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Preface 

 

My passion for bridge design culminates in this thesis, which is also the endpoint of my Master 

level study. Knowledge of wind engineering and structural dynamics, which were acquired 

during my time at the University of Stavanger, will be applied in this case study of the Stavanger 

City Bridge (Bybrua, in Norwegian). 

This 44-years-old bridge is occasionally experiencing large cable vibration. To minimize the 

risk of cable damage due to fatigue, as well as limit the visual impact of such vibrations on the 

bridge users, the bridge operator Rogaland County Municipality (Rogalands Fulkeskommune, 

in Norwegian) is considering relevant means to limit the vibrations. This thesis aims to 

contribute to this work, by studying the existing damping level in the cable and a study of 

relevant damper for the cable.  

I would like to express my gratitude to the supervisor of this study, Professor Jasna Jakobsen, 

for the knowledge and guidance throughout the making of this thesis. Professor Jasna, was also 

the lecturer of the two courses mentioned above, that will be extensively needed to understand 

the intricate mechanisms of cable vibration. 

Professor Jónas Snæbjörnsson was also actively helpful, joining every meeting online from 

Iceland, sharing his very valuable opinion on the many problems and doubts.  
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Abstract 

Bybrua was open to traffic in 1978 and it is a landmark of Stavanger. This stay-cabled bridge 

has occasionally experienced some large vibrations. The aim of the study is to evaluate what is 

the damping characteristics of the cable for the many different modes of vibrations. This will 

be done using different procedures such as Free Decay Response, Frequency Domain 

Decomposition and Random Decrement Technique. A range of external dampers will be 

discussed, and a preliminary analysis of a Stockbridge damper will be carried out in order to 

estimate what the result of placing such damper will cause in the vibration control. 
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1 Introduction  

The principal of supporting bridge with ropes, chains or cables has been known since ancient 

times [1]. In the nineteenth-century, hundreds of chain-supported bridges were built in Europe, 

those chains can be made of wrought iron eye-bars and the towers were made of stone or bricks. 

The first modern cable-stayed bridge is the Strömsund Bridge, built in 1956. The materials and 

techniques used in Strömsund are similar to the ones used in more recent bridges. 

 

Figure 1 Cable supported bridge, by Leonardo da Vinci, 1485-1490 

With advance in technology, design knowledge and theoretical background, the more recent 

bridge are becoming longer and slenderer. The slender structures can be more prone to 

vibration. The extreme slenderness of Tacoma Narrows Bridge, a depth-to-span ratio of 1:350 

and the low torsional rigidity led to its failure under winds of only 18 𝑚/𝑠, the bridge 

experienced twisting oscillation due to pulsating wind eddies [1]. 

After the collapse of Tacoma Narrows Bridge, the dynamic studies of the cable supported 

bridge became an important subject at the structural design companies as well as in the research 

centres at universities. 

This thesis aims to investigate dynamic response of Bybrua’s stay cables. The stay cables are 

experiencing vibrations due to environmental loads, especially the rain-wind-induced vibration 

(RWIV) and wind-induced vibration (WIV) [2]. The structure has been monitored by the 

University of Stavanger in collaboration with the Rogaland County Municipality, therefore, the 

full-scale experimental data will be used. 

Since cables of a cable-stayed bridge are slender structures with low inherent damping levels, 

they are prone to various types of wind induced vibrations. The related large deformations can 
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lead to damage due to fatigue of the cable (most notably at the anchorages) as had happened in 

Saint-Nazaire bridge (Figure 2). 

 

Figure 2 Saint-Nazaire cable failure [3] 

This thesis will investigate what is the natural frequencies and damping ratio of the cables, 

using different methods and comparing their results. Estimating damping characteristics of civil 

engineering structures can be a challenge due to the usual low damping coefficients, which can 

make the results very significantly. The size of the structure makes it difficult to be isolated 

from external conditions, such as wind loads and traffic. 

An external damping device will be studied to mitigate vibration amplitudes. A simplified 

model, represented by a two degree of freedom system will be analysed. 
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2 Literature review 

A generic overview of how cable-stayed bridge function, their concept, design and principals 

will be presented in this section. Moreover, a study of mechanical vibrations of cables, which 

phenomena triggers its motion and how damping can help mitigate those factors. 

2.1 Structural systems for different bridge spans 

When a long span bridge is designed, one must choose between trying to span the distance with 

a beam-like structure (which is cost-efficient for short to mid-spans) or by helping the beam-

like structure with supporting cables.  

Usually, a span of under 50m would be a pre-cast I-beam prestressed concrete structure or I-

beam steel structure. For spans between  50 𝑚 and 250 𝑚 a balanced cantilever structural 

system is cost-efficient. The spans closer to 250 𝑚 start to show girders that are too tall, the 

reason is the increasingly high negative bending moment near the supports. Bendorf bridge, 

built one decade before Bybrua, has a main span of 208 𝑚, the girder height above the column 

is 10,5 𝑚.  

 

Figure 3 Bendorf bridge, visited by the municipal delegation [4] 

From 250 𝑚 up to 1000 𝑚 the cable-stayed bridge is the most cost-effective solution. 

However, cable-stayed bridge can also be an option for shorter spans, if there is another reason 

that is not efficiency. For example, an architectural reason, where the slenderer appearance of 

a cable-stayed bridge is of interest, when compared to balanced cantilever that has a taller 

girder. This was the case of Bybrua. A municipal delegation went to visit similar bridges along 

the Rhine River to decide which solution would have the best appearance for the important part 

of the city. The cable-stayed bridge was chosen, even though that was not the cheapest option 

(the span is only 185m, which is shown to be below the optimum range for a cable-stay bridge, 



  

4 

however there is only one tower, therefore this solution would be similar to a 370m bridge if 

there were 2 towers). However, its slender appearance was considered better for the skylines of 

Stavanger [5].  

When it comes to spans over 1000 m, a suspension bridge is the most efficient design due to 

many factors. One is that the tower can be made shorter than in a cable-stayed bridge of the 

same span. See Figure 4, where, for example, the Russky Bridge (cable-stayed bridge with a 

main span of 1104 𝑚) presents a taller tower than the Great Belt Fixed Link East Bridge 

(suspension bridge with a main span of 1624 𝑚).  

In general, the tower of a cable-stayed bridge needs to be taller because of the angle between 

the cable and the deck. The shorter the tower, the more horizontal the cable is, which make it 

inefficient in carrying the vertical loads from the deck and traffic. The increasing tension force 

on the cable to compensate for a shallow angle can lead to excessive compression of the deck. 

Long and slender decks can show buckling problems if the deck has a high compression. 

Movement joints can experience large displacements due to creep effect in a highly compressed 

deck. 

 

 

Figure 4 Comparison between many famous bridges [6] 

2.2 Cable-stayed bridges  

Within the cable-stayed bridges, there are three typical cable configurations in the vertical plane 

(Figure 5) [1]. 

Fan system shows a more difficult cable arrangement, since all the cable anchorages are close 

to each other at the tower, however, this solution display the cable in the most vertical 

orientation possible, as discussed in 2.1. 

The harp system has evenly spaced cables in both the deck and the tower. This makes the system 

easier to detail and to build (due to the element being more similar thorough the structure). 

The intermediate solution (semi-fan) has an easier detailing than the fan system due to the 

anchorages being further apart without compromising the angle at which the cables attach to 

the deck.  
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Figure 5 Cable configuration for cable-stayed bridges [1] 

There is also a choice of configuration in the longitudinal spacing. Bridges built from 1950s to 

mid-1970s tend to have fewer cables and, therefore, larger distance between cables. This leads 

to cables being subjected to large axial forces which requires many strands per cable. More 

recent cable-stayed bridges have a higher number of cables, something that makes it possible 

for the cable to be made of a single strand. This helps the process of replacement of the cable 

when it is necessary. This will also lead to a more evenly supported deck, due to the more 

cables, and an easier construction, due to the mono-strand anchorages being smaller. However, 

the multi-cable system tends to experience more wind-induced vibrations [1], since the cable is 

lighter and thus present a smaller Scruton number 2.4.2. 

 

 

Figure 6 Few multi-strand cables (left) and multi-cable system (right) [1] 

Cable-stayed bridges can also be different in the way the cables are transversally aligned to the 

deck. The cables can be in one single plane, usually the middle. This solution will lead to large 



  

6 

torsion in the deck, since the cables can only support the deck with one vertical force in the 

centre. 

The cables can be parallel on each side, for two cables, or on each side and in the middle, if 

there are three cables in the cross-section. When using this solution, the girder does not need to 

be as transversally stiff as the previous case, because it is supported in more planes. This 

solution will lead to more cables and anchorage points needed. 

The third arrangement is by inclined cables. This happens when the anchorage at the top of the 

tower is centred, and therefore the cables must spread sideways in order to reach their anchorage 

points at the deck level. Some transversal area might be lost due to lack of minimum height if 

the transversal inclination of the cables is shallow. The deck will have to endure a transversal 

compression due to the inclined cables. 

 

Figure 7 Distribution of the cables in the cross-section [1] 

 

2.3 Cable 

Cables are made in such a way that the cross-section area is relatively large for its second 

moment of area, this happens because the wires inside are not connect to each other, but only 

overlapping, which leads to low shear stress in between two wires. However, there is still 

friction between two wires. 

The structural member will then have low flexural rigidity but a high longitudinal rigidity. This 

will ensure that the cable is primarily stressed in the direction of its axis, which is what it is 

intended to do. It is well known that axial forces are the most efficient way of carrying a load, 

bending being the second and torsion the last. Within the two cases of normal force, tension is 

more efficient than compression due to the potential effect of buckling on the latter. 

Let a simple example show how efficient multi-wires cables are in carrying axial forces while 

maintaining a low flexural rigidity. If 100 𝑐𝑚2 of steel cable is needed, one could choose a 

steel bar with diameter of 11.28𝑐𝑚. That bar would have 795.8𝑐𝑚4 as second moment of area. 

However, if 100 strands of 1.128𝑐𝑚 diameter are chosen, the desired area of 100𝑐𝑚2 would 

be achieved with only 1.591𝑐𝑚4 as second moment of area, if the friction between the wires 

are not considered.  
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The fact that cables are made out of many strands is also advantageous for robustness of the 

member. If there is, for example, crack growth in a cross section, the crack can lead to failure 

of the wire, but that will not drastically change the resistance of the cross-section. On the other 

hand, if it was one steel bar of the same area, the same crack could lead to more damage of the 

overall cross section.  

The Silver Bridge, in the USA, which was a suspension bridge with eye-bar links instead of 

cables, collapsed due to a crack in the eye-bar [7], see Figure 8 for the cross section of the main 

chain of the suspension bridge. The increased redundancy due to a cable being made of many 

wires can be beneficial, see Figure 2 that shows that even a damaged cable might not collapse.  

 

Figure 8 Silver Bridge eye bar link [7] 

The commercially available morphologies for cables are locked coil cable, parallel wire cable 

and parallel strand cable. 

 

 

Figure 9 Examples of locked coil cable [8] 

Locked coil cable has a compact cross section and a smooth and tight outer perimeter. Both the 

inner round wire and the outer Z-shaped are laid in a helical pattern, one clockwise and the next 

counterclockwise. This solution was used in Bybrua. 

A locked coil cable with nominal diameter of 80 𝑚𝑚 displays an area of 4358 𝑚𝑚2 [8]. For 

comparison, a cable made only of round wires and the same nominal diameter of 80 𝑚𝑚 has 

an area of 3870 𝑚𝑚2 [8]. 
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2.3.1 Cable curvature 

An inextensible cable, hung between two points, subjected to a distributed vertical force will 

follow an equilibrium a curve called catenary.  

According to Cardoso (2013) the catenary displayed by a cable with two end points at the same 

height can be studied as shown in Figure 10. 

 

Figure 10 Free body diagram for a catenary [9] 

Assuming the only force applied between the anchorage points is the distributed self-weight 

force 𝑚𝑔, the static equilibrium of the element in the two direction is as follows. 

 
𝑑

𝑑𝑠
(𝑇

𝑑𝑥

𝑑𝑠
) ∆𝑠 = 0 1 

 
𝑑

𝑑𝑠
(𝑇

𝑑𝑦

𝑑𝑠
) ∆𝑠 = −𝑚𝑔∆𝑠 2 

Integrating Equation 1 gives: 

 𝑇
𝑑𝑥

𝑑𝑠
= 𝑐1 = 𝐻   𝑜𝑟  𝑇 = 𝐻

𝑑𝑠

𝑑𝑥
 3 

Where 𝐻 [𝑁] is the horizontal force, which is constant for the cable, because there is no 

horizontal loading between the anchorage points. 

Taking the second form of Equation 3 into Equation 2 will give: 

 
𝑑

𝑑𝑠
(𝐻

𝑑𝑠

𝑑𝑥

𝑑𝑦

𝑑𝑠
) = −𝑚𝑔 4 

Further algebraic calculations give: 
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 𝐻 (
𝑑2𝑦

𝑑𝑥2
) = −𝑚𝑔

𝑑𝑠

𝑑𝑥
 5 

Using the trigonometric identity: 

 cos2(𝜃) + sin2(𝜃) = (
𝑑𝑥

𝑑𝑠
)

2

+ (
𝑑𝑦

𝑑𝑠
)

2

 6 

Then: 

 𝐻 (
𝑑2𝑦

𝑑𝑥2
) = −𝑚𝑔 √1 + (

𝑑𝑦

𝑑𝑥
)

2

 7 

The solution is: 

 𝑦 =
𝐻

𝑚𝑔
{cosh (

𝑚𝑔𝑙

2𝐻
) − cosh (

𝑚𝑔

𝐻
(

𝑙

2
− 𝑥))} 8 

Where 𝑙 [𝑚] is distance between the anchorage points and 𝑦 [𝑚] is the vertical distance of any 

given point of the cable, according to the coordinate system shown in Figure 10. 

This solution is known to be numerically demanding due to the hyperbolic functions. Two other 

simplified methods can be used. 

For cables where the two end points are at different height, which is the case of a cable-stayed 

bridge, Virlogeux (2005) shows that a simple study of static equilibrium can give the largest 

sag value with good accuracy. 

 

Figure 11 Virlogeux study of largest sag [3] 

It is assumed that the deformed cable is parallel to the undeformed cable at point C. Point C is 

the middle of the span in the horizontal direction. Due to sag, this is not the middle of the cable 

in the vertical direction. Now a static equilibrium is calculated with respect to moments around 

the point A. This will give: 
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 𝑚𝑔
𝐿

2
×

𝐿

4
× cos 𝛼 ≈ 𝐹 × 𝑓𝑣 × cos 𝛼    ∴    𝑓𝑣 ≈

𝑚𝑔𝐿2

8𝐹
 9 

And with the relationship from vertical forces from both ends, it is known that, at mid-span: 

 𝐻 = 𝐹 × cos 𝛼 10 

Where 𝐻 [𝑁] is, again, the constant horizontal force in the cable. 

 

Cardoso (2013) approach is using a parabola to discretise the cable, instead of the hyperbolic 

trigonometric functions. This will ease the calculations by a fair amount. 

The error prediction will be calculated for some specific cases to showcase when this 

simplification is valid. 

First, the function for the parabola must be study. Back to Equation 6, however, this time it is 

assumed that (
𝑑𝑦

𝑑𝑥
)

2

= 0, when in comparison to the unity, for small sag. Then: 

 𝐻 (
𝑑2𝑦

𝑑𝑥2
) = −𝑚𝑔 11 

However, we have from Equation 4: 

 𝐻 (
𝑑2𝑦

𝑑𝑥2
) = −𝑚𝑔

𝑑𝑠

𝑑𝑥
 12 

Which means that: 

 
𝑑𝑠

𝑑𝑥
= 1 13 

Therefore: 

 𝑦 =
𝑚𝑔𝑙

2𝐻
𝑥 (1 −

𝑥

𝑙
) 14 

Checking the error involved in the simplified parabola function.  

The procedure will be to calculate sag using the parabolic function and the sag using the 

catenary function. The cable will be divided in 100 evenly spaced cross sections, sag will be 

calculated for all of them. For every cross section the error between parabola and catenary will 

be calculated using Equation 15. Different axial forces will be used to show that when the axial 

force is low, the error can be high, but when the axial force is high, the error can be neglected. 

Only the largest error of each axial force will be presented in Figure 12.  

 𝑒𝑟𝑟𝑜𝑟 = |
𝑦(𝑥)𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 − 𝑦(𝑥)𝑐𝑎𝑡𝑒𝑛𝑎𝑟𝑦

𝑦(𝑥)𝑐𝑎𝑡𝑒𝑛𝑎𝑟𝑦
| 15 

Data: rupture stress of 175 𝑘𝑁/𝑐𝑚2, axial forces will be a percentage of the rupture force, 

ranging from 2% up to 20%. Both cable end points are at the same height, no additional weight 



  

11 

is added to the cable, meaning that there is no protective pipe or other appliances that would 

increase the vertical load. Cable length is 100 𝑚. Density of steel is 7850 𝑘𝑔/𝑚3. 

 

Figure 12 Maximum sag error when simplifying the function for the curve of the cable 

Stay-cables, however, are inclined and therefore the vertical position of the end points can alter 

the results. The solution studied by Podolny, et al, 1976, is for the catenary: 

 𝐿2 = ℎ2 + 4 (
𝐻

𝑚𝑔
)

2

sinh2
𝑚𝑔𝑙

2𝐻
  16 

where 𝐿 [𝑚] is the total length of the curve, ℎ [𝑚] is the height between the two endpoints, and 

𝑙 [𝑚] is the horizontal distance between the two endpoints. 

For the parabola assumption the equation is as follows: 

 𝐿 =
1

𝑐𝑜𝑠𝜃
(1 +

8

3
(

𝑚𝑔𝑙2

8𝐻
cos2 𝜃)

2

) 17 

Where 𝜃 is the angle between the two endpoints and the horizontal line. 

The knowledge of the total length is particularly interesting for the study of the effective rigidity 

of the stay cable, since the displacement between the two endpoints is not the same as the 

incremental length of the cable, due to the non-linearity of the geometry. 

2.3.2 Cable mechanical properties 

The advance in material technology regarding the steel has its importance in the record-

breaking spans. For example, the Akashi Kaikyo Bridge has the main cable made of an 

improved tensile strength steel [1].  

Some of the important parameters for an accurate model of the structure and a safe design are 

modulus of elasticity, ultimate tensile strength, total elongation of rupture, stress at the limit of 

proportionality. 
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Values for relaxation, and fatigue strength are important to ensure the long service life of the 

structure, typically the design life is 50 years. The potential hysteresis of helical wired cables 

can mean an increase in the damping of the cable, whereas a parallel wire cable shows a lower 

damping ratio. 

 

Figure 13 Stress-strain diagram, dotted line has a ten times larger horizontal scale [1] 

It can be seen in the solid line of Figure 13 that the low-alloy steel used for the cables does not 

show a horizontal plastic plateau and the deformation at rupture is smaller than the structural 

steel [1]. 

2.4 Wind-cable interaction 

Wind loading is important in the design of slender structures.  Several parameters must be 

defined in order to have full understanding of the interaction between the air and the structure.  
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2.4.1 Reynolds number 

The Reynolds number (Re) is a parameter that describes the flow pattern of a fluid around an 

obstacle. It is calculated as the ratio between the inertia forces and the flow forces. At low Re 

the flow is laminar and at high values it is turbulent.  

For the wind passing around a cylinder the Reynolds number is calculated as:  

 𝑅𝑒 =
𝑈𝐷

𝜐
 18 

Where 𝑈[𝑚/𝑠] is the mean wind velocity, 𝐷[𝑚] is the cylinder diameter and 𝜐[𝑚2/𝑠] is the 

air kinematic viscosity, which is 1,5 ∗ 10−5 𝑚2/𝑠 at a temperature of 20 °𝐶 and pressure of 

1 𝑎𝑡𝑚. Reynolds number is, therefore, dimensionless. 

For smooth cylinders in laminar flow, the critical Reynolds number is between 1 ∗ 105 and 5 ∗

105. 

2.4.2 Scruton number 

The Scruton number (Sc) is a parameter relevant for structures susceptible to vortex-shedding-

induced vibration, which is the case of stay cables. 

 𝑆𝑐 =
2𝛿𝑠𝑚

𝜌𝐷2
 19 

where 𝛿𝑠 is the logarithmic decrement damping, 𝑚 [𝑘𝑔/𝑚] is the linear mass of the cylinder, 

𝜌 [𝑘𝑔/𝑚3] is the air density, and 𝐷 [𝑚] is the across-flow dimension (cylinder diameter). 

Scruton number is, therefore, dimensionless. For a simplified check, if 𝑆𝑐 > 10 then vortex 

induced vibration should not be a concern [10]. Therefore, an increased mass or damping will 

likely reduce the chances of wind induced vibrations. 

2.4.3 Strouhal number 

The Strouhal number (St) is a parameter that specifies the vortex shedding frequency. The 

definition is set as follows. 

 𝑆𝑡 =
𝑓𝑠𝐷

𝑈
 20 

Where 𝑓𝑠  [𝐻𝑧]  is the vortex shedding frequency, 𝐷 [𝑚] is the across-flow dimension (cylinder 

diameter) and 𝑈 [𝑚/𝑠] is the mean wind velocity. Strouhal number is dimensionless. When the 

body being studied is a cylinder, it is known that 𝑆𝑡 ≈ 0.2 for subcritical flow [11]. 
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2.4.4 Wind kinematics 

Wind is a natural phenomenon and, therefore, it will show a significant randomness, over time 

and position, in terms of the magnitude and direction. However, it is possible to study it in the 

statistical sense. 

The wind velocity can be separated into the mean wind velocity, which is usually an average 

of 10 minutes up to 1 hour of data, and turbulent part, which is time varying. 

The so-called atmospheric boundary layer is the lowermost region where the friction between 

the moving air and the terrain plays a major role. This part can be quite short for low roughness 

terrain such as a calm sea, or very tall for a high roughness terrain like a mountainous forest. 

Above the boundary layer is the free troposphere, which is not of interest for civil structures 

such as bridges, because it only happens far above even the tallest buildings. 

Within the boundary layer, the mean wind speed profile can be described by a logarithmic law, 

specially in strong wind conditions [10]. 

The formula can be expressed in several ways, e.g. as: 

 �̅�(𝑧) =
𝑢∗

𝑘
(ln 𝑧 − ln 𝑧0) =

𝑢∗

𝑘
ln (

𝑧

𝑧0
) 21 

where 𝑧 [𝑚] is the height from the ground, 𝑢∗ [𝑚/𝑠] is the frictional velocity, 𝑘 is the von 

Karman’s constant with the experimentally found value of 0.4, 𝑧0 [𝑚] is the roughness length 

of the terrain. 

Friction velocity is a way to re-write the shear stress of the layers in terms of velocity, it is 

calculated as: 

 𝑢∗ = √
𝜏

𝜌
 22 

Where 𝜏 [𝑁/𝑚²] is the shear stress and 𝜌 [𝑘𝑔/𝑚³] is air density. 

Another formulation is the “power law”. Even though it has no theoretical background, it gives 

values similar to the logarithmic law and it is easier to integrate, which can be helpful in many 

applications. 

 �̅�(𝑧) = �̅�10 (
𝑧

10
)

𝛼

 23 

Where �̅�10 [𝑚/𝑠] is the mean wind velocity at height 𝑧 = 10𝑚, 𝛼 is a factor that changes with 

terrain roughness and the range of heights at which the wind is being studied. 

 𝛼 = (
1

ln (
𝑧𝑟𝑒𝑓

𝑧0
)

) 24 
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Where 𝑧𝑟𝑒𝑓 is the reference height. The reference height is chosen to be the height at which the 

power law and the logarithmic formula match. It is defined by the user, it can be at the mid 

height of the structure being analysed, for example. 

The time variant part of the wind is called turbulence, which is three dimensional by nature. It 

is decomposed with reference to the main wind direction into the longitudinal (u), lateral (v) 

and vertical (w) component. The longitudinal has the largest magnitude and will be the only 

one further mentioned. A compact measure of the turbulence is its standard deviation, 𝜎𝑢. It is 

known that near the ground the value for 𝜎𝑢 can be approximated by 𝜎𝑢 = 2.5 𝑢∗ [12]. 

It is not convenient to measure the gustiness of the wind using a parameter that has dimension, 

therefore another parameter can be used to more precisely compare to wind data with different 

magnitudes, the turbulence intensity. 

 𝐼𝑢 =
𝜎𝑢

�̅�
  25 

When using the Equation 21 and 𝑘 = 0.4 yields: 

 𝐼𝑢 = 2.5
𝑢∗

𝑢∗

0.4 ln (
𝑧
𝑧0

)
=

1

ln (
𝑧
𝑧0

)
 26 

2.4.5 Wind forces 

In a wind field, different surface pressures arise around the structure, creating the resultant 

forces on the structure. Friction on the surface also adds a minor component to the wind loading. 

This phenomenon depends on many factors that will be mentioned below. 

Drag force is present in most fluid-structure interaction. It has the same direction of the wind 

and can be defined as follow: 

 𝐹𝐷 =
1

2
𝜌𝑎�̅�2𝐷𝐶𝐷 27 

where 𝜌𝑎  [𝑘𝑔/𝑚3] is the air density, 𝐷 [𝑚] is the relevant across-wind dimension (for cylinders 

it would be the diameter) and 𝐶𝐷 is the drag coefficient which can be found experimentally. 

The formula above is per unit length, commonly used for long element such as long cylinders. 

Lift forces is the force perpendicular to the mean wind direction and it appears in most cases. 

It might not happen in a perfectly round cylinder, because the lift force is the integral of 

pressures above and below the chord line. Therefore, a perfectly round cylinder will show equal 

pressures above and below the chord line. 

 𝐹𝐿 =
1

2
𝜌�̅�2𝐷𝐶𝐿 28 
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where 𝐶𝐿 is the lift coefficient, which can be found experimentally. On cylinders/cables in 

operation, the mean lift coefficient can be different from 0 in the absence of full rotational 

symmetry, pollution or rain droplets on the cable surface and/or in the critical Reynolds number 

range. 

Lift and drag coefficient are unique to each object shape and may have different values for 

different angles of attack and different Reynolds number, since those two parameters might 

change the flow around the bluff body. 

The sum of drag and lift force on the body might not be acting at the shear centre, therefore, an 

overturning moment might appear, as typical in case of elongated shapes such as bridge girders.  

 

 

Figure 14 Drag coefficient for a cylinder [1] 

2.4.6 Buffeting 

Buffeting is a mechanism by which the change in the wind velocity and/or direction cause the 

structure to vibrate. This is a self-limiting phenomenon, so no catastrophic displacements can 

occurs, however, this can lead to durability issues if it happens during the lifetime of the 

structure, and serviceability can also be affected [1]. High turbulence intensity might lead to 

high buffeting, since this means that the wind velocity changes more. 

2.4.7 Vortex induced vibration (VIV) 

Depending on the flow conditions, an alternating vortex-shedding might occur in the separating 

shear layers into the wake of a bluff body. This alternate vortex shedding can induce the 
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structure into a across-wind vibration. With higher turbulence intensity the vortices get less 

consistent.  

Vortex-shedding is self-limiting by its nature, because larger amplitudes decrease the 

synchrony of frequencies from upper and lower surfaces. That is why this mechanism is not of 

catastrophic nature, but can be of concern regarding durability and serviceability. 

The critical wind velocity regarding vortex-shedding is defined as: 

 𝑈𝑐𝑟 =
𝑓𝑖𝐷

𝑆𝑡
  29 

where 𝑓𝑖  [𝐻𝑧] is the eigenfrequency of the structure, 𝐷 and 𝑆𝑡 are defined in 2.4.3. 

2.4.8 Wake induced vibration 

When two bodies are close enough to each other in the direction of the mean wind speed, the 

second body can be at the wake of the first. The disturbed flow past the upstream body can 

create different unfavourable pressures on the downstream body. This phenomenon is overall 

called as wake effect and can cause large vibrations. This happens, usually, at high wind 

velocities. 

According to [10], a formula to predict the critical wind velocity that might set a cable into 

wake galloping can be described as follows. 

 𝑈𝑐𝑟𝑖𝑡 = 𝑐𝑓𝐷√𝑆𝑐 30 

Where 𝑐 is a constant, 𝑓 [𝐻𝑧] is the natural frequency of the cable prone to galloping, 𝐷 [𝑚] its 

diameter and 𝑆𝑐 the Scruton number. 

The constant 𝑐 has the value of 25 for cables at a distance of 2𝐷 up to 6𝐷, or a value of 80 for 

distances above 10𝐷. For a distance in between the value above, 𝑐 = 40 can be used. 

2.4.9 Rain-wind induced vibration 

Rain-wind-induced vibrations (RWIV) are not entirely understood, it is a subject still being 

researched. It is believed, due to observational and experimental evidence, that the phenomenon 

occurs when either one or two water rivulets are created along the cable. Those rivulets can 

change the shape of the cable, thus changing lift and drag coefficient, along with other 

parameters. These changes can lead to initiation of galloping. The wind velocity required is 

between 5 and 18 𝑚/𝑠, mainly on smooth cables that have low damping and inclined in the 

direction of the wind. The frequencies that are excited are between 0,5 and 3,3 𝐻𝑧 [1].  

The magnitude of rain, in order to occur RWIV, is a light to moderate rain fall of around 1 to 

10 𝑚𝑚/ℎ, outside this range the water rivulets might not be consistent [1]. 
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2.5 Cable dynamics 

Stay cables are slender structure with low mass and low damping. The low flexural rigidity 

coupled with nominally pin supports leads to a structure that behaves as a taut string, where the 

stiffness is a function of the applied axial force. This setup makes for a likely vibration 

condition. Damping ratios can be at the order of 0.05% to 0.5% [13]. 

An idealised taut string model can show infinite natural frequencies and the formulation is as 

follows: 

 2𝜋𝑓𝑛 = 𝜔𝑛 =
𝑛𝜋

𝐿
√

𝑇

𝑚
 = √

𝑘

𝑚
   {𝑛 | 𝑛 ∈ ℕ∗} 31 

Where 𝑛 is the mode being studied, 𝑓𝑛 [𝐻𝑧] is the natural frequency for mode 𝑛, 𝜔𝑛 [𝑟𝑎𝑑/𝑠] is 

the natural frequency for the mode 𝑛, 𝐿 [𝑚] is the length of the string, 𝑇 [𝑁] is the tension force 

and 𝑚 [𝑘𝑔/𝑚] is the mass per unit length. 

The mode shape corresponding to the above natural frequency is. 

 𝑊𝑛(𝑥) = 𝐴𝑛 sin
𝑛𝜋𝑥

𝐿
      {𝑛 | 𝑛 ∈ ℕ∗} 32 

Where 𝐴𝑛 [𝑚] is the vibration amplitude which depends on the initial conditions. 

Ultimately, the free vibration of an undamped taut string is 

 𝑤(𝑥, 𝑡) = ∑ 𝐴𝑛 sin (
𝑛𝜋𝑥

𝐿
) sin (𝑡

𝑛𝜋

𝐿
√

𝑇

𝑚
)

𝑛

𝑖=1

 33 

2.5.1 Inducing cables into vibration 

All the vibration causes mentioned in 2.4 are of concern for Bybrua.  

Buffeting might occur if the wind properties vary in a way that match the cable dynamics. 

Vortex shedding can be a problem if the wind velocity is near the critical wind velocity. 

Bybrua’s cables do not show the surface treatment that could help mitigate this vibration cause, 

this is discussed in 2.6. 

Wake induced vibration can be of concern, because of the arrangement of the cables. Each cable 

is made of 4 individual smaller cables that are just a few diameters apart. The vortices shedded 

by the upwind cable can induce de downwind cable into vibration. 

There is reason to believe that the largest vibrations in the cable of Bybrua happens due to 

RWIV [2]. 

Parametric excitation is another cause for vibration. It consists of motion of at least one of the 

cable anchorages. If the excitation comes from the lower anchorage, it is usually due to traffic 

dynamics or the wind forces acting at the deck. If the excitation comes from the top anchorage, 
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it can be from wind forces on the tower or earthquake accelerations. There can be other 

combination of factors that might lead to parametric excitation. 

2.6 Mitigation of wind forces 

According to [10] regarding the mitigation of rain-wind induced vibration, the minimum is to 

provide a surface treatment to the cable in order to avoid the upper rivulet forming during 

moderate rain. Examples of this surface treatment can be seen at Figure 15. This would decrease 

the wind forces on the cable due to RWIV.  

 

Figure 15 Cable surface treatments to reduce rain-wind induced vibrations [10] 

Bybrua, however, does not have this treatment. It is a locked coiled cable with smooth surface 

without any rivulet breaking.  

One option would be to wrap the cable with a special tape that would provide the helical fillet 

like a pipe with that feature, however this would be a cost demanding procedure with constant 

maintenance, since the tape would eventually tear off [10]. 

Another option would be whirling a helical wire around the cable [14], which can be made of 

stainless steel and thus much less maintenance needed. There are many solutions to securely 

attaching the wire to the cable. What was done in Akashi-Kaikyo Bridge, is that the wire was 

whirled around the cable while some tensile force was applied, then the wire was secured in 

both ends of the cable. The tensile force on the wire is what keeps it from flapping on the wind. 
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Figure 16 Helical wire around a hanger at Akashi-Kaikyo Bridge. [14] [15] 

Another option would be the installation of a split pipe with the required helical fillet. The two 

halves of the pipe would be place around the cable and secured together according to 

manufacturer specification. This solution would prevent the water rivulet from forming and 

thus minimizing the rain-wind induced vibration. The installation process can be expensive, 

and the upper part of the cable is difficult to access. However, this solution would not require 

constant maintenance and the traffic would not have to be entirely interrupted. 

 

Figure 17 Cross section of two half pipes intended to be added on existing cables [16] 
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2.7 Damping of cable vibration 

Stay cables have very low damping coefficients, they can be quite similar to a string in a musical 

instrument, once the string is plucked it takes quite some time for it to come to a rest.  Damping 

ratio can range from 0,05% to 0,5% [13] or 0,01% to 0,2% [3], depending on the cable itself 

and if there is any injection inside the pipe to help dissipate energy. 

Bybrua does not have a pipe in which an injected material with form a bond between the cable 

and the pipe and increase the energy dissipation, so the damping ratio is expected to be in the 

low range mentioned above. The added mass of a pipe plus, for example, grouting would 

increase the Scruton number (2.4.2). It is known that most types of wind-induced vibrations 

tend to be mitigated by a higher Scruton number. [10] 

 

Figure 18 Severn Bridge damping system [15] 

A Stockbridge damper is a type of tuned mass damper that is widely used in long transmission 

lines to avoid excessive vibration in those cables. This method has been also used in cable-

stayed bridges and suspension bridge with success. Examples are Severn Bridge and the 

backstay of the London Eye, both in the United Kingdom. It consists of a mass that is carefully 

chosen to vibrate instead of the bridge cable itself. The rod attaching the mass to the support is 

of a specific cable that damps the motion due to the strand’s friction between each other. Several 

minor variations are available due to patents. Some show different motion of the mass, for 

example a twisting motion, allowing damping in more than one plane. 
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The size of the damper would have to be carefully chosen due to the fact that, in Bybrua, there 

are cables bundled up in groups of four, which would mean that a Stockbridge damper on the 

top cable could hit the bottom cable. The distance between the cables can be as low as 41 𝑐𝑚. 

 

Figure 19 Cross section of the cable bundle, it is shown the distance being between 480 to 580 between cable 

centres [17] 

When groups of cables are bundled together there could be another type of damper possible, it 

is a friction damping system that tie all the cables in the bundle together. 

 

Figure 20 Friction damping between two or more cables [18] 

In Figure 20 can be seen that the system is a mechanism, therefore movement is expected. 

However, the tighter the bolts are, the more resistant the system will show to a given movement, 
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that is the concept of this damping system. The location of this damping system must be 

carefully chosen, because as many other dampers, an initial threshold force must be overcome 

before the system works at all, this might lead to a fixed node in the cable instead of the desired 

damping, if the initial threshold is large [10]. 

In Bybrua the way the individual cables are bundled together do not represent any major 

damping contribution. It might only help to prevent vibration of a single cable, acting as a node 

for the single cable at the connection point. 

 

Figure 21 Bybrua cable bundle [17] [15] 

Another possible solution is a viscous damper linking the cable to the deck. This proves to be 

an interesting solution for the design of a new bridge, however quite impractical for a retrofit 

because it will prove to be much more expensive, architecturally invasive and difficult 

execution. Most of this happens due to the need for the installation of the supporting structure. 
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Figure 22 Russky bridge damper [15] 

Crosstie is another solution for diminishing the cable vibration. It consists in tying two or more 

cables to each other and, sometimes, ultimately to the deck. This solution increases the stiffness 

of a single cable in the vertical plane and will change the vibration mechanics of the cable since 

it has now a vertical constrain. This solution is more interesting for newer bridges that show 

many cables instead of the older structures that has fewer stronger cables (like Bybrua). 

This constrain of a cable might mean that the lower modes are more difficult to excite due to a 

node being added.  

 

Figure 23 Crosstie example [10] 
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3 Case study – Bybrua 

Bybrua was built to connect Buøy and Hundvåg to the continent. Those two islands are 

important due to their increasing population and Rosenberg Mek. Verksted, which is an 

important industrial centre. The islands Sølyst and Engøy were already connected to Buøy by 

older bridges, crossing the straits Engøysund and Pyntesund. So, a bridge connecting all those 

islands to the city centre was necessary [5]. 

 

Figure 24 Bybrua, connecting Buøy and Hundvåg to the city center [19] 

A delegation from the municipality along with the consultant engineer went on an inspection 

of the many bridges along the Rhine river in Germany to see modern bridges with similar spans. 

The impressions made by the Severin bridge and Bendorf bridge were decisive for the choice, 

where the Severin bridge, a cable-stayed bridge had shorter deck giving an impression of more 

slenderness. Whereas Bendorf bridge Figure 3 is a balanced cantilever, has much taller cross-

sections, being considered to appear too heavy and massive [5]. 
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Figure 25 Severin bridge [15] 

By choosing a cable-stayed bridge, the channel below the bridge was kept open to maritime 

traffic at its full width, since the asymmetrical tower was built near the north margin of the 

channel. A cantilevered concrete bridge spanning the whole channel would require a deck 

height of up to 9 𝑚 near the support, which would have lifted the bridge deck and possibly 

reduced the navigation height [5]. 

 

Figure 26 Panoramic view of Bybrua [20] 

The bridge total length is 1067 𝑚. There are 23 side span ranging between 40 and 42 𝑚 and a 

mains span of 185 𝑚. The tower is 70 𝑚 tall and the deck is at 26 𝑚 above sea level. The deck 

is made of prestressed concrete for all the spans but the main span. The main span is a single 

cell box girder in steel.  
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Figure 27 Steel box girder at the main span 

 

Figure 28 Connection between concrete girder (top) and steel girder (bottom) 

The cables at the north side of the bridge (the left part of Figure 26) are directly above the 

columns, this is because the short spans do not requite to be supported by the cable, but the 

tower still requires some balance in the horizontal forces, so it does not experience excessive 

bending moments. The cables on the north side act similarly to a backstay. 

The tower is a hollow cross section of reinforced concrete. The construction was carried out 

with slip forms. There is an inclination of 9° of the tower legs. The foundation of the tower is 

on rock. There is a protection against ship collision using rock filling. 

The concrete deck has fire protection because it passes above many wooden houses and oil 

storage tanks. This protection is achieved with extra concrete layer and skin reinforcement [5]. 
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3.1 Instrumentation 

The instrumentation of the bridge was carried out to understand better how the vibration is 

happening and trying to understand the causes. 

Four wireless accelerometers were placed in the cables, one accelerometer in the bridge deck 

and one weather station to measure wind and rain. 

3.1.1 Cable instrumentation 

The cables are identified by a three letters name CXY, this nomenclature will be used 

throughout the document. X is the longitudinal designation of the cable, starting with number 

1 being the northmost cable. Y is the transversal designation of the cable, where it is called 

either W, for the west side of the deck or E, for the east side of the deck. The accelerometers 

are placed 4 𝑚 above the bridge deck. 

 

Figure 29 Longitudinal designation of the cable, from left to right, cables C1, C2, C3, C5, C6 and C7 [17] 

The accelerometers used are G-LINK-200, they are battery powered and weather resistant [21]. 

It was chosen an accelerometer with small dimensions to minimize the change in geometry of 

the cable due to the added accelerometer. All four accelerometers used are identical, they will, 

therefore, be identified by their serial number (4251, 12045, 12046 and 12047). 
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Figure 30 Sensor on the cable bundles until 20/04/2021 [2] 

Cable bundles C1E, C1W, C2E and C2W were monitored using a tri-axial wireless 

accelerometers until 20/04/2021 (see Figure 30). Cable C1E was showing the largest vibration 

amplitudes of all the cables monitored [2], therefore, after 20/04/2021, all the sensors were 

attached to C1E. Sensor 12046 was malfunctioning, therefore it was no longer used. The 

location of each sensor in C1E after 20/04/2021 can be Top or Bottom, Roadside or Seaside. 

Figure 31 shows the cable bundle and Table 2 the position of each sensor.  

 

 

Figure 31 Sensors on the cable bundle after 20/04/2021 
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Table 1 Table of cable and sensors until 20/04/2021 

 

Table 2 Table of position within C1E and sensor after 20/04/2021 

 

3.1.2 Weather transmitter 

There is a weather transmitter WXT530 from Vaisala [22] at 3.5m above the deck measuring 

horizontal wind velocity and its direction, relative humidity, temperature, rain intensity and 

pressure. The weather station is placed between the anchoring points of cables C1/C2 and C3 

on the east side of the bridge deck. 

 

Figure 32 Weather transmitter [15] 

3.1.3 Bridge deck instrumentation 

There are accelerometers inside the deck girder, one in the middle of the span between cables 

2 and 3, another in the middle between the tower and cable 5. Those accelerometers are tri-

axial CUSP-3D from Canterbury Seismic Instruments [23]. The accelerometer inside the bridge 

Cable Sensor

C1E 12046

C1W 12047

C2E 12045

C2W 4251

Position (C1E) Sensor

Not used 12046

Top road 12047

Bottom sea 12045

Bottom road 4251
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deck is different than the cable because there was no requirement of size and weight when 

inside the deck. 

 

Figure 33 Accelerometer inside the bridge deck 

3.2 Natural frequency 

The natural frequency is one of the most important parameters for a dynamic analysis of a 

structure, therefore this will be assessed. The forces in the cables are known from the original 

calculations, there is a maximum and a minimum force provided. With the force and cable 

properties it is possible to calculate the natural frequency.  

It is also possible to determine the natural frequency of the cable by carrying out a spectral 

analysis of accelerations. When calculating the power spectral density of the accelerations, 

there should be peaks of the spectral density that correspond to the frequency of the natural 

frequency. With the natural frequency determined by spectral analysis, it is possible to calculate 

the axial force on the cable at the time of the recordings. This force should be between the 

minimum and maximum provided by the original calculations 

3.2.1 Estimation of the eigenfrequencies 

From the original drawings it is known that the cable diameter is 𝜙 = 79𝑚𝑚. The drawings 

also give that the cable mass plus the anchorages is 4000 𝑘𝑔 for the cables being analysed.  

There is no information regarding the cable weight itself.  
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Figure 34 Original cable weight table [17] 

Considering that the cable is of a locked coil it is possible to infer what it is the mass when 

compared to industry’s catalogue for this type of cable. 

From a manufacturer catalogue [8] it is made the next table. 

Table 3 Cable effective area [8] 

 

Therefore, a locked coil cable with a diameter of  𝜙 = 79 𝑚𝑚 will give an effective area of 

4250 𝑚𝑚2. 

The original calculation provides that the cross-section area used was 4272 𝑚𝑚2. This will be 

the effective area used. 

It is known that the cable does not have any outer pipe nor grouting, just a protective paint 

whose mass will be neglected. Therefore, the mass per unit length of the cable is calculated as. 

 𝐴𝑒𝑓𝑓[𝑚2] ∗ 7850 [𝑘𝑔/𝑚3] = 33,54[𝑘𝑔/𝑚]  34 

The cable length is as follows: 

 

Figure 35 Cable length from original drawing [17] 

8.40E-02 5.542E-03 4.805E-03 86.71%

8.00E-02 5.027E-03 4.358E-03 86.70%

7.60E-02 4.536E-03 3.933E-03 86.70%

Cable effective area, from Redaelli

Nomimal 

diameter [m]

Total area 

[m²]

Effective 

area [m²]
%
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For cable 2, the overall mass of the cable will be 3207 𝑘𝑔 which is lower than what is displayed 

in Figure 34, which also includes the mass of the cable anchorages. 

The maximum tensile force in the cable is shown in the calculations as being 
1395

8
 𝑀𝑝 

(megapond) [24] which can be translated as being 1710 𝑘𝑁. 

Using the formula Equation 31 and choosing 𝑛 = 1. 

 2𝜋𝑓𝑛 = 𝜔𝑛 = 1 ∗
𝜋

95.639
√

1710000

33.54
= 7.417 → 𝑓𝑛 = 1.180 𝐻𝑧 35 

If considering only the permanent load (self-weight of the structures) the force would be 
943

8
 𝑀𝑝 

[24] which can be translated to 1156 𝑘𝑁. 

 2𝜋𝑓𝑛 = 𝜔𝑛 = 1 ∗
𝜋

95.639
√

1156000

33.54
= 6.098 → 𝑓𝑛 = 0.971 𝐻𝑧 36 

Those two values will be compared to the data collected by the accelerometers, as previously 

described. The values estimated from the recorded data should be in between the two 

frequencies calculated above. 

The data gathered on 28/08/2019 between 08:00 and 09:00 was used in order to estimate the 

eigenfrequency. There was no precipitation and mean wind velocities of 8,3 𝑚/𝑠. The data 

consist of accelerations recorded at a sampling frequency of 64𝐻𝑧, therefore 1 ℎ of data 

corresponds to  230400 samples. 

 

Figure 36 Acceleration history 28/08/2021 between 08:00 and 09:00. Cable C2E heave motion 

In order to study the cable response as well as estimate the natural frequency, a spectral analysis 

in MATLAB [25], using Welch method, was carried out. The number of segments used was 

chosen to give a frequency resolution of 0.005 𝐻𝑧. This means that for 1 ℎ long data set, 18 
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segments were chosen. The overlapping between two segments was chosen as 50% and a 

Hamming window. 

 

Figure 37 Acceleration power spectrum density for C2E heave motion 

Using the assumption that the motion of the cable can be described as the sum of infinite cosine 

functions 

 𝑥(𝑡) = ∑ 𝐴𝑖 ∗ cos(𝜔𝑖𝑡 + 𝜙𝑖)

𝑁

𝑖=1

= ∑ 𝑥𝑖(𝑡)

𝑁

𝑖=1

  37 

Then the acceleration will be the second derivative of displacement  

 

�̈�(𝑡) = ∑ −𝐴𝑖 ∗ 𝜔𝑖
2 ∗ cos(𝜔𝑖𝑡 + 𝜙𝑖)

𝑁

𝑖=1

= ∑ 𝑥𝑖(𝑡) ∗ (−𝜔𝑖
2)

𝑁

𝑖=1

= ∑ 𝑋𝑖
̈ ∗ cos(𝜔𝑖𝑡 + 𝜙𝑖)

𝑁

𝑖=1
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The displacement power spectrum reflects the displacement amplitude squared [26] 

 𝑆𝑥(𝜔𝑖) =
1

2
𝐴𝑖

2 ∆𝜔𝑖 39 

Similarly, the acceleration spectrum is 

 𝑆�̈�(𝜔𝑖) =
1

2
�̈�𝑖

2 ∆𝜔𝑖  40 

The properties of the Fourier transform and the spectra of the function derivatives [26], imply 

that the displacement spectrum relates to the spectra of the accelerations as:  

 𝑆𝑥(𝜔𝑖) =
𝑆�̈�(𝜔𝑖)

𝜔𝑖
4

 41 

This is consistent with the relationship between the displacement and the acceleration 

amplitudes:  
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 𝑋𝑖
̈ = −𝐴𝑖 ∗ 𝜔𝑖

2 42 

Equation 41 shows that the acceleration power spectrum and the displacement power spectrum 

have the peaks at the same positions in the frequency axis, each are the natural frequencies. The 

displacement power spectrum gets very large for low frequencies, which can be a computational 

difficult to manage the values that get divided by low values of 𝜔4, also for the first value of 

the series, where 𝜔 = 0. 

Due to the large difference in magnitude along the series, it is a good practice to use logarithmic 

scale for the vertical axis. 

 

Figure 38 Displacement power spectrum density for C2E heave motion 

From the diagrams of acceleration and displacement power spectral densities it above it is 

possible to obtain the eigenfrequency for the first mode of vibration. This is done by picking 

the value of the frequency for the first peak of the spectral density. The value for the first natural 

frequency is 𝑓𝑛 = 1,07 𝐻𝑧. From the analysis using the forces from the original calculations, 

the first natural frequency should be 0,971 𝐻𝑧 < 𝑓𝑛 < 1,180 𝐻𝑧. Therefore, the value of 𝑓𝑛 =

1,070 𝐻𝑧 fits in the expected range. 

From the above eigenfrequency is possible to infer what is the tensile force in n the cable at the 

time of measurement. 

 𝑓𝑛 = 1.070 𝐻𝑧 → 2𝜋𝑓𝑛 = 𝜔𝑛 = 1 ∗
𝜋

95,639
√

𝑇

33,54
  → 𝑇 = 1405 𝑘𝑁 43 

Again, this force is within the expected range of minimum and maximum forces from the 

original calculations: 1156 𝑘𝑁 < 𝑇 = 1405 𝑘𝑁 < 1710 𝑘𝑁. 

The eigenfrequency for the subsequent modes, presented in 2.5 follows the equation: 
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 𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝑛

2𝐿
√

𝑇

𝑚
 44 

where 𝑛 is the mode number.  

Therefore, the second eigenfrequency should, theoretically, be twice the first and so on. When 

using measurements of full-scale models, the values can differ. 

Table 4 Natural frequency for the first 5 modes, C2E 

 

When calculating a linear regression of the values shown in Table 4, the value for 𝑅2 = 0.9999 

and a linear equation of 𝑓𝑖 = 1,068 ∗ 𝑛 + 0,005. This shows that the values for natural 

frequencies of a stay-cable is very close to the taught string model assumed in 2.5. The idealised 

model does not account for sag, bending stiffness, damping and equivalent rotational spring of 

the anchorages. 

The mode shapes, presented in 2.5, follow the equation  

 𝑊𝑛(𝑥) = 𝐴𝑛 sin
𝑛𝜋𝑥

𝐿
 45 

where 𝑛 is the mode number.  

The first three eigenfrequencies for all 4 cables monitored were estimated at both vibration 

directions, sway (lateral motion, perpendicular to the cable axis) and heave (vertical motion, 

perpendicular to the cable axis). The results are shown in Table 6. 

Table 5 Channel and motion direction relationship 

 

Table 6 Cable eigenfrequencies for the first 3 modes 

 

Mode 1 2 3 4 5

Frequency [Hz] 1.070 2.120 3.190 4.288 5.325

Natural frequency for the first 5 modes, cable C2E

Channel Direction

Ch2 Sway

Ch3 Heave

Cable Channel #1 #2 #3

C1E Ch2 1.025 2.055 3.143

C1E Ch3 1.025 2.055 3.143

C1W Ch2 1.040 2.075 3.173

C1W Ch3 1.045 2.075 3.115

C2E Ch2 1.065 2.120 3.190

C2E Ch3 1.075 2.120 3.190

C2W Ch2 1.050 2.100 3.160

C2W Ch3 1.060 2.100 3.155

Vibration mode

One hour long data from 07:00 to 08:00 28/08/2019
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Table 6 shows the first three natural frequencies estimated for the four cables. It is possible to 

see that heave and sway vibration have similar natural frequencies, in some cases the estimated 

value is the same for both directions.  

It is also possible to estimate how similar the forces in cables C1 and C2 are. The values for the 

frequencies are of the same order of magnitude, the average of 1,034 𝐻𝑧 for cable C1 and 

1,063 𝐻𝑧 for cable C2. Cable C1 is  2,7% longer, which would give a natural frequency of 

97,4% if all the properties stay the same between the two cable (including the axial force). The 

estimated natural frequency of C1 is 97,3 % of the one from C2. This shows that the tensile 

force in the cables C1 and C2 should be similar. 

3.2.2 Cable curvature 

With the new acquired knowledge of the existing force on the cable and using the equations 

shown in 2.3.1 it is possible to calculate the cable curvature using both the parabolic and 

catenary approach. 

The calculation will be done for cable C2E because that is the cable that the axial force was 

calculated in 3.2.1, however, the same principal can be done for any other cable. 

The tensile force on the cable is 𝑇 = 1405 𝑘𝑁, length 𝐿 = 95,639 𝑚, mass per meter 𝑚𝑙 =

33,54 𝑘𝑔/𝑚, gravity 𝑔 = 9,81 𝑚/𝑠2. 

The length of the cable will be divided into 100 parts, and the vertical displacement ∆𝑦 will be 

calculated for all the parts. 

The horizontal applied force 𝐻 will be calculated using the angle 𝜃 between the two end points 

in relation to the horizontal line, such that 

 𝐻 = 𝑇 ∗ cos(𝜃) 46 

Recalling the formulas for vertical displacement ∆𝑦.  

Parabolic approximation will yield the following formula 

 ∆𝑦 =
𝑚𝑔𝑙

2𝐻
𝑥 (1 −

𝑥

𝑙
) 47 

And the catenary formulation will yield the following formula 

 ∆𝑦 =
𝐻

𝑚𝑔
{cosh (

𝑚𝑔𝑙

2𝐻
) − cosh (

𝑚𝑔

𝐻
(

𝑙

2
− 𝑥))} 48 

The results are a maximum sag of 0,2296 𝑚 for both formulas used. The maximum sag is 2.9 ∗

Ø𝑐𝑎𝑏𝑙𝑒 in  
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Figure 39 Cable profile considering parabolic approximation for sag 

It is not visually possible to see the sag in Figure 39. This would only be visible at the cable 

when closely looking in the cable direction. 

Just as a more visual demonstration, the following figure (Figure 40) will show the cable profile 

with the local sag ∆𝑦 being multiplied by a factor of 50. 

 

Figure 40 Cable profile considering parabolic sag multiplied by 50 
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Figure 41 Visual observation of sag on the structure 

Figure 41 shows the visual observation of the longest cable in Bybrua, cable C7. The picture 

was taken along its chord to make the sag more visible [1]. The low weight of the cable (the 

cable does not have a protective pipe or grout, that would have added weight) and the relative 

short length of the cable makes for a small sag that is barely visible. For comparison, Figure 42 

shows a Stonecutters Bridge, the second longest span cable-stayed bridge when constructed. 

The long cables, up to 540 𝑚 [27], show a larger sag than the shorter cable of Bybrua, cable 

C7 has 141,246 𝑚 (Figure 29). 

 

Figure 42 Visible sag on Stonecutters Bridge [1] 
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3.3  Estimation of damping ratio 

Damping can be a difficult property to determine in civil engineering structures. Quite different 

than mechanical engineering systems where efficient dampers are introduced to reduce 

vibrations and then the system has a well-defined damping level. 

In civil engineering structures, if a damper, like the ones showed in 2.7, is not used, it does not 

mean that the structure has no damping whatsoever. There is still friction, plasticity, wind drag 

and other mechanism that provide a certain level of energy dissipation, even without an added 

damping device. 

Assuming that the cable damping can be modelled as linear viscous damping, two different 

types of acceleration data will be studied in order to estimate the damping: the free decay 

response (after initial pulling of the cable by a rope) and the ambient vibration data.   

With the free decay response, an exponential function will be calculated as being the best fit 

for the envelope of the displacement response, then the damping ratio will be estimated by 

analysing the exponential function. The ambient vibration data will be analysed with Frequency 

Domain Decomposition and Random Decrement Technique. 

3.3.1 Analysis of the Free Decay Response 

On the 15/06/2021 the cable C1E was tested by introducing an excitation to the cable and then 

letting free vibrations occur. Since the test was not done in a lab, there is still wind loads and 

traffic loads, however, they were small when in comparison to the forces introduced to the cable 

at the test, therefore it is considered that the cable was under free vibrations. The mean wind 

velocity was 5,8 𝑚/𝑠 and there was no rainfall. 

The cable was manually pulled, as it can be seen in Figure 43. This external force was used to 

record the free decay of the cable vibration. After pulling the rope shown in Figure 43 for a few 

second, until the cable was visually vibrating, the external force was interrupted and the cable 

was let to vibrate freely, while the accelerations being recorded by the three accelerometers 

shown in Figure 43 and explained in 3.1.1. 

The external force applied was in the vertical plane. Even though there is acceleration in the 

horizontal plane, the results show to be less consistent. Therefore, only the heave motion will 

be analysed.  

The acceleration records are displayed in Figure 44 to Figure 46. 
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Figure 43 Manually pulling the cable. Photo by Jasna B. Jakobsen, UiS 

 

Figure 44 Acceleration records 15/06/2021. Sensor 12045 Heave motion 
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Figure 45 Acceleration records 15/06/2021. Sensor 12047 Heave motion 

 

Figure 46 Acceleration records 15/06/2021. Sensor 4251 Heave motion 

In the acceleration records above, it is possible to see the peaks of acceleration that happen 

when the external force is being applied to the cable. There are three windows between 𝑡 =

1100 𝑠 and 𝑡 = 1900 𝑠 that consistently show free decay response throughout the 6 diagrams. 

Those three windows will be used to estimate the damping ratio of the structure. Figure 47 

shows a close-up of the three windows mentioned above. 
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Figure 47 Acceleration records 15/06/2021. Sensor 12045 Heave motion, between 𝑡 = 1100 𝑠 and 𝑡 = 1900 𝑠 

In the following, the acceleration record will be first translated into displacement time-histories. 

An exponential function will be fitted to the displacement envelopes, and the damping ratio 

determined from the fitted function.   

The method applied to transform acceleration record into displacement record is via Inverse 

Fourier Transform, i.e. in the frequency domain. A step-by-step procedure is: 

 

 

 

 

 

 

 

Figure 48 Procedure to transform acceleration record into displacement record 

The Fourier Transform is a complex function, which gives a result with real and imaginary 

parts. The complex number can also be described with a magnitude and a phase. When 

performing the Inverse Fourier Transform of the filtered complex function, the phase of each 

frequency component is properly preserved. 

One example of the procedure being applied is shown below. It is the data from sensor 12045 

(cable bundle C1E, bottom cable on the seaside), heave motion, from time 𝑡 = 1170 𝑠 until 

𝑡 = 1440 𝑠. The new time array will be from 0 to 270𝑠, which is the duration of the period 

analysed. 

Acceleration 

record 

Fourier Transform 

of the Acceleration 

Filter the range of 

frequencies desired 

Inverse Fourier Transform 

of the result 

Calculate −𝑋𝑎𝑐𝑐(𝑓)/(2 ∗ 𝜋 ∗ 𝑓)2 
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Figure 49 Acceleration records used for free decay 15/06/2021. Sensor 12045 Heave motion 

Each frequency studied was separated using a filter with half-width of 0,1 𝐻𝑧, where the values 

of the power spectral density were changed to zero outside the filter width. So then for each 

frequency the range was: 𝑓𝑛 − 0,1 < 𝑓𝑛𝑢𝑠𝑒𝑑
< 𝑓𝑛 + 0,1 𝐻𝑧. And the power spectral density 

filtered is,  

 𝑃𝑆𝐷𝑢𝑠𝑒𝑑(𝑓) = 𝑃𝑆𝐷 (𝑓)  for  𝑓𝑛 − 0,1 < 𝑓 < 𝑓𝑛 + 0,1 𝐻𝑧   49 

And  

 𝑃𝑆𝐷𝑢𝑠𝑒𝑑(𝑓) = 0 for 𝑓 < 𝑓𝑛 − 0,1 and 𝑓 > 𝑓𝑛 + 0,1 𝐻𝑧 50 

This method will be used for the first 5 vibration modes. 

 

Figure 50 Calculated displacement of the cable during free decay. 15/06/2021. Sensor 12045 Heave motion 

The last part of the procedure is to fit an exponential function to the envelope of the 

displacement. Both positive and negative peaks are used for a higher amount of data points for 

the fitting. The decay rate also depends on the vibration frequency. Therefore, the damping of 
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every different vibration mode, studied after the suitable filtering of the free decay response, 

will be calculated using the vibration frequency of the mode in question to calculate the 

damping ratio.  

The theoretical exponential envelope is calculated as follows: 

 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = 𝐸(𝑡) = 𝐴𝑛 ∗ exp(−𝜁𝑛 ∗ 𝜔𝑛 ∗ 𝑡) 51 

Where 𝐴𝑛 is the amplitude of the envelope at time 𝑡 = 0 and 𝑛 is the vibration mode. 

Then, the best fitting (BF) exponential function is found such that: 

 𝐵𝐹𝑛 = 𝐵𝑛 exp(𝑦𝑛 ∗ 𝑡) 52 

where 𝐵𝑛 is the amplitude of the fitted exponential function at time 𝑡 = 0 and 𝑦𝑛 is the constant 

value for the best fitted exponential function and 𝑛 is the vibration mode. 

The value for damping ratio 𝜁𝑛 can be calculated as being: 

 𝑦𝑛 ∗ 𝑡 = −𝜁𝑛 ∗ 𝜔𝑛 ∗ 𝑡  ∴    𝜁𝑛 = −𝑦𝑛/𝜔𝑛 53 

 

Figure 51 Displacement with envelope and exponential best fit. 15/06/2021. Sensor 12045 Heave motion 

In Figure 51, with the filtered free vibration data the damping ratio calculated for the second 

mode of vibration is 𝜁2 = 0,000565 = 0,0565%. The value of damping calculated is in the 

expected range, which can be between 0,01% to 0,2% [1]. 

The procedure described above was done for the first 5 modes of vibration of the cable, 

considering the three free decay responses between 𝑡 = 1100 𝑠 and 𝑡 = 1900 𝑠. 

Some cases  show a displacement responses with a beating, this could be due to more than one 

peak in the power spectral density. Then, when the inverse Fourier transform is calculated, as 

described in Figure 48, the result can show, for example, a beating phenomenon. Figure 52 

shows a case that the beating phenomenon can be seen. Another possible reason is that the cable 
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is experiencing vibrations that are in fact in with some beating. It can be seen in Figure 49 that 

the acceleration records, without any signal manipulation, already shows some beating. 

 

Figure 52 Calculated displacement of the cable during free decay. 15/06/2021. Sensor 12045 Heave motion 

 

Figure 53 Displacement with envelope and exponential best fit. 15/06/2021. Sensor 12045 Heave motion 

Calculating the damping ratio of a free decay response that is experiencing beating can lead to 

values might not be accurate, but this will still be done because it gives a general understanding 

of what is the order of magnitude of the damping ratio of the cable. 

Other cases show a displacement function that is not compatible to an expected free decay 

response of a single degree of freedom system. Figure 54 is one example, taken from 𝑡 =

1780 𝑠 to 𝑡 = 1900 𝑠.  
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Figure 54 Calculated displacement of the cable during free decay. 15/06/2021. Sensor 4251 Heave motion 

Damping ratio should not be estimated for the diagram similar to the one shown in Figure 54, 

because it has no physical meaning. 

Table 7 shows the damping ratio calculated. The values of the three free decay responses are 

averaged for each sensor. At the last row it is shown the average damping ratio per vibration 

mode. The values for the sway motion are not considered because they showed inconsistency 

in the results. The external force was vertical and therefore heave motion is showing better 

results. 

Table 7 Damping ratio estimation. Free Decay Response method 

 

The values for damping ratio shown in Table 7 are between 0,03% and 0,07% for the average 

values per vibration mode. The higher vibration modes are showing lower damping ratio 

coefficient. All the results are within the expected range, which can be between 0,01% to 0,2% 

[1]. 

3.3.2 Frequency Domain Decomposition 

The second method used is the Frequency Domain Decomposition (FDD). The technique was 

presented by [28] and it consists of decomposing the power spectral density (PSD) matrix using 

Singular Value Decomposition. When doing so, the spectral response is decomposed into 

several single degree of freedom systems, each corresponding to a mode of the original 

structure. This procedure will be used to analyse the damping ratio of the first 5 modes of 

vibration of the cable C1E. 

C1E 12045 Heave 6.91E-04 5.06E-04 4.81E-04 3.47E-04 2.96E-04

C1E 12047 Heave 7.34E-04 4.89E-04 4.84E-04 3.74E-04 2.99E-04

C1E 4251 Heave 7.01E-04 4.97E-04 4.75E-04 3.20E-04 3.24E-04

Average 7.09E-04 4.98E-04 4.80E-04 3.47E-04 3.06E-04

Cable Sensor Motion
Damping ratio, 

vibration mode 1

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5
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The data used will be the values of acceleration record from each sensor in both directions Sway 

and Heave, simultaneously. 

There will be two procedures for the FDD, one uses a spectral peak picking method, where the 

user defines the area in the power spectral density is the peak. 

The other procedure uses an upper and lower boundary around a guess of what the frequency 

of the peak is, and the program chooses the frequency with its own algorithm. Practically, the 

result of the frequencies corresponding to the peak picking of the first method will be used as 

a guess of the target frequency for the second method. The Lower Boundary (LB) is 𝐿𝐵 = 0,9 ∗

𝑓𝑛𝑝𝑒𝑎𝑘 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
 and Upper Boundary (UB) is 𝑈𝐵 = 1,1 ∗ 𝑓𝑛𝑝𝑒𝑎𝑘 𝑝𝑖𝑐𝑘𝑖𝑛𝑔

.  

 

Figure 55 Example of peak picking method around vibration mode 1. Sensor 12045. Data from 14/06/2021 

07:05 to 07:45 

 

Figure 56 Example of peak picking process. Sensor 12045. Data from 14/06/2021 07:05 to 07:45 

It was chosen the data from 14/06/2021 from 07:05 to 07:45 where the cable was excited by 

ambient vibration only, the average wind velocity was 6,5 𝑚/𝑠 and no rainfall. The first 5 
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vibrations modes will be analysed, however in Figure 56 it is possible to see other modes of 

vibrations. 

Four scenarios were chosen using the 40 minutes acceleration record. 

• 4 windows of 10 minutes 

• 2 windows of 20 minutes 

• 1 window of 30 minutes  

• 1 window of 40 minutes 

The shortest window used was 10 minutes, this means around 570 vibration cycles for the 

lowest vibration mode. Which are enough cycles for the estimations done. 

Table 8 Damping ratio estimation, FDD method Data from 14/06/2021 from 07:05 to 07:45. Heave and sway 

motion simultaneously. 

 

FDD using the peak picking method can also estimate the eigenfrequency by identifying the 

frequency associated with the peak in energy from the power spectra density. From Figure 55 

it can be seen how this is done, the user chooses an area around the peak, and the procedure 

finds the frequency corresponding to the peak. 

When using the upper/lower boundary method, the procedure also finds the peak within the 

range of 90% to 110% of the guessed value for the eigenfrequency. The two methods give the 

same estimation as it can be seen in Table 9. 

C1E 12045 2/3 3.50E-03 1.80E-03 1.60E-03 2.30E-03 1.40E-03

C1E 12047 2/3 2.60E-03 1.50E-03 2.00E-03 2.00E-03 1.30E-03

C1E 4251 2/3 3.30E-03 1.90E-03 2.20E-03 1.30E-03 1.40E-03

3.13E-03 1.73E-03 1.93E-03 1.87E-03 1.37E-03

C1E 12045 2/3 4.20E-03 2.40E-03 2.40E-03 3.20E-03 1.40E-03

C1E 12047 2/3 4.40E-03 2.40E-03 2.40E-03 2.60E-03 1.50E-03

C1E 4251 2/3 4.00E-03 2.30E-03 2.60E-03 2.00E-03 1.30E-03

4.20E-03 2.37E-03 2.47E-03 2.60E-03 1.40E-03

Cable Sensor Channel
Damping ratio, 

vibration mode 1

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5

Average

Peak picking Damping ratio estimation

Upper/Lower boundary Damping ratio estimation

Average

Cable Sensor Channel
Damping ratio, 

vibration mode 1

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5

Damping ratio estimation using FDD from 2021-06-14  / 4 windows of 10 minutes
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Table 9 Eigenfrequency estimation, FDD method. Data from 14/06/2021 from 07:05 to 07:45 Heave and sway 

motion simultaneously. 

 

The same procedure was carried out for the other 3 scenarios. Table 7 shows the results of the 

4 scenarios, where the value for each scenario is already average for the 3 sensors. 

Table 10 Damping ratio estimation, FDD method. Data from 14/06/2021 from 07:05 to 07:45. Heave and sway 

motion simultaneously. 

 

The values from Upper/Lower boundary method similar to the Peak Picking method for most 

cases. The results are overall high for both methods, some values are above the expected range 

of 0,01% to 0,2% [1]. The stay cables do not have any added damping devices that can justify 

the results to be in the high end of the proposed range. The values are higher than what was 

estimated in 3.3.1, which are between 0,03% and 0,07%. 

3.3.3 Random Decrement Technique 

The third method will be using the recorded acceleration from ambient load, it was chosen data 

from 14/06/2021 from 07:05 to 07:45, which is the same records used in 3.3.2, this will make 

it easier to compare the two methods. Again, the mean wind velocity was 6,5 𝑚/𝑠 and no 

rainfall. Only the heave motion will be analysed. 

A Random Decrement Technique uses the assumption that the displacement response of the 

structure is composed of two parts, a random part with average equal to zero and a deterministic 

C1E 12045 2/3 1.0426 2.0638 3.1045 4.1458 5.1793

C1E 12047 2/3 1.0426 2.0638 3.1045 4.1796 5.1800

C1E 4251 2/3 1.0426 2.0638 3.1045 4.1425 5.1767

1.0426 2.0638 3.1045 4.1560 5.1787

C1E 12045 2/3 1.0426 2.0638 3.1045 4.1458 5.1793

C1E 12047 2/3 1.0426 2.0638 3.1045 4.1796 5.1800

C1E 4251 2/3 1.0426 2.0638 3.1045 4.1425 5.1767

1.0426 2.0638 3.1045 4.1560 5.1787

fn4 [Hz]

Cable Sensor Channel fn1 [Hz] fn2 [Hz] fn3 [Hz] fn3 [Hz] fn4 [Hz]

Channel fn1 [Hz] fn2 [Hz] fn3 [Hz] fn3 [Hz]

Average

Peak picking Eigen frequency estimation

Upper/Lower boundary Eigen frequency estimation

Average

Cable Sensor

Frequency estimation using FDD from 2021-06-14  / 4 windows of 10 minutes

3.13E-03 1.73E-03 1.93E-03 1.87E-03 1.37E-03

2.30E-03 1.40E-03 2.13E-03 1.87E-03 1.43E-03

2.30E-03 1.40E-03 1.83E-03 1.87E-03 1.27E-03

2.20E-03 1.60E-03 1.93E-03 1.90E-03 1.27E-03

2.48E-03 1.53E-03 1.96E-03 1.88E-03 1.33E-03

4.20E-03 2.37E-03 2.47E-03 2.60E-03 1.40E-03

2.27E-03 1.47E-03 2.23E-03 1.80E-03 1.43E-03

2.23E-03 1.40E-03 1.73E-03 1.97E-03 1.27E-03

1.87E-03 1.47E-03 2.13E-03 1.83E-03 1.20E-03

2.64E-03 1.68E-03 2.14E-03 2.05E-03 1.33E-03

2 windows of 20 minutes

1 window of 30 minutes

1 window of 40 minutes

Average

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5

4 windows of 10 minutes

1 window of 40 minutes

Upper/Lower boundary

Average

Peak picking
Damping ratio, 

vibration mode 1

4 windows of 10 minutes

2 windows of 20 minutes

1 window of 30 minutes

Damping ratio, 

vibration mode 1

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5
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part. The data is divided into many windows that will be averaged in order to remove the 

random part [29]. Then the Free Decay Response is calculated using the following equation. 

 𝐹𝐷𝑅(𝜏) =
1

𝑁
∑ 𝑠(𝑡𝑖 + 𝜏)

𝑁

𝑖=1

 54 

where 𝐹𝐷𝑅 is the Free Decay response, 𝑠 is the acceleration response, 𝑡𝑖 is the time at the 

beginning of each window, and 𝑁 is the number of windows. 

The number of windows is set to 𝑁 = 60 and  40 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 of acceleration data, which leads to 

a free decay response length of 40 𝑠. The response contains at least 40 vibration cycles for the 

lowest mode, which is enough to evaluate the exponential function that best fit the free decay. 

All the following diagrams are from the same 40-minute period, so all the results will have the 

same loading scenario of wind speeds and traffic, only variability between them is the sensor 

and vibration mode, which is explicitly mentioned in the title along the calculated damping 

ratio from the free decay envelope. Each sensor is in a different cable inside the cable bundle 

C1E as shown in Table 2. 

The first part of the procedure is to translate the acceleration records into displacement response 

of the cable. Figure 48 explain how this is carried out. Then, the displacement response is 

divided into 𝑁 = 60 parts, and the function in Equation 54 is used. The free decay is then 

normalized so that the maximum displacement is 1.   

The damping ratio will be calculated similarly to 3.3.1, where a envelope is calculated for the 

free decay response mentioned and a exponential function is estimated to be the best for the 

envelope, then, using the natural frequency of the vibration being analysed, the damping ratio 

can be calculated. 

The RDT seems to be sensitive to more than one peak in the PSD, therefore the filter half-width 

had to be reduced from 0,3 𝐻𝑧 to 0,1 𝐻𝑧. Figure 57 shows an example of the filter half-width 

of 0,3 𝐻𝑧  and Figure 58 shows the same scenario but a filter half-width of 0,1 𝐻𝑧. 

Figure 59 shows the two peaks close to each other near vibration mode 3 when the filter half-

width is 0,3 𝐻𝑧.  
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Figure 57 Displacement response, envelope and exponential best fit. 15/06/2021. Sensor 12045 Heave motion. 

Filter half-width = 0,3 Hz 

 

Figure 58 Displacement response, envelope and exponential best fit. 15/06/2021. Sensor 12045 Heave motion. 

Filter half-width = 0,1 Hz 
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Figure 59 Acceleration PSD with filter half-width = 0,3 Hz around vibration mode 3. 15/06/2021 Sensor 12045 

Heave motion 

Similarly, Figure 60 shows the two peaks near vibration mode 4, which are too close to each 

other and would require a filter as narrow as a half-width of 0,01 𝐻𝑧 to split them apart. One 

example of the filter half-width of 0,1 𝐻𝑧 for vibration mode 4 is shown in Figure 61. The 

magnitude of each peak is also closer than for mode 3. This happens for sensors 12045 and 

12047, which are the top cable on the roadside and the bottom cable on the seaside. The 

displacement response of the sensor 4251, the bottom cable on the roadside, is presented in 

Figure 62 and does not show the beating phenomena because there is just one peak in the filtered 

window. 

  

 

 

Figure 60 Acceleration PSD with filter half-width = 0,3 Hz around vibration mode 4. 15/06/2021 Sensor 12045 

Heave motion 
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Figure 61 Displacement response, envelope and exponential best fit, mode 4. 15/06/2021. Sensor 12045 Heave 

motion. Filter half-width = 0,1 Hz 

 

Figure 62 Displacement response, envelope and exponential best fit, mode 4. 15/06/2021. Sensor 4251 Heave 

motion. Filter half-width = 0,1 Hz 

Table 11 Damping ratio estimation using RDT 

 

The values for the vibration mode 4 using the records from sensors 12045 and 12047 are 

highlighted because they do not correspond to a realistic damping estimation, those values are 

not considered in the average. 

The damping ratio for modes 1, 2, 4 and 5 show similar order of magnitude when compared to 

the free decay estimated in 3.3.1. Vibration mode 3 shows a high damping ratio, when compared 

to the expected range of 0,01% to 0,2% [1]. 

C1E 12045 Ch3 7.12E-04 9.90E-04 1.80E-03 1.50E-03 1.01E-03

C1E 12047 Ch3 7.18E-04 9.76E-04 1.82E-03 1.62E-03 1.05E-03

C1E 4251 Ch3 7.45E-04 9.90E-04 1.97E-03 8.91E-04 1.07E-03

7.25E-04 9.85E-04 1.86E-03 8.91E-04 1.04E-03

Cable Sensor Channel

Average

Damping ratio, 

vibration mode 1

Damping ratio, 

vibration mode 2

Damping ratio, 

vibration mode 3

Damping ratio, 

vibration mode 4

Damping ratio, 

vibration mode 5
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3.3.4 Damping ratio as a function of displacement 

Damping ratio was treated, so far, as a parameter independent of the displacement magnitude, 

and the exponential envelopes fitted to the data, for instance in Figure 51, suggest that the 

damping level is rather stable throughout the decay. In the following, this is additionally 

examined in more details, by estimating the damping ratios for large and small vibration 

amplitudes.  

It will be used the free decay technique shown in 3.3.1. There are three free decay responses 

that are suitable to this analysis, all between 𝑡 = 1150 𝑠 and 𝑡 = 1400 𝑠 shown in Figure 44 to 

Figure 46. Each time series will be divided into 50 𝑠 long window that will be fitted by a 

logarithmic envelope. 

Since the absolute magnitude of displacement is important, the acceleration records were 

manipulated using the calibration function provided by the manufacturer.  

It was shown in 3.3.1 that some vibration modes are experiencing beating phenomenon, 

probably because of two peaks in the PSD being within the filter range, or because the cable 

was experiencing beating during the recorded data. The windows of analyses for the free decay 

response is 50 𝑠, therefore, the result is more susceptible to the beating, when compared to the 

windows of at least 100 𝑠 and up to 300 𝑠 that were used in 3.3.1. Therefore, only the cases 

that do not show beating phenomenon will be used. 

Using the Equation 32, it is possible to translate the amplitudes at the position of the 

accelerometer, which is placed 4 𝑚 above the bridge deck, to the maximum displacement of 

the cable for the given mode of vibration.  

 

Figure 63 Free decay response for damping-amplitude relation. Sensor 12045. Heave motion 
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Figure 64 Free decay response for damping-amplitude relation. Sensor 12047. Heave motion 

 

Figure 65 Free decay response for damping-amplitude relation. Sensor 4251. Heave motion 

The results were group per vibration mode, and each diagram shows the values of displacement 

amplitude and damping ratio of the three cables. 

 

Figure 66 Damping ratio as a function of maximum vibration amplitude. Vibration mode 1. Heave motion 
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Figure 67 Damping ratio as a function of maximum vibration amplitude. Vibration mode 2. Heave motion 

 

Figure 68 Damping ratio as a function of maximum vibration amplitude. Vibration mode 3. Heave motion 

 

Figure 69 Damping ratio as a function of maximum vibration amplitude. Vibration mode 4. Heave motion 

 



  

58 

 

Figure 70 Damping ratio as a function of maximum vibration amplitude. Vibration mode 5. Heave motion 

Vibration modes 3 and 5 show a decrease in damping ratio when the maximum vibration 

amplitude increases. Vibration modes 1, 2 and 4 do not show a relationship between vibration 

amplitude and damping ratio. 

It is important to remember that the cable showed displacement much larger that what is shown 

in Figure 66 to Figure 70, because what is estimated here is the displacement amplitude that the 

cable would experience if the vibration mode being analysed was isolated from the other 

accelerations in the acceleration power spectral density. 

3.4 Stockbridge damper analysis 

The viability of a Stockbridge damper as a solution to damp the vibration will be studied. 

Stockbridge dampers are worldwide used in transmission lines but there are some cases where 

it has been used in suspension cable in cable suspension bridge, backstay of large structures 

and stays of cable-stayed bridges. 
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Figure 71 Back stay of London Eye featuring a Stockbridge damper [15] 

It has been observed that the largest vibrations of the cable C1E occur in the 3rd mode of 

vibration [2], therefore the Stockbridge damper will be tuned to that vibration frequency. 

A two degree of freedom (2DOF) system will be analysed where the Stockbridge damper and 

the cable are coupled. The variables 𝑘3 (modal stiffness of the cable), 𝑚3 (modal mass of the 

cable) and 𝑥3 (modal displacement of the cable) are all regarding the 3rd mode of vibration of 

the cable, whereas 𝑘𝑆𝐵 (stiffness of the Stockbridge damper), 𝑚𝑆𝐵 (mass of the Stockbridge 

damper), 𝑐𝑆𝐵 (damping coefficient of the Stockbridge damper), 𝑥𝑆𝐵 (displacement of the 

Stockbridge damper) are regarding the Stockbridge device. When the case of a forced vibration 

is analysed, the force 𝐹(𝑡) will be then applied to the cable. 



  

60 

 

Figure 72 Two degree of freedom system 

Figure 72 shows a general arrangement of the 2DOF system. There will either be an initial 

displacement of the cable, and then the system is let to vibrate freely with no external force 

𝐹(𝑡), or there will be an external force 𝐹(𝑡) and no initial displacement. Both these cases will 

be shown in 3.4.3. The magnitude of the damping coefficient 𝑐𝑆𝐵 will also be changed in order 

to analyse the response of the system for different damping coefficients of the Stockbridge 

damper. As a conservative approach, and for simplicity, the damping coefficient of the cable 

itself (discussed in 3.3) was taken as zero. 

The system of differential equations to be solved is: 

 {
𝑚3 ∗ �̈�3 = −𝑘3 ∗ 𝑥3 − 𝑘𝑆𝐵 ∗ (𝑥3 − 𝑥𝑆𝐵) − 𝑐𝑆𝐵 ∗ (�̇�3 − �̇�𝑆𝐵) + 𝐹(𝑡)

𝑚𝑆𝐵 ∗ �̈�𝑆𝐵 = 𝑘𝑆𝐵 ∗ (𝑥3 − 𝑥𝑆𝐵) + 𝑐𝑆𝐵 ∗ (�̇�3 − �̇�𝑆𝐵)                                
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The MATLAB function ode45 [25] will be used to solve the system above using different initial 

conditions and parameters, depending on the case being studied. The ode45 function solves 

non-stiff differential equations, using the medium order method [30]. 

3.4.1 Cable modal parameters 

The modal mass of the cable can be calculated as follows. 
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 𝑀𝑛 = ∫ 𝑚𝑙 ∗ (𝑊𝑛(𝑥))
2

 𝑑𝑥
𝐿

0

= ∫ 𝑚𝑙  ∗ (𝑠𝑖𝑛 (𝑛 ∗ 𝜋 ∗
𝑥

𝐿
))

2

 𝑑𝑥
𝐿

0

 56 

For the 3rd mode of vibration, the value of 𝑛 = 3. The mass per unit length of the cable is 

previously calculated as 𝑚𝑙 = 33,5 𝑘𝑔/𝑚, length of the cable is 𝐿 = 98,263 𝑚. 

 𝑀3 = ∫ 𝑚𝑙 ∗ 𝑊3(𝑥) 𝑑𝑥
𝐿

0

= ∫ 𝑚𝑙  ∗ 𝑠𝑖𝑛 (3 ∗ 𝜋 ∗
𝑥

𝐿
)  𝑑𝑥

𝐿

0

= 1645,9 𝑘𝑔 57 

The easier way of calculating the modal stiffness will be using the known relationship between 

stiffness, mass and eigenfrequency. The value for 𝑓3 = 3,14 𝐻𝑧 = 19,73 𝑟𝑎𝑑/𝑠. 

 𝐾𝑛 = 𝑀𝑛 ∗ 𝜔𝑛
2 58 

Again, for 𝑛 = 3 the equation will be: 

 𝐾3 = 𝑀3 ∗ (𝜔3)2 = 1645,9 ∗ 19,732 = 640640 𝑁/𝑚 = 640,64 𝑘𝑁/𝑚 59 

3.4.2 Stockbridge damper parameters 

 

Figure 73 Components of a Stockbridge damper [31] 

For simplicity, the Stockbridge damper will be treated as a single degree of freedom device, 

however, the damper can be designed in with masses and wires that will produce 4 meaningful 

vibration modes that are in the same range of the main structure important modes to be damped. 

The centre of gravity of the mass is usually offset to the point of which the wire is connected to 

the mass, which leads to a vibration mode which is the mass rotating without significant vertical 

movement.  
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Figure 74 Example of two vibration modes of a Stockbridge damper [31] 

The parameters of the Stockbridge damper are highly manufacturer specific. Therefore, the 

values for mass, stiffness and damping ratio are subjective to the device itself.  After searching 

for the range of produced option it was chosen a mass of 𝑚𝑆𝐵 = 3,65 𝑘𝑔 as being feasible. 

Other values could have been chosen and would slightly change the final result.  

The stiffness 𝑘𝑆𝐵 is chosen to achieve the desired eigenfrequency of the device, taking into 

account the value for mass already chosen. The stiffness of the messenger cable can vary greatly 

from a stiff short cable with values around 𝑘 = 10.000 𝑁/𝑚 to less stiff long cables with values 

around 𝑘 = 1.000 𝑁/𝑚 or lower. 

The aim is to have the Stockbridge damper with the same natural frequency as the cable, 

therefore the following equation was solved. 

 𝜔𝑆𝐵 = 𝜔3 = 19,73
𝑟𝑎𝑑

𝑠
 = √

𝑘𝑆𝐵

𝑚𝑆𝐵
    ∴    𝑘𝑆𝐵 = 1.420

𝑁

𝑚
  60 

The Stockbridge damper dissipates energy by the bending of the messenger cable. The value of 

the equivalent viscous damping ratio of the mass moving at the end of the messenger cable is 

an important parameter for the calculation of the two degree of freedom system. Since this 

dissipation is the only damping in the model. 

A study of damping ratio as a function of displacement was conducted by [32] and shows that, 

for the Stockbridge damper used in the study, the maximum value of damping ratio was 𝜁 =

0,13 and the minimum value found was 𝜁 = 0,05. The results by [32] were achieved by testing 

the Stockbridge damper with a cam machine and recording the acceleration of the mass. The 

damping ratio was estimated and analysed in relation to the cam machine base displacement. 

Therefore, once again on the conservative side, the maximum value to be used will be 𝜁 = 0,05. 

In some cases, damping ratio will be chosen as 𝜁 = 0,01 for comparison of the results. 
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Figure 75 Damping ratio versus base displacement [32] 

3.4.3 Results of the 2DOF system 

The first scenario will be as follows: 

• No damping 𝑐𝑆𝐵 

• Initial displacement 𝑥30
= 0,01 𝑚 

• No exciting force 

The results will be calculated for the first 20 seconds of free vibrations. It will be analysed the 

value of the maximum displacement of the Stockbridge damper in relation to the initial 

displacement value of the cable. 

 

Figure 76 Cable displacement. Scenario 1 
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Figure 77 Stockbridge displacement. Scenario 1 

It is seen that the cable and the Stockbridge device will exchange energy, when the cable has 

large displacements (around the value of initial displacement 𝑥30
) the damper has small 

displacement, and vice versa. This behaviour will extend indefinitely because there is no 

damping. The maximum amplitude of displacement of the Stockbridge damper is 21,2 times 

larger than the initial displacement given to the cable. This maximum amplitude will decrease 

when some damping is introduced. 

The second scenario will be as follows: 

• Damping ratio of 𝜁𝑆𝐵 = 0,01 ∴ 𝑐𝑆𝐵 = 𝜁 ∗ 2 ∗ √𝑘𝑆𝐵 ∗ 𝑚𝑆𝐵 

• Initial displacement 𝑥30
= 0,01 𝑚 

• No exciting force 

 

Figure 78 Cable displacement. Scenario 2 
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Figure 79 Stockbridge displacement. Scenario 2 

For damping ratio of 𝜁𝑆𝐵 = 0,01, which is lower than what has been measured by [32], the 

cable displacement response shows a promising decrease. 

It is possible to fit an exponential decay function to the envelope of overall cable displacement 

response, it will not be precise since the cable is experiencing the beating phenomena, but it is 

still an important parameter to calculate, since it shows what the equivalent damping ratio the 

cable itself would experience. 

 

Figure 80 Cable equivalent damping ratio. Scenario 2 

Figure 80 shows that the cable will experience 𝜁3 = 0,0071 which is more than half of the 

Stockbridge damper damping ratio 𝜁𝑆𝐵 = 0,01. 

The third scenario will be as follows: 

• Damping ratio of 𝜁𝑆𝐵 = 0,05 ∴ 𝑐𝑆𝐵 = 𝜁 ∗ 2 ∗ √𝑘𝑆𝐵 ∗ 𝑚𝑆𝐵 

• Initial displacement 𝑥30
= 0,01 𝑚 
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• No exciting force 

The value of 𝜁𝑆𝐵 = 0,05 was the minimum value of damping ratio found when testing it with a 

cam machine. [32] 

 

Figure 81 Cable displacement. Scenario 3 

 

Figure 82 Stockbridge displacement. Scenario 3 

The maximum amplitude of displacement of the Stockbridge device is around half of the 

maximum amplitude when no damping was introduced in the system. 
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Figure 83 Cable equivalent damping ratio. Scenario 3 

The cable equivalent damping ratio is lower than half of the damping ratio of the Stockbridge 

damper. There is no more beating phenomenon, which could be the reason why the damping 

ratio of the cable is lower, in percentage of the damping ratio of the Stockbridge damper. 

When 𝜁𝑆𝐵 = 0,01 the resulting damping ratio was 71,2%. When 𝜁𝑆𝐵 = 0,05 the resulting 

damping ratio was 24,6. 

The fourth scenario will be as follows: 

• Damping ratio of 𝜁𝑆𝐵 = 0,00 ∴ 𝑐𝑆𝐵 = 𝜁 ∗ 2 ∗ √𝑘𝑆𝐵 ∗ 𝑚𝑆𝐵  

• No initial displacement 

• Random exciting force 

The random exciting force was calculated using a sum of 20 sine functions with random 

frequencies 𝜔𝑖 ranging between 0 and 50 𝑟𝑎𝑑/𝑠 and random phases 𝜑𝑖 ranging between 0 and 

2 ∗ 𝜋 𝑟𝑎𝑑, all with magnitude 100 𝑁. 

 𝐹(𝑡) = ∑ 100 ∗ sin(𝜔𝑖 ∗ 𝑡 + 𝜑𝑖)

20

𝑖=1

 61 
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Figure 84 External force 

 

Figure 85 Cable displacement when random force is applied, without Stockbridge damper 

 

Figure 86 Cable displacement with random force, with Stockbridge damper, 𝜁 = 0 
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Figure 87 Stockbridge displacement with random force, 𝜁 = 0 

For the above scenario, the largest amplitude that the cable experienced without the Stockbridge 

damper was 0,031 𝑚 whereas when the Stockbridge was added the largest vibration amplitude 

on the cable was 0,00947 𝑚. Which is 30, 5% of the value without the Stockbridge damper. 

This means that even if the Stockbridge damper does not have any inherited damping 

coefficient, it is still able to reduce the cable vibration peaks by near 70%. The maximum 

displacement of the Stockbridge damper is 20,3 times the maximum displacement of the cable, 

this happens because of the much lower mass of the damper. Displacements of around 20 𝑐𝑚 

can be seen. 

The fifth scenario will be as follows: 

• Damping ratio of 𝜁𝑆𝐵 = 0,01 ∴ 𝑐𝑆𝐵 = 𝜁 ∗ 2 ∗ √𝑘𝑆𝐵 ∗ 𝑚𝑆𝐵  

• No initial displacement 

• Random exciting force, same as in previous case 
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Figure 88 Cable displacement with random force, with Stockbridge damper, 𝜁 = 0,01 

 

Figure 89 Stockbridge displacement with random force, 𝜁 = 0,01 

For the above scenario, the largest amplitude that the cable experienced without the Stockbridge 

damper was 0,031 𝑚 whereas when the Stockbridge was added the largest vibration amplitude 

on the cable was 0,0077 𝑚. Which is 24,8% of the value without the Stockbridge damper. 

There is no large difference between the values of peak displacement for 𝜁 = 0,01 and 𝜁 = 0 

described in the previous case. The maximum displacement of the Stockbridge damper is 20,3 

times the maximum displacement of the cable, this happens because of the much lower mass 

of the damper. 

The sixth scenario will be as follows: 

• Damping ratio of 𝜁𝑆𝐵 = 0,05 ∴ 𝑐𝑆𝐵 = 𝜁 ∗ 2 ∗ √𝑘𝑆𝐵 ∗ 𝑚𝑆𝐵  

• No initial displacement 

• Random exciting force, same as in previous case 
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Figure 90 Cable displacement with random force, with Stockbridge damper, 𝜁 = 0,05 

 

Figure 91 Stockbridge displacement with random force, 𝜁 = 0,05 

For the above scenario, the largest amplitude that the cable experienced without the Stockbridge 

damper was 0,031 𝑚 whereas when the Stockbridge was added the largest vibration amplitude 

on the cable was 0,0114 𝑚. This value is larger than the value for 𝜁 = 0,01. This means that a 

Stockbridge damper with increasing damping ratio is showing to be less efficient in damping 

cable vibration amplitudes.  

A similar procedure described in 3.3.2 an in 3.3.3 could applied to the cable displacement with 

the damper, in order to try to estimate what is the overall damping ratio of the system, however, 

that is not the scope of this thesis. 
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4 Conclusion 

The thesis had two aims. First, to assess the key dynamic parameters of the stay cables at Bybrua 

by examining the acceleration data recorded under ambient excitations, as well as free vibration. 

Second, to estimate the design of a relevant damper. 

Signal processing techniques were used to analyse the acceleration response, while the damping 

ratio was estimated using Free Decay Response, Frequency Domain Decomposition and 

Random Decrement Technique. The damping ratio was analysed as a function of the 

displacement amplitude, in order to investigate whether damping varies with amplitude. An 

analysis of the cable response, when coupled with a Stockbridge damper device using a two 

degree of freedom system, was carried out to estimate the impact on cable vibrations. 

The eigenfrequencies found are within the expected range when compared to the parameters 

from the original design. The eigenfrequencies are consistent within each other, closely 

following the simplified taut string model. Estimates for the damping ratio varied depending on 

the method used. For Free Decay Response, the damping ratio was between 0,03% and 0,07%. 

Frequency Domain Decomposition showed values between 0,13% and 0,26%. Random 

Decrement Technique gave results between 0,07% and 0,18%. 

The two degree of freedom system, comprised of the Stockbridge damper and modal 

characteristics of the cable, showed that the damping device can be effective at controlling the 

vibration amplitude of the cable. Even when the inherent damping of both cable and 

Stockbridge damper was set to 0, the largest vibration on the cable was reduced by 70%. 

Further work should be done to investigate the damping solutions for the stay cables, to mitigate 

cable vibrations. 
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