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Abstract

High-quality tabular data is a crucial requirement for developing data-driven ap-
plications, especially healthcare-related ones, because most of the data nowadays
collected in this context is in tabular form. However, strict data protection laws in-
troduced in Health Insurance Portability and Accountability (HIPAA) and General
Data Protection Regulation (GDPR) present many obstacles to accessing and doing
scientific research on healthcare datasets to protect patients’ privacy and confiden-
tiality. Thus, synthetic data has become an ideal alternative for data scientists and
healthcare professionals to circumvent such hurdles. Although many healthcare data
providers still use the classical de-identification and anonymization techniques for
generating synthetic data, deep learning-based generative models such as Generative
Adversarial Networks (GANs) have shown a remarkable performance in generating
tabular datasets with complex structures. Thus, this thesis examines the GANs’
potential and applicability within the healthcare industry, which often faces serious
challenges with insufficient training data and patient records sensitivity.

We investigate several state-of-the-art GAN-based models proposed for tabular syn-
thetic data generation. Precisely, we assess the performance of TGAN, CTGAN,
CTABGAN, and WGAN-GP models on healthcare datasets with different sizes,
numbers of variables, column data types, feature distributions, and inter-variable
correlations. Moreover, a comprehensive evaluation framework is defined to eval-
uate the quality of the synthetic records and the viability of each model in pre-
serving the patients’ privacy. After training the selected models and generating
synthetic datasets, we evaluate the strengths and weaknesses of each model based
on the statistical similarity metrics, machine learning-based evaluation scores, and
distance-based privacy metrics.

The results indicate that the proposed models can generate datasets that maintain
the statistical characteristics, model compatibility, and privacy of the original ones.
Moreover, synthetic tabular healthcare datasets can be a viable option in many
data-driven applications. However, there is still room for further improvements in
designing a perfect architecture for generating synthetic tabular data.
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Chapter 1

Introduction

1.1 Motivation

Today, Artificial Intelligence (AI) is a game-changer that offers promising oppor-
tunities in many application domains such as the transportation and automotive
industry, banking, social media, gaming, etc. However, this impact has been unde-
niably slower in the medical applications [20] due to the unavailability and imbal-
anced nature of the patients’ Electronic Health Records (EHRs) to the broader AI
research community. A significant reason for this is the Privacy Protection concerns
and the extremely time-consuming approval process for accessing the data. The
Health Insurance Portability and Accountability Act (HIPAA) in the United States
and the General Data Protection Regulation (GDPR) in European countries intro-
duce restrictive regulations against the research and analysis of electronic healthcare
records to protect patients’ privacy [76]. Such laws would severely slow the pace of
data analysis and research in the health care industry. EHR providers typically pro-
tect the patients’ privacy through de-identification and anonymization techniques,
including removing identifiable or quasi-identifiable features, perturbing them, or
grouping variables into higher-level categories to remove sensitive data [76]. How-
ever, there is no guarantee that the anonymized patient data would not be used to
re-identify patients and their sensitive information. Several studies have shown that
when anonymized data is linked to other publicly available datasets (social media,
etc.), the peoples’ identities and their sensitive information may be re-identified [16].

Alternatively, Synthetic Data Generation (SDG) unveils interesting properties to
circumvent the legal restrictions of healthcare datasets and is an ideal replacement
for the data anonymized by classical de-identification techniques. The main point
of SDG is to synthesize new data through automated processes that preserve the
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underlying structure and statistical properties of the original sensitive data to pre-
vent people’s privacy from being compromised. Synthetic health data generation
can help medical practitioners to share data without any privacy violation and use
the synthetic data as an addition to the health data itself [54]. To achieve an ap-
propriate generalization, Deep Learning models and Machine Learning algorithms
need a large amount of training data. Thus, a reliable synthetic dataset can be used
for augmentation tasks and training robust models that are typically not trainable
with the available data.

Generally, synthetic data generation techniques are classified into two groups [20].
The Process-driven techniques synthesize data by a pre-determined mathematical
model of an underlying process like Monte Carlo simulation. These methods are
heavily dependent on external information and domain-specific knowledge. On the
other hand, the Data-driven methods synthesize data by fitting a joint multi-variate
probability distribution on the given dataset and then sampling from it [74]. Ex-
ample models include Gaussian Mixture models, Bayesian networks, and Gaussian
Copulas. Nevertheless, most of these generative models have restrictions related to
the model complexity, dataset size, and available probability distributions.

In recent years, deep learning generative models have delivered outstanding per-
formance in representing complex distribution functions, flexibility, and fidelity of
the synthetic data. Several deep generative architectures have been proposed for
the synthetic data generation (SDG) tasks, including Variational Auto-Encoders,
Deep Belief Nets, and Generative Adversarial Networks (GANs). Lately, GANs
have gained overwhelming popularity for their successful applications within image
and video generation domains. However, a survey conducted by the Kaggle plat-
form showed that structured data is the most common format in industry and the
second most common in academic environments [64, 74]. This tendency to tabular
data format has motivated researchers to conduct studies to apply GAN’s strategy
for synthesizing this specific format, although most of the GAN’s studies have been
focused on unstructured data like images. Several studies have recently explored
different variants of GANs to see whether this adversarial architecture is a better
choice than its statistical counterparts [50, 74, 76].

1.2 Problem Definition

In this thesis, we take advantage of GAN’s adversarial strategy for training a privacy-
preserving synthetic data generator to synthesize real tabular healthcare datasets.
We aim to investigate multiple GAN variants proposed for the tabular data genera-
tion in the medical domain. While there exist several papers proposing a GAN vari-
ant for the synthetic data generation tasks, each of them utilizes different datasets
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and evaluation metrics [20]. Moreover, the selected evaluation setup should capture
the inter-variable dependencies and marginal distributions simultaneously and re-
flect the preserved privacy between the generated and the real samples. Thus, the
evaluation framework must include metrics in different dimensions.

On the other hand, tabular datasets have other issues regarding having various
data types that require different encoding for GAN’s applications. These challenges
make a direct comparison of SDG based on GAN’s adversarial properties extremely
difficult. Consequently, this thesis aims to develop guidelines for comparing and
evaluating different tabular GAN methods in generating synthetic electronic health-
care records. All in all, this leads to the research objectives outlined below.

1.2.1 Objectives

• Finding a publicly available healthcare tabular dataset rich enough for the syn-
thetic data generation task. The source of the data and the data itself should
be thoroughly studied to grasp the meaning and characteristics of constructing
features.

• Selecting a suitable evaluation framework to assess the quality of the synthe-
sized data and reliability of the model in preserving the privacy of the patient
records.

• Conducting a systematic study of multiple tabular GAN models for generating
synthetic patient health records and comparing them based on the different
metrics of our selected evaluation framework.

1.2.2 Research Methodology Overview

Several tabular GAN-based models are experimented on multiple healthcare datasets
to asses the potential of synthetic data in the healthcare domain. Diabetes and Thy-
roid Disease datasets from UCI Machine Learning Repository [13], Epileptic Seizure
Recognition dataset from Kaggle and MIMIC III (Multi-parameter Intelligent Mon-
itoring in Intensive Care) clinical database [33] are selected for our synthetic data
generation tasks. We choose these datasets because they are the most comprehen-
sive medical yet publicly available datasets containing tens of thousands of records
with different data types and statistical distributions. Each proposed GAN model
is trained on a clean, pre-processed version of the selected datasets. Then, for each
case study, we generate a synthetic tables of the same size as the original one and
evaluate it based on the proposed evaluation framework. We use novel evaluation

3



metrics gathered from multiple publications to capture Statistical Resemblance, Ma-
chine Learning utility and Preserved Privacy. The privacy metric is needed to ensure
generated samples are different enough from training records. This evaluation setup
can assess whether any form of data analysis on the original dataset would yield
similar results as it is done on the synthetic one. Figure 1.1 shows an overview of
the proposed methodology.

Figure 1.1: An overview of the proposed research methodology

1.3 Ethical Considerations

With the rise of ML and AI technologies in peoples’ lives on a daily basis, new ethi-
cal challenges have emerged that endanger civil liberties. These legitimate concerns
should be addressed in the policies and regulations defining how the AI systems
should be evolved, how they should be applied in our daily lives and how they affect
the society. One of these ethical concerns, especially when using AI technologies
in the healthcare domain, is privacy [9, 17]. To circumvent the privacy barrier,
synthetic data generation is a viable alternative since synthetic records capture the
statistical properties and inter-variable relationships of the original data. At the
same time, they do not reveal the patients’ sensitive information. Although the
generative models deliver outstanding performance in synthetic data generation,
the sensitive information in the original data is still susceptible to being leaked in
the generated data, and the patients’ privacy is likely to be compromised in the
synthetic data generation process. Thus, the researchers often train synthetic gen-
erative models using a differentially private mechanism [1, 14] to generate synthetic
records in a privacy-preserving manner and ensure people’s confidentiality.
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1.4 Main contributions

The main contributions of the thesis are listed as the following:

• We carry out a comprehensive survey on existing medical tabular data sets
and their applicability to be used for generating synthetic data.

• We implement a complete pre-processing pipeline for each healthcare tabular
dataset to make them ready and feasible for the synthetic data generation
task.

• We perform detailed experiments comparing different tabular generative ad-
versarial networks and their configurations.

• We conduct a survey on existing metrics and their capabilities to be used for
bench-marking synthetic medical data.

• We develop an evaluation framework and perform a systematic study on the
quality of synthetic medical data using different metrics.

• The main findings and contributions of this work are summarized in a re-
search article that will be submitted to the journal of Artificial Intelligence
for Medicine.

1.5 Thesis Outline

In Chapter 1, we introduce the motivation for generating synthetic health data and
provide an overview of the research methodology. The rest of the thesis is structured
as follows:

• Chapter 2 presents the theoretical background, including an introduction to
Neural Networks, the concept of Generative Adversarial Networks (GAN),
distinguished GAN architectures, GAN’s failure modes, their difficulties in
generating tabular data, and the related works in the tabular SDG field.

• Chapter 3 details the proposed tabular generation models. Five tabular GAN-
based models are selected to be tested in the healthcare domain. Finally, we
describe the evaluation framework used in the thesis.

• Chapter 4 provides a complete description of the implementation details and
the healthcare datasets selected for our experiments.

• In Chapter 5, we evaluate the results of the conducted experiments and com-
pare each tabular SDG technique using the various evaluation metrics.
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• In chapter 6, we conduct an in-depth analysis of the properties of the investi-
gated SDG models and introduce their limitations

• Finally, we conclude the thesis in Chapter 7 with our findings and provide
possible suggestions for future studies.
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Chapter 2

Background & Preliminaries

This chapter presents the theoretical background of the thesis. First, we discuss
several concepts related to training artificial neural networks. Then, we introduce
the Generative Adversarial Network (GAN), GAN’s failure modes, distinguished
GAN architectures, and their difficulties in generating tabular data. Finally, we
present a detailed discussion regarding related works in the tabular synthetic data
generation field.

2.1 Artificial Neural Network

Artificial Neural Networks (ANNs), commonly known as Neural Networks, are a
subset of Artificial Intelligence (AI) and are the basis of Deep Learning (DL) algo-
rithms. The name and structure of ANNs are hugely inspired by how the biological
neurons inside the human brain function. As the biological neurons receive a signal
from one neuron and transmit it to another, each artificial neuron (node) gets an
input, produces the output, and passes it as input to another node. A neural net-
work is a collection of artificial neurons interconnected to one another through edges
aiming to learn a non-linear mathematical representation that best maps a set of
inputs to a group of outputs. The connecting edges have weights that are updated
during the training process. The output of each neuron is calculated by applying
an activation function to the weighted sum of all the neuron’s inputs. These activa-
tions are usually non-linear functions helping the network to learn the non-linearity
of the features of the information. Due to their tremendous capacity, ANNs can
solve various Machine Learning and Deep Learning tasks in different domains [7,
18, 21, 43].
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2.1.1 Feed Forward Neural Network

Feed-Forward Neural Network is the most straightforward version of the ANNs as
the data only moves in one direction in the network. It is a set of interconnected,
sequential layers consisting of an input layer, one or more hidden layers, and an
output layer [18, 21, 27]. A simple feed-forward neural network is illustrated on the
left side of figure 2.1. The input layer contains three nodes representing the number
of features in the input, while each hidden layer includes four artificial neurons.
Lastly, the network’s output is computed in the last layer consisting of two neurons.
Since every node in each layer is connected to all the nodes in the previous and next
layers, the layers are referred to as fully connected ones.

Figure 2.1: An illustration of a fully-connected neural network on the left side
[49]. The right side of the figure shows an example of the forward and backward
propagation in a neural network [38].

The training of a feed-forward neural network is conducted in three steps. First,
the input goes through a series of transformations to produce the network’s output.
Specifically, for each neuron in each hidden layer, we apply an activation function
to the weighted sum of all neuron’s inputs from the previous layer to calculate each
node’s output. Starting from the input layer and iteratively repeating the same
calculations for each neuron in the subsequent layers would eventually result in the
network’s output. This step is called forward propagation (forward pass) [18, 21].

The second step involves updating the network’s parameters according to how wrong
the network’s output is compared to the desired one. After each forward propagation
step, a loss function is calculated between the network’s output and the expected
one. Then, we calculate the gradient of the loss function with respect to each
network’s parameter using the chain rules [18, 21]. An example of the forward and
backward propagations is illustrated on the right side of figure 2.1.

After each backward pass, we update the network’s parameters to minimize the
loss function. Gradient-based optimization algorithms like Stochastic Gradient De-
scent make this parameter adjustment. The gradient descent algorithm enables the

8



network to find the minimum value of its loss function by iteratively updating the
parameters in the opposite direction of the gradient of the loss. We repeat the for-
ward pass, backward pass, and parameter adjustments until the network does not
show any improvement by continuing the training process [18, 21].

2.1.2 Stochastic Optimization

As discussed in the previous section, the core of training an ANN is an optimization
problem. The stochastic optimization algorithms are responsible for updating the
network’s parameters to enhance the learning process. In other words, these opti-
mizers seek to maximize or minimize the network’s loss function with respect to its
parameters.

Stochastic Gradient Descent (SGD):

Gradient descent is a gradient-based optimization algorithm that aims to find a
global minimum for the loss function with respect to the network’s parameters. After
each backpropagation step, the gradient descent adjusts the network’s parameters
for the next iteration in the opposite direction of the gradient of the loss function
[21, 43, 58]. This parameter (θ) update is conducted based on the following formula:

θn+1 = θn − γ∇θnL(x, θn)

γ denotes the learning rate and is used to tune the step size in which the optimiza-
tion algorithm moves toward the global minimum of the network’s loss function L.
Although stochastic gradient descent is one of the most efficient and effective ap-
proaches for optimizing many Machine Learning models, it can be a significantly
slow algorithm for complex neural architectures.

Adam:

Adam is one of the most popular algorithms for stochastic optimization. It was
introduced by Kingma and Ba in their 2015 ICLR paper [37], and the algorithm’s
name originated from adaptive moment estimation. Adam is the recommended
optimization algorithm for many deep learning-based architectures instead of clas-
sical stochastic gradient descent. They are computationally efficient, easy to imple-
ment, and have little memory requirement. While the gradient descent uses a single
learning rate for updating the network’s parameters in the training process, Adam
computes adaptive learning rates for each parameter individually from estimates of
the first-order and second-order moments of the gradients. This optimizer calcu-
lates an exponential moving average of the gradient and the squared gradient, while
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the hyper-parameters β1 and β2 control the decay rates of these moving averages.
The pseudo-code below is taken from the original paper [37] showing the parameter
update at step.

2.1.3 Batch Normalization

Batch Normalization is a novel algorithm for training faster and more stable ANNs
introduced by Ioffe et al.[31] in 2015. They proposed normalizing the neurons’
outputs in the hidden layers by using the mean and variance of each batch of the
input data. This forces the outputs in each layer to follow a standard normal
distribution across the current batch. This normalization technique first computes
the µ and σ2 as the mean and variance of the activation values across a batch of
input data in each hidden layer. Then, it normalizes the activation outputs of each
neuron in the hidden layer using formula 1.

(1) Z(i)
norm =

Z(i) − µ√
σ2 − ϵ

(2) Ẑ = γ ∗ Z(i)
norm + β

Finally, to give the neural network flexibility for selecting the optimal distribution for
each hidden layer’s outputs, the algorithm applies a linear transformation with two
trainable parameters as formula 2. Specifically, the parameters γ and β are used to
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calibrate the standard deviation and the bias (shifting) of the output distributions,
respectively, and they are trained through gradient descent optimization.

The experiments have shown that the Batch Normalization significantly improves
the speed and stability of training neural networks and allows using higher learning
rates in the training process without any adverse effect on the convergence.

2.2 Generative Adversarial Network

Generative Adversarial Network (GAN) is one of the most prominent unsupervised
model architectures in generative modeling. The architecture was first introduced
by Ian Goodfellow et al.[22] as part of the advances in the Neural Information Pro-
cessing Systems (NIPS) conference in 2014. Goodfellow proposed a novel generative
architecture that automatically discovers the patterns in the original data and gen-
erates new realistic fake samples indistinguishable from the original ones. Since
then, a plethora of scientific publications have focused on different aspects of GANs,
and many deep learning generative models have been adopted based on this archi-
tecture. Specifically, GANs have delivered outstanding performances in image and
video generation in the past few years, and it is still one of the most active research
topics in the field of unsupervised generative modeling.

2.2.1 GAN Framework

The GAN architecture consists of two networks: a generator and a discriminator
[21, 22]. The generator learns the implicit patterns and distributions of the original
data and generates realistic fake records that possibly could have been drawn from
the same distribution as the original data. On the other hand, the discriminator
estimates the probability of a sample coming from the original or synthetic data,
classifying records into real or fake. The basic concept of GAN is adopted from
game theory, where the generator and discriminator compete against each other in
a min-max game. This two-player competition aims to train these networks simul-
taneously until reaching the Nash Equilibrium. At this ideal point, the generator
creates realistic replicas utterly indistinguishable from the original data, and the
discriminator cannot classify between the real and fake records, guessing randomly
with the probability of 0.5. In simple words, the generator and discriminator can be
thought of as an art forger and a museum inspector. The forger tries to replicate the
original paintings so he can sell them to the museum, while the inspector struggles
to detect the forged paintings from the original ones. The forger and inspector im-
prove their capabilities simultaneously until the forger can create realistic paintings
undetectable to the inspector. Figure 2.2 illustrates the components of the GAN
framework.
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Figure 2.2: Generative Adversarial Network (GANs) framework [55].

2.2.2 GAN Training

The generator (G) and discriminator (D) networks in the GAN architecture are two
differentiable functions with respect to their parameters. The generator’s input is a
random vector sampled from a prior noise distribution Pz(z). Although the original
paper used uniform distribution for sampling noise vector, the normal distribution
has become an ideal choice recently. The generator’s goal is to learn the latent
space of the original data and then sample from this latent space to generate new
realistic fake records. To achieve this goal, the generator translates the noise vector
into the points in the problem domain and optimizes its weights (θg) when playing
a min-max game with the discriminator. The discriminator takes input from the
original or synthetic (output of the generator) examples and outputs a single value
representing the probability of the discriminator’s inputs belonging to the real or
fake ones. In other words, the discriminator’s goal is to assign correct labels and
optimizes the weights (θd) when playing a min-max game with the generator, while
the generator’s goal is to complicate the discriminator’s job by generating realistic
fake data [21, 22]. Figure 2.3 depicts a schematic of training a typical GAN.
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Figure 2.3: A schematic of GAN training [30].

The training algorithm involves iterative gradient optimizations for both adversar-
ial components [21, 30]. In each training iteration, we optimize the discriminator
and generator networks consecutively. First, a minibatch of random noises is sam-
pled to generate a minibatch of fake records, followed by sampling a minibatch of
records from the original training records. Then, we use the original and generated
records to conduct a gradient optimization step on the discriminator to reduce its
loss function (Ld) and update its weights (θd). After the discriminator optimization,
we perform an optimization step on the generator network. We sample a mini-
batch of random noises as input to the generator and use the backpropagation to
update the generator’s weights (θg) and reduce its loss function (Lg). In both the
generator and discriminator scenarios, we can only control the parameters of the
network we are optimizing through backpropagation. In other words, although each
adversarial component’s objective function depends on the other component, each
one is entitled to modify its own weights in the optimization steps. Ideally, these
gradient-based optimizations continue until reaching an equilibrium where both loss
functions of the generator and discriminator are at a local minimum with respect to
their weights (Nash Equilibrium). To capture the opposing interactions between the
generator and discriminator, the authors of the original paper [22] proposed using
the overall min-max value function mathematically defined as:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ex∼pz [log(1−D(G(z)))]

The above overall min-max formula can be separated into the value functions for
generator and discriminator:

max
D

V (D) = Ex∼pdata [logD(x)] + Ex∼pz [log(1−D(G(z)))]

min
G

V (G) = Ex∼pz [log(1−D(G(z)))]
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As observed, the discriminator’s objective is to maximize the probability of iden-
tifying the correct labels. In other words, it tries to maximize the probability of
assigning the original examples with label one and the generated (fake) records with
label zero. On the other hand, the generator seeks to minimize the chance of the
synthetic records being identified as fake by the discriminator. However, the gen-
erator cannot improve in this min-max game in practice. At the beginning of the
training process, the generator creates random noises that the discriminator can eas-
ily classify as fake records. This results in the generator losing its ability to improve
as quickly as the discriminator due to the saturation of the generator’s loss. To cir-
cumvent this problem, Goodfellow et al. suggested using a non-saturating version
of the original min-max loss function [21, 22]. They proposed a subtle modification
to the min-max generator loss while keeping the discriminator loss unchanged. The
modified generator loss is defined as:

max
G

V (G) = Ex∼pz [log(D(G(z)))]

Rather than training the generator to minimize the probability of the synthetic
records being identified as the fake ones by the discriminator, the authors proposed
flipping the labels of the generated records (labels 1 one instead of 0) and training
the generator to maximize the probability of the generated records being classified as
original ones. In practice, the outcome of this modified loss function does not alter.
However, it results in much stronger gradients and fixes the generator’s saturation
problem to a great extent [30].

2.2.3 GAN Failure Modes

GANs are powerful tools yet difficult and tricky to train. There are several scenarios
in which GAN architectures are doomed to failure. The most frequent GAN failures
are non-convergence and mode-collapse.

Non-convergence (Instability):

The GANs are challenging to train due to the simultaneous training of the adver-
sarial components. The generator and discriminator compete against each other in
a min-max (zero-sum) game during the training process until they reach an equi-
librium [6]. In each optimization step, the improvement to one component comes
at the cost of degradation of the other one. Although these two cost functions may
converge, there are many use cases in which the gradient descent fails to find a local
equilibrium in the non-convex, min-max games. In other words, the gradient descent
is not necessarily a proper choice to train a stable GAN having a min-max loss func-
tion. To identify the non-convergence issue, the discriminator’s loss dramatically
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drops to zero, while the generator’s loss may increase significantly or drops to zero
in the same period. This failure results in the generated records having an extremely
poor quality that the discriminator can easily classify. Researchers are constantly
proposing new cost functions to mitigate the non-convergence issue. However, there
is no solid evidence that these proposed cost functions would always yield stable
performance [6, 29].

Mode Collapse:

Mode collapse is one of the most encountered and well-recognized failure scenarios
in training GANs. It is referred to as a phenomenon in which the generator only
learns certain regions (modes) of the original data distribution. In other words, the
generator generates samples with remarkably low diversity. The generator learns to
produce new fake records from one or few modes of the original data distribution
and misses the rest [6, 29]. Figure 2.4 illustrates the effects of the mode collapse
phenomenon. Comparing the target image with the generated images in different
training epochs, we observe that the Vanilla GAN (top row) faces mode collapse and
its generator only learns a few modes from the target distribution, while the Reg-
GAN [10] architecture succeeds in capturing all the modes and generates samples
statistically and visually similar to the target distribution.

Figure 2.4: Generated samples of two GANs trained on a 2D Gaussian dataset [10].

There is no clear consensus on why precisely the mode collapse scenario happens.
Several papers have attempted to address the causes of this failure mode. We believe
that using ill-suited loss functions is a significant cause of mode collapse in training
GANs. To elaborate on the effects of the loss function, consider P (x) and Q(x) as
the original and synthetic data distributions, respectively. Theoretically, the GAN’s
objective is to minimize the distance between the P (x) and Q(x) distributions, and
the ideal case happens when Q(x) = P (x) [48]. In probability theory, we often use
statistical divergences like Jensen-Shannon (JS) divergence and Kullback-Leibler
(KL) divergence to measure the distance between two probability distributions [57].
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In other words, the GAN seeks to minimize the divergence of P(x) and Q(x). The
GAN divergence and JS divergence are remarkably similar, with some slight dif-
ferences. Poole et al.[52] demonstrated that the GAN divergence (JS divergence)
tends to fit a limited number of modes perfectly (mode-seeking) instead of cap-
turing all the modes of the original distribution (mode-covering). This results in
the generator producing new records with less diversity (mode collapse). Figure
2.5 illustrates the mode-seeking and mode-covering approximations of an original
bimodal distribution.

Figure 2.5: An illustration of mode-seeking and mode-covering approximations [48].

Although different tricks and architectures have been proposed to mitigate the mode
collapse issue, it is yet to be solved completely in training GANs. For instance,
several papers suggested using mini-batch discrimination [59], feature matching [59],
unrolled GANs [44], Wasserstein distance instead of the original loss function [3],
etc., to tackle mode collapse.

2.3 Different Types of GANs

Since the introduction of GANs in 2014, many research papers have adopted this
novel framework and proposed minor or significant modifications to the original
architecture. This results in the creation of hundreds of GAN-based models in
different areas. This section introduces a few of these architectures that provided
the basis for more advanced models.
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2.3.1 Deep Convolutional GAN (DCGAN)

Perhaps one of the GAN’s early innovations that laid the foundation for developing
many other models is the Deep Convolutional GAN (DCGAN). The architecture was
first introduced by Radford et al in [53]. They proposed using the de-convolutional
and convolutional layers in the discriminator and generator, respectively. The DC-
GAN is one of the most recommended architectures, especially when developing
GAN-based models for image generation tasks. The authors made specific rec-
ommendations for training a stable GAN based on the deep convolutional neural
network architecture. They proposed eliminating the fully connected layers and
replacing the pooling layers with strided convolutions and deconvolutions. The gen-
erator network comprises deconvolutional layers for upsampling, batch normaliza-
tion, and ReLU activation function for all layers except for the output layer (tanh).
On the other hand, the discriminator network consists of convolutional layers for
downsampling, batch normalization, and LeakyReLU for all internal layers except
for the last layer, which uses the sigmoid activation function. Figure 2.6 illustrates
the generator and discriminator of the DCGAN architecture in detail.

Figure 2.6: The Deep Convolutional GAN (DCGAN) architecture [35]

2.3.2 Conditional GAN (cGAN)

In all GAN architectures discussed so far, synthetic data generation occurs randomly
from the latent space input to the points in a specific domain. In other words, we do
not have any control over the types of the generated records. However, it is possible
to use additional information in the generator and discriminator to improve the
training process and conduct a targeted data generation. This type of architecture
is called Conditional GAN (cGAN), and it was first introduced by Mirza et al.[46] in
2014. They proposed extending the original GAN architecture by adding auxiliary
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information (as class labels y) to the generator and discriminator as conditions
to control the synthetic data generation process. The cGAN’s modified objective
function can be defined as [46]:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x|y)] + Ex∼pz [log(1−D(G(z|y)))]

To demonstrate the robustness of the cGAN training process, they concatenated the
one-hot encoded class labels of the MNIST handwritten digit dataset [40] with the
inputs of each adversarial network. The process is illustrated in figure 2.7.

Figure 2.7: Adversarial components of the cGAN model [46].

2.3.3 Wasserstein GAN (WGAN)

In 2017, Arjovsky et al.[3] proposed another state-of-the-art adaptation of the origi-
nal GAN framework. They introduced Wasserstein GAN (WGAN) to overcome the
problems associated with the loss functions presented in the original GAN paper.
They showed that if the model is trained using the original min-max loss function,
the generator cannot improve when the discriminator significantly outperforms it, es-
pecially at the beginning of the training process. This happens due to the vanishing
gradients of the JS divergence between the original and generated data distributions
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when both distributions are quite distant, which results in the saturation of the gen-
erator’s loss. Furthermore, they demonstrated that the non-saturating version of the
original loss function proposed to fix the vanishing gradient issues makes the model
more unstable. This instability is due to the great variance of the gradients in the
modified loss function.

To circumvent the mentioned issues, Arjovsky et al.[3] proposed an alternative loss
function based on the Wasserstein distance between the original and synthetic data
distributions. The Wasserstein (Earth-mover) metric compares two probability dis-
tributions and measures their distance as the minimum cost (effort) required to
transform one distribution into another. Intuitively, suppose the synthetic distribu-
tion is assumed to be a pile of soil. In that case, the Earth-mover metric measures
the minimum cost associated with moving and transforming the pile of soil into
the location and the shape of the original distributions respectively. This distance
metric is mathematically defined as:

W (Pr, Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ [ ∥x− y∥ ]

∏
(Pr, Pg) represents all probable transportation plans for the synthetic data dis-

tribution to transform into the original one, while γ denotes a specific plan. The
Earth-mover distance is continuous and differentiable everywhere, and in contrast
to the JS divergence, it has no upper limit for its gradient. In other words, the
gradient of the Wasserstein metric continues to grow regardless of the distance be-
tween the original and synthetic distributions, making the model less susceptible to
vanishing gradients [6, 28]. Thus, Arjovsky et al. proposed a loss function based on
the Wasserstein metric to produce smoother gradients in the training process. Their
proposed loss function measures the Earth-mover distance between the original and
synthetic distributions. However, instead of a discriminator outputting probability
to classify the original and synthetic records, the WGAN model uses a neural net-
work outputting a scalar value that scores how real or fake the given inputs are.
Since this network in the WGAN architecture does not have a sigmoid function to
conduct the classification tasks, it is called Critic to reflect the difference from the
discriminator [3, 6, 28]. The rest of the WGAN network is the same as the original
GAN architecture, as observed in figure 2.8.

However, it is improbable to approximate the Earth-mover distance in the WGAN
framework based on the Wasserstein mathematical expression because the formula
seeks to find the minimum cost from an infinitive number of joint distributions
(transportation plans) [6, 28]. Hence, the authors in [3] proposed using Kantorovich-
Rubinstein Duality to simplify the calculations as:
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Figure 2.8: A schematic of WGAN training [28]

W (Pr, Pg) = sup
∥f∥L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)]

In this formulation, f is a differentiable function whose gradients have a norm of at
most 1 for every point. In other words, the slope of this continuous function can
only range between -1 and 1. This function (f) is a 1-Lipschitz (1-L) continuous,
and the particular condition is called the 1-L continuity constraint [6, 28]. Arjovsky
et al.[3] demonstrated that to approximate the Wasserstein distance in the WGAN
framework and limit the loss function from growing too much; the critic network
should be 1-L. To enforce the 1-L continuity constraint on the critic network, the
original paper proposed the weight clipping technique to enforce the critic’s param-
eters range in a fixed interval. When training the critic network, this interval is
controlled by a clipping hyper-parameter. After each gradient optimization, if the
critic’s weights are outside of a desired range of values, they are clipped to assure
that weights are updated in that specific interval. However, as noted by Arjovsky et
al.[3], the weight clipping technique is a sub-optimal strategy that limits the learn-
ing ability of the critic. Especially if the clipping hyper-parameter is incorrectly
tuned, it may lead to vanishing gradients or non-convergence issues. In other words,
the model performance is significantly prone to the changes in the clipping hyper-
parameter. To circumvent these issues, a promising alternative for enforcing the 1-L
continuity constraint on the critic network is described in Section 2.3.4 in detail.

In the WGAN framework, the critic is trained to learn the best fitting 1-L continuous
function (f) to help approximate the Wasserstein distance while optimizing the loss
function. The WGAN loss function is described mathematically in [3] as:

L(Pr, Pg) = W (Pr, Pg) = max
ω∈W

Ex∼pr [fω(x)]− Ez∼pg(z) [fω(Gθ(z))]
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The critic aims to maximize the Earth-mover distance between the original and syn-
thetic data samples (maximizing the critic loss). At the same time, the generator
tries to minimize the distance (minimizing the generator loss). As the generator
and critic improve in the training process, the critic finds a best-fitting function to
the original data when the Earth-mover distance gets smaller, and the generator
produces synthetic records that resemble the original data distribution [3, 6, 28].
Moreover, the authors proposed updating the critic k times per generator optimiza-
tion to ensure that the generator network is improved in the proper direction. In
summary, the WGAN model has two significant benefits compared to other GAN
architectures:

• The model is significantly less prone to mode collapse in the training process.

• The generator can still improve itself when the original and synthetic distri-
butions are far apart (no vanishing gradients).

2.3.4 WGAN-GP

WGAN-GP is a modified version of the Wasserstein GAN architecture proposed by
Gulrajani et al.[23] in 2017. They suggested using an improved technique to enforce
the 1-L continuous constraint on the critic network instead of using the weight
clipping strategy. As noted in the original WGAN paper [3], the model performance
is susceptible to the clipping hyper-parameter if the WGAN model uses the weight
clipping approach. In other words, an incorrect choice of this hyper-parameter may
lead to vanishing or exploding gradients during the training process. To circumvent
these issues, Gulrajani et al.[23] proposed a gradient penalty technique to penalize
the gradient norm of the critic network if it deviated from 1 (definition of 1-L
continuity) and named the modified model WGAN-GP. The loss function of the
critic network in the WGAN-GP is defined as:

Ld = Ex∼pr [fω(x)]− Ez∼pg(z) [fω(Gθ(z))] + λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2]

The last term of the formula corresponds to the gradient penalty, and the x̂ repre-
sents uniformly straight lines pairs of points sampled from the original and generated
data distributions. The authors recommended setting the λ hyper-parameter to 10
and avoiding the batch normalization technique in the critic’s network. Their ex-
periments showed that batch normalization might decrease the effectiveness of the
gradient penalty [23, 28].

WGAN with gradient penalty remarkably improves training stability and conver-
gence, and it is an effective model in many applications. However, the gradient
penalty causes an undesirable computational complexity to the training process.
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2.3.5 GANs and Tabular Data Generation

The GAN architectures elaborated in the previous sections are commonly applied
in image generation tasks. However, many real-world applications rely on tabular
data consisting of columns of various data types. While, for generating fake images,
we train GANs to learn the distributions of pixel values ranging from 0 to 255; in
tabular datasets, GANs are trained to find a joint distribution of variables of dif-
ferent data types such as: continuous (floating), categorical, integers and Boolean.
Consequently, producing synthetic tables raises extra challenges compared to gen-
erating fake images due to the nature of tabular data. This section addresses some
of the significant challenges of designing a tabular GAN architecture [36, 75].

Different Data Transformations:

As with every other deep learning-based model, the data should be represented ap-
propriately to be applicable for training GANs. A tabular dataset with different data
types requires different data transformation techniques. In image generation tasks,
we simply use a min-max scaler to transform pixel values into the range of -1 to 1.
However, in many real-world tabular datasets, the values in the continuous columns
have non-Gaussian, complex distributions as multi-modal or long-tailed ones [79]. In
these cases, using a simple data transformation technique like the min-max scaling
limit the GAN model from learning the complex numerical distributions and lead
to vanishing gradients. Furthermore, the categorical columns should apply differ-
ent transformation techniques to find appropriate data representations for training
GANs compared to numerical columns. Thus, the pre-processing step in each tabu-
lar GAN architecture must include various kinds of data transformations suited for
specific column distributions, and the data types for all columns should be correctly
specified for the GAN model [5, 75]. Otherwise, it treats all data types in a similar
manner. For instance, if we do not differentiate between a one-hot encoded label
column and a continuous one, the GAN model generates a floating feature when
replicating the label column.

Categorical Data Generation:

Generating categorical values in GAN architectures is not as straightforward as
synthesizing continuous ones. For continuous variables, we normalize the input
values to [−1, 1] and use the tanh activation function on the generator’s output layer
to produce values in the same range [5]. A typical approach to producing categorical
values is using the Softmax function on the network’s last layer, outputting the
probabilities corresponding to each label, and then selecting the most likely one
using the argmax function. However, generating categorical values is not as easy as
using a Softmax activation function followed by an argmax operation. The argmax is
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not a differentiable function and can not be used for backpropagation in the training
process. An easy workaround to circumvent this issue could be omitting the argmax
and only using the Softmax activation function outputting probabilities. However,
in this situation, the discriminator network easily differentiates between the Softmax
probabilities and the one-hot encoded ground truth [5, 42]. This would prevent both
the generator and discriminator improve in proper directions.

Generally, there are two approaches to circumvent this issue [5, 42]. First, we can
add noise to the one-hot encoded original labels to make them similar to the Softmax
outputs. Thus, the discriminator cannot easily differentiate between the Softmax
probabilities and one-hot encoded ground truth labels. The other approach is using
Gumbel-Softmax to sample from categorical distributions in a differentiable way.
This technique was introduced by Jang et al. in [32] proposing a novel method
to reparameterize the categorical distributions. Specifically, the authors leveraged
Softmax activation with temperature to approximate a differentiable version of the
argmax function. For more details, please refer to the original paper.

The GAN models presented so far would fail to generate categorical columns or con-
tinuous variables with complex distributions. More importantly, they fail to capture
inter-variable dependencies between the features. Thus, many research papers have
addressed all or some of these issues simultaneously to design a tabular synthesizer.
The following section reviews the outstanding works in the tabular SDG.

2.4 Related Works

The topic of tabular synthetic data generation (SDG) has become an active research
area for the scientific community in recent years. The SDG techniques are generally
classified into process-driven and data-driven methods [20]. While the process-driven
techniques synthesize data by a pre-determined computational model of an under-
lying process, the data-driven methods generate synthetic data by fitting a joint
multi-variate probability distribution to the original data and then sampling from
it. There are a plethora of publications regarding the use of process-driven and clas-
sical data-driven methods in tabular synthetic data generation. However, our work
explicitly focuses on the deep learning-based tabular generative models. Specifi-
cally, we investigate the properties of the GAN-based models in generating tabular
healthcare data. To reach our research objectives, we conduct a thorough literature
study chronologically on the proposed GAN-based models tailored for tabular SDG.

MedGAN is one of the first GAN-based models, introduced in 2017 to generate dis-
crete aggregated healthcare patient records. To circumvent the problems of training
categorical columns in GAN architectures, Choi et al.[11] proposed using a pre-
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trained auto-encoder to translate discrete values into continuous latent codes. The
pre-trained decoder is placed between the generator and discriminator in the pro-
posed architecture. While the generator tries to learn the continuous latent codes,
the decoder translates the generator’s output to the original data format and passes
it to the discriminator. Therefore, the discriminator is either fed with the origi-
nal or fake records. There are a few functional limitations regarding the proposed
SDG model. The MedGAN architecture can only generate discrete numerical and
categorical features and does not support synthesizing more data types.

Although MedGAN architecture treats multi-categorical columns as a flat collection
of binary variables, the model struggles to perform equally compared to the case
when generating binary categorical columns. This is due to disregarding the data
structure in the training process. To circumvent this, Camino et al., in their paper [8]
proposed a sophisticated method to generate multi-categorical columns with GAN
architectures. They modified the MedGAN architecture by splitting the output of
the decoder with a dense layer for each categorical feature followed by a Gumbel-
Softmax and then concatenating the results of the parallel layers to achieve the
outcome. This modification increases the performance of the original MedGAN in
generating multi-categorical features. However, it imposes limitations for knowing
some additional information like the dimensionality of the features.

In another interesting work done by Park et al.[50], the TableGAN model was pro-
posed to generate tabular datasets containing numerical and categorical columns
with complex distributions. The adversarial components in this general-purpose
synthesizer were adopted based on Deep Convolutional Neural Networks (DCNN)
to capture inter-variable dependencies between columns. In addition to the gener-
ator and discriminator, the authors proposed an auxiliary classifier to increase the
semantic integrity of the generated samples. Moreover, two additional loss terms
were added to the generator’s loss to improve the training process. It is worth men-
tioning that the model treats categorical columns numerically after translating them
to integers.

Lei Xu et al., in their scientific papers [74, 75], proposed TGAN and CTGAN
tabular SDG models to address the shortcomings of the previous models. Both
models use a mode-specific normalization technique to deal with the complexity
of generating multi-modal numerical columns. While the authors used an LSTM
network in the TGAN’s generator to synthesize each feature sequentially in the
generation process, the CTGAN model uses a novel conditional generator and a
unique training-by-sampling technique to deal with imbalanced categorical columns.
Lastly, the TGAN and CTGAN models are adopted based on vanilla GAN and
WGAN-GP architectures, respectively.
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Baowaly et al.[4] proposed two modifications to the MedGAN architecture to im-
prove the generation of discrete synthetic EHRs. They suggested using Wasserstein
GAN and boundary-seeking GAN instead of the vanilla GAN architecture in the
MedGAN model while keeping the remainder of both models’ structures the same
as MedGAN. The authors called the modified models MedWGAN and MedBGAN,
respectively. Their analysis indicated that in all statistical similarity and machine
learning-based evaluation metrics, the modified models outperform the MedGAN
model, and the modifications improve training stability and model convergence.
Specifically, the MedBGAN was the best-performing one among all three models.

CorGAN is another sophisticated modification of the MedGAN model proposed by
Torfi et al.[65] to generate discrete and continuous numerical healthcare records.
Like MedGAN’s architecture, CorGAN uses a pre-trained auto-encoder to translate
discrete values into continuous latent space. However, the authors used a convolu-
tional GAN and a convolutional auto-encoder instead of the Multi-layer Perceptron
(MedGAN) to capture the inter-variable dependencies effectively. Specifically, the
generator, discriminator, and the auto-encoder’s components use a 1-D convolu-
tional structure, while the rest of the model is unaltered. Moreover, the proposed
model demonstrated an acceptable degree of preserved privacy against Membership
Inference attacks.

Recently, the research community has focused on protecting the SDG models against
malicious attacks compromising the privacy and integrity of the sensitive information
in the original training data. Several research papers, such as [34, 66, 67, 73] suggest
using differentially private GAN-based architectures to provide privacy guarantees
in the generation process. However, in complex use cases, it has been demonstrated
that the quality of the synthetic records would decrease significantly in terms of sta-
tistical similarity and ML-based utilities when the noise is added in the generation
process to ensure the differential privacy constraints. To circumvent these issues,
Yoon et al.[78] suggested using a quantifiable definition for patients’ identifiability
instead of differential privacy constraints. Their proposed model, ADS-GAN, uses
a modified conditional GAN framework while minimizing while assuring a specific
identifiability level is met. The authors showed that the ADS-GAN model outper-
forms other differentially private models in all evaluation metrics by conditioning
on an optimized set of variables instead of a pre-determined one.

Lastly, CTABGAN [79] is one of the most recent GAN-based models developed in
the realm of synthetic data generation. Zhao et al.[79] adopted the core features of
CTGAN and TableGAN models to handle the highly imbalanced categorical features
and to improve generating skewed multi-modal and long-tailed continuous columns.
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Although a plethora of GAN-based architectures is proposed for tabular healthcare
generation tasks, most are designed for specific medical applications. For instance,
many papers investigating the SDG in the healthcare domain use the MIMIC III
clinical database to exclusively synthesize patients’ ICD-9 codes (diagnostic codes).
However, we intend to study the strengths and weaknesses of the SDG models
in the healthcare domain that are not application-specific. In other words, we will
investigate the GAN-based models capable of generating tabular healthcare datasets
containing various data types and applicable to most medical applications. Thus,
from all the SDG models introduced in this section, we only investigate the ones
that are according to our objective and describe them thoroughly in Chapter 3.
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Chapter 3

Method

In this chapter, we discuss two main topics. First, we describe the cutting-edge
GAN-based models for tabular synthetic data generation. Five promising GAN-
based SDG methods are summarized in detail. In the second section, we present the
evaluation framework comprehensively and discuss the pros and cons of each metric
individually.

3.1 GAN-based Models for Tabular SDG

3.1.1 TGAN

Tabular GAN(TGAN) is one of the first GAN-based architectures introduced to
tackle the complexity of the generation of a synthetic table containing various data
types. The model was first proposed by Lei Xu et al.[74] in 2018 with the goal of
providing a general-purpose synthetic data generator that could synthesize the con-
tinuous and discrete (multinomial) columns of any tabular dataset simultaneously.

The authors proposed to use the Long Short-term Memory (LSTM) network with
attention as the generator to synthesize columns in a sequential manner, while the
attention mechanism is used to capture the inter-variable dependencies between fea-
tures. Due to this mechanism, when a new column is to be generated sequentially,
the dependencies of the previous, highly correlated columns can be captured effec-
tively by the newly generated one. The discriminator, on the other hand, is just
a Multi-layer Perceptron (a fully connected neural network). Figure 3.1 illustrates
the generator and the discriminator separately and depicts how the TGAN is used
to generate new tabular records.
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Furthermore, the authors proposed a novel pre-processing step to circumvent the
complexities regarding the continuous columns with arbitrary distributions (multi-
modal). They realized that in many practical use cases, using the min-max normal-
ization technique to center the non-Gaussian distributed values over (-1,1) with a
hyperbolic tangent activation function does not yield a proper result when synthe-
sizing a multi-modal continuous distribution.

Figure 3.1: An illustration of the TGAN components [74].

Instead, they proposed a set of reversible transformations for the numeric features
and called it the mode-specific normalization. In this approach, they train Gaussian
Mixture model (GMM) on each individual continuous column to cluster the numeric
values between different modes. More specifically, this method is performed based
on the following steps [74]:

• First, a Gaussian mixture model is trained for each continuous feature Ci. The
learned distribution for a column is defined as the weighted sum of k Gaussian
components with η

(1)
i , ..., η

(k)
i and σ

(1)
i , ..., σ

(k)
i as means and standard deviation

respectively.

• The normalized probabilities over k Gaussian components are calculated in
form of a vector for each individual value ci,j in the column. Thus, for each
value, we know the probabilities by which they belong to different modes. This
normalized probability vector can be shown as u

(1)
i,j , ..., u

(k)
i,j

• For each value ci,j in the column, we select the mode it most likely belongs
to (among k components) and normalize the value based on the mean and
standard deviation of the selected mode. This normalization is according to
the vi,j = (ci,j − η

(m)
i )/2σ

(m)
i , where m = argmaxk ui,j . Lastly, the values are

clipped to [-0.99,0.99].

• Finally, each continuous value ci,j is represented by ui,j and vi,j.

The TGAN implementation uses a GMM with 5 modes (kdefault = 5) and clusters all
values in the numerical columns whether they are multi-modal or not. The TGAN
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authors argue that if a continuous feature has a smaller number of modes (kactual)
compared to the default value of 5, the Gaussian mixture model assigns very low
probabilities to the 5− kactual modes, and the learned distribution would only have
kactual modes.

Although many related works utilize Gumbel-Softmax [32] to make their model dif-
ferentiable when generating categorical features, the TGAN implementation uses the
Softmax activation function to generate the distribution of the categorical columns
represented as one-hot encoded vectors. To eliminate the existing gap between the
outputs of a Softmax function and the one-hot encoded representation of the real
data, the model adds uniform noise to these binary features and re-normalizes them.
Hence, they become indistinguishable to the discriminator. After the pre-processing
step, each record of the original table is represented as below, where ⊕ is the con-
catenation operator and di,j is the one-hot encoded form of the categorical features:

rj = v1,j ⊕ u1,j ⊕ ...⊕ vNc,j ⊕ uNc,j ⊕ d1,j ⊕ ...⊕ dNd,j

In the left side of the figure 3.1, we observe that the LSTM network (as the generator)
generates 2 numerical and 2 categorical variables sequentially in 6 steps based on
the actual order in the real data. Each numerical variable is generated in two steps
including the generation of the value and the mode vector. On the other hand, the
categorical features are generated in one step.

The right side of the figure 3.1 illustrates the TGAN discriminator as a fully con-
nected neural network (MLP). The authors proposed to use the LeakyReLU activa-
tion function and Batch Normalization in all layers, while the Mini-batch Discrimi-
nation technique was used in the internal ones. Thus he output value of each layer
in the discriminator network is computed based on [74]:

f
(D)
1 = LeakyReLU(BN(W

(D)
1 (v1:nc ⊕ u1:nc ⊕ d1:nd

)))

f
(D)
i = LeakyReLU(BN(W

(D)
i (f

(D)
i−1 ⊕ diversity(f

(D)
i−1 ))))

It should be mentioned that in the first layer, the numerical and categorical com-
ponents generated from the LSTM cell are concatenated, as we concatenate the
normalized features at the end of the pre-processing stage.

Regarding the choice of the loss function, the TGAN architecture uses the vanilla
GAN losses to learn the marginal distribution of the individual columns. The only
difference is that the authors add a KL divergence term to the generator loss to
make the model more stable.

Based on the original paper [74], the generator loss can be defined as:
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LG = −Ez∼N(0,1) logD(G(z)) +
nc∑
i=1

KL(u′
i, ui) +

nd∑
i=1

KL(d′i, di)

As observed, they modified the generator loss function of the vanilla GAN by adding
the KL divergence of the categorical columns and the cluster vector of the numerical
ones. Finally, it should be noted that the model uses ADAM as the optimizer.

3.1.2 CTGAN

The TGAN authors introduced another GAN-based tabular SDG model in 2019 to
circumvent the challenges and issues associated with their former architecture [74].
As an example, the TGAN-generated samples usually face severe mode-collapse and
lack the proper diversity, especially in the generated categorical columns. This issue
is closely related to the imbalanced nature of many categorical features in real-world
datasets, and it occurs because the discriminator finds it hard to detect whether
the overall distribution includes the minor category or not. Hence, Xu et al.[75]
introduced the Conditional Tabular GAN(CTGAN) to synthesize tabular data.

Although both models were introduced by the same authors, their architectures and
implementations differ significantly. The only similarity both models share is the
normalization step for continuous variables. As in the former model, CTGAN uses a
mode-specific normalization technique to deal with the numerical features contain-
ing multi-modal distributions. One small upgrade is that the TGAN tries to fit a
Gaussian Mixture Model (GMM) with m modes (the default value is 5) to cluster
values of each continuous column, while CTGAN uses a Variational Gaussian Mix-
ture Model(VGMM) to automatically calculate the number of modes. Moreover,
instead of a normalized probability vector indicating the cluster each continuous
value likely belongs to, the mode indicator in CTGAN implementation is repre-
sented as a one-hot vector. The CTGAN also uses a different approach to convert
categorical columns into one-hot encoded vectors. Instead of adding noise to the
one-hot encoded representation of the discrete features and normalizing them, the
CTGAN implements Gumbel-Softmax [32].

To address the challenges associated with the class imbalance of categorical columns
and to improve the training mechanism, the CTGAN paper proposed the use of a
Conditional Generator and the Training-by-Sampling technique. The conditional
generator allows for the generation of new samples conditioned on a specific value
of a specific categorical column, thus all existing classes in the categorical features,
whether majority or minority, are evenly sampled.

To modify the traditional GAN architecture into a conditional one, first, they intro-
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duced the conditional vector cond to represent explicit conditioning in the generator
and discriminator (critic). The cond vector is defined as m1⊕ ...⊕mNd

, where ⊕ is
the concatenation operator and Nd is the total number of discrete features. This con-
ditional vector is the concatenation of binary mask vectors of all categorical columns.
Precisely, all these mask vectors are initially filled with zeros, then we choose the
specific mask associated with the selected column in the condition and replace those
elements having the same class as in the condition with 1. For instance, given two
categorical columns d1 = {1, 3, 5} and d2 = {2, 4} with the condition (d1 = 1), the
mask vectors are represented as m1 = [1, 0, 0] and m2 = [0, 0] and consequently, the
condition vector is cond = [1, 0, 0, 0, 0].

The second challenge was to enforce the generator to synthesize samples that main-
tain the conditions they were given. By adding a penalty to the generator loss
function that measures the cross-entropy between the conditional vector and gener-
ated binary representation of the categorical features, the model gets penalized if it
deviates from the condition it was given.

Despite the proposition of the cond vector and conditional generator, there is no
guarantee that all values in the categorical variables are evenly explored while the
model is training. In other words, there is no guarantee that all classes (both
the majority and minority classes) in the discrete columns are properly sampled
in the training phase. To impose this condition, the CTGAN model uses a novel
approach called Training-by-Sampling. In this technique, first, one of the discrete
variables is randomly selected with equal probability. Then, the probability mass
function (PMF) of the values within the selected feature is computed such that the
probabilities are the logarithm of the frequency of each value. Thus, it is guaranteed
that each category is sampled based on its frequency in the column and a category
with the minority class is not sampled more than a category with the majority
one. Finally, a random value is selected according to the PMF and its component
in the mask vector associated with the discrete column is set to one, setting all
other elements of other mask vectors to zero. Thereafter, the condition vector is
constructed by the concatenation of all mask vectors as explained thoroughly above.
Figure 3.2 illustrates the CTGAN structure and the training process in detail.

The generator and discriminator (critic) in the CTGAN architecture are two fully
connected neural networks with 256 neurons. The generator uses batch normaliza-
tion and ReLU in the hidden layers while using a mixture of activation functions in
the output layer. The numerical part of the continuous columns is generated by the
tangent hyperbolic function whereas the cluster vector of the continuous features
and the one-hot encoded representations of categorical columns are generated by
the Gumbel- Softmax.
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Figure 3.2: An illustration of the CTGAN training process [75].

The structure of the CTGAN generator with the input size of |cond|+|z| is described
as [75]:

h1 = h0 ⊕ReLU(BN(f|input|→256(z ⊕ cond)))

h2 = h1 ⊕ReLU(BN(f|input|+256→256(h1)))

vi = tanh(f|input|+512→1(h2)) 1 ≤ i ≤ Nc

ui = gumbel0.2(f|input|+512→mi
(h2)) 1 ≤ i ≤ Nc

di = gumbel0.2(f|input|+512→|Di|(h2)) 1 ≤ i ≤ Nd

Regarding the discriminator (critic) network, CTGAN authors modified the TGAN
version and implemented a packed discriminator as proposed in the PacGAN [41]
paper. In simple words, instead of having a discriminator that classifies one sample
as real or fake, multiple observations from the same class are simultaneously given to
the discriminator, helping to mitigate the mode-collapse issue significantly. More-
over, the leaky ReLU activation function and dropout regularization method are
used in the layers of the discriminator. The structure of the discriminator (critic)
can be defined as below:

h0 = r1 ⊕ ...⊕ r10 ⊕ cond1...⊕ cond10

h1 = drop(leakyReLU0.2(f10|r|+10|cond|→256(h0)))

h2 = drop(leakyReLU0.2(f256→256(h1)))

C = f256→1(h2)
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Where the discriminator considers 10 samples at once (pac = 10). Finally, the
CTGAN architecture is adopted from WGAN-GP instead of using the traditional
vanilla GAN and same as TGAN, the authors chose ADAM as the optimizer. All
these modifications make the CTGAN model much faster and computationally effi-
cient.

3.1.3 TableGAN

In 2018, Park et al.[50] introduced a general-purpose GAN-based model for gener-
ating tabular datasets containing different data types (probably the first with such
capability). To create synthetic records that are statistically similar to the original
ones and to capture inter-variable dependencies between features, their architecture,
tableGAN, is developed based on the Deep convolutional neural networks (DCNN).
In addition to the generator and discriminator networks, the authors used an auxil-
iary classifier in their architecture to preserve the consistency and enhance the qual-
ity of the synthetic samples. They showed that using such a classifier would prevent
the generation of synthetic records that are not semantically correct. For instance,
the generation of a patient record with gender = female and disease = prostate
cancer should be avoided because it is logically incorrect and cannot exist in the
original table. Moreover, unlike many tabular SDG models, the tableGAN architec-
ture is developed to be protected against membership inference attacks. To prevent
this attacking scenario, the authors used hinge loss in the generator to control the
privacy and synthesis quality simultaneously.

Despite other tabular SDG models, the original table is pre-processed straightfor-
wardly in the tableGAN implementation. After transforming categorical values into
numerical ones and normalizing both numerical and categorical columns, each record
is converted into a 2-dimensional square matrix for usage in the convolutional layers.
For instance, a sample with 35 features is transformed into a 6 × 6 square matrix,
including one padded zero.

Regarding the architecture, the generator in tableGAN is a neural network per-
forming multiple deconvolution operations in the subsequent layers, whereas the
discriminator is a multi-layer convolutional neural network. Figure 3.3 illustrates
these adversarial components in detail. While the generator uses Batch Normal-
ization and ReLU activation function in the intermediate layers, the discriminator
implements LeakyReLU in the hidden layers and Sigmoid function in the last layer.

It is worth mentioning that the configuration of each deconvolutional layer in the
generator (or convolutional in the discriminator) and the dimension of the input
noise should be adjusted regarding the number of features (16 × 16 = 256 in the
above illustration).
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Figure 3.3: An illustration of the tableGAN architecture[50].

The architecture of the auxiliary classifier is identical to the discriminator to enhance
the semantic integrity of the synthetic records. The classifier network uses one of the
columns from the original data as the ground-truth label for penalizing the model
if the generated selection is semantically wrong. Due to the space limitations, the
classifier is not included in figure 3.3.

The original paper proposed using three loss functions in the training process: the
original loss, information loss, and classification loss. The first one is adopted from
the DCGAN architecture representing the conventional adversarial manner between
the generator and discriminator. Both adversarial components implement this loss
function in their architecture, denoted as LG

org and LD
org respectively. The informa-

tion loss measures the discrepancy between the mean and standard deviation of the
original and generated samples. Hence, the generated records are statistically similar
to the original ones. Moreover, to control the privacy degree and quality of the syn-
thetic, the authors proposed using two adjustable hyper parameters (δσ and δmean)
to avoid the generation of synthetic records that are statistically too similar to the
original records. They also used the concept of the hinge loss to protect the model
against membership inference attacks. The information loss LG

info is defined below
[50].

Lmean = ∥E[fx]x∼pr − E[fG(z)]z∼pz∥2
Lσ = ∥σ[fx]x∼pr − σ[fG(z)]z∼pz∥2

LG
info = max(0, Lmean − δmean) +max(0, Lσ − δσ)

Finally, the loss regarding the auxiliary classifier measures the dissimilarity between
the label of a synthetic sample and the classifier’s predicted label for the same sam-
ple. While the generator in the tableGAN architecture uses a combination of all
losses (LG

org + LG
info + LG

class) in the training process, the discriminator and classi-
fier are trained by the original loss LD

org and classification loss LC
class, respectively.

Furthermore, the tableGAN authors implemented Adam as the optimizer.
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3.1.4 CTABGAN

Conditional tableGAN(CTABGAN) is one of the recent deep learning-based archi-
tectures developed to overcome the limitations of its prior counterparts in the SDG
domain. Specifically, Zhao et al.[79] addressed three challenges that nearly all the
previous state-of-the-art architectures faced: modeling a column with mixed data
types, a column with long-tail distribution, or a skewed multi-modal continuous fea-
ture. To reach these goals and design an effective general-purpose data synthesizer,
the core features of the CTABGAN architecture are adopted from the CTGAN and
tableGAN models. In other words, the CTABGAN authors proposed combining
a conditional generator and the training-by-sampling approach (introduced in the
CTGAN model) with the tableGAN architecture. They tried to handle the highly
imbalanced features and improve the data generation quality by incorporating the
strengths and core features of the CTGAN and tableGAN models.

First, they invented a mixed-type encoder to handle features containing both nu-
merical and missing values or even categorical ones. Often, in real-world datasets,
we face variables with a numerical nature having a characteristically categorical
value (a value with a specific meaning). For instance, the mortgage column in the
Loan dataset contains either 0, indicating no mortgage or any other positive con-
tinuous values. The authors argued in the original paper that none of the existing
GAN-based SDG models could capture the special meaning of the 0-value, leading
to the generation of the negative mortgage values around it. Moreover, there are
many examples where a continuous column contains a categorical value indicating
the missing values. The authors upgraded the mode-specific normalization intro-
duced in the CTGAN paper and proposed an encoder to circumvent the challenges
regarding the mixed-type columns. The encoding process can be detailed based on
the mixed-type column distribution illustrated in the figure 3.4a. We can observe
that the values are either distributed continuously around two Gaussian distribu-
tions (µ1 andµ2) or belong to the µ0 and µ3 categories. The proposed encoder deals
with the continuous part of the mixed-type column, which is similar to the CT-
GAN’s normalization technique. It uses a variational Gaussian mixture (VGMM)
to learn the non-Gaussian distribution part of the column, normalizes each value
based on the mode they most likely belong to, and finally concatenates the normal-
ized value with a one-hot encoded vector indicating that specific mode. To deal with
the categorical part of the mixed-type columns, they concatenated the values cor-
responding to each category (µ0 or µ3) with a one-hot encoded vector representing
their modes. For instance, a value in the µ0 category is encoded to µ0 ⊕ [1, 0, 0, 0].
Also, the categorical values can include any string or missing values. Furthermore,
the categorical columns are encoded to one-hot encoded vectors. It is worth men-
tioning that the missing values are handled as a different category if they exist in
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the categorical features. Finally, the encoder concatenates all the column encodings
(continuous/mixed-type and categorical columns) to represent a single row.

(a) Mixed-type column distribution (b) An example of a ext cond vector

Figure 3.4: The modified encoding and conditional vector [79].

The CTABGAN authors implemented the training-by-sampling and a conditional
vector adopted from the CTGAN architecture to tackle generating the imbalanced
datasets. However, they modified the CTGAN conditional vector (cond vector) to
include all one-hot encodings associated with continuous, mixed-type, and categor-
ical columns. Figure 3.4b shows an example of this extended conditional vector
(ext cond) used in the CTABGAN model. While the CTGAN model uses mode-
specific normalization and the training-by-sampling approach to detect multi-modal
continuous columns, the CTABGAN authors showed that the inclusion of the con-
tinuous variables’ cluster vector in the conditions would make their model more
robust in generating skewed multi-modal features.

Using a VGMM to encode continuous values does not always yield a good result,
especially for the long-tailed distributions. The Gaussian mixture model does not
correctly represent the values towards the tail of the distributions. To circumvent
this issue, the model utilizes a logarithmic transformation to reshape the original
distribution into a mixture of Gaussian ones and then uses the VGMM.

Although the classifier in the tableGAN model has the same architecture as the dis-
criminator in the CTABGAN, the CTABGAN model utilizes a 7-layer MLP network
to improve the semantic integrity of the generated records. Another distinction be-
tween the two models’ classifiers is that the CTABGAN classifier can conduct both
binary and multi-class classification, while in the tableGAN, the classifier only per-
forms binary classification.

Finally, the CTABGAN’s training procedure is the same as tableGAN’s, and it is
comprehensively detailed in [39].
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3.1.5 WGAN

Lastly, we implement a vanilla GAN as a baseline model to examine the proposed
SDG architectures in a comparative context. The baseline model1 is a Wasserstein
GAN variation with gradient penalty (WGAN-GP) generating both categorical and
continuous features as detailed in section 2.3.3. To normalize numerical columns,
the model uses a Standard Scaler to subtract the mean from the values in the queue
and scale them to unit variance. On the other hand, the categorical variables are
encoded to one-hot representations.

The generator and critic’s structures are fully connected neural networks with 256
neurons using batch normalization, ReLU (only in generator), and LeakyReLU (only
in critic) in their internal layers. To generate both data types, the generator uses
a tangent hyperbolic activation function for the continuous columns and a Gumbel
Softmax function for the categorical ones. The adversarial components’ structures
are detailed below.

Generator structure:

h0 = ReLU(BN(f|z|→256(z)))

for k = 1, 2, ..., ngen

hk = ReLU(BN(fk
256→256(hk−1)))

ci = tanh(f256→1(hngen)) 1 ≤ i ≤ Nc

di = gumbel0.2(f256→|Di|(hngen)) 1 ≤ i ≤ Nd

Critic structure:

h0 = LeakyReLU0.3(BN(f|input|→256(input)))

for k = 1, 2, ..., ncrit

hk = LeakyReLU0.3(BN(fk
256→256(hk−1)))

C = f256→1(hncrit
)

Where fm→k(x) denotes a fully connected neural network with an input layer of size
m and an output layer of size k. Moreover, ngen and ncrit are the number of layers
in the corresponding networks.

Finally, the model uses the Adam as optimizer in the training process.

1https://github.com/TVSjoberg/gan-thesis/tree/master/gan thesis/models/wgan

37

https://github.com/TVSjoberg/gan-thesis/tree/master/gan_thesis/models/wgan


3.2 Evaluation Framework

One of the challenges of the SDG is evaluating the diversity and fidelity of the
generated samples, independent of whether they are images or records in a tabular
dataset. The choice of a proper evaluation framework can often lead to the devel-
opment of GAN models or even designing new ones. So far, there is a plethora of
publications regarding synthetic healthcare data generation, however, the evaluation
metrics used in the different models vary significantly and there is no consensus over
a single evaluation metric that can cover all aspects. Theis et al. [63] demonstrated
that different evaluation metrics could yield significantly different results and conse-
quently, the evaluation metrics should be selected based on the applications of the
GAN model. In other words, a good performance with one evaluation metric cannot
guarantee a good performance by choosing other evaluation metrics. Furthermore, a
survey regarding the generation of tabular health data shows that the proposed GAN
papers from 2017 to 2020 have utilized different evaluation metrics [12]. Generally,
the metrics can be divided into three categories: statistical resemblance (general util-
ity), Machine Learning utilities (Specific utility) and privacy metrics. The general
utility metrics measure the statistical difference between the original and fake data,
while the specific utility metrics compare the similarity of results of certain models
trained on both real and synthetic data [61]. Lastly, the privacy metrics quantify
the preserved privacy of the real data in synthetic data generation process to assess
how much sensitive and private information of the real dataset is compromised and
leaked when generating new data samples. In this thesis, we make use of a com-
bination of all the evaluation categories mentioned and provide a comprehensive
explanation of each one in the following.

3.2.1 Statistical Resemblance (General Utilities)

This group of evaluation metrics measure the distributional similarity between the
original and synthetic data to make sure that the GAN models have preserved the
statistical properties of the real dataset. Multiple statistical metrics and distances
are utilized to quantitatively measure the resemblance between real and synthetic
data [5, 36, 42].

Basic Statistical Check

First, we compare the simple statistics of the original and generated data to see if
the mean and standard deviation of all the features have changed considerably or
not. One way of doing this is to plot the means or standard deviation of each feature
on the same figure while x-axis belongs to the real data and y-axis goes with the
synthetic data. Alternatively, the author of [5] proposed a way that aggregates basic
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statistics of real and synthetic data based on the formula below. He demonstrated
that by applying the Spearman’s ρ correlation on the concatenated lists of the means
and standard deviations of each column for the real and fake data could yield a single
numeric value that is an indication of the extent to which the basic statistics are
preserved. This value can be calculated by:

Sbasic(R,F ) = ρspearman (⟨mean(real), std(real)⟩, ⟨mean(fake), std(fake)⟩)

In the above formula, ⟨A,B⟩ is the concatenation operator and mean(real) refers
to the list of means of each column of real dataset.

Column Distributions

In this step marginal distributions of numerical and categorical columns in real and
synthetic data are compared to ensure that the model has preserved the column
distributions in the generation process or has faced failure modes like the mode-
collapse. This evaluation step can be done in two ways. Either by visual comparison
of PDF, PMF or CDF plots of each column in the real and synthetic dataset [5] or
by conducting statistical tests such as Kolmogorov-Smirnov and Chi-squared tests
on each feature separately. As proposed in [47], two-sample Kolmogorov–Smirnov
test is applied on all numerical columns to find the maximum distance between the
cumulative distribution functions of two numerical columns in the real and synthetic
dataset and it returns the average of one minus the Kolmogorov-Smirnov test D
statistic values across all numerical features. On the other hand, for categorical
features, the probability mass functions are compared by Chi-squared test [47]. In
both cases, if the marginal distributions of the real and synthetic columns are the
same, the output of these statistical tests will be one. otherwise, the outcome will
be zero if they are completely different.

Column-wise Associations

To examine how well the interactions and dependency structures of the columns are
captured in the synthetic data generation process (how well the columns are corre-
lated to each other), we must compare the column correlations of real and synthetic
data [5, 80]. In this way, we can tell which feature relationships are preserved in the
SDG process and which are not. The definition of correlation is often intertwined
with Pearson’s R coefficient; however, this metric is not applicable for categorical
columns. One of the SDG challenges we face both in the generation process and this
evaluation step is working with a mixed tabular data containing different data types
like categorical, binary, continuous etc which prevent us from using the Pearson’s
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coefficient for the whole dataset. One way to circumvent this issue is using One-hot
encoding to convert the categorical columns into numerical ones. Consequently, we
can use Pearson’s coefficient to calculate correlation. However, one-hot encoding
grows the size of the dataset significantly (a dataset with 20 categorical columns
is turned into a new dataset with 130 columns) and makes interpretation of the
correlation matrix demanding and, in many cases, impractical. Alternatively, [80]
proposed to use a measure of association for categorical features instead of using
a single Pearson’s correlation coefficient for all types of features. He argued that
pairwise columns should be split into distinct classes based on their data types and
each one should apply a different association metric to capture the correlation. The
proposed metrics are detailed bellow.

Numerical-Numerical

When both columns are numerical, the Pearson’s r correlation coefficient [71] is a
trivial choice of the association metric.

rxy =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2

It ranges between -1 and 1 where negative values indicate negative correlation be-
tween columns.

Categorical-Categorical

In the case of two categorical features, [80] proposed two ways of measuring associa-
tion between columns. Theil’s U (Uncertainty coefficient) [72] and Cramer’s V [70]
coefficients. The author argued that due to the asymmetric nature of the Theil’s U
(U(X, Y ) ̸= U(Y,X)) it is the preferred choice compared to the Cramer’s V metric
(Cramer’s V is symmetrical metric which results to the loss of valuable information).
Theil’s U is based on conditional entropy, and it ranges between 0 and 1 where 0
means y provides no information about x [80]. The Uncertainty coefficient can be
formulated as:

U(X|Y ) =
S(X)− S(X|Y )

S(X)

where S(X) and S(X|Y ) denote the entropy of X and the conditional entropy of X
given Y respectively.
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Numerical-Categorical

A proper choice of association metric in the case of mixed type columns is Correlation
Ratio η [69]. Mathematically, it is computed by the formula below and it ranges
between 0 and 1, where higher values are indication of larger association. In a
simple word, given a numerical value, this metric measures the information gain of
the category it can be belong to.

η =

√
Σc nc (yc − y)2

Σc,i (yci − y)2

In the above formula, nc stands for the total observations in the category c and yc
and y are defined as:

yc =
Σi yci
nc

, y =
Σi nc yc
Σc nc

Using the selected metrics, the author of [80] designed the dython 1 library for the
calculation of the association matrices between the tabular datasets. We used this
library in our evaluation framework to compute the association matrices of the real
and fake datasets and calculate the overall distance between them on an element-
wise basis.

1http://shakedzy.xyz/dython/
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3.2.2 Specific Utilities (Machine Learning Utilities)

Machine Learning-based Detection

To assess how indistinguishable the generated records are from the real ones, we
train classifiers on all the records from the real and synthetic datasets, labelled as
real or fake, and evaluate the SDG based on the models’ detection capability [42,
47]. Thus, a poor classification result indicates that the SDG process was successful
enough and the real and synthetic data is hard to be separated. We use Logistic
Regression and Support Vector Machines (SVM) classifiers as the machine learning
detection models and choose the area under the ROC curve (AUROC score) as the
performance metric of the classification task. If the synthetic data is inseparable
from the original one, the AUROC score would be 0.5, indicating that the classifier
is guessing randomly and unable to distinguish the real and fake classes. The less
the AUROC score of the classification, the better the synthetic samples have been
generated. However, since most of the evaluation metrics in our setting are in the
range of 0 to 1, we normalize the classification result to one minus the average
AUROC score with 1 indicating the original and synthetic datasets are completely
inseparable.

Machine Learning-based Cross-Testing

Of all the metrics proposed for the evaluation of tabular GAN models, machine
learning-based cross-testing seems to be the most recurring evaluation method in
the related papers. The idea is to compare the inferential ability of a machine
learning model trained on both the original and synthetic data. More specifically,
we split the original data into the training and test sets (Xtrain and Xtest). After
training the generative models on the training set, we generate synthetic data (Xfake)
of the same size as Xtrain. Now we use Xtrain and Xfake separately to train a set
of machine learning prediction models and compare their predictive capability on
the Xtest. If the prediction results of the models trained on Xtrain and Xfake are
significantly close, it indicates that these datasets are equivalent, and we can use
the synthetic data instead of the real data in our analysis. If we are trying to make
a prediction based upon a binary or categorical column, we are doing classification
and the machine learning models must be classifiers; otherwise, they are regressors.
Since all the healthcare datasets studied in this thesis include a binary or categorical
target column, a set of classifiers is chosen to compare their predictability on the
real and synthetic data: Decision Tree, Random Forrest, Logistic Regression, and
Multi-layer Perceptron classifier. To evaluate the effectiveness of these classifiers,
the harmonic mean between the precision and recall (F1-score) is calculated as the
performance measure. It is worth mentioning that the goal here is not to train
the best ML predictors or to tune the models’ hyper-parameters to get the best
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prediction score. Instead, our intention is to investigate if the results for the real
and synthetic data are nearly the same when the ML predictors are equally tuned.
Consequently, all hyper-parameters use their default value, and all ML prediction
models are fixed for all case studies [36, 42]. Figure 3.5 illustrates the steps in this
specific utility measure.

Figure 3.5: The workflow of cross-testing evaluation

3.2.3 Preserved Privacy

In addition to the general and specific utility metrics elaborated so far, privacy met-
rics are the last and most crucial evaluation category the data science practitioners
need to consider for protecting the individual’s privacy, especially in the healthcare
domain. After the generation of synthetic data, if an individual’s private data in the
real dataset is to be re-identified in any way, it indicates that sensitive information
associated with the individual is included in the synthetic dataset and his privacy
has been compromised. Thus, we need a mechanism to measure the patients’ pri-
vacy. Broadly speaking, the privacy evaluation of the GAN models is divided into
two categories: Theoretical evaluation and Empirical evaluation [77]. The first cate-
gory defines privacy mathematically and guarantees that this theoretical concept is
satisfied in the SDG algorithm. Differential Privacy (DP) [14], as an example, is one
of the most recurring privacy evaluation guarantees in many research papers that
belongs to this category. In simple words, this mathematical concept ensures that if
the outcome of a query of two datasets is not significantly affected by the inclusion of
an individual data, the chance of privacy breach is small, and it is unlikely that the
individual’s identity is exposed if his sensitive information is included in the dataset
[15, 68]. Although it is theoretically proven that DP can act as a protection layer
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against privacy attacks such as Linkage attacks and multiple papers have already
used its properties in their GAN settings [34, 73, 78], it causes a significant decrease
in the data utility.

On the other hand, the empirical evaluation metrics are the most common privacy
metrics investigated in the related literature and are conducted in two ways: ei-
ther by the examination of the GAN’s generator or the synthetic generated data.
To measure how much sensitive information is leaked by the GAN generator, [11,
50, 65] tested their proposed models against the membership inference attacks sce-
nario (formerly known as presence disclosure attack) to check if the generator is
vulnerable or not. In this scenario, the attackers often have black-box access to the
model’s architecture and their goal is to determine whether a sample is included in
the training data or not, after the observation of the outputs of a target machine
learning model [26, 60]. In contrast to the measurement of the preserved privacy
of the model’s generator in attacking scenarios, the quantification of the privacy
level in the synthetic generated data is more intuitive and easier to grasp for data
scientists. Consequently, to measure preserved privacy, many related publications
(including this thesis) use Distance-based metrics to quantify the degree of privacy
in the synthetic data [50, 74, 79]. Here, to evaluate how similar the real and syn-
thetic data records are, we calculate the Euclidean distance between a record of
the synthetic data and its closest neighbor in the real data. This way of measuring
privacy is referred to as the Distance to Closest Record(DCR) [50] and the larger
the DCR is, the chance of having a privacy breach is smaller. It is preferred that
the distribution of the calculated Euclidean distances has a large mean and a small
standard deviation. Note that a large standard deviation indicates the probable
existence of many synthetic and real pairs which are too close (too similar), even if
the mean of the distances is large enough [5, 50].

The code of all the selected metrics and statistical distances in our evaluation frame-
work have been implemented in multiple sources such as TableEvaluator 1, SDMet-
rics 2 , and dython 3 libraries and we use a combination of them in this thesis.

1https://github.com/Baukebrenninkmeijer/table-evaluator
2https://github.com/sdv-dev/SDMetrics
3http://shakedzy.xyz/dython/
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Chapter 4

Experimental Setup

To evaluate the selected SDG models in the healthcare domain, we perform several
experiments with different medical datasets. This chapter provides comprehensive
descriptions of each healthcare dataset used in the thesis, followed by the implemen-
tation details and parameter choices for each investigated model.

4.1 Data

The initial objective was to find an optimal solution to synthesize medical records
based on a confidential Tacrolimus Exposure dataset. The data was obtained from
four clinical studies performed at Oslo University Hospital - Rikshospitalet, Norway
in the period 2011-2018 [24, 25, 45, 56]. This dataset was mostly numerical and
contained data records regarding the tacrolimus dosages exposed in the patients’
bodies in different time stamps. After aggregating each patient’s time-series records
into a vector to transform the original data into a tabular format, it was observed
that the size of the resulting dataset became significantly small for any SDG models
(we came up with data records of fewer than 100). To synthesize records with high
quality and diversity, we often need a comprehensive, large-sized training dataset so
the synthetic generative models can learn the underlying distributions of the features
and capture inter-variable relationships between variables to generate useful, appro-
priate synthetic records. Otherwise, the model would overfit and simply memorize
the training data, resulting in the generation of records that look exactly like the
ones in the training set. Consequently, we decided to exclude this case study from
our experiments and test the chosen generative models on other publicly available
medical datasets containing enough data records and more complex inter-variable
relationships. We selected several healthcare datasets from multiple sources to com-
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pare the efficacy of synthetic generative models: Diabetes 1 and Thyroid Disease
2 datasets from UCI Machine Learning Repository, Epileptic Seizure Recognition 3

dataset from Kaggle, and MIMIC III 4 clinical database from PhysioNet platform.

Due to the inclusion of variables with different data types and feature distributions
in these datasets, it is likely to tell which generative model works better for data
with specific modalities. All datasets have a binary or categorical target variable
for which we can conduct classification tasks. Moreover, no feature engineering or
scaling has been done on the original version of these datasets because each model
has its own way of input data transformation which was elaborated in detail in each
generative model’s subsection. We only conducted some simple pre-processing tasks
to assure that the input data variables do not contain any mixed data types or
null values. It should be mentioned that some models like CTABGAN are capable
of dealing with mixed-type features or handling null values, while others are not.
Since the aim of the thesis is to conduct a fair comparison of the SDG models in
the healthcare domain, not synthesizing data with specific characteristics, we should
prepare the data in a proper, acceptable manner for all the generative models we
are testing. The description of each dataset is presented in the following and the
overall statistics associated with them are summarized in table 4.1.

4.1.1 Epileptic Seizure Recognition

This dataset consists of the Electroencephalogram (EEG) recordings of 500 patients.
An EEG is a test to diagnose any abnormality in the electrical activity of the human
brain. It is often used to diagnose Epileptic Seizures, one of the most common brain
disorders. Each of these EEG time series is a recording of a patient’s brain for
23.5 seconds. Then each recording is sampled into 4097 points and subsequently,
the points are divided into 23 chunks. Thus, each chunk represents 1 second of the
time series and it contains 178 data points. As a result, the EEG time series are
converted into a tabular dataset with 23 x 500 = 11,500 rows and 178 columns. The
target variable in the last column indicates whether a patient faces epileptic seizures
or not. The values in this column range between 1 to 5, while subjects with class
1 had seizures and subjects with other classes did not. As an example, class 4 and
class 5 indicate that while recording the EEG, the patients had their eyes closed and
opened respectively. Thus, we can perform both binary and multi-class classification
on this dataset. Since the Epileptic Seizure Recognition dataset provided by Kaggle
is a pre-processed version of the original one [2], no extra pre-processing is needed.

1https://archive.ics.uci.edu/ml/machine-learning-databases/00296/
2https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease
3https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
4https://physionet.org/content/mimiciii/1.4/
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4.1.2 Diabetes

The Diabetes dataset was the outcome of a study [62] conducted on the Health Facts
database, a comprehensive clinical database in the United States. The Health Facts
database consists of ten years of clinical data at 130 US hospitals across the United
States. The aim of the study was to investigate whether the use of Hemoglobin
A1c (HbA1c) as a measurement could lead to a reduction in the readmission rate
of the patients diagnosed with diabetes [62]. The study resulted in the extraction
of the Diabetes dataset from the Health Facts database containing the diabetic
inpatient encounters. To be more specific, any inpatient with any kind of diabetes
who stayed in the hospital for a minimum of 1 day and a maximum of 14 days,
received medications and underwent laboratory tests is included in the dataset. The
extracted dataset is composed of 101,766 rows (inpatient encounters) and 50 columns
(that are potentially related to the diabetic condition of a patient) including age,
gender, race, diagnoses, diabetic medications, lab measurements, admission type,
etc. The readmitted column as the target variable indicates whether the patient’s
readmission occurs within or after 30 days of discharge from the hospital, or there
won’t be any readmission at all. Thus, we can perform both multi-class classification
and binary classification (if we only consider readmission or no readmission) on this
dataset.

Pre-processing

As with any real-world dataset, there are incomplete and noisy records in the pre-
liminary version of the diabetes dataset. First, the weight, payer code, and medical
specialty columns are removed due to the inclusion of a high percentage of missing
values (“?” character in this dataset). We also decided to simply drop all the rows
containing missing values instead of replacing them (due to many available data
records). The Encounter ID and Patient Number features are unique identifiers
that can be created trivially without any inter-variable relationships between other
columns, thus they are dropped as well. There are 24 features associated with spe-
cific drugs, indicating whether the medication is prescribed or there is a change in
their dosage. By counting unique values in each of these columns, we observe that
there is only one value per column for 14 of these features. Since there is not any
valid reason to generate columns with only one value, these features are eliminated
from the dataset. Consequently, we have a pre-processed subset of the diabetes
dataset with 89053 rows and 29 columns ready to be used for the SDG task.
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4.1.3 Thyroid Disease

The Thyroid Disease [13] dataset contains the latest version of the thyroid diagnosis
records provided by the Garvan Institute of Medical Research in Sydney, Australia.
The original dataset consists of 9172 inpatient records and 20 columns gathered
from 1984 to 1987.

Pre-processing

After replacing the “?” characters with the Null value, we observe that a high
percentage of the TBG column is composed of the missing values. Thus, we drop
both the TBG column and its associated one TBG measured. The target variable
in this dataset is a string of letters indicating the diagnosed thyroid conditions.
These conditions are divided into several groups where each one is associated with
a different class of thyroid diagnosis. By extracting the first letter of each string we
can tell if a patient is diagnosed with thyroid disease (alphabetical letters starting
from A to T) or not having the thyroid disease (“-” letter). We convert the target
variable into a binary feature where 1 indicates a patient with thyroid disease and
0 otherwise. Lastly, we fill the missing values in the remaining columns using the
simple imputation method from the sklearn [51] library.

4.1.4 MIMIC III

Medical Information Mart for Intensive Care (MIMIC-III) [33] is a large, publicly
available database containing longitudinal medical records of over 46,000 patients
admitted to the Intensive Care Unit (ICU) of Beth Israel Deaconess Medical Centre
between 2001 and 2012. Different types of de-identified health-related information
are included in the MIMIC-III clinical database such as demographics, clinical mea-
surement, laboratory results, medications, diagnoses data, performed procedures,
length of stay, mortality, and etc. Although the database is widely available, the
researchers are required to complete the ”MIT Data or Specimens” training course
and formally go through an approval process [19]. Moreover, the patients’ sensitive
information in the database is de-identified with classical anonymization methods
to ensure patients’ privacy in accordance with the HIPAA regulations. The clinical
database investigated in this thesis and the other related studies is a companion
to the MIMIC-III Waveform Database consisting of thousands of vital physiological
signals (time-series) acquired from each patient’s bedside monitor. The figure 4.1
illustrates how the MIMIC-III database is acquired from different sources with dif-
ferent data types. Since we are focused on the generation of tabular healthcare data
(not the generation of time-series data), we exclude the waveform database from
further analysis.
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Figure 4.1: An overview of the MIMIC-III database collection [33]

MIMIC-III clinical database is composed of 26 tables which can be joined through
four different identifiers: Subject ID – a unique integer for each patient, Hospital
admission ID – a unique integer for each patient’s hospital admission, ICU stay
ID – an integer identifying a patient’s stay in the ICU, and Case ID indicating a
set of signals associated with each patient. During the collection of the MIMIC-
III clinical database, patients may be readmitted several times and each hospital
admission can be associated with multiple ICU stays. Thus, it is crucial to know
how to identify patients or track their stays. An overview of the comprising tables
and their descriptions is described in the original paper 1 and the schema of this
relational database is provided in the Appendix.

Many of the papers investigating the SDG in the healthcare domain use the MIMIC-
III clinical database to synthesize patients’ diagnostic codes (ICD-9 codes). However,
we intended to extract a multi-modal table to test the SDG abilities of our selected
models on different data types, not just ICD-9 codes.

1https://www.nature.com/articles/sdata201635/tables/5
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Pre-processing

We start by combining the PATIENTS table, which contains all the unique indi-
viduals admitted to the hospital, with the ADMISSIONS, INPUTEVENTS, OUT-
PUTEVENTS, SERVICES, LAB EVENTS, and ICU STAYS tables. The resulting
table (after conducting multiple modifications and pre-processing practices including
column dropping, dropping the missing values, replacing values with minority class,
etc) contains 40,895 rows and 14 columns. Each record is associated with a unique
patient with their demographic information and aggregated medical measurements
and test results during their multiple stays in the ICU. The target variable in the
extracted table is HOSPITAL EXPIRE FLAG indicating whether the patient is
healed when discharged from the hospital or passed away while hospitalized. Al-
though the dates are shifted into the future for privacy-preserving reasons in the
original database, the duration remain intact. Meaning that by subtracting two
consecutive dates, we can achieve the length of the period between them. This is
how we come up with the length of the patients’ stays in the ICU and hospital.
It is worth mentioning that when calculating each patient’s age by subtracting the
date of admission from the date of birth, we observe that some patients come up
with the age of 300 or more. This happens because the date of birth of the patients
with more than 90 years is shifted to hide their true age. To circumvent this, we
approximate these patients’ age by randomly choosing values between 90 and 100
and assigning probability weights in a decreasing manner. In more detail, under our
assumption, it is more probable to have a 90-year-old patient than a patient with
the age of 100 years.

Dataset #Train/Test Target Column #C #BC #MC

Epileptic Seizure 9,000/2,500 y 178 0 1

Diabetes 70,000/19,000 readmitted 11 3 15

Thyroid 7,100/2,000 binaryClass 6 21 1

MIMIC III 31,900/9,000 Hospital Expire Flag 6 2 6

Table 4.1: Summary of the medical datasets used in the thesis. #C, #BC and #MC
denote the number of continuous, binary and multi-categorical columns respectively.
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4.2 Implementation Details

In this thesis, we conduct our tabular SDG experiments using TGAN1, CTGAN2,
CTABGAN3, and WGAN-GP models. TableGAN is not included in our experi-
ments because it seriously suffers when the target variable is multi-categorical (all
our medical use-cases). There seems to be a technical issue in the original imple-
mentation4 that increases the auxiliary classifier’s loss uncontrollably if the target
column is not binary. Instead, the CTABGAN model is selected to handle both
binary and multi-categorical target features.

All the experiments are conducted using Python 3.8 as the primary programming
language. The proposed tabular SDG models are implemented using Tensorflow,
except the CTABGAN model built with Pytorch. The implementations regarding
each tabular SDG model and the selected evaluation framework can be found in the
thesis GitHub repository5. Furthermore, The experiments were conducted on the
University of Stavanger’s GPU cluster (Gorina6) on an Nvidia Tesla V100 machine
equipped with 32 GB of memory. However, the evaluations and comparisons are
conducted on a Desktop PC with specifications of AMD Ryzen 5 5600G with 8 GB
of memory.

To conduct a fair comparison, all tabular SDG models are trained for 300 epochs
for Diabetes and MIMIC III datasets. In contrast, for the Epileptic Seizure and
Thyroid tables, the algorithms are trained for 1,000 epochs. Epileptic and Thy-
roid datasets have significantly fewer records than Diabetes and MIMIC III tables.
Consequently, to have an unfavorable comparison, they need more epochs to reach
convergence. Each SDG model uses a batch size of 256, an input noise vector of 128,
and the learning parameters based on the table 4.2. The hyper-parameter choices
and architecture of each model are described as follows.

The generator in the TGAN model consists of an LSTM network with 400 units and
a hidden layer of the length of 100. The critic is a 2-layer feed-forward network with
200 units per layer. Moreover, the Gaussian noise added to the categorical variables
has an upper bound of 0.2.

The CTGAN and WGAN models have fully connected neural networks for both the
generator and the critic networks. Each network has two hidden layers with 256
neurons. Based on the original WGAN paper, the critic is updated five times for
each generator update.

1https://github.com/sdv-dev/TGAN
2https://github.com/sdv-dev/CTGAN
3https://github.com/Team-TUD/CTAB-GAN
4https://github.com/mahmoodm2/tableGAN
5https://github.com/Ali-HZN/thesis
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In the CTABGAN model, the generator and discriminator are implemented by a
four-layer and two-layer CNN, respectively. To decide the dimensionality of the
hidden layers for the discriminator and generator networks, the number of channels
argument is selected to its default value of 64. Moreover, the auxiliary classifier
network is a four-layer fully connected neural network with 256 neurons in each
layer.

Finally, a synthetic dataset with the same number of records as the original one is
generated for each proposed method.

SDG Model Learning Rate β1 β2 Weight Decay

TGAN 10−3 0.5 0.9 10−5

CTGAN 2× 10−4 0.5 0.9 10−6

CTABGAN 2× 10−4 0.5 0.9 10−5

WGAN-GP 10−4 0.5 0.9 0

Table 4.2: Adam optimizer hyper-parameters in each SDG model.
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Chapter 5

Evaluation & Results

In this chapter, we evaluate the results of the proposed SDG models based on
the evaluation framework presented in Section 3.2. Specifically, we compare the
statistical resemblance between the original and synthetic healthcare datasets in
Section 5.1, evaluate the machine learning-based similarity scores in Section 5.2,
and discuss the level of compromised privacy in Section 5.3. The purpose is to
shed light on the strengths and weaknesses of each tabular SDG model in different
healthcare use cases. Although we provide a thorough discussion for each model in
each dataset, only a subset of visuals is included due to the space limitations. It is
worth mentioning that all the evaluated results and visuals for each dataset can be
found in the Appendix.

5.1 Statistical Resemblance

5.1.1 Basic Statistical Check

In the first step of evaluating each model, we investigate if the simple statistics of
the real healthcare datasets are maintained through the generation process. To do
this, the mean and standard deviation of the numerical features of each dataset
are visually inspected in a separate, log-scaled figure, while the X-axis represents
the original data, and the y-axis represents the synthetic ones. If an SDG model
cannot preserve these fundamental properties, it will also struggle with capturing
more complex ones.

In the MIMIC III dataset (figure 5.1), most of the blue dots in the first row lie
on the diagonal line or in its periphery. This indicates that all proposed SDG
models preserve the means of the numerical features with relative ease. Similarly,

53



Figure 5.1: The log-transformed means and standard deviations of the numerical
columns in the original and synthetic MIMIC III datasets.

the standard deviations of the MIMIC III numerical columns are captured in the
generation process, as observed in the second row of figure 5.1. Moreover, we can
compute a basic statistical coefficient between the original and synthetic datasets
based on the procedure described in Section 3.2.1. This numeric score indicates the
extent to which the mean and standard deviation is preserved through the generation
process and can be used instead of previous visual inspections.

Figure 5.2: The log-transformed means and standard deviations of the numerical
columns in the original and synthetic Epileptic datasets.
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As for the MIMIC III dataset, the table 5.1 shows that all proposed tabular synthe-
sizers have significantly high coefficients in the Diabetes and Thyroid datasets and
capture the mean and standard deviation of their numerical columns with ease.

However, this basic coefficient faces a decrease in the Epileptic dataset compared to
others. The behavior can be visually verified in figure 5.2 as well. Although most
of the models preserve the standard deviations, we observe much more differences
between the means of the original and synthetic Epileptic datasets. The reason why
it is much harder to generate a synthetic Epileptic dataset is due to its nature. The
dataset comprises 178 discrete numerical features, ranging between -1850 and 1750.
None of the proposed SDG models explicitly differentiate between the generation of
discrete (integer) and continuous (floating) numerical columns, and, as comprehen-
sively discussed later, the performance of the SDG synthesizer drops significantly
when it is trying to generate an integer distribution with a wide range.

Diabetes MIMIC III Thyroid Epileptic

Basic corr Basic corr Basic corr Basic corr

WGAN 0.960 1.00 0.975 1.09 0.962 1.1 0.875 6.9
TGAN 0.948 0.87 0.967 0.65 0.981 0.55 0.853 17.8
CTGAN 0.987 1.29 0.978 0.95 0.970 1.65 0.835 26.5

CTABGAN 0.976 1.65 0.951 2.13 0.971 2.09 0.868 19.8

Table 5.1: Basic statistical coefficients and absolute correlation distances between
the original and synthetic healthcare datasets.

Briefly, all proposed tabular SDG models demonstrate outstanding performance
in capturing the means and standard deviation of the numerical columns in the
Diabetes, MIMIC III, and Thyroid datasets. However, a gradual decrease in the
performance is observed in the Epileptic dataset due to the smaller dataset size and
the discrete numerical nature of the columns.

5.1.2 Column-wise Associations

To demonstrate how well the inter-variable dependencies are preserved in the SDG
process, we calculate the absolute distance between the original and synthetic asso-
ciation matrices for each use case. According to table 5.1 and figure 5.3, it can be
noted that the TGAN architecture outperforms other models in terms of capturing
feature interactions with the column-wise absolute distance of 0.87. WGAN per-
forms slightly worse while CTGAN and CTABGAN come in the third and fourth
places, respectively.
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Figure 5.3: Difference between the real and fake Diabetes association matrices.

A similar pattern is observed in the MIMIC III and Thyroid datasets, with the
TGAN model performing the best, WGAN and CTGAN models in the following
places and the CTABGAN with the worst performance. The reason why TGAN
outperforms other models in terms of maintaining column-wise correlation can be
attributed to the use of an LSTM network in the generator and synthesizing vari-
ables in sequential order. On the other hand, it seems that utilizing the DCGAN
architecture and convolutional operations in the CTABGAN’s generator results in
poor preservation of inter-variable correlations in these datasets.

Figure 5.4: Difference between the real and fake Epileptic association matrices.

The results for the Epileptic dataset demonstrate a different pattern compared to the
results for the other datasets. In the Diabetes, MIMIC III, and Thyroid datasets, it
is noted that the absolute correlation distances for WGAN and CTGAN are slightly
close to each other (due to the similarity of their generator networks). However, in
the Epileptic dataset, the WGAN model has the best performance in capturing cor-
relation with the distance of 6.9, and CTGAN performs the worst with an absolute
distance of 26.5. This is mainly related to the Mode-specific normalization incor-
porated in the TGAN, CTGAN, and CTABGAN’s pre-processing step. Although
this normalization step works well for complex datasets, the associated increased
dimensionality of the original data leaves no room for models to capture correla-
tions effectively. Figure 5.4 illustrates the absolute difference between the original
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and synthetic Epileptic correlation matrices. It can be observed that besides the
best and worst models, TGAN and CTABGAN come in the second and third place
respectively. The real, fake, and absolute differences in association matrices of each
dataset are included in the Appendix.

In a nutshell, the TGAN model outperforms others in capturing the correlations
in the Diabetes, MIMIC III, and Thyroid datasets. This behavior demonstrates
that generating each record sequentially in the TGAN generator is the best way
to capture inter-variable relationships in these datasets. However, in the Epileptic
dataset, the WGAN outperforms TGAN due to the increased dimensionality and
the nature of the original data.

5.1.3 Column Distributions

To compare the marginal distributions of the columns in the original and synthetic
datasets, we use the Kolmogorov–Smirnov test and Chi-squared test between pair-
wise numerical and categorical columns, respectively, and report the average score
for each column type. For numerical columns, the test result is one minus Kol-
mogorov–Smirnov D statistic, and for categorical ones, the outcome is the resulting
p-value. In both cases, if the probability distributions or probability mass functions
of two columns are the same, the test result is one. Otherwise, the resulting score
is zero if the distributions are completely different. The results of these statistical
tests are reported in table 5.2.

In the Diabetes dataset, CTABGAN outperforms other models in preserving the
marginal distributions of the numerical columns with the Kolmogorov–Smirnov test
score of 0.90, while the TGAN and CTGAN models are slightly worse, with a score
of 0.87. Although CTGAN, TGAN, and CTABGAN benefit from the Mode-specific
normalization, the CTABGANmodel shows a better performance in detecting multi-
modal distributions of the diabetic dataset. This is mainly related to the inclusion
of the mode vector in the CTABGAN’s conditional vector. Since our WGAN imple-
mentation lacks this specific normalization technique, it struggles to detect complex
multi-modal distributions and face mode-collapse. Regarding categorical features of
the diabetes dataset, CTGAN outperforms CTABGAN and TGAN models by 2%
and 4%, respectively. Both CTGAN and CTABGAN models benefit from a condi-
tional architecture and the training-by-sampling approach to synthesize categorical
columns. However, it seems that the extended version of the conditional vector in the
CTABGAN model slightly decreases its performance in generating imbalanced cate-
gorical columns, resulting in the CTGAN being the best model. Although WGAN is
not implemented to deal with the class imbalance issue, it yields an acceptable C-S
score of 0.78. this demonstrates that there are only a few imbalanced categorical
columns in the diabetic dataset.
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Diabetes MIMIC III Thyroid Epileptic

K-S Chi-S K-S Chi-S K-S Chi-S K-S Chi-S

WGAN 0.75 0.78 0.46 0.94 0.61 0.54 0.94 NaN
TGAN 0.87 0.95 0.72 0.97 0.82 0.87 0.69 NaN
CTGAN 0.87 0.99 0.84 0.99 0.89 0.98 0.84 NaN

CTABGAN 0.90 0.97 0.96 0.97 0.91 0.96 0.90 NaN

Table 5.2: The average Kolmogorov–Smirnov tests and Chi-squared tests between
the columns of the original and synthetic datasets.

In the MIMIC III dataset, the CTABGAN model has the best performance in gener-
ating numerical columns with a K-S score of 0.96, followed by CTGAN and TGAN
with 0.84 and 0.72, respectively. CTABGAN outperforms other models significantly
due to its specific design to efficiently synthesize long-tailed numerical distributions
using an extra logarithmic transformation pre-processing step. Moreover, it can be
observed that the WGAN model completely fails in generating this kind of distribu-
tion. Regarding categorical columns, since the dataset does not include imbalanced
categorical features, all models demonstrate an outstanding result, with the CTGAN
being the best performing and other models following it.

We observe a similar pattern for numerical features in the thyroid dataset compared
to the MIMIC III. The long-tailed numerical columns result in the CTABGAN
being the best model with a score of 0.91 and CTGAN, TGAN, and WGAN in the
next places. A similar pattern compared to Diabetes dataset can be observed for
categorical variables. The CTGAN model with a C-S test score of 0.98 outperforms
CTABGAN, TGAN, and WGAN by 2%, 11%, and 44%, respectively. However, in
contrast to the Diabetes dataset, the WGAN model performs significantly worse due
to the plethora of imbalanced categorical features in the Thyroid dataset.

In the Epileptic dataset, we observe a completely different pattern compared to the
previous datasets. Interestingly, the WGAN is the best performing model with a
score of 0.94. the CTABGAN is slightly worse with a score of 0.90, followed by
CTGAN and TGAN with 0.84 and 0.69, respectively. It can be observed that the
Mode-specific normalization technique implemented in the CTGAN, TGAN, and
CTABGAN models is well-suited for continuous numerical columns with complex
distributions. In contrast, the WGAN model delivers its best performance in the
smaller datasets with the discrete numerical features. Moreover, since there is no
categorical feature in the Epileptic dataset, no chi-squared tests are conducted.

In brief, the CTABGAN model outperforms others in preserving the marginal dis-
tribution of numerical columns in the Diabetes, MIMIC III, and Thyroid datasets.
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This is due to using a specific normalization and a modified condition vector in
its conditional architecture. However, the performance of the CTABGAN in the
numerical columns of the Epileptic dataset is slightly decreased due to the exist-
ing incompatibility between the wide-ranging integer columns and the CTABGAN’s
normalization. The CTGAN is the best-performing model regarding the categorical
variables due to its conditional generator and the training-by-sampling approach in
the Diabetes, MIMIC III, and Thyroid datasets.

5.2 Machine Learning-based Evaluation

To compare the inferential ability of the original and synthetic datasets, we train
a set of predictive models on both the real and fake datasets and compare their
predictive capability using the real data. Since all the chosen datasets include a
categorical target column, we use the Macro-F1 score to evaluate the predictive ca-
pabilities of the models. Macro-F1 is used instead of accuracy due to the imbalanced
nature of many categorical features across the investigated datasets. The goal is to
verify if the same insights are derived from real and fake datasets when trained on
an equally tuned machine learning model, not picking the best classifier. Thus, we
exclude hyper-parameter tuning for each predictive model and compare the SDG
models based on the average Macro-F1 scores of the classifiers. Besides the infer-
ential comparison, we train Logistic Regression and SVM classifiers on the labelled
original and fake datasets to evaluate whether they are distinguishable or not. We
compute the normalized AUROC score with one indicating the real and synthetic
data are inseparable and zero otherwise. Tables 5.3 and 5.4 show the absolute differ-
ence in Macro-F1 scores of the Decision Tree, Random Forest, Logistic Regression
and Multi-layer Perceptron classifiers trained on the original and synthetic datasets.
WG, TG, CT and CTAB stand for WGAN, TGAN, CTGAN and CTABGAN re-
spectively and the normalized AUROC scores are reported in the last two rows of
both tables. A synthetic dataset with a low Macro-F1 difference and high machine
learning detection score (normalized AUROC) is considered ideal.

Looking at the tables, if we average the Macro-F1 differences across all four classifiers
in the Diabetes dataset, we find that the CTABGAN model has the lowest average
score of 0.015, followed by CTGAN and TGAN models with average scores of 0.041
and 0.068. This pattern is repeated in the MIMIC III and Thyroid datasets, with
the CTABGAN model outperforming others in terms of the difference in Macro-F1
classification scores followed by the CTGAN, TGAN, and WGAN. The reason why
CTABGAN is the best performing model in these datasets is due to using a modified
conditional GAN architecture and an additional information loss term in the opti-
mization process. Although the Diabetes, MIMIC III, and Thyroid datasets follow a
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Diabetes MIMIC III

WG TG CT CTAB WG TG CT CTAB

∆F1-DT 0.083 0.056 0.030 0.016 0.189 0.068 0.052 0.031
∆F1-RF 0.122 0.082 0.044 0.023 0.120 0.030 0.020 0.010
∆F1-LR 0.129 0.050 0.046 0.009 0.094 0.001 0.015 0.007
∆F1-MLP 0.143 0.087 0.044 0.013 0.015 0.035 0.039 0.028

∆F1-average 0.119 0.068 0.041 0.015 0.104 0.033 0.031 0.019
LR-D 0.330 0.520 0.540 0.700 0.220 0.620 0.730 0.790
SVM-D 0.110 0.290 0.330 0.560 0.110 0.390 0.480 0.540

Table 5.3: The difference of the Macro-F1 classification scores and the machine
learning detection scores in the Diabetes and MIMIC III datasets.

similar pattern regarding the average Macro-F1 scores, there is a large gap between
the CTABGAN and CTGAN in the Diabetes dataset compared to the ones in the
other two datasets. This can be related to the multi-modal nature of the numer-
ical columns in the Diabetes dataset and how the CTABGAN model successfully
generates this type of numerical distribution, benefiting from an extended condition
vector in its architecture.

However, in the Epileptic dataset, the WGAN outperforms other models regarding
the average Macro-F1 differences. WGAN is the best performing model with an
average score of 0.085, followed by CTABGAN, TGAN, and CTGAN, with average
scores of 0.18, 0.21, and 0.23, respectively. Similar to our interpretation in Section
5.1.3 for the Epileptic case, we find that although the Mode-specific normaliza-
tion approach in the CTGAN, TGAN, and CTABGAN is well-suited for numerical
columns with complex distributions, it may prevent the model from reaching an ideal
optimum in the smaller datasets with the discrete numerical variables (integers).

The Logistic Regression and SVM classifiers’ normalized AUROC scores follow the
same pattern as the average Macro-F1 differences. Due to using an auxiliary clas-
sifier in the CTABGAN’s architecture and utilizing a classification loss term in its
optimization process, it is much harder to distinguish the synthetic data generated
from the CTABGAN model from the original one. In other words, in the Diabetes,
MIMIC III, and Thyroid datasets, the normalized classification AUROC scores of
the CTABGAN model outperform the Scores resulting from the other models. Sim-
ilarly, in the Epileptic case, the WGAN’s normalized AUROC score exceeds the
scores of the other models, followed by CTABGAN, CTGAN, and TGAN.

Briefly, the CTABGAN model shows the best performance when comparing the ma-
chine learning cross-testing scores in the Diabetes, MIMIC III, and Thyroid datasets.
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Thyroid Epileptic

WG TG CT CTAB WG TG CT CTAB

∆F1-DT 0.300 0.240 0.200 0.100 0.070 0.210 0.210 0.180
∆F1-RF 0.260 0.220 0.190 0.100 0.050 0.280 0.250 0.230
∆F1-LR 0.140 0.090 0.050 0.050 0.010 0.010 0.080 0.030
∆F1-MLP 0.240 0.170 0.120 0.080 0.210 0.350 0.390 0.280

∆F1-average 0.230 0.180 0.140 0.080 0.085 0.210 0.230 0.180
LR-D 0.530 0.700 0.700 0.780 0.770 0.330 0.450 0.730
SVM-D 0.380 0.600 0.530 0.620 0.620 0.250 0.380 0.590

Table 5.4: The difference of the Macro-F1 classification scores and the machine
learning detection scores in the Thyroid and Epileptic datasets.

The CTABGAN model outperforms the others significantly in these datasets due to
its modified conditional GAN architecture and an additional information loss term
in its optimization process. However, in the Epileptic dataset, the WGAN model
outperforms others due to the incompatibility between the TGAN, CTGAN, and
CTABGAN normalization techniques and the wide-ranging integer columns of the
Epileptic dataset. Moreover, the normalized AUROC scores of the Logistic Regres-
sion and SVM trained on the real and fake data demonstrate the exact pattern as
the ML cross-testing scores, with the CTABGAN model being the best-performing
model in generating synthetic records indistinguishable from the original ones.

5.3 Preserved Privacy

Finally, we must evaluate the proposed SDG models regarding their potential to
preserve the privacy of sensitive data. Specifically, this evaluation category is high-
lighted in the healthcare domain, where patients share their sensitive and private
information. Suppose a patient’s confidential data is to be re-identified by accessing
the synthetic data. In that case, the patient’s sensitive information is undoubtedly
leaked in the synthetic dataset, and the SDG model simply replicates the original
records when generating new ones. Thus, as with other related publications, we
utilize a distance-based metric to give an overview of the preserved privacy in the
generated datasets. We compute the Euclidean distance between each synthetic
record and its closest counterpart in the original dataset. Consequently, the distri-
bution of pairwise distances between each synthetic record and its nearest original
neighbor is achieved. It is preferred that the resulting distribution has a large mean
and small standard deviation when evaluating the models through the lens of pri-
vacy. However, this conflicts with the evaluation of synthetic data from the ML
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utility perspective (discussed in section 5.2). Generally, if the distance between the
original and fake records is too large, the generated data has a poor quality. In
other words, these evaluation categories (privacy and ML-based utilities) are in-
versely proportional. Thus, for a fair comparison, we should consider privacy and
ML utility evaluations simultaneously.

Model Diabetes MIMIC III Thyroid Epileptic

WGAN 3.10 0.46 1.37 1.14 1.88 0.97 7.55 8.45
TGAN 2.69 0.61 0.93 0.80 1.39 1.05 7.81 9.26

CTGAN 2.71 0.64 0.97 0.90 1.34 1.08 9.10 9.18

CTABGAN 3.02 0.46 1.11 0.84 1.76 1.06 8.08 9.27

Table 5.5: The distribution of Euclidean distances between synthetic records and
their closest original counterparts (DCR distributions). The format is mean± std.

Table 5.5 shows the mean and standard deviation of the DCR distributions. In
the Diabetes, MIMIC III, and Thyroid datasets, the WGAN model maintains the
largest distance between the original and synthetic data (lowest privacy risk). This
verifies the results in Section 5.2, as the WGAN model was the worst-performing
regarding ML utilities. Interestingly, in contrast to the results for ML utilities, we
observe that the CTABGAN is the second best-performing model with a mean of
3.02 and a standard deviation of 0.46. although the CTABGAN model outperforms
the CTGAN and TGAN models in these three datasets, it preserves more degree of
privacy when generating synthetic records.

In the epileptic dataset, the CTGAN andWGANmodels are the best and worst SDG
models regarding privacy preservation, with the means of 9.10 and 7.55, respectively.
This verifies the results in ML utilities as the WGAN is the best-performing and CT-
GAN is the worst-performing one in the Epileptic case. Moreover, the CTABGAN
model shows an impressive performance in preserving privacy and the ML utility
metrics as it is the second best-performing model in both evaluation categories.

In a nutshell, if we evaluate the distribution of each synthetic record to its closest
original counterpart under the equivalent ML-based scores, the model with the larger
mean and smaller standard deviation is the best-performing model in preserving pri-
vacy. Thus, considering the mean and standard deviations of the DCR distributions
and ML-based scores simultaneously, it can be observed that the CTABGAN model
outperforms others in preserving the privacy of the original records in all datasets.
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5.4 Summary of the Overall Results

In this chapter, various evaluation metrics are studied to shed light on the strengths
and weaknesses of each tabular SDG model in different healthcare datasets. Specif-
ically, we evaluate the models in terms of statistical resemblance, ML-based evalua-
tion scores, and privacy metrics in the Diabetes, MIMIC III, Thyroid, and Epileptic
datasets. One important observation is that the evaluation results for each model in
the Diabetes, MIMIC III, and Thyroid datasets follow similar patterns, as opposed
to the Epileptic dataset with a different one. This is directly due to the size and
the nature of the investigated datasets. Although we deal with complex column dis-
tributions in the Diabetes, MIMIC III, and Thyroid datasets, the Epileptic Seizure
Recognition dataset consists of wide-ranging discrete numerical variables. This in-
dicates that there is room for the state-of-the-art models to improve especially when
generating integer columns.

The CTABGAN model outperforms other proposed models in the Diabetes, MIMIC
III, and Thyroid datasets regarding the statistical resemblance and ML-based evalu-
ation metrics, except for the correlation difference. Although the CTABGAN model
advances beyond the TGAN, CTGAN, and WGAN implementations in statistical
similarity and model compatibility metrics due to its mode-specific normalization,
the novel modification of its conditional generator, and the use of classification and
information losses in its training process, it is observed that the sequential genera-
tion of each record in the TGAN’s generator (LSTM network) is a better approach
in preserving the correlation between variables.

However, in the Epileptic dataset, the WGAN outperforms other advanced SDG
models in all statistical resemblance and ML-based evaluation metrics. As dis-
cussed in the previous sections, it can be concluded that the mode-specific normal-
ization technique in the TGAN, CTGAN, and CTABGAN models is only well-suited
for continuous numerical columns with complex distributions. However, this nor-
malization technique significantly reduces the performance of models in generating
wide-ranging integer columns.

Finally, we compute the Euclidean distances between each synthetic record and
its closest counterpart and compare the means and standard deviations of the re-
sulting distributions (DCR distributions) as a measure of preserved privacy. Since
his notion of privacy (distance-based privacy metric) is inversely proportional to
the ML-based evaluation scores, we evaluate them simultaneously to find the best-
performing model in model compatibility and preserving privacy. Accordingly, it is
observed that the CTABGAN model outperforms others in maintaining the privacy
of the original records in all datasets.
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Chapter 6

Discussion

This chapter presents an in-depth discussion of the results obtained in Chapter 5,
the efficacy of the proposed tabular SDG models in different column types and the
thesis limitations.

6.1 In-depth analysis of Distributions

In this section, we conduct an in-depth analysis of the marginal distributions to
compare the performance of each SDG model when generating columns with specific
distributions. We analyze the efficacy of the models in generating multi-modal,
discrete numerical, long-tailed, and imbalanced categorical columns in the following
sections.

6.1.1 Multi-modal Numerical Columns

Figure 6.1 compares the marginal distributions (top row) and the cumulative dis-
tributions (bottom row) of the diag 2 numerical column in the Diabetes dataset.
Looking at the original data, it is clear that the marginal distribution has a domi-
nant peak at 450 and multiple lower peaks around it. The WGAN implementation
lacks any specific normalization to detect various modes in the numerical features
and generates a simple normal distribution around the dominant peak (it faces
mode-collapse). Although the Wasserstein GAN loss function was introduced to
circumvent the mode-collapse issue, we observe that it is not applicable to detect
complex multi-modal distributions as in our case.

On the other hand, the other three models utilize the mode-specific normaliza-
tion technique for dealing with multi-modal continuous columns and clearly excel
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WGAN in capturing the modes of the diag 2 column. Comparing the cumulative
distributions of the TGAN, CTGAN, and CTABGAN models demonstrate that
the CTABGAN architecture outperforms the other two in generating skewed multi-
modal numerical columns. This is due to the modification of the conditional vector
compared to the CTGAN model. Besides the one-hot encoded representations for
categorical columns, the extended conditional vector in CTABGAN includes the
mode of the numerical columns, increasing its performance in capturing modes with
less weight.

(a) WGAN (b) TGAN (c) CTGAN (d) CTABGAN

Figure 6.1: The marginal and cumulative probability distributions for the multi-
modal diag 2 column in the Diabetes dataset.

6.1.2 Discrete Numerical Columns

One of the few areas where there is room for further improvement is the gener-
ation of discrete numerical columns, as none of the proposed models makes any
distinction between the continuous and discrete numerical features. Through our
experimentation, we observe that for small-range discrete numerical columns, the
original and synthetic distribution tend to resemble perfectly. However, the models’
performances significantly drop when generating integer columns with a wide range
of values. Figure 6.2 shows the marginal probability distributions of two discrete
numerical columns in the Diabetes dataset. One column has a small range of integer
values and the other has a wide range.
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(a) WGAN (b) TGAN (c) CTGAN (d) CTABGAN

Figure 6.2: The marginal distributions of two integer columns with a small range
(upper row) and a large range of values (lower row) in the Diabetes dataset.

For the integer column with a small range of values, all the models have acceptable
performance, with the CTABGAN and WGAN being the best-performing ones.
However, we observe a completely different pattern for the wide-ranging integer
column. While the marginal distribution of the original data resembles a simple
Gaussian distribution, the probability distributions resulting from the TGAN, CT-
GAN, and CTABGAN consist of several modes. This occurs due to the mode-specific
normalization implemented in the mentioned SDG models. Although this technique
is well-suited for continuous columns with complex distributions, it may prevent the
model from reaching an ideal optimum for the discrete numerical variables.

On the other hand, the WGAN is the best performing model when generating wide-
ranging integer variables. This pattern is repeated in the Epileptic dataset consisting
of 178 integer columns with wide ranges. As observed in Sections 5.1.3 and 5.2,
the WGAN outperforms other models in terms of the ML utilities and statistical
similarities due to the same reasons.

6.1.3 Long-tailed Numerical Columns

In this section, we compare the ability of the proposed models to generate numerical
columns with long-tailed distributions. In this type of continuous distribution, most
of the observations happen near the head of the distribution, while there exist many
cases with extreme values.
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(a) WGAN (b) TGAN (c) CTGAN (d) CTABGAN

Figure 6.3: The marginal and cumulative probability distributions for the long-tailed
los ICU column in the MIMIC III dataset.

Figure 6.3 illustrates the log-transformed marginal probability distributions (top
row) and the cumulative probability distributions (bottom row) of a numerical col-
umn with a long tail. The chosen column represents the patients’ length of stay in
the ICU in the MIMIC III dataset. It is clear that the distribution of the values
continue until 250, although most of the observations lie in the initial part ranging
between 0 to 50. Based on the CDF plots, it is observed that the CTABGAN model
outperforms the CTGAN and TGAN in generating long-tailed distributions, while
the WGAN model completely fails. This is directly related to the log-transformation
technique implemented in the CTABGAN pre-processing.

6.1.4 Imbalanced Categorical Columns

Lastly, we analyze the performance of the tabular SDG models in terms of generating
highly imbalanced categorical features, in which the major class includes more than
90% of the data. Since a minor category slightly impacts the joint distribution of the
original data, it is often missed when generating synthetic data due to insufficient
model training. Figure 6.4 illustrates the probability mass functions (top row) and
the cumulative probability distributions (bottom row) of an imbalanced column in
the Thyroid dataset.
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(a) WGAN (b) TGAN (c) CTGAN (d) CTABGAN

Figure 6.4: The probability mass functions and cumulative probability distributions
of the antithyroid medication column in the Thyroid dataset.

As observed, the CTABGAN and CTGAN models outperform the other two when
generating the minor classes. This is due to the conditional generator and training-
by-sampling technique employed in these two models to handle class-imbalanced
features. Comparing the distributions of the original and synthetic data reveals
that the minor categories are generated more frequently than those in the actual
data. This weakness is directly related to how the training-by-sampling technique
gives importance to the major and minor classes based on the logarithm of each
type. Moreover, as discussed in Section 5.1.3, the overall performance of the CT-
GAN model in generating categorical columns, whether they are imbalanced or not,
slightly outperforms the CTABGAN model. Although the extended conditional
vector in the CTABGAN model improves the performance in generating numeri-
cal columns with complex distributions, it slightly decreases the performance when
generating categorical ones.

In a nutshell, the overall comparison of the proposed SDG models demonstrates that
the CTABGAN is the best-performing model in generating continuous distributions.
Specifically, CTABGAN outperforms others in generating long-tailed numerical and
skewed multi-modal distributions due to using a logarithmic transformation pre-
processing and a modified conditional generator in its architecture. Although both
CTGAN and CTABGAN use a conditional generator and the training-by-sampling
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technique to handle generating imbalanced categorical features, it is observed that
the CTGAN model slightly outperforms the CTABGAN architecture when deal-
ing with highly imbalanced categorical variables. This is due to the modification
of the CTABGAN’s conditional generator to capture skewed multi-modal distri-
butions more effectively compared to the CTGAN model. Moreover, CTABGAN,
CTGAN, and even TGAN architectures show relatively poor performances in gener-
ating wide-ranging, discrete numerical distributions. This is due to the mode-specific
normalization implemented in these models as it prevents them from reaching an
ideal optimum for the discrete numerical distribution, especially the wide-ranging
ones. This shows that there is still room for these state-of-the-art SDG models to
improve.

6.2 Limitations

Although we aim to conduct a detailed comparison between the state-of-the-art
GAN-based SDG models in the healthcare use cases, there are some limitations due
to the insufficient time and computational power. This section presents some of
these limitations.

6.2.1 Data

In Deep Learning methods, especially GAN-based ones, we need a large-sized dataset
to train the models. In other words, to generate synthetic data with high quality
and diversity, we need a comprehensive training dataset consisting of thousands of
records so the generative models can effectively learn the underlying distributions
of the columns and the relationships between them. Getting access to such datasets
is extremely cumbersome in the healthcare domain due to the confidentiality of the
data. In this thesis, we conduct experiments on a limited number of publicly avail-
able medical datasets we could gain access to. However, various medical datasets
are only accessible to healthcare professionals or medical practitioners. Analyzing
these datasets can reveal more exciting properties about the tabular SDG models.

6.2.2 Hyper-parameter Selection

Due to the limitation of time and computational power, we are unable to conduct
hyper-parameter tuning for each SDG model in each medical dataset. Our few
experiments indicate that the generated tabular data is not highly sensitive to hyper-
parameter optimization in ML-based applications. Consequently, we use the default
hyper-parameters of the SDG models in many experiments and leave a wide-ranging
hyper-parameter search for future studies.
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6.2.3 Convergence

To conduct a fair comparison, we train the proposed generative models for 300
epochs in the medical datasets, including more than 40,000 records and 1,000 epochs
for datasets with less than 10,000 records. We only examine the synthetic data
through the lens of their practical use cases and compare the tabular SDG models
based on the proposed external evaluation metrics. Although it is common in the
GAN-based architectures to tune the training process based on the generator and
discriminators’ loss values, using Wasserstein loss often prevents the model to reach
Nash equilibrium. Furthermore, our limited trials demonstrate that there are cases
where the adversarial components have small losses, and the evaluation metrics are
still being improved. In other words, there is no direct relationship between the loss
values and evaluation metrics. Thus, we focus on comparing the performance of the
models trained on a specific number of epochs based on the number of records in each
dataset. However, it would be interesting to incorporate the ML-based evaluation
scores in the training process and implement an early stopping approach to improve
the stability by evaluating the model continuously.
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Chapter 7

Conclusions & Recommendations

This chapter briefly summarizes what has been done through the thesis. First, we
conclude the thesis with our findings and final thoughts in Section 7.1. Then, in
Section 7.2, we recommend some possible suggestions for future studies.

7.1 Conclusions

Due to the rapid development of the healthcare industry, there is a growing need for
large amounts of reliable data. Specifically, tabular data plays a crucial role in the
modern advancements of healthcare data-driven applications. However, strict data
protection regulations are introduced to safeguard individuals’ sensitive information,
especially in the health sector. These privacy-protection laws severely slow the
pace of the development of healthcare applications. To circumvent these obstacles,
synthetic data is an ideal alternative to be used instead of the original data without
compromising privacy.

This thesis aims to evaluate the strengths and weaknesses of several state-of-the-art
GAN-based synthetic data generation models in tabular medical datasets. First, we
begin our thesis with a comprehensive literature study, where we conduct a system-
atic review of the proposed GAN-based SDG models and get insights from related
research papers. After carrying out the literature study phase, TGAN, CTGAN,
CTABGAN, and WGAN-GP are the selected SDG models to be investigated in
detail. The WGAN-GP model is implemented as a baseline model to be compared
against others. Then, we conduct an extensive survey on the existing medical tabu-
lar datasets and their applicability to be used in the SDG process. To determine the
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efficacy of each model in generating columns with different feature distributions and
data types, we select Diabetes, MIMIC III, Thyroid, and Epileptic datasets. Later,
a complete pre-processing pipeline is implemented for each tabular dataset to make
them ready and feasible for the SDG task. The next step involves defining a proper
evaluation framework to assess the quality of the generated data and the reliability
of each SDG model in preserving the privacy of individuals. Each synthetic dataset
is evaluated based on statistical similarity metrics, ML-based evaluation scores, and
distance-based privacy metrics. These evaluation metrics empirically highlight the
strengths and weaknesses of each tabular SDG model.

Our experiments indicate that the synthetic tabular data is not highly sensitive to
hyper-parameter tuning in ML-based applications. Thus, the hyper-parameters of
the selected models are chosen based on their recommended values in the original
papers. Furthermore, the models are trained for 300 epochs in the Diabetes and
MIMIC III and 1,000 epochs in the Thyroid and Epileptic datasets. Due to the
limited number of training records in the Thyroid and Epileptic datasets, a much
larger number of epochs is required for the models to converge.

The experimental results produced in our thesis suggest that the state-of-the-art
SDG models can deliver outstanding performances in preserving statistical charac-
teristics, model compatibility, and integrity of the original data in the generation
process. Specifically, it is demonstrated that the CTABGAN model outperforms
TGAN, CTGAN and WGAN in the statistical similarity metrics, ML-based evalu-
ation scores, and distance-based privacy metrics. This excellent performance is due
to the CTABGAN’s mode-specific normalization, the novel modification of its con-
ditional generator compared to the CTGAN model, and the use of classification and
information losses in its training process. However, it has been discovered that the
model has significant flaws in preserving the correlations and generating the discrete
numerical (integer) columns containing a wide range of values. This indicates that
there is still room for further improvements in designing a perfect architecture for
generating synthetic tabular data.

To conclude, the obtained visual and quantitative results in our experiments support
the primary objectives of the thesis, demonstrating that synthetic healthcare data
can be a reliable substitute for the original data and the proposed methodology can
be employed to generate tabular healthcare datasets that are statistically similar to
the original ones without leaking individuals’ sensitive information. Furthermore,
the proposed workflow eliminates the need for traditional anonymization and obfus-
cation techniques which are too risky and negatively impact the data utilities.

Lastly, the main findings and contributions of the thesis are summarized in a research
article that will be submitted to the journal of Artificial Intelligence for Medicine.
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7.2 Future Work

Although our experiments demonstrate the promising performance of the proposed
SDGmodels in generating healthcare datasets, there is still room for the SDGmodels
to improve further and address the existing limitations. In the following, we present
multiple research directions and suggest some personal recommendations that can
be explored as the future work of the current thesis.

• The proposed SDG models are limited to only generating numerical and cat-
egorical features. An exciting research direction is finding a way to include
other data types like ordinal values, dates, free texts, time series, bounded
numerical data, etc., in the generation process.

• The proper evaluation metrics for the tabular GAN-based architectures are
still hot topics to investigate. There are various approaches for evaluating
synthetic data we do not consider due to time limitations. For instance,
Differential Privacy is another guarantee introduced to protect individuals’
privacy in the generation process. Thus, implementing a differential privacy
supporting version of the proposed models can be addressed in the future.
Furthermore, clinical evaluations can be conducted in the last step to see if
the generated records are meaningful in clinical settings.

• We only focus on comparing the performance of the SDG models trained on
a specific number of epochs based on the number of records in each dataset.

However, it would be interesting to incorporate the ML-based evaluation scores
in the training process and implement an early stopping approach to improve
the stability and training convergence by evaluating the model continuously.

• Further developments in the models’ architectures can potentially improve the
performance of synthetic data generation. For instance, the CTABGAN model
shows slightly poor performance in preserving the column correlations. We can
combine the TGAN and CTABGAN generator structures and use the LSTM
network in the CTABGAN’s conditional generator to see if it significantly af-
fects the correlations. Furthermore, there is much room for the proposed SDG
models to improve training convergence in small-sized datasets and generate
discrete numerical (integer) columns.

• In this thesis, we only investigate the strengths and weaknesses of the GAN-
based SDG models in generating healthcare tabular datasets. However, it
would be interesting to test other generative models like Variational Auto-
encoders, Gaussian Copula, Bayesian Networks, etc., in the medical use cases.
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[63] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the
evaluation of generative models”. In: arXiv preprint arXiv:1511.01844 (2015).

[64] Amber Thomas. Exploring the Kaggle Data Science Survey. Ed. by DataCamp.
url: https://rpubs.com/cliex159/868800.

[65] Amirsina Torfi and Edward A Fox. “CorGAN: Correlation-capturing convo-
lutional generative adversarial networks for generating synthetic healthcare
records”. In: The Thirty-Third International Flairs Conference. 2020.

[66] Amirsina Torfi, Edward A Fox, and Chandan K Reddy. “Differentially private
synthetic medical data generation using convolutional gans”. In: Information
Sciences 586 (2022), pp. 485–500.

[67] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. “Dp-cgan:
Differentially private synthetic data and label generation”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 2019, pp. 0–0.

[68] Roberto Vitillo. Differential privacy for dummies. url: https://robertovitillo.
com/differential-privacy-for-dummies/.

78

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml
https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml
https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml
https://doi.org/10.1097/TP.0000000000000384
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
https://ruder.io/optimizing-gradient-descent/
https://rpubs.com/cliex159/868800
https://robertovitillo.com/differential-privacy-for-dummies/
https://robertovitillo.com/differential-privacy-for-dummies/


[69] Wikipedia. Correlation ratio. url: https://en.wikipedia.org/wiki/Correlation
ratio.

[70] Wikipedia. Cramér’s V coefficient. url: https://en.wikipedia.org/wiki/Cram%
C3%A9r’s V.

[71] Wikipedia. Pearson correlation coefficient. url: https://en.wikipedia.org/wiki/
Pearson correlation coefficient.

[72] Wikipedia. Uncertainty coefficient. url: https : / / en . wikipedia . org / wiki /
Uncertainty coefficient.

[73] Liyang Xie et al. “Differentially private generative adversarial network”. In:
arXiv preprint arXiv:1802.06739 (2018).

[74] Lei Xu and Kalyan Veeramachaneni. “Synthesizing tabular data using gener-
ative adversarial networks”. In: arXiv preprint arXiv:1811.11264 (2018).

[75] Lei Xu et al. “Modeling tabular data using conditional gan”. In: Advances in
Neural Information Processing Systems 32 (2019).

[76] Andrew Yale et al. “Generation and evaluation of privacy preserving synthetic
health data”. In: Neurocomputing 416 (2020), pp. 244–255.

[77] Andrew Jonathan Yale. Privacy Preserving Synthetic Health Data Generation
and Evaluation. Rensselaer Polytechnic Institute, 2020.

[78] Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. “Anonymiza-
tion through data synthesis using generative adversarial networks (ads-gan)”.
In: IEEE journal of biomedical and health informatics 24.8 (2020), pp. 2378–
2388.

[79] Zilong Zhao et al. “CTAB-GAN: Effective Table Data Synthesizing”. In: Asian
Conference on Machine Learning. PMLR. 2021, pp. 97–112.

[80] Shaked Zychlinski. The Search for Categorical Correlation. Ed. by Towards
Data Science. url: https://towardsdatascience.com/the-search-for-categorical-
correlation-a1cf7f1888c9.

79

https://en.wikipedia.org/wiki/Correlation_ratio
https://en.wikipedia.org/wiki/Correlation_ratio
https://en.wikipedia.org/wiki/Cram%C3%A9r's_V
https://en.wikipedia.org/wiki/Cram%C3%A9r's_V
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Uncertainty_coefficient
https://en.wikipedia.org/wiki/Uncertainty_coefficient
https://towardsdatascience.com/the-search-for-categorical-correlation-a1cf7f1888c9
https://towardsdatascience.com/the-search-for-categorical-correlation-a1cf7f1888c9


Appendix A

Diabetes

A.1 Basic Similarities

Figure A.1: The first row illustrates the log transformations of mean and the second
row depicts the log transformations of standard deviation of each column
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A.2 Pair-wise Correlation

Figure A.2: The correlation matrices of real and synthetic datasets and their differ-
ence. Figures from left to right belongs to: WGAN, TGAN, CTGAN, CTABGAN
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A.3 Column Distributions

A.3.1 Continuous Columns

Figure A.3: The probability distributions of admission type id

Figure A.4: The probability distributions of time in hospital

Figure A.5: The probability distributions of num lab procedures
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Figure A.6: The probability distributions of num procedures

Figure A.7: The probability distributions of num medications

Figure A.8: The probability distributions of num diagnoses

Figure A.9: The probability distributions of number inpatient
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Figure A.10: The probability distributions of number outpatient

Figure A.11: The probability distributions of number emergency

Figure A.12: The probability distributions of diag 1

Figure A.13: The probability distributions of diag 2

84



Figure A.14: The probability distributions of diag 3

A.3.2 Categorical Columns

Figure A.15: The probability distributions of age

Figure A.16: The probability distributions of gender
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Figure A.17: The probability distributions of race

Figure A.18: The probability distributions of A1Cresult

Figure A.19: The probability distributions of change

Figure A.20: The probability distributions of diabetesMed
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Figure A.21: The probability distributions of glimepiride

Figure A.22: The probability distributions of glipizide

Figure A.23: The probability distributions of glyburide

Figure A.24: The probability distributions of insulin
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Figure A.25: The probability distributions of max glu serum

Figure A.26: The probability distributions of metformin

Figure A.27: The probability distributions of nateglinide

Figure A.28: The probability distributions of pioglitazone
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Figure A.29: The probability distributions of readmitted

Figure A.30: The probability distributions of repaglinide

Figure A.31: The probability distributions of rosiglitazone
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A.4 General Utility Scores

Table A.1: General utility scores. Columns from left to right represent: basic sim-
ilarity score, Kolmogorov–Smirnov test score, Chi-squared test score, mean and
standard deviation of the DCR distribution between synthetic and original records,
correlation distance, Logistic Regression and SVM classification scores.

Model Basic KS test CS test DCR(µ) DCR(σ) Corr LR SVC

WGAN 0.960 0.75 0.78 3.10 0.46 1.00 0.33 0.11
TGAN 0.948 0.87 0.95 2.69 0.61 0.87 0.52 0.29

CTGAN 0.987 0.87 0.99 2.71 0.64 1.29 0.54 0.33

CTABGAN 0.976 0.90 0.97 3.02 0.46 1.65 0.70 0.56

A.5 ML Cross-Testing Scores

Table A.2: F1-scores of each classifier trained on the original and synthetic training
datasets and evaluated on the real test data. DT, RF, LR and MLP stand for
Decision Tree, Random Forest, Logistic Regression and Multi-layer Perceptron.

Classifiers DT RF LR MLP

real fake real fake real fake real fake

WGAN 0.456 0.373 0.522 0.400 0.569 0.440 0.573 0.430
TGAN 0.456 0.400 0.522 0.440 0.569 0.519 0.573 0.486
CTGAN 0.456 0.426 0.522 0.478 0.569 0.523 0.573 0.529

CTABGAN 0.456 0.440 0.522 0.499 0.569 0.560 0.573 0.560

Table A.3: The difference of the F1-scores of each classifier trained on the original
and synthetic datasets.

Model ∆F1-DT ∆F1-RF ∆F1-LR ∆F1-MLP

WGAN 0.083 0.122 0.129 0.143
TGAN 0.056 0.082 0.050 0.087

CTGAN 0.030 0.044 0.046 0.044

CTABGAN 0.016 0.023 0.009 0.013

90



Appendix B

MIMIC III

B.1 Basic Similarities

Figure B.1: The first row illustrates the log transformations of mean and the second
row depicts the log transformations of standard deviation of each column
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B.2 Pair-wise Correlation

Figure B.2: The correlation matrices of real and synthetic datasets and their differ-
ence. Figures from left to right belongs to: WGAN, TGAN, CTGAN, CTABGAN

92



B.3 Column Distributions

B.3.1 Continuous Columns

Figure B.3: The probability distributions of age

Figure B.4: The probability distributions of amount in

Figure B.5: The probability distributions of amount out
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Figure B.6: The probability distributions of value lab

Figure B.7: The probability distributions of los icu

Figure B.8: The probability distributions of los hos

Figure B.9: The probability distributions of hospital expire flag
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B.3.2 Categorical Columns

Figure B.10: The probability distributions of gender

Figure B.11: The probability distributions of religion

Figure B.12: The probability distributions of marital status
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Figure B.13: The probability distributions of ethnicity

Figure B.14: The probability distributions of insurance

Figure B.15: The probability distributions of admission type

Figure B.16: The probability distributions of curr service
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B.4 General Utility Scores

Table B.1: General utility scores. Columns from left to right represent: basic sim-
ilarity score, Kolmogorov–Smirnov test score, Chi-squared test score, mean and
standard deviation of the DCR distribution between synthetic and original records,
correlation distance, Logistic Regression and SVM classification scores.

Model Basic KS test CS test DCR(µ) DCR(σ) Corr LR SVC

WGAN 0.975 0.468 0.94 1.11 0.84 1.09 0.22 0.11
TGAN 0.967 0.729 0.97 0.93 0.80 0.65 0.62 0.39

CTGAN 0.978 0.844 0.99 0.97 0.90 0.95 0.73 0.48

CTABGAN 0.951 0.960 0.97 1.37 1.14 2.13 0.79 0.54

B.5 ML Cross-Testing Scores

Table B.2: F1-scores of each classifier trained on the original and synthetic training
datasets and evaluated on the real test data. DT, RF, LR and MLP stand for
Decision Tree, Random Forest, Logistic Regression and Multi-layer Perceptron.

Classifiers DT RF LR MLP

real fake real fake real fake real fake

WGAN 0.866 0.677 0.910 0.790 0.900 0.806 0.732 0.717
TGAN 0.866 0.798 0.910 0.880 0.900 0.901 0.732 0.767
CTGAN 0.866 0.814 0.910 0.890 0.900 0.915 0.732 0.693

CTABGAN 0.866 0.835 0.910 0.920 0.900 0.893 0.732 0.704

Table B.3: Difference of F1-scores of each classifier trained on the original and
synthetic datasets.

Model ∆F1-DT ∆F1-RF ∆F1-LR ∆F1-MLP

WGAN 0.189 0.120 0.094 0.015
TGAN 0.068 0.030 0.001 0.035

CTGAN 0.052 0.020 0.015 0.039

CTABGAN 0.031 0.010 0.007 0.028
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Appendix C

Thyroid

C.1 Basic Similarities

Figure C.1: The first row illustrates the log transformations of mean and the second
row depicts the log transformations of standard deviation of each column
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C.2 Pair-wise Correlation

Figure C.2: The correlation matrices of real and synthetic datasets and their differ-
ence. Figures from left to right belongs to: WGAN, TGAN, CTGAN, CTABGAN
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C.3 Column Distributions

C.3.1 Continuous Columns

Figure C.3: The probability distributions of age

Figure C.4: The probability distributions of FTI

Figure C.5: The probability distributions of T3
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Figure C.6: The probability distributions of T4U

Figure C.7: The probability distributions of TT4

Figure C.8: The probability distributions of binaryClass
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C.3.2 Categorical Columns

Figure C.9: The probability distributions of sex

Figure C.10: The probability distributions of sick

Figure C.11: The probability distributions of thyroid surgery
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Figure C.12: The probability distributions of FTI measured

Figure C.13: The probability distributions of goitre

Figure C.14: The probability distributions of query hyperthyroid

Figure C.15: The probability distributions of hypopituitary
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Figure C.16: The probability distributions of query hypothyroid

Figure C.17: The probability distributions of query on thyroxine

Figure C.18: The probability distributions of lithium

Figure C.19: The probability distributions of on antithyroid medication
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Figure C.20: The probability distributions of on thyroxine

Figure C.21: The probability distributions of pregnant

Figure C.22: The probability distributions of psych

Figure C.23: The probability distributions of referral source
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Figure C.24: The probability distributions of T3 measured

Figure C.25: The probability distributions of T4U measured

Figure C.26: The probability distributions of TSH measured

Figure C.27: The probability distributions of TT4 measured
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Figure C.28: The probability distributions of tumor

Figure C.29: The probability distributions of treatment
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C.4 General Utility Scores

Table C.1: General utility scores. Columns from left to right represent: basic sim-
ilarity score, Kolmogorov–Smirnov test score, Chi-squared test score, mean and
standard deviation of the DCR distribution between synthetic and original records,
correlation distance, Logistic Regression and SVM classification scores.

Model Basic KS test CS test DCR(µ) DCR(σ) Corr LR SVC

WGAN 0.962 0.61 0.540 1.88 0.97 1.10 0.53 0.38
TGAN 0.981 0.82 0.879 1.39 1.05 0.55 0.70 0.60

CTGAN 0.970 0.89 0.980 1.34 1.08 1.65 0.70 0.53

CTABGAN 0.971 0.91 0.963 1.76 1.06 2.09 0.78 0.62

C.5 ML Cross-Testing Scores

Table C.2: F1-scores of each classifier trained on the original and synthetic training
datasets and evaluated on the real test data. DT, RF, LR and MLP stand for
Decision Tree, Random Forest, Logistic Regression and Multi-layer Perceptron.

Classifiers DT RF LR MLP

real fake real fake real fake real fake

WGAN 0.94 0.64 0.94 0.68 0.84 0.70 0.89 0.65
TGAN 0.94 0.70 0.94 0.72 0.84 0.75 0.89 0.72
CTGAN 0.94 0.74 0.94 0.75 0.84 0.79 0.89 0.77

CTABGAN 0.94 0.84 0.94 0.84 0.84 0.79 0.89 0.81

Table C.3: Difference of F1-scores of each classifier trained on the original and
synthetic datasets.

Model ∆F1-DT ∆F1-RF ∆F1-LR ∆F1-MLP

WGAN 0.30 0.26 0.14 0.24
TGAN 0.24 0.22 0.09 0.17

CTGAN 0.20 0.19 0.05 0.12

CTABGAN 0.10 0.10 0.05 0.08
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Appendix D

Epileptic

D.1 Basic Similarities

Figure D.1: The first row illustrates the log transformations of mean and the second
row depicts the log transformations of standard deviation of each column
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D.2 Pair-wise Correlation

Figure D.2: The correlation matrices of real and synthetic datasets and their differ-
ence. Figures from left to right belongs to: WGAN, TGAN, CTGAN, CTABGAN
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D.3 Column Distributions

D.3.1 Continuous Columns

Figure D.3: The probability distributions of X3

Figure D.4: The probability distributions of X11

Figure D.5: The probability distributions of X19

111



Figure D.6: The probability distributions of X29

Figure D.7: The probability distributions of X38

Figure D.8: The probability distributions of X54
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Figure D.9: The probability distributions of X76

Figure D.10: The probability distributions of X94

Figure D.11: The probability distributions of X130
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Figure D.12: The probability distributions of X152

Figure D.13: The probability distributions of X175

Figure D.14: The probability distributions of y
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D.4 General Utility Scores

Table D.1: General utility scores. Columns from left to right represent: basic
similarity score, Kolmogorov–Smirnov test score, Chi-squared test score, mean and
standard deviation of the DCR distribution between synthetic and original records,
correlation distance, Logistic Regression and SVM classification scores.

Model Basic KS test CS test DCR(µ) DCR(σ) Corr LR SVC

WGAN 0.875 0.948 NaN 7.55 8.45 6.9 0.77 0.62
TGAN 0.853 0.690 NaN 7.81 9.26 17.8 0.33 0.25

CTGAN 0.835 0.840 NaN 9.10 9.18 26.5 0.45 0.38

CTABGAN 0.868 0.909 NaN 8.08 9.27 19.8 0.73 0.59

D.5 ML Cross-Testing Scores

Table D.2: F1-scores of each classifier trained on the original and synthetic training
datasets and evaluated on the real test data. DT, RF, LR and MLP stand for
Decision Tree, Random Forest, Logistic Regression and Multi-layer Perceptron.

Classifiers DT RF LR MLP

real fake real fake real fake real fake

WGAN 0.48 0.41 0.56 0.51 0.24 0.25 0.57 0.36
TGAN 0.48 0.27 0.56 0.28 0.24 0.23 0.57 0.22
CTGAN 0.48 0.27 0.56 0.31 0.24 0.16 0.57 0.18

CTABGAN 0.48 0.30 0.56 0.33 0.24 0.21 0.57 0.29

Table D.3: Difference of F1-scores of each classifier trained on the original and
synthetic datasets.

Model ∆F1-DT ∆F1-RF ∆F1-LR ∆F1-MLP

WGAN 0.07 0.05 0.01 0.21
TGAN 0.21 0.28 0.01 0.35

CTGAN 0.21 0.25 0.08 0.39

CTABGAN 0.18 0.23 0.03 0.28
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