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ABSTRACT 

 

The reason for creating this thesis was because of the new and revised version of NORSOK  

N-003 standard. Therefore a comparison between the old and the revised version of NORSOK  

N-003 standard has been performed. This thesis have been divided in to three main parts. The 

first part describe how to estimate the 10−2 annual probability crest height, 𝑐0.01 and wave 

height ℎ0.01. (100-years wave) with the metocean contour lines method. Which resulted in: 

ℎ0.01. = 28.61 𝑚 and 𝑐0.01 = 17.87 𝑚 by using ℎ𝑠 = 14.9𝑚 and 𝑡𝑝 = 15.8𝑠 

The second part revolves around regular waves. A comparison between the old and new 

method of calculating the ULS design wave have been discussed. The old method uses a Stokes 

wave profile defined by the 10−2 annual probability wave height, ℎ0.01 with an unfavorable 

period. Where the new method uses the 10−2 annual probability crest height, 𝑐0.01 with a mean 

wave period to define the ULS design wave. With the same defined wave profiles as the new 

and old recommendation, one have also compared the Stokes wave with a first order approach. 

By obtaining the kinematics from all approaches and compared them, one may see that a linear 

approach has the ability to obtain very close kinematics as the Stokes wave. This depends on the 

amplitude used and which approximation above mean surface level used. After words, the base 

shear and overturning moment where calculated by Morison equation. Those results shows that 

the new method using Stokes wave with 𝑐0.01 as the amplitude, results in a larger base share 

and overturning moment for drag and non-dominated forces but a lower overturning moment 

for a mass dominated case comparing to the old method using a wave height equal to, ℎ0.01. 

The conclusion for this part is that the new N-003 standard is more efficient with time and 

describe the waves in a more accurate manner. 

For the third and last part one have chosen to discuss irregular wave, where the old N-003 

standard suggests a first order process to obtain the corresponding kinematics of a time 

simulation. Where the revised N-003 standard in other hand require a second order process to 

describe the surface process and a second order theory to obtain the kinematics of the time 

history. Matlab has been used to create those simulations and calculated all the data for this 

thesis. By comparing the two different processes, one found out that the:  

- Formula used to create the first order irregular surface process follows a Rayleigh 

distribution for crest heights and the second order surface process follows a Weibull 

distribution for crest heights. 

- Wheeler stretching for a first order process underestimates the kinematics, but a 

constant value above mean surface level is a very good approximation to a second order 

process using Standsbergs approached. 

- First order process underestimates the crest heights but overestimates the kinematics, 

which achieves almost the same result as second order process. 
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1 Introduction 
 

1.1 Background of the task 
 
When designing a jacket or jack-ups it has been common to adopt a Stokes 5th order wave 
profile defined by the 0.01-annual probability wave height, ℎ0.01, with an associated wave 
period as the ULS design wave, [1]. This has now been changed in the ongoing revision of the 
Norwegian standard for loads and load effects (action and action effects), N-003, [2]. Where it 
states that the ULS design wave shall be defined by having a crest height equal to the 0.01-
annual probability crest height, 𝐶0.01, instead of the wave height, ℎ0.01. There has also been 
some changes on the procedure with time domain for simulating loads and response 
predictions. Where a second order random process are now needed for modelling the sea 
surface elevation, and the corresponding kinematics shall also be calculated according to second 
order theory, [2]. This is why, we will be conducting a master thesis, where a comparison of 
loads and load effects on a simplified offshore structure will be conducted. By using different 
approaches recommended from the old and new N-003 version. It is also very interesting to 
know how hard a second order random process will be to construct, depending on time and 
programs available. Will this be possible for students in the future? 
 
 
 
 

1.2 The task itself 
 
The following sub-tasks was proposed by Sverre Kristian Haver and has been performed with 

slightly deviated execution in this thesis. 

 

1. Estimate the 10-2 annual probability crest height, c0.01, and wave height, h0.01, and the 

associated period using the metocean contour lines method summing the sea state 

above is the worst sea state along the 10-2 – annual probability contour line. Guidance 

regarding this is found in revised N-003. Estimate the associated period following 

recommendation in N-003.  
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2. Kinematics of regular waves: 

 

* Stokes 5th kinematics:  

Determine the horizontal particle speed versus depth under the wave crest based on the 

old and new recommendation of Stokes 5th order wave profile. Determine also the 

horizontal fluid acceleration versus depth for the wave phase with maximum horizontal 

acceleration for the two Stokes 5th implementations.  

 

* Linear wave approximation: 

Determine the horizontal particle speed and horizontal particle acceleration using linear 

wave theory and various approximations in order to estimate kinematics above the 

mean free surface  (direct extrapolation above free surface, constant value above 

surface and Wheeler stretching.  

 

3. Estimate the 10-2 – annual probability base shear of the pile structure using the various 

kinematics models of 2) above. Select 3 diameters: drag dominated case, inertia 

dominated case and a case with similar contributions from both terms.  

 

4. Establish a simulation tool for Gaussian - and second order surface processes and second 

order wave induced kinematics. Verify kinematics by comparing with Stokes 5th results 

for some Stokes 5th  like events in the simulated process. It is recommended that the 

Stansberg approach is applied for the kinematics. The length of the simulation must be 

decided in view of the times it takes to execute the simulations.  

 

5. Kinematics of irregular waves: 

For the irregular wave investigation, one can focus on the drag dominated. This means 

that we can assume that we can assume that the 0.01 – annual probability quasi-static 

loads/load effects are rather well approximated by the values found for the wave event 

with a crest height equal to c0.01.  

 

* Linear theory: Do a number (20) of 3-hour time domain simulations. Identify the wave 

event with a crest height corresponding to an exceedance probability of 0.1 for this sea 

state. If the Gaussian sea state were a correct assumption, this would be a good estimate 

for the 10-2 annual probability crest height.  Estimate the particle speed under the wave 

crest the selected wave event. (If simulation length 3 hours takes too long time, 

simulation length can be reduced or we can modify simulation approach by selecting 

fewer components.)    
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*Second order theory: Use too developed in 4) to simulate a number (20) of second 

order surface processes. Duration of simulation is decided as the time it takes per 

simulation is known.  Identify the wave event with a crest height likely to be exceeded by 

one out of ten 3-hour simulations. Determine kinematics of the event.  

  

6. Estimate 10-2 – annual probability loads/load effects from the kinematic profiles in 5).   

 

7. Compare results and discuss findings. 
 
 
 

1.3 Scope of the task 
 
 
The aim of this thesis is to compare loads and load effects on a simplified offshore structure 

using the procedures recommended in the 2007 N-003 version, [1] and the revised version, [2].  

Regarding the structure a single pile with a fixed support at the sea bed has been adopted. By 

changing the diameter of the pile, different dominating forces can be obtained, as drag or mass 

terms. For regular waves a diameter of 1m, 5m and 20m has been controlled and for irregular 

waves a restriction has been done to focus on the drag dominated forces. Which means only a 

column diameter of 1m will be controlled. 

The depth is taken to be 100m, which case intermediate water depth, which is used and 

explained under regular waves. For irregular waves, the depth has been classified as deep water 

to simplify the equations. More explanations for this simplification can be found under irregular 

waves.  

Furthermore, the aim of this thesis is met by restricting the structural analysis to a quasi-static 

approach. Regarding Stokes 5th order waves, an open code by Fenton is used and obtained 

from, [3]. Regarding calculations of kinematics on regular 1. order waves and kinematics of 

irregular processes a proper scripts in Matlab has been used. All loads calculated on the 

structure has also been done in Matlab. Regarding load effects, the work has been limited to 

base shear and overturning moment and calculated from Morrison equation.  
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1.4 Thesis Outline 
 
 
This thesis consist of 5 chapters, where chapter 1 is an introduction and chapter 2 is about 
estimating the 10−2 annual probability crest height, 𝐶0.01 and wave height ℎ0.01, with an 
associated period using the metocean counter line method. All the theory used in this thesis, 
will be introduced along the way at the start of the subchapter. The main part of this thesis can 
be found in chapter 3 and 4, which divide regular waves in chapter 3 and irregular waves in 
chapter 4. Each of those two chapters consist of subchapters, where chapter 3 discusses linear 
methods and 5th order Stokes waves for regular waves. Those methods, will be compared and 
discussed at the end of chapter 3. For chapter 4, which addresses irregular waves a first and 
second order approach will be performed in two different subchapters. Where a third 
subchapter will compare the result of those two method and discussed at the end of the 
chapter. Finally, chapter 5 will finish the thesis with a conclusion and suggestion for further 
work. 
 

 

 

2 Metocean contour method  
 

In this report, we will be using the metocean contour line method too estimate the long-term 
extremes. This can be done through short-term sea states. For doing this, we will need to find a 
good set of metocean data. Then contour lines needs to be established for the metocean data. 
In our report, we will only be looking at the 100-year extreme wave. Therefore, the only 
interesting contour line is the 100-year contour line with an 0.01 constant annual exceedance 
probability for any combinations of ℎ𝑠 and 𝑡𝑝 along the contour line. When this is found, it is 

important to know that the peak of the contour line isn’t always the worst case. Therefore, the 
next step would be to identify the worst condition along the 0.01 probability contour line. To 
find the worst case, a comparison between the different combinations of ℎ𝑠 and 𝑡𝑝 along the 

peak of the contour line is needed. The comparison can be done with equation 2.2, which is 
explained under chapter 2.3 and is a Weibull distribution. This is the same formula used later to 
find the 100 year extreme wave. To satisfy the new N-003 standard the 100-year extreme crest 
height is also found, this is show in chapter 2.4 along with the estimate of the 100-year extreme 
wave. Before this, an introduction to what metocean is and what kind of metocean data used 
here will be explained.  
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2.1 Metocean 
 

Metocean is a contraction of words from meteorology and oceanography. Where meteorology 

consist of gather data from wind, air temperature, atmospheric pressure, etc. Oceanography 

includes waves, current, water level and other data, [4]. This means that metocean include most 

of those data sets. The more data obtained, the better it is for the accuracy of predicting the 

real environmental conditions affecting offshore operations in the future. In this report, we are 

only using wave data consisting of the significant wave height and the spectral peak period. The 

significant wave height and the spectral peak period is found by measuring the height and 

period of waves from a location. Normally interval of 3 hours for each measurement. Then the 

spectral peak period, 𝑡𝑝, is the wave period with the highest energy (maximum spectrum 

spectral density), [5]. The significant wave height, ℎ𝑠, is the mean value of the 1/3 of the largest 

waves for the measured 3hr sea state, as shown in figure 2.1. Another method used more in the 

present is 4 times the standard deviation of the surface process, [5]. Then we have the wave 

spectrum which is usually estimated from parameters in terms of ℎ𝑠 and 𝑡𝑝. In a year, there will 

be recorded 2920 ℎ𝑠  and 𝑡𝑝 from 2920, 3-hour periods. The reason for 3-hour period instead of 

a larger period is the change in weather.   

 

 

 

Figure 2.1. Statistical wave distribution of a wave spectrum with definitions. 
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2.2 Wave Data  
 

The data used is measured from the Northern North Sea between, 1973 and 2002. It include 

some hindcast data that’s only been used to fill in gaps at the measured metocean data set. This 

comes from DNMI Hindcast Archive, gridpoint 1415, between 1955 and 2001. All the metocean 

data is obtained from [6]. 

 

In table 2.1, you can see all the wave date used for this report. The data here consist of ℎ𝑠 and 

𝑡𝑝 from 34 years in all directions, and it is used for estimating the 100-year extreme wave of the 

sea state.  

 

Table 2.1. Joint frequency table of spectral peak period (s) (horizontal axis), and significant wave height (m). With a sea state 
duration of 3 hours for approximately 34 years. Obtained from [6]. 

 

 

Simulated observations of ℎ𝑠 and 𝑡𝑝 are plotted in figure 2.2. This is to get a better overview of 

the data and to show the mean value and a 90% confidence interval of the data. 
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Figure 2.2. Conditional characteristics for the Spectral peak period versus significant wave height with 90% confidence interval 
and mean value are shown for 3 hour sea state. Obtained from [6]. 

 

The next step is to find the 100-year value of the ℎ𝑠 and 𝑡𝑝. To do this we can use figure 2.3, 

which is obtained from [6]. They have already introduced contour lines that describe the 

different probability sea states. Contour line is a line consisting of points of equal probability of 

exceedance. The 100-year contour line will describe all possible combinations of ℎ𝑠 and 𝑡𝑝 

corresponding to an annual exceedance probability of 10−2. To create contour lines an estimate 

of the n-probability of ℎ𝑠 along with the conditional average of 𝑡𝑝 is needed. Afterword a line 

can be drawn through all the ℎ𝑠 and 𝑡𝑝 obtained from the n-probability. This will make a 

counter line with n-probability. See [6] and [2] for more guidelines on contour lines. 
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Figure 2.3. 1, 10, 100 and 10000-year extreme contour lines in the hs – tp plane. Sea state duration 3 hours. Obtained from [6]. 

From figure 2.3, we can obtain all the necessary data used lather in our report and table 2.2 

shows some exact numbers of different extreme values obtained from figure 2.3. 

 

Table 2.2. Marginal omni directional extremes for the significant wave height, hs, and corresponding values for the spectral peak 
period, tp. 3 hour sea states. Obtained from [6]. 
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2.3 Worst metocean condition along the 100-year contour line 
 

Before estimating the extreme wave or crest height with a 100-year response, we need to 

identify the most unfavorable sea state for the 100-year contour line. This can be done by 

looking in to different points along the 100-year contour line. Where those points should be 

close to the peak of the 100-year contour line and at least five points. Where one point is at the 

peak and at least two points at the left and right side of the peak, depending on the values. The 

spectral peak period and the significant wave height will vary along the 100 year contour line 

and is not depending on each other. By modeling the short term design sea state with those 

points, we can plot the result and find the most extreme scenario.  

 

First of all, we would need to introduce the formula that can describe the distributions of a 

short term sea state for wave heights. Later on an estimate of the long term extremes can be 

found by considering a few short term sea states. This formula is a Weibull distribution that has 

been verified by a large number of measurements for different environmental conditions. The 

formula is shown in equation 2.1 and obtained from [7]. 

 
FH|Hs,TP

(h|hs, tP) = 1 − e
−(

hs
αH

)
βH

 
Equation 2.1 

 

Equation 2.1 dose not obtain the extreme values for a 3-hour period. For obtaining those, the 

equation needs to be raised to the power of 
𝑁

𝑡2
 according to [8]. Where N is the seconds in a 3-

hour period (10800s) and 𝑡2 is the spectral estimate of zero-up-crossing period. The distribution 

of the 3-hour maximum wave height is here given by: 

 FHxhr|Hs,TP
(h|hs, tP) = (1 − e

−(
h

αH
)

βH

)

𝑁

𝑡2

   Equation 2.2 

Equation 2.2 will go towards Gumble distribution as 𝑁 → ∞. 

Where the various parameters from Forristall are: 

 
αH = 0.683 ∗ hs 
 

Equation 2.3 

 
βH = 2.13 
 

Equation 2.4 

The zero-up-crossing period,  𝑡2 = 𝑡𝑝 ∗ 0.77 according to [8]. 
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Table 2.3 shows the different ℎ𝑠 with the corresponding 𝑡𝑝 values around the peak of the 100-

year contour line. The peak value of this contour line is ℎ𝑠 = 14.9𝑚 and 𝑡𝑝 = 16𝑠, meaning that 

two of my points from table 2.3 has to high ℎ𝑠. The reason for this is to be on the safe side and 

obtain the worst case that can happen. Those two points has a ℎ𝑠 = 14.9𝑚 and 𝑡𝑝 = 16.4𝑠 or 

 15.8𝑠, where ℎ𝑠 should have been reduced a little to follow the contour line. All points are 

obtained from figure 2.3. 

With those data and equation 2.2 a Matlab script has been used to calculate the different 3-

hour extreme value distribution of wave heights. This have then been plotted and zoomed inn 

for a better overview of what the worst scenario is. See figure 2.4 for the different max wave 

height and figure 2.5 for the zoomed in picture for overview. 

 

Table 2.3. hs and tp along the peak of 100-year contour line. Where 14.9 hs and 16s tp is the peak value. 

 

 

 

Figure 2.4. Showing extreme wave height for an 3-hour period with six different conditions. 
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Figure 2.5. Showing extreme wave height for a 3-hour period with six different conditions zoomed inn. 

 

From figure 2.5 we can see that the purple line has the highest wave height value that means 

that this is the worst scenario for the 100-year contour line. We can also state that from this 

formula the ℎ𝑠 is the main parameter to increase the extreme wave height distribution. This can 

be seen from ℎ𝑠 = 14m compared with ℎ𝑠 = 14.9m, which makes much larger differences than 

the change in 𝑡𝑝 when ℎ𝑠 = 14m. 

Another observation from figure 2.5 is that the worst scenario for table 2.3 is with a ℎ𝑠 =

14.9𝑚 and 𝑡𝑝 = 15.8𝑠. Meaning that a reduction in 𝑡𝑝 for the same ℎ𝑠 would result in a higher 

extreme wave height distribution. The reason for this is that a lower 𝑡𝑝 in a 3-hour sea state will 

reduce the zero-up-crossing period and allow more waves to occur. This will increase the 

probability to obtain the same wave heights as a higher 𝑡𝑝. 

 

2.4 Extreme wave/crest height value  
 

Now that the worst scenario for the extreme wave height distribution is estimated, we will be 

using hs = 14.9 and Tp = 15.8s for the next step in finding the extreme crest and wave height 

value. Using the same formula again with those values, the long-term extreme wave height 

value can be estimated by the 0.90 percentile (cumulative probability), for an annual 

exceedance probability of 0.01. According to [1] and [2]. The following formula below is used to 

plot the extreme wave height distribution. This formula where explained under equation 2.1 

and 2.2. All the calculations are preform in Matlab and for more details see the Matlab script. 
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FH3hr|Hs,TP
(h|hs, tP) = (1 − e−(

h

10.18
)

2.13

)

10800

12.17

    

For the short-term crest height distribution, a 2-parameter Weibull distribution formula is used 

and obtained from [7]. This distribution has been established by a large number of simulation of 

a second order Stokes surface model. See the following formula below with description. 

 FC|Hs,T1
(c|hs, t1, d) = 1 − e

−(
c

αF∗hs
)

βF

 

 
Equation 2.5 

And the extreme wave height distribution is:  

 FCxhr|Hs,T1
(c|hs, t1, d) = (1 − e

−(
c

αF∗hs
)

βF

)

N
t2

 

 

Equation 2.6 

Where c is the variable for crest height, t1 is the mean wave period and parameter αF and βF 

are expressed by measure of steepness S1 and Ursell number Ur obtained from [7]. 

 
Ur =

hs

k1
2 ∗ d3

 

 

Equation 2.7 

 
S1 =

2π ∗ hs

g ∗ t1
2   

 

Equation 2.8 

 
αF = 0.3536 + 0.2892 ∗ S1 + 0.1060 ∗ Ur 
 

Equation 2.9 

 
βF = 2 − 2.1597 ∗ S1 + 0.0968 ∗ Ur2 
 

Equation 2.10 

k1 can be found through solving or iterating and the formula is obtained at [9] and explained 

under chapter 3.1.3. 

 
[ ω2 = g ∗ k1 ∗ tanh(k1 ∗ d) ] where  ω2 =

2π

t1
 

 
Equation 2.11 

k is 0.023 for this case by iterating it in Matlab. The rest of the parameters and values for this 

case can be seen in the formula below used for plot figure 2.6, which is from equation 2.6. 

 FC3hr|Hs,T1
(c|hs, t1, d) = (1 − e−(

c
0.37∗14.9

)
1.88

)

10800
12.17

 

 

 

 

We can now plot bout the short-term extreme crest and wave height distribution. This is to find 

the long-term extreme crest/wave height value at a 0.90 percentile as mentioned earlier. See 

figure 2.6. 
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Figure 2.6. Short-term sea state for extreme wave/crest height values. 

 

Figure 2.6 shows that the extreme crest and wave height values are: 

ℎ0.01 = 28.61 𝑚 

𝑐0.01 = 17.87 𝑚 
 

Where 𝐻0.01 is the extreme 100-year wave height and 𝐶0.01 is the extreme 100 year crest height 

with and annual probability of 10−2.  

 

[6] also estimated the 100-year extreme crest and wave height with and annual probability of 

10−2 but they used a different distribution formula. Results in [6], where a wave height of 29 

meters. This is a little larger than ours predictions as expected since [6] uses a Forristall 

distribution, which case higher values than a Weibull distribution. For the crest height, [6] got 

17.6 meters from a long-term analyses and that is just below ours. Therefore, we can say that 

this has been a good estimation for the extreme 100-year crest and wave height with and 

annual probability of 10−2. This is just an approximate method. For a final design, it has to be 

confirm by the 0.90 percentile with long-term analysis as the 100-year extreme crest height 

were. 
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According to [1] under “6.2.2.4 Design wave”, the period for the extreme 100-year wave can be 

found by the following formula: 

 
√6.5 ∗ 𝐻100 ≤ 𝑇 ≤ √11 ∗ 𝐻100 

 
Equation 2.12 

Where: 

𝑇𝑚𝑖𝑛 = 13.64 𝑠 

𝑇𝑚𝑎𝑥 = 17.74 𝑠 

𝑇𝑚𝑒𝑎𝑛 = 15.69 𝑠 

 

Another method for estimating 𝑇𝑚𝑒𝑎𝑛 is by 0.9 ∗ 𝑡𝑝 = 0.9 ∗ 15.8 = 14.22𝑠, which would have 

resulted in a much lower period. The method used in this thesis is equation 2.12. Where  

𝑇𝑚𝑒𝑎𝑛 = 15.69 𝑠. 

 

 

 

3 Kinematics of regular waves 
 

In this chapter, we will be looking inn to linear and nonlinear wave theory for regular waves. The 

object here is to find the horizontal particle velocity and horizontal particle acceleration for the 

100-year extreme wave. This will be done in several ways, by using the formulas from first 

order, and 5thorder wave kinematics. For the first order (liner wave theory) various 

approximations in order to estimate kinematics above the mean free surface will be used. This 

can be done by having a constant value above surface, extrapolation of leaner speed above free 

surface or using Wheeler stretching. For the 5th order Stokes approach, a Stokes 5th order 

program obtained from [3], will be used to estimate the kinematics.  
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3.1 Linear wave theory 
 

First, we need to introduce linear wave theory since this is the core theory of ocean surface 

waves. This theory uses linearized boundary conditions that create regular waves with 

sinusoidal shape. The reason we can neglect the nonlinear terms at the free surface is because 

of the small wave height to wave length ratio H/L, this is less than 2% according to [10]. If the 

wave travels to shore at shallow water or becomes too large a higher order theory would be 

needed to describe the wave. The sinusoidal shaped waves have the same height for crests and 

troughs unlike the higher order wave theories that describe the waves more like the real ocean 

waves. The real ocean waves have higher crests than trough, it also consist of waves with 

varying wave heights and periods. This is called irregular waves. More about irregular waves can 

be found at chapter 4. Linear wave theory can be a good approximation to real waves and linear 

regular waves are the key to describe irregular ocean with the help of Fourier analysis. This kind 

of Fourier analysis consist of a sum with regular sinusoidal waves. 

 

 

3.1.1 Surface Profile 
 

The surface profile of a sinusoidal wave can be described as following: 

 
ξ(x, t) = ξ0 ∗ sin (ω ∗ t − k ∗ x) 
 

Equation 3.1 

Obtained from [9]. Where ξ0 is the amplitude also known as half the wave height or if the higher 

crest height than trough height is considered then the amplitude will be the crest height. ω is 

the wave frequency found from ω =
2π

T
, where T is the period, k is the wave number, x is the 

position and t is the time. 

From equation 3.1, we can plot the wave in time and space. This formula can also be used to 

derive the equation for k =
2π

L
 by evaluate the profile’s dependence on x when t = 0. Where the 

wavelength L will be the distance between two wave tops or two wave troughs. See figure 3.1 

for an illustration of this.   

When evaluate the profile’s dependence on t when x = 0, the distance between two wave tops 

or two wave troughs will be the time period T of the wave. From this, we can derive the 

equation for ω =
2π

T
. 
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Figure 3.1. Illustrating wave parameters for a surface profile. 

 

To obtain the formula for velocity and acceleration we need to find the velocity potential first by 

derivation two Laplace exertion. We will not fully show the derivation in this report only the 

main steps and the entire boundaries used for the derivation of the equations. 

 

 

3.1.2 Laplace Equation 
 

First of all we need to find the two equation needed. Those can be found by describing the sea 

with some physical conditions. The first one is that the water need to be incompressible or       

𝛻 ∗ Ṽ = 0. The next step is to obtain the velocity potential by saying that the sea follows a 

certain physical condition that the fluid can be considered as irrational. This is because of the 

effects of turbulence and viscosity are small. From this, we find that the velocities can be 

described as (𝑢, 𝑣, 𝑤) = (
𝜕𝜙

𝜕𝑥
,

𝜕𝜙

𝜕𝑦
,

𝜕𝜙

𝜕𝑧
) in terms of gradients according to [11] and [12]. 

Now to set up our Laplace equation, where −∞ ≤  𝑥 ≤ ∞ and −𝑑 ≤  𝑧 ≤  Ϛ 

 𝛻 ∗ 𝜙2 =
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑧2
= 0 

 
Equation 3.2 
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From this we can obtain the following equation by derive it, [9]. 

 
𝜙(𝑥, 𝑧, 𝑡) = 𝑋(𝑥) ∗ 𝑍(𝑧) ∗ 𝑇(𝑡) 
                  = (𝐴 ∗ sin(𝑘𝑥) + 𝐵 ∗ cos(𝑘𝑥)) ∗ (𝐶 ∗ 𝑒𝑘𝑧 + 𝐷 ∗ 𝑒−𝑘𝑧) ∗ 𝑇(𝑡) 

Equation 3.3 

 

Where the constants A, B, C and D are depending on our boundaries below. 

The boundary’s that’s needed to complete this derive is the two following below: 

 

To sustain the impermeability of the seabed, we need to have the velocity normal at the seabed 

zero (𝛻𝜙𝑛 = 0). This is called the bottom boundary condition, and if the seabed is taken as 

horizontal, the following boundaries are obtained, [11] [12]: 

 

 
𝜕𝜙

𝜕𝑧
= 0   𝑤ℎ𝑒𝑛   𝑧 = −𝑑 Equation 3.4 

 

The next boundary needed is the dynamic free surface boundary condition. This states that the 

atmospheric pressure 𝑝0 is the same as the water pressure on the free surface. Where the 

formula below is show with nonlinear terms, [11] [12].  

𝑔 ∗ Ϛ0 +
1

2
∗ (

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
) +

𝜕𝜙

𝜕𝑡
+ 𝑝0 = 𝑝0      𝑤ℎ𝑒𝑛    𝑧 = Ϛ(x, y, z) 

 

Equation 3.5 

 

To simplify this formula and introduce the boundary condition at the surface z = 0 we get, [9]: 

 
𝑔 ∗ Ϛ0 +

𝜕𝜙

𝜕𝑡
+ 𝑝0 = 𝑝0     ⟶      Ϛ0 = −

1

g
∗

𝜕𝜙

𝜕𝑡
       𝑤ℎ𝑒𝑛    𝑧 = 0 

 
Equation 3.6 

 

From those two boundary’s we can obtain the following formula for the velocity potential, [9]:  

 

 𝜙(𝑥, 𝑧, 𝑡) =
Ϛ0 ∗ g

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ cos (ωt − kx) 

 
Equation 3.7 
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Where:  

cos (ωt − kx) is the term for regular linear wave  

and  
cosh 𝑘(𝑧+𝑑)

cosh 𝑘𝑑
  is depth dependent.  

 

This means that for deep water when 𝑑 ≫ 1 we can write: 

  cosh(𝑘𝑑) =
𝑒𝑘𝑑+𝑒−𝑘𝑑

2
= 𝑒𝑘𝑑    ⟶      

cosh 𝑘(𝑧+𝑑)

cosh 𝑘𝑑
=

𝑒𝑘(𝑧+𝑑)

𝑒𝑘𝑑
= 𝑒𝑘𝑧 

 𝜙(𝑥, 𝑧, 𝑡) =
Ϛ ∗ g

ω
∗ 𝑒𝑘𝑧 ∗ cos (ωt − kx) 

 
Equation 3.8 

 

And for shallow water:  

cosh(𝑘𝑑) =
𝑒𝑘𝑑 + 𝑒−𝑘𝑑

2
=

1 + 1

2
= 1   ⟶     

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
= 1 

 

 𝜙(𝑥, 𝑧, 𝑡) =
Ϛ ∗ g

ω
∗ cos (ωt − kx) 

 
Equation 3.9 

According to [9] and see definition of shallow water under 3.1.4, Classification of water depth. 

 

 

3.1.3 Dispersion Relation 
 

Now that the velocity potential is obtained, another boundary condition can be used to 

estimate the relation between wavelengths and wave period. This is called the dispersion 

relation. The boundary condition used here is the combined free surface boundary equation 

that combines the kinematic and dynamic free surface boundaries and eliminating Ϛ. The full 

formula with nonlinear condition can be found below, [12]: 

 

−
𝜕2𝜙

𝜕𝑡2
− 𝑔 ∗

𝜕𝜙

𝜕𝑧
− (

𝜕

𝜕𝑡
+

1

2
∗ 𝛻𝜙 ∗ 𝛻) |𝛻𝜙|2 = 0      𝑤ℎ𝑒𝑛    𝑧 = Ϛ(x, y, t) Equation 3.10 

 

To linearize it and set condition for z = 0 we obtain, [9]: 

 
𝜕2𝜙

𝜕𝑡2
+ 𝑔 ∗

𝜕𝜙

𝜕𝑧
= 0      𝑤ℎ𝑒𝑛    𝑧 = 0 Equation 3.11 
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𝜕2

𝜕𝑡2
∗ (

Ϛ0 ∗ g

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ cos(ωt − kx))|

𝑧=0

+ 𝑔 ∗
𝜕

𝜕𝑧
∗ (

Ϛ0 ∗ g

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ cos(ωt − kx))|

𝑧=0

= 0  

Equation 3.12 

 

By derive equation 3.12 a solution for L and ω can be obtained. The end of this derive is found in 

equation 3.13 and solution for L and ω is in equation 3.14  and 3.15. According to [9]. 

 
𝜔2

𝑔 ∗ 𝑘
= tanh(𝑘𝑑) Equation 3.13 

 

Where the wave frequency is: 

 𝜔2 = 𝑔 ∗ 𝑘 ∗ tanh(𝑘𝑑) Equation 3.14 
 

And the wave length is: 

 
𝐿 =

𝑔

2𝜋
∗ 𝑇2 ∗ tanh(𝑘𝑑) 

 
Equation 3.15 

 

Those formulas can be simplified with the condition of deep or shallow water. This is because: 

𝑘𝑑 ≫ 1, we get tanh(𝑘𝑑) ~1 and the formula for deep water will be, [9]: 

 
𝜔2 = 𝑔 ∗ 𝑘       𝑎𝑛𝑑     𝐿 =

𝑔

2𝜋
∗ 𝑇2  

 
Equation 3.16 

 

 

 

For shallow water 𝑘𝑑 ≪ 1 and  tanh(𝑘𝑑) ~𝑘𝑑 this means that the equation will be, [9]: 

 𝜔2 = 𝑔 ∗ 𝑑 ∗ 𝑘2       𝑎𝑛𝑑     𝐿 = √𝑔 ∗ 𝑑 ∗ 𝑇2 
 

Equation 3.17 
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3.1.4 Classification of water depth 
 

For kinematics, the interval classification of water depth, deep, intermediate, and shallow can 

be found in equation 3.18 according to [9]. 

 

 

Deep water:  𝑑 >
𝐿

2
  

Intermediate water:  
1

20
<

𝑑

𝐿
<

1

2
 

Shallow water: 
𝑑

𝐿
<

1

20
 

 

Equation 3.18 

The reason for those intervals is the changes in the depth dependent part of the velocity 

potential.  

 

 

3.1.5 Horizontal water particle velocities and accelerations 
 

The last step in our linear theory will be to derive the velocity and acceleration formulas. They 

can be found by taking the derivatives of the potential function. In our case, the horizontal 

particle velocity and acceleration is needed for this thesis. Therefore, the potential function 

needs to be derived with respect to x as shown in equation 3.19. This is to find the horizontal 

particle velocity: 

 𝑢(𝑥, 𝑧, 𝑡) =
𝜕𝜙

𝜕𝑥
=

Ϛ0 ∗ g ∗ k

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ sin (ωt − kx) Equation 3.19 

   
 

This formula can also simplify the depth dependent part of the equation, as shown above. Only  

if it is deep or shallow water. We can also see that the horizontal velocity is on its max at the 

wave crest. This is when sin(ωt − kx) = 1 and its minimum when sin(ωt − kx) = −1 which is 

when the wave are at the through. It is also worth mention that the surface profile has the same 

function as the horizontal velocity function.   

The horizontal particle acceleration is found by derivative of the horizontal particle velocity 

equation with respect to time, t, and obtaining: 

 

 𝑎(𝑥, 𝑧, 𝑡) =
𝜕𝑢

𝜕𝑡
= Ϛ0 ∗ g ∗ k ∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ cos (ωt − kx) Equation 3.20 
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Equation 3.20 shows that the acceleration term is zero at the wave crest. This is when the 

velocity is on its max when sin(wt - kx) = 1 and cos(wt - kx) = 0 for this equation. When the 

surface profile equation is 0, the acceleration function has its maximum value. This is at the 

mean water surface, where the water particles cross the still water level. Which is when 

cos(ωt − kx) = 1 

 

 

 

3.2 Linear wave approximations  
 

Now that a theoretical introduction has been done, we can start to find the horizontal particle 

velocity and acceleration for our extreme 100-year wave. The amplitude will be set to the crest 

height to satisfy the new N-003 and half the wave height for the old N-003 standard. The 

interesting part here is to see the deferens of those outcomes. First of all the water depth needs 

to be categorized as shallow, intermediate or deep water, to choose the formula needed. After 

words the wavelength can be estimated through the following formula, which were explained 

above. 

 
𝐿 =

𝑔

2𝜋
∗ 𝑇2 ∗ tanh(𝑘𝑑) 

 
Equation 3.21 

For this formula k can be estimated through formula 3.22, but Matlab is required to solve or 

iterate to a solution for k.  

 𝜔2 = 𝑔 ∗ 𝑘 ∗ tanh(𝑘𝑑) Equation 3.22 
 

With the help of Matlab, the solution for k is: k = 0.0174, and by using 𝑇𝑚𝑒𝑎𝑛 = 15.69s as period 

the following wave length is obtained: 

𝐿 =
9.81

2𝜋
∗ 15.69 ∗ tanh(0.0174 ∗ 100) = 361 𝑚 

From here we can find out that 
𝑑

𝐿
=

100

361
= 0.28  

This means that this is intermediate water depth since:  
1

20
< (

𝑑

𝐿
= 0.28) <

1

2
 . Because of this 

the simplifications mentioned in the linear wave theory, about the wave depth dependent part, 

can not be used here.  
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Using half the wave height as amplitude and 𝑇𝑚𝑒𝑎𝑛 as the period,  the surface profile can be 

plotted. This gives us figure 3.2 with the use of the following formula when time t is 0s and 1.5s: 

 

ξ(x, 0) = 14.3 ∗ sin (0.4 ∗ t − 0.0174 ∗ x) 

 

 

Figure 3.2. Showing surface profile for t = 0s and t = 1.5s with respect to x. 

 

From figure 3.2, one can see that the wave moves in a positive position with time. Since the 

surface profile function is the same as the horizontal particle velocity function, we can say that 

max velocity will be at its crest. This means that the horizontal particle velocity will have its 

maximum at 
3

4
𝐿 in t = 0s and the maximum horizontal particle acceleration at 0m. Since the 

horizontal particle acceleration is maximum at the mean water surface as mentioned before. 
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3.2.1 Horizontal water particle velocities with half the wave height as amplitude 
 

Next step is to find the horizontal particle velocity for a wave with height = 28.61 meters. With 

the use of three different periods since this is required of the old N-003 standard, [1]. The three 

different periods are: 𝑇𝑚𝑖𝑛 = 13.64 𝑠, 𝑇𝑚𝑎𝑥 = 17.74 𝑠 and 𝑇𝑚𝑒𝑎𝑛 = 15.69 𝑠. There are also 

three different plots for each time period. The reason for this is because of the difficulties on 

describing the maximum velocity above the mean surface level. The three different 

approximation methods used here, are constant value above the surface level and up to the 

crest, extrapolation of leaner speed above free surface or using Wheeler stretching. All the 

calculations are done in Matlab, and plotted afterwards. For a better understanding for the 

reader, all the steps with 𝑇𝑚𝑒𝑎𝑛 as period and half the wave heights as amplitude will be shown.  

The first step is to locate the maximum position of the velocity and this is when 

sin(ωt − kx) = 1 (crest top). Since this case has intermediate water depth, the formula used 

can’t be simplified and therefore, the following formula is:    

𝑢(𝑧) =
Ϛ0 ∗ g ∗ k

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
  =

14.30 ∗ 9.81 ∗ 0.017

0.40
∗

cosh 0.017 ∗ (𝑧 + 100)

cosh(0.017 ∗ 100)
 

 

The only value left to specify now is the variable z. For extrapolation of leaner speed above free 

surface, we can use the formula as it is and use the z value in an interval of:  

−𝑑 ≤ 𝑧 ≤ Ϛ0   ⟶   −100𝑚 ≤ 𝑧 ≤ 14.30m 

 

When constant value from surface level up to the crest is used, the same formula for 

  −𝑑 ≤ 𝑧 ≤ 0  ⟶   −100𝑚 ≤ 𝑧 ≤ 0m can be used, this is up to the surface level. To describe 

the part from surface level up to the crest, z needs to be 0 (constant value). For the same 

formula at interval  0 ≤ 𝑧 ≤ Ϛ0   ⟶   0𝑚 ≤ 𝑧 ≤ 14.3m. In Matlab this was done by creating 

two equations to describe one function with the chosen intervals and z values described here, 

see Matlab script for more details.  

Wheeler stretching is more difficult. This method uses the value at surface level obtained from 

the equation when z=0 and stretches it up to the crest, making a lower velocity at the surface 

level than the other approximation methods, [8]. According to [2] this method is not 

recommended, when operating with extreme value analysis as done here. This is because it 

underestimates the velocity at surface level. 

 

The same method is also done with 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, see figure 3.3 for the nine different plots.  
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Figure 3.3. Horizontal particle velocity with different time period and estimation methods above surface level. Where amplitude 
is 14.3m and Tmin = 13.64s, Tmax = 17.74s and Tmean = 15.69s. 

 

From what we can see of figure 3.3, the extrapolation is giving us an extremely large particle 

speed at the top of the wave, and wheeler stretching might be producing too low particle speed 

at the water surface as mentioned before. It will be very interesting to see if the constant value 

above the surface will be the closes approximation to a 5th order approach. This will be 

discussed later, when the loads and loads effects are obtained.  

Another observation is that the wave with largest period has the most horizontal particle 

velocity when it approaches the sea bottom. This is because of the phase velocity is 

proportional to the wave period. This means that the long periodic waves have a waveform that 

moves faster than a wave with short period when it approaches a certain depth. The reason for 

an exponential decrement is because of the 𝑒𝑘𝑧 , where z is negative. We can also state that 

when 𝑒−1000 = 0 and 𝑒−0,001 = 1. This means that a large k will have larger decrease in 

horizontal particle velocity by depth than having a small k. The formula for k in deep water is: 

𝑘 =
(2𝜋)2

𝑇2∗𝑔
 meaning that when we have a large T the k is smaller and we will have a smaller 

decries in velocity by depth. The last observation we can see is that the shortest period have the 

largest velocity at the surface. This is because when having an amplitude as 14.3 and changing 

time period the orbital path of the water molecules will still stay the same but the time they use 

will increase or decrease. By lowering the time period the water molecules will move faster to 

travel the same distance as before and that means the wave velocity will increase. See figure 3.4 

for description on orbital pat of water molecules. 
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Figure 3.4. Description of wave profile and orbital path of water molecules. 

 

 

3.2.2 Horizontal water particle acceleration with half the wave height as amplitude 
 

For the acceleration, we know that the maximum value can be obtained at the mean surface 

level. When the surface profile is 0 and cos(ωt − kx) = 1 for horizontal particle acceleration. By 

this the following formula is: 

 

𝑎(𝑧) = Ϛ0 ∗ g ∗ k ∗
cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
    = 14.30 ∗ 9.81 ∗ 0.017 ∗

cosh 0.017 ∗ (𝑧 + 100)

cosh(0.017 ∗ 100)
 

 

Since the formula with cos(ωt − kx) = 1 its only valid up to the mean surface level, because 

the surface profile in this time is at mean water level. Meaning that Wheeler stretching, 

extrapolation or constant value from mean surface level up to the crest is not needed for 

maximum horizontal particle acceleration. For any other point in time, it would have been 

needed to use approximation above mean water level. For example, t = 1.5s when x = 0 as figure 

3.2 shows us, an approximation above mean water level would have been needed up to the 

position in the surface profile, which is approximately 7.5m above mean water level. This is the 

same case for the horizontal particle velocity profile when time is changed. There will be more 

info about this when calculating loads for a drag and mass dominating case. 

The results of horizontal particle acceleration for the three different periods is shown in figure 

3.5. 
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Figure 3.5. Horizontal particle acceleration with different time period. Where amplitude is 14.3m and Tmin = 13.64s, Tmax =17.74s, 
Tmean = 15.69s. 

 

From figure 3.5, shows the same theoretical results as seen from figure 3.3. Explaining it more 

related to the acceleration. We mention that because of k, we can have an influence on 𝑒𝑘𝑧 that 

reduces the horizontal particle velocity and acceleration with depth. When having a large k 

meaning a low period and a faster reduction in horizontal particle velocity. Meaning that the 

acceleration will be larger for a low period and lower for a higher period. It is also because of 

the waveform we obtain a larger acceleration when approaching the sea bottom. Since the 

horizontal particle velocity at the mean surface level is largest with low period, it would need to 

have a large acceleration to achieve it, because it has the lowest velocity at the sea bottom. 

That’s the reason for obtaining the largest acceleration with a short period at the surface. 
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3.2.3 Horizontal water particle velocities with crest height as amplitude 
 

Now by changing the amplitude to the crest height (Ϛ0 = 17.81) obtained from chapter 2.4, we 

can see the differences with a larger amplitude and more realistic to a real wave. The same 

calculations methods are used as above for half the wave height. Except the only period 

required to check is the 𝑇𝑚𝑒𝑎𝑛 period according to [2]. The reason for only 𝑇𝑚𝑒𝑎𝑛 is shown are 

because of this value is sufficient for an approximation on the 100-year extreme crest height 

value as mention in [2].  𝑇𝑚𝑖𝑛 would have been a to large estimate for the loads later on. Results 

of this is plot and shown in figure 3.6. Note that the comparison plot between half the wave 

height and crest height as amplitude can be found at chapter 3.4. 

 

 

Figure 3.6. Horizontal particle velocity with crest height as amplitude (Ϛ0=17.81), and Tmean = 15.69s using different estimation 
methods above the surface level. 

We can clearly see from figure 3.6 that a larger amplitude will obtain a larger horizontal particle 

velocity by comparing with figure 3.4. This is because of the formula of horizontal particle 

velocity, where an increase in the amplitude the velocity in general will increase. The theoretical 

solution for this is when an increase in wave height occurs, the distance the water molecules 

need to travel for one period would increase. The particle velocity has to increase to travel the 

increased distance on the same time since the time period is the same. This is why we have a 

larger horizontal particle velocity with a higher amplitude and same period. 
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3.2.4 Horizontal water particle acceleration with crest height as amplitude 
 

The acceleration for crest height as amplitude is done in the same manner as for half the wave 

height above except 𝑇𝑚𝑒𝑎𝑛 is only plotted and the amplitude is changed. Results of this plot can 

be seen in figure 3.7. 

 

Figure 3.7. Horizontal particle acceleration with crest height as amplitude (Ϛ0=17.81), and Tmean = 15.69s. 

 

From figure 3.7, we can see that the acceleration is larger with a larger amplitude by comparing 

it with figure 3.5. The formula of acceleration shows that an increase in amplitude (Ϛ0) will 

results in an automatically general increase all over the acceleration. 
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3.3 Stokes 5th order program  
 

In this chapter, a Stoke 5th order program obtained from [3], is used to calculate the horizontal 

particle velocity and acceleration, for the extreme 100 year crest and wave height with an 

annual probability of 10−2. Stokes 5th order program uses nonlinear term meaning it does not 

neglect the open elliptical orbit the water particles moves in and other simplification on linear 

terms. The open elliptical orbit causes a movement for approximately 2% of the phase velocity, 

[9]. Stokes 5th order program take in to account that the crest height are larger than the trough 

of a wave. This makes the wave much more realistic compared to real ocean waves. The 

application for this program are shown in figure 3.8 and is obtained from [13]. Where the worst 

case used in this thesis is: 

 
𝐻

𝑑
=

30

100
= 0.3     and     

𝐿

𝑑
=

300

100
= 0.3      

 

 

Figure 3.8. Shows the region where each equation fits and the blue X show where our wave would be. 
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3.3.1 How to use the program 
 

From [3], three different programs can be obtain. They are named Fourier, Stokes and Cnoidal. 

For this thesis the only program used is the Stokes program, but for Stokes program to work the 

Fourier program needs to be unpacked at the same folder as the Stokes program. The Fourier 

program is the main program of those three. This program contains the input files needed to 

change the data. All data input are to be dimensionless by dividing or multiplying with d, depth 

and g, gravity. There are three different files that consist of data to be changed. The first one is 

the Data.Dat, it contains the data set of current and wave properties as the height and time 

period/wavelength. See table 3.1 for the possible input. As show in table 3.1, there are no 

current conditions because the magnitude here is set to 0. Current is not taken into account in 

this thesis. 

 

 

 

Table 3.1. Data input for Data.Dat, showing a wave with wave height 28,61m and a Tmax = 17,74s 

0.2861 H/d 

Period Measure of length: "Wavelength" or "Period" 

5.5562 Value of that length: L/d or T(g/d)^1/2 respectively 

1 Current criterion (1 or 2) 

0.0 Current magnitude, (dimensionless) ubar/(gd)^1/2 

5 Number of Fourier components or Order of Stokes/cnoidal theory 

2 Number of height steps to reach H/d 

FINISH 

 

 

Next file is the Convergence.dat file, which contains the following shown in table 3.2. 
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Table 3.2. Data of the program Convergence.dat 

Control file to control convergence and output of results 

40 Maximum number of iterations for each height step; 10 OK for ordinary 

waves, 40 for highest 

1.e-5 Criterion for convergence, typically 1.e-4, or 1.e-5 for highest waves 

 

 

The last data file contains the information of how much data should be computed for the plots. 

The file name is Points.dat and shown in table 3.3.   

 

Table 3.3. Data of the program Points.dat 

Control output for graph plotting 

100 Number of points on free surface  

180 Number of velocity profiles over half a wavelength to print out 

100 Number of vertical points in each profile 

 

After putting in the correct input data for those three files the Stokes program can be placed in 

a subfolder of the Fourier program. This allows us to use those data files with stokes program 

and by starting the program, it will create three more files of result data. Where the first result 

file is Solution.res. This contains all the properties of the wave, some constants used and other 

max values. See Solution.res file for more info. The two other files are more interesting, since 

those are the files used in this thesis. The name of those are Flowfield.res and Surface.res. 

Surface.res contains data of the surface profile for the wave, and the Flowfield.res file compute 

all the velocity and acceleration data for bout horizontal and vertical depending on the depth. 

Flowfield.res file also compute all the data for each phase requested in Points.dat. In this thesis 

Microsoft Visual Studio is used to open and edit all of those files. All of the result (.res) files can 

also be opened in excel to later be imported to Matlab. To learn more about the programs see 

[13] obtained from [3]. 

 

For the last file used in Stokes, program, we have Figures.plt. This file can be opened with 

Gnuplot. The file contains all the plots for surface profile, horizontal/vertical particle velocity 

and acceleration dependents of depth and time. See figure 3.9 and 3.10 for illustration of the 

horizontal particle velocity and acceleration plots with some theoretical explanations.  
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Figure 3.9. Stokes velocity plot depending on depth with varying phase angle between Crest and Trough. 100 points between 
Crest and Trough. (Half a wavelength). Y-axes are Z/d where d is depth (100m) and Z is the varying depth position. X-axes is 
velocity in V/sqrt(g*d), where g is gravity 9.81m/s^2. 

 

From figure 3.9, we can clearly see that the velocity is at its max at crest as explained earlier. 

The horizontal particle velocity has a linear decree down to the trough and 0 horizontal particle 

velocity at the surface level.  

Figure 3.10 displays the acceleration plot, which show us that the maximum acceleration point 

is at the mean surface level as mentioned earlier.  

 

 

Figure 3.10. Stokes acceleration plot depending on depth with varying phase angle between Crest and Trough. 100 points 
between Crest and Trough. (Half a wavelength). Y-axes are Z/d where d is depth (100m) and Z is the varying depth position. X-
axes is acceleration in A/sqrt(g*d), where g is gravity 9.81m/s^2. 
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3.3.2 Result of the program 
 

We are now going to find the surface profile, horizontal particle velocity and acceleration for 

four different cases. Where three of them will have the wave height as ℎ0.01 = 28,61m with 

different period as we did for the linear waves. The period used is 𝑇𝑚𝑖𝑛 = 13.64𝑠,   𝑇𝑚𝑒𝑎𝑛 =

15.69𝑠  and   𝑇𝑚𝑎𝑥 =  17.74𝑠. The fourth case is with a crest height equal to 𝑐0.01 = 17.87m.  

To obtain a crest height, equal to 𝑐0.01 with the Stokes program an iteration needed to be 

performed. This was done by choosing a wave height and controlling the crest height result until 

the same crest height equal to 𝑐0.01 = 17.87m where obtained. The wave height used for 

obtaining this crest height was 30.14m. The input used are shown in table 3.1, 3.2 and 3.3, 

except for the period and wave height as shown in table 3.4. 

 

Table 3.4. Data used for obtaining surface profile, horizontal particle velocity and acceleration for different waves, with the use 
of Stokes program. 

Data input for Stokes program, Non dimensions. 

 Wave height with ℎ0.01 Wave height with 𝑐0.01 

𝑇𝑚𝑖𝑛 𝑇𝑚𝑒𝑎𝑛 𝑇𝑚𝑎𝑥 𝑇𝑚𝑒𝑎𝑛 

Wave height = 

ℎ0.01

𝑑
 𝑜𝑟 

𝑐0.01

𝑑
  

0.2861 0.2861 0.2861 0.3014 

Period = 

𝑇 ∗ √
𝑔

𝑑
 

4.27 4.91 5.56 4.91 

 
 

From those input, all the necessary wave data where obtained. See figure 3.12 to 3.14 for the 

different plot results. The actually number are stored in the attached files in folder named “2-3. 

Stokes data for regular waves”. 
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Figure 3.11. Surface profile for four different waves with the use of Stokes program. 

 

Figure 3.11 shows the surface profile for our four different cases. The plot is as expected, since 

the wavelength is depending on the period, we can see that the shortest wave is the one with 

the smallest period and the crest height are also larger than the trough. There are also some 

evidence in the plot that by shortening the period with the same height we will have a higher 

peak (crest height) and a trough that is closer to mean surface level. This can be seen by looking 

at the plots which uses ℎ0.01 as the wave height and different wave periods. 
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Figure 3.12. Horizontal particle velocity for four different waves with the use of Stokes program. 

 

Results for the horizontal particle velocity at the crest can viewed in figure 3.12. The same 

theoretical result as discussed under figure 3.3 applies also here. In this plot, there are two 

waves with different wave height but same period. Which shows us that by increasing the 

amplitude one will increase the velocity in a parallel manner as the one with lower amplitude. 
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Figure 3.13. Horizontal particle acceleration for four different waves with the use of Stokes program. 

 

Figure 3.13 shows us the acceleration obtained for our four cases at mean surface level. This 

position is at time and position 0 for surface profile. For comparison between Stokes and linear 

kinematics see chapter 3.4, which is the following chapter.   
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3.4 Comparison between linear wave and 5th order Stokes wave 
 

A total of 16 different horizontal particle velocity profile has been obtained. That is why we will 

shorten down our plots in this comparison. As mentioned in the introduction a comparison of 

the old and new NORSOK N-003 standard would be performed. Where the old N-003, [1] 

recommended ℎ0.01 as the wave height, for the ULS design wave with the worst associated 

period. For the new N-003, [2] it recommended to use 𝑐0.01 as the crest height for the ULS 

design wave with a mean period value. This means, we would have a higher crest height for the 

new N-003 than the old N-003 and would result in a larger horizontal particle velocity. An 

observation done earlier showed that the lowest period is the worst case for the velocity. That 

is why we are using the lowest period associated with ℎ0.01  to compare with a crest height 

associated with a mean period value as recommended. See figure 3.14 for horizontal particle 

velocity comparison between the old and new N-003 approach and a 5th order stokes wave. 

Figure 3.15 shows horizontal particle acceleration for the same comparison. 

 

 

Figure 3.14. Comparison of horizontal particle velocity at crest, between linear wave and fifth order stokes wave results. 
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Figure 3.14 shows the differences between a linear and a non-linear approach. By look at the 

linear term with half the wave height as amplitude and 𝑇𝑚𝑖𝑛 for period, we can see that the 

linear term is a good approximation, for both extrapolation as upper value and constant value 

above mean surface level as a more accurate or right below the approximation for Stokes 5th 

order kinematics.  

The reason we have a good approximation for this term, when linear approach estimates a 

higher value than a non-linear term is because of the half the wave height is used as the 

amplitude. This gives us a lower amplitude compared to a Stokes wave, but the linear term 

calculate a higher kinematic value to make up for the low amplitude. By using the Stokes 

program, the program calculates a higher crest height (amplitude) like in real ocean, but are 

more accurate with the horizontal particle velocity profile for that amplitude. Meaning that we 

achieves a good approximation for the linear term. However, Wheeler stretching does not have 

a good approximation. This approximation give us a much lower value than expected and we 

can clearly see why the new N-003, [2] do not recommend the use of Wheeler stretching for 

extreme waves. 

By looking at the comparison between the new recommendations from N-003, we can clearly 

see that the linear term is giving a much higher value by using the 𝑐0.01 as the amplitude and 

𝑇𝑚𝑒𝑎𝑛 as period. This is because what we discussed above does not happen here. Meaning that 

the linear term will give a much higher approximation, since it does not use a simplification for 

the amplitude. However, the Wheeler stretching may be a good solution for this, but is a bit 

lower than the horizontal particle velocity from a Stokes wave. Horizontal particle velocity with 

constant value above surface level would be a better solution here, since this would be right 

above the Stokes approximation value and on the safe side. For the extrapolation approach a to 

large horizontal particle velocity is obtained compared to a Stokes wave, showing that this 

approach overestimates the kinematics with the crest height as amplitude. More comparison 

with other values would be needed, to verify that the same case happens each time a crest 

height is used as the amplitude. This will not be done here, but may be suggested for further 

study’s. Comparing the recommendations from the old and new N-003 standard in figure 3.14 

would not give any confirmed answers. Since the horizontal particle velocity is too similar in 

total for bout cases. Later on there will be more discussions for this subject, when the loads and 

loads effects has been calculated by Morison equation.  
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Figure 3.15.Comparison of horizontal particle acceleration at surface level, between linear wave and fifth order stokes wave 
results. 

 

The acceleration plot shows the same result as mentioned under the horizontal particle velocity 

plot, but here it displays the consequences for using the crest height as the amplitude in a linear 

approach much better. Showing that this is a bad approximation to Stokes waves. Therefore, it 

wouldn’t be recommended to use a linear approach with the use of crest height as amplitude, 

only the use of half the wave height as amplitude is sufficient. Especially for an acceleration 

case. For half a wave height, we can see that the linear term has a little higher value of the 

Stokes wave, but still a good and safe approximation.   
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3.5 Loads and load effects using linear wave theory and Stokes 5th order 
 

The next step is to find the loads and load effects that has been limited to base shear and 

overturning moment for our 16 different approaches. This is going to be done by three different 

cases, where those cases are depending on different diameter of the column. Morison equation 

will be used for this and by having the three different cases, we would be able to find results of 

a mass, drag or a mass/drag dominating structure. First of all an introduction to Morison 

equation has to be done and what condition it can be used in.  

 

 

3.5.1 Morison equation 
 

Morison equation is an equation used to summarize the loads caused by waves on a vertical 

structure in water. From the equation, base shear and overturning moment can be acquired in 

an accurate way for the whole structure. It is not a good method to describe the load history on 

depth dependents in an accurate way, [14]. This is because of a coefficient that varies with 

depth, but the coefficient usually is a constant for the whole structure, which is divided in two 

groups. One above surface and one below. More about this coefficient (𝐶𝑑 and 𝐶𝑚) is found in 

chapter 3.5.2.  

Some other limitations are as following, according to [14], [15]: 

 Morison equation do not give a good representation on the forces as a function of time 

when extended to orbital flow. For an example with a horizontal cylinder under waves. 

 It does not take in to account the lifting force due to vortex shedding 

 It is only valid for relatively small motions of the cylinder, meaning that for Morison 

equation to be valid it has to be  
𝑎

𝐷
< 0.2 where D is the diameter of the cylinder and a is 

the amplitude of motion for the cylinder. Later on, we will only assume that the column 

is stiff enough to satisfy this condition. 

 This equation is only valid for waves that do not breaks. This is because the equation do 

not take in to account the forces from slamming waves that hit the structure extended 

above surface. This means that 
𝐻

𝐿
<

1

7
= 0.14 has to be satisfied or else the wave can 

break. 

  The last limitation discussed here is that the diameter of the cylinder has to be much 

smaller than the wavelength to satisfy this equation. The reason for this is that the flow 

acceleration needs to be approximately uniform to the cylinder. If not, then the 

reflection of the waves from the cylinder has to be taken in to account. 
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Now that this is known, an introduction to the formula for base shear can be introduced. The 

name of this formula is Morison equation and obtained from, [14]. The formula can be seen in 

equation 3.23. 

𝑓(𝑧, 𝑡) = 𝑓𝑀(𝑧, 𝑡) + 𝑓𝑑(𝑧, 𝑡) 
 

                           = (
𝜋𝐷2

4
∗ 𝜌 ∗ 𝐶𝑀 ∗ 𝐴) + (

1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|) 

 

Equation 3.23 

Where 𝑓𝑀(𝑧, 𝑡) = (
𝜋𝐷2

4
∗ 𝜌 ∗ 𝐶𝑀 ∗ 𝐴) is the mass term, and D is diameter of cylinder, A is the 

acceleration found earlier.  𝜌 is the water density and 𝐶𝑀 is the mass coefficient determined from 

experiments. 

For the drag term, 𝑓𝑑(𝑧, 𝑡) = (
1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|), V is the velocity found earlier and 𝐶𝑑 is 

the drag coefficient determined from experiments. 

Finding the max force one can sum up all the forces using an integral. This is done with the 

formula shown below. Where 𝜉 is the position of the wave profile in that time when x = 0. For an 

example if one are, calculating the loads when the velocity is max, the position would be at the 

crest and 𝜉 would be the crest height. At time zero and x =0 the amplitude 𝜉 would have been 0 

acording to figure 3.2. 

 
𝐹(𝑡) = ∫ 𝑓(𝑧, 𝑡)𝑑𝑧

𝑆𝑢𝑟𝑓𝑎𝑐𝑒

−𝑑

= ∫ 𝑓𝑀(𝑧, 𝑡)𝑑𝑧
𝜉

−𝑑

+ ∫ 𝑓𝑑(𝑧, 𝑡)𝑑𝑧
𝜉

−𝑑

 

 

Equation 3.24 

This formula can be simplified when having a mass or drag dominating force. To see if one have 

a dominating force one can use the following equations: 

Mass term dominates when:  0,5 <
𝐷

𝐻
< 1,0 

Drag term is dominating when:  
𝐷

𝐻
< 0,1 

Meaning that: 0,1 <
𝐷

𝐻
< 0,5 would result in no dominating forces and no simplifications can be 

performed. 
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Those simplifications are: 

When mass term dominate. Max value can be found at the mean surface level of wave, where the 

horizontal particle acceleration is max and horizontal particle velocity is 0 meaning that 

𝑓𝑑(𝑧, 𝑡) = 0. Therefore, one can obtain the following formula for base shear: 

 𝐹(𝑡) = ∫ 𝑓𝑀(𝑧, 𝑡)𝑑𝑧
0

−𝑑

= ∫ (
𝜋𝐷2

4
∗ 𝜌 ∗ 𝐶𝑀 ∗ 𝐴) 𝑑𝑧

0

−𝑑

 Equation 3.25 

 

For a drag dominating case, which is max when the horizontal particle velocity is max. This is at 

the crest top where the horizontal particle acceleration is 0 and 𝑓𝑀(𝑧, 𝑡) = 0. From this, one can 

obtain the following simplification: 

 
𝐹(𝑡) = ∫ 𝑓𝐷(𝑧, 𝑡)𝑑𝑧

𝜉0

−𝑑

= ∫ (
1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|) 𝑑𝑧

𝜉0

𝑑

 

 

Equation 3.26 

 

A more theoretical way to look in to a drag or mass dominating case is to understand the eddy 

currents occurred when water passes the column. When large eddy currents occur, there will be 

a change in force where an acting force parallel and perpendicular to the current direction 

occurs. This a drag dominating case. Figure 3.16 shows what eddy current is. The circle in middle 

shows the column and the others are waves passing the column. 

 

Figure 3.16. Creation of eddy current. Where A has none, B has an increment and C has large eddy currents. 

 

Eddy currents are created when one have rapid flow or small cylinder compared with the wave 

height. This create a drag dominating case. The roughness of the cylinder may also case more or 

less eddy currents. If one have a smooth surface on the column it would be harder for eddy 

currents to occur. The mass dominating case will have the opposite as a drag dominating case. 

Where flow passes the cylinder slow and the flow term changes before a large number of eddy 

current would generated, or D is large and few eddy currents would generated. 
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One can also find the overturning moment by the adding to the Morison equation. The Morison 
equation finds the forces for each step down to the sea bottom. Therefore one can add multiply 
the forces for each step with the distance down to the sea bottom to acquire the overturning 
moment. This is done by adding (𝑧 + 𝑑) to the Morison equation, see equation 3.27, [14].  

 𝑀 = ∫ (𝑧 + 𝑑) ∗ 𝑓(𝑧, 𝑡) 𝑑𝑧
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝜉

−𝑑

   Equation 3.27 

 
Bear in mind that 𝜉 is the position height from the mean surface level up to the wave position 
in that time, which changes for each time step. In Matlab, this has been solved by first 
running a wave profile to determine this position and then used it in the Morison equation. 
This method is only needed when there are no dominating forces. 
 
 

3.5.2 Drag and mass coefficient  
 

According to [2] and [8] one can determine those coefficients with the use of the Keulegan-

Carpenter number. This formula is shown in equation 3.28: 

 𝑁𝐾𝐶 =
𝑇 ∗ 𝑉0

𝐷
 Equation 3.28 

 

Where T is the period and 𝑉0 is the largest water particle speed under the crest.  

With Keulegan-Carpenter number (𝐾𝐶 > 60 for 𝐶𝐷 and 𝐾𝐶 > 20 for 𝐶𝑀), one can use the 

following values for tubular structures according to, [2]: 

𝐶𝐷 = 0.65 and 𝐶𝑀 = 1.6 for smooth members  
𝐶𝐷 = 1.05 and 𝐶𝑀= 1.2 for rough members  
 
For a lower, 𝐾𝐶<60. One would need to multiply the drag coefficient 𝐶𝐷 with a wake 
amplification factor (𝐾𝐶). According to [8] one can find 𝐶𝐷with a low KC from: 
 
 𝐶𝐷 = 𝐶𝐷𝑆(∆) ∗ 𝛹(𝐾𝐶) Equation 3.29 

 
Where 𝐶𝐷𝑆 = 0.65 for smooth and 𝐶𝐷𝑆 = 1.05 for rough cylinder. 

 

And KC < 12:  

 
𝛹(𝐾𝐶) = 𝐶𝜋 + 0.10 ∗ (𝐾𝐶 − 12)                 𝑤ℎ𝑒𝑛        2 ≤ 𝐾𝐶 < 12 
𝛹(𝐾𝐶) = 𝐶𝜋 − 1.0                                           𝑤ℎ𝑒𝑛        0.75 ≤ 𝐾𝐶 < 2 
𝛹(𝐾𝐶) = 𝐶𝜋 − 1.0 − 2.0 ∗ (𝐾𝐶 − 0.75)     𝑤ℎ𝑒𝑛        𝐾𝐶 ≤ 0.75 

Equation 3.30 
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Where: 

 𝐶𝜋 = 1.50 − 0.024 ∗ (
12

𝐶𝐷𝑆
− 10) Equation 3.31 

 

 For higher value of KC the 𝛹(𝐾𝐶) can be obtained from figure 3.17. 

 

 
Figure 3.17. Wake amplification factor as function of KC-number with dotted line as CDS = 1.05 (rough surface), and solid line as 
CDS = 0.65 (smooth surface) 

 
To find the mass coefficient 𝐶𝑀 for this case one would need to use the following figure 3.18: 

 

Figure 3.18. Mass coefficient CM as function of KC, where dotted line is rough and solid line is smooth for tubular members. 
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To obtain the roughness of the cylinder one can use the formula obtained from [8] where: 

Smooth for: 
𝑘

𝐷
<  10−4  

Rough for:  
𝑘

𝐷
> 10−2 

 

k is the surface roughness. 

 

 

3.5.3 Determine mass and drag coefficient used. 
 

First of all we need to determine the mass and drag coefficients and the assumptions use here is 

that the column has a smooth surface from two meters above mean surface level an upwards. 

Meaning that below this point the column is rough. Next will be to simplify the work with only 

one mass/drag coefficient for each column diameter. One could do this more accurate but this 

is not the point for this theses. This is why simplifications has been used and we also have 48 

different load cases. By using 1 meter as the diameter, one will obtain a drag dominating force 

as shown below. 

 

1

28.6
= 0.03 < 0,1   ⟶    Drag dominating- 

 

 

D = 1 meter. From this, one can obtain a KC of: 

 

𝑁𝐾𝐶 =
17.74 ∗ 5.6

1
= 120 

 

Where 𝑇𝑚𝑎𝑥 and max horizontal particle velocity from wheeler stretching and constant value 

above surface level has been used as 𝑉0. For the lowest value 𝑇𝑚𝑖𝑛  has been used and max 

horizontal particle velocity for wheeler stretching and constant value above surface level as 𝑉0: 

 

𝑁𝐾𝐶 =
13.64 ∗ 6.75

1
= 92 
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By having a a drag dominated case, we will only need to find 𝐶𝐷 because the mass term will be 0 

at the crest top, where max drag forces is obtained. This is because the horizontal particle 

velocity controls the drag term and horizontal particle velocity is max at the crest.  With a  > 60 

for 𝐶𝐷 one can obtain a: 

 

𝐶𝐷 = 0.65 for smooth members  
𝐶𝐷 = 1.05 for rough members  
 

Doing the same for a D = 20m, we will have that: 

0,5 < (
20

28.6
= 0.7) < 1,0   ⟶    Mass dominating 

And:  

 

𝑁𝐾𝐶 =
17.74 ∗ 5.6

20
= 6,                    𝑁𝐾𝐶 =

13.64 ∗ 6.75

1
= 4.6     

The average for those two are 5.3 and to be on the safe side we have chosen a KC on 5.5. One 

will not need to find 𝐶𝐷 for this case since mass is a dominating force. To obtain 𝐶𝑀 one can use 

figure 3.18 and see that: 

𝐶𝑀 = 1.9 for smooth members  
𝐶𝑀 = 1.9 for rough members  
 

The last diameter used is 5 meter. This is going to have a non-dominating force. For this case 

bout 𝐶𝑀 and 𝐶𝐷 needs to be obtained. 

 0,1 <
5

28.6
= 0.19 < 0,5   ⟶    non − dominating 

 

And: 

 

                              𝑁𝐾𝐶 =
17.74 ∗ 5.6

5
= 19.9,                      𝑁𝐾𝐶 =

13.64 ∗ 6.75

5
= 18.4     

The average KC is 19.2, from this one can obtain the 𝐶𝑀 from figure 3.18 and to be on the safe 

side the following has been obtained:   

𝐶𝑀 = 1.6 for smooth members  
𝐶𝑀 = 1.25 for rough members  
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For 𝐶𝐷, one need to use figure 3.17 to obtain the Wake amplification factor 𝛹(𝐾𝐶). The Wake 
amplification factor 𝛹(𝐾𝐶) is 1.25 for smooth and rough members. The result are as following: 
 
𝐶𝐷𝑟𝑜𝑢

= 1.05 ∗ 1.25 = 1.31 

𝐶𝐷𝑠𝑚𝑜
= 0.65 ∗ 1.25 = 0.81 

 

For a better view of the coefficient chosen, see table 3.5. 

 

Table 3.5. Mass and Drag coefficients used for different diameters. 

 Diameter and dominating force 

Coefficient D=1m, drag D=5m, drag/mass D=20m, mass 

Cd-rough 1.05 1.31 --- 

Cd-smooth 0.65 0.81 --- 

Cm-rough --- 1.25 1.9 

Cm-smooth --- 1.6 1.9 
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3.5.4 Load Results from Morison equation. 
 

The following formula has been used to calculate the forces: 

 

 
𝐹(𝑡) = ∫ (

𝜋𝐷2

4
∗ 𝜌 ∗ 𝐶𝑀 ∗ 𝐴) 𝑑𝑧

𝜉

−𝑑

+ ∫ (
1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|) 𝑑𝑧

𝜉

−𝑑

 

 

Equation 3.32 

 

𝑀(𝑡) = ∫ (
𝜋𝐷2

4
∗ 𝜌 ∗ 𝐶𝑀 ∗ 𝐴) ∗ (𝑧 + 𝑑)𝑑𝑧

𝜉

−𝑑

+ ∫ (
1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|) ∗ (𝑧 + 𝑑)𝑑𝑧

𝜉

−𝑑

 

 

Equation 3.33 

Where V is the horizontal particle velocity and A is the horizontal particle  acceleration found 

earlier in chapter 3.2 and 3.3. There are a total of 12 different linear horizontal particle 

velocity/acceleration profiles and 4 non-linear horizontal particle velocity/acceleration profiles 

from Stokes program. This gives a total of 48 load cases by having 3 different diameters,  

(1m, 5m and 20m). 𝜉 is varying since this is the height which is integrated up to. This is decided 

with the help of surface profile: 𝜉 = 𝑎 ∗ sin (𝜔𝑡 − 𝑘𝑥). Where position x = 0 and t is varying. 

Example, t = 
𝜋

2𝜔
 represents a position at the crest top and t = 0 is at the mean surface level. We 

have also taken in to account that the C-coefficient is different from 2 meters above mean 

surface level and upwards compared with below 2 meters above mean surface level. This is not 

shown in this equation, but has been done in the Matlab files used, Appendix A shows all the 

Matlab files created for this thesis. Another constant used in those equations are 𝜌 =

1025 𝑘𝑔/𝑚3, this is the water density for seawater. Results can be seen in table 3.6 to 3.8. 

Where d = 1m for drag dominating forces and max loads are found at the crest top. For d = 20m, 

which causes mass dominating forces where maximum loads can be found at the mean surface 

level of the wave. d = 5m is a non-dominated case, which has to be iterated for each scenario to 

acquirer the worst case for base shear. 
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Table 3.6. Load results for column diameter 1m, drag dominating forces. Where 1GN =10^3 MN = 10^6 kN = 10^9 N. X⁰ for 
Stokes waves instead of time for linear waves. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and 
through is at 180⁰. Max value obtained at the crest top. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=1m (Drag dominating force) 

Case name: Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(MNm) 

Extrapolation, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

14.30 
 

3.41s 0.917 79.40 

Constant a.s, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

14.30 
 

3.41s 0.833 70.10 

Wheeler, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

14.30 
 

3.41s 0.590 48.75 

Stokes, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

16.94 16.94 0⁰ 0.934 81.67 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

14.30 
 

3.92s 0.898 71.16 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

14.30 
 

3.92s 0.848 65.71 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

14.30 
 

3.92s 0.671 50.49 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

16.70 16.70 0⁰ 0.944 76.14 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

17.87 
 

3.92s 1.52 124.74 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

17.87 
 

3.92s 1.39 110.57 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

17.87 
 

3.92s 1.05 
 

81.16 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

17.74 
 

0⁰ 1.07 86.89 

 

Extrapolation, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

14.30 
 

4.43s 0.916 67.42 

Constant a.s, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

14.30 
 

4.43s 0.884 63.83 

Wheeler, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

14.30 
 

4.43s 0.748 52.42 

Stokes, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

16.94 16.94 0⁰ 0.993 75.14 
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Table 3.7. Load results for column diameter 5m, non-dominating forces. Where 1GN =10^3 MN = 10^6 kN = 10^9 N. X⁰ for Stokes 
waves instead of time for linear waves. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and through 
is at 180⁰. The data has been iterated to find max value with time, t or position, X⁰. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=5m (Non-dominating force) 

Case name: Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(GNm) 

Extrapolation, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

13.39 2.63s 6.62 0.552 

Constant a.s, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

13.15 2.53s 6.15 0.499 

Wheeler, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

12.21 2.22s 4.81 0.374 

Stokes, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

16.94 15.71 16⁰ 6.74 0.571 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

13.44 3.05s 6.38 0.491 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

13.32 2.99s 6.10 0.459 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

12.81 2.77s 5.09 0.370 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

16.70 15.57 16⁰ 6.72 0.529 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

17.25 3.26s 10.29 0.829 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

17.09 3.18s 9.55 0.745 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

16.59 2.97s 7.55 0.568 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

16.65 15⁰ 7.51 0.598 

 

Extrapolation, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

13.58 3.53s 6.37 0.460 

Constant a.s, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

13.51 3.49s 6.18 0.438 

Wheeler, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

13.22 3.33s 5.39 0.371 

Stokes, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

16.94 15.71 15⁰ 6.94 0.517 
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Table 3.8. Load results for column diameter 20m, mass dominating forces. Where 1GN =10^3 MN = 10^6 kN = 10^9 N. X⁰ for 
Stokes wave instead of time for linear wave. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and 
through is at 180⁰. Max value obtained at mean surface level of wave. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=20m (Mass dominating force) 

Case name: Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(GNm) 

Extrapolation, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

0 0 83.83 5.34 

Constant a.s, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

0 0 83.84 5.34 

Wheeler, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

14.30 
 

0 0 83.84 5.34 

Stokes, 
𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

16.94 0 79⁰ 81.49 5.10 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

0 0 80.71 4.82 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

0 0 80.71 4.82 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

14.30 
 

0 0 80.71 4.82 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/ℎ0.01 

15.69 
 

28.61 
 

16.70 0 80⁰ 79.12 4.69 

 

Extrapolation, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

0 0 100.85 6.02 

Constant a.s, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

0 0 100.85 6.02 

Wheeler, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

35.74 17.87 
 

0 0 100.85 6.02 

Stokes, 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

0 79⁰ 83.26 4.95 

 

Extrapolation, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

0 0 76.61 4.37 

Constant a.s, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

0 0 76.61 4.37 

Wheeler, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

14.30 
 

0 0 76.61 4.37 

Stokes, 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

16.94 0 80⁰ 75.56 4.32 

 



 

66 
 

The reason for obtaining the same results for all linear estimation of a mass dominating forces is 

because of the method used for approximate up to the mean surface level is the same for all 

linear cases. Those results can be seen in table 3.8. 

By comparing the result up against each other, one can clearly see that an increased D produces 

a larger force than with a smaller column diameter, D. The reason for this is because of the 

increased column surface, which the wave can slam in to. One would therefore obtain more 

forces from the waves with a larger D. One can also see that the linear wave kinematics makes a 

lower base shear and overturning moment compared to the Stokes kinematics with wave height 

28.61m, except for mass dominating case. The reason for this is the larger amplitude generated 

with Stokes program meaning that we integrate higher up for Stokes result than with a lower 

amplitude. Horizontal particle velocity and acceleration is highest at the top and that’s why we 

get much higher forces with higher amplitude. By comparing the mass dominating case, which 

has no value above mean surface level we obtain a higher result for linear kinematics. This is 

because the height of the amplitude doesn’t have much of an impact on the result and a linear 

process usually overestimates the kinematics. Out from the result I would only recommend 

using extrapolation when half the wave height is used for the amplitude in a linear approach to 

estimate the wave kinematics.  One would also need a safety factor on 1.1 for drag or non-

dominating case to be on the safe side. If we assume that the Stokes kinematics are close to a 

real ocean waves.  

With the use of crest height as amplitude, we get a different result for the comparison. We 

obtain a much larger force with the use of linear kinematics than Stokes kinematics since the 

same amplitude for both cases has been used. This means that a linear approach gives a higher 

estimate when the same data are used. A good approximation for this case would be wheeler 

stretching. 

One important thing to mention is that all data obtained is where the forces is at its maximum 

and the moment in this position in time or position. For mass and non-dominating case one can 

obtain a larger overturning moment if the calculations where calculated for a higher position at 

the wave, but then again the base shear would have been lower. This is because of an increased 

distance from the wave position to the surface bottom. The overturning moment is still not 

maximum at the crest top for those two cases because the base shear of a mass dominated case 

is zero at crest top.  

As mentioned before, the old N-003 standard state that one should use the wave height, ℎ0.01 

with an unfavorable value of the period. The horizontal particle velocity and acceleration has an 

unfavorable value of the period when it is low as we discussed earlier. Now that the mass and 

drag coefficient is taken in to account for rough and smooth surface one may obtain other 

unfavorable value of the periods when calculating the forces. This is because the coefficients 

corrects the values at the different depth heights. 
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From the base shear and overturning moment data obtained above, one can see that a mass 

dominating case with a minimum period would be the worst scenario. For linear drag 

dominating case it is the minimum period as the worst case, but the maximum period has 

almost as high base shear than the lowest period, where the mean period is the lowest. This is 

because of the drag coefficient. For Stokes data, the maximum period is the worst case for both 

drag and non-dominating forces, but there are still not much deferens between them. For a 

mass term, we obtain a the maximum forces for a small period.  

Now to the final comparison between the old and new N-003 standard. This shows that a larger 

base shear force has been obtained with the use of a mean period and a crest height equal to, 

𝑐0.01 as the amplitude. Instead of an unfavorable period associated with half the wave height 

equal to ℎ0.01 by linear approach or a generated crest height from Stokes program using ℎ0.01 as 

wave height. 

This can also be seen in table 3.9, which only shows the worst cases for both N-003 approaches 

by using Stokes 5th order waves. A very important observation from table 3.9 can be seen in the 

mass dominating case, where the overturning moment are largest for the Stokes wave with 

ℎ0.01 as the wave height and 𝑇𝑚𝑖𝑛 as period. It is still a very small difference, and for all other 

cases the new N-003 approaches has the largest overturning moment value.  

Table 3.9. Comparison between old and new N-003 standard, by comparing load results for column diameter 1m, 5m and 20m. 
Where 1GN =10^3 MN = 10^6 kN = 10^9 N. X⁰ for Stokes wave instead of time for linear wave. Crest top is the x-position when 
0⁰, mean surface level is approximately 80⁰ and through is at 180⁰. 

 
 

Forces on simplified offshore structures according to different wave models. 
Comparison between old and new N-003 standard. 

Case name: Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase, 

⁰ 

Force, 
F.(MN) 

Moment, 
M.(GNm) 

Stokes. D=1m 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

17.74 
 

0⁰ 1.07 0.00869 

Stokes. D=1m 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

16.94 16.94 0⁰ 0.993 0.00751 

Stokes. D=5m 
𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

16.65 15⁰ 7.51 0.598 

Stokes. D=5m 
𝑇𝑚𝑎𝑥/ℎ0.01 

17.74 
 

28.61 
 

16.94 15.71 15⁰ 6.94 0.517 

Stokes. 
D=20m 

𝑇𝑚𝑒𝑎𝑛/𝑐0.01 

15.69 
 

30.14 17.74 
 

0 79⁰ 83.26 4.95 

Stokes. 
D=20m 

𝑇𝑚𝑖𝑛/ℎ0.01 

13.64 
 

28.61 
 

16.94 0 79⁰ 81.49 5.10 

 



 

68 
 

From table 3.9 one can see that the difference between the loads with the use of the old and 

new N-003 recommendation are not big. With the new N-003 recommendations, we obtain a 

more realistic value and shape of real ocean waves, because the crest is higher and a more 

frequent period are used. It is also easier to perform a control with the new recommendations 

since only one mean period needs to be controlled. 

 

3.6 Summary for regular Waves 
 

We have now looked in to the new and old recommendations for designing the ULS design 

wave. What have been learned from this is that a linear approach has two different methods 

giving different results. Those are depending on the amplitude, and if one chose to have a crest 

height or half the wave height as amplitude, one would need to know which approximation 

method would give the best approximation to a real wave. Normally a linear approximation is 

not used for solving this problem, but for further work, it would be interesting to confirm if 

extrapolation really is the best approximation with half the wave height as amplitude, and 

wheeler stretching when crest height is used as amplitude. This could be done by comparing 

result with different waves. 

When we observed the horizontal particle velocity and acceleration results of the waves, one 

could clearly see that the minimum period would be the worst case for the kinematics. This was 

not the case for the load results when mass and drag coefficients where introduced. This is why 

it is important not to neglect the higher periods since the maximum period could also be 

causing greater forces than the minimum period. Those results also shows that there might be a 

worse load case between minimum and mean period or mean and max period. Further work is 

needed to confirm this. 

In this report, one have assumed that the results from Stokes data program has been the most 

accurate method for the kinematics. This assumption is good because it is a fifth order 

approximation and obtained from a reliable source. From those results, we have found the 

worst case for the ULS design wave defined by the 10−2 − annual probability wave height, h0.01. 

By using Morison equation for three different column diameters. Those results have been 

compared to the results of an ULS design wave defined by a crest height equal to the 10−2 – 

annual probability crest height, 𝑐0.01 and an associated mean wave period. By comparing those 

results, one have seen that the new recommendations from N-003 standard gives a little higher 

value than using the old N-003 recommendations, except for the overturning moment in a mass 

dominated case. As mentioned before, by using a crest height as amplitude one would generate 

a more realistic wave. The new method is also much easier to perform since only one period is 

required to calculate. My conclusion is therefore that the new N-003 recommendation on this 

subject are better than the old N-003 recommendations. 
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4 Kinematics of irregular waves 
 

As mentioned earlier, the only waves in the real ocean that looks like regular waves are swells 

generated from a distant storm. Looking at the sea on a windy day, the waves would be more 

like Irregular waves with different height and period for each wave generated. That is why we 

will introduce irregular waves in this thesis, which is random waves. With the use of linear 

random wave theory, one can model a sea state with the length of our choosing. This theory is 

basically the same as for regular waves except it uses a random or probabilistic setting. Before 

one can model this sea state, it is important to select a wave spectrum that fit the area to 

model. In this thesis a JONSWAP spectrum has been chosen, which is commonly used in the 

North Sea, according to [16]. Our wave spectrum defines the sea state, and give us the 

properties needed about the waves. To generate an irregular sea state, one can summarize all 

the waves obtained from the wave spectrum with a random phase. An example of this is shown 

in figure 4.1, where one combine the smaller waves obtained from the wave spectrum to 

generate an irregular sea state.       

 

Figure 4.1. Creation of an irregular sea state by combining four regular waves, figure obtained from [16]. 

 

After generating a 3-hour sea state the kinematics under the largest wave will be obtained and 

then compare those results up against waves created from Stokes program. At the end, only the 

loads for a drag dominating case will be found and therefore only need to find the horizontal 

particle velocity for the kinematics in this chapter of irregular waves. To complete this task a 

random linear and second order process will be created. 
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4.1 Linear approximation for irregular waves 
 

To simulate an irregular sea state, we have chosen to use deep-water formulas. The reason for 

this simplification is to decrees the work time for Matlab. There are only small differences 

between deep and intermediate water depth for this case. The formula of surface process is: 

 
𝜉(𝑡) = ∑ 𝜉0,1 ∗ cos(𝜔𝑖𝑡 − 𝜑)

∞

𝑖=1

 

 

Equation 4.1 

This formula is obtained from [17], and creates a Fourier series of the time history of the sea. To 

do this one need to assume that the time history is analogue. Where t is time, 𝜔𝑖 is the 

frequency in radians per seconds and 𝜑 is a random phase between 0 and 2π to generate a 

random sea state. The amplitude 𝜉0,1 may also be a random process, but with a large number of 

frequency components (n >1000) there will be small deference’s between the random process 

and a non-random process according to [17]. Large numbers of frequency components can be 

obtained through small steepness of the wave spectrum. That is why a random amplitude in this 

thesis will not be used. The largest period that this formula can identified is the length of the 

time history, T which is 3 hour and the shortest period is 2* Δ𝑡. Where Δ𝑡 is the steepness of 

time. The reason it can’t identify a lower period than 2* Δ𝑡, is because of the need for three 

values within the wave period of the component to identify a sinusoidal component. This is 

called the cut-off frequency, which is: 

 
𝑓𝑁  =

1

2∆𝑡
=

𝜔𝑁

2𝜋
 

 
Equation 4.2 

 

The time steepness ∆𝑡 will be 0.5s in this theses, meaning that we will have an upper limit of:  

𝑓𝑁  =
1

2 ∗ 0.5
= 1 𝐻𝑧 

The last part one need to define is the frequency resolution to avoid the Fourier series to repeat 

itself before 3 hours. If 1/T is used for the steepness, where T is the seconds of a 3hr period the 

Fourier series will repeat itself for each 3-hour period. Therefore, the frequency resolution 

needs to be: 

 ∆𝑓 =
∆𝜔

2𝜋
<

1

10800
 

 
Equation 4.3 

 

For a 3-hour period. 
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4.1.1 Wave spectrum 
 

The wave spectrum is a very important parameter to define the amplitude in a sea state and 

below we have chosen to use the JONSWAP spectrum. This spectral model is very good to 

define a pure wind sea state. If there was a swell system as well, which may have generated a 

double peaked spectrum, another spectrum may be optimized for this solution. An example of 

this is the Torsethaugen model, which is also parameterize in terms of significant wave height, 

ℎ𝑠 and spectral peak period, 𝑡𝑝. For comparison of those two spectrums, see [17]. The formula 

for the JONSWAP spectrum and its parameters is found below and obtained from [17]. 

𝑠ΞΞ(𝑓) = 0.3125 ∗ ℎ𝑠
2 ∗ 𝑡𝑝 ∗ (

𝑓

𝑓𝑝
)

−5

exp (−1.25 ∗ (
𝑓

𝑓𝑝
)

−4

) (1 − 0.287 ln 𝛾) ∗ 𝛾
exp(−0.5(

𝑓−𝑓𝑝

𝑓𝑝∗𝜎
)

2

)
 

Equation 4.4 

 

Where 𝑓𝑝 =
1

𝑡𝑝
 is the peak frequency, 𝑓 is the wave frequency in Hz and the spectral width 

parameter (𝜎) can be found in equation 4.5. 

 

 
𝜎 = 0.07,   𝑖𝑓   𝑓 ≤ 𝑓𝑝 

𝜎 = 0.09,   𝑖𝑓   𝑓 > 𝑓𝑝 
Equation 4.5 

 

The peak enhancement factor is: 

 𝛾 = 42.2 ∗ (
2𝜋 ∗ ℎ𝑠

𝑔 ∗ 𝑡𝑝
2

)

6
7

 

 

Equation 4.6 

 

Where 𝑔 = 9.81 𝑚/𝑠2 and is the acceleration of gravity. 

According to [17], one can change the spectral density formula from frequency in Hz to radians 

by the following formulas: 

𝑠ΞΞ(𝜔)𝑑𝜔 = 𝑠ΞΞ(𝑓)𝑑𝑓 ⇒ 𝑠ΞΞ(𝜔) = 𝑠ΞΞ (𝑓 =
𝜔

2𝜋
)

𝑑𝑓

𝑑𝜔
=

𝑠ΞΞ (𝑓 =
𝜔
2𝜋)

2𝜋
 Equation 4.7 

 

This means that the spectral density formula with frequency in radians is: 
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𝑠ΞΞ(𝜔) =

0.3125 ∗ ℎ𝑠
2 ∗ 𝑡𝑝 ∗ (

𝑓
𝑓𝑝

)
−5

exp (−1.25 ∗ (
𝑓
𝑓𝑝

)
−4

) (1 − 0.287 ln 𝛾) ∗ 𝛾
exp(−0.5(

𝑓−𝑓𝑝

𝑓𝑝∗𝜎
)

2

)

2𝜋
  

 
Equation 4.8 

 

 

We also have that the total variance of a sea state is the following: 

 
𝜎Ξ

2 = ∑ 𝜎Ξ,𝑖
2

𝑁

𝑖=1

= ∑ 𝑠ΞΞ(𝜔𝑖) ∗ ∆𝜔

𝑁

𝑖=1

⇒ ∫ 𝑠ΞΞ(𝜔)𝑑𝜔
∞

0

  

 

Equation 4.9 

 

Where the spectral density = variance density:  

 𝑠ΞΞ(𝜔𝑖) =
𝜎Ξ,𝑖

2

∆𝜔
 

 
Equation 4.10 

As known from earlier, the significant wave height can be written as, ℎ𝑠 = 4√𝜎Ξ
2. This can be 

used to control the Matlab script later on. 

Now that we have introduced all the parameters and defined our interval, one can plot the 

results of our wave spectrum. This is done by the following formula and can be seen in figure 

4.2. 

𝛾 = 42.2 ∗ (
2𝜋 ∗ 14.9

9.81 ∗ 15.82
)

6
7

= 2.57 

𝑠ΞΞ(𝑓) = 0.3125 ∗ 14.92 ∗ 15.8 ∗ (
𝑓

1
15.8

)

−5

exp (−1.25 ∗ (
𝑓

1
15.8

)

−4

) ∗ 

                                                                                (1 − 0.287 ln 2.57) ∗ 2.57

exp(−0.5(
𝑓−

1
15.8

1
15.8

∗𝜎
)

2

)

 

Where frequency, 𝑓 is the variable and spectral width parameter (𝜎) is: 

𝜎 = 0.07,   𝑖𝑓   𝑓 ≤
1

15.8
= 0.06 

𝜎 = 0.09,   𝑖𝑓   𝑓 >
1

15.8
= 0.06 
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Figure 4.2. Wave spectrum created from a JONSWAP spectrum. 

Since we have a theoretical wave spectrum, the line is very smooth and not irregular. A real 

wave spectrum obtained from the ocean would have been very noisy, see figure 4.3 for 

illustration purposes of a raw spectrum gathered from Wijaya. 

 

Figure 4.3. Raw spectrum. (From Wijaya (2009)) obtained from [17]. 
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4.1.2 Simulation of a 3-hours surface process. 
 

From formula 4.1, one can simulate the surface process, but first the amplitude needs to be 

determined. After defining the wave spectrum above the wave amplitude can be defined as: 

 𝜉0,𝑖 = √2 ∗ 𝑠ΞΞ(𝜔𝑖) ∗ ∆𝜔 Equation 4.11 

 

 By introducing this amplitude to the surface process, one can obtain the following equation: 

 
𝜉(𝑡) = ∑ √2 ∗ 𝑠ΞΞ(𝜔𝑖) ∗ ∆𝜔 ∗ cos(𝜔𝑖𝑡 − 𝜑𝑖)

∞

𝑖=1

 

 

Equation 4.12 

 

Where: 

 
∆𝜔3ℎ𝑟 = 2𝜋 ∗ 𝑇3ℎ𝑟 = 2𝜋 ∗ 11000 > 2𝜋 ∗ 10800 
 

Equation 4.13 

 

The generated process will not repeat itself within a 3-hour period by using, ∆𝜔3ℎ𝑟. 𝜑𝑖 is a 

random number between 0 − 2𝜋 for each 𝑖, where each 𝑖 generate a new frequency of 𝜔 and 

then summarize all the small components in to one sea state. A 3-hour surface process 

generated from Matlab can be seen in figure 4.4. Where figure 4.5 show the location of the 

maximum wave amplitude in a 1000s span. 

 

To verify the Matlab script used, we changed the frequency resolution to  ∆𝜔 = 2𝜋 ∗ 3600𝑠 

and observed that the time series repeated itself every 3600s. This can be seen in figure 4.6. A 

second method to control the process is to control the significant wave height. With an input of 

ℎ𝑠 = 14.9𝑚, we obtained ℎ𝑠 = 14.89𝑚 with an 𝑓 interval of 0 − 0.5 and with and interval of 

0 − 0.8 we obtained ℎ𝑠 = 14.90𝑚. with the use of the following formula described earlier. 

Where:  

∆𝜔 = 2𝜋 ∗ 11000 for this case. 

 ℎ𝑠 = 4√𝜎Ξ
2 = 4√∑ 𝑠ΞΞ(𝜔𝑖) ∗ ∆𝜔

𝑁

𝑖=1

 

 

Equation 4.14 
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Figure 4.4. 3hr surface process created with a JONSWAP spectrum, where hs = 14.9m and tp = 15.8s. 

 

 

Figure 4.5. 3hr surface process with global maxima, which is a 1000s window showing the 3-hour maximum wave. 
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For this 3-hour surface process, we obtained an amplitude of 15.46m in time position 9550s, 

where the period of this wave was 14.5s. In the whole 3-hour time series a total of 906 peaks 

where obtained, using zero up crossings to identify the largest crest height for each zero up 

crossings. All those data changes each time the program runs, since the phase changes for each 

frequency when  𝜑𝑖 changes. 

 

 

Figure 4.6. 1-hour repeating surface process created with a JONSWAP spectrum, where hs = 14.9m and tp = 15.8s.  
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4.1.3 3-hour extreme values for a generated surface process. 
 

When we have a reasonably narrow wave spectrum one can assume that the Rayleigh 

distribution is a sufficient model for global maxima in a stationary, Gaussian process, [17]. We 

will now test this by plotting the Rayleigh distribution up against global maxima gathered from 

our surface process. Where: 

The Rayleigh distribution formula is, [17]: 

 
𝐹ΞG

(𝜉) = 1 − exp (−
1

2
∗ (

𝜉

𝜎𝛯
)

2

) 

 

Equation 4.15 

 𝜎𝛯 =
ℎ𝑠

4
 Equation 4.16 

 

The global maxima crest height obtained from our surface process will be sorted from the 

lowest value to the highest. Crest height data will be plotted up against the cumulative 

probability chance. Finding the cumulative probability chance for each crest height can be done 

with the following formula.  

 
𝐹(𝜉) =

𝑛𝑐.𝑖

𝑁 + 1
 

 
Equation 4.17 

Where N is the total numbers of crest heights (906 in this case), and 𝑛𝑐.𝑖 is the number position 

of the crest height used. Where the lowest crest height of global peaks are 𝑛𝑐.𝑖 = 1 and the 

second lowest 𝑛𝑐.𝑖 = 2 meaning that the largest crest height will have, 𝑛𝑐.𝑖 = 906. The results 

of those two plots can be seen in figure 4.7. 
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Figure 4.7. Global maxima versus Rayleigh distribution. 

From figure 4.7, one can see that the Rayleigh distribution fits the global maxima very well, 

except for the smallest crest heights. For the smallest crest heights, we can see some deviating 

away from the Rayleigh distribution. The reason for this may be because of the zero up crossing, 

which may cause some extra global peaks with low crest height.  

For obtaining the extreme crest height value with the Rayleigh distribution, one can exalt the 

formula with 𝑛𝑡. Where 𝑛𝑡 is the mean numbers of global maxima for the surface process. This 

formula can also be used to estimate the crest height corresponding to an exceedance 

probability of 0.1 for this sea state, [17]. We can also verify this distribution with the same 

meted used in figure 4.7, but instead of using the global maxima for one sea state, we simulate 

80 different sea states and uses the maximum crest height for the whole sea state. Then we sort 

the crest height from low to high and use formula 4.18 to plot against the data.  

Rayleigh distribution exalted in 𝑛𝑡 . 

 𝐹Ξ3h
(𝜉) = [𝐹ΞG

(𝜉)]𝑛𝑡    = [1 − exp (−
1

2
∗ (

𝜉

𝜎𝛯

)
2

)]

 𝑛𝑡 

   Equation 4.18 

 

Later on, this formula will be changed to fit a Gumbel scale to perform bootstrapping. The result 

can be found in equation 4.19 and is called “exact distribution with Rayleigh”. 

 

 − ln(− 𝑙𝑛(𝐹(𝜉))) = − ln (−𝑛𝑡 ∗ 𝑙𝑛 (1 − 𝑒𝑥𝑝 (−
1

2
∗ (

𝜉

𝜎𝛯
)

2

))) Equation 4.19 
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According to [17], if 𝑛𝑡 becomes large in the Rayleigh distribution it will approaches the 

asymptotic extreme value distribution, which is called the Gumbel distribution. This formula can 

be found in equation 4.20. 

 

 𝐹Ξ3h
(𝜉) ⇒ exp (− exp (−

𝜉 − 𝜎𝛯√2 𝑙𝑛(𝑛𝑡)
𝜎𝛯

√2 𝑙𝑛(𝑛𝑡)

)) Equation 4.20 

 

This formula can also be fitted to a Gumbel scale and will be used later under bootstrapping. 

The result of this is found in equation 4.21 and the formula is called “Gumbel approximate”: 

 

 − ln(− 𝑙𝑛(𝐹(𝜉))) ⇒
𝜉 − 𝜎𝛯√2 𝑙𝑛(𝑛𝑡)

𝜎𝛯

√2 𝑙𝑛(𝑛𝑡)

 Equation 4.21 

 

Now that the formula has been introduced one can plot the Rayleigh distribution exalted in 𝑛𝑡 

and the Gumbel distribution it goes towards up against the maximum crest height values from 

80 different simulations. See figure 4.8 for the results. 

 

 

Figure 4.8. Extreme crest height values from 80 different 3-hour simulations compared with a Rayleigh distribution and Gumbel 
distribution. 
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From figure 4.8, one can see that the Gumbel distribution is the best-fit, meaning that an 

increased 𝑛𝑡 in the Rayleigh distribution would create a better fit here. It still doesn’t deviate 

much. Therefore, the extreme crest height data follows a Rayleigh distribution. To identify the 

wave event with a crest height corresponding to an exceedance probability of 0.1 for this sea 

state, one can obtain the values when the cumulative probability is 0.9. This means that the                  

𝑐0.01 = 15.84 𝑚 for the Rayleigh distribution and 𝑐0.01 = 16.00 𝑚 for the Gumbel distribution. 

This is smaller than 𝑐0.01 = 17.87 𝑚, which we predicted in regular waves, but larger than half 

the wave height of ℎ0.01 = 28.61 𝑚 which also where predicted in regular waves. The reason 

we get a much lower 𝑐0.01 with Rayleigh distribution is that the Rayleigh distribution follows the 

distribution from a first order process. In the regular waves, we used a Weibull distribution to 

predict the maximum crest height distribution of a second order process, which will result in a 

much larger value since higher order waves have larger crest than trough. Later on, this will be 

confirmed by comparing first and second order surface process. 

 

 

 

4.1.4 Bootstrapping  
 

Bootstrapping can be used to illustrate the uncertainty of the data, when fitting a probabilistic 

model to a limited number of observations by using method of moments. In this report, we are 

using a generated maximum crest height set with 80 crest heights obtained from 80 different 

simulations. They are stored in an excel file and used in Matlab to plot the following figures 

below. Before one can plot the crest height data, one would need a probabilistic model to 

compare those with. A good probabilistic model for estimating the 102 – annual probability 

crest height is the Gumbel distribution fitted using method of moments. All the figures below 

will be on a Gumbel scale to insure that the data collected follows a straight line. If it follows a 

straight line, the data follows a Weibull distribution. Formula 4.22 insures that the probability 

data plotted against crest height data is set on a Gumbel scale. 

 
𝐹𝐵(𝜉) = − ln(− 𝑙𝑛(𝐹(𝜉))) 

 
Equation 4.22 

Where 𝐹(𝜉) is the same as above. 

The Gumbel distribution, fitted using method of moments is shown in equation 4.23, and is 

obtained from, [18]. 

 𝐹𝑌𝑚
(𝜉) = exp (− 𝑒𝑥𝑝 (−

𝜉 − 𝛼

𝛽
)) Equation 4.23 
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By transforming the formula to a Gumbel scale one can obtain the following formula: 
 

 − ln(− 𝑙𝑛(𝐹(𝜉))) =
𝜉 − 𝛼

𝛽
 ,     𝐹𝑖𝑡𝑡𝑒𝑑 𝐺𝑢𝑚𝑏𝑒𝑙  Equation 4.24 

   
The method of moments parameters obtained from, [18] are as following: 

 𝛽 = 0.7797 ∗ 𝑠 Equation 4.25 

 
𝛼 = 𝜉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 0.57722 ∗ 𝛽 

 
Equation 4.26 

 

Where s is the standard deviations from the crest heights and 𝜉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 is the mean value of all 

crest heights. 

 

The Gumbel distribution fitted to the original sample using method of moments and also 

compared with two other distributions are shown in figure 4.9. 

 

 

Figure 4.9. Maximum crest height data compared to different distribution function on a Gumbel scale. 
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From figure 4.9 one can see that the crest height data follows a straight line and fits the 
distribution function very well. The best fit of those three distributions are the fitted Gumbel 
distribution and can therefore assume that this is the true distribution. Figure 4.9 also shows 
that the 102 – annual probability crest height is between 15.8m and 16.3m depending on the 
distribution.  
 
From here on, we need to generate more samples of size 80 since this sample are only one way 
that the nature could generate a distribution of crest height, [19]. To generate more samples, 
one can use Monte Carlo simulation from the Gumbel distribution used earlier to fit the data. 
From [19] one can obtaining the formula 4.27. 
 
 𝜉 = 𝛼 − 𝛽 ∗ ln(− 𝑙𝑛(𝐹𝑟𝑎𝑛𝑑)) Equation 4.27 

 
Which is the Gumbel distribution (Equation 4.23), fitted using method of moments equation 
where it is solved for crest height instead of probability. Now 𝐹𝑟𝑎𝑛𝑑 is a random number from 0-
1 and by generating 80 different values we obtain one data sample. Doing the same procedure 
40 times will generate 40 different samples that can be plotted up against the true Gumbel line 
and the first set of data collected earlier to verified them. If the first data is inside the 
distribution of the 40 samples, we will have a good fit and valid data. This method are called the 
parametric bootstrapping according to [19]. From figure 4.10 one can see the results of our 
parametric bootstrapping with 40 samples. 
 
 

 

Figure 4.10. Parametric bootstrapping with 80 values for each samples generated from a surface process with hs = 14.9m and tp 
= 15.8s. 
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Figure 4.10 shows that our data are not out side of our generated samples, this means that the 

data is valid. The data may still be a rare sample that might have been a high value or low.  

This is why it’s not wise to have few values inside a sample because more data insures more 

accuracy. That’s why 80 values inside the first sample was chosen. For the 102 – annual 

probability crest height, we have a large range and it shows that the value are between 15,2m 

to 17,4m.  

 

 

4.1.5 Linear kinematics 
 

The focus in irregular waves are drag dominated forces as mentioned earlier. To calculate the 

loads and loads effect from a drag dominated case one would only need to obtain the horizontal 

particle velocity profile. Because of this, we are shortening the work to only calculate the 

horizontal particle velocity. There has been some changes for the horizontal particle velocity 

formula used earlier and those changes are as following: The reason for our first change in the 

horizontal particle velocity formula is because of the surface process. As mentioned earlier that 

the surface process and the horizontal particle velocity has the same phase. This means that by 

using “cosine” for our surface process, one would need to use “cosine” for our horizontal 

particle velocity profile as well to insure that they have the same phase. The formula obtain is 

shown in equation 4.28. 

 

 
𝑉1(𝑧) = ∑

Ϛ0 ∗ g ∗ k

ω
∗

cosh 𝑘(𝑧 + 𝑑)

cosh 𝑘𝑑
∗ cos (kx − ωt + φ)

𝑁

𝑛=1

 

 

Equation 4.28 

 

Because of time consuming when operating in Matlab, we have chosen to operate in deep 

water although this is intermediate water depth as shown in chapter 3.2. The consequences of 

this is very small, but might have an impact on the results. Since we are going to compare our 

results for theoretical purposes and not for dimensioning a construction those assumptions is 

accepted. Then the following formula is obtained:  

 

 𝑉1(𝑧) = ∑
Ϛ0 ∗ g ∗ k

ω
∗ cos (kx − ωt + φ)

𝑁

𝑛=1

∗ 𝑒𝑘∗𝑧 Equation 4.29 
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Where φ is a random number between 0 and 2π to insure random phase and ω2 = g ∗ k, 

meaning that we can simplify to: 

 

 
𝑉1(𝑧) = ∑ Ϛ0 ∗ 𝜔 ∗ cos (kx − ωt + φ)

𝑁

𝑛=1

∗ 𝑒𝑘∗𝑧 

 

Equation 4.30 

To find the horizontal particle velocity profile for the 3-hour surface process in Matlab, one 

would need to simulate the surface process first and identify the largest crest height of the 

sequence. When the largest crest height is identified, we chose to find the horizontal particle 

velocity profile for a 200 second window. Where the largest crest height is in the middle of the 

window. For more information of how this was done, see Appendix A for details about Matlab 

files created. An example of the results are shown below. Where figure 4.11 shows a 200-

second window of the maximum wave obtained from a 3-hour simulated surface process. 

 

 

Figure 4.11. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s. 
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Figure4.11 show that the maximum crest height obtained from the 3-hour simulated surface 

process is 17.23m high with a period of 14s. From the horizontal particle velocity formula, one 

can obtain all the horizontal particle velocity profiles for each 0.5s in the 200s window. This is 

stored in a matrix in Matlab and one can therefore plot all the values for an example of depth 

30m and at mean water level with time as variable. Result of this is shown in figure 4.12-13. 

 

Figure 4.12. 200 second window of horizontal particle velocity changing with time at mean water level (z = 0m). 
 

 

Figure 4.13. 200 second window of horizontal particle velocity changing with time at depth 30m (z = -30m). 
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Figure 4.12 is only an approximation of the horizontal particle velocity at the mean water level. 

In real life, there would not be any horizontal particle velocity between the waves, where no 

water is present. In this estimation, we have extrapolated up to mean water level for illustrative 

purposes. However, figure 4.13 shows a good estimate of the horizontal particle velocity in a 

depth of -30m.  

By comparing those two figures to the surface process, one can see a very good similarity in 

shape since they have the same phase angle. Next figure below show us the horizontal particle 

velocity depending on depth.  

 

 

Figure 4.14. 400 horizontal particle velocity profiles created from a 200-second surface process with time step 0.5s. 

 

Figure 4.14 is only used to compare with figure 4.15 to show the horizontal particle velocity 

profile for the 200s window. Since figure 4.15 shows the horizontal particle velocity under the 

largest crest, one can compare those results to figure 4.14. This will confirm that the largest 

horizontal particle velocity is obtained under the largest crest in the time series. 
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Figure 4.15. Horizontal particle velocity profiles for the largest crest height in the time series. Where crest height = 17,23m and 
period = 14s. 

 

There are two plots in figure 4.15, where the blue plot represents horizontal particle velocity 

with extrapolation to mean surface level and constant value above the mean surface level . The 

red line is Wheeler stretching. By comparing the blue line to the maximum horizontal particle 

velocity profile in figure 4.14, one can see that those two lines are the same and confirm the 

statement above. 
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4.1.6 Verification of linear horizontal particle velocity program 
 

To confirm that the program creates an accurate approximation, one would need to do some 

calculations outside of Matlab. Those results will be compared with Matlabs results for 

verification. Excel will be used as the second program to calculate some of the horizontal 

particle velocity with the same formula as shown above. If the results are the same, one can say 

that the program runs in a correct manner. 

First of all, one would need to confirm that the surface process generates the same values in 

bout approaches. If the surface process generates the same values, it would mean that bout 

programs calculate a correct answer. It will also confirm that we have a correct estimate for the 

generated wave spectrum. To create the same sea state for bout programs the random phase 

value needs to be saved, and used in bout programs. This has been done and we have used the 

same phase angle values as the sea state from figure 4.11. To simplify the work in excel, the 

only wave generated for the surface process is the wave with the largest crest height for the 

whole 3-hour sea state. Results from Matlab can be seen in figure 4.16 and figure 4.17 shows 

the results from Excel.  

 

 

Figure 4.16. Largest wave of a 3-hour linear surface process obtained from the same sea state as figure 4.11. Where hs = 14,9m 
and tp = 15.8s. Simulated from Matlab. 
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Figure 4.17. Largest wave of a 3-hour linear surface process obtained from the same sea state as figure 4.11. Where hs = 14,9m 
and tp = 15.8s. Calculated from Excel. 

 

From figure 4.16 and 4.17, one can see that Matlab and Excel creates the same values with two 

different approaches. This means that our process in Matlab generates correct values for the 

surface process. In Excel I have calculated every number and summarized them with help of 

Excels commands. To see the calculations done in Matlab, see Matlab file 

“Verification_of_Matlab_program_linear_Matlab_file” for Excel file, see “Verification of Matlab 

program Excel file”. The same two files are also used to verify the horizontal particle velocity 

profile. Here we have chosen to generate the horizontal particle velocity profile under the crest 

at time 642s and at time 641s. The reason I have chosen to investigate at time 641s is since 

Matlabs generated horizontal particle velocity profile in this time curves in the opposite side as 

it approaches the mean water level. This can be seen in figure 4.18, which is generated from the 

Matlab file. Results from the Excel file can be seen in figure 4.19, which is the same result as the 

Matlab file generates. This means that the curve near the surface is not a wrong approximation. 

Instead, it is a result from summing up all the waves with different frequency and phases. 

Where the high frequency waves do a much more impact at the surface and lesser the deeper it 

gets. Even if the high frequency waves in general provides low impact in the horizontal particle 

velocity. Results of this might be the cause for the curve. Our program have now been 

confirmed to provide a correct answerer. For more details about the Excel or Matlab 

calculations, see the referred files above. 
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Figure 4.18. Horizontal particle velocity profiles at time 642s (under crest top) and time 641s.  Where crest height = 17,23m and 
period =14s. Simulated from Matlab.  
 

 

Figure 4.19. Horizontal particle velocity profiles at time 642s (under crest top) and time 641s.  Where crest height = 17,23m and 
period =14s. Calculated from Excel. 
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4.1.7 Results for horizontal particle velocity compared to Stokes waves  
 

Now that the program used to estimate the horizontal particle velocity has been verified, one 

can start comparing the results to a Stoke wave. In order to re do the simulations shown in 

figure 4.20 the different random phase 𝜑 values has been stored in an excel file named 

“Different phases for linear surface process”. There are three different 3-hour simulations below 

showing the horizontal particle velocity profile for each case, where the next chapter calculates 

loads and loads effects for each case. The first case is the same case as shown above. Where the 

surface process is shown in figure 4.11 and for the horizontal particle velocity profile, see figure 

4.20. 

 

Figure 4.20. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height 
in a time series. Where maximum crest height = 17,23m and period = 14s. 

Figure 4.20 shows the three different plots for the same crest height and period. Where 

Wheeler stretching might be giving to low value as discussed before. If one assume that a 

Stokes wave are the most accurate method, since this is a higher order approximation. By look 

at the third plot, which uses constant value above mean surface level, one can see that it has a 

much better fit than the Wheeler stretching for a linear approach. It might also be a good 

estimate for the loads and loads effect that’s shown later on.  

The second case shows the kinematics of a much lower maximum crest height. See figure 4.21 

for surface process and figure 4.22 for the horizontal particle velocity profiles for this case. The 

third case has a maximum crest height similar to the crest height corresponding to an 

exceedance probability of 0.1 for the sea states. Where Surface process are shown in figure 4.23 

and the  horizontal particle velocity profiles can be seen in figure 4.24 for case three. 
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Figure 4.21. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest height 
obtained is 14,21m with a period of 12s and wave height = 24.00m. 

 

 

Figure 4.22. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height 
in a time series. Where maximum crest height = 14,21m and period = 12s with a wave height = 24.00m. 
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Figure 4.23. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest height 
obtained is 16,11m with a period of 12s and wave height = 26.03m. 

 

 

Figure 4.24. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height 
in a time series. Where maximum crest height = 16,11m and period = 12s with a wave height = 26.03m. 
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By comparing the three cases to the Stokes data, one can clearly see that the linear surface 

process may generate similar kinematics as a Stokes waves. This can especial be seen in case 

two and three, where a very good approximation to the horizontal particle velocity compared to 

the Stokes data gathered from the Stokes 5th order program is obtained. 

 

 

4.1.8 Drag dominating forces for simulated maximum crest height compared to Stokes 

waves 

 

 
Now that the horizontal particle velocity profiles has been obtained, one can use the Morison 

equation to estimate the base shear and overturning moment for a drag dominated case. A 

column diameter of D = 1m will be used further on. The Morison equation has been introduced 

previously in chapter 3.5.1, but is shown in equation 4.31 for base shear and 4.32 for 

overturning moment again. Those formulas can only be used to calculate drag dominated cases. 

 

 
𝐹(𝑡) = ∫ 𝑓𝐷(𝑧, 𝑡)𝑑𝑧

𝜉

−𝑑

= ∫ (
1

2
∗ ρ ∗ CD ∗ D ∗ 𝑉 ∗ |𝑉|) 𝑑𝑧

𝜉

𝑑

 

 

Equation 4.31 

 
𝑀 = ∫ (𝑧 + 𝑑) ∗ 𝑓𝐷(𝑧, 𝑡) 𝑑𝑧

𝜉

−𝑑

   

 

Equation 4.32 

 

Where V is the horizontal particle velocity profile for each of the three cases above. The results 

is shown in table 4.1. 
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Table 4.1. Load results for column diameter 1m, drag dominating forces. Where 1GN =10^3 MN = 10^6 kN = 10^9 N. X⁰ for 
stokes data instead of time for linear data. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and 
through is 180⁰. Max value obtained at crest top with a first order process. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=1m (Drag dominating force) 

Case name Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(MNm) 

Constant 
above 

surface 

14 31.12 17.23 17.23 642s 1.13 99.28 

Wheeler 
Stretching 

14 31.12 17.23 17.23 642s 0.709 61.23 

Stokes data 14 29.13 17.23 17.23 
 

0⁰ 0.976 84.37 

 

Constant 
above 

surface 

12 24.00 14.21 14.21 6383,5s 0.771 69.43 

Wheeler 
Stretching 

12 24.00 14.21 14.21 6383,5s 0.457 
 

40.29 

Stokes data 12 24.06 14.21 14.21 
 

0⁰ 0.635 57.82 

 

Constant 
above 

surface 

12 26.03 16.11 16.11 6719s 1.02 92.47 

Wheeler 
Stretching 

12 26.03 16.11 16.11 6719s 0.574 51.09 

Stokes data 12 26.80 16.11 16.11 
 

0⁰ 0.838 77.63 

 

Our results show that the constant value above surface approach obtains the most base shear 

and overturning moment. Where Wheeler stretching obtains very low values compared to the 

other two cases. This confirm the concern of the new N-003 standard, [2] in recommendation to 

not use Wheeler stretching since it might give values below the safe zone when designing. The 

constant value above surface approach might be giving to high value and cause oversizing in the 

design process. It would therefore be very interesting to create a second order process and 

compare the results of loads and loads effects from a linear and second order approach. 
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4.2 Second order approximation for irregular waves 
 

To improve the accuracy of our simulated surface process and the kinematics of the maximum 

event, one would need to generate a second order process. The new N-003 standard, [2] also 

state that the surface process and the corresponding kinematics for a time domain simulation, 

shall be modelled as a second order random process with second order theory, when calculating 

load and loads effects. Those are the mean reason to generate a second order process also to 

compare the result with Stokes waves and a first order process. Generating a second order 

process needs a much higher capacity from Matlab and the computer used. Because of this, we 

are going to simulate 20-minutes time series instead of a 3-hour sea states for this thesis. To run 

a second order surface process of 3-hour, a good computer is required and patient since it 

might take 1 to 12-hours running time. Depending on the computer and Matlab settings.  

 

 

4.2.1 Simulation of a 20-minutes second order surface process      
 

A second order surface process can be obtained with a second order correction plus the first 

order equation. This can be seen from equation 4.33. Where the following formulas where 

obtained from [8], [20] and [21]. [20] is a short presentation of [21]. 

 
η = η(1) + η(2) 
 

Equation 4.33 

 

Where η(1) is the formula for first order surface process used earlier and η(2) is the second 

order correction to achieve a second order surface process, η. 

 η(1) = ∑ 𝑎𝑛 ∗ cos (𝜙𝑛)

𝑁

𝑛=1

 Equation 4.34 

 

η(2) = ∑
1

2
∗ 𝑎𝑛

2 ∗ 𝑘𝑛 ∗ cos(2 ∗ 𝜙𝑛)

𝑁

𝑛=1

+ ∑ ∑
1

2
∗ 𝑎𝑛 ∗ 𝑎𝑚 ∗ ((𝑘𝑛 + 𝑘𝑚) ∗ cos(𝜙𝑛 + 𝜙𝑚)       

𝑁

𝑚=𝑛+1

𝑁−1

𝑛=1

−                              −(𝑘𝑚 − 𝑘𝑛) ∗ cos ( 𝜙𝑚 − 𝜙𝑛)) 
 

Equation 4.35 
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The second order correction uses a double summation. This is why it requires a high computer 

capacity and time to simulate a 3-hour sea state. When a double summation is used one obtain 

N times the number of a first order simulation. Where N is the number of frequency 

components.  

The same wave spectrum generated under chapter 4.1.1 is used here as well, except for a 

shorter interval of the wave spectrum meaning that: 

 𝜉0,𝑖 = 𝑎𝑛 

 𝜉0,(𝑖+1) = 𝑎𝑚   

Which has been explained under chapter 4.1.2. The following formulas, that were not explained 

is as following: 

 𝜙𝑛 = 𝑘𝑛 ∗ 𝑥 − 𝜔𝑛 ∗ 𝑡 + 𝜑𝑛   Equation 4.36 
   

Equation 4.36 determine the phase of the wave. Equation 4.36 has been obtained from [20]. 

 𝜔𝑛
2 = 𝑔 ∗ 𝑘𝑛     Equation 4.37 

 

𝑘𝑛 is the wave number described by the frequency in Hz. 

 
𝑘𝑛 =

(2𝜋 ∗ 𝑓)2

𝑔
 

 

Equation 4.38 

The differences on 𝑛 and 𝑚 is that the 𝑛 starts with an 𝑓 =
1

𝑇
 and 𝑚 starts with =

2

𝑇
 , if 

the steepness of the frequency, 𝑓 are 
1

𝑇
. This means that 𝑘𝑚 > 𝑘𝑛. 

For a 20-minutes sea state, one need to have T > 1200s to insure it doesn’t repeat itself. In the 

following 20-minutes simulation, T = (1200 + 50) has been used where ∆𝜔 = 2𝜋 ∗ 1250. 

Because of the extra second order correction, one obtain a much larger use of the wave 

spectrum, meaning that the summed up amplitude will be to large if full spectrum are used. This 

will affect the kinematics and create to high values. To fix this one would need to reduce the use 

of high frequencies waves. A cut-off frequency has therefore been proposed by Stansberg, C.T. 

This cut-off frequency has been confirmed to show reasonable values, when comparing 

calculated wave profiles to measured waves. It is also recommended to use this cut-off 

frequency from DNV, [8]. Which is obtained from [21] and shown in equation 4.39. 

 

 𝜔𝐶𝑢𝑡𝑆
= √

2 ∗ 𝑔

ℎ𝑠
= √

2 ∗ 9.81

14.9
= 1.14 Equation 4.39 
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To use frequency in Hz as the spectrum frequency cut-off one can use: 𝑓𝐶𝑢𝑡𝑆
= 1.14 ∗ 2𝜋 =

0.18 𝐻𝑧. This is the cut-off frequency used for the 20-minute’s simulations in this thesis.  

From those formulas, we obtain the following results. Shown in figure 4.25-27. 

 

Figure 4.25. 20-minutes second order surface process, created from a JONSWAP spectrum. With hs = 14.9m and tp = 15.8s. 
 

 

Figure 4.26. 20-minutes second order surface process showing global peaks. Created from a JONSWAP spectrum.  
With hs = 14.9m and tp = 15.8s. 
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Figure 4.27. 100 seconds window, showing maximum crest height of a 20-minutes second order surface process and corrections 
to achieve a second order process. Created from a JONSWAP spectrum with hs = 14.9m and tp = 15.8s. 

 

From this sea state, one can obtain a maximum crest height of 14,92m with a period of 13s. The 

difference between the linear and second order surface process can be seen in figure 4.25 and 

4.27. Figure 4.27 show the values from a linear process, all the second order corrections and 

finely the second order surface process, which is the sum of them. Where second order 

correction 1 uses one summation, second order correction 2 is the positive double summation 

and second order correction 3 is the negative summation from equation 4.35. From this figure, 

one can see that the linear process produces shorter crest height and higher trough than a 

second order process. It is the second order correction that correct those heights to a more 

realistic wave.    

Now that a surface process is established, we can obtain all the peak values that has been 

pointed out by figure 4.26. Since the simulation is only a 20 minutes series, a maximum crest 

height distribution cannot be obtained. To do this one would need to simulate 30+ 3-hour 

simulations and obtain the maximum crest height value for each of those simulations as we did 

with the first order approach. With the second order approach, it would take too long time and 

we would therefore suggest that this would be recommended on further work later on. What 

one can do is to confirm, if the data follows a second order distribution. By comparing the peak 

data to a 2-parameter Weibull distribution formula set on a Weibull scale. One can observe if 

the data follows the linearized short term Weibull distribution and goes in a straight line. If it 

does, one would have confirmed that the second order surface process follows the 2-parameter 
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Weibull distribution, which has been confirmed by Forristall to follow a second order 

simulations. This will be an indication that our program has the right output.  

The short term 2-parameter Weibull distribution formula have already been introduced in 

chapter 2.4, when the 10−2 annual probability crest height, 𝐶0.01, was predicted. This means 

that our expected 10−2 annual probability crest height, 𝐶0.01, in this second order surface 

process is 17,87 m. The 2-parameter Weibull distribution formula used is: 

 FC|Hs,T1
(c|hs, T1, d) = 1 − e

−(
c

αF∗hs
)

βF

 

 
Equation 4.40 

The result for putting this formula to a Weibull scale can be seen in equation 4.41. 

 

 
ln(− ln(1 − F(y))) = βF ∗ ln(c) − βF ∗ ln (αF ∗ hs) 

 
Equation 4.41 

For obtaining the Fitted Weibull line, equation 4.40 has been used and is shown below: 

 

1.88 ∗ ln(c) − 1.88 ∗ ln(0.37 ∗ 14.9) = Cum. Prob 
 

To fit the different crest height data one can used the following formula. 

ln(− ln(1 − F(y))) 

 

Where F(y) =
𝐶𝑛

𝑁+1
, Empirical distribution. And the X-axes is Ln(crest height).  

 

The result can be seen in figure 4.28, which is the same 20-minutes simulation as figure 4.25. 
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Figure 4.28. Global maxima versus a 2-parameter Weibull distribution (1) 

Another result from a random simulation can be observed in figure 4.29 to compare with figure 

4.28. 

 

 

Figure 4.29. Global maxima versus a 2-parameter Weibull distribution (2). 
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Figure 4.28 and 4.29 show that the main peak data follows the Weibull distribution. The lower 

part of the peaks below Ln(0), which is at a crest height < 1m can be neglected since a known 

error of Matlab is known. As mentioned before, this error is caused because of to close zero up 

crossings. A good example of this error can be seen in figure 4.30, where all the circles are 

peaks, but the read ones shouldn’t have been there. This is the reason for neglecting peaks 

below 1m. Apart from this, one can clearly see that the crest heights follows a Weibull 

distribution, meaning that our program is verified to follows a second order distribution.  

 

Figure 4.30. Illustrating peaks of a surface process, where green peaks are real peaks and red peaks are not valid. 

 
 

 

4.2.2 Second order kinematics 
 

Horizontal particle velocity is the only interesting kinematics for a drag dominated case, as 

discussed in the linear part for irregular waves. Therefore, a second order correction formula 

has been obtained from [20], [21]. This formula is only valid at depth below mean water level 

(𝑧 < 0). Since the formula will drastically overestimate the velocity above mean water level. A 

linear Taylor expansion above mean water level is therefore introduced later on. We have also 

mentioned that a cut-off frequency are needed especially for the kinematics. This was 

introduced in chapter 4.2.1.     

The velocity potential obtained from [20], can be seen in equation 4.42 and 4.43. Where  ф(1) is 

first order and ф(2) is the second order correction for velocity potential. 
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 ф(1) = ∑
𝑎𝑛 ∗ 𝜔𝑛

𝑘𝑛
∗ sin(𝜙𝑛) ∗ 𝑒𝑘𝑛∗𝑧  

𝑁

𝑛=1

 Equation 4.42 

 

 
ф(2) = − ∑ ∑ 𝑎𝑛 ∗ 𝑎𝑚 ∗ 𝜔𝑚

𝑁

𝑚=𝑛+1

𝑁−1

𝑛=1

∗ sin(𝜙𝑚 − 𝜙𝑛) ∗ 𝑒(𝑘𝑚−𝑘𝑛)∗𝑧 

 

Equation 4.43 

The second order velocity potential correction doesn’t include all the subsection for the surface 

process. This is because the two first subsection of the surface process becomes zero in the 

velocity potential when summed up according to [22].  

The horizontal particle velocity is found through the derivative of velocity potential in x 

direction and can be seen in equation 4.44 and 4.45. Where the formula for a second order 

horizontal particle velocity is shown in equation 4.46, which is only for 𝑧 < 0. 

 

 ф𝑥
(1)

= ∑ 𝑎𝑛 ∗ 𝜔𝑛 ∗ cos(𝜙𝑛) ∗ 𝑒𝑘𝑛∗𝑧  

𝑁

𝑛=1

 Equation 4.44 

 

ф𝑥
(2)

= − ∑ ∑ 𝑎𝑛 ∗ 𝑎𝑚 ∗ 𝜔𝑚 ∗ (𝑘𝑚 − 𝑘𝑛) ∗ cos (

𝑁

𝑚=𝑛+1

𝑁−1

𝑛=1

𝜙𝑚 − 𝜙𝑛) ∗ 𝑒(𝑘𝑚−𝑘𝑛)∗𝑧 Equation 4.45 

 

 ф𝑥⃒𝑧<=0 = ф𝑥
(1)

+ ф𝑥
(2)

⃒ ,      𝑓𝑜𝑟     𝑧 <= 0 
 

Equation 4.46 

 

All the parameters and variables has been explained in chapter 4.2.1 and the result for using 

those formulas in Matlab is as following: 
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Figure 4.31. 100-second window of a 20-minuts second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest 
height obtained is 16,38m with a period of 14s and a wave height = 26.67m. 

 

 

Figure 4.32. Horizontal particle velocity changing with time at mean surface level (z = 0m). For the largest wave in a 20-minuts 
surface process.   
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Figure 4.33. Horizontal particle velocity profiles for the largest wave in the 20-minutes surface process, where time step = 0.5s. 

 

 

Figure 4.34. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and 
period = 14s. Showing first order and second order correction to achieve a second order profile. 
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Figure 4.31-34 is the result of the same simulation for a 20-minutes surface process. In figure 

4.32, one can see how the horizontal particle velocity for the largest wave changes with time at 

mean surface level, bear in mind that this is just an approximation. All the horizontal particle 

velocity profiles for the largest wave can also be seen in figure 4.33, where the horizontal 

particle velocity profile under the crest top for this wave is shown in figure 4.34. This is the 

largest horizontal particle velocity obtained for the time series, but the kinematics only goes up 

to mean surface level (z = 0). Finding the horizontal particle velocity above mean surface level 

can be done with different approaches. In this thesis, we have chosen to use Stansbergs 

approach. His method is a linear Taylor expansion above mean surface level. This formula can 

be seen in equation 4.47 and is obtained from [20]. Figure 4.34 also shows that the second 

order correction has a negative value meaning that it reduces the first order equation when 

obtaining the second order horizontal particle velocity profile. 

 ф𝑥⃒𝑧 = ф𝑥
(1)

+ ф𝑥
(2)

+ 𝑧 ∗ ф𝑥𝑧
(1)

⃒𝑧=0 ,      𝑓𝑜𝑟      𝑧 > 0 
 

Equation 4.47 

Where ф𝑥𝑧
(1)

 is the derivative of horizontal particle velocity in z direction. Shown in equation 4.48 

 ф𝑥𝑧
(1)

= ∑ 𝑎𝑛 ∗ 𝜔𝑛 ∗ 𝑘𝑛 ∗ cos(𝜙𝑛) ∗ 𝑒𝑘𝑛∗𝑧  

𝑁

𝑛=1

 Equation 4.48 

The result of this is can be observed in figure 4.35. From this figure, one can approximate that 

the maximum horizontal particle velocity at the crest top is 8.9 m/s. 

 

 

Figure 4.35. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and 
period = 14s. With linear Taylor expansion above mean water level (z > 0 ). 
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4.2.3 Results for Second order horizontal particle velocity compared to Stokes waves 
 

The next step will be to compare the horizontal particle velocity profile of the Matlab file to the 

Stokes data obtained from Stokes program. In the Stokes program, we have iterated the wave 

height to obtain the same crest height as the simulated maximum crest height obtained. The 

same period has also been used in Stokes program and the result of this is shown in figure 4.36.  

 

 

Figure 4.36. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and 
period = 14s. Compared to a Stokes wave. 

From figure 4.36, one can see that the Stokes wave and the simulated wave produces almost 

the same horizontal particle velocity above mean surface level, which is the most important 

area. At a deeper depth, there are a deferens where Stokes wave have a larger value than the 

simulated waves. This may give a small reduction for the second order process when calculating 

the forces but not that critical. To confirm the results two more simulations have been 

preformed. One with a lower crest height and one closer to the 𝐶0.01 crest height and mean 

period. Result for those can be seen in figure 4.37 to 4.40.      
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Figure 4.37. 100-second window of a 20-minutes second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest 
height obtained is 14,05m with a period of 15s. Where the wave height is 22.65m. 

 

 

Figure 4.38. Horizontal particle velocity profile for the largest crest height in figure 4.37 time series, where crest height = 14,05m 
and period = 15s. Compared to a Stokes wave. 
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Figure 4.39. 100-second window of a 20.minutes second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest 
height obtained is 17,52m with a period of 13,5s. Where the wave height is  27.19m. 

 

 

Figure 4.40. Horizontal particle velocity profile for the largest crest height in figure 4.39 time series, where crest height = 17,52m 
and period = 13,5s. Compared to a Stokes wave. 
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Figure 4.38 and 4.40 confirm that the Stokes wave produces almost the same horizontal particle 

velocity above mean surface level, and a higher value below mean surface level compared to 

the simulated maximum wave. To understand the deferens more, one would need to calculate 

the forces for all the horizontal particle velocity profiles. 

 

 

 

4.2.4 Verification of second order horizontal particle velocity program 
 

There will not be any comparison between Excel and Matlab files for a second order process. 

This is too time consuming and have therefore chosen to neglect this part. Another option is to 

obtain the results from another article, but one would also need to obtain the phase angles 

used and this may not be possible to find. Instead, we have chosen to obtain the results from 

this article, [21], which has compared their second order process to a Stokes 5th order wave. By 

assuming that our Stokes 5th order program generate the same wave data as their Stokes 5th 

order wave, one can compare the results from both articles to see if the second order process 

and Stokes 5th order wave interact in the same manner. The imported figures from, [21] can be 

seen in figure 4.41-44. 

 

 

Figure 4.41. Example 1, comparison between second order process and Stokes 5th order process. Obtained from, [21]. 
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Figure 4.42. Example 2, comparison between second order process and Stokes 5th order process. Obtained from, [21]. 

 

 

 

 

 

Figure 4.43. Example 3, comparison between second order process and Stokes 5th order process. Obtained from, [21]. 

 



 

112 
 

 

Figure 4.44. Example 4, comparison between second order process and Stokes 5th order process. Obtained from, [21]. 

 

 

By comparing figure 4.41-44 with our data in figure 4.36, 4.38 and 4.40, one can see that the 

horizontal particle velocity profile for the second order process interacts with Stokes waves in 

the same manner for all figures. Where a higher horizontal particle velocity is obtained from a 

Stokes wave below mean surface level compared to a second order wave. Meaning that the 

second order process has a higher horizontal particle velocity above mean surface level 

compared to a Stokes wave. This is of course in different magnitudes for each wave. The 

position of the change in the largest horizontal particle velocity between the second order 

process and Stokes wave, also changes around mean surface level for each wave. This implies 

that our second order process runs in an acceptable manner. For more comparison figures, one 

can see, [21]. 
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4.2.5 Drag dominating forces for second order simulated maximum crest height, 

compared to Stokes waves. 
 

As mentioned before, one can use Morison equation to estimate the base shear and 

overturning moment for a drag dominated case. Where a column diameter as D = 1m has been 

used. Morison equation was introduced in chapter 3.5.1 and mentioned again in chapter 4.1.8. 

See those chapters for more information about the formula used to calculate the loads and 

loads effects shown in table 4.2. 

 

 

 

Table 4.2. Load results for column diameter 1m, drag dominating forces. Where 1MN = 10^3 kN = 10^6 N. X⁰ for stokes data 
instead of time for linear data. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and through is 180⁰. 
Max value obtained at crest top with a second order process. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=1m (Drag dominating force). Second order irregular waves. 

Case name Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(MNm) 

Stansberg 
 

15 22.65 14.05 14.05 64.5s 0.498 43.55 

Stokes data 
 

15 24.55 14.05 14.05 0⁰ 0.650 52.42 

 

Stansberg 
 

14 26.67 16.38 16.38 491s 0.751 68.90 

Stokes data 
 

14 27.89 16.38 16.38 0⁰ 0.881 75.63 

 

Stansberg 
 

13.5 27.19 17.52 17.52 59s 0.859 80.43 

Stokes data 
 

13.5 29.41 17.52 17.52 0⁰ 1.01 89.07 
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Our results from table 4.2, show that the differences on the Stokes wave and Standsbergs 

second order approach is small, but Standsbergs approach obtain smaller values than a 5th order 

Stokes waves. From table 4.2, one can see that the irregular surface process produces smaller 

wave heights than the Stokes regular waves when they have the same crest height. This might 

of course change for different phase angles, but it is real for those three cases. To confirm this, 

more simulations have to be performed. This will not be done in this thesis, instead we are 

going to compare the first and second order simulation and see the differences obtained with 

the same phase angle. Bear in mind that the second order process has a cut-off frequency. 

Meaning that the wave spectrum from 0 to 0.18 Hz has only been used in the second order 

process. The second order correction is used to obtain the same magnitude of the full wave 

spectrum as the first order process uses. In the first order process, we will use the wave 

spectrum from 0 to 0.8 meaning that, one would only have the same phase angle from 0 to 0.18 

and from 0.18 to 0.8 it would be random for each simulation. This may case some differences in 

the result, but the largest values comes from the wave spectrum area 0 to 0.18 and therefore it 

would be a good approximation to understand the differences of first and second order process. 

This has been performed in chapter 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 
 

4.3 Comparison between a 20-minutes simulated first and second order process.  
 

The same sea state as figure 4.39 has been used to simulate the comparison below. Where the 

first order process may have different values for each simulation because of the high frequency 

waves. The differences are not large and therefore it is still a good comparison. First of all, a 

comparison of the surface process and the distribution of peak values can be found in figure 

4.45 and 4.46.  

 

Figure 4.45. 20-minutes first and second order surface process, created from a JONSWAP spectrum. Where hs = 14.9m and tp = 
15.8s. 

 

By comparing the surface process in figure 4.45, one can clearly see that a second order process 

produces higher crest heights, but lower trough than a first order surface process. This is as 

expected since a higher order process take this in to account as discussed in regular waves. By 

knowing this, one can expect higher global peaks from the second order process than the first 

order process with same cumulative probabilities. This can be seen in figure 4.46, which confirm 

that the first order follows a Rayleigh distribution and produces lower crest height than a 

second order process, which follows a Weibull distribution. For a better view of the surface 

process, a 200-second window is shown in figure 4.47. In this figure, a straighter line can be 

seen for the second order process where the first order process has more noise. 
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Figure 4.46. Global maxima from a first and second order surface process versus a Weibull and Rayleigh distribution. 

 

 

Figure 4.47. 200-second window of a 20-minutes first and second order surface process. Where hs = 14,9m and tp = 15.8s. 
Maximum crest height obtained 17,52m with a period of 13,5s. 

 

 



 

117 
 

The last part is to compare the horizontal particle velocity, which can be found in figure 4.48. In 

regular waves, we found out that a linear approach overestimate the kinematics by using the 

same crest height as to the higher order wave. In that situation a best fit was the Wheeler 

stretching. Here in irregular waves the first order crest height is almost 2 meters smaller than 

the second order crest height, and Stokes wave that have been tuned up to the same crest 

height as the second order wave. Result of this is a good fit for a first and second order 

approach to the Stokes wave. Where wheeler stretching might be giving to low values 

compared to the rest.  

 

 

Figure 4.48. Horizontal particle velocity profile for the largest crest height in figure 4.47 time series, where crest height = 17,52m 
and period = 13,5 for second and fifth order. First order has a crest height = 15.74m and period = 13s. 

 

To confirm that this isn’t a rare case, a second comparison have been created. Where, we are 

looking at the same simulation history as figure 4.31. Compared it with the same method as 

above. Result of this is shown in figure 4.49 and 4.50.     
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Figure 4.49. 200-second window of a 20-minutes first and second order surface process. Where hs = 14,9m and tp = 15.8s. 
Maximum crest height obtained is 14,05m with a period of 15s. 

 

 

Figure 4.50. Horizontal particle velocity profile for the largest crest height in figure 4.49 time series, where crest height = 14,05m 
and period = 15s for second and fifth order. First order has a crest height = 14.64m and period = 13s. 
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Figure 4.49 shows the same results as obtained in figure 4.47. Where a second order process 

has higher crest and lower trough with a smoother line than a first order surface process. 

Horizontal particle velocity in this case can be observed in figure 4.50 and has a very similar 

result as figure 4.48. Where the linear and second order are a good comparison to a Stokes 5th 

order wave except for Wheeler stretching. 

For a better comparison the base shear and overturning moment has been obtained for those 

two cases for each horizontal particle velocity model. Those forces is drag dominating forces 

since the column diameter is 1m. For calculating the loads and loads effects, Morison equation 

has been used. Results of this can be seen in table 4.3. 

 

Table 4.3. Load results for column diameter 1m, drag dominating forces. Where 1MN = 10^3 kN = 10^6 N. X⁰ for stokes data 
instead of time for linear and second order data. Crest top is the x-position when 0⁰, mean surface level is approximately 80⁰ and 
through is 180⁰. Max value obtained at crest top. 

 
 

Forces on simplified offshore structures according to different wave models 
where: D=1m (Drag dominating force). Comparison of irregular waves. 

Case name Period, 
T.(s) 

Wave 
height, 
h.(m) 

Amplitude, 
a.(m) 

Height over 
surface, 

𝜉.(m) 

Wave 
phase 
(s or ⁰) 

Force, 
F.(MN) 

Moment, 
M.(MNm) 

Stansberg 
 

13.5 27.19 17.52 17.52 59s 0.859 80.43 

Stokes data 
 

13.5 29.41 17.52 17.52 0⁰ 1.01 89.07 

Wheeler 
Stretching 

13 27.03 15.74 15.74 58.5s 0.654 48.96 

Constant 
above 

surface 

13 27.03 15.74 15.74 58.5s 0.918 81.34 

 

Stansberg 
 

14 26.67 16.38 16.38 491s 0.751 68.90 

Stokes data 
 

14 27.89 16.38 16.38 0⁰ 0.881 75.63 

Wheeler 
Stretching 

13 26.33 14.64 14.64 491s 0.505 43.51 

Constant 
above 

surface 

13 26.33 14.64 14.64 491s 0.792 69.62 
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Table 4.3 shows that a Stokes wave still generates the most base shear and overturning 

moments. Where Wheeler stretching is way off. For the second order Stansberg approach and 

the linear constant value above mean surface level a very interesting result is shown. Bout those 

approaches gives very similar results  for the same phase angle value,  but still the high 

frequency waves might change this for rare cases. This just confirm that the linear process 

produces lower crest heights but overestimates the kinematics and end up very close to a 

second order approach this way. But of course in some cases this might deviate from the second 

order results. Another observation can be seen in the wave heights and periods, where the 

period and wave height is smaller for a linear approach than a second order approach. This 

might repeat itself but to confirm this more comparison would be needed. As discussed in 

regular waves, a wave with lower period creates larger velocity at surface and therefore higher 

forces. This may also be the reason for a linear process obtain almost the same values as a 

second order process. 
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4.4 Summary for irregular Waves  
 

In irregular waves, one have chosen to use a JONSWAP spectrum, because it is similar to the 

North Sea. By this spectrum, a first and second order process has been generated in Matlab. 

Those processes can simulate a 3-hour or a 20-minutes sea state for the first order process and 

a 20-minuts sea state for the second order process.  

The first order process has been verified by Excel to run in a correct manner. Even with out the 

random amplitude, which where neglected in this thesis. First order process still generates a 

random sea state with the random phase value. The reason for neglecting a random amplitude 

where because of the large set of components. By obtaining the peak values (crest heights) 

from the first order surface process created in Matlab, we confirmed that the distribution of the 

peaks follows a Rayleigh distribution, which is a distribution for first order approach. After 

words, the extreme crest height distribution where obtained and confirmed to follow a Rayleigh 

distribution as well. With those data, bootstrapping where preformed to find the interval of the 

crest height corresponding to an 10−2 annual probability. The interval for the, 𝑐0.01, crest height 

is between 15,2m to 17,4m. Next step taken for the first order process where to compare the 

loads and loads effects results with Stokes waves. By doing this, one found out that a constant 

value above surface approach obtains the most base shear and overturning moment. Where 

Wheeler stretching obtains very low values compared to the Stokes and linear constant value 

above surface approach.  

The second order process has not been verified by Excel but has been compared to another 

article and shown good comparison for this. One have also compared the crest height data 

(peak data) from a 20-minutes simulation to a Weibull distribution, which is a distribution for 

second order waves. This has confirmed that our second order process follows the Weibull 

distribution. To obtain the kinematics above mean surface level Standsbergs method was used. 

The loads and load effects obtained from this approach compared to a Stokes wave can be seen 

in table 4.2. The differences on the Stokes wave and Standsbergs second order approach is 

small, but Standsbergs approach obtain a little smaller base shear and overturning moment 

than a 5th order Stokes waves.  

An extreme crest height distribution where not obtained for the second order process, because 

a 3-hour sea state was not created. Instead a comparison between a first and second order 

process where done with a 20-minutes simulations by using the same wave spectrum from 0 to 

0.18 Hz . This comparison shows that a Stokes wave still generates the most base shear and 

overturning moments. Where Wheeler stretching is way off. For the second order Stansbergs 

approach and the linear constant value above mean surface level a very similar results can be 

obtained by using the same phase angle for wave spectrum 0 to 0.18 Hz. The second order 

process also generates higher crest heights and lower trough than a first order process. 
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5 Conclusion and suggestion for further work 
 

Throughout this thesis, a comparison between the old and new NORSOK N-003 standard has 

been performed. Where this thesis have been divided in to two main parts. The first part 

revolves around regular waves, where a comparison between the old and new methods of 

calculating the ULS design wave have been discussed. The old method uses a Stokes wave 

profile defined by the 10−2 annual probability wave height, ℎ0.01, where the new method uses 

the 10−2 annual probability crest height, 𝑐0.01 to define the ULS design wave. With the same 

defined wave profile as the new and old recommendation, one have also compared the Stokes 

wave with a first order approach. 

The main conclusions for part one are as following: 
 

 Having half the wave height as the amplitude for a linear approach, one would need to 

use extrapolation above mean surface level to obtain the most accurate kinematics 

compared to a Stokes wave. If the crest height were used as the amplitude instead, one 

would have to use wheeler stretching to obtain an accurate kinematics value. 

 Finding the unfavorable period associated with a wave height equal to, ℎ0.01 cannot be 

obtained before the loads effects are calculated for all periods used. It is therefore a 

time consuming method with possibility’s to choose wrong period.  

 The new method using Stokes wave with 𝑐0.01 as the amplitude results in a little larger 

base share and overturning moments for all cases except for a mass dominated case, 

which obtains a little larger overturning moment by using ℎ0.01as the wave height and 

𝑇𝑚𝑖𝑛 as period. 

 The final conclusion for regular waves is therefore that the new N-003 standard is more 

efficient with time and describe the waves in a more accurate manner. 

 

For the second part of this thesis, one have disgusted irregular wave, where the old N-003 

standard suggests a first order process to find the corresponding kinematics of a time 

simulation. Where the new N-003 standard in other hand require a second order process to 

describe the surface process and a second order theory to obtain the kinematics of the time 

history. By comparing those two methods, one have reaching the following main conclusions for 

part two: 

 The formula used to create the first order irregular surface process follows a Rayleigh 

distribution for crest heights and the second order surface process follows a Weibull 

distribution for crest heights. 

 A second order surface process describes the wave history more like a real ocean by 

increasing the crest height and lower the trough height. 
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 Wheeler stretching for a first order process underestimates the kinematics, but a 

constant value above mean surface level is a very good approximation to a second order 

process using Standsbergs approached. 

 First order process underestimates the crest heights but overestimates the kinematics, 

which achieves almost the same result as second order process. 

 The second order process is more reliable than a first order process, because it simulates 

a sea state closer to a real ocean, but it is more time consuming. 

 Second order process with Standsbergs approach is manageable to do for command 

people and does not require advanced programs to run, but a certain knowledge in 

programming is required to achieve a 3-hour second order simulation. 

Final conclusion for irregular waves is therefore that the new N-003 standard has the most 

reliable approach to estimate the sea state, but a first order approach may actually be 

sufficient enough and more time efficient. More comparison between a first and second 

order process would be required to understand this fully.  

 

We would therefore suggest the following for further work: 

- Optimize the program used to simulate the irregular second order process to run a 3-

hour simulation. 

- Find the extreme crest height distribution and confirm if it follows a Weibull distribution. 

After words one can obtain the crest height with an annual probability of 10−2.    

- Comparison between a first and second order process, which can simulate in 3-hour. To 

obtain the differences between the two approaches. 

- Compare the first and second order process to real measured wave data to confirm the 

kinematics are generated in a correct manner.   

- By having more comparison of a first and second order process, one can confirm the 

need of a second order process or disprove it.   

- For regular waves, one can suggest to investigate if extrapolation really is the best 

approximation with half the wave height as amplitude, and Wheeler stretching when 

crest height is used as amplitude. 
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Appendix A. Attached Matlab and Excel files 
 

All Matlab and Excel files created for this thesis, has been stored in different folders and named 

for their purposes. Below is a collection of files where “•” stands for folder and “-” for files. To 

see the deferens of a Matlab file or Excel file a code can be seen at the end of the file name. For 

Excel files, the end name is “.xlsx”. A Matlab file has two different end names, where Matlab 

scripts has “.m” and saved Matlab data (workspace data) has “.mat”. 

 

 1. Metocean contour method 

- Extreme_WaveHeight_and_CrestHeight.m 

- Worst_Hs_Tp_along_the_contour_line.m 

 

 2. Horizontal particle velocity and acceleration for regular waves 

- Acceleration_data_Stokes.mat 

- All_Stokes_data_Sp_Vel_Acc.mat 

- Comparison_between_linear_and_Stokes.m 

- Linear_surface_Profile.m 

- Linear_wave_Intermediate_Crest_height.m 

- Linear_wave_Intermediate_Wave_height.m 

- Stokes_5th_wave_data_plots.m 

- Surface_Profile_data_Stokes.mat 

- Velocity_data_Stokes.mat 

 

 2-3. Stokes data for regular waves 

Containing many Stokes data files for different cases, which has been transformed to 

.mat files under 2. and 3.. For those phase data used in this thesis. 

 

 3. Loads and load effects for regular waves 

- Acceleration for stokes 5th order1.xlsx 

- All_load_data_where_D_1m.m 

- All_load_data_where_D_5m.m 

- All_load_data_where_D_20m.m 

- Velocity and Acceleration for stokes 5th order1.xlsx 

- Velocity for stokes 5th order1.xlsx 

- Wave_Loads_Stokes_D_1m.m 

- Wave_Loads_Stokes_D_5m.m 

- Wave_Loads_Stokes_D_20m.m 
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 4. Kinematics, loads and load effects for linear irregular waves 

- Different phases for linear surface process.xlsx 

- Highest amplitude of a 3 hr sea state.xlsx 

- Linear_Bootstraping_and_more.m 

- Linear_Kinametics.m 

- Linear_wave_spectrum.m 

- Velocity for stokes 5th.xlsx  

- Verification of Matlab program Excel file.xlsx 

- Verification_of_Matlab_program_linear_Matlab_file.m  

 

 5. Kinematics, loads and load effects for second order irregular waves 

- 100 genereted second order simulations.xlsx 

- Comparison data between second and first order.xlsx 

- Comparison_of_surface_process.m 

- Different phases for second order surface process.xlsx 

- Secund_order_kinametics.m 

- Secund_order_wave_spectrum.m 

- Velocity for stokes 5th second order.xlsx 

 

 

Stokes 5th order program used can be found in: 

 Stoke 5th order Program 

- Fourier Program.zip 

- Stokes  Program.zip 

 

 

 

 

 

 

 


