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Abstract 
 

In this project the breaking wave loads on a bottom fixed monopile has been determined with 

the use of the Pressure Impulse Model. The pressure impulse model is the integral of pressure 

dependent by time during a short period of time scale. The model was derived for an idealized 

wave on a vertical cylinder with the variables being crest length, impact height and the free 

maximum angle of impact which is tuned to give the correct impulse force. Further, the 

breaking wave loads on a vertical cylinder is determined by using guidelines provided in Det 

Norske Veritas (DNVGL) and International Electrotechnical Commission (IEC) standards, 

conditioned on the same sea state applied for the pressure impulse model. The results obtained 

from the guidelines in DNVGL and IEC standards is compared to the results from the pressure 

impulse model, and the results obtained shows that the force impulse determined based on these 

models are overpredicted compared to the pressure impulse model.  
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1 Introduction 
 

1.1 Background 

In 2021 the European Commission promoted several ambitious regulations to transform the 

energy supply and reduce greenhouse gas emission with at least 55% within 2030, and climate 

neutrality in 2050. The reason is to convert Europe to a low-emission society and to become 

the first climate-neutral continent. The contribution from renewable energy sources like solar, 

wind and hydro energy has increased in several countries the last few years, where offshore 

wind energy has become one of the fastest growing renewable energy sources (European 

Commission, 2020).  

In 2020 wind energy production was 458 TWh, but wind resources in Europe have the potential 

to extract 25,000 TWh solely from offshore wind power. The average size and power of 

offshore wind turbines has increased significantly since 2000, when the average capacity was 

around 2 MW and in 2020 the average capacity was more than 8 MW. There is a larger potential 

in offshore wind than in onshore wind, due to higher normal wind speeds and steadier wind 

environment. The wind turbine size can be increased offshore without the same repercussion 

that would have been the case onshore, with possible objections from municipalities and 

residents.  The North Sea is the most active region for installing wind turbines and will continue 

to be so with 80 % of all planned installations over the next five years located in the North Sea 

(WindEurope & ETIPWind, 2021).  

 

Figure 1.1 Share of substructure types (WindEurope & ETIPWind, 2021) 
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Monopiles are the preferred foundation for offshore wind turbines where 81.2% of all 

foundations installed in Europe were monopiles at a water depth of around 20-40 m 

(WindEurope & ETIPWind, 2021). Monopiles are the most common foundation due to its low 

cost, minimal footprint on the seabed and low design requirement. Unlike other types of 

foundations (Jackets, tripods), they do not require advanced techniques or preparation of the 

seabed prior to their installation. Also, the relatively simple shape of a monopile can keep its 

construction cost down, though it requires a large tube diameter. The monopile is usually driven 

into the seabed using a hydraulic hammer, then the transition piece is installed using a bolted 

or grouted connection on top of the monopile. The limitations regarding monopiles are related 

to higher water depths. When the water depth increases the required stiffness of the monopile 

also increases, which results in the use of piles with larger diameter. The installation of these 

piles can be difficult due to pile driving capacity, material size and availability.  

 
 

Figure 1.2 Monopile structural foundation (Leite, 2015) 

 

Offshore structures are subjected to different loads such as wind, waves and current, and in the 

design of these structures it is essential that these environmental loads are taken into account. 

The wave loads are the loads that causes the most severe damage to these structures, and there 

are several model tests that indicates that breaking wave loads generate higher impact loads 
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than what are suggested in some guidelines and standards. In the case of breaking waves, the 

horizontal water particles moves faster than the phase velocity of the wave. This phenomenon 

occurs when the water on the top moves faster than the wave itself and ends up breaking. This 

behavior of the wave creates more irregular and forward-moving waves that can impact a 

structure. This can cause severe damage to a structure if not considered properly in the design. 

 

Since these offshore wind turbines are installed at shallow to intermediate water depth, they are 

subjected to rough sea states, breaking waves, wave run-up and scour. The high impact forces 

that are generated by breaking waves on the substructure of an offshore wind turbine can affect 

the turbine's performance and fatigue life. This will affect the offshore wind turbine structure 

design, which could increase the stiffness of the structure and the cost. The possibility of 

extreme wave loads acting on the structure, requires correct estimations of Ultimate Load States 

(ULS) to prevent over estimated safety factors.  

There are different approaches to calculating the extreme wave loads acting on circular 

cylinders. The pressure impulse model investigated by Ghadirian & Bredmose (2019), is the 

time integral of the pressure during a short time scale impact on circular cylinders. The model 

has relative impact height, cylinder radius and crest length as variables, where the maximum 

angle of impact is a parameter that can be changed to achieve the right force impulse. In current 

standards for offshore wind turbines, such as IEC 61400-3 (2009), DNVGL-RP-C205 (2017), 

DNVGL-ST-0437 (2016) and DNV-OS-J101 (2014), the guidelines recommend the Morison 

equation for calculating ULS on frame structures. The wave loads are determined with the drag 

and inertia force as the two components contributing to the total force. For the case with 

breaking wave loads, a third component is added to the Morison equation, the slamming force, 

which is a high impulse short duration force generated by the breaking wave hitting the 

structure. For calculating the impact load from breaking waves IEC 61400-3 (2009) 

recommends Wienke and Oumeraci`s model (2005), and the DNVGL standards recommend 

Weynberg & Campbell`s model (1980).  

1.2 Objectives 

The objective of this report is to determine and investigate the breaking wave loads using 

DNVGL and IEC standards and the pressure impulse model, with the intention of comparing 

the results and determine any overprediction of force impulse.   
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To achieve the main objective of this thesis, several sub-objectives will be performed:  

- Investigate standards and previous work that has been done on the field to ensure that 

the correct method is implemented by doing a background study.  

- Define parameters such as sea state, structure dimensions, water depth and force 

coefficients to best compare the results with the pressure impulse model.  

- Calculate the pressure impulse by applying the pressure impulse model with a 

MATLAB script provided by Assoc. Prof. Charlotte Obhrai. 

- Calculate the inertia and drag force acting on column elements of the structure and sum 

up over the total length of the submerged structure to get the total force.  

- Calculate the slamming force from the breaking wave, and the impact duration of the 

slamming force. 

- Discuss and compare the results obtained. 

- Conclude and suggest further work that can be done to compare these different methods 

more extensively for calculating wave loads on structures. 

1.3 Structure of this paper 
 

This thesis is presented in 6 chapters. Chapter 1 contains general description of offshore wind 

turbines, the monopile structure and wave loads associated with breaking waves and calculation 

models. In chapter 2, background theory on previous numerical and experimental studies 

conducted related to breaking waves and wave forces, including a general description of 

Ghadirian & Bredmose (2019) pressure impulse model. In chapter 3, the mathematical 

formulation for the Morison equation is introduced, as well as Wienke and Oumeraci`s (2005) 

and Campbell & Weynberg`s (1980) calculation method for the slamming force. The 

mathematical formulation for the pressure impulse model is also included. Chapter 4 contains 

the reproduced results of the pressure impulse from Ghadirian & Bredmose (2019). The drag, 

inertia, and the slamming force according to IEC and DNVGL is also presented in chapter 4. 

Chapter 5 and 6 contains discussion, future work, and conclusion.  
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2 Background 
 

2.1 Theoretical Models 
 

There are different wave impact models that can be used to predict the slamming load on 

offshore structures. Von Karman`s method is one of the most common theoretical models to 

investigate the impact force on slender cylinders (von Karman, 1929). The von Karman method 

is stating that the cylinder is approximated by a flat plate, where the width of the flat plate is 

equal to the immersed width of the cylinder. The impact force is calculated by integrating the 

force over the impact area height. The effect that von Karman didn’t consider was the pile-up 

effect, which Wagner (1932) explained as the water surface “pile-up” along the pile surface of 

the structure. Wagner´s model includes the pile-up effect, which increases the slamming 

coefficient and thereby the impact force. Later Goda et al. (1966) implemented the von Karman 

method to calculate impact forces acting on the vertical cylinder and predicted the time history 

of the impact force using this method. The von Karman method is also implemented by 

Tanimoto et al. (1987) with the assumption that the force distribution has a triangular shape 

along the pile. Wienke & Oumeraci (2005) presented a theoretical model where the wave load 

is divided into a dynamic and a quasi-static component and the peak pressure is based on the 

Wagner theory. 

 

Figure 2.1 Inline force comparison (Wienke & Oumeraci, 2005) 

 

Cointe & Armand (1987) considered a parabolic shape of the body to predict the immersed 

width of the cylinder, where the decrease of the impact force with time is slower than the one 

Fabula (1957) predicted, which is approximated by the body of an elliptical shape. 
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2.2 Numerical Simulations 
 

Christensen, Bredmose and Hansen (2005) numerically analyzed the wave forces and wave run-

up on offshore wind turbine foundations with the use of Navier Stokes solver. They compared 

the results from the Navier Stokes solver with the wave force and wave run-up estimated by 

Kriebel (1992) and Kriebel (1998), and the comparison showed good agreement.  

Bredmose & Jacobsen (2010) used the numerical model called OpenFOAM to investigate the 

wave impact from well-developed breaking waves to less developed breaking waves on 

offshore wind turbines. The in-line force obtained from the computational fluid dynamic (CFD) 

model was then compared to estimations determined from the Morison equation, with varying 

focus points for the wave group.  

 

Wu et al. (1994) used the Volume of Fluid (VOF) concept to numerically simulate the impact 

load on a vertical wall without entrapped air pocket. There were also numerical simulations 

implementing entrapped air without qualitatively reliable results, due to the models lack of 

ability to account for the incompressible flow. Mokrani et al. (2010) used a combination of 

Navier stokes equation and VOF concept called NS-VOF to numerically simulate impact force 

from plunging waves breaking in front of a vertical wall. Corte and Grilli (2006) modeled the 

pressure impact from extreme waves acting on a circular structure with the use of Finite Volume 

– Volume of Fluid approach (FV-VOF) for two-phase flow (water and air). Nielsen et al. (2008) 

numerically tested three-dimensional (3D) wave run-up with the fully non-linear NS-VOF 

model and compared the results with a physical test model with the same conditions. Bredmose 

& Jacobsen (2011) computed the breaking wave impact and the run-up flow on a vertical 

structure using the VOF method. They also computed the impact from vertical run-up on a 

monopile for different platform levels.  

 

Hildebrandt and Sriram (2014) investigated the effects of the vortex and pressure impulse on a 

cylinder by using a numerical model that is based on the weak coupling of Fully Nonlinear 

potential flow theory (FNPT), ANSYS-CFX and Finite Element Method (FEM). The pressure 

impulse was estimated on the outside of the cylinder for various heights and compared to the 

experimental results with good agreement. Investigations were conducted by Chen et al. (2014) 

on the performance of OpenFOAM when applied to non-linear waves interacting with offshore 

structures. Based on comparisons with Danish Hydraulic Institute`s (DHI) physical 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

experiments, the OpenFOAM showed good capabilities of solving the non-linear waves 

interacting with offshore structures. 

 

Devolder et al (2017) applied OpenFOAM to investigate a monopile inside a numerical wave 

flume subjected to wave run-up in regular waves. In order to best simulate the flow around the 

monopile, they also applied the buoyancy modified disturbance model, kω-SST, which 

prevented the wave height to decrease excessively over the wave flumes length. The results of 

the wave run-up showed agreement with the analytical formulations and the experimental data. 

Veic and Sulisz (2018) analyzed the pressure distribution for two breaking wave cases with the 

use of a combined numerical model of potential flow and Navier-Stokes/VOF solution. The 

difference for the two generated waves were the steepness of the wave front. The pressure 

increases significantly under the overturning wave jet, which results in peak impact pressure in 

this region with a slamming coefficient of Cs=2π. The peak impact pressure is detected to be 

four times higher than at the beginning of impact. 

 

 

2.3 Experimental Models 
 

The study conducted by Goda et al. (1966) focused on the impact forces on triangular and 

circular vertical cylinders. They presumed that the change in the water mass momentum caused 

by a vertical wave front led to the increase in the impact force. However, they did not take into 

account the impact force rising time. The experiments conducted by Sawaragi & Nochino 

(1984) discovered that the impact force of a breaking wave can rise as the wave front changes 

its shape. It also affects the magnitude of the impact force depending on the breaking pattern 

and breaking point of the wave. They found that the vertical distribution's peak values are 

triangular shaped which appears at the height of around 70% of the wave crest (Chella et al. 

2012). They then calculated the total force by taking into account the impact force, Morison 

force, and static pressure. The difference in water level at the cylinder between seaward and 

leeward caused the static pressure. It was noted that the biggest value of the force is seven times 

greater than that of the Morisons force. For the estimation of both the inertia and drag 

coefficient, the difference in phase between inertia force and the water particle acceleration 

needs to be considered. 

 

 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

Previous tests that have been performed on small scale cylinders with diameters ranging from 

5-10 cm. Wienke & Oumeraci (2005) carried out tests on larger scale cylinders in a wave flume 

with a water depth varying between 4 m and 4.25 m. The generated wave height was up to 2.8 

m, impacting a steel cylinder with a diameter of 0.7 m installed on the bottom of the flume. 

They discovered that the effect from pile-up affects the magnitude and duration of the impact 

force. It was also noted that the distance from the cylinder to the breaking wave influences the 

magnitude of the impact force. The impact force is also proportional to the curling factor which 

is affected by the breaker front inclination angle and the cylinders inclination angle. 

 

 

2.4 Pressure Impulse Model 
 

The design process for offshore structures involves the calculation of the slamming force of 

wave impacts. Engineering models are commonly used for this process. These models take into 

account the various factors that affect the peak pressure of the impact, such as Wienke & 

Oumeraci (2005) and Campbell & Weinberg (1980). The force impulse model developed by 

Wienke & Oumeraci is overpredicted by around 190%. This is mainly due to the time span and 

maximum force magnitude that are predicted. The time integrated force impulse can be used to 

predict the response of an object after it has been impacted. Usually, the impact's duration is 

very short.  

 

Based on the existing model of Cooker & Peregrine (1995), Ghadirian & Bredmose (2019) 

developed a pressure impulse model for waves impacting vertical surfaces and cylinders. The 

model takes into account the primary reaction due to the force impulse theory, instead of the 

peak force value. Depending on the characteristics of the impact, the peak pressure of an 

impulse can vary significantly. This variability can be caused by the momentum conservation. 

The time integral of the pressure, on the other hand, can show a smaller variability. The time-

integrated force impulse can be used to predict the response of a structure after it has been hit 

for a short duration. The pressure impulse theory can also be used in this situation to derive the 

spatial distribution of the force over the structure. The model is derived from a simple geometry 

and has several effective parameters, such as the cylinder radius, impact height, and crest length. 

The maximum angle of impact, which is free, is the parameter that can be used to produce the 

right force impulse. 
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2.5 DNVGL and IEC Standards 
 

2.5.1 IEC 61400-3 

 

There are different guidelines to calculating the breaking wave load on vertical cylindrical 

structures. IEC 61400-3 (2009) guidance to calculate hydrodynamic loads states that the 

hydrodynamic loads can be classified as viscous drag load, inertia loading and slap and slam 

loading. The viscous drag load is associated with the vertices created in the flow passing the 

structure, where the viscous drag force is proportional to the square of the incoming fluid 

velocity. The inertia loading acting on the structure is caused by interaction between the 

structure and the accelerating incoming fluid, also the pressure gradient in the fluid affects the 

inertia loading. Slap and slam loading is defined as two different components where the slam 

load occurs when a wave passes a horizontal structure, and the structure is engulfed by the 

passing wave. The slap loading component is associated with the loads created by breaking 

waves acting perpendicular to the wave direction.  

 

IEC 61400-3 (2009) states that the Morison (1953) equation is the preferred calculation method 

for estimating the inertia load and viscous drag load acting on a vertical structure. The condition 

for this statement is that the structure must be small compared to the wavelength and therefor 

the water particle motions can be seen as only locally affected by the structure. The force acting 

on the vertical structure can then be determined from the drag and inertia terms for non-breaking 

waves. When calculating the breaking wave force the IEC standard adds a third term called the 

slap and slam load. The calculation of the slamming load, also called impact load suggested in 

IEC 61400-3 (2009) is Wienke & Oumeraci`s model (2005) based on Wagner (1932) theory. 

This model improves the approximation of the wetted surface of the cylinder by applying a 

polynomial stepwise function for circular shaped cylinders. When the impact is at an angle the 

model suggest that the shape of the body needs to be considered as an elliptical shape instead 

of a circular shape. 
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2.5.2 DNVGL-RP-C205, DNVGL-ST-0437 and DNV-OS-J101 

 

There are different DNVGL standards which mentions and explain the non-breaking and 

breaking wave forces acting on a monopile. DNVGL-RP-C205 (2017) presents recommended 

practices and guidelines for environmental conditions and environmental loads, where this 

standard gives an insight into both breaking wave loads, and non-breaking wave loads for 

different structures at sea. DNVGL-ST-0437 (2016) contain principles, requirements and 

guidance for load and site conditions for wind turbines, where this standard gives guidance on 

non-breaking wave loads and refers to the DNVGL-RP-C205 (2017) for the guidance on 

calculating breaking wave loads in section 4, calculation of loads. DNV-OS-J101 (2014) 

provides principles and guidance on the design of offshore wind turbine structures, where the 

wave loads generated both from breaking and non-breaking waves are thorough explained in 

chapter 4, loads and load effects.  

 

The DNVGL-RP-C205 (2017), DNVGL-ST-0437 (2016) and DNV-OS-J101 (2014) standards 

all states that the Morison equation is the formula that is preferred for calculating inertia and 

drag loads in waves acting on a cylinder structure, with the requirement that the dimension of 

the structure is small compared to the wavelength. The condition set for this requirement is 𝐷 <

0,2𝜆, where 𝜆 is the wavelength and D is diameter of the monopile. These standards states that 

the inertia force is proportional to the horizontal water particle acceleration, and the drag force 

is proportional to the square of the horizontal water particle velocity. DNVGL-RP-C205 (2017) 

and DNVGL-ST-0437 (2016) describes the procedure to calculate the shock pressure from 

breaking wave impact acting on a vertical surface. The impacting force is proportional to the 

square of the impact velocity, which is 1.2 times the phase velocity of the highest breaking 

wave. The duration of the impact force from breaking waves are defined as short duration high 

impact where the wave is a plunging wave breaking in front of the monopile.  
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3 Mathematical Formulation 
 

3.1 Definition of Breaking Waves 
 

When a wave gains more energy the breaking of the wave is initiated, the wave then becomes 

unstable. The wave systems energy is focused on the crest of the wave during the breaking 

process of the wave. Waves breaking on site may occur depending on steepness, wave height, 

seabed slope, wave period and water depth. Breaking of waves can be classified in different 

forms such as plunging, surging, spilling, and collapsing, where collapsing is a combination of 

surging and plunging. According to DNVGL-ST-0437 (2016) the occurring types of breaking 

waves can be defined mathematically as follows:  

 

 𝛽 =
𝐻𝑏
𝑔𝑇2𝑚

 (3.1) 

 

Where:  

𝐻𝑏 – Wave height at breaking  

𝑚 – Beach slope  

𝑇 – Wave period  

𝑔 – Gravitational acceleration 

 

- Spilling breakers are characterized by foam spilling from the crest down on the forward 

face of the wave. These types of breaking waves occur on beach slopes or in deep water. 

Usually spilling breakers form when 𝛽 > 5. 

 

- Plunging breakers are characterized by a well-defined jet of water forming from the 

crest and falling onto the water surface ahead of the crest. The plunging breakers occur 

on moderately steep beach slopes, when 0,1 < 𝛽 < 5. 

 

- Surging breakers are characterized by foam forming near the beach surface, where these 

types of breakers occur on relatively steep beaches. The surging breakers form when 

𝛽 < 0,1. 

 

- The collapsing breakers are characterized by the wave foams lower down the forward 

face of the wave. These collapsing breakers are formed when 𝛽 ~ 0,1. 
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Plunging and spilling breakers have a tendency of creating higher impulse loads and higher 

pressure, which gives these types of breakers a greater importance than the other conditions.  

 

3.2 Inertia and Drag Force 
 

Morison Equation is often used to calculate the non-breaking wave force on slender piles, where 

the equation is the sum of inertia and drag force. According to Wienke & Oumeraci (2005), the 

inertia force depends on the acceleration of the water particles and the drag force depends on 

the square of the water particle velocity. The coefficient of inertia 𝐶𝑀 and coefficient of drag 

𝐶𝐷 are empirically determined from Roughness number, Keulegan-Carpenter number and 

Reynolds number. 

 

The Morrison equation is given as follows:  

 

 𝐹𝑇𝑜𝑡𝑎𝑙 = 𝐹𝐷 + 𝐹𝐼 (3.2) 

 

 𝐹𝐷 = ∫
1

2
 𝜌 𝐶𝐷 𝐷 𝑢(𝑧, 𝑡) |𝑢(𝑧, 𝑡)| 𝑑𝑧 

0

−𝑑

 (3.3) 

 

 𝐹𝐼 = ∫  𝜌 𝐶𝑀  
𝜋 𝐷2

4
 �̇�(𝑧, 𝑡)

0

−𝑑

𝑑𝑧 (3.4) 

 

 

Where:  

𝐹𝐷 – Drag force 

𝐹𝐼 – Inertia force  

𝐶𝐷 – Drag coefficient 

𝐶𝑀 – Inertia coefficient 

𝜌 – Mass density of water 

D – Pile diameter 

𝑢 – Water particle velocity 

�̇� – Water particle acceleration 
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When comparing the results from the pressure impulse model to realistic wave impact 

Ghadirian & Bredmose (2019) used a sea state of 𝐻𝑠 = 9.5 𝑚 and 𝑇𝑝 = 12 𝑠, with a water depth 

of 33 m and a cylinder diameter of 7 m. Calculating the total force from the Morison equation, 

there are some parameters that need to be defined. When calculating the wavelength, the given 

parameters of the sea state was not sufficient. In finite water depth the wavelength, 𝜆, is 

determined by the transcendental equation mentioned in DNV-OS-J101 (2014). The 

wavelength was calculated by using the solver function in Excel. The wave number, k, is 

defined as number of radians per unit distance where the distance is the wavelength and the 

frequency equal to 2𝜋. The value, z, is the depth below still water level (SWL) measured 

negatively downwards. Angular wave frequency, 𝜔, is the angular displacement of the wave 

per unit time, where the time is the wave period. 

 

 

 𝜆 =
𝑔𝑇2

2𝜋
tanh (

2𝜋𝑑

𝜆
) (3.5) 

 

 𝑘 =  
2𝜋

𝜆
 (3.6) 

 

 𝜔 =
2𝜋

𝑇
 (3.7) 

 

 𝜃 = 𝑘𝑥 − 𝜔𝑡 (3.8) 

 

 

Where: 

𝜆 – Wavelength 

𝑘 – Wave number 

𝑇 – Wave period 

d – Water depth 

𝜔 – Angular wave frequency 

g – Gravitational acceleration 
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To utilize the Morison equation, the horizontal water particle velocity and acceleration must be 

defined. In DNVGL-RP-C205 (2017) these values are computed using the Airy wave theory: 

 

 𝑢 =
𝜋𝐻

𝑇

cosh[𝑘(𝑧 + 𝑑)]

sinh(𝑘𝑑)
cos 𝜃 (3.9) 

 

 �̇� =
2𝜋2𝐻

𝑇2
cosh[𝑘(𝑧 + 𝑑)]

sinh(𝑘𝑑)
sin 𝜃 (3.10) 

 

Where: 

H – Significant wave height 

z – Depth below SWL 

 

When a vertical cylinder is exposed to drag and inertia force due to waves, the horizontal 

velocity and acceleration will change both in z-direction (vertically) and in time. When 

evaluating the force, with the use of Morison`s equation, of a small section of the cylinder at 

each depth and then summarized over the length of the submerged cylinder to get the total force.  

 

 𝑑𝐹𝐷(𝑧, 𝑡) = ∑
1

2
 𝜌 𝐶𝐷 𝐷 𝑢(𝑧, 𝑡) |𝑢(𝑧, 𝑡)| 𝑑𝑧

𝑧 = 0

𝑧 = −𝑑

 (3.11) 

 

 𝑑𝐹𝐼(𝑧, 𝑡) = ∑  𝜌 𝐶𝑀  
𝜋 𝐷2

4
�̇�(𝑧, 𝑡) 𝑑𝑧

𝑧 = 0

𝑧 = −𝑑

 (3.12) 

 

One of the problems with using the Morison's equation is the uncertainty and scatter in values 

of the drag and inertia coefficients. There is a degree of correlation between the Reynolds 

number, the Keulegan-Carpenter number and the coefficients, but the scatter and uncertainty 

still remain. There have been many experiments to measure the drag and inertia coefficient 

values for different flows, but these results must be used with caution when applied in wave 

force prediction. The most useful estimations have been related to full-scale model experiments 

at ocean sites. Ghadirian & Bredmose (2019) used a drag coefficient of  𝐶𝐷 = 1.0, and inertia 

coefficient of  𝐶𝑀 = 1.79 by applying recommended practices for smooth steel cylinders.  
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3.2.1 Definition of Drag and Inertia Coefficient 

 

The drag coefficient is determined from the function of the Reynolds number, Re, and the 

cylinder surface roughness, k. Increased k value results in increase of the drag coefficient and 

resulting in increased drag force. The Reynolds number is dimensionless and is given by the 

following formula:  

 

 𝑅𝑒 =
𝑢𝐷

𝜈
 (3.13) 

 

Here, D is the cylinders diameter, 𝜈 is the kinematic viscosity of the water and u is the velocity 

of the horizontal water particle. Since the velocity changes with depth, the drag coefficient also 

changes with depth. This is normally not practices, instead one drag coefficient is determined 

for the whole length of the structure.  Figure 3.1 shows that the drag coefficient, Cd, changes 

with different roughness, k, and Reynolds number, Re.  

 
Figure 3.1 Drag coefficient for fixed circular cylinder for steady flow in critical flow regime, 

for various roughnesses (DNVGL-RP-C205, 2017) 

 

The Keulegan-Carpenter number is a parameter that can be used to determine the magnitude of 

the wave forces, and is calculated by the following formula at still water level:  

 

 KC =  
𝜋𝐻

𝐷
  (3.14) 
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Where D is the cylinder diameter and H is the wave height. When the KC number is low, which 

is typical for large diameter cylinders or a slow flow past the cylinder, the mass term is 

dominant. For large KC numbers the flow past the structure is rapid or small diameter cylinder, 

and the drag term will be dominant. 

 
Figure 3.2 Mass coefficient as function of KC number for smooth (Solid line) and rough 

(Dotted line) cylinder (DNVGL-RP-C205, 2017) 

 

The inertia coefficient is related to the KC number and the roughness, k, of the cylinder surface. 

The inertia coefficient is independent for KC values below 3, 𝐾𝐶 < 3, and the inertia 

coefficient can be taken as, 𝐶𝑀 = 2,0 for both rough and smooth cylinders. For KC values 

above 3, 𝐾𝐶 > 3, the inertia coefficient is determined from the following formula:  

 

 𝐶𝑀 = 𝑚𝑎𝑥 {
2 − 0.044(𝐾𝐶 − 3)

1.6 − (𝐶𝐷𝑆 − 0,65)
 (3.15) 

 

Where 𝐶𝐷𝑆 is the value of roughness with 𝐶𝐷𝑆 = 0,65 for smooth cylinders and 𝐶𝐷𝑆 = 1,05 is 

the value for rough cylinders. Intermediate roughness is decided with linear interpolation 

between the curves for smooth and rough surface cylinders.  

 

For large KC-numbers, the dominant force is the drag compared to inertia, and the inertia 

coefficient, 𝐶𝑀, for large KC numbers are:  
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 𝐶𝑀 = {
1.6 𝑓𝑜𝑟 𝑠𝑚𝑜𝑜𝑡ℎ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠
1.2 𝑓𝑜𝑟 𝑟𝑜𝑢𝑔ℎ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠

 (3.16) 

 

 

 

3.3 Slamming Force 
 

When calculating the total wave force on a vertical cylinder caused by a breaking wave, a 

common engineering practice is to add the slamming force to the Morrison equation. The 

slamming force is an impact force which implies that the wave breaks against the structure. The 

slamming force is added to the Morrison equation, and is expressed in the most general case as 

follows:  

 

 𝐹𝑇𝑜𝑡𝑎𝑙 = 𝐹𝐷 + 𝐹𝐼 + 𝐹𝑆 (3.17) 

 

 𝐹𝑆 =  𝜆 𝜂𝑏 𝜌𝑤  𝑅 𝐶𝑏
2 𝐶𝑠 (3.18) 

 

Where:  

𝐹𝑆 – Slamming force 

𝐶𝑠 – Slamming force factor 

𝐶𝑏 – Breaking wave celerity 

𝜆 – Curling factor 

𝜂𝑏 – Max free surface elevation 

𝑅 – Radius of the cylinder 

𝜌𝑤 – Density of water  
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Figure 3.3: Nature of the slamming force (Chella et al., 2012) 

 

3.3.1 Wagner and von Karman`s Theory 

 

For circular and hollow cylinders, the water is acting like an even surface hitting an even plate. 

Von Karman was one of the first to investigate the impact force on a cylinder, where a flat plate 

with the width of the immersed width of the cylinder and integrating the force over the height 

of the impact area results the impact force (Chella et al., 2016). 

 

Von Karman`s formulation of mass flow against a flat plate account for the added 

hydrodynamic mass. Wagner`s formulation also considers the pile-up effect which is a result 

of the flow on the sides of the flat plate, also described as misshaping of the water free surface. 

The pile-up effect will decrease the time interval of the impact and increase the slamming force. 

 
Figure 3.4: Von Karman`s formulation (Wienke & Oumeraci 2005) 
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The slamming coefficient 𝐶𝑆, also referred to as maximum line force is according to Von 

Karman 𝐶𝑆 = 𝜋, and according to Wagner the slamming coefficient is, 𝐶𝑆 = 2𝜋.  

 
Figure 3.5: Wagner`s formulation (Wienke & Oumeraci, 2005) 

 

3.3.2 IEC Standard - Wienke and Oumeraci`s Model 

 

Wienke & Oumeraci (2005) is the preferred theoretical model used in IEC 61400-3 (2009) and 

implements the Wagner theory for the theoretical calculation of the peak pressure. Applying a 

potential flow model and neglecting the force created by gravity as well as the surface tension, 

Wienke & Oumeraci (2005) created a new analytical model to determine the impulse force. The 

impact force on piles is usually estimated using Goda et al. (1966) approach:  

 

𝐹𝑆 =  𝜆 𝜂𝑏 𝜌𝑤  𝑅 𝐶𝑏
2 𝐶𝑠 

 

 𝐶𝑠 = 2𝜋 (1 −
𝐶𝑏
𝑅
𝑡) (3.19) 

 

The height of the impact area is expressed as 𝜆 ∗ 𝜂𝑏 , where 𝜂𝑏 is the wave elevation at the 

breaking point, and 𝜆 is the curling factor that express the magnitude of the wave crest active 

in the slamming load. The distribution of the slamming force is equally along the height of the 

impact area so that the expression of the impact becomes:  

 

 𝐹𝑆 = 𝜌𝑤  𝑅 𝐶𝑏
2 2𝜋 (1 −

𝐶𝑏
𝑅
𝑡) (3.20) 
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Figure 3.6: Impact force on circular cylinder (Wienke & Oumeraci, 2005) 

The maximum slamming force is expressed in the starting phase of the impact from the wave, 

so t is set equal to zero which corresponds to the presumptions made by von Karman, t=0 and 

the expression becomes:  

 

 𝐹𝑆 = 𝜌𝑤  𝑅 𝐶𝑏
2 2𝜋 (3.21) 

 

When calculating the impact force during the total duration of the impact both IEC 61400-3 

(2009) and Wienke & Oumeraci (2005) states that the force normal to the cylinder axis is 

expressed as:  

 𝐹𝑆 = 𝜆𝜂𝑏𝜌𝑤𝑅𝐶𝑏
2  (2𝜋 − 2√

𝐶𝑏
𝑅
𝑡 (tanh−1√1 −

𝐶𝑏
2𝐷
𝑡)) (3.22) 

 

For 0 ≤ 𝑡 ≤
𝑅

8𝐶𝑏
 

 

 𝐹𝑆 = 𝜆𝜂𝑏𝜌𝑤𝑅𝐶𝑏
2  

(

 
 
𝜋√

𝑅

6𝐶𝑏𝑡𝑠´
− √

8

3

𝐶𝑏
𝑅
𝑡𝑠´

4

tanh−1√1 −
𝐶𝑏
𝑅
𝑡𝑠´√

6𝐶𝑏
𝑅
𝑡𝑠´

)

 
 

 (3.23) 

 

For 
𝑅

8𝐶𝑏
≤ 𝑡𝑠

` ≤
13𝑅

32𝐶𝑏
, where 𝑡𝑠

´ = 𝑡 −
𝑅

32𝐶𝑏
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Where the total impact duration, also called total slam duration is expressed as: 

 

 𝑇 =
13 𝑅

32 𝐶𝑏
 (3.24) 

 

3.3.3 DNVGL Standard - Campbell and Weynberg`s Model 

 

The maximum slamming force on a vertical circular cylinder can be predicted according to 

DNVGL-RP-C205 (2017) by applying Campbell & Weynberg`s (1980) model: 

 

 𝐹𝑆 =
1

2
𝜌𝑤𝐴𝑒𝑥𝑝𝑜𝑠𝑒𝑑𝐶𝑏

2 (5.15 [
𝐷

𝐷 + 19𝐶𝑏𝑡
+
0.107𝐶𝑏𝑡

𝐷
]) (3.25) 

 

For undisturbed waves the phase velocity is expressed as: 

 

 𝐶 = √
𝑔

𝑘
∗ tanh(𝑘𝑑) (3.26) 

 

Impact velocity for undisturbed waves is expressed as phase velocity of the most probable 

highest wave times 1,2 as shown below: 

 

 𝐶𝑏 = 1,2 ∗ 𝐶 (3.27) 

 

Total duration of the impact for a plunging wave breaking in front of the structure may be 

taken as: 

 𝑇 =
𝐷

𝐶𝑏
 (3.28) 
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The area exposed to impact pressure can be taken as 0,25 times the most probable highest 

breaking wave, and a width with a sector of 45 degrees as shown in figure 3.5. The most 

probable largest breaking wave height can be expressed as 1,4 times the most probable largest 

significant wave height.  

 

 𝐴𝑒𝑥𝑝𝑜𝑠𝑒𝑑 =
𝐷𝜋

8

𝐻𝑏
4

 (3.29) 

 

 𝐻𝑏 = 1,4 ∗ 𝐻𝑠 (3.30) 

 

 
Figure 3.7 Area exposed to shock pressure (DNVGL-RP-C205, 2017) 
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3.4 Pressure Impulse Method 
 

To calculate the pressure impulse for a slamming wave on a vertical wall the following 

equation is used:  

 

 
𝑃

𝜌𝑈𝐻
(
𝑥

𝐻
,
𝑦

𝑊
,
𝑧

𝐻
) = 𝑓 (

𝑏

𝐻
, 𝜇,
𝑊

𝐻
) (3.31) 

 

 
Figure 3.8 Definition sketch for 3D block impact on a vertical wall.  

(Ghadirian & Bredmose, 2019) 

 

Where:  

𝑏

𝐻
 – Relative length of the block 

𝜇 – Relative height of the impacting zone 

𝑊

𝐻
 – Relative width of the block 

 

The vertical wall is the simplest shape of a structure to analyze the impacting pressure impulse, 

where the water is in contact with the wall at −𝐻 ≤ 𝑧 ≤ −𝜇𝐻 and the wave hits the wall in the 

−𝜇𝐻 ≤ 𝑧 ≤ 0 region. The location of the vertical wall is at x = 0. The region of the width is 

expressed as 0 ≤ 𝑥 ≤ 𝑏, and the region of the depth is expressed as −𝑊 ≤ 𝑦 ≤ 𝑊.  
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Using Fourier series and separation of variables the Laplace equation is solved, and can be 

written as:  

 

 𝑃(𝑥, 𝑦, 𝑧) = ∑∑

(

 
 
 
 

𝐴𝑚𝑛 cos (
𝐿𝑚𝑦

𝑊
)sin (𝑘𝑛

𝑧

𝐻
)

sinh (√𝐿𝑚2 (
𝐻
𝑊)

2

+ 𝑘𝑛2 (
𝑏
𝐻 −

𝑥
𝐻))

cosh(√𝐿𝑚2 (
𝐻
𝑊)

2

+ 𝑘𝑛2
𝑏
𝐻)

)

 
 
 
 ∞

𝑛=1

∞

𝑚=1

 (3.32) 

 

Where 𝐿𝑚 = (𝑚 − 1 2⁄ )𝜋, 𝑘𝑛 = (𝑛 − 1 2⁄ )𝜋 and  

 

 
𝐴𝑚𝑛 = 4𝜌𝑈𝐻

(cos(𝑘𝑛𝜇) − 1) sin(𝐿𝑚)

𝑘𝑛𝐿𝑚√𝐿𝑚2 (
𝐻
𝑊)

2

+ 𝑘𝑛2

 
(3.33) 

 

To calculate the pressure impulse from axisymmetric impact for a slamming wave on a vertical 

cylinder the following equation is used:  

 

 
𝑃

𝜌𝑈𝐻
(
𝑟

𝐻
,
𝑧

𝐻
) = 𝑓 (

𝑏

𝐻
, 𝜇,
𝑎

𝑏
) (3.34) 

 

 

Figure 3.9 Definition sketch for axisymmetric impact on a vertical cylinder. 

(Ghadirian & Bredmose, 2019) 
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Where:  

𝑏

𝐻
 – Relative length of the impacting wave 

𝜇 – Relative height of the impacting zone 

𝑎

𝑏
 – Relative inner radius  

 

The water height on the cylinder structure is the same as for the vertical wall, where the water 

is in contact with the cylinder at −𝐻 ≤ 𝑧 ≤ −𝜇𝐻 and the wave hits the cylinder in the −𝜇𝐻 ≤

𝑧 ≤ 0 region. The outer radius of the fluid impacting the cylinder is expressed as b, and the 

radius of the actual cylinder is expressed as a.  

 

The cylindrical coordinate system is used to solve the Laplace equation as follows:  

 

 𝑃 =∑(𝐴𝑛
𝐼0 (𝑘𝑛

𝑟
𝐻) + 𝛼𝑛𝐾0 (𝑘𝑛

𝑟
𝐻)

𝜕𝑟 (𝐼0 (𝑘𝑛
𝑟
𝐻
) + 𝛼𝑛𝐾0 (𝑘𝑛

𝑟
𝐻
))
𝑟=𝑎

sin (𝑘𝑛
𝑧

𝐻
))

∞

𝑛=1

 (3.35) 

 

Where 𝑘𝑛 = (𝑛 − 1 2⁄ )𝜋, the partial derivative is expressed as 𝜕𝑟 with respect to r, 𝐼0 and 𝐾0 

are the first and second kind modified Bessel function of zeroth order and  

 

 𝐴𝑚𝑛 = 2𝜌𝑈
1 − cos(𝑘𝑛𝜇)

𝑘𝑛
 (3.36) 

 

To calculate the pressure impulse for a slamming wave on a vertical cylinder the following 

equation is used:  

 

 
𝑃

𝜌𝑈𝐻
(
𝑟

𝐻
, 𝜃,
𝑧

𝐻
) = 𝑓 (

𝑏

𝐻
, 𝜇,
𝑎

𝑏
, 𝜃𝑚𝑎𝑥) (3.37) 
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Figure 3.10: Definition sketch for wedge-shaped 3D impact on a vertical cylinder.  

(Ghadirian & Bredmose, 2019) 

 

Where:  

𝑏

𝐻
 – Relative length of the impacting wave 

𝜇 – Relative height of the impacting zone 

𝑎

𝑏
 – Relative inner radius  

𝜃𝑚𝑎𝑥 – Azimuthal angle limit 

 

For the vertical cylinder the fluid in the azimuthal direction is wedge shaped, as shown in the 

figure above the limits are set to −𝜃𝑚𝑎𝑥 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥. The fluid is in contact with the cylinder 

in the lower part −𝐻 ≤ 𝑧 ≤ −𝜇𝐻, while the impact force on the cylinder is acting on the upper 

part −𝜇𝐻 ≤ 𝑧 ≤ 0 with a velocity of 𝑈 cos(𝜃) working in negative radial direction.  

 

The Laplace equation is used to calculate the impact on the cylinder with azimuth limits in the 

cylindrical coordinate system as follows:  

 

 𝑃 = ∑∑(𝐴𝑚𝑛 cos (
𝐿𝑚𝜃

𝜃𝑚𝑎𝑥
)sin (𝑘𝑛

𝑧

𝐻
)

𝐼𝑞𝑚 (𝑘𝑛
𝑟
𝐻) + 𝛼𝑚𝑛𝐾𝑞𝑚 (𝑘𝑛

𝑟
𝐻)

𝜕𝑟 (𝐼𝑞𝑚 (𝑘𝑛
𝑟
𝐻) + 𝛼𝑚𝑛𝐾𝑞𝑚 (𝑘𝑛

𝑟
𝐻))

𝑟=𝑎

)

∞

𝑛=1

∞

𝑚=1

 (3.38) 
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Where 𝐿𝑚 = (𝑚 − 1 2⁄ )𝜋, 𝑘𝑛 = (𝑛 − 1 2⁄ )𝜋 and 𝑞𝑚 = 𝐿𝑚 𝜃𝑚𝑎𝑥⁄  is the order of the Bessel 

functions. Further 𝛼𝑚𝑛 is chosen such that 𝑃 = 0 at 𝑟 = 𝑏, 

 

 𝛼𝑚𝑛 =
−𝐼𝑞𝑚 (𝑘𝑛

𝑏
𝐻)

𝐾𝑞𝑚 (𝑘𝑛
𝑏
𝐻)

 (3.39) 

 

And,  

 𝐴𝑚𝑛 =
2𝜌𝑈

𝜃𝑚𝑎𝑥
 
1 − cos(𝑘𝑛𝜇)

𝑘𝑛
∫ cos(𝜃)  cos (

𝐿𝑚𝜃

𝜃𝑚𝑎𝑥
)  𝑑𝜃 𝑑𝑧

𝜃𝑚𝑎𝑥

−𝜃𝑚𝑎𝑥

 (3.40) 
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4 Results and Analysis 
 

4.1 MATLAB Results 
 

This section presents the analysis of the pressure impulse model. The mathematical problem 

related to the pressure impulse model was executed using MATLAB, with the intention of 

reproducing the same results as the ones in Ghadirian & Bredmose (2019). The MATLAB m-

file were written as an equation with boundary conditions, with the intention of producing the 

converged solution with all boundary conditions satisfied. The results achieved are in great 

agreement with the previous studies. In order to achieve the best mathematical guess on 

calculating wave load problems, a mathematical technique needs to be decided. The issue must 

be identified, numerically demonstrated, and solved using software. There are considerations 

that must be taken when deciding on the most suitable techniques for solving the issues which 

are performance, accuracy and the computational limit required. The computational model 

results from the numerical problems that consider the limits and administering conditions. 

Discretization is the main difference between these strategies. 

 

The reliance on the length of the wave affected b/H is seen in figure 4.2 for a/H = 0.1, μ = 0.5, 

θ = 0 and θmax = π/4. The increasing pressure impulse grows in all heights as b/H increases up 

to 0.35 and then stays unaltered. This suggest that the expansion of b/H shows an asymptotic 

behavior. Cooker & Peregrine (1995) observed the same asymptotic conduct for the 2D plate 

flat case. The impact height reliance is investigated in figure 4.1. The values of a/H, μ and θmax 

are the same as in figure 4.3 and a width of b/H = 0.3 is utilized. The peak of the pressure 

impulse drops as expected with increase of μ, and results in pressure impulse expansion. The 

results from this figure are consistent with the ones in Cooker & Peregrine (1995). Figure 4.1 

examines the variation for different values of the inner radius a/b, for b/H = 0.3, μ = 0.5 and 

θmax = π/4. The pressure impulse increases as the inner radius increases until a/b = 0.5. For the 

case with axisymmetric impact the pressure impulse decreases similarly for values of the inner 

radius larger than a/b = 0.67. The pressure impulse increases when the area that absorbs the 

incident momentum increases due to increased radius. The volume of fluid that influences the 

cylinder decreases simultaneously. The greatest pressure impulse is generated inside the 

interval 0.5 < a/b < 0.7. The pressure impulse increases when the width of the area increases, 

due to the expansion of the volume of fluid V = (b2 − a2)θmaxμH as θmax increases. When the 

azimuthal angle limit increases the pressure impulse also rises until the limit of the azimuthal 

point is reached at θmax = π/2. 
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The results obtained using MATLAB were reproduced using a MATLAB script provided by 

Assoc. Prof. Charlotte Obhrai, to validate the results presented by Ghadirian & Bredmose 

(2019). The script provided were written for a vertical circular cylinder, with the parameters 

𝜇 = 0.5, 
𝑏

𝐻
= 1 and 

𝑊

𝐻
= 0.5. The results from the MATLAB script as shown below is in 

excellent agreement with the results from Ghadirian & Bredmose (2019).  

 

 
Figure 4.1: Dimensionless pressure impulse on the cylinder plotted as a function of z/H, at 

𝜃 = 0, for several values of a/b   

 

The relative inner radius, a/b is investigated in figure 4.1 where 𝜃𝑚𝑎𝑥 = 𝜋/4, 𝜇 = 0.5 and b/H 

= 0.3. When the relative inner radius is increasing up to 0.5, the pressure impulse also increases. 

The pressure impulse decreases for values of the inner radius larger then 0.67. As shown in this 

simulation, the radius is increasing, so when the value, a, increases the area on the cylinder that 

is impacted by the wave also increases. This results in an increasing pressure impulse. At the 

same time the volume of the impacting fluid decreases when the radius of the cylinder increases, 

this results in reaching a maximum in pressure impulse within the interval 0.5 < a/b < 0.7. 
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Figure 4.2: Dimensionless pressure impulse on the inner cylinder, at 𝜃 = 0, plotted as a 

function of z/H for several values of 𝑏/𝐻 

 

 

In figure 4.2 the relative length of the impacting wave b/H is investigated where 𝜃𝑚𝑎𝑥 = 𝜋/4, 

𝜃 = 0, 𝜇 = 0.5 and a/H = 0.1. The pressure impulse increases in all dimensions and stays 

unchanged afterwards for b/H increasing up to 0.35. This shows that the behavior when 

increasing b/H is asymptotic. 
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Figure 4.3: Dimensionless pressure impulse on the inner cylinder, at 𝜃 = 0, plotted as a 

function of z/H for several values of 𝜇 

 

 

The height of the impact zone is investigated in figure 4.3, where 𝜃𝑚𝑎𝑥 = 𝜋/4, 𝜇 = 0.5,  

 a/H = 0.1 and b/H = 0.3. When the relative height of the impacting zone increases, the peak of 

the pressure impulse drops down and results in increasing pressure impulse.  

 

The acting force impulse increases when the azimuthal limit grows up until π/2 where it peaks. 

The change in the pressure impulse with regard to θmax is homogeneous and robust. This 

parameter can be used to perform calibration for similar comparable cases. The models total 

pressure impulse can be analyzed up to the already established models of Goda et al. (1966) 

and Wienke & Oumeraci (2005). These models are respectively around 190% and 100% 

overestimated due to the predicted most extreme force and the time frame, which has been 

validated less significantly in prior studies (Ghadirian & Bredmose, 2019). 
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The model was validated against an actual wave impact. It takes into account the phase and 

direction of the selected waves sea state which is for a cylinder of a diameter of 7 m at a water 

depth of 33 m, with wave period Tp = 12 s and significant wave height Hs = 9.5 m. 

Computational fluid dynamics (CFD) results at scale 1 : 50 for this impact were presented by 

Ghadirian, Bredmose & Dixen (2016). Figure 4.4 shows the CFD model with the black line 

being the inline force without the slamming impulse, and the blue shaded region is the effect of 

the integrated impulse pressure on a cylinder structure. The time is normalized by R/C, and the 

force is normalized by 𝜌𝐶2𝑅2, where R is the radius of the circular cylinder, 𝜌 is the water 

density and C is the wave celerity. To isolate the contribution of the non-impacting parts of the 

wave to the force impulse, the pressure on the cylinder was taken out of the equation for all 

CFD results before the impact. The CFD model shows the impact pressure integrated over the 

duration of the impact (Ghadirian & Bredmose, 2019). 

 

 

Figure 4.4: Inline force time series with and without the slamming effect.  

(Ghadirian & Bredmose, 2019) 
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From the realistic sea state mentioned above, the pressure impulse model and the parameters 

are chosen to best compute the impulse pressure for the realistic sea state showed in figure 4.5. 

Here μ is determine based on the height of the breaking wave. Further b is selected as the length 

from center of the cylinder to the rear of the wave crest at still-water level. Consequently μ = 

0.12, a/b = 0.13, b/H = 0.64, a/H = 0.0832 and θ_max = 𝜋/4. The limits for the computed 

pressure impulse are z/Hmin = -1 and z/Hmax = 0, which is a description of the impacting zone, 

θmin = 0 and θmax = 0. The number of discretized points, Npoints = 331, which is the number 

of points the pressure impulse is computed over the impacting height. To compare the impact 

force from the pressure impulse model to the DNVGL and IEC models, the force impulse for 

each needs to be obtained. The force impulse from the pressure impulse model is determined 

by first de-normalizing the pressure impulse with 𝜌𝑈𝐻, where density of water (𝜌) and water 

depth (H) is known, and impact velocity is assumed to be 𝑈=𝜔𝐻 (Almeida & Hofland, 2020). 

Then, the pressure impulse is integrated over the height of the impact zone to obtain the force 

impulse. The force impulse, 𝐼𝑖𝑚𝑝, is estimated to be 𝐼𝑖𝑚𝑝= 141069 Ns for the pressure impulse 

model.  

 

 

Figure 4.5 Dimensionless pressure impulse at every discretized point for the realistic sea 

state 
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4.2 DNVGL & IEC Standards 
 

The sea state Ghadirian & Bredmose (2019) applied to validate the pressure impulse model 

against realistic wave impact was 𝐻𝑠 = 9.5 m and 𝑇𝑝 = 12 s, with a water depth of 33 m and a 

cylinder diameter of 7 m. The drag and inertia coefficients were also chosen to best compare 

the results from pressure impulse and realistic wave impact, in this case the drag coefficient, 

𝐶𝐷 = 1.0, and inertia coefficient, 𝐶𝑀 = 1.79. The wave celerity, the breaking wave velocity and 

the slam coefficient were not mentioned in Ghadirian & Bredmose (2019) description of the 

sea state, other than mentions of von Karman and Wagner`s theories with coefficients of 𝜋 and 

2𝜋. The drag, inertia and impact forces have been estimated numerically by using Excel, and 

the particular values for cylinder diameter, wave height, wave period and water depth. The 

wavelength is determined to 𝜆 = 182.1 m, the wave number k = 0.0345 rad/m and the angular 

wave frequency 𝜔 = 0.524 rad/s.  

 

4.2.1 Drag and Inertia Force Time Histories 

 

Based on the guidelines provided in IEC and DNVGL standards described in chapter 3.2, the 

drag and inertia force are determined for the relevant sea state with the use of Morison equation. 

The total force from the Morison equation is obtained by integrating the force acting over the 

height of the structure.  

 

 

 
Figure 4.6 Time series for the drag and inertia force.   
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In figure 4.6 the time history of the drag and inertia force are shown, with the maximum and 

minimum drag force occurring when inertia force is equal to zero and the maximum inertia 

force occurring when drag force is equal to zero. The inertia force is dominant compared to the 

drag force but not neglectable as seen if figure 4.7, and the difference is smaller due to the 

decision of reducing the inertia coefficient from 𝐶𝑀 = 2.0 to 𝐶𝑀 = 1.79 according to Ghadirian 

& Bredmose (2019). The impact force is added to the Morrison force in figure 4.8 and 4.9 for 

the two impact models presented in figure 4.11 and 4.12. The impact duration for the two 

models is 𝑇𝐼𝐸𝐶 = 0.08 s and 𝑇𝐷𝑁𝑉𝐺𝐿 = 0.4 s, which is easily seen as the short duration, high 

impact force in both models.  

 

 

 
Figure 4.7 Time series of the combined drag and inertia force (Morrison force). 

 

 

The time history of the inline force in figure 4.4 is more drag dominated than seen in the 

calculations for the Morison force, although the time histories are not necessarily comparable, 

the impulse pressure from the CFD model for the given sea state can be compared to the impulse 

pressure determined with the IEC and DNVGL models.  
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Figure 4.8 Total force time history with DNVGL impact force 

 

The IEC model estimates a higher impact force than the DNVGL model due to a higher 

slamming coefficient, and the duration of impact is significantly shorter. The impact force is 

added to the Morrison equation during its time of impact, and the singularity of the impact force 

at the start implies that the force increases instantaneously and therefor results in the 

discontinuity of the force time series.  

 

 

 
Figure 4.9 Total force time history with IEC impact force 
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4.2.2 Slam Coefficients Time Histories 

 

The slam coefficient is determined using guidelines presented in IEC 61400-3 (2009) and 

DNVGL-RP-C205 (2017). Figure 4.10 plots the slam coefficients time histories for the two 

slam coefficient models. The shape of these slam coefficient time histories indicates that 

Wienke & Oumeraci`s model has a higher maximum impulse over a shorter duration of time, 

and a step-by-step decrease of the coefficient due to different slam coefficient calculations for 

the first half and second half of the total duration of impact time. Campbell & Weynberg`s 

model has a longer duration of impact and a gradual decrease of the coefficient, but lower 

maximum impulse due to a lower slamming coefficient at start of impact 𝐶𝑠(0) = 5.15, where 

Wienke & Oumeraci`s coefficient at start of impact is 𝐶𝑠(0) = 2𝜋. Common for these slam 

coefficients is that the rise time of the development at t = 0 is infinitely short.  

 

 

 
 

Figure 4.10 Comparison of slam coefficient time histories. 
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4.2.3 Impact Force Time Histories 

 

The slam force is determined for the two coefficient models, where the force at impact varies 

due to the difference in duration of impact. The DNVGL model in figure 4.11 predicts a lower 

slam force at impact but has a higher post impact force due to a longer duration.  

 

 

Figure 4.11 Time history of the normalized DNVGL impact force. 

 

DNVGL-RP-C205 (2017) states that the impact height is 0.25 times the wave height at breaking 

(0.25*𝐻𝑏), and that the width is taken as a sector of 45 degrees. IEC 61400-3 (2009) states that 

the impact height is defined as curling factor times the maximum elevation of the free water 

surface (𝜂𝑏 ∗ 𝜆), and the width is taken as the radius of the cylinder. The difference in the impact 

area is not significant due to the similar values for both the height and the width of the two 

models.  

 

The force impulse for the IEC and DNVGL models are defined by integrating the impact force 

from the breaking wave over the impulse duration for each model. Where the impact duration 

for the two models is 𝑇𝐷𝑁𝑉𝐺𝐿 = 0.4 s and 𝑇𝐼𝐸𝐶 = 0.08 s. The force impulse estimated for the 

DNVGL standard is 𝐼𝐷𝑁𝑉𝐺𝐿 = 563371 Ns and for the IEC standard is 𝐼𝐷𝑁𝑉𝐺𝐿 = 424578 Ns. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80Im
p

ac
t 

Fo
rc

e 
N

o
rm

al
iz

ed
 b

y 
𝜌
𝐶

^2
𝑅

^2

Time Normalized by R/C

Impact Force - DNVGL



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

 
Figure 4.12 Time history of the normalized IEC impact force. 

 

 

The force impulse obtained from the IEC standard with Wienke & Oumeraci`s (2005) model 

overpredicts the force impulse by 201 % compared to the pressure impulse model. This value 

is similar to the overprediction estimated by Ghadirian & Bredmose (2019), which is 

approximately 190 % for the Wienke & Oumeraci`s (2005) model. The force impulse 

determined from the DNVGL standard with Campbell & Weynberg`s (1980) model is 299 % 

overpredicted compared to the pressure impulse model.  
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5 Discussion 

The results obtained with the MATLAB script provided is in excellent agreement with the 

results obtained by Ghadrian & Bredmose (2019), which indicates that the model is effective 

for calculating real impact of waves. Also, the impact of waves on a bottom fixed monopile is 

determined with the guidelines provided in DNVGL-RP-C205 (2017) and IEC 61400-3 (2009). 

The impact force computed from Wienke & Oumeraci (2005) and Campbell & Weynberg 

(1980) model shows the behavior of the impact force and the impact duration of the breaking 

wave, which has a similar behavior as the CFD models force time series in figure 4.4. The force 

impulse based on the IEC and DNVGL models is estimated to be 201 % and 299 % 

overpredicted respectively compared to the pressure impulse model. As shown, the results 

obtained in this study shows that the recommended standards for design requirements are 

overpredicting the determined impulse force compared to the pressure impulse model. Future 

work may compare different sea states to the pressure impulse model, to gain insight and 

knowledge for a more accurate comparison of the different methods.  

 

6 Conclusion  

 

In this project the breaking wave loads has been determined using the pressure impulse model 

for an idealized wave on a cylinder with azimuth limits for a specific sea state. A provided 

MATLAB model was applied to calculate the pressure impulse on the cylinder by implementing 

some parameters for the sea state of interest. The initial MATLAB results is validated against 

the CFD results by Ghadirian & Bredmose (2019) showing excellent agreement. The force 

impulse, drag force and inertia force has also been determined by using recommended 

guidelines from DNVGL and IEC. The impulse force for the different impact models has been 

analyzed and compared to establish the difference in magnitude of the impulse forces, and the 

guidelines presented in IEC and DNVGL overpredicts the impulse force compared to the 

pressure impulse model. These models are excellent tools to provide predictions of the Ultimate 

Lime State (ULS) wave loads on a bottom fixed monopile with some of these predictions being 

more conservative.  

 

 

 

 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

References 
 

Almeida, E., & Hofland, B. (2020). Validation of pressure-impulse theory for standing wave 

impact loading on vertical hydraulic structures with short overhangs. Coastal Engineering, 

159, 103702. 

Chella, A.M., Bihs, H., Myrhaug, D., Muskulus, M., (2016). Breaking solitary waves and 

breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping 

seabed. J. Ocean Eng. Mar. Energy, 1–19. 

Chella, M. A., Tørum, A., & Myrhaug, D. (2012). An Overview of Wave Impact Forces on 

Offshore Wind Turbine Substructures. Energy Procedia, 20, 217–226.  

Cointe, R. & Armand, J.-L. (1987). Hydrodynamic impact analysis of a cylinder. Trans ASME 

J. Offshore Mech. Arctic Engng 109 (3), 237–243. 

Cooker, M. J. & Peregrine, H. (1995). Pressure-Impulse Theory for Liquid Impact Problems. 

J. Fluid Mech. 297, 193–214.  

DNV-OS-J101. (2014). Design of offshore wind turbine structures. 

 

DNVGL-RP-C205. (2017). Environmental conditions and environmental loads.  

 

DNVGL-ST-0437. (2006). Loads and site conditions for wind turbines.  

 

European Commission. (2020). Stepping up Europe`s 2030 climate ambition – Investing in 

climate-neutral future for the benefit of our people. 562 Final.  

Ghadirian, A. and H. Bredmose (2019). "Pressure impulse theory for a slamming wave on a 

vertical circular cylinder." Journal of Fluid Mechanics. Fluid Mech. 867.  

Goda, Y., Haranaka, S. & Kitahata, M. (1966). Study On Impulsive Breaking Wave Forces on 

Piles. Tech. Rep.  

 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

International Electrotechnical Commission (IEC), (2009). IEC 61400-3: Wind Turbines Part 

3: Design Requirements for Offshore Wind Turbines, 1st Edition. 

Leite O.B, (2015). “Review of Design Procedures for Monopile Offshore Wind Structres,” 

University of Porto, Porto.  

Mokrani, C., Abadie, S., Grilli, S., and Zibouche, K., (2010). Numerical Simulation of The 

Impact of a Plunging Breaker on a Vertical Structure and Subsequent over Topping Event 

Using a Navier-Stokes VOF Model. In Proceedings of the Twentieth (2010) International 

Offshore and Polar Engineering Conference, pages 729 736, Beijing, China.  

 

Pierella, F., Ghadirian, A., & Bredmose, H. (2019). Extreme Wave Loads on Monopile 

Substructures: Precomputed Kinematics Coupled With the Pressure Impulse Slamming Load 

Model. ASME 2019 2nd International Offshore Wind Technical Conference, V001T01A011.  

 

Tanimoto, K., Takahashi, S., Kaneko, T., Shiota, K., (1986). Impulsive breaking wave forces 

on an inclined pile exerted by random waves. Proceedings of the 20th International 

Conference on Coastal Engineering, vol. 3, pp. 2288 2302. 

Wienke, J. & Oumeraci, H. (2005). Breaking wave impact force on a vertical and inclined 

slender pile – Theoretical and large-scale model investigations. Coast. Engng 52 (5), 435–

462.  

WindEurope & ETIPWind. (2021). Getting fit for 55 and set for 2050 – Electrifying Europe 

with wind energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

Appendix 
 

function [Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... mu, 

aoverH, boverH, theta_max, M, N, Npoints)  

%% 

rhoUH = 1; % one because I intend to evaluate P/rhoUH 

mlarge = M; 

nlarge = N; 

%% 

rHmin = aoverH; 

rHmax = boverH; 

zoverH = linspace(zHmin,zHmax, Npoints)'; % limits for z/H 

% theta = linspace(thetamin, thetamax, Npoints)'; % limits for y/W  

% roverH = linspace(rHmin, rHmax, Npoints)'; % limits for x/H  

thetaLIM = linspace(thetamin, thetamax, Npoints)'; % limits for y/W  

roverHLIM = linspace(rHmin, rHmax, Npoints)';  

 

% Initializes P(x,y,z) 

Pxyz = zeros(size(Npoints, 1));  

for tt = 1: numel(roverHLIM)  

 

roverH = roverHLIM(tt) ;  

fprintf('\n roverH = %g \t', roverH)  

 

for ttt = 1: numel(thetaLIM)  

 

theta = thetaLIM(ttt) ;  

fprintf('theta = %g \n', theta)  

 

syms roverH_ t heta_ 

 

for m = 1: mlarge 

% fprintf('m = %d /t', m)  
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For n= 1: nlarge 

 

L_m = (m - 1/2)*pi ; 

k_n = (n - 1/2)*pi ;  

qm = L_m/theta_max ;  

 

% Equation 2.13 

DZ = diff(zoverH,1); dz = DZ(1);  

A_mn = 2*rhoUH./theta_max* (1 - cos(k_n *mu))/k_n * ... (double(integral(@(theta_) 

cos(theta_).*cos(L_m.*theta_./theta_max), -theta_max, theta_max)))*dz ;  

% (double(vpaintegral(cos(theta_).*cos(L_m.*theta_./theta_max), [-

theta_maxtheta_max])))*dz ;  

 

% Equation 2.12 

alpha_mn = - besseli(qm,k_n.*boverH)./besselk(qm, k_n.*boverH );  

 

% Equation 2.11 

P_instant = (A_mn .* cos(L_m .*theta./theta_max).*sin(k_n.*zoverH) .*...  

(besseli(qm,k_n.*roverH) + alpha_mn.*besselk(qm,k_n.*roverH))... 

./ double(subs(diff(besseli(qm,k_n.*roverH_) + alpha_mn.*besselk(qm,k_n.*roverH_),  

roverH_),roverH_, aoverH)));  

Pxyz = Pxyz + (P_instant);  

% % %  

% % % %  

end  

if n == nlarge 

fprintf('n = %d \t', n)  

end  

m =mlarge; 

if m == mlarge  

fprintf('m = %d \t', m) end  

end  

if ~any(diff(thetaLIM)) break  

end  
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end end  

% get Vector P  

P = Pxyz; 

% end  

 

%% Figure 9 (a) 

% prepares and clears all existing variable(s) in workspace as well as command window 

clear,clc 

close all % close all opened figures 

%% 

% Values to be varied: M and N 

M = 10; 

N = 10; 

Npoints = 30; % Number of discretized points to evaluate 

theta_max = pi/4; 

% aoverb = 0.5; 

aoverH = 0.1; 

% Limits 

thetamin = 0; thetamax = 0; 

zHmin = -1; zHmax = 0; 

% other parameters  

mu = 0.5;  

 

%% Figure 9 (a)  

% Dimensionless pressure impulse on the inner cylinder,  

% at θ = 0, plotted as a function of z/H for several values of b/H.  

boverH = [0.15 0.25 0.35 0.45 0.55]';  

aoverb = aoverH ./boverH;  

for i = 1: length(aoverb)  

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... mu, aoverH, 

boverH(i), theta_max, M, N, Npoints);  

Pxyz_Variant{i} = Pxyz; % MATRIX P 

P_2{i} = P;  

i=i end  
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%% 

zoverH = linspace(zHmin, zHmax, Npoints)'; % limits for y/W figure(1) 

for i = 1: length(aoverb) 

plot(P_2{i},zoverH) 

lengendcell2{i} = strcat('$b/H$ = ',num2str(boverH(i))); 

hold on 

end 

hold off 

ylabel('z/H') 

xlabel('P/\rhoUH')  

h1 = legend(lengendcell2{1:end}); 

set(h1, 'Interpreter', 'latex','Location','Best');  

 

%% Figure 9 (b) 

% prepares and clears all existing variable(s) in workspace as well as command window 

clear,clc 

% close all % close all opened figures 

%% 

% Values to be varied: M and N 

M = 10; 

N = 10; 

Npoints = 30; % Number of discretized points to evaluate 

theta_max = pi/4; 

aoverb = 0.5; 

aoverH = 0.1; 

boverH = 0.3; 

% Limits 

thetamin = 0; 

zHmin = -1; 

% other parameters 

mu = 0.5; 

 



Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

%% Figure 9 (b) 

% Dimensionless pressure impulse on the inner cylinder, at θ = 0, 

% plotted as a function of z/H for several values of μ.  

thetamax = 0; zHmax = 0;  

% update  

mu = [0.2 0.4 0.6 0.8 1.0];  

boverH = 0.3;  

aoverH = 0.1;  

% aoverH = aoverb .* boverH ;  

for i = 1: length(mu)  

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... mu(i), aoverH, 

boverH, theta_max, M, N, Npoints);  

Pxyz_Variant{i} = Pxyz; % MATRIX P 

P_3{i} = P; 

end  

zoverH = linspace(zHmin, zHmax, Npoints)'; % limits for y/W figure(2) 

for i = 1: length(mu) 

plot(P_3{i}, zoverH)  

lengendcell2{i} = strcat('$\mu$ = ',num2str(mu(i))); hold on 

end 

hold off  

xlabel('P/\rhoUH') 

ylabel('z/H') 

% lengendcell2 = strcat('$w/H$ = ',string(num2cell(WoverH))); h1 = 

legend({lengendcell2{1:end}}); 

set(h1, 'Interpreter', 'latex', 'Location','Best');  

 

%% Figure 10 (a) 

% prepares and clears all existing variable(s) in workspace as well as command window 

clear,clc 

% close all % close all opened figures 

%% 

% Values to be varied: M and N 

M = 10; 
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N = 10; 

Npoints = 30; % Number of discretized points to evaluate 

theta_max = pi/4; 

% aoverb = 0.5; 

aoverH = 0.1; 

% Limits 

thetamin = 0; thetamax = 0; 

zHmin = -1; zHmax = 0; 

 

%% Figure 10(a) 

% other parameters: 

aoverb = [0.17 0.33 0.50 0.67 0.83]; 

boverH = 0.3; 

mu = 0.5; 

aoverH = aoverb .* boverH ; 

for i = 1: length(aoverb)  

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... mu, aoverH(i), 

boverH, theta_max, M, N, Npoints);  

Pxyz_Variant{i} = Pxyz; % MATRIX P  

P_4{i} = P; 

end 

zoverH = linspace(zHmin, zHmax, Npoints)'; % limits for y/W figure(3) 

for i = 1: length(aoverb) 

plot(P_4{i},zoverH) 

lengendcell2{i} = strcat('$a/b$ = ',num2str(aoverb(i))); 

hold on 

end 

hold off 

ylabel('z/H') 

xlabel('P/\rhoUH') 

h1 = legend(lengendcell2{1:end}); 

set(h1, 'Interpreter', 'latex','Location','Best'); 

%  
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