string
3 CallbackSecret string
4 TokenSecret string
5 key *[32]byte
6 }

Listing 6.4: Collection of secrets.

All configuration parameters are read or generated by QuickFeed when the

server starts. The struct is then kept as a part of the main service. Methods that

consume different configuration details are generally defined as methods on the

main service, whichmeans they always have access to the necessary configuration

parameters.

With centralized configuration, all the constants representing endpoints, paths,

and environmental variables are no longer spread across multiple packages. As a

result, it is easier to keep track, maintain and add new QuickFeed parameters.

Finally, some variables have to be used in several different packages, which

would lead to multiple internal exports. With a separate configuration package,

there is no need for imports: all server parameters are stored inside a single in-

stance of the Config and can be easily used by any QuickFeed’s business logic

method.

6.3 Protofiles

The original Autograder has a single main protofile which contains all the gRPC

methods alongwith every possiblemessage type. Protofiles describemethods and

types in Protocol Buffer, a language-neutral format. They are easy to read and are

supposed to be self-documenting. However, with a long and unorganized file like

the original ag.proto it is still challenging because of the amount of protobuf

messages stored in one place.

Wesplit the original protofile in three: message types aremoved to the types.proto

and requests.proto, while the API methods are left in the ag.proto.

The types.proto protofile contains message types that are saved directly to

the database. Two examples of such messages are shown in listing 6.5.
1 message User {
2 uint64 ID = 1;
3 bool isAdmin = 2;
4 string name = 3;
5 string studentID = 4;
6 string email = 5;
7 string avatarURL = 6;
8 string login = 7;
9 bool updateToken = 8;
10
11 repeated RemoteIdentity remoteIdentities = 9;
12 repeated Enrollment enrollments = 10;
13 }
14
15 message Course {
16 uint64 ID = 1;
17 uint64 courseCreatorID = 2;
18 string name = 3;
19 string code = 4 [(go.field) = { tags: 'gorm:"uniqueIndex:idx_unique_course"' }];
20 uint32 year = 5 [(go.field) = { tags: 'gorm:"uniqueIndex:idx_unique_course"' }];
21 string tag = 6;
22 string provider = 7;
23 uint64 organizationID = 8;
24 string organizationPath = 9; // The organization's SCM name, e.g. uis-dat520 -2020.
25 uint32 slipDays = 10;
26 string dockerfile = 11;
27 int64 installationID = 12; // TODO(vera): we most probably don't need it anymore
28 Enrollment.UserStatus enrolled = 13 [(go.field) = { tags: 'gorm:"-"' }];
29
30 repeated Enrollment enrollments = 14;
31 repeated Assignment assignments = 15;
32 repeated Group groups = 16;
33 }

Listing 6.5: Example of message types in types.proto.

The requests.proto file is a collection of messages that are only used as the

payload in gRPC requests and responses. Two examples of such methods can be

found in listing 6.6.
1 message GroupRequest {
2 uint64 userID = 1;
3 uint64 groupID = 2;
4 uint64 courseID = 3;
5 }
6
7 message Status {
8 uint64 Code = 1;
9 string Error = 2;
10 }

Listing 6.6: Messages used in API calls are kept in requests.proto.

With three smaller files, the gRPC API definitions are logically separated into

three smaller groups that are easier to read and maintain.

6.4 Encrypting access tokens

A student enrolling in a new course will receive three invitations to the course

repositories. The invitations will be sent to the e-mail address associated with the

student’s GitHub account. The invitations must be accepted before the student

gets full access to the course content.

Originally students were expected to accept the invitationmanually. This was

a constant source of enrollment delays and extra work for teaching staff because

invitations would be ignored, forgotten, and expired, or would land in the spam

folder. Automated accepting of invitations was added to Autograder to simplify

this process.

However, invitationmanagement functionality is still not supported byGitHub

apps. Therefore personal access tokens still have to be used for this service.

An access token is a string of random characters and numbers. In Autograder

access tokens were stored in the database in plaintext. This is not recommended

because of a potential security risk.

We propose to encrypt all access tokens before saving them to the database

and only decrypt the necessary token directly before use. However, to preserve

compatibility with older databases we add this functionality as an option. It is

deactivated by default and can be enabled by a command-line flag shown in listing

6.7.
1 withEncryption = flag.Bool("e", false, "encrypt access tokens")

Listing 6.7: Command-line option to encrypt access tokens

The implemented encryption scheme involves two secret keys. One key is used

to encode and decode access tokens. Wewill refer to it as themaster key. Another

key, a passphrase, is used to encrypt the master key.

The encrypted master key is stored in a file. If encryption is enabled, Quick-

Feed will read the path to the file from the environment, as shown in listing 6.8.
1 if *withEncryption {
2 if err := serverConfig.ReadKey(true); err != nil {
3 log.Fatal(err)
4 }
5 }

Listing 6.8: Reading encryption key only if encryption is enabled.

We leave it to the user to decide where the file will be stored. However, we

strongly recommend placing it outside the QuickFeed’s working directory so that

it is more difficult to discover.

When the encrypted master key has been collected from a file, it needs to

be deciphered with the correct passphrase. We add two alternatives to how the

passphrase can be obtained by theQuickFeed: from the environment or by asking

for user input. The ReadKeymethod is presented in listing 6.9.
1 func (c *Config) ReadKey(fromEnv bool) error {
2 var pass string
3 if fromEnv {
4 pass = os.Getenv("KEYPASS")
5 }
6 var inputBytes []byte
7 if pass == "" {
8 fmt.Println("Key: ")
9 input, err := term.ReadPassword(int(os.Stdin.Fd()))
10 if err != nil {
11 return err
12 }
13 inputBytes = input
14 } else {
15 inputBytes = []byte(pass)
16 }

Listing 6.9: Reading the passphrase key from the environment or a user input.

The deciphered master key is stored in memory as an unexported (private)

field in the configuration. This way the key cannot be accessed from any other

module of the application following the Encapsulation principle.

We addWithEncryption helper method for modules that make use of access

token encryption. The method controls whether the encryption option has been

enabled or not and is shown in listing 6.10.
1 func (c *Config) WithEncryption() bool {
2 return c.Secrets.key != nil
3 }

Listing 6.10: Helper method that indicates whether encryption is enabled.

Listing 6.11 presents the Cipher method used to encrypt personal access to-

kens. To encrypt an access token we need to generate a random 24-byte nonce.
1 func (c *Config) Cipher(token string) (string, error) {
2 nonce := new([24]byte)
3 _, err := io.ReadFull(rand.Reader, nonce[:])
4 if err != nil {
5 return "", fmt.Errorf("failed to geerate nonce: %w", err)
6 }
7 out := make([]byte, 24)
8 copy(out, nonce[:])
9 out = secretbox.Seal(out, []byte(token), nonce, c.Secrets.key)
10 return base64.RawStdEncoding.EncodeToString(out), nil
11 }

Listing 6.11: Encrypting a string.

If encryption is enabled, tokenswill be encoded during the initial user authen-

tication with the GitHub account, as can be seen in listing 6.12.
1 accessToken := githubToken.AccessToken
2 if config.WithEncryption() {
3 accessToken, err = config.Cipher(accessToken)
4 if err != nil {
5 unauthorized(logger, w, callback, "failed to encrypt access token: %v", err)
6 return
7 }
8 }

Listing 6.12: Encrypting access tokens during authentication.

We use the secretbox Go package to encrypt the master key and access to-

kens [19]. It is simple, secure, and designed specifically for encryption of shorter

messages which makes it a good choice for QuickFeed.

Finally, we supply a short script that generates two cryptographically secure

random 32-byte keys with the crypto/rand Go library, encrypts the master key,

and writes it to a file. The script prints out the base64 encoded passphrase to the

standard output. Therefore it is only recommended to run it on a secure personal

device and never on the production server.

6.5 Dependencies

There are several dependencies in the Autograder’s authentication module that

we want to remove. Relying on third-party dependencies is always a risk. There

is no guarantee that the packages will be kept up to date or compatible with other

dependencies the project might rely upon. There is also a danger of some poten-

tial vulnerability in the framework that will not be noticed and patched in time.

This is why we propose to limit the dependencies to those that are strictly nec-

essary for the functionality of the application. The rest can be either removed or

replaced with standard Go libraries.

The echo package is a web framework that was used in the original Autograder

to organize and manage API endpoints of the http-based REST API [20]. The

general API has since then been replaced by gRPC calls. However, the Autograder

server still has to maintain four http endpoints for user authentication because

GitHub does not support gRPC.

Echo was convenient to use in the original Autograder architecture to group

many API methods together and run the http middleware. However, importing a

dedicated framework now that it will be used by a very few API endpoints seems

excessive. Furthermore, we replace both middleware pieces with gRPC intercep-

tors as explained in chapter 4.

Go offers the net/http package which provides all the basic functionality for

http/https communication [21]. We remove the echo dependency and use basic

http handler functions instead.

Another dependency we propose to remove is the gothic library which is es-

sentially a simplified wrapper for amore comprehensiveGoth package [22]. Both

packages are intended for user authentication with third-party identity providers

like GitHub or GitLab.

Gothic is convenient to use in combination with sessions. However, most of

its functionality in charge of OAuth 2.0 authentication spec is based on another

standard Go library, oauth2 [23]. Now that we replaced sessions with JSONWeb

Tokens, there are no benefits to importing the gothic package. Instead we use the

oauth2 library directly.

Finally, we completely remove the Gorilla sessions package dependency. Go-

rilla offers a session store infrastructure that is no longer necessary.
1 func OAuth2Login(logger *zap.SugaredLogger, db database.Database) echo.HandlerFunc {
2 return func(c echo.Context) error {
3 w := c.Response()
4 r := c.Request()
5 provider, err := gothic.GetProviderName(r)
6 if err != nil {
7 logger.Error(err.Error())
8 return echo.NewHTTPError(http.StatusBadRequest, err.Error())
9 }
10 var teacher int
11 if strings.HasSuffix(provider, TeacherSuffix) {
12 teacher = 1
13 }
14 qv := r.URL.Query()
15 logger.Debugf("qv: %v", qv)
16 redirect := extractRedirectURL(r, Redirect)
17 logger.Debugf("redirect: %v", redirect)
18 qv.Set(State, strconv.Itoa(teacher)+redirect)
19 logger.Debugf("State: %v", strconv.Itoa(teacher)+redirect)
20 r.URL.RawQuery = qv.Encode()
21 logger.Debugf("RawQuery: %v", r.URL.RawQuery)
22
23 url, err := gothic.GetAuthURL(w, r)
24 if err != nil {
25 logger.Error(err.Error())
26 return echo.NewHTTPError(http.StatusBadRequest, err.Error())
27 }
28 logger.Debugf("Redirecting to %s to perform authentication; AuthURL: %v", provider, url)
29 return c.Redirect(http.StatusTemporaryRedirect , url)
30 }
31 }

Listing 6.13: The original user authentication handler.

Without excessive dependencies, authenticationmethods become shorter and

cleaner. Listings 6.13 and 6.14 compare the original and updated initial authen-

tication handlers.

The purpose of the OAuth2Login handler method is a simple redirect to the

identity provider’s log in page.

The original handler method shown in listing 6.13 uses the gothic package to

extract the correct provider fromaquery parameter and later to generate a correct

redirect URL. The echo package serves as a simple wrapper around the original

net/http methods without offering any additional utility. Multiple log messages

are produced to keep track of all the details.
1 func OAuth2Login(logger *zap.SugaredLogger, db database.Database, config oauth2.Config, secret string)
2 http.HandlerFunc {
3 return func(w http.ResponseWriter, r *http.Request) {
4 if r.Method != "GET" {
5 unauthorized(logger, w, login, "request method: %s", r.Method)
6 return
7 }
8 // URL format: "/auth/login/login/:provider"
9 provider := strings.Split(r.URL.Path, "/")[3]
10 redirectURL := config.AuthCodeURL(secret)
11 logger.Debugf("Redirecting to %s to perform authentication; AuthURL: %v", provider, redirectURL)
12 http.Redirect(w, r, redirectURL, http.StatusTemporaryRedirect)
13 }
14 }

Listing 6.14: The reworked authentication handler.

The reworkedmethod can be found in listing 6.14. There is no need for an ex-

plicit extraction of the correct name of the identity provider unless it is required

for logging. The oauth2.Config structure contains all the provider-specific pa-

rameters and will generate a redirect URL for any configured provider.

As a result, most of the authentication handlers have become shorter and eas-

ier to read, understand and maintain.

Chapter 7

Discussion

In this chapter, we discuss the results of the changes introduced to the authenti-

cation and authorization architecture of QuickFeed by the thesis.

7.1 Token based authentication

We have replaced the stateful session-based authentication pattern used in the

original Autograder with stateless JSONWeb Tokens (JWTs). Using JWTs offers

several advantages, such as easier interoperability between the http and gRPC

APIs of QuickFeed, better scalability, and cleaner architecture due to the removal

of redundant structures and methods.

7.1.1 Replacing sessions and http middleware

Figures 7.1 and 7.2 demonstrate theQuickFeed authentication flowwith andwith-

out sessions and middleware.

54

Figure 7.1: User login sequence with http middleware and sessions.

With middleware (M1 and M2) shown in figure 7.1, each middleware method

queries the session S store and the database DB before the user is redirected to

the log in page of the identity provider (here GitHub). When a signed in user calls

gRPC API, the session store is requested again to retrieve the ID of the user.

Figure 7.2: User login sequence with tokens and interceptors.

With the token-based pattern shown in figure 7.2, the user is redirected to the

identity provider page immediately. The JWT is then set as a secure cookie and

used by the authentication interceptor directly.

The resulting authentication architecture is cleaner and more consistent now

that the redundantmiddleware pieces and session stores are removed. The grow-

ing userbase no longer affects the application’s resource consumption because

there is no user state to be stored in memory. Furthermore, a JWT-based solu-

tion offers better support for horizontal scaling, as the same JWT token can be

passed across multiple instances of the application as well as different services.

7.1.2 Token size

One of the known disadvantages of JWTs is that a JWT cookie can be significantly

larger than a session cookie. JWT contains multiple required fields and, in addi-

tion, custom claims with user roles. In comparison, a session cookie only needs

to include a session identifier. An authentication cookie must be sent with each

request to the server. As a result, a larger cookie can lead to increased network

overhead.

However, an average Autograder’s session cookie is almost one-third bigger

than an average JWT cookie. This can be explained by the fact that QuickFeed’s

user claims are relatively small, with the total JWT string averaging about 238

characters, while a session ID has a fixed size of 360 characters.

7.1.3 JWT security

JWTs are signed and base64 encoded. Quickfeed verifies the signature before the

request is allowed to the server API. This guarantees that the payload of a JWT

has not been modified.

However, it is still possible to read the content of the encoded payload by de-

coding the base64 string in the JWT cookie. If it is desirable to keep the payload

secret it is possible to update the token manager with an option to encrypt the

JWT before sending it to the client.

Moreover, a JWT is stored in the browser cookie. Even though the cookie itself

is secure and cannot be accessed by a script, nothing prevents another user from

simply copy-pasting the cookie and using it fromanothermachine to impersonate

the original user.

We cannot prevent physical access by others to the web clients of QuickFeed

users andmust trust the users to do so. However, it could be useful to add a client-

side interceptor that would add some information about the currently logged in

user to each request. This information could then be compared by the server with

JWT claims in the same request. This would add a verification check to ensure

that the user in the web-client state and the user in the JWT claims is in fact the

same user.

7.1.4 Updating tokens

In a stateless authentication pattern, the server has no information about the al-

ready issued JWTs. Access control needs to rely on the information about user

roles stored in the JWT that is sent along with a request from a client.

However, the role of a user can change. A user can be promoted to admin, en-

roll in a new course, or promoted from a student to a teaching assistant. Such a

change means that the user must be able to access new categories of information.

However, the JWT stored in the user’s browser can have outdated information

about the role of the user and, as a result, access to the information can be incor-

rectly restricted.

To avoid this complication we create a list with IDs of all users who will need

new claims next time they send a request to the QuickFeed server. It might seem

like a stateful solution contradicting the stateless design of the token-based au-

thentication pattern.

However, changes to user roles in the QuickFeed system are very uncommon.

Only one or two users a year are promoted to admins. Demotions are almost

non-existent. A lot of students get enrolled in new courses twice a year, but these

events are limited to a very few weeks at the start of a new semester. Most of the

time the list will be empty.

7.1.5 Alternative solutions

Wehave considered an alternative to JWTauthentication tokens,macaroons [24].

Macaroon is a new token format that is more abstract and flexible compared to

JWTs. There are no required fields or predefined encoding algorithms. Themain

feature of macaroons is caveats: multiple restrictions that can be added to the

original token to limit its scopes. Adding a new caveat creates a new token that

can be sent with a specific API call, or delegated to another service or even a new

user.

However, we found macaroons less suitable for our goals. First of all, the

library ecosystem that supports macaroons is scarce. JWTs, on the opposite, are

widely supported.

Furthermore, the purpose of macaroons seems to be aimed at systems where

clients have to produce new tokens with different restrictions without contacting

the server that has issued the original token. QuickFeed’s authentication archi-

tecture limits themanagement of the tokens to the dedicatedmodule of the server.

Token modification by the user clients is undesirable.

Finally, as caveats can be added in any number and order, it is difficult to de-

sign comprehensive authentication checks. We pre-define all the fields that can

be present in the user claims of a JWT. As a result, authentication and autho-

rization checks are simple and straightforward as there is never an unexpected

field.

7.2 GitHub integration: access tokens

GitHub creates personal access tokens when users authenticate to QuickFeed

with their GitHub accounts. In the original Autograder, access tokens were saved

in the database and used to create GitHub API clients. Clients were used for au-

tomation of the interactionswith course organizations onGitHub such as creating

course repositories, adding students to a course, promoting teaching assistants,

and creating student groups. Clients based on access tokens are the only option

when using an OAuth app to integrate with GitHub as the original Autograder

did. Back when the application was designed OAuth apps were the only option.

We have replaced the Autograder’s OAuth app with a more modern integra-

tion solution, a GitHub app. A GitHub app can authenticate students with their

GitHub accounts just like OAuth apps do. However, a GitHub app does not use

personal access tokens to access course organizations on GitHub.

Unfortunately, GitHub apps do not support automated accepting of reposi-

tory invitations which is an important feature in QuickFeed. As a result, it is still

necessary to rely on personal access tokens.

In Autograder access tokens were saved in the database as plaintext strings.

We added an option to encrypt access tokens when saving, and only decrypt di-

rectly before use. Storing encrypted tokens is safer even if the database file is

compromised. However, not storing access tokens at all is the best solution.

GitHub continues to expand the number of API endpoints that can be accessed

by a GitHub app. Hopefully, support for accepting repository invitations will also

be added in the future. In this case, we recommend immediately stopping the

practice of storing access tokens in the database and transferring this functional-

ity to the QuickFeed’s GitHub app.

7.3 Proxyless gRPC-web

The original Autograder’s client-server architecture required a proxy in order to

support gRPC calls from browser clients. Envoy proxy had to be started as a sep-

arate process and required a complex configuration. Additionally, the configu-

ration needed to be changed depending on whether the Autograder server was

running in production or on a local machine for development and testing. We

changed the architecture such that there is no need for a proxy in the middle.

However, it is possible that using a proxy can be beneficial for the QuickFeed’s

deployment setup. The changes we made to the architecture still allow using a

proxy to perform load balancing or redirects. However, a configuration would be

much simpler compared to the original Autograder as there is no need to detect

and separate gRPC calls. Both http and gRPC requests can now be sent directly

to the QuickFeed server.

This way it is easier for new teams that start working on the project to run the

server on their ownmachineswithout being slowed downby learning the complex

proxy configuration.

7.4 Access control

Authentication checks in the original Autograder were performed inside the API

methods. To understand what role a user should have to call the method it was

necessary to find the method’s definition and read the note describing the access

restrictions in the comments.

We redesigned this authorization mechanism as a single access control inter-

ceptor module. The interceptor inspects requests before deciding whether they

can be allowed to proceed to the QuickFeed server.

We collect all the restricted API methods and required roles such as admin,

course teacher, course student, or groupmember in a single table. This simplifies

development and maintaining of the access control module as it is now easy to

find out the required roles for each method.

Inmost cases, we can rely on the information about the role of a user from the

JWT claims. This way it is no longer necessary to query the database to confirm

the role before granting access to the server.

Reading JWT claims provides information about the admin role and whether

the user is a student or teacher in each course. However, some methods can only

be called by a course student who is also a member of a certain student group.

There is no information about groups in the QuickFeed’s JWT claims. As a result,

it is necessary to fetch this information from the database.

Itmight be practical to also include the group information in the claims. How-

ever, this would cause an increase in the number of JWT updates. Additionally,

this would mean that the interceptor module responsible for maintaining a list of

outdated tokens would need to inspect more methods.

7.5 Signing JWTs

We sign JWTs to guarantee the integrity of the content. We useHMAC for signing

which relies on a cryptographic hash function.

The choice of the hash function signing can be difficult. To decide between

SHA-256 and SHA-512 there are several things to consider. Both offer a compa-

rable level of security. However, the performance can differ [25].

SHA-256 is generally faster, however, it can still be outperformed by SHA-

512 when hashing longer strings. SHA-512 is also expected to be faster on 64-bit

platforms.

Finally, SHA-512 produces a longer output which can be important for Quick-

Feed.

Signed JWTs are sent over the network with each request. As a result, the

possible network overhead of sending a longer string must also be considered.

In the end, we chose SHA-256 to sign JWTs with because it is secure, widely

supported, and results in lower network overhead compared to SHA-512.

Our tests demonstrate that both hashing algorithms show very close perfor-

mance. Signing with SHA-256 averages 89.92 µs, compared to SHA-512 that on

average was taking 90.52 µs.

Chapter 8

Conclusion

This thesis presents a redesign of the authentication and authorization processes

in the QuickFeed software project.

We designed a set of solutions to improve the security of the application. We

took away some unnecessary dependencies on third-party libraries. Moreover,

we added missing verification checks when communicating with GitHub to au-

thenticate a user. Finally, we replaced session-based internal authentication with

a stateless token-based process.

JSON Web Tokens (JWTs) are now used to carry the identity of a user inter-

nally to ensure interoperability between the http and gRPC APIs of QuickFeed.

JWTs are signed on creation and verified on each client request to ensure the

integrity of the content. The payload of a JWT contains user claims that must

be trusted by the centralized access control module. To guarantee that informa-

tion in the claims is always up to date, JWTs have a short lifetime of 15 minutes.

Claims are updated from the database when a JWT is about to expire or if the role

of a user in the Quickfeed system has changed.

We modernized the way QuickFeed integrates with GitHub. We also added

an option to encrypt personal access tokens issued by GitHub.

Changes introduced by this thesis also provide support for better application

scalability. Stateless token-based authentication allows using the same JWT to

establish the identity of a user across multiple services. Due to the stateless au-

thentication pattern, the server no longer keeps any structures with user state

that would grow in size in proportion to the number of authenticated users.

Finally, we reorganized the authentication and authorization architecture by

62

removing an external proxy between the QuickFeed’s server and clients. We also

took away redundant structures andmethods and gathered all the user authoriza-

tion utilities in a single place. A dedicated access control table keeps track of all

restricted API methods and user roles. It is now easier to understand, maintain

and update the modules in charge of user authentication and authorization.

Appendix A

Source code

The source code developed in this thesis work can be found in the auth-rework

brach of the QuickFeed project at https://github.com/quickfeed/quickfeed/tree/

auth-rework.

The script that generates a master key and passphrase can be found at https:

//github.com/0xf8f8ff/keytool.

64

https://github.com/quickfeed/quickfeed/tree/auth-rework
https://github.com/quickfeed/quickfeed/tree/auth-rework
https://github.com/0xf8f8ff/keytool
https://github.com/0xf8f8ff/keytool

Bibliography

[1] Quickfeed project. https://github.com/quickfeed/quickfeed. (Accessed:

06.06.2022).

[2] Single sign-on. https://auth0.com/docs/authenticate/single-sign-on. (Ac-

cessed: 14.06.2022).

[3] Saml specifications. http://saml.xml.org/saml-specifications. (Accessed:

14.06.2022).

[4] Oauth 2.0. https://oauth.net/2/. (Accessed: 14.06.2022).

[5] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October

2012. URL https://www.rfc-editor.org/info/rfc6749.

[6] Open id connect protocol. https://auth0.com/docs/authenticate/

protocols/openid-connect-protocol. (Accessed: 14.06.2022).

[7] J. Bradley M. Jones and N. Sakimura. JSONWeb Token (JWT). RFC 7519,

May 2015. URL https://www.rfc-editor.org/info/rfc7519.

[8] W. Stallings. Cryptography and network security. Principles and practice.

Pearson Education Limited, 2017. ISBN 9781292158587.

[9] Dr.HugoKrawczyk,Mihir Bellare, andRanCanetti. HMAC:Keyed-Hashing

for Message Authentication. RFC 2104, February 1997. URL https://www.

rfc-editor.org/info/rfc2104.

[10] Using http cookies. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Cookies. (Accessed: 06.06.2022).

[11] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. The

dos and don’ts of client authentication on the web. https:

66

https://github.com/quickfeed/quickfeed
https://auth0.com/docs/authenticate/single-sign-on
http://saml.xml.org/saml-specifications
https://oauth.net/2/
https://www.rfc-editor.org/info/rfc6749
https://auth0.com/docs/authenticate/protocols/openid-connect-protocol
https://auth0.com/docs/authenticate/protocols/openid-connect-protocol
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://www.usenix.org/conference/10th-usenix-security-symposium/dos-and-donts-client-authentication-web
https://www.usenix.org/conference/10th-usenix-security-symposium/dos-and-donts-client-authentication-web

//www.usenix.org/conference/10th-usenix-security-symposium/

dos-and-donts-client-authentication-web, 2001. (Accessed: 06.06.2022).

[12] TonyHansen andDonald E. Eastlake 3rd. US SecureHashAlgorithms (SHA

and HMAC-SHA). RFC 4634, August 2006. URL https://www.rfc-editor.

org/info/rfc4634.

[13] PhD Svetlin Nakov. Practical cryptography for developers. 2018. ISBN

9786190008705.

[14] Critical vulnerabilities in json web token libraries. https://auth0.

com/blog/critical-vulnerabilities-in-json-web-token-libraries. (Accessed:

06.06.2022).

[15] Interceptors in grpc-web. https://grpc.io/blog/grpc-web-interceptor. (Ac-

cessed: 06.06.2022).

[16] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature

(JWS). RFC 7515,May 2015. URLhttps://www.rfc-editor.org/info/rfc7515.

[17] Differences between github apps and oauth apps. https://

docs.github.com/en/developers/apps/getting-started-with-apps/

differences-between-github-apps-and-oauth-apps. (Accessed:

06.06.2022).

[18] Improbable Engineering. Grpc-web. https://github.com/improbable-eng/

grpc-web/tree/master/go/grpcweb. (Accessed: 05.06.2022).

[19] Secretbox. https://pkg.go.dev/golang.org/x/crypto/nacl/secretbox. (Ac-

cessed: 06.06.2022).

[20] Echo http framework. https://echo.labstack.com. (Accessed: 06.06.2022).

[21] Go net/http standard library. https://pkg.go.dev/net/http. (Accessed:

06.06.2022).

[22] Gothic package. https://pkg.go.dev/github.com/markbates/goth/gothic.

(Accessed: 06.06.2022).

[23] Oauth2 package. https://pkg.go.dev/golang.org/x/oauth2. (Accessed:

06.06.2022).

https://www.usenix.org/conference/10th-usenix-security-symposium/dos-and-donts-client-authentication-web
https://www.usenix.org/conference/10th-usenix-security-symposium/dos-and-donts-client-authentication-web
https://www.rfc-editor.org/info/rfc4634
https://www.rfc-editor.org/info/rfc4634
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries
https://grpc.io/blog/grpc-web-interceptor
https://www.rfc-editor.org/info/rfc7515
https://docs.github.com/en/developers/apps/getting-started-with-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/developers/apps/getting-started-with-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/developers/apps/getting-started-with-apps/differences-between-github-apps-and-oauth-apps
https://github.com/improbable-eng/grpc-web/tree/master/go/grpcweb
https://github.com/improbable-eng/grpc-web/tree/master/go/grpcweb
https://pkg.go.dev/golang.org/x/crypto/nacl/secretbox
https://echo.labstack.com
https://pkg.go.dev/net/http
https://pkg.go.dev/github.com/markbates/goth/gothic
https://pkg.go.dev/golang.org/x/oauth2

[24] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael

Vrable, and Mark Lentczner. Macaroons: Cookies with contextual caveats

for decentralized authorization in the cloud. In Network and Distributed

System Security Symposium, 2014.

[25] L. Latinov. Md5, sha-1, sha-256 and sha-512

speed performance. https://automationrhapsody.com/

md5-sha-1-sha-256-sha-512-speed-performance/.

https://automationrhapsody.com/md5-sha-1-sha-256-sha-512-speed-performance/
https://automationrhapsody.com/md5-sha-1-sha-256-sha-512-speed-performance/

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: drmakete lab on Unsplash

© 2022 Vera Yaseneva

	Abstract
	Acknowledgements
	Introduction
	QuickFeed's evolution
	Motivation
	Contributions
	Outline

	Background
	Authentication and authorization
	Password-based and passwordless authentication

	Single sign-on
	Security Assertion Markup Language (SAML)
	OAuth 2.0
	OpenID Connect

	Stateful and stateless authentication
	Encryption
	Symmetric and asymmetric algorithms
	Message Authentication Codes

	Token-based authentication
	Current design: session-based authentication
	New design: token-based authentication
	QuickFeed user claims
	Token security
	Token manager

	Interceptors
	Middleware
	Interceptors
	Authentication interceptors
	Validating tokens
	Working with gRPC metadata
	Updating tokens
	Interceptor to update tokens
	Interceptor to validate tokens

	Authorization interceptor

	GitHub integration
	Single sign on with GitHub
	GitHub integration: OAuth app
	GitHub integration: GitHub app

	Supplementary architecture changes
	Proxyless gRPC-web
	Centralized configuration package
	Protofiles
	Encrypting access tokens
	Dependencies

	Discussion
	Token based authentication
	Replacing sessions and http middleware
	Token size
	JWT security
	Updating tokens
	Alternative solutions

	GitHub integration: access tokens
	Proxyless gRPC-web
	Access control
	Signing JWTs

	Conclusion
	Source code

