

Using various Natural Language Processing
Techniques to Automate Information Retrieval

Tsegazab Tesfay

14 June 2022

1

Preface
This thesis is a feasibility study of an information extraction technique based on Natural
Language Processing that employs various machine learning and deep learning algorithms.
This project was written as part of the Master of Science degree program in Applied Data
Science at the University of Stavanger.

This project was assigned by Autility AS in response to my request for masters thesis
project. The request sparked a lively discussion with Autility AS’s CEO, Sebastian Vide-
hult. The discussion about Autility’s existing projects was then continued with Autility
AS’s CTO, André Keane. I’ve had numerous and continuous meetings, specifically with
André Keane, regarding project clarification, advice, and gathering as much quality data
as possible. Autility, the University of Stavanger, and I agreed right before the semester
started that the project would be about Natural Language Processing, which uses various
techniques to retrieve information. This served as the foundation for the project.

I would like to thank my supervisor, Professor Ferhat Özgur Catak, for his helpful feed-
back and assistance. Every time I attend his meeting, I am inspired and encouraged. I’d
also like to thank Sebastian Videhult, CEO of Autility, for the opportunity and for intro-
ducing me to the company’s vision on my first day. Furthermore, I would like to thank
Autility’s CTO, André Keane, for introducing me to the company on a deeper level. André
explained not only the significance of this project, but also the overall concept of Autility
AS’s existence. In general, I can’t thank him enough for the explicit information I received,
which could lead to significant progress for our society and, ultimately, our world on the
topic of climate change in the coming years. Finally, I’d like to express my gratitude to
my parents and siblings for always loving and supporting me. Without you, I couldn’t have
done it! Last but not least, I’d like to thank all of my friends for their advice and help.

This thesis is intended for those who want a thorough introduction to the concept of
machine learning and deep learning through the use of multiple algorithms for classification
and Natural Language Processing techniques for information extraction.

2

Executive Summary
The existence of Natural Language Processing(NLP) provides numerous benefits, includ-
ing the understanding and analysis of unstructured data, as well as the efficient and precise
automation of real-time processes. Despite the fact that NLP began in the 1940s, the im-
portance of having an application that uses the benefits of NLP has never been greater than
in the last two decades. This is because as the number of people who have access to the
internet or digital devices grows, so does the size of the data collected. Thus, NLP and
automated processes play a significant role in the quality and performance of services that
users encounter.

Datasets are not always structured or automated. This is due to the size of the data or
the companies’ age in terms of data collection. Several studies have shown that unstruc-
tured data contains useful information that, when managed properly, can point businesses
in the right direction. To address these issues, it is critical to combine NLP and Machine
Learning(ML) or Deep Learning(DL) algorithms. In other words, algorithms can deal
with structured, unstructured, or both types of data. The algorithms’ contributions are to
automatically learn the language pattern in the given text and use that pattern to identify
the unseen or validation data. Hyperparameter optimization are also performed in both
supervised and unsupervised type of machine learning to make the algorithms as flexible
as possible while achieving the desired results.

The goal of this thesis is to develop an automated system that classifies files using
various NLP in conjunction with the ML/DL algorithm that produces the best performance
results. Autiliy AS is a young company focused on digitalization buildings. There are thou-
sands of structured and unstructured files in Autility. Autility intends to use an automated
system to extract information and classify files based on the system-code labeled “SYS-
TEMKODELIST NS3451”. The “SYSTEMKODELISTE NS3451” is the “backbone”
for the entire system creation process. The first part of the main “SYSTEMKODELISTE
NS3451” from Norwegian Statsbygg is shown in figure 1. Only 12 rows of the standard
“SYSTEMKODELISTE NS3451” are displayed. Its full version is included as an attach-
ment. The red square in the figure represents the building part number, which will be
referred to as system-code in this project, the blue square represents the name of the build-
ing part, and the black square represents guidance for the given building part. Chapter 3
contains a brief explanation of how it is integrated into this project.

The labeled dataset produces models with an average accuracy of roughly 85%. How-
ever, because the dataset contains far more unstructured files than structured files, research
into algorithms that handle both structured and unstructured data is critical. Because many
of the files contained drawings of buildings and pictures, the results of semi-supervised al-
gorithms indicated the importance of formal language. To ensure consistent performance

3

and a system with less overfitting, textaugmentation and hypertunneling are used. The as-
sumptions made and the challenges faced are documented throughout this project. A few
algorithms are presented in detail, along with their theoretical and mathematical concepts.

Figure 1: Classification structure

After this thesis, the system implemented and demonstrated here will be used in a prac-
tical case with continuous improvement.

Contents

1 Introduction 6
1.1 Background . 6
1.2 Autility . 7
1.3 Objectives and Problem Description . 7
1.4 Approach . 8
1.5 Limitation . 8
1.6 Arrangement of this Thesis . 9

2 Theory 10
2.1 Natural Language Processing . 10
2.2 Information Extraction . 12
2.3 Machine Learning . 12

2.3.1 Supervised Learning . 13
2.3.2 Unsupervised Learning . 14
2.3.3 Semi-Supervised . 15
2.3.4 Classification . 15
2.3.5 Decision Tree Classifier . 17
2.3.6 Random Forest Classifier . 21
2.3.7 Naive Bayes Classifier . 22
2.3.8 Support Vector Machine . 26
2.3.9 Artificial Neural-Network . 28
2.3.10 K-Means . 30
2.3.11 Expectation Maximization - EM 31
2.3.12 Model Evaluation . 33

3 Problem and its Investigation Methods 37
3.1 Case: . 37
3.2 Experiments . 39

4

CONTENTS 5

3.2.1 EDA - Exploring and Analysing data 39
3.2.2 Data Preparing . 44
3.2.3 Text Vectorization . 49
3.2.4 Implementation of the Models 51

3.3 Results and Working Process of the System 59

4 Summary 68
4.1 Discussion . 68
4.2 Environmental accounts . 69
4.3 Conclusion . 69

VI 71
VI. Acronyms . 71
VI. Tools used in this thesis . 72
VI. Appendix . 74

VIIBibliography 75

Chapter 1

Introduction

This chapter introduces the thesis’s quick overview, the problem that will be solved in this
project, and the thesis’s structure.

1.1 Background
Nowadays, data is collected from almost every daily activity. To name a few, shopping,
web-commerce (where a lot of transactions take place online), and so on. And all of this
activity results in a large amount of data being collected from billions of people every
day. Furthermore, computers are becoming less expensive and more powerful, allowing
people to communicate more easily while also allowing powerful corporations to analyze
data. These businesses become more competitive in terms of providing better customer
service and attracting new customers. When we consider the importance of data from a
scientific standpoint, we can use it to identify new planets and analyze changes in outer
space. Data can take the form of images, videos, text documents, and so on. Most of the
data we would deal with in NLP are collections of data with some attributes, also known as
features or variables. The attributes may define the property or characteristic of the objects
in the data collection. A person’s eye color and temperature are examples of properties or
characteristics.

In this project, data is gathered from real estate owners who apply for assistance from
Autility AS, which is then handled by Autility members. Manually classifying the appli-
cations as structured or unstructured is required. These applications are classified using
the “SYSTEMKODELIST NS3451” code from the Norwegian Directorate of Public Con-
struction and Property (which can be found in the attachment). The code is an identification
number that provides detailed information about the application’s location, system, compo-
nent, and type. This process takes time, and due to the large number of applications, much

6

CHAPTER 1. INTRODUCTION 7

information may be lost in the future. Autility AS wants to develop a system that can assist
advisers in automating the task in order to avoid these and use the data for a variety of other
purposes within automating, which is the main goal for Autility. In other words, given an
application, the system should both classify it using “SYSTEMKODELIST NS3451” and
extract information, such as the names of organizations, dates, and locations.

To achieve a consistent result, the process of developing this type of system includes
NLP, ML, DL, and Artificial Intelligence (AI) as a whole. And all of these main topics, as
well as other important topics like structured and unstructured data types, will be covered in
the Theory section. There is also a brief theoretical explanation in several NLP and general
information extraction (IE) sub topics. This thesis is analogous to a research process in
which I examine which ML models and information in the application are most reliable for
producing the output - system-code.

1.2 Autility
Autility is a company that assists real estate owners, property managers, and tenants in op-
timizing the use of their building portfolios for maximum profit. In order to accomplish
this, Autility makes use of cutting-edge technologies such as Digital Twins, which give
customers real-time access to valuable objects; AI, which is comprised of a number of dif-
ferent methods (Computer Vision, Anomaly Detection, Predictive Analytics), Internet of
Things, Automation and so on. In other words, the primary reason why Autility exists is
to digitalize buildings while also making certain that they are prepared for the future. In
order to achieve this goal, Autility frees data from silos, ensures that systems are able to
communicate with one another, and employs AI in order to optimize and simplify admin-
istration, operation, and tenant relations. Autility takes the first step toward achieving this
objective by connecting buildings and systems to the main platform. On this platform, AI
works to optimize and simplify operations, and information is presented in a manner that
is understandable and customized for each of their solutions.

After connecting the buildings and the data associated with them, Autility will be able
to begin processing the data in the platform. This will involve using AI to automate tasks
and provide decision support to users before the visual user interfaces are presented to them.

1.3 Objectives and Problem Description
This thesis provides a feasibility analysis of the viability of applying current technology for
natural language processing. Its primary purpose is to provide Autility AS, a system that

CHAPTER 1. INTRODUCTION 8

can both categorise system code and extract information using multiple natural language
processing techniques in conjunction with machine learning. This paper presents:

• Background information.

• Implementation of Use Case.

• Experiments and Results.

• An evaluation of the obtained system’s quality.

1.4 Approach
The ability to deal with both structured and unstructured data types using a variety of NLP
techniques without having in-depth knowledge of the domain is one of the primary focuses
of this thesis. Another approach is to become familiar with the basic mathematics that lies
at the heart of each of the ML and DL algorithms that will be utilized in this undertaking.
The verification of the result through the application of the principles of cross validation
and greedsearch can be seen as an approach in addition to the approaches of the models
that were compared to one another.

1.5 Limitation
The benefits of NLP may differ depending on what we are capable of with today’s technol-
ogy. The long-term goal is to create machines that can understand what we humans say and
interact with us in a human-to-human manner. Finding out how the brain converts language
into action after understanding it is another task that is expected to be solved in the future.
Currently, NLP can be used for language understanding, machine translation (though there
are limitations in some cases), sentimental analysis, paraphrasing, and so on. Even though
there has been significant progress in the field of NLP, there are still limitations. For ex-
ample, when someone speaks on the radio, a visual context is lost. If a person says “I want
that”, the interpretation of the sentence may be lost both from NLP prespective and from
humans prespectives due to a lack of visual scene, i.e one can not understand what “that”
refer to. The project’s results and implementation are limited by the quality of data and
memory capacity.

CHAPTER 1. INTRODUCTION 9

1.6 Arrangement of this Thesis
The thesis process is divided into several main and sub-tasks. Natural Language Processing
and ML are briefly discussed in Chapter 2. Following a brief explanation of the theoretical
and mathematical concepts underlying ML and DL algorithms, an explanation of model
evaluation with examples is provided. Chapter 3 describes the thesis’s main problem and
compares all of the algorithms shown in Chapter 2. The chapter begins with data explo-
ration, then data preparation, and finally text vectorization for further operation by the al-
gorithms. This chapter also includes the algorithm results. Chapter 4 discusses the results
from Chapter 3 as well as the assumptions used and the challenges encountered during the
thesis process. In this Chapter it will be included the environment accounts together with
the conclusion reached based on the outcome.

Chapter 2

Theory

2.1 Natural Language Processing
Humans have always been able to communicate with one another through the use of a
common language. And, despite differences or errors in the form of mispronunciations,
accent changes, and other difficulties, we can still understand each other. This is what gives
humans and human language such power [1]. When it comes to computers, one could argue
that they have always been capable of understanding their own language known as code.
However, because humans must manually write all of this code, the language is “extremely
limited” in vocabulary and restricted. For example, if a programmer makes a minor spelling
or syntax error, the program will crash and the problem will remain unresolved.

Another example that can clarify a point of limitation that may occur in our daily lives is
where a group of doctors attempting to identify a source of infectious diseases and warning
the population. To do so, doctors want to first figure out why and under what conditions
people get the diseases by analyzing previous cases as well as cases from the internet that
show similar symptoms. So they begin to examine their data, which includes pictures,
notes, journals, and so on. The group of doctors can be overwhelmed by the amount of
data because going through and making sense would take time. And the computer doesn’t
know how to decide this because it can’t understand the context that words are in. After
all, understanding a word boils down to understanding the words around it, because the
word itself has little meaning; it all depends on the context. As a result, the computer is
unable to make sense of the data and, as a result, cannot truly assist the doctors. However,
given how powerful computers are in terms of memory, speed, and intelligence, computers
would be far more useful if they could understand and process our language rather than
only incomprehensible 1s and 0s. NLP is the solution to the problem. Doctors can analyze
unstructured data in minutes using NLP.

10

CHAPTER 2. THEORY 11

Siri and Alexa, for example, can understand our words and context clues to improve
our lives. Google can not only predict results as we type in the search bar, but it can also
examine the big picture and recognize more than just the words we type. Our phones and
computers can anticipate what we will type, complete our sentences, and suggest appropri-
ate words. By identifying clues and patterns in e-mails and written reports, NLP can solve
larger problems such as crimes and even diseases. So it is clear that NLP is extremely pow-
erful and, when used correctly, has the potential to significantly improve our lives. Every
day, we each say hundreds of sentences and communicate with a wide range of people. We
know that a sentence is ultimately composed of a noun phrase and a verb phrase, and we
also know that techniques such as part-of-speech tagging and chunking can be used. These
parts of speech give NLP the ability to understand context. The advancement of NLP can
be seen by comparing the ancient computer where word confusion occurs due to similar
words in a sentence. In other words, NLP can figure out or understand the context - see
what phrase a word belongs to - by analyzing hundreds of sentences and different word pat-
terns. The computer can then identify the main subject of each sentence. Other techniques
that can be broadly classified into two categories, syntax and semantics, will be discussed
in subsequent sections.

NLP is a branch of AI that is used in this thesis to extract information from textual
operations. When performing any type of analysis, we frequently have a large number of
numerical values at our disposal, such as sales figures, physical measurements, and quan-
tifiable categories. And computers are very good at dealing with direct numerical data.
However, when it comes to text data, we as humans can easily tell what information is
stored in a text. The text form could be a PDF file, an email, a book, or any of the many
others to which we have access. Again, humans understand how to read natural language,
but computers require specialized processing techniques to comprehend raw text data. One
of the difficulties may be that the text data is highly unstructured and may be in multiple
languages. To address this, NLP attempts to use a variety of techniques to create struc-
ture from raw text data. And some of the most important tools in this project are built-in
libraries like Spacy 1 and NLTK2. These tools will be discussed further in the following
sections. Natural Language Processing is commonly used to extract information from text,
emails, and classify it as spam versus a legitimate email, or to classify texts as positive or
negative. In order to accomplish this, some classifiers must be hired. As a result, a few ML
algorithms should be presented to classify and return quality results.

1https://spacy.io/models/nb
2https://www.nltk.org/

https://spacy.io/models/nb
https://www.nltk.org/

CHAPTER 2. THEORY 12

2.2 Information Extraction
Information Extraction (IE) is the process of extracting actual organized information from
unstructured input [8].This entails providing important elements of unstructured data in a
machine-readable way. IE is very useful for many commercial applications such as Busi-
ness Intelligence, automatic annotation of web pages, text mining, and knowledge manage-
ment [5]. Various subtasks involved in IE are: Named Entity Recognition(NER), Named
Entity Linking (NEL), Coreference Resolution(CR), Temporal Information Extraction, Re-
lation Extraction (RE), Knowledge Base Construction and Reasoning 3.

The extraction of information occurs at the beginning of the working process with raw
data. That is, the information extraction method is calculated at the preprocessing level and
the efficiency of different Information Extraction activities is dependent on that. Tokeniza-
tion, stemming, and lemmtazation which are main part of preprocessing, will be discussed
and shown in the implementation part. In order to tag each word from several POS classes,
such as noun, raw data sentence segmentation and tokenization are computed. And then
”named entity recognizer” assigns a specific named entity class from multiple classes, such
as person, organization, place, date, time, money, percent, e-mail address, and web-address.

Named Entity Recognition is a word-level tagging issue in which each word in a phrase
is assigned a named entity tag. Features such as affix, capitalization, punctuation, output of
syntactic analyzers (i.e. POS taggers, chunkers), and external resources such as gazetteers,
word embeddings, and word cluster ids are fed to the classifier, and the output is the labeled
tag in the form of person (PER), organization (ORG), location (GPE), etc [10].

2.3 Machine Learning
ML is a branch of AI [9] and it is said that - “The field of study that gives computers
the ability to learn without being explicitly programmed” - by Arthur Samuel. This
tells that ML is the process of discovering algorithms based on what is learned using data.
Another good definition of ML that is explain more explicitly is by Tom M. Michell, 1997
and it stats that - “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at task in T,
as measured by P, improves with experience E”4.

The number of times a process has been completed is represented by the experience
E, and the process can be supervised, unsupervised, or semi-supervised. While “tasks T”
are tasks that can be found in both the predictive and descriptive methods. The predictive

3https://arxiv.org/pdf/1807.02383.pdf
4https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf

https://arxiv.org/pdf/1807.02383.pdf
https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf

CHAPTER 2. THEORY 13

method employs some attributes to forecast the value of another attribute, and the task
may include classification, regression, time series analysis, and so on. When it comes to
descriptive data, it is about determining what happened in the past data by analyzing the
stored data; the task can be clustering, summarizing, association rule, and so on. And
“performance measure P” is about model evaluation in general, providing answers on how
well a given model performs, among other things. The “Model evaluation” subsection
refers to an explicit explanation of model evaluation.

There are numerous definitions of ML that go beyond the two mentioned above. Other
authors who have defined ML including Stanford, McKinsey and Co. However, according
to all these authors, there are three types of ML methods, i.e. a group of specific algorithms
that solve a specific problem. These techniques include supervised (predictive), unsuper-
vised (descriptive), and reinforcement learning. The emphasis in this paper will be solely
on supervised ML, unsupervised ML, and a hybrid of the two known as semi-supervised
ML.

Several ML algorithms are used in this project to classify manually structured files
to their correct system-code in “SYSTEMKODELISTE NS3451” from statsbygg. Artifi-
cial Neural Networks, Naive Bayes Classifiers, Support Vector Machines, Decision Trees,
Random Forest Classifier, Nearest-Neighbor Classifiers, K-Means, and Expectation Max-
imization are some of the algorithms included in this thesis.

2.3.1 Supervised Learning
When performing supervised learning, the outcome of the data being input is referred to
as the label or target[2]. The relationship between the data that was input, which is also
referred to as the record, and the effects that led to the result was the primary problem that
needed to be solved. Even though there are a lot of different ways to find relationships, the
one that is used the most frequently is to first train on a portion of the data that has been
labeled (usually around 70%), and then use the other portion of the data to test or validate
the findings. The model may then be retained if it satisfies the requirements for the issue
that is to be solved, such as having a high level of performance, being efficient, and so on. If
the performance of the model is unsatisfactory, model building iterations can be carried out
until the required level of performance on test or validation data is achieved. This procedure
is illustrated in great detail in the section of the project devoted to its implementation.
It is important to note that supervised ML can take the form of either classification or
regression, the latter of which is the primary focus of this thesis. CART, which stands for
“Classification and Regression Tree” is another name for this type of tree.

Since this kind of ML is frequently used for automatic detection, both Autility and I
have expressed a desire to use it to classify each file in the documents. This desire stems

CHAPTER 2. THEORY 14

from the fact that this type of ML was first introduced at the beginning of this thesis. That
is to say, it is essential to train a ML model with a significant quantity of data that has been
labeled. For instance, we might present a model with thousands of pictures of dogs and
cats, each of which would have a label indicating whether or not the picture depicted a
dog or a cat. In addition, the model will continually try to guess the content of the images
and will continue to improve based on whether its guesses are correct or incorrect. It is
important to note that the term “supervised” can be used to refer to either classification
or regression, but here the main focus is on classification. In other word, every file used
to train the model must be marked with a system code from which the model may learn.
The dataset retrieved from Autility, each have their own distinct format for the available
labels. When the standard system code ”SYSTEMKODELISTE NS3451” and the title of
the system code retrieved from the folder name are compared, they are discovered to have
the identical meaning. Artificial Neural Networks, Naive Bayes Classifiers, Support Vector
Machines, Decision Trees, and Nearest-Neighbor Classifiers are some of the most well-
known classifier algorithms utilized in the supervised of type ML. Each of these algorithms
has its own subsection that talks into further detail.

2.3.2 Unsupervised Learning
Unsupervised learning, as opposed to supervised learning, is used on data that does not have
a label. Datasets without labels are common, and manually labeling them is often expensive
in terms of both money and time. The problem that unsupervised learning attempts to solve
is identifying the pattern of the given data and grouping them again where the attributes
are of the same kind.

This project’s dataset contains a significant amount of unlabeled data. The number of
these files is specified in chapter three. The original data was also subjected to clustering
using the k-means algorithm. That is, the data was collected prior to the text augmentation,
which was also briefly explained in chapter three. The clustering is done to see if there was
a pattern that led to the data being grouped. The number of files with manually labeled from
the standard “SYSTEMKODELISTE NS3451” in the dataset that will be used in this project
is significantly less than the number of files without system code. This is demonstrated in
the Exploratory Data Analysis(EDA) section of Chapter 3. Because the ratio of labeled to
unlabeled data is so diverse, investigating the semi-supervised part of ML is an alternative
to obtaining a large amount of correctly labeled data at the end of the project.

CHAPTER 2. THEORY 15

2.3.3 Semi-Supervised
The supervised and unsupervised learning approaches are combined in the semi-supervised
learning method. When both labeled and unlabeled data are presented, and the size of the
unlabeled data is typically much larger than the size of the labeled data, this method is
preferred. In this thesis, it is clarified that having access to a variety of different kinds of
semi-supervised algorithms is a significant advantage. This is due to the fact that the end
result will be of higher quality.

• EM

• Generative adversarial networks(GANs)

• Semi-supervised support vector machines(S3VMs)

• graph based methods

• Markov Chain method

These are some of the most well-known algorithms for dealing with problems in the
semi-supervised ML domain. However, given to time limitations and data quality, the EM
picked among the others.

2.3.4 Classification
Label categorization is considered to be one of the most important aspects of this project
(system code). For the purpose of assigning the text file to the system code, ML algorithms
are required. Finding the appropriate algorithm that correctly categorizes the texts based
on the criteria described in the following sections is necessary to make sure that the qual-
ity of this project will be maintained. To put it another way, it is fundamental to have a
classification model that can determine the user’s system code based on the texts that are
provided.

The texts from the pdf files and the system code from NS3451 are the features and labels
that will be used for training the model, as was stated very explicitly at the beginning of the
project. The document NS3451 includes numerous kinds of system code as well as their
definitions. Therefore, it is natural to investigate the various types of classifications in order
to find the specific type of classification that aims to target those system codes. This can
be done by looking at the various types of classifications. There are a few different ways
to classify things, including the binary, multi-label, and multi-class methods. In binary
classification, the outcome can be either true or false, 0 or 1, black or white, and so on.

CHAPTER 2. THEORY 16

Other possible outcomes include these: Because of this, the outcome is restricted to just
two labels, out of which one is selected based on the particular feature that was provided.
In multi-label classification, each sample and piece of text in the is given a specific label or
set of labels. One single input, for instance, may be associated with more than one label.
When carrying a multi-class classification, each sample is only given a single label, or in
my case, a single system code. As a direct consequence of this, a multi-class classification
approach is being utilized in this project. This is as a result of the fact that each sample is
only linked to a single system code originating from NS3451.

In classification, we are typically provided with data consisting of a number of at-
tributes, of which one is utilized as a label and the others are utilized to train the model. In
the final step, we put the model to the test using data sets that have never been examined
before. These data sets also have labels, and we compare them to the initial label using the
information from the model evaluation section. It is important to note that the testing phase
of the classification model does not make use of any of the data sets that were utilized in
the training phase of the model.

Figure 2.1: Classification structure

The classification structure shown above is used by many classification techniques.

CHAPTER 2. THEORY 17

Some examples include decision trees, Naive Bayes, Support Vector Machines, and Neural
Networks.

2.3.5 Decision Tree Classifier
The Decision Tree is a well-known and user-friendly algorithm for visualizing the decision-
making process, and it can be applied to the classification of more than one class of things.
In addition, in contrast to many other classifications, Decision Tree is capable of handling
both categorical and continuous data sets for training. In addition to this, the structure of
the algorithm includes a root node, branches, and a leaf node. Each and every decision that
is produced by the algorithm takes two or more different courses through the branches. The
procedure starts at the root node and continues all the way out to the tip of the branches
before returning to the beginning of the possibilities space.

Figure 2.2: Structure of decision tree

The process of breaking up is based on gini, entropy, or missclasification error, which
helps in determining a splitting point while simultaneously achieving information gain.
This is illustrated in the figure that is located above. Before dividing the data set and at-
tempting to predict a lab or system code, these methods also provide an indication of the
degree to which the input data set is pristine. In order to get a better idea of how the impu-
rity calculation is performed in general, let’s us pretend that we have a list of components
that correspond to a machine.

CHAPTER 2. THEORY 18

Figure 2.3: Before Splitting

if we divide the components of the machine to which they belong, we get the following:

Figure 2.4: Splitting

GAINone = Machinestart −Machine1

GAINtwo = Machinestart −Machine2

The difference between before and after splitting can be seen in the image above. The
gain is then archived by max(GAINone, GAINtwo). That is, we choose the attribute with

CHAPTER 2. THEORY 19

the highest gain. Let’s take a closer look at the formula and some examples. And the first
formula to measure impurity is GINI:

GINI = 1−
∞∑
n=1

[p(j|t)]2 (2.1)

where p(j|t) represents the relative frequency of class j at node t 5. If we see back to fig-
ure above in “Machine 1” and compute with given number for “Comp 1A” = 2, “Comp 1B”
= 3, “Comp 2A” = 1, “Comp 2B” = 4, here, I assume that “Comp 1A” and “Comp 1B”
are part of a bigger component in “Machine1 1”. “Comp 2A” and “Comp 2B” are also
another bigger component in machine 1. the calculation of GINI would be:

⇒ P (Comp1A) = 2/5, P (Comp1B) = 3/5

⇒ GINI1A 1B = 1− P (Comp1A)
2 − P (Comp1B)

2 = 1− (2/5)2 − (3/5)2 = 0.48

⇒ P (Comp2A) = 1/5, P (Comp2B) = 4/5

⇒ GINI2A 2B = 1− P (Comp2A)
2 − P (Comp2B)

2 = 1− (1/5)2 − (4/5)2 = 0.32

From the result above GINI 2A 2B is a best choose among these two. This is because,
the GINI ranges from 0 to (1 − 1/nc) where n is the number of classes. If the number of
classes is 4, the maximum range of GINI can have is 1− 1/4 = 0.75. It is also important
point out that if either ”Comp 1A” or ”Comp 1B” has been 0, then GINI would be 0 and
it tells that GINI1A 1B is pure split which means it provides valuable information. And
opposite, if the result is closer to the maximum range, the impurity increases. When it
comes to GINI split which is mostly used in another algorithms of decision tree such as
CART, SLIQ and SPRINT, the splitting involves both the number of records in the parent
and child node:

GINIsplit =
k∑

i=1

ni

n
×GINI (2.2)

where:
n i is the number of records at child i and n is the number of records at node p 6

Here the quality of splitting goes to multiplication by the ration of n i and n. From the
previous example we have parent node (GINI 1A 1B, GINI 2A 2B)and their GINI is 1−

5https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html
6https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html

https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html
https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html

CHAPTER 2. THEORY 20

(5/10)2 − (5/10)2 = 0.5 and it is also known that GINI 1A 1B and GINI 2A 2B are 0.48
and 0.32 respectively. So GINIsplit is:

GINIsplit = 5/10× 0.48 + 5/10× 0.32 = 0.4

Because the result is less than the GINI of the parents, it is preferable to split. In theory, if
another node could be provided that is purer than this one (in a larger data set with different
types of permutation), we would split based on the minimum value obtained by the GINI
split.
Another type of splitting is Entropy. This operation is based on information gain.

ENTROPY = −
k∑

i=1

p(j|t)× logp(j|t)

where p(j|t) is again the relative frequency. It say - how many records belongs class j with
respect to node t. Unlike GINI, the ranges of Entropy is from 0 to log2 × nc, where nc is
the number of classes. Entropy is similar to GINI, except the fact they both have different
formulas, especially the minus sign used in Entropy to avoid having negative results. If we
see with example used in computing GINI:

⇒ P (Comp1A) = 2/5, P (Comp1B) = 3/5

⇒ Entropy1A 1B = −(2/5)log2 × (2/5)− (3/5)log2 × (3/5) = 0.2922 ≈ 0.3

⇒ P (Comp2A) = 1/5, P (Comp2B) = 4/5

⇒ Entropy2A 2B = −(1/5)log2 × (1/5)− (4/5)log2 × (4/5) = 0.217322 ≈ 0.22

even the specific results are changed, Entropy1A 1B is greater than Entropy2A 2B as
GINI1A 1B do compare to GINI2A 2B. Now, since the the entropy is calculated, it is
possible to split based on the information gain.

GAINsplit = ENTROPY −
k∑

i=1

ni

n
× ENTROPY (i) (2.3)

This is very similar to GINIsplit. The goal here is to select the maximum GAIN split
or the greatest reduction in Entropy. And the basic calculation is GINIsplit if the formula
parameters are followed. Misclassification Error, the final splitting method, measures an
error produced in each node.

MisClassificationError = 1−max(p|t) (2.4)

CHAPTER 2. THEORY 21

The minimum and maximum values of theMisclassificationError are same to those
of the GINI . You can also use the formula to determine the relative frequencies by using
the p(p|t) notation. If it were absolutely pure, the maximum relative frequency would
be 1, the error would be 0, and the minimum range would also be 0. Since it would be
completely pure, the maximum relative frequency would be 1. Without getting too deep
into the specifics, we can say that computing the misclassification error can be done in the
same way as it was done before split methods were developed.

If, after transporting out one of the methods for splitting, we then return to the diagram
labeled 2.2. The system code that the texts would be assigned to is represented by the
letters A, B, C, and D. These letters are in alphabetical order. During the process of DT’s
operation, there are an enormous number of opportunities to improve the performance of
the algorithm by using hyper-parameters; in fact, some of these opportunities are already
provided by default. There are many different parameters, such as tree-depth, max-feature,
max-leafe-node, and so on, that can be altered to improve the performance of the algorithm.
The method of making improvements can shift from one situation to another. When a
tabular data set is used, the training and improvement algorithm will be more intuitive.
However, when text is used as input, the algorithm will be less intuitive. This is due to the
fact that, as was explained in the introduction, in order for the algorithm to comprehend the
input, the input (which consists of texts) must first be converted to vectors. It is difficult
to sketch even the smallest part of the process due to the fact that the matrices can be very
large and have few details. In general, the process that concludes the decision tree can
take place in a number of different ways. For instance, this can be done by checking to
see if all of the records belong to the same class, if so, this can be done when the values
of the attributes of the given records are comparable. Alternatively, this can be done by
implementing early stopping, when there is a hint that causes overfitting, and so on.

2.3.6 Random Forest Classifier
Several decision trees are used in the Random Forest classifier algorithm. The following is
an example:

CHAPTER 2. THEORY 22

Figure 2.5: Random Forest Classifier

The process of training Random Forest involves picking records and columns at random
from the sets of data used for training. To be more specific, the number of records and
features that were selected for the decision trees is lower than the number of initial training
data sets.

When the process of training is complete, the classification testing data set is created by
selecting the majority of the outcomes obtained from bootstrapping through the decision
tree models and aggregating them. This is done after the data set has been created.

2.3.7 Naive Bayes Classifier
Another classification algorithm is Naive Bayes. The classification is founded on proba-
bilistic logic, specifically the Bayes theorem. The Bayes theorem is as follows:

p(A|B) =
p(B|A)× p(A)

p(B)
(2.5)

• p(A|B) is posterior probability.

• p(B|A) is likelihood probability.

• p(A) prior-probability.

CHAPTER 2. THEORY 23

• p(B) marginal probability, which is constant for given data sets

where p(A|B) and p(B|A) are the conditional probabilities of events A and B. For
example, the probability of an event A occurring when we already know that event B has
occurred can be calculated as follows:

p(A|B) =
p(A ∩B)

p(B)
and p(B|A) = p(B ∩ A)

p(A)
(2.6)

where, p(A ∩B) ⇔ p(B ∩ A)

p(A|B)× p(B) = p(B|A)× p(A)

p(A|B) =
p(B|A)× p(A)

p(B)
q.e.d

As states above the algorithm starts by calculating the conditional probability of events
and then Bayes theorem. Let’s first see how this implemented to the classification of su-
pervised data sets and then show by simple example. In every record of the data set, there
is outcome which is the result of attributes:

X =
{
x1, x2, x3...xn

}
,
{
y
}
.

If the data sets are now replaced in Bayes theorem given above, it would look:

p(y|x1, x2, x3...xn) =

(
p(x1|y)(x2|y)(x3|y)...(xn|y)

)
× p(y)

p(x1, x2, x3...xn)

⇕

p(y|x1, x2, x3...xn) =

∏n
i=1 p(xi|y)

p(x1, x2, x3...xn)
.

During computing the probability of the records in the same data sets, the denominator
shown above is the same for all. Thus, Bayes theorem can be written:

p(y|x1, x2, x3...xn) ∝
n∏

i=1

p(xi|y)

And the final result for the input data set would achieved by ”argmax”, which means picking
the maximum values of the calculated probabilities.

y = argmax
(n∏

i=1

p(xi|y)
)

CHAPTER 2. THEORY 24

Here is an example of NLP that helps to demonstrate the Bayes theorem mentioned above.

Figure 2.6: Sample sentences

After performing some label-encoding in ”System code” and some simple prepossess-
ing in ”Description,” the representation of the table above can be transformed to:

Figure 2.7: Sample vectors

The following words appear frequently - vector forms of sentences one, two, and three.
In ”Description,” ”1” indicates that the word is present in the given sentence/sentences,
while ”0” indicates that the word is absent from the sentence/s. ”735” and ”723” are label
encoded to 1s and 0s in ”System code.” Texts can be vectorized in a variety of ways, but

CHAPTER 2. THEORY 25

for simplicity, BOW (bag of words in binary) is used. Every sentence, once again, is made
up of words.

So, using the Naive Bayes Classifier, we can determine the probability of a given sen-
tence having ”System-code” equal to 735: where, System code = SC

p(SC = 1) = 2/3

p(SC = 1|Sentence) = p(SC)
(
p(word 1|SC = 1)×p(word 2|SC = 1)×p(word 3|SC = 1)×...p(word n|SC = 1)

)
• - Count word frequency of a word in every sentence, lets say m.

• - Every time m is equal to the output(enabled system code), count n

• - Then there is n/m which represent every word

p(SC = 1|Sentence) ∝
n∏

i=1

p(wordi|1)

= 2/3× 1/2× 1/2 = 1/6

p(SC = 0|Sentence) ∝
n∏

i=1

p(wordi|0)

= 1/2× 1/3× 1/3 = 1/36

Then normalizing,

p(SC = 1) =
1/6

(1/6) + (1/36)
= 6/7 and,

p(SC = 0) = 1− 6/7 = 1/7

Probability of the given sentence to be ”735” is:

y = argmax
(
6/7, 1/7

)
= 6/7 ≈ 0.86

The Naive Bayes algorithm is widely considered to be one of the most widely used ML
algorithms for text classification. The fact that this classification makes use of an algorithm
that computes the probability of each word and its output is the primary benefit of doing so.
The output will be incorrect if any words essential to the word representation are omitted,
which is a negative gearing.

CHAPTER 2. THEORY 26

2.3.8 Support Vector Machine
A widely used ML algorithm for supervised data sets is the support vector machine (SVM).
Classification is the most common application for it, but it can also be utilized for regression
analysis. A main hyper-plain and additional two hyper-plains that run parallel to the main
hyper line are responsible for managing the classification of data sets in an SVM.

Figure 2.8: Support Vector Machine

The diagram above only applies to two classes that are almost linearly separable - data
sets separated by a straight line. The marginal distance is the distance between the outer
hyper-plains and the main hyper-plain. The algorithm with the greatest marginal distance
is preferred during classification. In other words, whenever a hyper-plain is created, the
one with the greatest margin should be chosen. Because the smaller the marginal distance,
the greater the classification error. And the greater the marginal distance, the more gener-
alizable the model. Errors occur when data (points in the figure) is displaced from the outer

CHAPTER 2. THEORY 27

hyperplane or classified to a different class. However, when the points are close together
or pass through the hyper-lines, it is referred to as support vectors.

In this case, svm is calculated using a formula for a straight line that passes through one
axis with slop. For example, if we want to classify folder names based on whether their
system code exists or does not exist, as the project’s initial problem states:

wTx+ b = exist (2.7)

wTx+ b = not exist (2.8)

where, exit and not exist can for example interpreted respectively 1 and -1, wT is a slop
of the main hyper-plane and x data and b is an intersection in x2. If we also assume, all red
points -1 and the black points belong to 1. Then by summing up and removing the wT :

w2(x2 − x1)

∥ w∥
=

2

∥ w∥
i.e 2

∥ w∥ need to maximize and the their optimization is:

yi × wTxi + bi ≥ 1

Since the multiplication of:

yi = 1 and wTx+ b ≥ 1

yi = −1 and wTx+ b ≤ 1

gives a positive. So at anytime when the result happen to be -1, then the misclassification
error number increases. And finally the svm can be found by using the minimum of the
optimization(opposite to the maximum optimization):

(w∗ × b∗) = min
∥ w∥
2

+ Ci

n∑
i=1

qi

where Ci tells about how many points can be missclassified and qi is the sum of the errors
in the marginal distance.

CHAPTER 2. THEORY 28

2.3.9 Artificial Neural-Network
An Artificial Neural Network classifier is an algorithm in which each sub-part must be
explained separately. In this section, I will only cover the most important aspects of this
classifier.

Figure 2.9: Neural Network

■ Neurons

The human brain’s name for a neuron7, receive input from data sets and produce
output, as shown in the figure above. In this case, neuron selects a value from ”input-
1,” ”input-2,” or ”input-n”. Hidden layer neurons sometimes provide input to the
neurons. The figure above clearly shows that there are three layers (if we ignore
”Output Layer Cat): input, hidden, and output. The variables in the input layer are
independent and represent one record in a data set. The variables can come from
either the training or testing data sets where the prediction is taking place. For validity
and efficiency reasons, it is also necessary to standardize (where the mean is 0 and
the variance is 1) or normalize (minval/(maxvale − minval) the input variables
before using them as input. [4]. The number of neurons in the outer layer can vary.
It is entirely dependent on the use cases. If the expected output is binary (0 or 1, true
or false) or continuous (person height), the number of neurons in the output layer can

7https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

CHAPTER 2. THEORY 29

be one, as shown in the figure as ”Output Layer Bi.” If it was categorical, the neurons
would be numerous - ”Output Layer Cat.” As a result, each iteration from the record
values will only reflect its own prediction. The arrows that connect the neurons are
known as weights. These weights are what determine how neuron networks learn.
In other words, this is where the input values are adjusted for the next process.

■ Activation function

In every neuron there is a process of summation for values multiplied by its weights.
And then comes the activation function.The main and most known activation func-
tions are, Threshold , Sigmoid, Rectifier and Hyperbolic activation function.[3]

⇒ Threshold Activation function: In a threshold function there is an x and y func-
tion where, x-axis represent sum of multiplication for the values and their weights,
as it is written in the neuron that represent hidden layer in the figure above. And
y-axis number between zero and one. The function is described as:

f(x) =

{
1 if x ≥ 0

0 if x < 0
(2.9)

This function simply explain if the value is less than zero the function will pass
zero through the neuron, if the value is greater or equal to zero the function will
pass one through the same neuron. And this function mainly used during the
binary classification.

⇒ Sigmoid Activation function: The x any y-axis represents the same as the previ-
ous function. This activation function is much smother than threshold function.
i.e it gives an answers as a probability, - the more closer zero it will pass zero,
if it is closer one it will approximate to one. And it is mostly used in the outer
layer. This function can also be use for binary classification as threshold func-
tion do. The function is written as follows:

f(x) =
1

1 + e−x
(2.10)

⇒ Rectifier Activation function: Rectifier function is one of the most used function
in neural networks. It’s function looks as follows:

f(x) = max(x, 0) (2.11)

and it mostly used in the hidden layer, then pass to the outer layer where sigmoid
or threshold is applied for final prediction.

CHAPTER 2. THEORY 30

⇒ Hyperbolic Tangent Activation function: This function is very similar to the
Sigmoid function. Their differences lies, in this activation function the y-axis
values range from minus one to 1 and it’s written as

f(x) =
1− e−2x

1 + e−2x
(2.12)

■ Forward-propagation Forward propagation is the flow where the records of the data
sets goes through the steps until they arrive in the output-layer. i.e the information is
entered into the input layer and propagated forward in order to get outcome values.
Here it important to note that the continuation of the forwarded value and it result
depend in the their input values and their weights. When the outcome values are
achieved, we compare with the original value and then back-prpegate through the
network. To do that, back-propagation is needed after calculating the error among
the result and actual value.

■ Back-propagation Back-propagation is an algorithm that preforms advance mathe-
matics which helps us to adjust the weights simultaneously. Thus, we are able to
know which part of the weights in neuron network belong to the given error [6].
Here, the learning rate of the algorithm will decide how the weights would be up-
dated.

The repetition(epochs - passing through all training data sets) of these steps needed to build
and train neural networks.

2.3.10 K-Means
K-means is a clustering algorithm, which mainly used unsupervised type of ML. This al-
gorithm is applied for different scenario including text/document classification based on,
for instance categories in the given clusters.
The working process for the K-mean algorithm can be defined in a few steps:

• The number of clusters or groups for the given data can be decided at the first step
of the algorithm. As it’s name says the ”K” represents the number of clusters.

• We then select randomly ”X” data points which is equal to the number of K. Here,
there is an assumption that the randomly selected points are centroids.

• We measure the distance between each points and the selected X centroids. The
distance measurement involves either euclidean or Manhattan distance, it depends
what kind of dimension we are working with.

CHAPTER 2. THEORY 31

• Each points assign to the clusters, based on the calculated distance.

• The mean value is calculated whenever a new data point appears in the clusters.

All the above process, from point three to point five repeated until the given number of
iteration in the algorithm is done. Another thing to point out here is that even the selection
of K happen in the first step, it doesn’t mean that is the best K. To find out the best K after
some iteration, we can use the elbow method. In the elbow, we pick the K with the most
decreasing in variation. This is because the quality of the clusters/groups can be checked
by adding the variance of each cluster. This means when the K value increases, there is a
decrements or constant value of variation.

2.3.11 Expectation Maximization - EM
EM algorithm mostly used for unlabeled data sets. EM together with MultinomialNB used
in semi-supervised part of the project. The theoretical part will cover how to use for unla-
beled data points. For example, if it is given many data points that belongs for two clusters
for simplicity reason.

Figure 2.10: Randomly picked mean and variance

CHAPTER 2. THEORY 32

The classification of the points to those clusters starts by placing the Gaussian in a
random position. i.e picking random mean and standard deviation, which in this case two
mean and two variances values as a number that represents each clusters(Note: it is only
one dimension example). The processes of the algorithm starts by finding out - how likeli
that each points come from first cluster by the following equation:

p(xi|c1) =
1√

2× π × σ2
c1

exp

−
(
xi−µ2

c1

)
2×σ2

c1 (2.13)

where xi, µ, σ2 respectively represents the data points, mean and variance for the first
cluster. And this gives the probability of the point xi come from the first cluster. Here, if
the randomly picked mean and variance for these two clusters are at the most left side as
it is shown in the figure, and the probability for the most right point will give small value
even smaller for the cluster with mean far away to the left. There is a need to use the same
equation for the second cluster, then use the Bayesian posterior that involves both equations
to find out the probability that each point belongs to one of the clusters.

p(c1|xi) =
p(xi|c1)× p(c1)

p(xi|c1)p(c1) + p(xi|c2)p(c2)
(2.14)

As one can see in the formula, there is an assumption for prior probabilities of both
class(brief explanation for prior in Naive Bayes section), c1 and c2. Sine the equation
above gives the probability of c1, c2 can be calculated:

c2 = 1− c1

Once finding the probability of the specific cluster is completed, which is also known as
expectation part of the process, the maximization part of the given clusters preformed by
the follow equations:

µc1 =

∑n
i=1 c1i × xi∑n

i=1 c1i

σ2
c1 =

∑n
i=1 c1i(xi − µc1)

2∑n
i=1 c1i

µc2 =

∑n
i=1 c2i × xi∑n

i=1 c2i

σ2
c2 =

∑n
i=1 c2i(xi − µc2)

2∑n
i=1 c2i

CHAPTER 2. THEORY 33

Here is again important to note that the probabilities of c1i and c2i lies between 0 and
1 and it helps for adjusting. The above shown example represents only one iteration which
includes the estimation of mean and variance of both clusters. The estimation for the priors
can also be done by adding up the probabilities c1i/c2i and divide by the total. Generally
the processes of EM done with several iteration until convergence.

2.3.12 Model Evaluation
This project’s module evaluation is primarily concerned with the classification problem.
The evaluation will provide answers to the following questions:-

• How to evaluate the performance of a model?

• What are the methods for estimating these measurements?

• How do we compare the performance of different models?

Metrics for evaluating performance frequently begin with general accuracy. When the
given data sets are balanced, accuracy is used to evaluate the model. The performance is
typically measured using test data. It can also be done in training data to see how well the
model learns from the training data set. Because the labels in my data sets are numerous,
I prefer to use two classes to demonstrate the indication of using and calculating accuracy.

Figure 2.11: Confusion matrix for two classes

The figure above shows a Confusion matrix of two classes for actual, which also known
as ground truth and predicted part of the classes. TP, FN, FP and TN stands for True
Positive, False Negative, False Positive and True Negative respectively.

• TP - tells that the actual class label is ”yes” and it is predicted as a ”yes”.

• FN(also known as type one error) - the actual class label is ”Yes” and the predicted
class is ”No”. In other word the model is falsely assigning to the negative class.

CHAPTER 2. THEORY 34

• FP(also known as type two error) - the actual class label is ”No” and it is predicted
”Yes”.

• TN - the actual class label is ”No” and it is predicted ”No”.

There is only binary classification in this case, but the Confusion matrix can be used to
multi-label to see how the evaluation goes. In general, TP and TN should be maximized.

The formula to calculate accuracy is shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.15)

This formula is simple to understand and tells us how many correct predictions (TP and
TN) of the instances we have compared to the total number of instances in the data. It is
possible that some misinformation will be spread. This can occur when we have a large
number of instances of one class over the other class or classes. Assume that the instance of
class A is around 10000 and the instance of class B is only 10. The developed model will
almost certainly predict class A every time it predicts. And the formula’s output would
be misleading because the model does not detect class B correctly. Again, 99.9 percent
accuracy would be incorrect. There are several solutions to this problem. Cost Matrix
is one of them. Because there is equal preference for the FP,FN, and TP in the previous
example, the accuracy was high. In other words, there was no priority given to the TN, for
example. So, in the Cost Matrix process, the cost of misclassification is assigned, i.e. the
cost of classifying the actual class as another predicted class.

Figure 2.12: Cost Matrix with three Models

From the figure above the accuracy and their cost are as follows:

Accuracym1 = 80%

CHAPTER 2. THEORY 35

costm1 = (−1 ∗ 450) + (100 ∗ 120) + (1 ∗ 180) + (0 ∗ 750) = 1173

Accuracym2 = 90%

costm2 = (−1 ∗ 750) + (100 ∗ 135) + (1 ∗ 19) + (0 ∗ 596) = 12769

Accuracym3 = 94%

costm3 = (−1 ∗ 500) + (100 ∗ 86) + (1 ∗ 6) + (0 ∗ 908) = 8106

• m1, m2 and m2 refers to model-1, model-2 and model-3 respectively.

From figure 2.12 there are three models with their result for accuracy and calculations
of the cost of matrix. The first rule to note is that the higher the cost is, the worst the
model preforming. In the calculations above the result of these models in accuracy are
good. Specially the accuracy for m3 is the highest and it’s cost is the lowest. So, if one
would choose which to model use among these three models, m3 would be ranked at the
first place. When it comes to m1 and m2, it easy to see m2 has higher accuracy compare
to m1, but since the cost of m2 is higher, it is preferable to choose the m1 over the m2.

It is used in the cost matrix to either reward or punish the TP in this case. It is also
possible to ignore predictions that have no meaning by putting a zero in the cost matrix.
It all depends on the application. In general, this demonstrates how to adjust performance
when the input data sets differ in the number of instances that represent a class.
There are also Cost-Sensitive measures the performance of a model:

Precision =
TP

TP + FP
(2.16)

The precision tells, of all the instance which the classifier is predicting to be true how
many of them are actually correctly predicted. In other words precision is more biased
toward TP and FP

Recall =
TP

TP + FN
(2.17)

Recall which is also know as sensitivity, tells of all the actual true how many of them
are correctly predicted. There is also opposite for sensitivity

Specificity =
TN

TN + FP

And this indicates that recall is biased towards TP and FN

CHAPTER 2. THEORY 36

F −measure = 2× (Recall)× (Precision)

Recall + Precision
= 2× TP

2× TP + FN + FP
(2.18)

F-measure(F1) is the harmonic mean of precision and recall,i.e it gives equal weight to
precision and recall. Fβ is another type of F measure where it gives more weight to recall
which I am not going to use in this project. It shows that F-measure is biased towards all
except TN.

Finally these formulas are also preferred over the accuracy due to the way they target
specific role for the given problem.

Chapter 3

Problem and its Investigation Methods

3.1 Case:
Figure 3.1 shows the primary problem’s visual solution.

Figure 3.1: General view of the problem

37

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 38

The solution to the problem that is presented in this thesis can be found in the figure
above. In the introduction section, stated that Autility is a company that possesses row files;
however, Autility does not possess an automated system that is able to categorize files based
on the system-code. Autility provided me with a number of folders that contained files in
a variety of formats at the beginning of this project. The data are divided up into folders
that are either structured or unstructured. Within the structured section, the label of each
file can be found by looking at the title or name of the file, which is combined with the
path that indicates where the file is stored within the Autility database. Therefore, in order
to have a label for each file, it is essential to extract the label, which is the system-code,
from the title. The system-code that is extracted from the title ought to correspond to the
system-code that is denoted by the red square in figure 3.2.

Figure 3.2: Classification structure

In other words, the first aim is to extract the label (system-code) from the title. If the
label does not exist in the title, the file is saved as a file without a label,- unstructured. Here,
the structured and unstructured can be interpreted as supervised and unsupervised.

In light of this, the processes of A, B, and C represent, respectively, the supervised,
unsupervised, and semi-supervised types of ML. These processes are denoted by the bold
letters in the figure. In part A, the dataset are separated into training and test data sets. The
training part is the only one in which preprocessing and text argumentation are carried out.

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 39

Several different classification algorithms are evaluated in order to determine which one
produces the best results. The preprocessing step is also included in the B part, but there is
no text argumentation because the dataset is already of sufficient quality, and the primary
objective of having this part is to gain some insight into the extent to which the dataset
is correlated. In addition, the raw unlabeled dataset along with the raw labels are utilized
in the performance of the semi-supervised Model-A in the C part. Because the original
labeled dataset is so small in comparison to the unlabeled dataset, the semi-supervised
form of ML is an alternative that can be looked into as an option. I also used the best
model from part A to make a prediction for the system-code of the unlabeled dataset, and
then I used that prediction to create a new dataset that was labeled with the system-code.
Then, by combining them, Model-B (in part C) of the semi-supervised computed by giving
larger percent of the data sets as unlabeled to compare the result from Model A. This was
accomplished by keeping a larger portion of the dataset. Because it encompasses such a
sizable and varied portion of the datasets, this project places a significant emphasis on the
outcome of part C. Following the completion of these parts, particularly part C, the files are
then sent on for additional processing, which involves named entities. The procedures of A,
B, C, and the named entity will each receive a comprehensive breakdown in the subsequent
sections.

3.2 Experiments

3.2.1 EDA - Exploring and Analysing data
There are approximately 20,000 files and the datasets was obtained through a number of
different stages. Because of this, I was required to work in iterations on collections of files
that were saved in a variety of formats. The following is how the number of datasets will
look during the first and second phases:

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 40

Figure 3.3: The number and types of files in first and second phase

Note: There are labeled files in the unstructured part of the data sets as well.

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 41

The original data sets were mixed, both in terms of file type and how they were assigned
to system codes. The terms ”structured” and ”unstructured” refer to whether the data sets
were labeled or not; labeled files were present in the unstructured portion of the datasets. I
used the Python library Pandas in Jupyter Lab to explore those files. To do so, I needed to
first organize the files and create data-frames in pandas for subsequent processes. Pandas
allows for analysis in addition to creating data-frames, such as seeing the number of rows
and columns, data types, the number of unique values in different columns, and so on.
Another significant advantage of the library is the ability to run a single or small snippet
of code rather than a whole method/function or class written in Python.

According to what is shown in the figure that is located above, in the first phase, I have
9555 that are both manually structured (1404), as well as unstructured (8146). By manually
structuring the data, each file was assigned a system code from the “SYSTEMKODELISTE
NS3451” database, whereas the unstructured data set was simply organized into folders.
During the second phase, the data sets contained roughly the same number of files as the
first phase, but unstructured data sets were the predominant type. During both rounds, the
most common types of files were pdf, doc, xlsx, and jpg, with a small percentage containing
other file types. The work is primarily with readable pdf files because the percentage of
PDF files was significantly higher than that of the other types of files. The next step is to
combine the data sets into the respective categories. Figure 3.4 shows the arragment of the
data sets.

Figure 3.4: Arrangement of data sets

When all of the labeled PDF files from the structured and unstructured data sets were

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 42

merged into a single data frame, the new total was slightly higher than 2040. Following the
removal of the files that did not have a valid label (system code) and languages, the number
was reduced to 1417, with approximately 101 distinct labels. The first five rows are laid
out as follows:

Figure 3.5: Example from structured data set

The datasets are wildly unbalanced while also containing a staggering number of labels
that are all distinct from one another. To see this, one only has to look at the diagram below.
There are many more texts in system code 360 than in system code 519, for example.

27
3

27
5

24
4

23
4

24
2

27
7

25
5

21
3

28
1

25
7

23
1

23
7

21
6

27
6

25
6

23
3

23
2

28
5

21
7

21
5

24
1

27
9

54
2

55
4

52
1

56
4

54
3

54
4

55
6

54
5

52
3

65
9

62
1

31
0

36
0

32
0

31
5

33
0

37
0

72
2

72
3

77
1

74
3

77
2

72
9

77
3

72
5

76
2

74
4

72
7

76
3 34 45 25 66 36 79 33 55 24 22 23 26 51
3 32 28 29 27 41
4 21 35 31 72 57 41 43 59 56 37 38 51 41
2 44 39 73 41
6 65 52 67 54 31
2 48 49 46 69 63 74 75 62 51
9

System code
0

25

50

75

100

125

150

175

Sa
m

pl
es

Figure 3.6: Number of text files with their labels(system code))

The variation in the number of texts in relation to the unique system code will have a
negative impact on the training of the ML model. In other words, the model will not learn

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 43

enough from the input provided. To solve this problem, I tried two approaches:

• 1. Either use a large number of texts/samples to represent the system code, or

• 2. carry out text-augmentation. to increase the number words in each sample

These two options can help train the model as well as possible. Text augmentation is a
popular method of increasing data to train the model while avoiding overfitting.

Examining the text’s content is the first step recommended for resolving the issue. This
step may also be of assistance in establishing which model of ML can be applied for clas-
sification. Checking the content of a text is important because even if a large number of
samples have the same label, those samples might only contain a few words each. In ad-
dition to this, there is a possibility of uncertainty or an unlearned model occurring if the
samples do not contain enough words.

24
4

36
0 36 23
4

52
1

24
2 23 27
5 31 32 25
5 21 54
2

31
5

24
1 25 33 23
2 22 25
7

23
1

52
3 41 31
0

77
3 24 27 26 73 37
0

55
4 34 74
3 28 54
3

72
3 39 54
4 29 27
6

27
3

65
9

56
4 44 54 72
9

28
1

23
7

54
5

72
2

32
0

21
7 35 45 33
0

74
4 66 27
7 37 76 49 38 59 51 63 21
3

21
6 64 25
6

72
5 52 77
1 75 33
2 48 55
6

27
9

27
4 46 56 55 69 71 51
9

76
3 57 67 65 41
6

41
2 43 53 41
4

77
2

76
2

23
3 72

System code
0

10000

20000

30000

40000

50000

Nu
m

be
r o

f w
or

ds

Number of words per each sys code

Figure 3.7: Sum of words per each system-code

From the figure 3.6 and figure 3.7 that the previously mentioned argument happen. In
the event that we get a better look at system codes 273 and 244, The total number of words
for system code 273 is significantly lower than the total number of words for system code
244, despite the fact that the number of samples for system code 273 is significantly higher.
Following that, it’s reasonable for me to wonder if the words I’m seeking for are, in fact,
valuable ones.

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 44

3.2.2 Data Preparing
After cleaning the texts, there is a significant reduction in the range to the total number of
words. The straightforward strategy for computing the total number of words after cleaning
the texts is as follows:

36
0

24
4 36 23
4 23 52
1

24
2

27
5

54
2

31
0 31 27
3

23
2

31
5 25 25
5

32
0 22 37
0

24
1 21 32 26 23
1

52
3

25
7 33 27 72
3 41 77
3

55
4

54
3

23
7 24 74
3 35 28 28
1

25
6

56
4 39 44 27
6 73 34 45 29 54 72
2 51 66 57 37 72
9 69 77
2 52 21
6

54
4 56 65
9

62
1 48 72
5

27
7

74
4

21
7

21
3 38 65 59 43 72
7 72 79 49 54
5

33
0

51
3

77
1 46 55 63 74 75 62 31
2

76
3 67 41
6

41
2

41
4

76
2

55
6

27
9

21
5

28
5

23
3

51
9

System code
0

50000

100000

150000

200000

250000

Nu
m

be
r o

f w
or

ds

Number of words per each sys code

Figure 3.8: : Sum of words per each system-code after cleaning

However, due to the unbalanced nature of the data, the decision is made to increase
the number of words and samples. This is true for system-code samples of five or greater.
To complete the process, nlpaug’s word augmentation is used. This works by randomly
selecting a word from each random sample that corresponds to the given system-code,
then randomly selecting a word from that sample, augmenting the word, and replacing it
on the same index (same place). When there are a lot of words, they are chosen in a variety
of ways. Finally, the sample is identified as a new sample, but with the same label or system
code as the original sample. It should be noted that the Norwegian and English are included
as data size increase reasons. The entire code can be found in the attached code-file, and a
small portion of the code to do the job looks like follosws:

0 for w in random_words:

1 idx = text_.index(w)

2 index_agumented_word.append(idx)

3 for i, y in zip(index_agumented_word , agumented_words):

4 text_[i] = y

5 new_text = " ".join(text_)

6 data = data.append ({’text’: new_text , ’system ’: system_code , ’

language ’: language_}, ignore_index=True)

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 45

Listing 3.1: Word Augmentation

and the end result after some rearranging looks like this:
21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 39 41 44 45 51 73 23

1
23

2
23

4
23

7
24

1
24

2
24

4
25

5
25

6
25

7
27

3
27

5
27

6
28

1
31

0
31

5
32

0
36

0
37

0
52

1
52

3
54

2
54

3
54

4
55

4
55

6
56

4
72

3
74

3
77

3

System code
0

25

50

75

100

125

150

175

200

Sa
m

pl
es

Figure 3.9: For samples larger than five, use word agumentation

As mentioned in the theory of Natural Language Processing section, there are tech-
niques that can classify into two categories: syntax and semantics. Again, sentences are
made up of words, and it is these individual words, their parts of speech, and their place-
ment in the sentence that provide the computer with knowledge and context as to what the
sentence is really trying to say.

This raises the question of how the computer knows what the various parts of speech
are, as well as the question of how it can figure out all of this even if it does know the vari-
ous parts of speech. The power of today’s large amounts of data could provide the solution.
In practice, any programmer is capable of gathering a variety of words, phrases, sentences,
grammatical rules, and word structures and then feeding them into an algorithm. An algo-
rithm can use this information to learn what words typically end up next to each other, how
a sentence should be formed, why certain words fit into a sentence better than others, and
so on. It can also learn why certain words fit into a sentence better than others. And this is
exactly how a computer will eventually determine which word in a given sentence makes
more sense than the other words. Consequently, when cleaning the texts, both the syntax
and the semantics of the text are taken into consideration. This ensures that the words have
meaning for the final product.

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 46

So cleaning texts involves some standard steps when working with Natural Language
Techniques, such as Syntax, which is the set of rules that governs the STRUCTURE of
sentences:

• A. Tokenization, remove punctuation’s and change the words to lower case.

• B. Removing stop words.

• C. Stemming

• D. Preforming lemmatization.

There are two types of tokenization: sentence tokenization and word tokenization. Sen-
tence tokenization divides a paragraph into distinct sentences, whereas word tokenization
divides a sentence into distinct words. As a result, the computer is able to learn the potential
meaning and purpose of each unique word.

Stemming is the process of breaking down a word into its component parts, known as
its stems. This is achieved by stripping the word of universal prefixes and suffixes such as
”es,” ”s,” ”ing,” and ”ed”.Although stemming is an effective method, this straightforward
chopping based solely on common prefixes and suffixes can sometimes remove necessary
components of a root and result in a change in the original word’s meaning. This brings us
to the second argument in favor of lemmatization rather than stemming.

Instead of chopping off the beginnings and endings, lemmatizations reduce a word to
its root form by morphologically analyzing the word. In other words, if the words “am”,
“are”, and “is” are presented, the root form for these is “be” as demonstrated by lemmati-
zation. Stemming, on the other hand, would not have figured it out because chopping off
any letter of these words would not have produced “be” 1. Thus, lemmetization on the texts
is preferred, and the data frame has three features after some adjustments.

They are “text”, “system” and “language”.The cleaning of the text feature begins by
removing all punctuation found in the string module

0 import string

1 print(string.punctuation)

2 # output :!"#$%&\ ’()*+,-./:;<=>?@[\\]^_‘{|}~ ’

Listing 3.2: Code to show possible Punctuation

1https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.

html

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 47

Taking out the punctuation during the training process is beneficial to the model. This
is of the utmost importance in my situation because the low number of words contained
in each file will cause the model to fail if any punctuation is included in the presentation.
After that, I continue to split the text into words in each of the files so that I can identify the
stop words and perform some lemmatization. To do the job I used tokenizer from spaCy.
The removal of stop words is accomplished by determining whether a word is on the list
stop words.

0 from nltk.corpus import stopwords as sw

1 stop_words = sw.words(’norwegian ’)

2 print(stop_words [:10])

3 # output:

[’og’, ’i’, ’jeg ’, ’det ’, ’at’, ’en’,

’et’, ’den ’, ’til ’, ’er ’]

Listing 3.3: Code for Using Norwegian stop words

As shown in the figure, I used the NLTK (Natural Language Toolkit) package in Python,
which contains a list of stop words for several languages. I’ve also printed out ten of the
stop words. Other words can also be used as stop words. The reasons for removing these
words are to increase the learning rate of a classification model and to have a shorter run-
time while training the model. This is due to the space saved by removing the stop words.
Then, as shown below, lemmatization was used to meaningfully shorten the words back to
their root form.

0 import spacy

1 nlp = spacy.load("nb_core_news_lg")

2

3 for i in nlp("Dette sier noe om vaart samfunn produserer

enorme informasjon."):

4 if str(i) not in stop_words and str(i) not in string.

punctuation:

5 print(i.lemma_)

6 # output: dette , si , vaart , samfunn , produsere , enorm ,

informasjon

Listing 3.4: Code for demonstrating Lemmeatization

When working with a data frame, the following code snippet performs all of the pre-
ceding preprocessing steps.

0 def punctuationsRemoval(self , data):

1 for punct in string.punctuation:

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 48

2 data = data.replace(punct , "")

3 return data

4

5 def token(self , data):

6 # tokenization , stop words , lemma_

7 data[’stop_Lemma ’] = data.Text.apply(

8 lambda text: " ".join(each_token.lemma_

9 for each_token in nlp(text)

10 if not each_token.is_stop))

11 # remove the punctuation

12 data[’clean’] = data[’stop_Lemma ’]. apply(self.

punctuationsRemoval)

13 return data

Listing 3.5: Code for preforming Preprocessing in Data Frame

Yes, working with natural language is difficult, and the proportion of data sets that have
been labeled is small. Nonetheless, high-quality data is required, despite the fact that the
size of the data set limits the ability to develop advanced models. The second option for
avoiding the problem of having few and unbalanced datasets is to increase the number of
samples, - as shown above with textual augmentation from the nlpaug python library. The
texts are written in several languages. To increase the sample count, I used the Google API
to translate all detectable languages to English, followed by text augmenation. However, in
order to increase data size, I used both English and Norwegian at first.

0 import googletrans

1 from googletrans import Translator

2 import nlpaug.augmenter.sentence as nas

3

4 translator = Translator ()

5 text_example = "Dette er en p r v e "

6

7 translate_eng = translator.translate(text_example , dest="en")

8 print("Original text: ", translate_eng.text)

9 aug = nas.ContextualWordEmbsForSentenceAug(model_path=’xlnet -

base -cased’)

10 augmented_example = aug.augment(translate_eng.text , n=3)

11 augmented_example

12 # output: Original text: This is a test [’This is a test that

we should ask every kid at your college in an absolute

100% positive manner.’,’This is a test test on you!’, ’This

is a test of patience for the last couple ’]

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 49

Listing 3.6: Code for preforming Text agumentation

The n refers to how many agumneted string text we can have. Because n equals 3, the
result shows three arguments in the list. Then it was translated back to Norwegian. NLPaug
can be Character, Word, or Sentence augmentation. These types of argumentation have
several methods that can be used in doing valuable operations to increase the texts that help
learning ML model. Some of the methods include synonym replacement, shuffling, random
deletion, and random insertion. Because of the time constraints, word-augmentation with
contextual word embedding was chosen for this project. Preprocessing was only used for
training data sets when working with the original labeled dataset. This was due to the
time required to translate from one language to another. It took approximately 7.5 hours to
only 1/10 of the data sets, particularly with text augmentaion (90 of the approx 1000 data
sets). So the result was time-consuming and tested in GPU from our university, but since
using GPU in our university is primarily for those working matrices operations, I decided
to work with EM, which also aimed to both labeled and unlabeled data sets. When it comes
to undetectable files, they are either matrices or websites.

3.2.3 Text Vectorization
Texts must be transformed into numerical representation before they can be understood by
ML models. As I discussed in the theory section, there are several methods that can be
used. In this project, I used the Tfidf-Vectorizer from sklearn. Tfidf is an abbreviation
for ”term frequency - inverse document frequency.”[7]. The ”Tf-idf” algorithm derives its
functionality from its name. The number of times a word is used throughout a document
is referred to as its term frequency (tf). There are a few different ways to calculate this fre-
quency, with a straightforward count of the number of times a word appears in a document
being the quickest and easiest option. After that, the frequency can be changed according
to the total length of the document or the raw frequency of the word that appears the most
frequently in the document. While the inverse document frequency(idf) of the word is cal-
culated inversely across a set of documents. This indicates how common or uncommon a
word is throughout the entire set of documents. The number’s proximity to zero indicates
the frequency with which a word is used. To determine this metric, take the total number
of documents, divide that number by the number of documents that contain a word, and
then calculate the logarithm of the result. Tf-idf can then be expressed mathematically as:

tfidf = f(t, d)× f(t,D)

anf ”tf” represented by f(t,d) and ”idf” by f(t,D). And t is the term and d is a single document
and D is the entire document. This yields a number indicating how frequently a word

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 50

appears in a text in comparison to how frequently the same word appears in all given texts.
Pipline 2 from Scikit-Learn is used to make the code more clear. This class accepts a

variety of parameters, including Tf-idf.
0

1 from sklearn.pipeline import Pipeline

2 from sklearn.feature_extraction.text import TfidfVectorizer

3 kwargs = {

4 ’ngram_range ’: (1,2),

5 ’strip_accents ’: ’unicode ’,

6 ’decode_error ’: ’replace ’,

7 ’min_df ’:2,

8 ’max_features ’:20000

9 }

10

11 # calling tf -idf , and other parameter - classification

algorithm and kwargs

12 text_clf_nb = Pipeline ([

13 (’tfidf’, TfidfVectorizer(stop_words= nlp.Defaults.

stop_words , ** kwargs)),

14 (’clf_nb ’, MultinomialNB ()) ,])

15 model1 = text_clf_nb.fit(X_train , y_train) # NB for example

Listing 3.7: Code for importing and initialization Pipeline, using Tf-idf as parameter

As the listing above shows, additional parameters can be included. Additionally, the fit
method constructs vocabulary from given text, and another transform method is embedded
within Pipline. If the choice of using Pipeline is ignored, it is also possible to use fit and
transform as one method. The transform method returns vectors for each text. Each vector
has a position for each presented word in the text, and each position has a Tf-idf frequency.
The length of the created vector is equal to the vocabulary in the texts, which represents
all unique words in the entire data set. The unique words do not include words such as
stop words or words that are generally ignored by the algorithm. It is also worth noting
that if a word appears frequently in all documents/texts or only in a few documents/texts,
the approach of ”Tf-idf” will be close to 0 and 1. And this will not gain in information
acquisition when learning the model.

Tf-idf adds a new operation: working with multiple sequential words instead of a single
word. ngram range (listing above) provides the possibility of seeing the occurrence of
multiple sequential words. The occurrence of multiple sequential words may have different

2https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.

html

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 51

meanings because the occurrence is seen as a unique word when compared to, say, a single
word. As a result, the learning capability of a random classification model may improve.
The obvious disadvantage of larger ngram range is that longer vectors are created, and the
space occupied by these vectors requires a longer run-time. max features, as shown in
the figure above, can also be used to limit the length of the vectors. In cases where the
vectors number in the thousands, a class called SelectKBest from feature-extraction modul
can be used. SelectKBest enables us to have a vocabulary of our choosing and provide the
words that are best represented for the given system codes. This can be accomplished by
employing the previously mentioned fit method, in which the vectors and associated system
codes collaborate in the model. This class is put to the test in one of my neuron network
classifiers, as follows:

0 from sklearn.feature_selection import SelectKBest , f_classif

1 # Select top ’k’ of the vectorized features.

2 TOP_K = 20000

3 select = SelectKBest(f_classif , k=TOP_K)

4 # Learn vocabulary from training texts and vectorize training

texts.

5 X = vectorizer.fit_transform(texts)

6 select.fit(X, y)

7

8 # converting to numpy

9 X = selector.transform(X).astype(’float32 ’).toarray ()

Listing 3.8: Code for importing and initialization SelectKBest

And this can reduce the run time during model training while having little impact on
model accuracy.

3.2.4 Implementation of the Models
The data set had to be divided into training, testing, and validation before training the
model. In this project only training and testing data sets is used. The goal of dividing the
data sets is to see how the model performs in unseen data. The test size is 20%, with the
remaining 80% used to train the model. It can be accomplished by the following snippet:

0 from sklearn.model_selection import train_test_split

1 X = df_cop["clean_text"]

2 y = df_cop[’class’]. astype(int)

3

4 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.2, random_state =42)

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 52

5 X_train.shape ,X_test.shape

Listing 3.9: Code for splitting the given data sets into training and testing sets

The scikit-learn train test split method was used to randomly split the data sets in the
given percentage, with the data sets being shuffled before the splitting process began. This
process is primarily used for the supervised part(see 3.1 A-part)” of ML.

The implementation of models that use the structured portion of the dataset in con-
junction with the augmented text begins with classical classifiers. It is important to note
here that the supervised dataset is reduced to 3333 samples after cleaning. And, at first,
the algorithms were taken directly from sklearn (with default parameters) and the order of
implementation is the same as the theory section. For example, decision tree from sklearn
3:

0 # Decision tree

1 from sklearn.metrics import accuracy_score

2 clf = tree.DecisionTreeClassifier ()

3 clf.fit(X_train , y_train)

4 score = clf.score(X_test , y_test)

5 #preds = clf.predict_proba(X_test)

6 #print(’Accuracy: {:.5f}’.format(accuracy_score(y_test ,preds.

argmax(axis =1))))

7 print(’Model accuracy score with default hyperparameters:

{0:0.4f}’. format(score))

8 # Output: Model accuracy score with default hyperparameters:

0.9100

Listing 3.10: Code for Decision Tree with default parameters

and random forest 4, Naive Bayes 5, support vector Machine 6 and additonal KNeigh-
borsClassifier 7 are also computed.

The model evaluation metrics for each of these algorithms are also computed in order
to find the best model that can be used later, for the semi-supervised part. Performance
metrics include time spent training and testing the model, accuracy, precision score, mean

3https://scikit-learn.org/stable/modules/tree.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
5https://scikit-learn.org/stable/modules/naive_bayes.html#

multinomial-naive-bayes
6https://scikit-learn.org/stable/modules/naive_bayes.html
7https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/naive_bayes.html##multinomial-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html##multinomial-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 53

squared error (MSE), and f1-score 8. All of this is included in the main attached code file,
and the results are displayed in the coming subsection.

In addition to the above mentioned algorithms simple neuron networks(NN) added to
compare the results with the following structure:

Figure 3.10: Neural Network Structure

The parameters in the structure can be calculated as output size× (input size+1) =
number parameters. For example in the fist(dense 3), the parameters is equal to 64 ×
(56689 + 1) = 3628160 where 1 is bias. Dense 4 and dense 5 can also be calculated in
the same way. Some other important parts which are important to tune the classifier:

• Learning rate - is a step size how the process goes forward under improvement, i.e
while the loss is decreasing.

• epochs - An iteration through the training data. And it has a major roll in learning
the pattern.

• Batch size - decision on how many set of training group/batch should preformed in
one iteration.

• Loss - is the difference between the actual result and the estimated result.

Data also generated other new data sets that can be used in the sem-supervised opera-
tion of this project using this ANN. This part can be explained in details later. The ANN

8https://scikit-learn.org/0.22/auto_examples/text/plot_document_classification_

20newsgroups.html

https://scikit-learn.org/0.22/auto_examples/text/plot_document_classification_20newsgroups.html
https://scikit-learn.org/0.22/auto_examples/text/plot_document_classification_20newsgroups.html

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 54

algorithm has an input, hidden and output layers just like as it is introduced in the the-
ory part. The number of neurons in the input layer is 56689, which is equivalent to the
shape for training data sets initialized during train test split method implementation. The
number of neurons in the hidden layer decided by the CV(cross validation), which gives
the best result after testing the model in many different way so that the metrics measure
of the model become as good as possible. If there were much larger labeled data set, the
efficiency of processing the data would also be important. Thus the reason behind using
Rectifier (“relu”) in the in both input and hidden layer also give a meaning. In the output
layer, there are 50 neurons since the expected output from top 50 represented system codes.
While activation function in the output layer is ’softmax’, since softmax is preferred mostly
when the expected output belong to multi-class.

Clustering the system-code is also included to see the relationship between the texts.
The algorithm collects data with similar texts that are as close as possible in a given di-
mension. Specifically, when the algorithm computes data, it generates vectors and then
sketches them in the given dimension. This can be used to determine how similar the data
points are. The greater the differences in the content of the texts, the greater the distance
between them. In this case, it is chosen to display the data in two dimensions.

0.0 0.1 0.2 0.3 0.4

0.2

0.0

0.2

0.4

0.6

37
27
40
11
6
44
34
14
48
13
31
33
49
30
29
8
18
42
19
17
20
47
4
32
22

0.0 0.1 0.2 0.3 0.4

0.2

0.0

0.2

0.4

0.6

8
18
42
19
17
20
47
4
32
22
41
1
26
3
21
0
2
5
24
39
28
9
25
16
35

Figure 3.11: Cluster of the structured data sets

In the figure above we can see the data points overlap. This indicate that the more
complicated model is needed to group the points so that they can have a clear system code

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 55

that belong to each group. Some of the data points lies far away from the others this can
be due to the lack of enough words in the content of the texts or they are very different
from each other. The figure represent for the top 20 at once, I could also have only few
samples that represents for system code to see much clearer the similarity among the data
sets. The Truncated SVD(above) of the first part of the top 20 and KMeans of all the top
20 can be represented as follows. Both Truncated SVD and Kmeans are from scikit-learn
can be implemented as follows:

0

1 sysCode = list(df_all_structured_pdf["system"]. value_counts ().

keys())

2 # converting the labels to numpy before using sklearn

3 y = np.array(labels)

4

5 # Top n most common system code or label:

6 n = 20

7 if len(sysCode) > n:

8 top_cats = sysCode [:n]

9 df_all_structured_pdf =

10 df_all_structured_pdf[df_all_structured_pdf["system"].

isin(top_cats)]

11 sysCode = list(df_all_structured_pdf["system"].

value_counts ().keys())

12

13 # Create dictionaries for converting between category and

numbers:

14 sys_to_num = {}

15 num_to_sys = {}

16

17 # Create lists for the text and system codes:

18 texts = []

19 labels = []

20

21 for i, cat in enumerate(sysCode):

22 sys_to_num[cat] = i

23 num_to_sys[i] = cat

24

25 for i, row in df_all_structured_pdf.iterrows ():

26 texts.append(row["text"])

27 labels.append(sys_to_num[row["system"]])

28

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 56

29 # importing from sickit -learn

30 from sklearn.decomposition import TruncatedSVD

31

32 # initialising truncated model

33 svd = TruncatedSVD(random_state =42)

34

35 # calling fit_transform method

36 truncated_x = svd.fit_transform(X)

37

38

39 from sklearn.cluster import KMeans

40 from sklearn.utils import class_weight

41

42 # Compute class weight. This is used to make the model

43 # more likely to guess that a sample belongs to an

underrepresented label.

44 class_w =

45 class_weight.compute_class_weight(’balanced ’, np.unique(

labels), labels)

46

47 # initialising Kmeans model ,, where the number of cluster is

equal

48 # to the number number of top20

49 km = KMeans(n_clusters=len(sysCode), random_state =42)

50

51 # calling fit_transform method

52 K_mean = km.fit_transform(X, class_w)

Listing 3.11: Code for preforming TruncatedSVD and KMeans

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 57

0.4 0.6 0.8 1.0 1.2 1.4

1.0

1.1

1.2

1.3

1.4

37
27
40
11
6
44
34
14
48
13
31
33
49
30
29
8
18
42
19
17
20
47
4
32
22

0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

41
1
26
3
21
0
2
5
24
39
28
9
25
16
35
38
7
23
36
15
12
10
46
45
43

Figure 3.12: Cluster of the structured data sets

Even after running the KMeans algorithm, the data points continue to overlap with one
another. This indicates that the model will have a difficult time classifying the data sets in
relation to the system-code. On the other hand, as we can see in the figure that represents
KMeans, the data points are arranged in an ascending line. Additionally, this will provide
us with some results in terms of accuracy. Clustering in the labeled portion of the given
data, in general, is an indication that the model can only learn some due to the fact that the
relations between the points shown.

So far, the implementation in both labeled and general cleaning that applies for the unla-
beled dataset discussed. These were a precursor to the main component of implementation
in this project, semi-supervised learning. As stated at the start of the project, because the
amount of labeled data received from Autility were very small, semi-supervised learning -
a mixture of labeled and unlabeled data is preferable. If we return to 3.1, we can see that
the process in the C section of the figure is carried out in two ways.

Let us now look at figure 3.1 C, which shows how model-A and model-B are imple-
mented in the same part. Model-A is implemented using both Naive Bayes and Expectation-
Maximization algorithms. The Naive Bayes classifier is primarily used in supervised ML,
where a labeled data set is assumed. The Expectation Maximization algorithm is used for

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 58

unsupervised ML when the data set fed to the algorithm is unlabeled. In the theory sec-
tion, the working process of these algorithms is mentioned and the only difference between
k-means and EM is that in K-means the classification result give specific class or cluster
while in the EM the result is given in a probabilistic way. In K-means the data points con-
tributes to one of the given classes. If the classes are for example true or false, the points
contributes either true or false. While in EM the points would contribute a little bit of their
weights to the given classes.

The working process of Naive Bayes and Expection Maximization already seen in the
theory section. The code below demonstrates how these works together by referring to
the formula shown in the theory section. In Figure 3.1, Model-B is the ANN model that
produced the best results among the supervised classifiers when predicting a system code
for each unlabeled data set. The SelfTraining Classifier class from semi-supervised in
scikit-learn was then chosen as the first choice to first shuffle and redo only 20% of the
data set to labeled and the other assigned to -1. The implementation is as follows:

0

1 from sklearn import preprocessing

2 # for arragnging the proper index

3 def properIndex(dataFrame):

4 ind = []

5 for i in range(len(dataFrame)):

6 ind.append(i)

7 s = pd.Series(ind)

8 dataFrame.set_index(s, inplace=True)

9 return dataFrame

10

11 for i in range(len(unlabeled)):

12 res = ANN.predict ([unlabeled.text [0]]) [0]

13 unlabeled.system[i] = res

14 # Combining both the all the labeled and unlabeled , which is

now labeled using ANN

15 frame_ = [labeled , unlabeled]

16 tot_ = pd.concat(frame_)

17 tot_ = shuffle(tot_)

18 # calling a properIndex to arrange the index

19 tot_ = properIndex(tot_)

20 le = preprocessing.LabelEncoder ()

21 tot_[’system ’] = le.fit_transform(tot_.system.values)

22 X_ , y_ = tot_.text , tot_.system

23 X_train , X_test , y_train , y_test = train_test_split(X_ , y_)

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 59

24

25 # masking 20 percent of the y_train

26 y_mask = np.random.rand(len(y_train)) < 0.2

27

28 # X_20 and y_20 are the subset of the train dataset indicated

by the mask

29 X_20 , y_20 =

30 map(list , zip (*((x, y) for x, y, m in zip(X_train , y_train

, y_mask) if m)))

31

32 # set the non -masked subset to be unlabeled

33 y_train [~ y_mask] = -1

Listing 3.12: Code for initialising SelfTrainingClassifier

The implementation above increases the probability of predicting correct system code
from the selfclassifier algorithm. This is because the neural network model had high ac-
curacy in predicting the correct system code. The mixing part of the data set, right before
assigning -1 to the 80 percent of the total data are also another helpful hint on predicting
correct system code.

3.3 Results and Working Process of the System
During implementation, each system-code with more than 101 samples are chosen as la-
bels. The samples and their system codes are distributed almost equally and looks as fol-
lows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Classes

10
0

10
1

10
2

P
er

ce
nt

ag
e

(%
)

2.
04

2.
08

2.
02

2.
06

2.
13

2.
00 2.

33

1.
61

2.
17

1.
84

1.
21

2.
37

1.
51

2.
23

2.
25

1.
53 1.

78 2.
17

2.
17

2.
17

2.
17

2.
06

2.
08

1.
59 1.

98

1.
80 2.

06

3.
29

1.
92 2.

19

2.
19

2.
21

2.
08 2.
19 2.
27

1.
66

1.
55

3.
74

1.
63 1.

94 2.
37

2.
08 2.
17

0.
39

2.
29

0.
78

1.
10

2.
15 2.
23

2.
19

Percentage (%) of samples

Figure 3.13: Top 50 labels

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 60

The traditional classifiers used in this project are Multinomial Naive Bayes, Linear
Support Vector, Decision Tree, and Random-Forest, as stated in the introduction for ML
section. And these are the first algorithms that have been tested in labeled data. The results
of these algorithms, as well as other possible algorithms for classifying samples, are as
follows:

R
id

ge
C

la
ss

ifi
er

P
er

ce
pt

ro
n

P
as

si
ve

A
gg

re
ss

iv
eC

la
ss

ifi
er

K
N

ei
gh

bo
rs

C
la

ss
ifi

er
R

an
do

m
Fo

re
st

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
S

G
D

C
la

ss
ifi

er
N

ea
re

st
C

en
tro

id
M

ul
tin

om
ia

lN
B

0.0

0.2

0.4

0.6

0.8

sc
or

e

Score

R
id

ge
C

la
ss

ifi
er

P
er

ce
pt

ro
n

P
as

si
ve

A
gg

re
ss

iv
eC

la
ss

ifi
er

K
N

ei
gh

bo
rs

C
la

ss
ifi

er
R

an
do

m
Fo

re
st

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
S

G
D

C
la

ss
ifi

er
N

ea
re

st
C

en
tro

id
M

ul
tin

om
ia

lN
B

0.0

0.2

0.4

0.6

0.8

1.0

se
co

nd
s

Training time

R
id

ge
C

la
ss

ifi
er

P
er

ce
pt

ro
n

P
as

si
ve

A
gg

re
ss

iv
eC

la
ss

ifi
er

K
N

ei
gh

bo
rs

C
la

ss
ifi

er
R

an
do

m
Fo

re
st

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
Li

ne
ar

S
V

C
S

G
D

C
la

ss
ifi

er
S

G
D

C
la

ss
ifi

er
N

ea
re

st
C

en
tro

id
M

ul
tin

om
ia

lN
B

0.0

0.2

0.4

0.6

0.8

1.0

se
co

nd
s

Test time

Figure 3.14: Result of traditional algorithms

The score for classifier algorithms is shown in the above result. The score takes into
account not only the algorithms explained in the theory section, but also the algorithms that
are related to the main algorithms. As it can be seen from the figure above, the result of
the score lie around 85%. This is a good score because it covers the approximated result.
One can also see the time spent in seconds, during training and testing. In the middle and
right parts of the figure, there are some differences in time use. However, regardless of the
time use, the accuracy remains constant. In some cases, the time spent on training by an
algorithm is much greater than the time spent validating the data, and vice versa. Some
observations will be made about this in the discussion sub-section.

In order to see most possible metrics performance from the algorithms, measures like
precison, mse, r2 score and f1 score are taken by using sklearn. And the result of these
measurments can one see in the figure below.

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 61

Figure 3.15: Performances

The main classifiers and metrics discussed in the theory section are represented by
the blue and red colors in the figure. Tolerence and various types of penalties are tested.
Precisions for the algorithms (i.e., how many instances where the classifiers predict to be
true are correctly classified as true) show a dominant higher value, indicating good perfor-
mance among the classifiers. In terms of MSE, Naive Bayes (specifically MultinomialNB)

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 62

and SGDClassifier with l2 penalty perform better than the others. As a general rule, the
lower the value and greater than zero MSE is preferred. So, if one were to use a traditional
classifier, one of these two would be a better option. F1-score of all algorithms perform
well, because their results are close to one. This means that the higher the precision and
recall, the better the classifier performs - because it detects the majority of positive samples
(high recall) while not detecting many samples that should not be detected (high precision).
The formula from the theory section can also be used to verify it. It is important to note
that “micro averaging” is used in all of these algorithms, which means that metrics are
calculated globally by counting the total true positives, false negatives, and false positives
9.

In addition to traditional algorithms, three-layer Neural Networks were tested. This
model was chosen again to visualize and quantify some of the above results. For example
plotting the accuracy and loss versus epochs. In other words, to validate the results ob-
tained by the algorithms described above. The NN training result was approximately 96%,
and the validation result was approximately 92%. When compared to the results of the tra-
ditional classifications algorithm models shown above, this classifier produces little better
results. This could be due to a variety of factors. For example, in this algorithm, important
terms such as learning rate, epochs, batch size, and loss can be included. In addition, the
visualization how the algorithm performs during training and validation of the data states
by the figure below.

0 2 4 6 8
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
ss

model loss of ANN

train
test

0 2 4 6 8
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

model accuracy of ANN

train
test

Figure 3.16: Accuracy and Loss vs Epochs 1

Overfitting is undesirable result where the model is trained well on the training dataset,
9https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.

html#sklearn.metrics.f1_score

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html##sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html##sklearn.metrics.f1_score

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 63

but preformed bad in unseen/new data sets. If we see the figure above - loss vs epochs
first, it tells as how the estimated result is far away from the actual result and when the
line for the training and validation crossed to each other, it shows some overfitting. That
means loss for the training data continues to decrease while the loss for the validation data
decreases but slower than the training data set. In other word one can see the effect of this
result on the right plot of the same row figure. The left plot shows the loss of the training
and validation data set. It is also easy to see when the training accuracy become about
90% and then model performance changed - again overfitting, almost mirrored of left plot.
However, model accuracy can be improved by adjusting the algorithm’s hyper-parameters,
i.e. the terms listed above. At the same time, ensure consistent accuracy by utilizing kernel
regularizers found in the Keras library. The final result after adjustment was as follows:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

model loss of ANN

train
test

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

model accuracy of ANN

train
test

Figure 3.17: Accuracy and Loss vs Epochs 2

These results are achieved after several tests. It easy to see that the maximum result
is almost constant after the training accuracy getting higher than the validation accuracy.
Unlike the the previous figure the number of epochs in both figures are also different. In
the previous figure the overfitting happen in early stage of epochs, while here the training
and validation goes parallel. The loss in training and validation also getting closer during
the 5 epochs. Thus, the accuracy of the final result 77 percent.

0

1 # initial parameteres and regulizers for adjustment

2 layers = 2

3 units = 40

4 dropout_rate = 0.2

5 reg = regularizers.l1(l1=1e-5)

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 64

6 bias_regularizer=regularizers.l2(1e-4)

7 activity_regularizer=regularizers.l2(1e-5)

8

9 # length expected output classes and input

10 top_20 = len(sys_to_num)

11 input_shape = x_train.shape [1:]

12

13 #expected output classes

14 out_units = top_20

15

16 # creation of the model

17 model = models.Sequential ()

18

19 # Dropout layer to help prevent overfitting

20 # can include the initial parameters for improvment

21 model.add(Dense(units=units , activation=’relu’, input_shape=

input_shape))

22 for _ in range(layers -1):

23 model.add(Dropout(rate=dropout_rate))

24 model.add(Dense(units=units , activation=’relu’))

25

26 model.add(Dropout(rate=dropout_rate))

27 model.add(Dense(units=out_units , activation=’softmax ’))

Listing 3.13: Code for Creation and Adjustment Neural Networks

The outcome of the semi-supervised part is determined by the outcome of the super-
vised part. Even the supervised part that participates in modeling the semi-supervised part
is small, it is critical to have a model that can generate new data, as shown in 3.1. The
Multinomial from the traditional type of machine learning as baseline and EM are chosen
to perform the semi-supervised part of this project. The choice of Multinomial Naive Bayes
is based on the strong result from 3.15, i.e good accuracy with low MSE. As it shown in the
C section of 3.1, this model is the final step before the returning the class with it’s belongs
named-entities. The working process for each Naive-Bayes and Expectation Maximization
can be found in the theory section separately. The working process for both these algorithm
to preform sem-supervised algorithm looks as follows:

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 65

Figure 3.18: Process of Expectation Maximization

The above-shown figure produced 85% accuracy for the given initial 50 labels (system-
code). This is expected, even if it cannot be verified due to the poor quality of the data;
further reasoning can be found in the discussion section. However, in general, it can be
reasoned that the MultinomialNB was used as a base-line in this process and has a good
accuracy with law MSE, resulting in a good accuracy from the final step. Furthermore, to
ensure the consistency of the results, cross validation on small sampled computed. Here is
the figure that shows some measurements before arriving to the final result:

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 66

Figure 3.19: Results with Max Iteration=30

A simple application is also created to ensure the working process of this project. The
application includes the model from the final step (shown above), named entities operation,
one html file, and other libraries to demonstrate the process from beginning to end. The
application’s front page looks like this:

Figure 3.20: Application Working Process

CHAPTER 3. PROBLEM AND ITS INVESTIGATION METHODS 67

The application takes a single PDF file and uses the saved model to categorize it accord-
ing to its system-code. Furthermore, it extracts named entities, such as - Date, Org(Organization),
GPE, and location. After pressing the select result button, all of these are displayed in the
front page if they exist. In the example above the system-code and Org are displayed while
the others are referred as U which stands for ‘Ùnknown”. All of the files and libraries
necessary to run the application can be found in the attached zip.

Chapter 4

Summary

4.1 Discussion
The pdf files used in this thesis contain a variety of text types. The texts contain both
words that may have meaning when learning the model and words that have no meaning
at all. Due to lack of data, text augmentation was used during the implementation of the
first part, which implemented the supervised part of machine learning. The augmentation
is implemented by selecting random words from random samples that contain the same
system-code. Then substitute a synonym for that word. This procedure is useful for catego-
rizing the samples found in the total labeled dataset. The performances were also excellent.
Even though the data shortage was resolved and the results were excellent, the data quality
was poor when using the semi-supervised portion of the thesis. This is because, while the
semi-supervised uses little data from the labeled part, the data must be related to the gen-
eral data. This means that some files contain tables containing a large number of numbers
that measure the physical components of buildings. That did not help learning any of the
semi-supervised model. Because numbers are removed during preprocessing, the file is
then left with only cm, mm, or kg, which have little or no impact on learning the model. In
addition to that the texts are of single or double letters that do not give any information, the
overall performance will be insufficient in terms of the final result. Another challenge in
this project, some pdf files can also be unreadable, even the number of dataset show high,
again this led to negative impact for learning the models. In some of the pdfs files can also
be unreadable, which is negative side on having enough data.

The number of unique labels that exist in the structured part of data is much lower than
the number of unique labels that given in the standard NS3451. This means The number of
pdf files given in the structured data which again belong to the number of labels are very
limited. By shrinking the number of labels that contain n number of files and augmented

68

CHAPTER 4. SUMMARY 69

the number files that already exist, it is managed to learn several type of ML models. The
results gave an accuracy between 85% and 96% accuracy, but again the results applies for
only 50 out of the 280 labels that exist in the standard NS3451. While the result achieved
from the unstructured data can be see as a practical problem. This is because the files might
belong to the labels that never seen below, that is labels that can only found in NS3451.

This can be a hint that is necessary to have a way where the model gather data continu-
ously as stream and train the existed models in order to improve the accuracy and outcome
quality.

4.2 Environmental accounts
Any task involving machine learning and artificial intelligence has an effect on our envi-
ronment. Reflection on things from an ethical standpoint may impact the way the solution
is generated and the working process in the future to some degree. Based on this, it is
preferable to offer an explanation of ethical principles. The need for an ethical aspect may
also be seen as a defender for many points of view on whether the project’s generated part
will have a beneficial or negative impact.

Before the start of this project, Autility and I had an open talk about the ethical impli-
cations of working on this project. This had a significant impact on how we worked with
openness and responsibility for potential issues. Beyond that, it was clear that this was
intended to enhance solutions to issues that increase problems of climate change. Even
though there have been multiple instances where the development of ML and AI has had a
negative influence, such as many jobs being threatened by AI and ML automation technolo-
gies, many people are optimistic that the rising role of AI will leave us better off [11]. Solv-
ing the climate change issue is a worldwide responsibility, and having this system solves
not just the climate change problem, but also the time lost on classifying files. People who
are doing this may also work on other projects that improve people’s thought abilities. In
general, a problem solved by ML should be met with a thorough analysis of the ethical
considerations involved with it. This is because it is everyone’s obligation to discover a
solution that makes human work more efficient while not making the need for humans out-
dated. If this is the case, the development of automation generates more problems than it
solves.

4.3 Conclusion
The point of the project was to create a system that used several NLP techniques and ma-
chine learning to extract information and categorize files in Autility based on the standard

CHAPTER 4. SUMMARY 70

NS3451. Solving a problem using NLP and ML, like in this case, is an opportunity to gain
valuable experience in exploring and handling data. Despite the fact that the original data
storage was never considered of as a process in this case, and the data quality was poor, it
is managed to solve the problem.

Since a large portion of the work process happened during the Russo-Ukrainian con-
flict, which harmed the firm for which the thesis is written, I had to be adaptive in order to
stick to the original plan. The unique experience obtained throughout the work process has
improved my ability to engage with a solution-oriented viewpoint. During my first contact
with Autility, several changes were made to the project concept. But, as mentioned multiple
times throughout the discussion with Autility, the key objective has been to keep the solu-
tion being feasible. And the approaches for completing this assignment were chosen with
the assumption that it is a project that would be expanded upon. Because we had certain
constraints on the quantity and quality of data that I could access, this is a starting point for
establishing realistic expectations for the outcome. The model’s findings are restricted by
the amount of the data, and there is a need for additional data, both in terms of the number
of samples that represent the labels and the number of samples that represent individual
labels. This might assist to represent a completed product.

Some of the system-code in the structured component has relatively few examples. This
means that the model did not obtain enough experience with the samples that contained
these labels to learn and identify them again. The text augmentation is conducted to en-
hance the data with system-code, so that the amount of data grows and the model to have
exclusive classification obtains 89%. Having the same quantity of data for the other system-
codes would result in a result that was near to the specified accuracy. This also applies to
data of the same quality as the original data. With access to far bigger datasets, more com-
plex models might be developed and perhaps reach even better accuracy. A simple neuron
network model is included. However, because of the existing data, making it more compli-
cated, such as adding additional layers, is unnecessary. The majority of the models utilized
should be basic enough to handle bigger volumes of data.

Finally, this thesis is intended to act as a theoretical basis as well as a feasibility analysis
on the topics that have been worked on in an acceptable manner. Based on multiclass
filtering issues, the results provide a unique system code. It is also developed models for
the structured component that provide 85% accuracy and various outcomes for the semi-
supervised part depending on how the labeled and unlabeled are grouped, as shown in the
figure 3.19. The output fulfills Autility AS’s expectations and may be improved upon, and
I’m fortunate enough to be able to point to a solution that is in accordance with the stated
purpose.

Chapter VI

VI. Acronyms
AI Artificial Intelligence

CART Classification And Regression Trees

DL Deep Learning

DTs Decision Trees

EDA Exploratory Data Analysis

EM Expectation Maximization

IE Information Extraction

ML Machine Learning

MSE Mean Squared Error

NLP Natural Language Processing

NLTK Natural Language Toolkit

NER Named Entity Recognition

NN Neuron Networks

POS Part Of Speech

POS-T Part Of Speech Tagging

71

CHAPTER VI. 72

GPE Countries, cities, states

Org Organization

VI. Tools used in this thesis

Figure VI.1: Python

Python is a programming language that is widely used in machine learning and deep learn-
ing.

Figure VI.2: Jupyter Notebook

Jupyter Notebook is an open source IDE that allows to create code in real time and share it
with others. One of the key benefits of utilizing jupyter notebook or jupyter Lab, the next
version of jupyter notebook, is the ability to execute snippet code.

Figure VI.3: Pandas

CHAPTER VI. 73

Pandas is an open source Python package for data manipulation and analysis created in
the Python programming language. It includes data structures and algorithms for working
with numeric tables, particularly multi-dimensional arrays. It is commonly utilized in data
science and machine learning projects.

Figure VI.4: Matplotlib

Matplotlib is a library for plotting that works with the programming language Python and
the NumPY extension for working with numbers.

Figure VI.5: ScikitLearn

Scikit-learn is a free and open source package that is based on NumPy, SciPy, and mat-
plotlib. It includes techniques for classification, regression, dimensionality reduction, and
other tasks.

Figure VI.6: Spacy

Spacy is an open source application created in the Python and Cython programming lan-
guages. It is used for sophisticated language processing across a variety of languages.

CHAPTER VI. 74

Figure VI.7: NLTK

Natural Language Toolkit is a collection of tools and applications for symbolic and static
natural language processing of English texts developed in Python.

Figure VI.8: Tensorflow

Tensorflow is a Google-created open source platform. It is primarily intended for com-
plex numerical computations and serves as the primary application for machine and deep
learning.

Figure VI.9: Keras

Keras is an open source-code software that offers a Python interface for artificial neural
networks. Keras serves as an interface for the TensorFlow library.

VI. Appendix
All code implementation is available here:
https://github.com/Tsegazab-Tesfay/TesMaster/blob/main/V9.ipynb
The setups and further information(README.md) about the thesis including code can be
found here:
https://github.com/Tsegazab-Tesfay/TesMaster

https://github.com/Tsegazab-Tesfay/TesMaster/blob/main/V9.ipynb
https://github.com/Tsegazab-Tesfay/TesMaster

Chapter VII

Bibliography

[1] KR1442 Chowdhary. Natural language processing. Fundamentals of artificial intel-
ligence, pages 603–649, 2020.

[2] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.
In Machine learning techniques for multimedia, pages 21–49. Springer, 2008.

[3] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pages 315–323. JMLR Workshop and Conference Proceedings,
2011.

[4] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[5] Kurnia Muludi, Dwi H Widyantoro, Oerip S Santoso, et al. Multi-inductive learn-
ing approach for information extraction. In Proceedings of the 2011 International
Conference on Electrical Engineering and Informatics, pages 1–6. IEEE, 2011.

[6] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination
press San Francisco, CA, USA, 2015.

[7] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In
Proceedings of the first instructional conference on machine learning, volume 242,
pages 29–48. Citeseer, 2003.

[8] Sunita Sarawagi. Information extraction. Now Publishers Inc, 2008.

75

CHAPTER VII. BIBLIOGRAPHY 76

[9] S. S Teri and I. A Musliman. Machine learning in big lidar data: A review. In-
ternational archives of the photogrammetry, remote sensing and spatial information
sciences., XLII-4/W16:641–644, 2019.

[10] Maksim Tkachenko and Andrey Simanovsky. Named entity recognition: Exploring
features. In KONVENS, pages 118–127, 2012.

[11] Weiyu Wang and Keng Siau. Artificial intelligence, machine learning, automation,
robotics, future of work and future of humanity: A review and research agenda. Jour-
nal of Database Management (JDM), 30(1):61–79, 2019.

	Introduction
	Background
	Autility
	Objectives and Problem Description
	Approach
	Limitation
	Arrangement of this Thesis

	Theory
	Natural Language Processing
	Information Extraction
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised
	Classification
	Decision Tree Classifier
	Random Forest Classifier
	Naive Bayes Classifier
	Support Vector Machine
	Artificial Neural-Network
	K-Means
	Expectation Maximization - EM
	Model Evaluation

	Problem and its Investigation Methods
	Case:
	Experiments
	EDA - Exploring and Analysing data
	Data Preparing
	Text Vectorization
	Implementation of the Models

	Results and Working Process of the System

	Summary
	Discussion
	Environmental accounts
	Conclusion

	
	Acronyms
	Tools used in this thesis
	Appendix

	Bibliography

