
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS
Study programme/specialization: Spring semester, 2022

MSc. Computational Engineering Open
Author:

Muhammad Usama ..
Muhammad Usama

Programme coordinator:
Karina Sanni

Supervisors:
UiS - Prof. Dan Sui

Title of master’s thesis:
APPLICATION OF REINFORCEMENT LEARNING IN MANAGED PRESSURE DRILLING

Credits: 30

Keywords: Number of pages: 80
Reinforcement Learning, Managed Pressure
Drilling, Proportional Integral Differential
Controller, Drilling.

+ supplemental material/other: 25

Stavanger, 15th July 2022

Muhammad Usama

APPLICATION OF REINFORCEMENT
LEARNING IN MANAGED PRESSURE
DRILLING

Master Thesis Project for the degree of
MSc in Computational Engineering

Stavanger, July 2022

University of Stavanger
Faculty of Science and Technology
Department of Energy Resources

ii

Automation in any industry has a control system as its base, and control systems are com-
posed of a controllers.In recent years an area of machine learning known as reinforcement
learning (RL) has been focused on solving control problems for engineers and scientists. RL
methods are actively applied to design control mechanisms for various industrial applications
and in this study the focus will be on designing such algorithms and modelling the given control
problem into a structure where these RL algorithms can be applied.

In oil and gas industry there has been a push to expand operations into areas where usual
drilling methods are not successful mainly because of narrow operational windows and tech-
nologies such as Managed Pressure Drilling (MPD) are found to be very successful in solving
this issue. MPD is a control technique which is aimed at controlling the bottom hole pressure
between narrow operational windows.

The standard technique used for automating MPD is proportional-integral-derivative (PID)
controller, but many other non-linear control systems have also been employed to do the same
task. This study seeks to add value to the drilling process by developing an Reinforcement
Learning (RL) based agent to tune the PID controller. After tuning the PID controller, the
system dynamics will be optimized and kept under boundary conditions of the drilling environ-
ment. The goal is to provide a reference bottom hole pressure set point and tuning parameters
to the PID controller so that the optimum pressure can be reached safely at a certain depth.

During the study, the most important features were depth of the drilling bit, the fracture
pressure and pore pressure at that depth. The RL agent first proposes a suitable reference bot-
tom hole pressure based on the fracture and pore pressure and then tune the PID controller to
achieve the desired pressure set point. The task of training this RL agent is handled in a special-
ized simulator environment which can calculate the bottom hole pressure at every simulation
step and give feedback to the agent about the status.

The agent uses a policy gradient method called Proximal Policy Optimization (PPO) and
then later on Multi-armed bandit algorithms. PPO is implemented using Mathwork’s Rein-
forcement Learning Toolbox, and after some tuning of hyper parameters the agent is able to
narrow down to a optimal policy for various depth scenarios, whereas the latter is developed in
python. At the end of this study, the agent is able to replace the decision maker and automati-
cally suggest reference bottom hole pressure and tune the PID accordingly.

Acknowledgments

First, I would like to thank God, for providing me the strength needed to complete my studies

satisfactorily.

Secondly, I would like to thank my supervisor Prof. Dan Sui for her guidance and smart

ideas. I would also like to thank Jie Cao for all the productive discussion and ideas which have

contributed to the successful completion of this study.

I would like to thank every one at University of Stavanger who have supported me and

helped me through out my studies and to Jan Einar Gravdal for giving me the support and

guidance to work in this exciting collaborative study.

Finally, my deepest gratitude to my family and friends for their unconditional support, with-

out you all, this would not have been possible.

Muhammad Usama

Stavanger, July 15th, 2022.

iii

List of Abbreviations

A Set of Actions
A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor Critic
AI Artificial Intelligence
API Application Programming Interface
BHP Bottom hole pressure
DDPG Deep Deterministic Policy Gradient
DRL Deep Reinforcement Learning
DQN Deep Q Network
G Expected Return
HPHT High pressure High Temperature
IADC International Association of Drilling Contractors
MAB Multi-armed bandit
MDP Markov Decision Process
MPD Managed pressure drilling
NPT Non productive time
P Proportional
PI Proportional Integral
PID Proportional Integral Differential
PPO Proximal Policy Optimization
R Reward
RL Reinforcement Learning
ROP Rate of Penetration
RSS Rotary Steering System
S State vector
SSE Steady state error
TD3 Twin-delayed deep deterministic policy gradient
WOB Weight on Bit

iv

Table of Contents

Abstract ii

Acknowledgments iii

List of Abbreviations iv

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Background, Motivation and Challenge . 1

1.2 Objectives and Scope . 2

1.3 Methodology . 3

2 Literature Review 4

2.1 Managed Pressure Drilling . 4

2.1.1 Conventional Drilling vs Under-balanced Drilling vs Managed Pres-

sure Drilling . 5

2.1.2 Automation techniques in Managed Pressure Drilling 11

2.2 Reinforcement Learning . 17

2.2.1 Brief Introduction . 17

2.2.2 Modelling a Reinforcement Learning problem 19

2.2.3 Reinforcement Learning Techniques 23

2.3 Applications of Reinforcement Learning . 28

2.3.1 Control Problems . 28

v

vi TABLE OF CONTENTS

2.3.2 Other applications . 28

3 Reinforcement Learning for MPD 29

3.1 Modelling MPD as a RL Problem . 29

3.1.1 System Block Diagram . 29

3.1.2 States, Actions and Episode . 31

3.2 Resources for implementation of the Reinforcement Learning agents and

environment . 34

3.2.1 MATLAB Reinforcement Learning Toolbox 34

3.2.2 Python - Multi armed bandit algorithms 35

3.2.3 Environment design in MATLAB . 35

4 Simulation Environment and Reward Function design 36

4.1 Simulation Environment Design . 36

4.1.1 Backend Models . 36

4.1.2 Environment Block Diagram . 40

4.2 Reward Function . 46

4.2.1 Reward function design for Reference point decision 46

4.2.2 Reward Function design for oscillations 47

5 Reinforcement Learning Implementation 49

5.1 Implementation of Environment and Agents 49

5.1.1 Case 1: Markov Decision Process Problem 49

5.1.2 Limitations of MDP framework for this study 58

5.2 Implementation of Multi-Armed Bandit Problem 58

6 Results and discussions 64

6.1 Results from PPO Implementation . 64

6.2 Results from ϵ− greedy method . 68

6.3 Brief Comparison . 74

6.4 Objectives completed . 74

TABLE OF CONTENTS vii

7 Future work and Conclusion 76

7.1 Conclusion . 76

7.2 Future works . 77

References 80

Appendices 81

Appendix A Development Code 83

A.1 Installed Packages . 83

A.2 Code for Step Function - Version 1 . 84

A.3 Code for Reset Function - Version 1 . 90

A.4 Code for setting up Environment - Version 1 90

A.5 ENVIRONMENT STEP FUNCTION ONE STATE MDP 92

A.6 ENVIRONMENT RESET FUNCTION ONE STATE MDP 96

A.7 ENVIRONMENT SETUP CODE ONE STATE MDP 97

A.8 Code for PI controller . 98

A.9 Code for Reward function for BHP Setpoint 100

A.10 Code for collecting data for Multi-armed bandit problem 101

A.11 Code for implementing Epsilon-greedy on the data collected in Appendix

A.10 . 105

List of Figures

2.1 Example of Drilling Windows for various drilling techniques, taken from Mal-

loy et al., 2009. [1] . 6

2.2 Static and Dynamic Pressure, taken from Malloy et al., 2009. [1] 7

2.3 Bottom hole pressure comparison between conventional drilling and MPD drilling,

taken from Guo et al., 2011. [2] . 9

2.4 Rise Time, Settling Time, Peak Time and Overshoot and Steady state error. [3] . 12

2.5 — Left: Simple schematic drawing of MPD setup at Kvitebjørn field. Right:

Well is replaced with simple model for controller development and testing. [4] . 14

2.6 Closed-loop test of PID controller with step responses to changes in the choke

pressure set-point (From Godhavn, 2009) [4] 15

2.7 MPD schematics used by ArnØ et al. (2020) [5] (Taken from Kaasa et al., 2012)

[6] . 16

2.8 Reward per episode for training, taken from ArnØ et al. (2020) [5] 16

2.9 Reinforcement Learning algorithm types. [7] 17

2.10 The agent–environment interaction in a Markov decision process. [8] 20

2.11 Psuedocode for Q Learning . [9] . 24

2.12 The psuedo code for DQN. [10] . 25

2.13 Comparison of Q-Learning and DQN. [10] . 25

2.14 The simple structure of Actor-Critic. [10] . 26

2.15 The simple structure of Actor-Critic. [10] . 27

2.16 Mechanism of epsilon-greedy method. [11] 27

3.1 Basic block diagram of the MPD problem modelled as Markov Decision Process 30

viii

LIST OF FIGURES ix

3.2 Sample Dynamic response of PID controller employed in MPD (Generated by

python) . 32

3.3 The idea of dividing depth into intervals to model a MAB problem (Generated

by python) . 33

3.4 Reinforcement Learning workflow using MATLAB RL Toolbox [12] 34

4.1 Basic Block Diagram for Environment . 41

4.2 Geo-Pressures setting under Geology in OpenLab simulator web interface . . . 45

4.3 The behaviour of reward function designed for suggested set-point evaluation . 47

4.4 Controller behaviour under different choices of tuning parameters [13] 48

4.5 Reward function for oscillation . 48

5.1 System diagram with Actor-Critic Agent . 50

5.2 Structuring environment with step and reset functions 50

5.3 Block Diagram for the first version of Step Function (Appendix A.2) 52

5.4 The formation Geo-Pressures along True Vertical Depth 53

5.5 Main Pump flow rate ramped down, starts after 100 secs 53

5.6 Block Diagram for final version of Step function (For one episode - Appendix

A.5) . 55

5.7 Psuedocode of PPO Implementation used in this study [14][15] [16] 57

5.8 Range of pressure set-point suggestion . 58

5.9 Block diagram for data collection Appendix A.10 59

5.10 Structure of the colected data . 60

5.11 Simplified epsilon greedy approach . 60

5.12 Discrete depth intervals with a step of 10m on a selected depth section. 61

5.13 Testing various values of epsilon and choosing the one with the maximum long-

term rewards. 62

5.14 Arms selected by each epsilon selection. 63

6.1 Plot of training episodes, reward per episode is visualzied 65

6.2 Bottom Hole Pressure response recorded in OpenLab simulator 66

x LIST OF FIGURES

6.3 Response for choke opening . 66

6.4 Hyper-parameter selection during the training process (Snapshot from Math-

works RL Toolbox) . 67

6.5 Testing the agent on the same simulation environment to observe stability . . . 67

6.6 Variations in the set-point suggestion using ϵ − greedy method, Pore pressure

(red), Fracture pressure (green) and set-point suggested (blue) 68

6.7 Pore Pressure, Fracture Pressure, Reference BHP, Kp, Choke Opening from left

to right . 69

6.8 Bottom hole pressure at 1920 meters . 70

6.9 Choke Opening at 1920 meters . 70

6.10 Variations in the set-point suggestion using ϵ − greedy method, Pore pressure

(red), Fracture pressure (green) and set-point suggested (blue) with REWARD

FOR OSCILLATIONS SET TO ZERO . 71

6.11 Bottom hole pressure response when oscillations reward (penalty) is considered,

set-point is 357 bar here . 72

6.12 Bottom hole pressure response when oscillations reward is not considered, set-

point here is 333 bar . 72

6.13 Pore Pressure, Fracture Pressure, Reference BHP, Kp from left to right - Case

without oscillations reward . 73

6.14 Snapshot of training for one depth scenario . 74

List of Tables

2.1 Brief comparison between MPD and conventional method, taken from (Guo et

al., 2011) [2] . 10

2.2 Effects of independent P, I, AND D tuning [17] 13

2.3 Terms used in Reinforcement Learning [7] . 18

4.1 Table to for color code in Figure 4.1. 40

4.2 Table for configuration parameters in OpenLab Drilling simulator 44

xi

Chapter 1

Introduction

1.1 Background, Motivation and Challenge

According to the prevailing global policies, oil demand is projected to peak near mid-2030s and

then gradually decline as the energy industry shifts towards renewable energy [18]. This pro-

jected peak in the oil demand and the depletion of current reservoirs has derived the oil and gas

industry to look into more exploration and production projects in areas which are regarded as

deep-water, High-Pressure High-Temperature (HPHT) zones, especially in the arctic regions. In

HTPT zones, the decision-makers face several technical challenges while drilling, a major chal-

lenge is narrow operational window, where the difference between pore and fracture pressure is

very low [19]. Narrow operational windows are regarded as a serious drilling problem, since a

minor change in the down hole pressure (or bottom hole pressure) can potentially lead to a situa-

tion like gas kick, fluid loss or blowout which can increase the Non-Productive Time (NPT).[20]

Managed pressure drilling (MPD) is used in those unconventional drilling prospects where

the difference between the pore pressure and fracture pressure is so low that even the fluctu-

ations in bottom hole pressure (BHP) caused by mud pump operation threatens the well-bore

integrity [21]. MPD is an adaptive technique employed in the world of drilling with the purpose

of monitoring and controlling the annular pressure profile in the wellbore. The main objective

is to manage the annular hydraulic pressure according to the down-hole pressure environment

limits [20].

1

2 CHAPTER 1. INTRODUCTION

In this study, the aim is to enhance the control process employed in the process of MPD

by using advanced artificial intelligence techniques and most importantly model this drilling

problem in a way where AI algorithms can be readily deployed. The motivation behind this

work is to replace the manual process of ascertaining the down-hole pressure environment limits

and develop a robust and smooth pressure control mechanism for the drilling process.

1.2 Objectives and Scope

The aim or purpose of this study is to explore a hybrid control system approach involving both

PID controller and Reinforcement Learning (RL) agent, which can potentially add value to

the process of MPD. To estimate or quantify the potential value generated, the proposed study

aims to compare the performance of the proposed hybrid control scheme, with the existing

controllers implemented by researchers in previous research works. In order to develop such a

hybrid control system following objectives are proposed.

• Understand all the parameters involved in managed pressure drilling control.

• Understand the concepts of reinforcement learning and model the control problem so that

Reinforcement Learning algorithms can be applied to it.

• Developing a stable simulation environment based on OpenLab Drilling Simulator for

managed pressure drilling.

• Defining clear inputs and outputs for the simulation environment, to tune the controller

and assess its performance.

• Designing a reward function, aimed at training the reinforcement learning agent to keep

the pressure in the drilling window.

• Training and testing various reinforcement learning agents, and choosing the best tech-

nique in terms of accuracy and computational time .

1.3. METHODOLOGY 3

The first objective is of utter relevance, understand how to managed pressure drilling works

and which parameters are most important for the controller. This aids in designing a robust sim-

ulation environment where we can easily define inputs and outputs. Once a stable simulation

environment is developed, it can be used by various reinforcement learning agents for learning

purposes and the most optimum technique can be chosen.

1.3 Methodology

In this thesis a novel technique for tuning the PID controller with the use of reinforcement learn-

ing (RL) is explored, the main goal is to automate the decision-making process for the selection

of reference bottom hole pressure and tuning parameters for PID controller.

The RL agent is used to provide a set-point BHP and tuning parameters for the PID con-

troller, this set of values is called an action. The training environment for reinforcement learning

is based on OpenLab drilling simulator and configurations such as mud density, type of rig, bit

diameter and total depth are set inside the simulator. During each training episode, flow rate is

varied in a specific range randomly and response of bottom hole pressure is measured to pro-

vide feedback for the selection of tuning parameters for the PID controller. Reward function

is designed to keep the bottom hole pressure closer to pore pressure to maximize the rate of

penetration (ROP) and minimize the oscillations and overshoot.

In this study, the control problem is modelled as a Markov Decision Process as well as a

multi-armed bandit problem. In Markov Decision Process, the problem is handled as a sequen-

tial decision making process, where as in multi-armed bandit problem the model is reduced to

one state markov decision process.

In the development phase of the simulation, MATLAB is used to develop the environment,

design the reward function, and implement some RL agents. In case of multi-armed bandit

problem, python is used for the implementation of epsilon-greedy algorithm.

Chapter 2

Literature Review

2.1 Managed Pressure Drilling

To completely understand this study, it is very important to understand the process of Managed

Pressure Drilling (MPD) and draw a brief comparison with other drilling techniques. MPD is a

technique employed in drilling, aimed to manage the annulus pressure throughout the wellbore.

Bottom hole pressure (BHP) can be controlled in a more robust and safer manner by using MPD

and it allows the engineers to perform drilling operations in a critical zone where the difference

between the pore and fracture pressure is quite small i.e., small operation pressure window. The

conventional drilling methods do not allow drillers and engineers to perform drilling operations

in such conditions as these methods use mud weight to control the well pressure.

The Underbalanced Operations and Managed Pressure Drilling Committee of the Interna-

tional Association of Drilling Contractors (IADC) have defined Managed Pressure Drilling as

(Malloy et al., 2009) [1]:

"Managed Pressure Drilling is an adaptive drilling process used to precisely control the

annular pressure profile throughout the wellbore. The objectives are to ascertain the down hole

pressure environment limits and to manage the annular hydraulic pressure profile accordingly.

The intention of MPD is to avoid continuous influx of formation fluids to the surface. Any

4

2.1. MANAGED PRESSURE DRILLING 5

influx incidental to the operation will be safely contained using an appropriate process."

Furthermore some salient features of MPD operations are discussed below to further elabo-

rate its usage, utility and importance in drilling world.

• "MPD employs a collection of tools and techniques which may reduce the risks and costs

linked with well operations that have limitations with respect to the down hole environment, by

controlling the annular hydraulic profile" (Malloy et al., 2009) [1].

• "MPD deals with the control of back pressure, fluid density, fluid rheology, annular fluid

level, circulating friction and hole geometry" (Malloy et al., 2009) [1].

• "MPD allows quick corrective actions against pressure variations. The ability to dynam-

ically control annular pressures facilitates drilling of what might otherwise be economically

unattainable prospects" (Malloy et al., 2009) [1] .

2.1.1 Conventional Drilling vs Under-balanced Drilling vs Managed

Pressure Drilling

In this section, the comparison of managed pressure drilling, with conventional drilling and

under balanced drilling will be discussed. The operational range of these techniques, under

comparison can be seen in the Figure 2.1 below.

It can be observed in Figure 2.1, that the under-balanced drilling operates below the pore

pressure and in conventional drilling bottom hole pressure is always higher than the pore pres-

sure. The MPD region lies above but closer to the pore pressure to maximize rate of penetration

while drilling in the safe pressure window. Further details of these techniques will be discussed

below.

6 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Example of Drilling Windows for various drilling techniques, taken from Malloy et al., 2009. [1]

Conventional Drilling

In conventional drilling, an over balanced pressure is maintained in the well throughout the

drilling process. This means that the pressure applied in the well-bore is above the pore pressure

at every point of the exposed formation. Mud density and mud flow rates are the parameters

used to control the annular pressure in conventional drilling (Malloy et al., 2009) [1].

In static condition, bottom hole pressure is a function of hydro-static columns pressure

whereas in dynamic condition another term annular friction pressure is also introduced. The

static condition for conventional drilling is discussed in equation 2.1 below, where PHyd is the

hydro-static pressure and PBH is the bottom hole pressure. (Malloy et al., 2009) [1]

2.1. MANAGED PRESSURE DRILLING 7

PHyd ≥ PBH (2.1)

In dynamic condition, when the mud pump circulation is present the relation for bottom

hole pressure is given by equation 2.2, where PAF is the annular friction pressure.

PBH = PHyd + PAF (2.2)

Figure 2.2 discusses the static and dynamic pressure conditions from equations 2.1 and 2.2,

in more detail and it can be observed that as the true vertical depth (TVD) increases the effect

of PAF also increases and the static and dynamic pressure profiles diverge further.

Figure 2.2: Static and Dynamic Pressure, taken from Malloy et al., 2009. [1]

In conventional drilling operations, there are higher chances of potentially dangerous situa-

tions, such as kick, stuck pipe, lost circulation etc., which can harm human life and environment.

8 CHAPTER 2. LITERATURE REVIEW

Under-balanced Drilling

Under balanced drilling is a term used for such a drilling activity where the pressure applied by

the drilling fluid in the well-bore is deliberately less than the pore pressure at any point of the

exposed formations. The aim is to bring the formation fluids to the surface, where the PHyd is

less than the PBH as shown in equation 2.3. (Malloy et al., 2009) [1]

PHyd < PBH (2.3)

This technique is often considered to enhance reservoir productivity, prevent or mitigate

potential damage to formation, minimize the risk of lost-circulation and maximize rate of pene-

tration (ROP). However, drilling while maintaining a bottom hole pressure lower than the pore

pressure will usually increase the risk of borehole instability because of yielding or failure of

the rock adjacent to the borehole. (Mclellan & Hawkes, 2001) [22]

Managed Pressure Drilling

Managed pressure drilling (MPD) is used in those unconventional drilling prospects where the

difference between the pore pressure and fracture pressure is so low that even the fluctuations

in bottom hole pressure (BHP) caused by mud pump operation threatens the well-bore integrity

(Hilts, 2013). [23]

The main aim of MPD is to solve a series of drilling problems, enhance drill-ability, reduce

costs by decreasing NPT. Compared with conventional drilling methods MPD has a special set

of characteristics which are summarized below (Guo et al., 2011). [2]

• The core purpose of MPD is to control the bottom hole pressure within a desirable

range. Figure 2.3 shows a comparison between the performance of MPD and conven-

tional drilling method under various drilling situations such as pumping up the flow rate,

tripping, connection, pumping down the flow rate. It can be observed that the dynamic

response of MPD is very stable and less noisy then conventional drilling. The smoother

response in case of MPD is because of precise well-head pressure control as well as the

2.1. MANAGED PRESSURE DRILLING 9

drilling fluid density which is kept below the formation pore pressure equivalent drilling

fluid density. (Guo et al., 2011). [2]

Figure 2.3: Bottom hole pressure comparison between conventional drilling and MPD drilling, taken from Guo et
al., 2011. [2]

• The MPD technology can be divided based on application into several types, some of

them are Constant bottom hole pressure MPD, Dual gradient MPD, Pressurized mud-cap,

Down-hole pumping MPD etc. Constant bottom hole pressure MPD is relatively easier to

implement and has most use cases. Similarly MPD can be characterized according to the

implementation method as Reactive and Proactive MPD. The former is designed before

drilling and operated as designed procedure, where as latter is operated with installed

equipment when required (Guo et al., 2011). [2]

• MPD has more control variables (discussed in Table 2.1) as compared to the conventional

drilling methods which enable MPD to control the BHP in narrow operational windows

much more effectively. For example in case of conventional drilling annulus friction

cannot be applied when pump stop and drilling density cannot be adjusted at every desired

moment, in these scenarios MPD can control pressure much more effectively by using

back pressure control or dual drilling fluid density (Guo et al., 2011). [2]

• MPD uses specific equipment which distinguishes it from conventional drilling such as

rorating control device, surface pressure control system, continuous circulation system,

multi-phase separator and other specialized equipment that have been used in various ap-

plications of MPD. (Guo et al., 2011). [2]

10 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Brief comparison between MPD and conventional method, taken from (Guo et al., 2011) [2]

Drilling Methods Control Variables Control methods

Conventional Drilling
Flow rate of drilling fluid
Density of drilling fluid

Adjust annulus friction
Adjust density of drilling fluid

MPD Drilling

Flow rate of drilling fluid
Density of drilling fluid
Wellhead back pressure
Downhole pressure at certain depth

Adjust annulus friction
Adjust density of drilling fluid
Sealed wellhead or choke valve
Special down hole tool

It can be summarized at this point that MPD performs a special adjustment on one of its

control-parameters to optimize the bottom-hole pressure. One of these methods is the tweaking

of well-head back pressure, this adjustment can be understood by the following equations 2.4

and 2.5. (Guo et al., 2011) [2]

pw = ph + pf (2.4)

In conventional drilling the BHP is given by equation 2.4. Where, the BHP is denoted by

pw, ph represents static hydraulic pressure and pf is annular friction loss pressure. Equation 2.5

explains the calculation of BHP pw when MPD is employed in the drilling procedure.

pw = ph + pf + pb (2.5)

The new term pb, represents the surface back pressure. (pb) is the ideal control variable, as

adjustment of pb will result in an instant change in pw (Guo et al., 2011). In automated MPD,

generally the surface pressure term (pb) is automatically adjusted by controlling a choke valve

opening by a controller (Gravdal et al., 2014) [24].

2.1. MANAGED PRESSURE DRILLING 11

2.1.2 Automation techniques in Managed Pressure Drilling

In the last section, managed pressure drilling and its utility in drilling processes was discussed

in detail, the benefits of using MPD include reduced formation damage, longer reach drilling,

rapid change in BHP during influx situations and potentially early kick detection [25]. The

focus of this section will be on highlighting various automation techniques used in the imple-

mentation of MPD.

Application of Proportional Integral Differential Controller in MPD

In this subsection, a specific control architecture that has become almost universally used in

industrial control will be discussed. It is based on a particular fixed structure controller family,

the so-called, Proportional Integral Differential (PID) controller family. They have proven to be

robust in the control of many important applications. [26]

A standard PID controller is also known as the “three-term” controller, and its transfer

function (in Laplace domain) is generally written in the “parallel form” given by equation 2.6

or the “ideal form” given by equation 2.7. [17]

G(s) = KP +KI
1

s
+KDs (2.6)

G(s) = KP (1 +
1

TIs
+ TDs) (2.7)

In the equations 2.6 and 2.7, KP is the proportional gain, KI the integral gain,KD the

derivative gain, TI the integral time constant and, TDthe derivative time constant. The “three-

term” functionalities are highlighted by the following.

• The proportional term (KP), is responsible for providing an overall control action pro-

portional to the error signal through the all-pass gain factor.

• The integral term (KI), is responsible for reducing steady-state errors through low-frequency

12 CHAPTER 2. LITERATURE REVIEW

compensation by an integrator.

• The derivative term (KD), is used for improving transient response through high-frequency

compensation by a differentiator.

The design process of controller requires tuning of KP , KI , KD according to the given per-

formance criteria which is dependent on the application where the PID controller is employed

[26] .The usual constraints given for a system design are in terms of percentage overshoot, rise

time, settling time and steady state error (SSE).

Rise Time is the time required by the system to reach 90% from 10% of the steady-state,

or final value. Percent overshoot is the relative percentage amount by which the control vari-

able (process variable) overshoots the final value. Settling time is the time taken by the control

variable to settle to within a certain percentage (commonly 5%) of the final value. Steady-State

Error is the final difference between the control variable and set point. These constraints are

graphically visualized in Figure 2.4. [26]

Figure 2.4: Rise Time, Settling Time, Peak Time and Overshoot and Steady state error. [3]

The individual effects of the three terms KP , KI , KD on the closed-loop performance are

summarized in Table 2.2. This table serves as a first guide for stable open-loop plants only. For

optimum performance KP , KI (or TI) andKI (or TD) are mutually dependent in tuning. [17]

2.1. MANAGED PRESSURE DRILLING 13

Closed Loop Response Rise Time Overshoot Settling Time SSE Stability

Increasing KP Decrease Increase
Small
Increase Decrease Degrade

Increasing KI

Small
Decrease Increase Increase

Large
Decrease Degrade

Increasing KD
Small
Decrease

Decrease Decrease
Minor
Change Improve

Table 2.2: Effects of independent P, I, AND D tuning [17]

After this brief introduction to PID controllers, its application to the process of MPD can be

discussed. In manual MPD operation, a human operator adjusts the choke opening manually.

For example, a look-up table is used to get the back-pressure for different flow rates, and the

operator adjusts the choke opening until this desired pressure set-point is reached. The choke

valve must be opened to decrease the back-pressure if it is too high and closed if the pressure is

too low. This is a challenging task, as the pressure might change abruptly, especially during a

drilling situation called a connection (See Figure 2.3), when the pump rate is ramped down and

up. [4]

In the case of manual choke operator is required to coordinate the choke movement with

the drillers operation of the main pump. In automatic MPD, this choke operation is done by

the control system without any manual interaction. Godhavn (2009), discusses an automated

control system for MPD, and the results obtained from it after its implementation at Kvitebjørn,

which is a HPHT field located in North Sea. [4]. In Figure 2.5, a schematic of the MPD setup

at Kvitebjørn is discussed along with the rig pump, auxiliary pump, choke, control system, and

hydraulic model, later on the well is replaced by a mathematical model for ease of testing during

the study.

The automatic control system reads the surface back-pressure and adjusts the choke valve

opening accordingly. The performance in a manually operated drilling system highly depends

on the operators as it can be affected by their interpretation, attention and skill-set and in drilling

scenarios involving narrow operational windows there is little room for mistakes. Another ad-

vantage of automatic control is the response time or as discussed earlier constraints such as Rise

14 CHAPTER 2. LITERATURE REVIEW

Time and Settling Time which can be adjusted by tuning KP , KI and KD of the PID controller.

[4]

Figure 2.5: — Left: Simple schematic drawing of MPD setup at Kvitebjørn field. Right: Well is replaced with
simple model for controller development and testing. [4]

In Figure 2.6, the results obtained from employing PID controller for MPD implementation

at Kvitebjørn are discussed. The results obtained after tuning the feed-back loop based propor-

tional, integral, and differential (PID) controller are satisfactory. It can be observed in Figure 2.6

that the measured choke pressure follows the set-point generated by the hydraulic model closely.

Application of Deep Reinforcement Learning in MPD Control

Recent research in MPD automation explores the usage of Deep Reinforcement Learning (DRL)

in control systems. The idea behind using DRL agents as control systems is based on eliminat-

ing the common weaknesses of PID controllers such as their linearity and in-ability to adapt to

the dynamic physical system. [27]

ArnØ et al. (2020), [5] discusses the application of Deep Reinforcement Learning (DRL)

for bottom hole pressure control in MPD. As shown in Figure 2.7, the automation method used

by ArnØ et al. (2020) and developed by Kaasa et al. (2012) consists of two main parts: a

hydraulic model and a pressure control system. The hydraulic model estimates the desired BHP

2.1. MANAGED PRESSURE DRILLING 15

Figure 2.6: Closed-loop test of PID controller with step responses to changes in the choke pressure set-point (From
Godhavn, 2009) [4]

(pdh) and yields a set point called pcref for the pressure control system. The pressure control

system controls the choke valve opening to adjust surface back pressure and choke pressure (pc).

The pressure control approach discussed by ArnØ et al. (2020) involves a Q-learning based RL

agent which is trained on a diverse dataset corresponding to varying operational depths. Deep

Q learning is used to compute the optimum choke valve opening to keep the BHP balanced. [6]

The process of finding the optimum choke opening which can be refered to as an optimum

action depends on design of training environment, states and most importantly reward function.

The reward function used by ArnØ et al. (2020) is designed such that the pressure control block

closely follows the given set point and avoids excessive actuation of the choke valve while do-

ing its job. The plot for cumulative reward per episode during training is shown in Figure 2.8.

This plot shows how good the actions taken by the pressure control block (recall Figure 2.7) are

in every training simulation run. The behavior is as expected, the performance improves as the

training process progresses, the variance (or oscillations) of the reward is reduced significantly

towards the end which means the model can generalize well.

16 CHAPTER 2. LITERATURE REVIEW

Figure 2.7: MPD schematics used by ArnØ et al. (2020) [5] (Taken from Kaasa et al., 2012) [6]

Figure 2.8: Reward per episode for training, taken from ArnØ et al. (2020) [5]

2.2. REINFORCEMENT LEARNING 17

2.2 Reinforcement Learning

Reinforcement Learning (RL) is an interesting area in the domain of artificial intelligence (AI)

which is very dynamic in terms of theory and also its application. Reinforcement Learning

algorithms investigate the behavior of parameters in environments and learn to optimize their

behavior [7].

2.2.1 Brief Introduction

RL algorithms is generally classified classified into two types, Model-Free RL and Model-Based

RL as shown in Figure 2.9. Model-based RL uses planning and models of the environment to

complete the learning tasks, as opposed to simpler model-free methods that are trial-and-error

learners and the value is associated with actions, this can be regarded as opposite of planning or

modelling. [8]

Figure 2.9: Reinforcement Learning algorithm types. [7]

The model -free algorithms are the area which is focused on in this study, and these algo-

rithms can be further categorized into Value-based (Q-Learning) RL, and Policy-based RL. The

examples of policy-based algorithms include Proximal Policy Optimization (PPO), Advantage

Actor Critic (A2C) method and others. PPO is a method which is used later on in this study [7].

18 CHAPTER 2. LITERATURE REVIEW

Basic Nomenclature

There are a little terminologies like Agent, Action (A), State (S), Environment and Reward (R).

These terms are repeatedly used in reinforcement learning and they are defined precisely in

Table 2.3 [7]. Based upon these definitions we can define some more terms such as Expected

Return(G), Discounted Return and Policy(π) and value functions.

Agent or Actor The learner and decision-maker.
Environment This is the model/program where actions take effect and agent observe it to make decisions.

Action Set of actions (a) which can be performed in an environment.
State The set of possible states (s) of an agent in the environment.

Reward Each action performed by the agent provides a positive or a negative reward.

Table 2.3: Terms used in Reinforcement Learning [7]

Expected Return (G) is the cumulative sum of rewards which the agent tries to maximize as

shown in the equation 2.8 below.

Gt = Rt+1 +Rt+2 +Rt+3 ++RT (2.8)

where T is a final time step of the environment episode. An episode is considered to end

when an agent took a series of actions which led to different states but after one of the actions

the agent arrived at a state called a terminal state and there can no more states, hence that se-

quence of states and actions marks completion of one episode in the environment. Usually in

training procedure the environment is reset (goes to the initial state) and the agent starts again

onto the next episode. In case of Discounted Return, discount rate (γ ∈ [0,1]) is used to discount

the future rewards and determine the present value of future rewards so that more immediate re-

wards are given more importance. Hence, expression of Discounted Return becomes as shown

in equation 2.9 below.

Gt =
∞∑
k=1

γkRt+k+1 = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + (2.9)

Policy (π): the function that is responsible for mapping any given state in an environment,

2.2. REINFORCEMENT LEARNING 19

to probabilities of each possible action from that state. Value function: This is function of state,

it gives a measure about how appropriate it is for the agent to be in the current state. It is de-

noted by “V(π)”. There are also functions of state-action pairs that estimate how good it is for

an agent to perform a given action in a given state (Action-value function) which is denoted by

“Qπ”. Both of these functions are given in terms of Expected Return “Eπ” as shown in equation

2.10 and 2.11. [28] [29]

Vπ(s) = Eπ[Gt|St = s] (2.10)

Qπ(s, a) = Eπ[Gt|St = s, At = a] (2.11)

2.2.2 Modelling a Reinforcement Learning problem

In this section various problem frameworks within Reinforcement Learning will be discussed

which are useful within the scope of this study. Markov Decision Processes (MDP) will be the

starting point and then a special case of MDP will be discussed which is called Bandit Problem.

Markov Decision Process

Markov Decision Processes (MDPs) is a framework for solving a learning problem, where an

agent interacts with an environment to achieve a goal. The learner is called the agent in this

framework. The object with which the agent interacts, is called the environment, it is basically

everything outside the agent in the defined problem. During the learning process the agent

and environment interact continuously, the agent selects various actions and the environment

responds to these actions and presenting new situations (or states) to the agent. As a result of

these actions environment gives out rewards, which are special numerical values that the agent

seeks to maximize over time through its choice of actions. Figure 2.10 describes this interaction

visually where subscripts t and t + 1 denote current time step and next time step with-in one

episode. [8]

20 CHAPTER 2. LITERATURE REVIEW

Figure 2.10: The agent–environment interaction in a Markov decision process. [8]

In Figure 2.10, the agent and environment interact with each-other sequentially in discrete

time steps, t = 0, 1, 2, 3, At each time step t, the agent gets a representation of the current

state of the environment, st ∈ S, and based on this knowledge selects an action, at ∈ A(s). One

time step later, as a result of the previously made action, the agent now gets a positive or a

negative numerical reward, rt+1 ∈ R (set of possible rewards), which is always a realnumber,

and finds itself in a new state, st+1. [8] The MDP and agent together thereby give rise to a

sequence or trajectory that looks like equation 2.12 [8].

s0, a0, r1, s1, a1, r2, s2, a2, r3, ... (2.12)

In a finite MDP, the states, actions, and rewards (denoted as S, A and R in the above para-

graph), exists in form of finite sets of elements. This basically means that the action space/ set

has a limited number of values and considering our environment to be stable on all those actions

it will yield a finite number of states as a result of these finite number of actions assuming one of

them is a terminal state. In this case, the discrete probability distributions of random variables

Rt and St are only dependent on the preceding state and action. That is, for particular values

of these random variables (S, A and R). s‘ ∈ S and r ∈ R, there is a probability of those values

occurring at time t, given particular values of the preceding state and action. [8]

p(s‘, r|s, a) = Pr(st = s‘, rt = r|st−1 = s, at−1 = a) (2.13)

In equation 2.13, for all the states "s", s‘ ∈ "S", all rewards "r" ∈ "R" and all actions "a"

∈ "A(s)", there is a function "p" defining the dynamics of the MDP. The ‘|’ in the middle of it

2.2. REINFORCEMENT LEARNING 21

comes from the notation for conditional probability but here it just reminds us that p specifies a

probability distribution for each choice of s and a, that is, given by equation 2.14. [8]

∑
s‘∈s

∑
a‘∈A(s)

p(s‘, r|s, a) = 1 (2.14)

For all s ∈ S, a ∈ A(s).

"In a Markov decision process, the probabilities given by p completely characterize the

environment’s dynamics. That is, the probability of each possible value for st and rt depends

only on the immediately preceding state and action, St−1 and At−1, and, given them, not at all

on earlier states and actions. This is best viewed a restriction not on the decision process, but

on the state. The state must include information about all aspects of the past agent–environment

interaction that make a difference for the future. If it does, then the state is said to have the

Markov property". [8]

"The MDP framework is abstract and flexible and can be applied to many different problems

in many different ways. For example, the time steps need not refer to fixed intervals of real time;

they can refer to arbitrary successive stages of decision making and acting. The actions can be

low-level controls, such as the voltages applied to the motors of a robot arm, or high-level de-

cisions, such as whether or not to have dinner or to go to university. Similarly, the states can

take a wide variety of forms. They can be completely determined by low-level sensations, such

as direct sensor data, or they can be more high-level and abstract, such as symbolic representa-

tions of objects in a studio. Some of what makes up a state could be based on memory of past

sensations or even be entirely mental or subjective." [8]

"For example, an agent could be in the state of not being sure where an object is, or of hav-

ing just been surprised in some clearly defined sense. Similarly, some actions might be totally

mental or computational. For example, some actions might control what an agent chooses to

think about, or where it focuses its attention. In general, actions can be any decisions we want to

learn how to make, and the states can be anything we can know that might be useful in making

them." [8]

22 CHAPTER 2. LITERATURE REVIEW

Multi Armed Bandit Problems or k-armed Bandit Problems

"Multi-armed bandit (MAB) problems are a class of sequential resource allocation problems

concerned with allocating one or more resources among several alternative (competing) projects.

Such problems are paradigms of a fundamental conflict between making decisions (allocating

resources) that yield high current rewards, versus making decisions that sacrifice current gains

with the prospect of better future rewards". [30]

In order to explain bandit problems, lets consider the following learning problem. The

agent is faced repeatedly with a choice among k different options or actions. After each choice

a specific numerical reward is assigned to the agent depending upon the action selected. The

objective is to maximize the total reward over some time period. For example over 1000 action

selections or time steps. [8]

"The name bandit problem is an analogy to a slot machine, or “one-armed bandit” except

that it has k number of levers instead of one. Each action selection is like a play of one of the

slot machine’s levers, and the rewards are the payoffs for hitting the jackpot. Through repeated

action selections you are to maximize your winnings by concentrating your actions on the best

levers. Another analogy is that of a doctor choosing between experimental treatments for a

series of seriously ill patients. Each action is the selection of a treatment, and each reward is the

survival or well-being of the patient." [8]

"In Multi-armed bandit problems each of the k actions has an expected or mean reward

given that that action is selected; it can be called the value of that specific action. The notation

for the action selected on time step t as At, and the corresponding reward as Rt. The value then

of an arbitrary action a, denoted q∗(a), is the expected reward given that a is selected." [8]

q∗(a) = E[Rt|At = a] (2.15)

2.2. REINFORCEMENT LEARNING 23

Obviously, it is assumed that the value of each action is not known otherwise the problem

would become deterministic, but the estimated values of actions are known and these are de-

noted as Qt(a), which is the estimated value of action a at time t, the final goal is to make Qt(a)

as close to q∗(a), as possible. [8]

If the estimated values of corresponding actions are maintained, then the action with high-

est estimated value at a given time step t is referred to as the greedy action or actions in some

cases. If the agent keeps on selecting the greedy action then it is referred to as exploitation of

the current knowledge and if the agent tries other action rather the one with the highest esti-

mated value or reward then this phenomenon is referred to as exploration and this enables the

agent to improve its knowledge of the environment or knowledge about the rewards associated

with pulling different arms. There is always a exploration and exploitation trade off and it is

normally understood by testing on the problem under study. [8]

2.2.3 Reinforcement Learning Techniques

In this section various reinforcement learning techniques which are considered in this study will

be discussed but their actual implementation to MPD will be discussed in later chapters.

Q Learning and Deep Q-Learning Networks (DQN)

In order to solve sequential decision problems the agent need to learn estimates for the optimal

value of each action, defined as the expected sum of future rewards when taking that action and

following the optimal policy thereafter. Under a given policy (π), the true value of an action a

in a state s is given by equation 2.16. [31]

Qπ(s, a) = E[Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...|S0 = s, A0 = a, π] (2.16)

where γ ∈ [0, 1] is a discount factor that trades off the importance of immediate and later re-

24 CHAPTER 2. LITERATURE REVIEW

wards. The optimal value is then Q∗ (s, a) = maxπ Qπ(s, a). An optimal policy is easily derived

from the optimal values by selecting the highest valued action in each state [31]. Estimates

for the optimal action values can be learned using Q-learning which is an Off-Policy algorithm

for Temporal Difference learning algorithm. The basic psuedocode for Q learning is shown in

Figure 2.11. The symbol α is the learning rate in the psuedocode which controls how often the

function Q(s,a) is updated. The update done in simple Q-learning is given by equation 2.17. [9]

Q(s, a) + α[r + γmaxa, Q(s‘, a‘)−Q(s, a)] → Q(s, a, θ) (2.17)

Figure 2.11: Psuedocode for Q Learning . [9]

It can be observed that if the action and state space is very large this algorithm will become

computationally expensive as all state-action pairs will be stored in a Q-Table. The Function

Approximation approach is designed to solve the problem of large state spaces, also known as

"dimensional disasters". By using functions instead of Q-tables to represent Q(s,a), this function

which can be linear or non-linear Q(s, a; θ) ≈ Q(s, a) [10]. If action-value function Q(s, a) is

estimated by a multi-layered perceptron (MLP) and this is main idea behind deep Q Learning

[32]. The θ is the weight, so by combining the supervised learning algorithms, the algorithm

can calculate the weight θ . Deep Q-Network(DQN), which is a combination of Q-Learning and

neural network, turns Q-Learning’s Q-table into Q Network, stochastic gradient descent (SGD)

is used to iteratively solve the problem and obtain θ. Figure 2.12 discusses the pseudocode

for DQN which explains the execution of the technique. Figure 2.13 visually illustrates the

difference between simple Q learning and DQN.[10]

2.2. REINFORCEMENT LEARNING 25

Figure 2.12: The psuedo code for DQN. [10]

Figure 2.13: Comparison of Q-Learning and DQN. [10]

Actor Critic Methods

Actor-Critic methods are successors of policy gradient methods which unlike Q-Learning are

on-policy. The input of the Policy-based algorithm is the same as Value-based, but the output is

the probability of each action being selected in the action space. These methods converge much

faster than DQN and are more useful in applications where computational time is an important

factor. [10]

26 CHAPTER 2. LITERATURE REVIEW

In Actor-Critic methods the actors are policy networks and they need reward and punishment

information to regulate the probability of taking various actions in different states. Traditionally

in Policy Gradient algorithms, the reward and punishment information is calculated by iterating

through a complete episode. This inevitably leads to very slow learning rate and takes a long

time. At the same time Critic Network is a value-based learning method, it can perform a single

step update and calculate the reward and penalty values for each step. Then combine the two,

the Actor chooses the action, and the Critic tells the Actor whether the action it chooses is ap-

propriate or not. In this process, the Actor iterates to get a reasonable probability of choosing

each action in each state, while the Critic iterates to refine the reward and penalty values for

choosing each action in each state. Figure 2.14 shows the structure of this above mentioned

approach where actor tries to find the best action where as critic tries to refine the choice made

by the actor. [10]

Figure 2.14: The simple structure of Actor-Critic. [10]

An interesting actor-critic method called Proximal Policy Optimization (PPO) is known for

its fast convergence properties [33]. PPO, on finds a new balance between the ease of imple-

mentation, sampling complexity, and debugging effort required by trying to compute a new

policy at each iteration step, which minimizes the loss function while still ensuring relatively

small deviations from the policy of the previous iteration. PPO proposes a new target function

2.2. REINFORCEMENT LEARNING 27

to achieve small batch updates in multiple training steps, solving the problem of difficulty to

determine the step length in the Policy Gradient algorithm. [10] PPO is also one of the main

algorithms implemented in this study. The psuedocode for PPO is shown in figure 2.15 below.

Figure 2.15: The simple structure of Actor-Critic. [10]

Epsilon Greedy Methods

The epsilon greedy method is method where the person in charge of the experiment tries to

adjust the trade-off between exploration and exploitation. In other words as it is explained in

Figure 2.16, πϵ randomly samples an action from Action space (A) with a probability ϵt ∈ [0,1]

and otherwise selects the greedy action according to Qt. As a result, ϵt can be interpreted as the

relative importance placed on exploration. [11]

Figure 2.16: Mechanism of epsilon-greedy method. [11]

The optimal value of the parameter ϵt is typically problem-dependent, and found through

experimentation. Often, ϵt is annealed over time in order to favor exploration at the beginning,

and exploitation closer to convergence[8]. However, such approaches are not adaptive since

they do not take into account the learning process of the agent [11].

28 CHAPTER 2. LITERATURE REVIEW

2.3 Applications of Reinforcement Learning

The applications of reinforcement learning techniques range from playing games to self driv-

ing cars, playing at casino, solving various control problems or in algorithmic trading. In this

section some sample examples will be discussed which will aid in the modelling of the MPD

problem in later sections.

2.3.1 Control Problems

Reinforcement learning has been used as a replacement for traditional control system techniques

and one of the examples discussed earlier is the application of DQN as a controller for choke

valve opening in MPD [5]. It was observed that if the action space and state space is set carefully

then under a stable testing environment, DQN was able to perform in an excellent manner (see

Figure 2.8).

Some times the traditional control techniques such as PID are combined with the RL al-

gorithms to attain better results. (Hynes et al., 2020) discusses an approach of using residual

policy reinforcement learning combined with PID controller for suspension control system of

cars. OpenAI gym simulator was used to make a simulation of the suspension and but in this

approach both Agent and the PID controller were able to take independent actions to ensure

optimum control. [27]

2.3.2 Other applications

In other applications reinforcement learning agents have been tested on various Atari games

[34], the main purpose of this research is to test the performance of various RL agents on a sim-

ilar environment. Some other applications of reinforcement learning includes trading problems,

where RL agent is used to make an optimum trading decision at any point in time [35]. In the

next section the modelling of our MPD problem will be discussed and the approach to apply

reinforcement learning will be discussed.

Chapter 3

Reinforcement Learning for MPD

3.1 Modelling MPD as a RL Problem

The aim of this study is to use reinforcement learning to tune the PID controller gains (Kp, KI , KD)

as mentioned in Table 2.2, and suggest a suitable pressure set-point, unlike the approach dis-

cussed by ArnØ et al. (2020) where the PID controller was replaced by a DQN agent [5].

This way of using reinforcement learning requires a closer look at the definition of terms like

episodes, actions, states, steps and rewards which will be discussed in the subsections below.

3.1.1 System Block Diagram

Figure 3.1 shows the basic idea behind the implementation of reinforcement learning in the

MPD process. This figure can be related to figure 2.10 where the original structure of Markov

Decision Process (MDP) is discussed. It can be observed that the agent is responsible for giving

the action to the environment and it receives states and rewards in a step-wise manner.

Furthermore inside the training environment, a PID controller along with a function that

specifies the choke valve characteristics and a function which is responsible for well-bore hy-

draulics is required. The PID controller is obviously implemented in a feed-back loop manner

to receive the step-wise value of bottom hole pressure and perform the corrective action if re-

quired by controlling the choke opening. The effectiveness and robustness of this corrective

29

30 CHAPTER 3. REINFORCEMENT LEARNING FOR MPD

action is dependent on the values of the Kp, KIandKD which are provided by the agent as well

as the bottom hole pressure set-point which is a suggestion from the agent.

Now the step-wise reward is computed by the reward function and this function should

be designed to take into account the goodness of the bottom hole pressure set-point as well

as decide whether the incoming dynamic response from the hydraulic model is good or not.

The former simply means whether the set-point is below the fracture pressure and at the same

time above & closer to the pore pressure, whereas the latter means that reward function should

account for the percentage overshoot, rise time and over-all stability of the controller response

(reduced steady state error and reduced oscillations).

Figure 3.1: Basic block diagram of the MPD problem modelled as Markov Decision Process

It can be observed that the choice of actions will clearly affect the reward function if it is

designed according to the above mentioned criteria. More details regarding the reward function

design, PID controller used in the current study and well-bore hydraulics will be discussed in

the next chapters but in the next section the state and action space will be designed and also

the structure of a single training episode and meaning of one step inside an episode will be

discussed.

3.1. MODELLING MPD AS A RL PROBLEM 31

3.1.2 States, Actions and Episode

Lets discuss the states for the MPD problem discussed in the section above. The most basic job

for MPD is to keep the bottom hole pressure between pore pressure and fracture pressure, this

would automatically mean that the bottom hole pressure set-point sent to the controller must

also be kept inside this range. Hence the most important parameters needed to make this de-

cision is the pore pressure and fracture pressure at every depth where the agent is supposed to

be trained on. From Figure 2.1 in Chapter 2, it can be observed that pore pressure (PP) and

fracture pressure (PF) change with respect to true vertical depth (DBit). These parameters are

shown in vector form in equation 3.1. Another parameter which is needed to be kept track of is

the step-wise bottom hole pressure incoming from environment at every step in an episode, it is

added as the last element in the vector.

S = [DBit PF PP PBH] (3.1)

Similarly the action space should ideally consist of 4 parameters as shown in equation 3.2

but in case PID controller is replaced with PI or P controller then 3.3 or 3.4 can be the action

space as well.

A = [KP KI KD PRef] (3.2)

A = [KP KI PRef] (3.3)

A = [KP PRef] (3.4)

Even in the simplest case where action space is reduced to two actions, it can be observed

that agent has to give at least two signals as actions to the environment. Now the definition of

episode is the only factor which remains ambiguous in our modelling approach.

32 CHAPTER 3. REINFORCEMENT LEARNING FOR MPD

An episode is defined as a simulation which should run for a custom number of time steps,

not analogous to actual time units as one step can take any defined time, but the key is to keep

the KP KI KD PRef constant during each episode. The reason behind keeping them constant

is that it will enable the reward function to give a reward based on a single set of tuning param-

eters during one episode and this will also aid in optimizing the rise time. Considering Figure

3.2, this whole simulation can be regarded as one episode, now while recording this response

it is required that we maintain the tuning parameters and set-point to be constant so that the

reward function can assign a reward based on stability and overall behaviour of the controller

response.

Figure 3.2: Sample Dynamic response of PID controller employed in MPD (Generated by python)

To summarize this our MDP trajectory sequence should look like the following equation 3.5

instead of the one discussed in 2.12.

s0, a0, r1, s1, a0, r2, s2, a0, r3, ... (3.5)

Just to recall in equation 2.12, the sequence was like this s0, a0, r1, s1, a1, r2, s2, a2, r3... and

3.1. MODELLING MPD AS A RL PROBLEM 33

now a1 and a2 are same as a0.

Further more lets say if a human was to solve this problem then during an episode the

human only looks at the initial state to make a decision about the actions. The reason being

that decision of BHP set-point depends on formation Geo-pressures i.e. pore pressure (PP) and

fracture pressure (PF) as well as the depth. The tuning parameters basically decide whether the

controller can safely reach the set-point.

This would mean if we are able to train the agent separately at for every depth scenario i.e.

dividing the whole depth range into several intervals then the problem is reduced to a single-

state MDP problem which can be modelled as a multi-armed bandit (MAB) problem with every

arm being a action vector of size 2,3 or 4 depending upon choice of controller (either P, PI or

PID recall equations 3.2 to 3.4.). This idea is illustrated in Figure 3.3.

Figure 3.3: The idea of dividing depth into intervals to model a MAB problem (Generated by python)

If the agent is trained at every depth separately it might cause an increase in the training

time and it might be less applicable in a practical setting, this constraint will be discussed in the

next sections later on.

34 CHAPTER 3. REINFORCEMENT LEARNING FOR MPD

3.2 Resources for implementation of the Reinforcement

Learning agents and environment

3.2.1 MATLAB Reinforcement Learning Toolbox

MATLAB Reinforcement Learning toolbox is used for the implementation of the RL agents.

This toolbox provides an application, functions and a Simulink block for training various poli-

cies using different reinforcement learning algorithms.

Some of the algorithms provided by this toolbox include DQN, PPO, Soft Actor Critic

(SAC) and Deep Deterministic Policy Gradient (DDPG). These policies are used by researchers

and students to develop controllers and implement decision making policies for complex appli-

cations such as autonomous system, resource allocation and robotics. [12]

The basic workflow followed while using reinforcement learning tool box developed at

Mathworks is discussed in Figure 3.4. The formulation of problem has already been discussed

in the earlier sub-sections and in the next chapter the development of environment and reward

function will be discussed. [12]

Figure 3.4: Reinforcement Learning workflow using MATLAB RL Toolbox [12]

The toolbox provides different options for agent selection based on the nature of action and

observation (state) space i.e. they can be discrete or continuous.

3.2. RESOURCES FOR IMPLEMENTATION OF THE REINFORCEMENT LEARNING AGENTS AND
ENVIRONMENT 35

3.2.2 Python - Multi armed bandit algorithms

A part of this study also deals with the modelling the MPD control problem as multi-armed

bandit (MAB) problem, the methods used in MAB problems are not available in MATLAB RL

toolbox and some minor changes in environment approach are also required hence the develop-

ment of this part of the proposed solution is done using python but the reward function is kept

the same.

3.2.3 Environment design in MATLAB

As discussed in Figure 3.1. the environment needs to have an implementation of PID controller

(Appendix A.8), information about of Geo-pressures as the formation changes with depth, it

needs to have well-hydraulics model, it should allow changes to choke valve characteristics and

most importantly it should be stable in all scenarios. The last attribute means that the imple-

mentation of the environment should incorporate excellent error handling and a lot of focus was

put into this area which will be discussed in the upcoming section.

Chapter 4

Simulation Environment and Reward

Function design

4.1 Simulation Environment Design

In order to develop a robust simulation environment for reinforcement learning, the OpenLab

drilling simulator was found to be applicable. The simulator is set up with back-pressure MPD

simulation capabilities using high-fidelity models. OpenLab drilling simulator is developed and

maintained by the Drilling Well & Modelling group at NORCE Energy, this work is done in

collaboration with University of Stavanger (UiS).

4.1.1 Backend Models

The OpenLab simulator uses some back-end models to simulate MPD process in a well of se-

lected settings. The theoretical details of these models are discussed in this sub-section.

Flow Model

The well flow model is based on a framework derived from multi-phase well flow modeling

[36] [37]. The model is based on a one dimensional approach of two-phase flow in pipelines

36

4.1. SIMULATION ENVIRONMENT DESIGN 37

formulated by nonlinear partial differential equations, where mass, momentum and energy bal-

ance for each phase has been formulated [38]. The dynamics of well flow is determined by

these balance equations involving terms for interactions of mass, momentum and energy. The

mass conservation equation is given as:

∂

∂t
(αkArρkvk) +

∂

∂s
(αkArρkv

2
k) = 0, k = ℓ, g, (4.1)

where the subscripts ℓ, g represent the liquid and gas phase respectively, t is the time vari-

able, α is the volume fraction, Ar is the cross-section area, ρ is the density, s represents the

length of the well and v is the velocity of the fluids.

The fundamental two-phase model consists of separate momentum conservation equations

for each phase with complicated terms related to phase interaction. To omit modeling of the

complex phase interaction term [39] [40] the drift flux model that simplifies the model (equa-

tion 4.1) is used in the OpenLab simulator, given as below:

∂

∂t
Ar(αℓρℓvℓ) +

∂

∂s
Ar(αℓρℓv

2
ℓ + αgρgv

2
g) + Ar

∂

∂s
p

= −Ar(K − ρmixg sin θ), (4.2)

where p is the pressure, K is a friction pressure-loss term, θ is the well inclination, g is the

gravitational acceleration and ρmix = αℓρℓ + αgρg is the mixture density.

In equation 4.2 there are many unknown model parameters and correlations. The missing in-

formation in the mixture momentum equation has to be filled by empirical closure relations that

provide estimations of phase velocities and pressure losses. These relations consider compli-

cated time-dependent equations [41][42], and include several estimated parameters. Inaccura-

cies in these parameters such as complex fluid properties, well-bore geometry, fluid impurities,

flow regime and unknown pipe properties will impact on the model accuracy leading to the

uncertainties.

38 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

Pressure Control

Pressure control is one of the main critical elements of drilling operations. The conventional

drilling method implies break in circulation and axial movement of drill-string affecting the

well-bore pressure. e.g. before a connection where new drill pipe elements is added or removed

from the drill string, the mud circulation need to be stopped causing a rapid change in bottom

hole pressure due to the changes in frictional pressure loss. This pressure drop may cause well

instability if formation fluids enter into to wellbore in the open hole section because of higher

pore pressure compared to well pressure. Therefore, to prevent unintended influx and to ensure

safe and stable drilling operations, the bottom hole pressure should be kept within some safe

bounds between pore and fracture pressure. Exceeding the fracture pressure, will cause lost

circulation where the drilling fluid enters into the formation, and potentially causing instability.

Hence, if the pressure in the well is lower than the pore pressure, it will not serve as a barrier

against unintended influx into the wellbore (a kick). Potential drilling problems such as forma-

tion fracturing, formation ballooning, lost circulation, kick and formation collapse, differential

sticking, stuck pipe, and slugging of cuttings return may be encountered as a consequence of

improper pressure control.

By utilizing MPD systems, the bottom hole pressure variations related to connection oper-

ations, tripping in/out, and changes in flow rate can be significantly reduced by managing the

choke valve opening, equivalently, adjusting the surface choke pressure. Although this method

has several advantages over conventional drilling, there are limitations and challenges. MPD

control manifolds and embedded control algorithms may suffer from limited proof of reliabil-

ity and viability in the actual operational environment, and this have created a drive for more

research on artificial intelligent and automated MPD systems.

In this study, the MPD controller is based on the well-known Proportional-Integral-Derivative

(PID) controller. At the beginning, BHP is kept constant and shall be close to a given set-point

of the BHP in the controller design. The set-point is allowed to be changed during the opera-

tion. The choke valve opening is the manipulated variable and is automatically adjusted by the

4.1. SIMULATION ENVIRONMENT DESIGN 39

control system. The PID controller may be based on balancing flow rate in and out of the well

[43]. The proposed discrete time PID controller algorithm is expressed as follows:

zc(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(4.3)

where

e(t) = PBH(t)− PBH,sp(t). (4.4)

In the PID controller (equation 4.3), zc is the choke opening, Kp is the proportional gain, Ki

is the integral gain and Kd is the derivative gain. Kp is adjustable to affect the response and re-

action of choke pressure. Ki is used to eliminate the difference between the BHP measurements

and setpoints. Kd is used to increase the rise time. Normally the range of pressure variations

could be accepted within ±2.5 bar.

During drilling, the BHP can be measured with a downhole pressure sensor, but the sensor

value is usually transmitted with mud pulse telemetry, suffering from slow and low band-width.

Several uncertain factors, for instance, movement of drill pipes, variation of drilling operational

parameters, and reservoir influx, may influence this measurement, leading to measurement un-

certainties. Another consequence by mud pulse telemetry is that the BHP measurement is not

available in real time when the mud flow rate is low and during pipe connections. If the BHP

measurements are not available for a while, BHP calculations from real-time flow models or

pre-calculated tables are being used. On the other hand, the high uncertainties on measure-

ments increase the difficulty level of finding the suitable setpoints PBH,sp with respect to the

time or depth for the well pressure control. The performance of the MPD control will thus de-

pend on the accuracy of models and the choice of the setpoint of the BHP, which require high

advanced transient models and the agent for setpoint recommendations.

40 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

4.1.2 Environment Block Diagram

The OpenLab simulator is set up with back-pressure MPD simulation capabilities using high-

fidelity models as described in the previous sub-section. The simulator is available as a web

service and accessible from a web client using the documented OpenLab API [44]. The simula-

tor can be accessed through a web browser, and templates are provided for Matlab and Python

clients. The simulator is developed as part of a larger research infrastructure project, and with

particular emphasis on drilling automation [45]. The architecture facilitates development and

testing of smart agents such as the described RL agent.

A simulation in OpenLab requires a configuration, which is a description of well archi-

tecture, trajectory, drill string, drilling fluid, geological properties, and rig equipment. It also

requires an initialization of each simulation describing the initial state of the system, and selec-

tion of simulation models. Default configurations can be used directly or edited. To ensure that

users can not create configurations that are nonphysical or otherwise out of bounds, a built-in

validation check ensures that new configurations satisfies a set of validation rules. To ensure

stability and reliability, simulations can only be run on approved configurations.

In this work a Matlab client has been used for running the simulations and getting the results

from OpenLab. Figure 4.1, discusses the basic architecture of the environment developed using

OpenLab simulator API in MATLAB.

In Figure 4.1, the blocks are colored according to their nature and occurrence during a

single episode. The block diagram is made to deliver the concept of the environment during a

selected number of training or testing episodes. This block diagram does not represents how the

environment is implemented in code to match the requirements of MATLAB RL toolbox, but it

gives the general idea about the use of OpenLab simulator as a training environment.

Color code for Figure 4.1
Color Function
Green While conditions or If-else conditions
Yellow This process occurs once in an episode.
Pink This action occurs once every step in an

episode.

Table 4.1: Table to for color code in Figure 4.1.

4.1. SIMULATION ENVIRONMENT DESIGN 41

Figure 4.1: Basic Block Diagram for Environment

The concept shared in Figure 4.1 will be discussed in steps as highlighted in the figure itself

(in blue). Some small details are not mentioned in the block diagram and will be covered in the

points enumerated below.

1. The process starts from point one, if the current episode number is lesser than the total

number of episodes set for the session then the algorithm proceeds ahead and the condi-

tion is considered to be met otherwise the simulation is stopped.

2. In step 2 an OpenLab simulation object was created using the OpenLab API for MATLAB

client, this helps us in communicating with the OpenLab Drilling Simulator server. User

ID and other credentials are required to get this access and only a specific number of

simulations are allowed to run in parallel.

3. After creation of OpenLab simulator object, some configurations are needed to be done

and some configurations depend upon the actions incoming from the agent.

(a) The actions from agent are stored in local variables which mainly include controller

42 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

gains and pressure set-point for the controller.

(b) The configurations done from MATLAB client mainly include Configuration name,

simulation name, initial bit depth, initial tool string location, KP and KI , Initial

choke opening, Reference BHP and flow rate. The configuration name needs to

match the name in the web server and one configuration can have multiple simula-

tion and each simulation corresponds to one episode which have multiple steps.

4. Here the algorithm decides if the total number of steps are still greater than the current

step number. Total number of steps also define the length of the dynamic response from

our controller a suitable number is chosen in implementation to find a sacrifice between

robust response and computational time as a longer response will take more time per

episode to train as number of steps would be larger.

(a) If the condition is met and the current step number is less than the total number of

steps then the MATLAB client passes a request OpenLab simulator server to run one

simulation step. What this means is that the back-end models are used for a specific

time step to compute the next values of bottom hole pressure, annular pressure,

choke opening (from controller) and flow rates.

(b) In case the algorithm has already reached the total number of steps in an episode

then the total reward accumulated during the steps is stored and the actions from the

controller are also stored. After ward the current simulation object is deleted (as the

user has limited number of simulations) and algorithm returns back to the step 1.

5. In case during the any error occurs most of the time error faced in implementation was

connection error from OpenLab server then a condition is used to snap out of it and

continue the simulation. This is achieved using a try and except structure in MATLAB.

6. In this step it is decided whether the algorithm ran into an error or exception during the

step.

(a) If any error or exception occurs then the algorithm deletes the current simulation

object as it is no longer usable and moves on to the next episode by going to the

4.1. SIMULATION ENVIRONMENT DESIGN 43

Step 1.

(b) If there is no error then the result of simulation is recorded, some of these results

re needed to take the next step and some are required for computations done in the

reward function.

7. The cumulative reward is updated after the step-wise reward it added to it.

8. The algorithm returns to the while-condition where the algorithm checks the current step

number against total steps allowed in an episode.

Configuration

As explained briefly in the above sub-section that various configurations can be changed while

creating the basic configuration on the OpenLab web portal, and then this configuration is given

a specific name which is then used during communication required to run the simulation and

each simulation can also have some specific settings (also referred to as configurations) but

these were highlighted in the Step 4-a of the Figure 4.1.

The configurations available at the OpenLab web portal include hole-section, well-path,

drilling fluid, drill string, geology and rig settings. The most important one for our case is

geology and drilling fluid. The parameters which can be changed from the configurations in

OpenLab simulator web interface are discussed in Table 4.2. The row highlighted in green are

the main headings and then sub-headings are highlighted as purple and parameters are indicated

in grey colored rows.

Geo-Pressures in Geology

An important setting in the OpenLab drilling simulator is the Geology setting and especially the

Geo-pressures where the user can manually design the pressure profiles and hence define the

narrow pressure windows where the MPD is supposed to be most useful. Figure 4.2, shows the

geo-pressure setting made in OpenLab simulator‘s web portal and it can be imported in the form

44 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

HOLE SECTION
Riser
Riser Depth
(m) Riser ID (m)

Riser OD
(m)

Casings

Casing Type
Hanger
depth (m)

Shoe depth
(m) OD (in) ID (in)

Openhole

Length
Openhole
Diameter

From
Length

To
Length

WELL PATH
MD (m) Inc. (°) Azimuth (°) TVD (m) DLS (°/30m)

DRILLING FLUID

Fluid density Fluid type
Mass
fractions

Volume
fractions Rheology

DRILLSTRING
Drillpipe

Type Length (m) OD (in) ID (in)
Lin. weight
(kg/m)

Cum. length
(m)

Bottomhole assembly

Type Length (m) OD (in) ID (in)
Lin. weight
(kg/m)

Cum. length
(m)

Bit

Type Length (m) OD (in) TFA (cm²) Mass (kg)
Cum. length
(m)

GEOLOGY
Geo-Pressures

TVD (m)
Pore
pressure
(s.g.)

Fracture
pressure
(s.g.)

Geo-Thermal

From TVD
(m)

Solid Temp.
gradient
(°C/100m)

Water
Temp. gradient
(°C/100m)

Air
Temperature

Formation
MD (m) UCS (MPa) Friction angle (°)

RIG
Main pump
max flowrate
acceleration

MPD pump
max flowrate
acceleration

MPD Choke
characteristics

BOP Choke
characteristics

Travelling
block weight

Top drive
max rot.
acceleration.

Draw-works
max top string
acceleration

Main Tank
Volume

Reserve Tank
Volume

Table 4.2: Table for configuration parameters in OpenLab Drilling simulator

4.1. SIMULATION ENVIRONMENT DESIGN 45

of excel sheet and then stored locally and used by the MATLAB script to obtain the pore and

fracture pressure at the corresponding true vertical depth (TVD). The algorithm discussed in

Figure 4.1, uses the same method to obtain the pore and fracture pressures. The absolute value

of pressure is derived in terms of Pascals from the s.g. which is the unit of pressure gradient,

the depth the point of calculation is also required in this calculation (Equation 4.5).

PressurePa = (PressureGradients.g.∗8.345)∗(0.051948∗BitDepth∗3.28)∗6894.76 (4.5)

Where,

1 SG = 8.345 ppg, 1 ppg = 0.051948 psi/ft, 1 meter = 3.28 ft, and 1 psi = 6894.76 Pa.

Figure 4.2: Geo-Pressures setting under Geology in OpenLab simulator web interface

Summarizing Inputs and Outputs of the Environment

Hence to summarize the inputs of the environment, it can be concluded from the details dis-

cussed in the above sections and sub-sections that environment needs Configuration Data (Frac-

ture and Pore pressure), Action from the agent (Tuning parameters and pressure set-point) and

Stable API communication (to record dynamic response of PID controller). The outputs at the

46 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

end of the simulation are the cumulative reward and it should be noted the concept of terminal

state is not discussed here because episode is ended by a maximum number of steps.

4.2 Reward Function

The reward function is used to evaluate the agent performance and therefore crucial for agent

training. One approach is to evaluate the suggested bottom hole pressure (BHP) set point against

the pressure window i.e. pore pressure and fracture pressure. Another approach is to, consider

the oscillation of BHP in the control, it is quite obvious that both of the ideas are needed to be

implement to get the best results.

4.2.1 Reward function design for Reference point decision

In this section, the penalty/reward is determined against the ideal pressure within the given

pressure window. Here, a reward function is proposed by evaluating BHP against the pres-

sure window, i.e. whether the BHP is slightly above the pore pressure and within the pressure

window.

r(PBH) =

p1, PBH < Pp − δ

r1 − PBH−Pp

Pf−Pp
(r1 − r2), Pp − δ <= PBH < Pf

p2, PBH > Pf

(4.6)

where p1 and p2 are penalties (negative rewards) when bottom hole pressure is below pore

pressure (Pp) or above fracture pressure (Pf), respectively; r1 and r2 are the maximum rewards

approaching pore pressure and minimum reward approaching fracture pressure, respectively;

δ is the tolerance of bottom hole pressure, meaning that the slight lower BHP than the pore

pressure is allowed. A sample case of the reward function is shown in Fig. 4.3, where p1 = p2

for simplicity. An example of the reward function in given pore and fracture pressure is shown

in Figure 4.3.

4.2. REWARD FUNCTION 47

Figure 4.3: The behaviour of reward function designed for suggested set-point evaluation

4.2.2 Reward Function design for oscillations

The reward function for oscillation is based on the dynamic response of the PID controller. A

dynamic response from a PID controller id shown in Figure 3.2 and in Figure 2.4 some terms

such as rise time, settling time, overshoot and steady state error are discussed.

Figure 4.4 discusses the different controller behaviours under different tuning conditions.

Here the goal is observe that some of the responses (in orange) are completely unstable as

shown in the first plot and some of the responses are matching the set-point almost perfectly

with minor mismatches. The proposed reward function tries to take into account overshoot,

steady state error, settling time and rise time.

Figure 4.5 discusses the algorithm for the reward function designed to minimize the oscilla-

tions in the controller response. If the absolute difference between the set-point and bottom hole

pressure is greater than 1 percent, then a step-wise negative penalty is accumulated otherwise

48 CHAPTER 4. SIMULATION ENVIRONMENT AND REWARD FUNCTION DESIGN

no penalty is given. Since this procedure takes place every step this will automatically give a

high negative reward to an unstable response or a response with a steady state error, and if the

response reaches the set-point quicker and in a stable manner then the reward would be less

negative in total.

Figure 4.4: Controller behaviour under different choices of tuning parameters [13]

Figure 4.5: Reward function for oscillation

These reward functions discussed above will be discussed in the implementation in the next

chapter and further elaborated in the results sections as well.

Chapter 5

Reinforcement Learning

Implementation

5.1 Implementation of Environment and Agents

The environment and agent development is mainly handled in MATLAB but some work is also

done in python for multi-armed bandit problem which will be discussed towards the end. Lets

start the discussion with the analysis of problem in terms of MDP. The implementation work

will be divided into various Case Studies to make the steps taken during development easier to

understand.

5.1.1 Case 1: Markov Decision Process Problem

In this case the implementation is based on the modelling done for the case of MDP problem.

Figure 5.1 shows the basic layout of the implementation but various steps regarding the imple-

mentation will be discussed in the form of a block diagram later. In Figure 5.1, the communi-

cation between environment and an Actor-Critic RL agent is seen. The choice of Actor-Critic

over DQN is mainly because of their fast convergence properties which is very useful when

computational time is an important factor (discussed in Section 2.2.3) [10]. As discussed ear-

lier the actor provides the action which are the PID tuning parameters and pressure set-point,

then the PID controller adjusts the choke opening which in-turn affects the PBH . The reward

49

50 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

and states are fed back to the agent every step.

Figure 5.1: System diagram with Actor-Critic Agent

The simulation environment as discussed in last chapter is implemented in MATLAB in

the form of STEP FUNCTIONS and RESET FUNCTIONS. These functions are responsible for

making a step inside an episode and then resetting the states at the end of an episode to start-over

for the next one. Figure 5.2 shows the structure of the environment in terms of step function and

reset function. It can be observed that the step function is called every step (color-coded blue)

where reset episode is just called once in the start of the next episode (color-coded yellow). If

the total number of episodes have been reached then the simulation is stopped.

Figure 5.2: Structuring environment with step and reset functions

5.1. IMPLEMENTATION OF ENVIRONMENT AND AGENTS 51

First Implementation

In the step function various parameters are configured which will be discussed in this section.

In this case study of MDPs various versions of the step function were created, the one discussed

below has different state space and different reward function design as compared to what was

discussed in Section 3.1.2 and 4.2 respectively. In Figure 5.3 the structure of step function is

shown and the code is attached in Appendix A.2. and titled STEP FUNCTION VERSION 1.

In the light of Figure 5.3, some important points for this step function are described below:

• The step function takes in Actions which in this case are KP and BHPset−point. KI is

derived from KP instead of taking as an independent input and this reduces our Action

space to equation 3.4, where as the controller is now a PI controller. Here KI = KP/13,

this was chosen by trying various values and this had the most stable response.

• The configuration includes initial choke opening (which is set to 0.25 initially, 0 means

closed and 1 means fully open). The main pump flow rate is randomly selected between

2900 to 2800 l/min and then it is ramped down slowly to a value 700 l/min below the

starting value in steps. The simulation takes in total 500 time steps to ramp reach the end

value and this is considered an end of episode, the procedure of ramping it down is shown

in Figure 5.5, the unit used there is m3/s.

• The step limit automatically define a constraint on the total length of the dynamic re-

sponse yielded from the controller and it is about 8 min and 20 secs.

• The geo-pressure profile is setup in the OpenLab simulator configuration and it is im-

ported by the environment by placing the downloaded geo-pressure data from the simu-

lator in the local directory.

• The state space in this initial implementation is based on the following variables, Rela-

tive Overshoot, Transient Time , Settling Time, Depth, Choke Opening, Flow rate out,

Pressure set-point, Simulation BHP, Pore Pressure and Fracture Pressure.

• The reward for the controller dynamic response is based on Settling time, overshoot and

transient time and these values are obtained from the system dynamics toolbox of MAT-

52 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

LAB. If the response is not stable towards the end then a very large negative reward is

incurred.

• Is Done is a flag used to indicate the completion of episode. The block which occur once

per episode are coded yellow and they ones which occur every step are coded as orange

in the block diagram.

• This training takes place at the depth of 2046 meters where is window is the most narrow

and the depth is not changed through out training.

Figure 5.3: Block Diagram for the first version of Step Function (Appendix A.2)

5.1. IMPLEMENTATION OF ENVIRONMENT AND AGENTS 53

Figure 5.4: The formation Geo-Pressures along True Vertical Depth

Figure 5.5: Main Pump flow rate ramped down, starts after 100 secs

54 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

MODIFICATIONS TO FIRST IMPLEMENTATION

The main problem with the above mentioned technique is the large state space and some vari-

ables are not really critical to the decision the agent needs to make where as some are not

computed as accurately as hoped. The use of system dynamics toolbox to calculate overshoot,

transient time and settling time at every time step, as the new value of BHP comes in from the

simulator is not very stable and the values become Nan even when the response is good. To

solve this problem the reward function approach discussed in the Section 4.2.2 was adopted and

implemented in the next version of Step function.

Larger state space leads to more computational time [46] and since the decision was being

made at one depth (2046m), as the depth was not varied (only the main pump flow rate was

varied), many parameters don’t change or their change does not matter. Given these reasons the

state space is reduced to what was discussed in section 3.1.2 where state space included Depth

of the bit, pore pressure, fracture pressure and bottom bole pressure. Although it is known that

geo-pressure at a constant depth are going to stay constant but their values define the reward

for the Pressure set-point and the bottom hole pressure is required to be recorded to make a

dynamic response of the controller.

Another observation made on this way of implementing the environment is that in-between

steps there is a delay due to the computations done by the agent and it makes the simulation in

the web simulator wait which sometimes lead to unstable behaviour and the simulation crashes

which leads to additional waste of time although this behaviour is handled using try and except

structure in the code.

Apart from these changes we can now reduce the environment to one state MDP because all

the states are constant in the problem except bottom hole pressure. For bottom hole pressure,

it can be recorded in an inner loop where the whole simulation just runs automatically and and

the last value can be shared with the agent at the end of episode. This way of implementing the

solution was found to be very stable and effective and it is discussed in the next subsection.

5.1. IMPLEMENTATION OF ENVIRONMENT AND AGENTS 55

ONE STATE MDP

In the above section we discussed the modifications we intend to make to the first implementa-

tion. Figure 5.6, incorporates these changes and the codes including these changes are included

in the appendix A.4 to A.7. In contrast to Figure 5.3 the states are now only shared with the

agent at the end of whole simulation which makes the problem one state MDP.

Figure 5.6: Block Diagram for final version of Step function (For one episode - Appendix A.5)

The reason behind making this problem a one state MDP is that the rewards are only directly

dependent on the actions, when making the decision at one depth. The configurations in both

implementations are kept the same and the results will be shared in the next chapter. The only

difference in this implementation can be seen in Appendix A.4 that the initial choke opening

is changed to 1 as the valve is always fully opened when the simulation starts. Apart from this

the simulation turns out to much more stable and faced almost no crashes as compared to the

previous implementation.

56 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

PPO Agent in MATLAB

The RL agent used for these implementations is called Proximal policy optimization (PPO)

agent. "PPO is a model-free, online, on-policy, policy gradient RL method. This algorithm is

a type of policy gradient training that alternates between sampling data through environmental

interaction and optimizing a clipped surrogate objective function using stochastic gradient de-

scent".[14] The agent is implemented using MATLAB Reinforcement Learning toolbox. [15]

[16].

The PPO agent in this implementation is trained on an environment with discrete observation

and action spaces. During training the agent estimates the probability of taking each action

in the action space and randomly selects actions from the discrete action space, furthermore

it interacts with the training environment for multiple time steps using current policy before

updating actor and critic properties after mini batches. The policy π(S) and value function

V(S) are estimated using two function approximators [14],

• "Actor π(A|S; θ) — The actor, with parameters θ, outputs the conditional probability of

taking each action A when in state S." [14]

• "Critic V (S;ϕ) — The critic, with parameters ϕ, takes observation S and returns the

corresponding expectation of the discounted long-term reward." [14]

The detailed training algorithm is shown in the Figure 5.7 below, the psuedocode is dis-

cussed on the official Mathworks website for PPO implementation using RL Toolbox as

well [14].

Constraints on Actions

The values for actions are constrained under realistic limits. The pressure set-point suggestion

mentioned as Pref in equation 3.4 is limited between pore and fracture pressure KP is bounded

by the values which are applicable if either Pref is equal to pore pressure or fracture pressure

as it controls whether the controller will be able to reach the pressure set-point at the end of

the simulation. The range for KP is set according to the narrowest window and the results will

5.1. IMPLEMENTATION OF ENVIRONMENT AND AGENTS 57

Figure 5.7: Psuedocode of PPO Implementation used in this study [14][15] [16]

58 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

be discussed in the next section. Figure 5.8, illustrates the set-point range for the current im-

plementation, but the depth is obviously 2046m where the operational window is the narrower.

The implementation of these constraints are handled in the code snippets discussed in appendix

A.4 and A.7.

Figure 5.8: Range of pressure set-point suggestion

5.1.2 Limitations of MDP framework for this study

In this section the journey of implementing the environment was discussed and the reasons

about the shift from one implementation to another were also discussed. The major problem to

overcome in this study is the computational time which will discussed in the next section. Apart

from this a major limitation of these implementations have been that they were implemented on

a single depth scenario which is not very practical, and even at a single depth scenario the agent

took more than 10 hours to train it self (discussed in the next chapter as well).

5.2 Implementation of Multi-Armed Bandit Problem

In the last section MDP framework was discussed and it was eventually reduced to one-state

MDP which is analogous to Multi-Armed Bandit problem where the value function is only

dependent on action (see equation 2.15). The multi-armed bandit problem is used to device a

plan where controller can be tuned at certain intervals of depth. There are two phases of this

5.2. IMPLEMENTATION OF MULTI-ARMED BANDIT PROBLEM 59

implementation, in one phase the data is collected from the OpenLab simulator to create an

environment suitable for implementation of multi-armed bandit algorithm and in the next phase

epsilon-greedy approach is used to find a suitable trade-off between exploration and exploitation

and then after this hyper-parameter tuning the epsilon-greedy agent is employed to find the best

arm (or action). The notion of best arm means the action which carries the most reward. The

reward function definition are same as the ones defined in Section 4.2. Figure 5.9 shows the

block diagram of the first phase where data is collected from running the simulation on OpenLab

simulator.

Figure 5.9: Block diagram for data collection Appendix A.10

The configuration in Figure 5.9 is kept same as the last PPO implementation the only dif-

ference being that the choke position at the end of each complete simulation is fed to the next

simulation as the starting choke position. The resulting data which comes out at the end of

looks like the snapshot in Figure 5.10. This figure is for a specific depth and a similar table is

generated for all the selected depths where the decision for for set point and tuning parameters

is needed to be made.

The next step after data acquisition is to start developing the epsilon greedy approach. Figure

60 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

Figure 5.10: Structure of the colected data

5.11 shows the approach taken in for implementing the epsilon greedy method. The idea is to

select action greedily in-general i.e. the actions which have the best estimated reward but at

some time steps another action may be selected instead randomly out of all possible actions, the

random action is chosen with a probability of ϵ (epsilon). Hence epsilon controls the exploration

and saves the algorithm from going into a completely exploitation approach (also discussed in

Section 2.2.3).

Figure 5.11: Simplified epsilon greedy approach

The overall goal is to come-up with a value of epsilon which gives maximum reward over

a number of simulation steps, and then that value of epsilon is tested on various depths and if

it suits them well then it the similar technique is applied on the whole depth section. The idea

of a discrete Geo-pressure profile was discussed in Figure 3.3, and a similar idea is used here

(in Figure 5.12) where the depth interval is kept to be 10m, The geo-pressure profile is made

5.2. IMPLEMENTATION OF MULTI-ARMED BANDIT PROBLEM 61

a little more narrower here as compared to one for the PPO implementation just to make the

problem a little tougher for agent. Although the starting depth is sometimes varied to save up

computational time during testing. The mechanism discussed in Figure 5.12 is applied at every

depth point in Figure 5.13. To summarise the idea of implementation it can be said that, every

depth corresponds to a casino machine and every pair of Kp and pressure set-point corresponds

to an arm. This makes our problem simpler to understand and reward distributions of every arm

are handled by the reward functions we defined in the section 4.2.

Figure 5.12: Discrete depth intervals with a step of 10m on a selected depth section.

Various values for ϵ are tested but the chosen one is 0.1, which shows that this approach

automatically better than the completely greedy approach which means after testing we add

value to our initial estimates of the rewards. Figure 5.13 shows the result of various ϵ used in

testing at a random depths.

After deciding upon the appropriate value of epsilon the goal is to find the best arm, after

62 CHAPTER 5. REINFORCEMENT LEARNING IMPLEMENTATION

Figure 5.13: Testing various values of epsilon and choosing the one with the maximum long-term rewards.

running a test for a good number of episodes. The method is simple as the arm with the highest

reward will be the one which is pulled the most as value of epsilon is low. Figure 5.14 shows

the results of the arms selections for various values of epsilon and for ϵ = 0.1, the optimal arm

in this plot is around arm indexed at 46, which can be easily identified in code.

Now if a recap is given, then the best arm represented the best action pair, which was the

value of KP , Pressuresetpoint and the definition of best is based on the reward functions which

are designed to keep the pressure set-point between the pore and fracture pressure as well as to

limit the oscillation, decrease rise time and settling time. This means that the best action for a

specific depth has been found and this method can be applied to all the depths, the results of

this application and former implementations will be discussed in the next chapter. The code for

this implementation is attached in Appendix A.11.

5.2. IMPLEMENTATION OF MULTI-ARMED BANDIT PROBLEM 63

Figure 5.14: Arms selected by each epsilon selection.

Chapter 6

Results and discussions

6.1 Results from PPO Implementation

In the implementation of PPO, the reference bottom hole pressure value suggested by the agent

is 370 bar at the depth of 2046 meter (See Figure 5.4). The agent also suggests an initial value

for the proportional coefficient (Kp) of the PI controller. The value for Kp suggested by the

RL agent is -0.055 for the given depth, and as mentioned in Section 5.1.1 a good value Ki is

assumed to be Kp / 13 based on manual tuning.

For the reward function from section 4.2.1, we set p1 = p2 = −105, r1 = 105, and r2 = 0. The

training results after 1000 episodes are shown in Fig. 6.1, in which it can be observed that the

variance in the episodic reward (light blue) decreases as the plot progresses towards the right.

The dark blue plot is the result of episodic reward passing through an averaging window filter

with window size of 5. Most importantly, the reward stabilizes on a positive value, which means

that a good estimate for reference pressure PREF was made, and the controller was tuned to a

good KP , to reach that reference BHP.

The simulated bottom hole pressure response is shown in Fig. 6.2 where it can be seen that

BHP is rapidly stabilized around the set-point pressure PREF (i.e. 370 bar in this scenario), and

that the overshoot is less than 5 bar, which is considered to be acceptable when considering the

short time of this overshoot. The controller action is turned on after 100 initial time steps and

64

6.1. RESULTS FROM PPO IMPLEMENTATION 65

Figure 6.1: Plot of training episodes, reward per episode is visualzied

has a good rise time and settling time.

The choke valve opening is visualized in Fig. 6.3, and after 100 time steps when the con-

troller starts acting to achieve the reference bottom hole pressure, it can be seen the response is

swift and it settles around 0.2 percent.

During the training processes, various learning rates for actor and critic were tested, and the

optimal results were achieved using a learning rate of 0.01 for both actor and critic. The batch

size used to produce the results was 128 and the clip factor was 0.2 with number of epochs equal

to 3. The details of the selected hyper parameters are shown in Figure 6.4.

At the end of the simulation the agent is also tested several times to observe its stability and

this is visualized in Figure 6.5 where the agent always settles on the same policy.

66 CHAPTER 6. RESULTS AND DISCUSSIONS

Figure 6.2: Bottom Hole Pressure response recorded in OpenLab simulator

Figure 6.3: Response for choke opening

6.1. RESULTS FROM PPO IMPLEMENTATION 67

Figure 6.4: Hyper-parameter selection during the training process (Snapshot from Mathworks RL Toolbox)

Figure 6.5: Testing the agent on the same simulation environment to observe stability

68 CHAPTER 6. RESULTS AND DISCUSSIONS

6.2 Results from ϵ− greedy method

The epsilon greedy algorithm is applied to a wide section of depth from 1780m to 2120m.

This section covers the most challenging areas in the geo-pressure profile. It can be observed

that given our design of reward function the technique performs perfectly, and stays very close

to the pore pressure (a cushion of 4 bar) is selected between the absolute pore pressure and

the limit for the set-point suggestion and this is always respected by the agent. An interesting

phenomenon happens at the depths of 1880m and 1890m where it can be seen that the set-point

suggestion has gone closer to the fracture pressure but it still stays with-in the pressure window.

This behaviour will be discussed in this section at a later stage.

Figure 6.6: Variations in the set-point suggestion using ϵ− greedy method, Pore pressure (red), Fracture pressure
(green) and set-point suggested (blue)

It is interesting to visualize the Kp and Choke opening in parallel as shown in Figure 6.7. It

can be seen that Kp and Choke opening follow each others behaviour most of the time and the

6.2. RESULTS FROM ϵ−GREEDY METHOD 69

less negative Kp becomes the less the choke valve opening is opened. The reason for having

having a negative Kp is because of the models defined in the backend of OpenLab simulator.

Figure 6.7: Pore Pressure, Fracture Pressure, Reference BHP, Kp, Choke Opening from left to right

Lets visualize the bottom hole pressure and choke opening at one of the points where the

window is really narrow lets say 1920m. The pore pressure at this window is 362 bar and

fracture pressure is 397 bar. The set-point suggested at this point is 366 Bar and the suggested

value of Kp is -0.081. Figure 6.8 and 6.9 show the bottom hole pressure and choke opening

respectively. It can be seen the pressure window is respected by the set-point suggestion and

the maximum overshoot is also about 5 bar which is normally considered as acceptable even at

the narrowest point. This also depends on how many points do we have in the discrete action

space if there are more actions more densely placed closer together it would result in an even

better policy.

For PPO and for multi-armed bandit problem Kp was ranged from -0.251 to -0.001 with a

step of 0.01 where as set-point for bottom hole pressure starts from Pore pressure (+ 4 bar at

least) to fracture pressure and the step size is of 6 bar.At the 1920 the pressure window is 35

bar.

70 CHAPTER 6. RESULTS AND DISCUSSIONS

Figure 6.8: Bottom hole pressure at 1920 meters

Figure 6.9: Choke Opening at 1920 meters

6.2. RESULTS FROM ϵ−GREEDY METHOD 71

Now lets look at the interesting region where the set-point went closer to the fracture pres-

sure. In order to troubleshoot this problem lets run a simulation where no negative penalty from

oscillations is incurred meaning only the first part of reward function discussed in section 4.2.1

is used. Figure 6.10 shows such an implementation.

Figure 6.10: Variations in the set-point suggestion using ϵ−greedy method, Pore pressure (red), Fracture pressure
(green) and set-point suggested (blue) with REWARD FOR OSCILLATIONS SET TO ZERO

In the figure 6.10 above, it can be observed that the point (1880m and 1890m) where the set-

point suggestion went closer to the fracture pressure (in Figure 6.6) is absent. This explains the

reason behind the peculiar behaviour, the agent tries to find a sacrifice between oscillations and

a very good set-point suggestion, at these depths the set-point closer to the pore pressure could

not be reached due to the selected range of Kp and flow rate setting as it falls well below the

minimum pressure that can be achieved even with the valve fully open. Hence the agent found

another set-point which was closer to the fracture pressure but the response was very stable and

72 CHAPTER 6. RESULTS AND DISCUSSIONS

Figure 6.11: Bottom hole pressure response when oscillations reward (penalty) is considered, set-point is 357 bar
here

Figure 6.12: Bottom hole pressure response when oscillations reward is not considered, set-point here is 333 bar

good. Figure 6.11 and 6.12 show BHP response for both methods (with and without oscillations

reward) at the depth of 1880m where the pore pressure is 329 bar and fracture pressure is 359

bar.

At The final value of BHP in Figure 6.11 (oscillations reward considered) is 356.9 bar where

as the set-point in this case was 357 bar, where as the final value in Figure 6.12, is 354.9 bar

6.2. RESULTS FROM ϵ−GREEDY METHOD 73

whereas the set-point was 333 bar. This means that a negative penalty was incurred at every

time step if oscillations reward was taken into account and because of this reason the agent

chose a pressure closer to fracture to avoid this situation. This peculiar situation depends on the

the flow rate settings, geo-pressures set by developer during simulations and also on the action

space i.e. either it is very dense or very sparse.

Figure 6.13: Pore Pressure, Fracture Pressure, Reference BHP, Kp from left to right - Case without oscillations
reward

In the case where the part of reward function for oscillations is not considered the Kp value

is never tuned, which means only half of the job is done and this can be observed in Figure 6.13

shown above.

74 CHAPTER 6. RESULTS AND DISCUSSIONS

6.3 Brief Comparison

The main advantage of multi-armed bandit approach has been the efficiency with respect to

computational time. Figure ?? shows that for the implementation discussed in chapter 5 for the

case of PPO at one depth scenario (2046m), it took 63004 secs (17.5 hours). The main problem

is the simulation time taken by each episode it is a little over 1 min (in OpenLab simulator it

takes 7 mins but fast forward mode is used to get results faster). Even though OpenLab simula-

tor allows the trained agent to be exported in many forms and deployment in the field is much

easier but the sheer time consumption makes it difficult to be useful.

On the other hand it takes under 2 hours to run the multi-armed bandit problem on a system

with very humble specifications. Due to these reasons the approach of multi-armed bandit is

clear choice in cases where time is critical. Not only this because of its efficiency the method

was applied to a whole depth section instead of just one point.

Figure 6.14: Snapshot of training for one depth scenario

6.4 Objectives completed

The objectives and scope for this study which were set in section 1.2 have been kept in check

through out the execution of this study. The major part of this study has been devoted to the

6.4. OBJECTIVES COMPLETED 75

development of a stable and robust simulation environment because the whole study depends

upon it. To ensure the stability the code includes try and except structures which handle all the

possible errors which can be faced during the training process, this process of critical impor-

tance because the simulation environment is not run locally but on OpenLab servers which are

accessed remotely using their web API. The inputs and outputs of the system have been defined

clearly to ensure that the decision making process for agent is smooth and easy to troubleshoot

for the developer. The study however is tested on a virtual simulator but the goals set are kept

closely related to actual drilling scenarios.

Chapter 7

Future work and Conclusion

7.1 Conclusion

During the design and development phases of this study, many alternatives were explored and

many other algorithms were also analysed. Some interesting conclusions are mentioned in the

bullet points below.

• The most important parameters the application phase have been pore pressure and fracture

pressure and how they change with respect to depth.

• The simulation environment was tested with various state spaces and various versions

were made to test the stability. OpenLab simulator API becomes non-responsive if a very

long sequence runs, by a long sequence it means if lots of episodes are run consecutively.

• Having good knowledge of geo-pressure profile or some estimate is critically important

for this study to be applicable in field.

• Various agents such as DQN, TD3, DDPG were also tested along with PPO but PPO

was found to be the one which converges on a optimum policy in the most time efficient

manner.

• The design of pressure profile and flow rate setting indicate the lowest pressures that can

be reached during a simulation. Sometimes this can lead to peculiar behaviour which

76

7.2. FUTURE WORKS 77

can be easily understood by looking at the action values and then running independent

simulations.

• The size of action space dictates the smoothness in the tuning process, but it also increases

the computational complexity as the agent has to sample more actions before it starts

exploitation.

• The integration of OpenLab simulator with the RL toolbox in MATLAB has been one of

the most important milestones and this can lead to many more interesting applications.

7.2 Future works

Some of the future works where this technique can be applied are mentioned below and some

possibilieties of additional work on the same study are also discussed.

• One of the applications of where the very similar methodology can be applied is the ROP

optimization on OpenLab simulator. A PI controller is used by the OpenLab for ROP

optimization and a similar work can be done for the tuning of its parameters and for

set-point of weight on bit (Weight on bit). This application is possible because of the

ground work laid out in this study where the OpenLab simulator was used as a simulation

environment for the reinforcement learning.

• In this study if the OpenLab simulator is replaced with the a local flow model as in on

the same machine, this can help in reducing the computational time and RL toolbox from

MATLAB can be directly applied to the choke opening to control the pressure but this

will be a different way of tackling the problem using a similar tool as used here. The goal

here was to tune the PID controller instead of replacing it completely.

• Another interesting implementation could be the application of this independent agent

in the RSS simulator developed by the Drillbotics team at UiS as an automated pressure

set-point and controller tuning will help yeild much better and stable results.

References

[1] Kenneth P Malloy, Rick Stone, George Harold Medley, Don M Hannegan, Oliver D Coker, Don Reitsma,
Helio Mauricio Santos, Joseph Irvin Kinder, Johan Eck-Olsen, John Walton McCaskill, et al. Managed-
pressure drilling: What it is and what it is not. In IADC/SPE Managed Pressure Drilling and Underbalanced
Operations Conference & Exhibition. OnePetro, 2009.

[2] Wang Guo, Fan Honghai, and Liu Gang. Design and calculation of a mpd model with constant bottom hole
pressure. Petroleum Exploration and Development, 38(1):103–108, 2011.

[3] National Instruments. Pid theory explained, 2022. Available at https://www.ni.com/en-no/innovations/
white-papers/06/pid-theory-explained.html.

[4] John-Morten Godhavn. Control requirements for high-end automatic mpd operations. In SPE/IADC Drilling
Conference and Exhibition. OnePetro, 2009.

[5] Mikkel ArnØ, John-Morten Godhavn, and Ole Morten Aamo. Deep reinforcement learning applied to man-
aged pressure drilling. In SPE Norway Subsurface Conference. OnePetro, 2020.

[6] Glenn-Ole Kaasa, Øyvind Nistad Stamnes, Lars Imsland, and Ole Morten Aamo. Simplified hydraulics
model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system.
SPE Drilling & Completion, 27(01):127–138, 2012.

[7] NR Ravishankar and MV Vijayakumar. Reinforcement learning algorithms: survey and classification. Indian
J. Sci. Technol, 10(1):1–8, 2017.

[8] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[9] Canyu Sun. Fundamental q-learning algorithm in finding optimal policy. In 2017 International Conference
on Smart Grid and Electrical Automation (ICSGEA), pages 243–246. IEEE, 2017.

[10] Yi Zhou. Robotics motion control by using deep reinforcement learning. 2021.

[11] Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. {\epsilon}-bmc: A bayesian ensemble approach to
epsilon-greedy exploration in model-free reinforcement learning. arXiv preprint arXiv:2007.00869, 2020.

[12] Mathworks. Reinforcement learning toolbox user’s guide 2022a, 2022. Available at https://www.

mathworks.com/help/pdf_doc/reinforcement-learning/rl_ug.pdf.

[13] DOTX CONTROL SOLUTIONS. The pid controller, 2022. Available at https://www.pid-tuner.com/
pid-control/.

[14] Mathworks. Proximal policy optimization agents, 2022. Available at https://www.mathworks.com/help/
reinforcement-learning/ug/ppo-agents.html.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional con-
tinuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[17] Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and technology. IEEE
transactions on control systems technology, 13(4):559–576, 2005.

[18] Antonio Turiel. The energy crisis in the world today: analysis of the world energy outlook 2021. 2022.

[19] Truong H Nguyen, Wisup Bae, and Nhan T Hoang. Effect of high pressure high temperature condition on
well design development in offshore vietnam. In Offshore Technology Conference Asia. OnePetro, 2016.

78

https://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
https://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
https://www.mathworks.com/help/pdf_doc/reinforcement-learning/rl_ug.pdf
https://www.mathworks.com/help/pdf_doc/reinforcement-learning/rl_ug.pdf
https://www.pid-tuner.com/pid-control/
https://www.pid-tuner.com/pid-control/
https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html

REFERENCES 79

[20] Maurizio Antonio Arnone and Paco Vieira. Drilling wells with narrow operating windows applying the mpd
constant bottom hole pressure technology—how much the temperature and pressure affects the operation’s
design. In SPE/IADC Drilling Conference and Exhibition. OnePetro, 2009.

[21] Fred NG. Kick handling with losses in an hpht environment. World oil, 230(3), 2009.

[22] P McLellan and C Hawkes. Borehole stability analysis for underbalanced drilling. Journal of Canadian
Petroleum Technology, 40(05), 2001.

[23] Brandon Hilts. Managed pressure drilling. In SPE annual technical conference and exhibition. OnePetro,
2013.

[24] Jan Einar Gravdal, Hardy Siahaan, and Knut S Bjørkevoll. Back-pressure mpd in extended-reach wells-
limiting factors for the ability to achieve accurate pressure control. In SPE Bergen One Day Seminar.
OnePetro, 2014.

[25] Kenneth P Malloy. Managed pressure drilling-: What is it anyway?: Managed pressure drilling. World oil,
228(3), 2007.

[26] Graham Clifford Goodwin, Stefan F Graebe, Mario E Salgado, et al. Control system design, volume 240.
Prentice Hall Upper Saddle River, 2001.

[27] Andrew Hynes, Elena P Sapozhnikova, and Ivana Dusparic. Optimising pid control with residual policy
reinforcement learning. In AICS, pages 277–288, 2020.

[28] Abhijit Gosavi. Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal on
Computing, 21(2):178–192, 2009.

[29] Asis Kumar Chattopadhyay and Tanuka Chattopadhyay. Monte carlo simulation. In Statistical Methods for
Astronomical Data Analysis, pages 241–275. Springer, 2014.

[30] Aditya Mahajan and Demosthenis Teneketzis. Multi-armed bandit problems. In Foundations and applica-
tions of sensor management, pages 121–151. Springer, 2008.

[31] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015.

[33] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters for on-policy
deep actor-critic methods? a large-scale study. In International conference on learning representations,
2020.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[35] Thibaut Théate and Damien Ernst. An application of deep reinforcement learning to algorithmic trading.
Expert Systems with Applications, 173:114632, 2021.

[36] J Frøyen and O Savareid. Model equations and solution techniques for multiphase flow in pipe networks.
IRIS, Stavanger, Norway, 2000.

[37] J Frøyen, O Sævareid, and EH Vefring. Discretization, implementation and testing of a semi-implicit method.
Technical ReportRF-2000/157, International Research Institute of Stavanger (IRIS), Stavanger, Norway,
2000.

[38] Mamoru Ishii. Thermo-fluid dynamic theory of two-phase flow. NASA Sti/recon Technical Report A,
75:29657, 1975.

[39] Dalila Gomes, Knut Steinar Bjørkevoll, Johnny Frøyen, Kjell Kåre Fjelde, Dan Sui, John Emeka Udegbunam,
and Fatemeh Moeinikia. Probabilistic flow modelling approach for kick tolerance calculations. In Inter-
national Conference on Offshore Mechanics and Arctic Engineering, volume 57762, page V008T11A062.
American Society of Mechanical Engineers, 2017.

80 REFERENCES

[40] MJ Jellison, R Urbanowski, H Sporker, and ME Reeves. Intelligent drill pipe improves drilling efficiency,
enhances well safety and provides added value. In IADC world drilling conference, Dubrovnik, Croatia,
pages 1–2, 2004.

[41] ACVM Lage. Two-phase flow models and experiments for low-head and underbalanced drilling. PhD
dissertation, 2000.

[42] TD Reed and AA Pilehvari. A new model for laminar, transitional, and turbulent flow of drilling muds. In
SPE Production Operations Symposium. OnePetro, 1993.

[43] Jing Zhou, Jan Einar Gravdal, Per Strand, and Svein Hovland. Automated kick control procedure for an
influx in managed pressure drilling operations. 2016.

[44] NORCE Norwegian Research Centre AS. Openlab api, 2022. Available at https://https://live.openlab.
app/swagger/index.html.

[45] Jan Einar Gravdal, Dan Sui, Attila Nagy, Nejm Saadallah, and Robert Ewald. A hybrid test environment for
verification of drilling automation systems. In SPE/IADC International Drilling Conference and Exhibition.
OnePetro, 2021.

[46] Yasutaka Kishima and Kentarou Kurashige. Reduction of state space in reinforcement learning by sensor
selection. Artificial Life and Robotics, 18(1):7–14, 2013.

[47] Steve Roberts. Bandit algorithms, 2020. Available at https://towardsdatascience.com/

bandit-algorithms-34fd7890cb18.

https://https://live.openlab.app/swagger/index.html
https://https://live.openlab.app/swagger/index.html
 https://towardsdatascience.com/bandit-algorithms-34fd7890cb18
 https://towardsdatascience.com/bandit-algorithms-34fd7890cb18

Appendices

81

Appendix A

Development Code

A.1 Installed Packages

Python package Version MATLAB 2021a Add-On Version
anaconda-client 1.9.0 Signal Processing Toolbox 8.7
anaconda-navigator 2.1.4 Control System Toolbox 10.11
anaconda-project 0.10.1 Reinforcement Learning Toolbox 2.1
click 8.0.3 Deep Learning Toolbox 14.3
conda 4.12.0 Deep Learning HDL Toolbox 1.2
conda-build 3.21.6 Statistics and Machine Learning Toolbox 12.2
conda-content-trust 0.0.0 – –
conda-pack 0.0.0 – –
conda-package-handling 1.7.3 – –
conda-repo-cli 1.0.4 – –
conda-token 0.3.0 – –
conda-verify 3.4.2 – –
jupyter 1.0.0 – –
jupyter-client 6.1.12 – –
jupyter-console 6.4.0 – –
jupyter-core 4.8.1 – –
jupyter-server 1.4.1 – –
jupyterlab 3.2.1 – –
jupyterlab-pygments 0.1.2 – –
jupyterlab-server 2.8.2 – –
jupyterlab-widgets 1.0.0 – –
kaleido 0.2.1 – –
matplotlib 3.4.3 – –
matplotlib-inline 0.1.2 – –
math 3.4.2 – –
numpy 1.20.3 – –
openlab 2.5.3 – –
pandas 1.3.4 – –
plotly 5.5.0 – –
python-dateutil 2.8.2 – –
python-lsp-black 1.0.0 – –
python-lsp-jsonrpc 1.0.0 – –

83

84 APPENDIX A. DEVELOPMENT CODE

python-lsp-server 1.2.4 – –
python-slugify 5.0.2 – –
spyder 5.1.5 – –
spyder-kernels 2.1.3 – –

A.2 Code for Step Function - Version 1

This is the code for the step function in the initial implementation of MDP and it uses some

inbuilt functions to call the OpenLab API and these functions are provided in form of scripts by

the OpenLab.

1 f u n c t i o n [NextObs , Reward , IsDone , LoggedS igna l] = mpdStepFunc t ion (
Act ion , LoggedS igna l)

2

3

4 % This f u n c t i o n a p p l i e s t h e g i v e n a c t i o n t o t h e e n v i r o n m e n t and
e v a l u a t e s

5 % t h e sys tem dynamics f o r one s i m u l a t i o n s t e p .
6

7 %% D ef in e t h e e n v i r o n m e n t c o n s t a n t s .
8 g l o b a l Sim MaxTimeSteps t i m e S t e p RampIndex RampStar tTime

RampTimeSteps RampValues F lowRate In PI Re fe r enceBHPPres su re
I n i t i a l C h o k e O p e n i n g Kp Ki Ts BHP_arr I n i t i a l B i t D e p t h P o r e P r e s s u r e
F r a c t u r e P r e s s u r e t a b l e O f P r e s s u r e s ;

9

10 % NOTE: You need Mat lab R2016b v e r s i o n t o run t h e OpenLab s i m u l a t o r
11 di sp ("MPD STEP FUNCTION CALLED") ;
12

13 %% C l i p p i n g f o r C o n t i n u o u s Space
14 %i f (Ac t i on > 1)
15 % Ac t i on = 1 ;
16 % Reward = −10000;
17 %e l s e i f (Ac t i on < −1)
18 % Ac t i on = −1;
19 % Reward = −10000;
20 %e l s e
21 % Reward = 0 ;
22 %end
23 %% P u t t i n g a check on i f t h i s i s a new s i m u l a t i o n
24

25 di sp (" Check f o r e p i s o d e end ") ;
26

27 i f (LoggedS igna l . s t a t e (3) == −1) %Meaning r e s e t f u n c t i o n was c a l l e d
and ISDone was s e t t o 1 i n t h e l a s t e p i s o d e

28 t r y
29 i f (Sim . IsOK)
30 Sim . Stop ;

A.2. CODE FOR STEP FUNCTION - VERSION 1 85

31 Sim . D e l e t e ;
32 end
33

34 c a t c h e x c e p t i o n
35 di sp ("No s i m u l a t i o n t o s t o p ") ;
36 end
37

38 di sp (" Time t o u p d a t e v a l u e o f KP , incomming a c t i o n v a l u e i s ") ;
39

40 di sp (Ac t i on) ;
41 Ac t i on = s q u e e z e (A c t i on) ;
42 Ac t i on = do ub le (A c t i on) ;
43

44 Kp = Ac t io n (1) ;
45 Ki = Kp / 1 0 ;
46 di sp ("Kp v a l u e u p d a t e d ") ;
47

48 %I n i t i a l S e t t i n g s
49 di sp (" OpenLab i n i t i a l s e t t i n g s . . ") ;
50 I d e n t i t y S e r v e r U R L = ’ h t t p s : / / l i v e . o p e n l a b . app / ’ ;
51 [username , ap i_key , l i c e n s e _ g u i d] = GetLoginData () ;
52 Conf igu ra t ionName = ’MPD TEST ’ ;
53 Simula t ionName = ’ Flow sweep wi th bhp c o n t r o l (Mat lab) ’ ;
54 I n i t i a l B i t D e p t h = 2046 ; % [m]
55 I n i t i a l T o p O f S t r i n g P o s i t i o n = 2 0 ;
56 di sp (" Openlab i n i t i a l s e t t i n g done ") ;
57

58 % C r e a t e s i m u l a t i o n o b j e c t
59 di sp (" C r e a t i n g s i m u l a t i o n o b j e c t ") ;
60 Sim = OpenLabCl ien t (I d e n t i t y S e r v e r U R L , username , ap i_key ,

l i c e n s e _ g u i d , Conf igura t ionName , Simulat ionName , I n i t i a l B i t D e p t h ,
I n i t i a l T o p O f S t r i n g P o s i t i o n) ;

61 di sp (" S i m u l a t i o n o b j e c t c r e a t e d ") ;
62

63 % Ramp s e t t i n g s
64 di sp ("Ramp s e t t i n g c r e a t i o n ") ;
65 RampIndex = 1 ;
66

67 % Randomize t h e Ramp s e t t i n g s we g e t a h igh Ramp v a l u e between
2800 t o

68 % 2900 and t h e n lower i s a lways 700 l e s s t h a n h i g h e r .
69

70 higherRampValue = 2800 + (2900 −2800) . * rand (1 , 1) ;
71 lowerRampValue = higherRampValue − 700 ;
72 RampValuesDown = (higherRampValue : −5 0 : lowerRampValue) / 6 0 0 0 0 ; % [

m3 / s e c]
73 %RampValuesUp = (lowerRampValue : 5 0 : higherRampValue) / 6 0 0 0 0 ; % [m3

/ s e c]
74 RampValues = [RampValuesDown] ; % [m3 / s e c]
75 RampStepDura t ion = 3 0 ; % [s e c]
76 RampStar tTime = 100 ; % [s e c]

86 APPENDIX A. DEVELOPMENT CODE

77 RampTimeSteps = RampStar tTime : RampStepDura t ion : l e n g t h (RampValues)
* RampStepDurat ion −1+ RampStar tTime ;

78

79 % Time s t e p s t o s i m u l a t e
80 MaxTimeSteps = (RampTimeSteps (end) +100) ;
81 % C o n t r o l l e r s e t t i n g s
82 Ts = 1 ;
83 Refe renceBHPPres su re = Ac t i on (2) * 1E5 ; % [Pa] (Ac t i o n (2) i s i n

Bar)
84 I n i t i a l C h o k e O p e n i n g = 0 . 2 5 ; % [c l o s e d : 0 , open : 1]
85 PI = P I c o n t r o l l e r (Kp , Ki , Ts , Refe renceBHPPressu re ,

I n i t i a l C h o k e O p e n i n g) ; % C r e a t e PI c o n t r o l l e r o b j e c t , p r e s s u r e i n [
Pa]

86 t i m e S t e p = 1 ;
87 BHP_arr= [] ; %Empty S i m u l a t i o n BHP a r r a y
88

89 %Pore and F r a c t u r e P r e s s u r e e x t r a c t i o n and c a l c u l a t i o n from t h e
90 %g r a d i e n t
91 t a b l e O f P r e s s u r e s = r e a d t a b l e (’ g e o p r e s s u r e s . c sv ’ , ’ NumHeaderLines ’

, 1) ;
92 Depths = t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ;
93 %P r e c a u t i o n f o r e x t r a p o l a t i o n e r r o r .
94 i f (I n i t i a l B i t D e p t h > Depths (end))
95 error (’ Unable t o d e t e r m i n e p r e s s u r e window a t t h i s d e p t h .

%g ’ , . . .
96 I n i t i a l B i t D e p t h) ;
97 end
98

99 P o r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ,
t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 2)) , I n i t i a l B i t D e p t h) ;

100 F r a c t u r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ,
t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , I n i t i a l B i t D e p t h) ;

101 %h t t p s : / / www. s c i e n c e d i r e c t . com / t o p i c s / e n g i n e e r i n g / f o r m a t i o n −pore −
p r e s s u r e

102 P o r e P r e s s u r e = (8 . 3 4 5 * P o r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h
* 3 . 2 8) *6894 .76 ; % s . g t o ppg , t h e n p s i t h e n t o P a s c a l s

103 F r a c t u r e P r e s s u r e = (8 . 3 4 5 * F r a c t u r e P r e s s u r e) * (0 . 0 5 1 9 4 8 *
I n i t i a l B i t D e p t h * 3 . 2 8) *6894 .76 ; % Same t o P a s c a l s

104

105 %Record ing t h e e s t i m a t e d s e t p o i n t s f o r r e c o r d k e e p i n g
106 f i d 1 = fopen (" r e c o r d . t x t " , ’ a+ ’) ;
107 f p r i n t f (f i d 1 , ’%f %f , \ n ’ , Refe renceBHPPressu re , Kp) ;
108 f c l o s e (f i d 1) ;
109

110

111 %I n i t i a l i z i n g Reward based on e s t i m a t e d s e t p o i n t
112 Reward = Reward_PBH (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 2)) ,

t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s
(: , 1)) , Ac t i on (2) , I n i t i a l B i t D e p t h) ;

113

114 e l s e

A.2. CODE FOR STEP FUNCTION - VERSION 1 87

115 Reward = 0 ;
116 end
117

118 %% OUT OF BOUNDS ACTION CHECK
119 %d i s p l a y ((F r a c t u r e P r e s s u r e / 1 E5))
120

121 i f ~ ismember (Ac t i on (2) , ((c e i l (P o r e P r e s s u r e / 1 E5) : 6 : F r a c t u r e P r e s s u r e / 1
E5)))

122 error (’ Ac t i on i s o u t o f bounds . %g ’ , . . .
123 Ac t i on (2)) ;
124 end
125

126 i f ~ ismember (Ac t i on (1) , ((− 0 . 2 5 5 : 0 . 0 1 : − 0 . 0 0 5)))
127 error (’ Ac t i on i s o u t o f bounds . %g ’ , . . .
128 Ac t i on (1)) ;
129 end
130

131 di sp (" Check f o r e p i s o d e s t a t u s comple t ed ") ;
132

133 %% TAKING STEPS IN AN EPISODE
134 i f Sim . IsOK
135 t r y
136 i f (t i m e S t e p <= MaxTimeSteps)
137 %f o r t i m e S t e p = 1 : MaxTimeSteps
138 di sp (Kp) ;
139 t S t a r t S t e p = t i c ;
140

141 i f t i m e S t e p >= RampStar tTime % Flow sweep and PI c o n t r o l
o f t h e choke

142 i f (RampIndex < l e n g t h (RampTimeSteps) && RampIndex <
l e n g t h (RampValues))

143 i f (t i m e S t e p >= RampTimeSteps (RampIndex) &&
t i m e S t e p < RampTimeSteps (RampIndex + 1))

144 FlowRate In = RampValues (RampIndex) ;
145 i f (t i m e S t e p == RampTimeSteps (RampIndex + 1)

− 1)
146 RampIndex = RampIndex + 1 ;
147 end
148 end
149 e l s e i f (RampIndex == l e n g t h (RampTimeSteps) &&

RampIndex == l e n g t h (RampValues))
150 FlowRate In = RampValues (RampIndex) ;
151 end
152

153

154 % R e s e t PI c o n t r o l l e r b e f o r e usage , s e t r e f e r e n c e
v a l u e and i n i t i a l o u t p u t (= i n i t i a l

155 % choke open ing)
156 PI . R e s e t (Refe renceBHPPressu re , Sim . ChokeOpen ingS ta tus)

;
157

88 APPENDIX A. DEVELOPMENT CODE

158

159 ChokeOpening = PI . Ge tOutpu t (Sim . B o t t o m H o l e P r e s s u r e) ;
% Get choke open ing from PI c o n t r o l l e r

160

161 e l s e % C o n s t a n t f low r a t e and choke open ing
162 FlowRate In = RampValues (1) ;
163 ChokeOpening = I n i t i a l C h o k e O p e n i n g ;
164 end
165

166 % S e t s e t p o i n t s t o t h e s i m u l a t o r
167 Sim . F lowRate In = FlowRate In ; % [m3 / s e c]
168 Sim . ChokeOpening = ChokeOpening ; % [0 −1]
169 Sim . ChokePumpFlowRateIn = 0 / 6 0 0 0 0 ; % [m3 / s e c]
170 Sim . T o p O f S t r i n g V e l o c i t y = 0 ; % [m/ s e c]
171 Sim . SurfaceRPM = 0 / 6 0 ; % [r e v o l u t i o n s p e r s e c .]
172 Sim . ROP = 0 / 3 6 0 0 ; % [m/ s e c]
173

174 % Step s i m u l a t o r
175 Sim . S tep () ;
176

177

178 di sp (" S t ep Taken ")
179 i f ~Sim . IsOK % S i m u l a t o r f a i l s
180 error (’ E r r o r : S i m u l a t o r F a i l e d ’) ;
181 end
182

183 %Appending O p e r a t i o n
184 BHP_arr= [BHP_arr , Sim . B o t t o m H o l e P r e s s u r e] ;
185

186 %Reading System Dynamics
187 SysDynamics = s t e p i n f o (BHP_arr , (1 : t i m e S t e p) ,

Refe renceBHPPressu re , ’ S e t t l i n g T i m e T h r e s h o l d ’ , 0 . 0 0 5) ;
188 LoggedS igna l . s t a t e = [SysDynamics . (" Ove r shoo t ") /

Re fe r enceBHPPres su re ; SysDynamics . (" T r a n s i e n t T i m e ") ; SysDynamics . ("
S e t t l i n g T i m e ") ; I n i t i a l B i t D e p t h ; Sim . ChokeOpening ; Sim . FlowRateOut ;
Ac t i on (2) ; Sim . B o t t o m H o l e P r e s s u r e ; P o r e P r e s s u r e ; F r a c t u r e P r e s s u r e] ;

189

190 %Checking p r e s s u r e window
191

192 %d i s p (Sim . B o t t o m H o l e P r e s s u r e) ;
193 %d i s p ([I n i t i a l B i t D e p t h]) ;
194 %d i s p ([Sim . ChokeOpening]) ;
195 %d i s p ([Sim . ChokePumpFlowRateIn]) ;
196 %d i s p ([Sim . ROP]) ;
197 %d i s p (LoggedS igna l . s t a t e) ;
198

199 %Reward u p d a t e s a t t h e end of e v e r y s i m u l a t i o n s t e p
200 i f (abs ((Sim . B o t t o m H o l e P r e s s u r e − Refe renceBHPPres su re) /

Re fe r enceBHPPres su re) > 0 . 0 1)
201 Reward = Reward − 250 ;
202 d i s p l a y (Reward) ;

A.2. CODE FOR STEP FUNCTION - VERSION 1 89

203 d i s p l a y (" Ove r shoo t p e n a l i t y i n ")
204 e l s e
205 Reward = Reward + 0 ;
206 end
207

208 %i f (i s n a n (LoggedS igna l . s t a t e (2)))
209 % Reward = Reward − 2 5 ;
210 %end
211

212 %I f s e t t l i n g p o i n t has r e a c h e d we s h o u l d s t e p o t o f t h e
loop

213 %and b r e a k i t and u p d a t e reward .
214

215 %i f (~ i s n a n (LoggedS igna l . s t a t e (3)))
216 % Reward = Reward + 100 ;
217 % b r e a k ;
218 %end
219 t i m e S t e p = t i m e S t e p + 1 ;
220 di sp (" Ep i sode Con t inued ")
221 IsDone = 0 ;
222 e l s e
223 % Stop s i m u l a t i o n p r o c e s s and c o m p l e t e t h e e p i s o d e
224 Sim . Stop ;
225 IsDone = 1 ;
226 %Reward u p d a t e a t t h e end of s i m u l a t i o n
227

228 i f (i snan (LoggedS igna l . s t a t e (3))) % End of s i m u l a t i o n /
e p i s o d e check

229 Reward = Reward − 100000;
230 e l s e i f (i snan (LoggedS igna l . s t a t e (2)))
231 Reward = Reward − 100000;
232 e l s e
233 Reward = 0 ;
234 end
235

236 di sp (" Ep i sode Ended ") ;
237

238 end
239

240 %a s s i g n t h e n e x t o b s e r v a t i o n
241 NextObs = LoggedS igna l . s t a t e ;
242

243 %C a l c u l a t i o n f o r Decay R a t i o o f t h e BHP
244 %O s c i l a t i o n s = BHP_arr − Refe r enceBHPPres su re ;
245 %p l o t (1 : numel (O s c i l a t i o n s) , O s c i l a t i o n s) ;
246

247

248 %F i x i n g Nans e r r o r s f o r Times
249 i f (i snan (LoggedS igna l . s t a t e (3)))
250 NextObs (3) = −5;
251 end

90 APPENDIX A. DEVELOPMENT CODE

252

253 i f (i snan (LoggedS igna l . s t a t e (2)))
254 NextObs (2) = −5;
255 end
256

257

258 %d i s p (BHP_arr)
259

260 c a t c h e x c e p t i o n
261 % Stop s i m u l a t i o n
262 d i s p l a y (" Warning r e a c h e d ")
263 Sim . Stop ;
264 warn ing (e x c e p t i o n) ;
265

266 end
267 end
268

269 end

A.3 Code for Reset Function - Version 1

This is the code for the reset function used in the intial implementation of the MDP.

1 f u n c t i o n [I n i t i a l O b s e r v a t i o n , LoggedS igna l] = mpdRese tFunc t ion ()
2 % R e s e t f u n c t i o n t o p l a c e e n v i r o n m e n t i n i n i t i a l s e t u p
3 % i n i t i a l s t a t e .
4

5 d i s p l a y (" R e s e t F u n c t i o n C a l l e d ") ;
6 g l o b a l P o r e P r e s s u r e F r a c t u r e P r e s s u r e I n i t i a l B i t D e p t h
7

8 % C r e a t e s i m u l a t i o n o b j e c t
9 LoggedS igna l . s t a t e = [−1 ; −1 ; −1 ; I n i t i a l B i t D e p t h ; −1 ; −1 ; −1 ; −1 ;

P o r e P r e s s u r e ; F r a c t u r e P r e s s u r e] ;
10

11 I n i t i a l O b s e r v a t i o n = LoggedS igna l . s t a t e ;
12 %d i s p l a y (I n i t i a l O b s e r v a t i o n)
13

14 end

A.4 Code for setting up Environment - Version 1

This is the code for setting up the environment, action and state space for the initial implemen-

tation of MDP.

A.4. CODE FOR SETTING UP ENVIRONMENT - VERSION 1 91

1 c l e a r v a r i a b l e s ;
2 c l c ;
3 c l o s e a l l ;
4 c l e a r g l o b a l ;
5

6 g l o b a l P o r e P r e s s u r e F r a c t u r e P r e s s u r e I n i t i a l B i t D e p t h
7

8 I n i t i a l B i t D e p t h = 2046 ;
9 t a b l e O f P r e s s u r e s = r e a d t a b l e (’ g e o p r e s s u r e s . c sv ’ , ’ NumHeaderLines ’ , 1) ;

10 Depths = t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ;
11 P o r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , t a b l e 2 a r r a y

(t a b l e O f P r e s s u r e s (: , 2)) , I n i t i a l B i t D e p t h) ;
12 F r a c t u r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ,

t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , I n i t i a l B i t D e p t h) ;
13

14 %h t t p s : / / www. s c i e n c e d i r e c t . com / t o p i c s / e n g i n e e r i n g / f o r m a t i o n −pore −
p r e s s u r e

15 P o r e P r e s s u r e = (8 . 3 4 5 * P o r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h * 3 . 2 8)
*6894 .76 ; % s . g t o ppg , t h e n p s i t h e n t o P a s c a l s

16 F r a c t u r e P r e s s u r e = (8 . 3 4 5 * F r a c t u r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h
* 3 . 2 8) *6894 .76 ; % Same t o P a s c a l s

17

18 % Add t o t h e ma t l ab p a t h t h e f o l d e r where t h i s f i l e i s l o c a t e d and
a l l t h e

19 % s u b f o l d e r s
20 di sp (" D i s p l a y Envi ronment V a r i a b l e s ") ;
21 a d d p a t h (g e n p a t h (pwd)) ;
22

23 O b s e r v a t i o n I n f o = r lNumer i cSpec ([1 0 1]) ;
24 O b s e r v a t i o n I n f o . Name = ’ C o n t r o l l e r t u n n i n g p a r a m e t e r s and sys tem

p a r a m e t e r s s t a t e s ’ ;
25 O b s e r v a t i o n I n f o . D e s c r i p t i o n = ’ Over shoo t r a t i o , T r a n s i e n t T i m e ,

S e t t l i n g T i m e , I n i t i a l B i t D e p t h , ChokeOpening , Flow Rate Out , BHP
Refe rence , C u r r e n t S i m u l a t i o n BHP, Pore P r e s s u r e , F r a c t u r e
P r e s s u r e ’ ;

26

27 % C o n t i n u o u s Ac t i on Space C o n f i g u r a t i o n − Comment o u t ismemeber check
i n

28 % t h e s t e p f u n c t i o n
29

30 %A c t i o n I n f o = r lNumer i cSpec ([1 1] , UpperLimi t = 1 , LowerLimit = −1) ; %
Dont a s s i g n l i m i t s o u t i s d e t h i s d e f i n i t i o n − wei rd e r r o r .

31 %A c t i o n I n f o . Name = ’ C o n t r o l l e r Act ion ’ ;
32 %env = r l F u n c t i o n E n v (O b s e r v a t i o n I n f o , A c t i o n I n f o , ’ mpdStepFunct ion ’ , ’

mpdRese tFunc t ion ’) ;
33

34 %D i s c r e t e Ac t i on Space C o n f i g u r a t i o n − Must be r e f l e c t e d i n t h e S tep
35 %f u n c t i o n as w e l l .
36 kpRange = − 0 . 2 5 5 : 0 . 0 1 : − 0 . 0 0 5 ;
37 s e t p t s R a n g e = c e i l (P o r e P r e s s u r e / 1 E5) : 6 : F r a c t u r e P r e s s u r e / 1 E5 ;
38 di sp (" Pore and F r a c t u r e P r e s s u r e s a t Depth ") ;

92 APPENDIX A. DEVELOPMENT CODE

39 di sp (I n i t i a l B i t D e p t h) ;
40 di sp (" a r e as f o l l o w s ") ;
41 di sp (c e i l (P o r e P r e s s u r e / 1 E5)) ;
42 di sp (F r a c t u r e P r e s s u r e / 1 E5) ;
43

44 C = { kpRange , s e t p t s R a n g e } ;
45 D = C ;
46 [D{ : }] = n d g r i d (C { : }) ;
47 Z = c e l l 2 m a t (c e l l f u n (@(m)m(:) ,D, ’ u n i ’ , 0)) ;
48

49 Act = t r a n s p o s e (num2ce l l (Z , 2)) ;
50

51 A c t i o n I n f o = r l F i n i t e S e t S p e c (Act) ;
52

53

54 A c t i o n I n f o . Name = ’ C o n t r o l l e r A c t i on ’ ;
55 env = r l F u n c t i o n E n v (O b s e r v a t i o n I n f o , A c t i o n I n f o , ’ mpdStepFunc t ion ’ , ’

mpdRese tFunc t ion ’) ;

A.5 ENVIRONMENT STEP FUNCTION ONE STATE MDP

This code is for the step function of the one step MDP case which is also referred to as the

modified version of first implementation and it is based on A.2. with some changes.

1 f u n c t i o n [NextObs , Reward , IsDone , LoggedS igna l] = mpdStepFunc t ion (
Act ion , LoggedS igna l)

2

3 g l o b a l I n i t i a l B i t D e p t h P o r e P r e s s u r e F r a c t u r e P r e s s u r e t a b l e O f P r e s s u r e s
;

4

5 di sp ("MPD STEP FUNCTION CALLED") ;
6

7 a d d p a t h (g e n p a t h (pwd)) ;
8

9 I d e n t i t y S e r v e r U R L = ’ h t t p s : / / l i v e . o p e n l a b . app / ’ ;
10

11 [username , ap i_key , l i c e n s e _ g u i d] = GetLoginData () ;
12

13 Conf igu ra t ionName = ’MPD TEST ’ ;
14 Simula t ionName = ’ Flow sweep wi th bhp c o n t r o l (Mat lab) l a b ’ ;
15

16 I n i t i a l T o p O f S t r i n g P o s i t i o n = 2 0 ;
17

18

19 % C r e a t e s i m u l a t i o n o b j e c t
20 whi le t r u e
21 t r y

A.5. ENVIRONMENT STEP FUNCTION ONE STATE MDP 93

22 Sim = OpenLabCl ien t (I d e n t i t y S e r v e r U R L , username , ap i_key ,
l i c e n s e _ g u i d , Conf igura t ionName , Simulat ionName , I n i t i a l B i t D e p t h ,
I n i t i a l T o p O f S t r i n g P o s i t i o n) ;

23 c a t c h e x c e p t i o n
24 Sim . Stop ;
25 Sim . D e l e t e ;
26 end
27

28 i f (Sim . IsOK)
29 break ;
30 end
31 end
32

33 % Ramp s e t t i n g s
34 RampIndex = 1 ;
35

36 higherRampValue = 2800 + (2900 −2800) . * rand (1 , 1) ;
37 lowerRampValue = higherRampValue − 400 ;
38

39 RampValuesDown = (higherRampValue : −5 0 : lowerRampValue) / 6 0 0 0 0 ; % [m3 /
s e c]

40 %RampValuesUp = (lowerRampValue : 5 0 : higherRampValue) / 6 0 0 0 0 ; % [m3 / s e c
]

41 RampValues = [RampValuesDown] ; % [m3 / s e c]
42 RampStepDura t ion = 3 0 ; % [s e c]
43 RampStar tTime = 100 ; % [s e c]
44 RampTimeSteps = RampStar tTime : RampStepDura t ion : l e n g t h (RampValues) *

RampStepDurat ion −1+ RampStar tTime ;
45

46 % Time s t e p s t o s i m u l a t e
47 MaxTimeSteps = (RampTimeSteps (end) +100) ;
48

49 % C o n t r o l l e r s e t t i n g s
50 Kp = Ac t io n (1) ; Ki = Kp / 1 0 ; Ts = 1 ;
51 Refe renceBHPPres su re = Ac t i on (2) * 1E5 ; % [Pa]
52 I n i t i a l C h o k e O p e n i n g = 1 ; % [c l o s e d : 0 , open : 1]
53 PI = P I c o n t r o l l e r (Kp , Ki , Ts , Refe renceBHPPressu re ,

I n i t i a l C h o k e O p e n i n g) ; % C r e a t e PI c o n t r o l l e r o b j e c t , p r e s s u r e i n [
Pa]

54

55 %Record ing t h e e s t i m a t e d s e t p o i n t s f o r r e c o r d k e e p i n g
56 f i d 1 = fopen (" r e c o r d . t x t " , ’ a+ ’) ;
57 f p r i n t f (f i d 1 , ’%f %f , \ n ’ , Refe renceBHPPressu re , Kp) ;
58 f c l o s e (f i d 1) ;
59

60 %d i s p (" About t o c a l l Reward F u n c t i o n ")
61 Reward = Reward_PBH (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 2)) , t a b l e 2 a r r a y (

t a b l e O f P r e s s u r e s (: , 3)) , t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , Ac t i o n
(2) , I n i t i a l B i t D e p t h) ;

62

94 APPENDIX A. DEVELOPMENT CODE

63 i f ~ ismember (Ac t i on (2) , ((c e i l (P o r e P r e s s u r e / 1 E5) : 6 : F r a c t u r e P r e s s u r e / 1
E5)))

64 error (’ Ac t i on i s o u t o f bounds . %g ’ , . . .
65 Ac t i on (2)) ;
66 end
67

68 i f ~ ismember (Ac t i on (1) , ((− 0 . 2 5 5 : 0 . 0 1 : − 0 . 0 0 5)))
69 error (’ Ac t i on i s o u t o f bounds . %g ’ , . . .
70 Ac t i on (1)) ;
71 end
72

73 i f Sim . IsOK
74 C o m p l e t i o n F l a g = t r u e ;
75

76 whi le (C o m p l e t i o n F l a g == t r u e)
77 t r y
78 BHP_arr= [] ;
79 f o r t i m e S t e p = 1 : MaxTimeSteps
80 t S t a r t S t e p = t i c ;
81

82 i f t i m e S t e p >= RampStar tTime % Flow sweep and PI
c o n t r o l o f t h e choke

83 i f (RampIndex < l e n g t h (RampTimeSteps) &&
RampIndex < l e n g t h (RampValues))

84 i f (t i m e S t e p >= RampTimeSteps (RampIndex) &&
t i m e S t e p < RampTimeSteps (RampIndex + 1))

85 FlowRate In = RampValues (RampIndex) ;
86 i f (t i m e S t e p == RampTimeSteps (RampIndex +

1) − 1)
87 RampIndex = RampIndex + 1 ;
88 end
89 end
90 e l s e i f (RampIndex == l e n g t h (RampTimeSteps) &&

RampIndex == l e n g t h (RampValues))
91 FlowRate In = RampValues (RampIndex) ;
92 end
93

94

95 % R e s e t PI c o n t r o l l e r b e f o r e usage , s e t r e f e r e n c e
v a l u e and i n i t i a l o u t p u t (= i n i t i a l

96 % choke open ing)
97 PI . R e s e t (Refe renceBHPPressu re , Sim .

ChokeOpen ingS ta tus) ;
98

99

100 ChokeOpening = PI . Ge tOutpu t (Sim .
B o t t o m H o l e P r e s s u r e) ; % Get choke open ing from PI c o n t r o l l e r

101

102 e l s e % C o n s t a n t f low r a t e and choke open ing
103 FlowRate In = RampValues (1) ;
104 ChokeOpening = I n i t i a l C h o k e O p e n i n g ;

A.5. ENVIRONMENT STEP FUNCTION ONE STATE MDP 95

105 end
106

107 % S e t s e t p o i n t s t o t h e s i m u l a t o r
108 Sim . F lowRate In = FlowRate In ; % [m3 / s e c]
109 Sim . ChokeOpening = ChokeOpening ; % [0 −1]
110 Sim . ChokePumpFlowRateIn = 0 / 6 0 0 0 0 ; % [m3 / s e c]
111 Sim . T o p O f S t r i n g V e l o c i t y = 0 ; % [m/ s e c]
112 Sim . SurfaceRPM = 0 / 6 0 ; % [r e v o l u t i o n s p e r s e c .]
113 Sim . ROP = 0 / 3 6 0 0 ; % [m/ s e c]
114

115 % Step s i m u l a t o r
116 Sim . S tep () ;
117

118 i f ~Sim . IsOK % S i m u l a t o r f a i l s
119 C o m p l e t i o n F l a g = t r u e ;
120 break ;
121 e l s e
122 C o m p l e t i o n F l a g = f a l s e ;
123 end
124

125 %d i s p l a y ([’ T o t a l s t e p d u r a t i o n : ’ num2s t r (t o c (
t S t a r t S t e p))]) ;

126 BHP_arr= [BHP_arr , Sim . B o t t o m H o l e P r e s s u r e] ;
127 SysDynamics = s t e p i n f o (BHP_arr , (1 : t i m e S t e p) ,

Refe renceBHPPressu re , ’ S e t t l i n g T i m e T h r e s h o l d ’ , 0 . 0 0 0 5) ;
128 LoggedS igna l . s t a t e = [Sim . B o t t o m H o l e P r e s s u r e ; Sim .

B i t D ep t h ; P o r e P r e s s u r e ; F r a c t u r e P r e s s u r e] ;
129

130 %Reward u p d a t e s a t t h e end of e v e r y s i m u l a t i o n s t e p
131 i f (abs ((Sim . B o t t o m H o l e P r e s s u r e −

Refe renceBHPPres su re) / Re fe r enceBHPPres su re) > 0 . 0 1)
132 Reward = Reward − 250 ;
133 di sp (Reward) ;
134 di sp (" Ove r shoo t p e n a l i t y i n ") ;
135 e l s e
136 Reward = Reward + 0 ;
137 end
138

139 end
140

141 NextObs = LoggedS igna l . s t a t e ;
142 % Stop s i m u l a t i o n p r o c e s s
143

144 IsDone = 1 ;
145 Sim . Stop ;
146 Sim . D e l e t e ;
147

148

149 i f (i snan (SysDynamics . (" S e t t l i n g T i m e "))) % End of
s i m u l a t i o n / e p i s o d e check

150 Reward = Reward − 100000;

96 APPENDIX A. DEVELOPMENT CODE

151 e l s e i f (i snan (SysDynamics . (" T r a n s i e n t T i m e ")))
152 Reward = Reward − 100000;
153 e l s e
154 Reward = Reward − 0 ;
155 end
156

157 c a t c h e x c e p t i o n
158 % Stop s i m u l a t i o n
159 Sim . Stop ;
160 Sim . D e l e t e ;
161 r e t h r o w (e x c e p t i o n) ;
162 C o m p l e t i o n F l a g = t r u e ;
163 end
164 end
165 end
166 end
167

168

169

A.6 ENVIRONMENT RESET FUNCTION ONE STATE MDP

This code is for the reset function for the modified environment for MDP case.

1 f u n c t i o n [I n i t i a l O b s e r v a t i o n , LoggedS igna l] = mpdRese tFunc t ion ()
2 % R e s e t f u n c t i o n t o p l a c e custom c a r t − p o l e e n v i r o n m e n t i n t o a random
3 % i n i t i a l s t a t e .
4

5 g l o b a l P o r e P r e s s u r e F r a c t u r e P r e s s u r e I n i t i a l B i t D e p t h Depths
t a b l e O f P r e s s u r e s

6

7 I n i t i a l B i t D e p t h = 2046 ;
8

9 t a b l e O f P r e s s u r e s = r e a d t a b l e (’ g e o p r e s s u r e . c sv ’ , ’ NumHeaderLines ’ , 1) ;
10 Depths = t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ;
11 P o r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , t a b l e 2 a r r a y

(t a b l e O f P r e s s u r e s (: , 2)) , 2 0 4 6) ;
12 F r a c t u r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ,

t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , 2 0 4 6) ;
13 %h t t p s : / / www. s c i e n c e d i r e c t . com / t o p i c s / e n g i n e e r i n g / f o r m a t i o n −pore −

p r e s s u r e
14 P o r e P r e s s u r e = (8 . 3 4 5 * P o r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h * 3 . 2 8)

*6894 .76 ; % s . g t o ppg , t h e n p s i t h e n t o P a s c a l s
15 F r a c t u r e P r e s s u r e = (8 . 3 4 5 * F r a c t u r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h

* 3 . 2 8) *6894 .76 ; % Same t o P a s c a l s
16

17 %d i s p (" R e s e t F u n c t i o n C a l l e d ") ;
18

A.7. ENVIRONMENT SETUP CODE ONE STATE MDP 97

19 I n i t i a l B i t D e p t h = 2046 ;
20

21 % C r e a t e s i m u l a t i o n o b j e c t
22 LoggedS igna l . s t a t e = [0 ; I n i t i a l B i t D e p t h ; P o r e P r e s s u r e ; F r a c t u r e P r e s s u r e

] ;
23

24 I n i t i a l O b s e r v a t i o n = LoggedS igna l . s t a t e ;
25 %d i s p l a y (I n i t i a l O b s e r v a t i o n)
26

27 end
28

29

A.7 ENVIRONMENT SETUP CODE ONE STATE MDP

This code is for the modified environment, this piece of code is used to setup the environment

and define action and state spaces.

1

2 c l e a r v a r i a b l e s ;
3 c l c ;
4 c l o s e a l l ;
5 c l e a r g l o b a l ;
6

7 g l o b a l P o r e P r e s s u r e F r a c t u r e P r e s s u r e I n i t i a l B i t D e p t h t a b l e O f P r e s s u r e s
8

9

10 I n i t i a l B i t D e p t h = 2046 ;
11

12 t a b l e O f P r e s s u r e s = r e a d t a b l e (’ g e o p r e s s u r e . c sv ’ , ’ NumHeaderLines ’ , 1) ;
13 Depths = t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ;
14 P o r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , t a b l e 2 a r r a y

(t a b l e O f P r e s s u r e s (: , 2)) , 2 0 4 6) ;
15 F r a c t u r e P r e s s u r e = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ,

t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , 2 0 4 6) ;
16

17 %h t t p s : / / www. s c i e n c e d i r e c t . com / t o p i c s / e n g i n e e r i n g / f o r m a t i o n −pore −
p r e s s u r e

18 P o r e P r e s s u r e = (8 . 3 4 5 * P o r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h * 3 . 2 8)
*6894 .76 ; % s . g t o ppg , t h e n p s i t h e n t o P a s c a l s

19 F r a c t u r e P r e s s u r e = (8 . 3 4 5 * F r a c t u r e P r e s s u r e) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h
* 3 . 2 8) *6894 .76 ; % Same t o P a s c a l s

20

21

22

23 % Add t o t h e ma t l ab p a t h t h e f o l d e r where t h i s f i l e i s l o c a t e d and
a l l t h e

98 APPENDIX A. DEVELOPMENT CODE

24 % s u b f o l d e r s
25 di sp (" D i s p l a y Envi ronment V a r i a b l e s ") ;
26 a d d p a t h (g e n p a t h (pwd)) ;
27

28 O b s e r v a t i o n I n f o = r lNumer i cSpec ([4 1]) ;
29 O b s e r v a t i o n I n f o . Name = ’ C o n t r o l l e r t u n n i n g p a r a m e t e r s and sys tem

p a r a m e t e r s s t a t e s ’ ;
30 O b s e r v a t i o n I n f o . D e s c r i p t i o n = ’ C u r r e n t S i m u l a t i o n BHP, Bi tDepth , Pore

P r e s s u r e , F r a c t u r e P r e s s u r e ’ ;
31

32 % C o n t i n u o u s Ac t i on Space C o n f i g u r a t i o n − Comment o u t ismemeber check
i n

33 % t h e s t e p f u n c t i o n
34

35 %A c t i o n I n f o = r lNumer i cSpec ([1 1] , UpperLimi t = 1 , LowerLimit = −1) ; %
Dont a s s i g n l i m i t s o u t i s d e t h i s d e f i n i t i o n − wei rd e r r o r .

36 %A c t i o n I n f o . Name = ’ C o n t r o l l e r Act ion ’ ;
37 %env = r l F u n c t i o n E n v (O b s e r v a t i o n I n f o , A c t i o n I n f o , ’ mpdStepFunct ion ’ , ’

mpdRese tFunc t ion ’) ;
38

39 %D i s c r e t e Ac t i on Space C o n f i g u r a t i o n − Must be r e f l e c t e d i n t h e S tep
40 %f u n c t i o n as w e l l .
41

42 kpRange = − 0 . 2 5 5 : 0 . 0 1 : − 0 . 0 0 5 ;
43 s e t p t s R a n g e = c e i l (P o r e P r e s s u r e / 1 E5) : 6 : F r a c t u r e P r e s s u r e / 1 E5 ;
44

45 C = { kpRange , s e t p t s R a n g e } ;
46 D = C ;
47 [D{ : }] = n d g r i d (C { : }) ;
48 Z = c e l l 2 m a t (c e l l f u n (@(m)m(:) ,D, ’ u n i ’ , 0)) ;
49

50 Act = t r a n s p o s e (num2ce l l (Z , 2)) ;
51

52 A c t i o n I n f o = r l F i n i t e S e t S p e c (Act) ;
53

54

55 A c t i o n I n f o . Name = ’ C o n t r o l l e r A c t i on ’ ;
56 env = r l F u n c t i o n E n v (O b s e r v a t i o n I n f o , A c t i o n I n f o , ’ OneshotmpdStep ’ , ’

mpdRese tFunc t ion ’) ;
57

58

A.8 Code for PI controller

This code is for the PI controller used in the implementation. It is provided by the OpenLab.

1 c l a s s d e f P I c o n t r o l l e r < h a n d l e
2 % −−

A.8. CODE FOR PI CONTROLLER 99

3 % D e s c r i p t i o n : Simple PI c o n t r o l l e r c l a s s
4 %
5 % C r e a t e P I c o n t r o l l e r o b j e c t :
6 % C o n s t r u c t o r : PI = P I c o n t r o l l e r (Kp , Ki , Ts , Re fe rence ,

I n i t i a l C h o k e O p e n i n g) ;
7 % Kp = P r o p o r t i o n a l g a i n
8 % Ki = I n t e g r a l g a i n
9 % Ts = Time c o n s t a n t

10 % R e f e r e n c e = R e f e r e n c e v a l u e / s e t p o i n t
11 % I n i t i a l C h o k e O p e n i n g = I n i t i a l choke open ing
12 %
13 % Methods :
14 % R e s e t (Re fe rence , I n i t i a l O u t p u t) − R e s e t c o n t r o l l e r
15 % R e f e r e n c e = R e f e r e n c e v a l u e / s e t p o i n t
16 % I n i t i a l O u t p u t = Outpu t v a l u e t o i n i t i a l i z e t o
17 %
18 % Outpu t = GetOutpu t (Measured) − Get o u t p u t v a l u e
19 % Measured − Measure v a l u e
20 % Outpu t − Outpu t v a l u e
21 %
22 % C r e a t e d : 2017 −05 −06 by Son ja Moi
23 % H i s t o r y :
24 % −−
25

26 p r o p e r t i e s (Access = p u b l i c)
27 Kp ;
28 Ki ;
29 Ts ;
30 R e f e r e n c e ;
31 end
32

33 p r o p e r t i e s (Access = p r i v a t e)
34 MeasuredLas t ;
35 O u t p u t L a s t ;
36 E r r o r ;
37 E r r o r L a s t ;
38

39 R e s e t S t a t u s = t r u e ;
40 Measured ;
41 Outpu t ;
42 end
43

44 methods
45 f u n c t i o n t h i s = P I c o n t r o l l e r (Kp , Ki , Ts , Re fe rence ,

I n i t i a l O u t p u t)
46 t h i s . Kp = Kp ;
47 t h i s . Ki = Ki ;
48 t h i s . Ts = Ts ;
49 t h i s . R e f e r e n c e = R e f e r e n c e / 1 E5 ;
50 t h i s . O u t p u t L a s t = I n i t i a l O u t p u t ;
51 end

100 APPENDIX A. DEVELOPMENT CODE

52

53 f u n c t i o n t h i s = R e s e t (t h i s , Re fe rence , I n i t i a l O u t p u t)
54 t h i s . R e s e t S t a t u s = t r u e ;
55 t h i s . R e f e r e n c e = R e f e r e n c e / 1 E5 ;
56 t h i s . O u t p u t L a s t = I n i t i a l O u t p u t ;
57 end
58

59 f u n c t i o n Outpu t = GetOutpu t (t h i s , Measured)
60 t h i s . Measured = Measured / 1 E5 ;
61 i f t h i s . R e s e t S t a t u s
62 t h i s . E r r o r =(t h i s . Re fe rence − t h i s . Measured) ;
63 t h i s . E r r o r L a s t = t h i s . E r r o r ;
64

65 t h i s . R e s e t S t a t u s = f a l s e ;
66 e l s e
67 t h i s . E r r o r =(t h i s . Re fe rence − t h i s . Measured) ;
68 t h i s . E r r o r L a s t =(t h i s . Re fe rence − t h i s . MeasuredLas t) ;
69 end
70

71 t h i s . Outpu t = t h i s . O u t p u t L a s t + (t h i s . Kp+ t h i s . Ki* t h i s . Ts
/ 2) * t h i s . E r r o r − (t h i s . Kp− t h i s . Ki* t h i s . Ts / 2) * t h i s . E r r o r L a s t ;

72

73 i f t h i s . Output >1
74 t h i s . Outpu t =1 ;
75 end
76 i f t h i s . Output <0
77 t h i s . Outpu t =0 ;
78 end
79

80 t h i s . MeasuredLas t = t h i s . Measured ;
81 t h i s . O u t p u t L a s t = t h i s . Outpu t ;
82 Outpu t = t h i s . Ou tpu t ;
83 end
84 end
85 end

A.9 Code for Reward function for BHP Setpoint

This code is for the basic reward function for the pressure set-point suggestion.

1 f u n c t i o n [Reward] = Reward_PBH (Pp , Pf , Depth , Pbh , d e p t h)
2 % Reward f u n c t i o n f o r bot tom h o l e p r e s s u r e Pbh @ d e p t h
3 % P r e s s u r e window i s d e f i n e d by Pp and Pf i n t h e Depth r a n g e
4

5 % Dete rmine t h e Pp and Pf a t g i v e n d e p t h
6 Pp_depth = i n t e r p 1 (Depth , Pp , d e p t h) ;
7 P f _ d e p t h = i n t e r p 1 (Depth , Pf , d e p t h) ;
8

A.10. CODE FOR COLLECTING DATA FOR MULTI-ARMED BANDIT PROBLEM 101

9 Pp_depth = (8 . 3 4 5 * Pp_depth) * (0 . 0 5 1 9 4 8 * d e p t h * 3 . 2 8) *6894 .76 /100000 ; %
s . g t o ppg , t h e n p s i t h e n t o P a s c a l s

10 P f _ d e p t h = (8 . 3 4 5 * P f _ d e p t h) * (0 . 0 5 1 9 4 8 * d e p t h * 3 . 2 8) * 6894 .76 /100000 ;
% Same t o P a s c a l s

11

12 % C a l c u l a t e t h e reward
13 % use a d e c r e a s e l i n e f o r t h e r e w a r d s as rw_max a t Pp and rw_min a t

Pf
14 rw_max = 100000; %max reward @ Pbh = Pp
15 rw_min = 0 ; % min reward @ Pbh −−> Pf
16 rw_neg = −1000000; % pun i shmen t f o r o u t o f window
17

18 i f Pbh < Pp_depth
19 r eward = rw_neg ;
20 e l s e i f Pbh >= P f _ d e p t h
21 r eward = rw_neg ;
22 e l s e
23 r eward = rw_max − (Pbh − Pp_depth) . / (P f _ d e p t h − Pp_depth) . * (

rw_max − rw_min) ;
24 end
25

26 Reward = reward ;
27 end

A.10 Code for collecting data for Multi-armed bandit

problem

This code is implemented in MATLAB and is used to calculate the corresponding reward of

every possible action in the action space, the action space becomes bigger and smaller based

on the difference between the pore and fracture pressure. The overshoot reward (penalty) in the

Code line 131 is set to zero here but normally it is set to -250 if oscillations are desired to be

minimized. The reward function from A.9 is used here.

1 t a b l e O f P r e s s u r e s = r e a d t a b l e (’MPD TEST v6− g e o p r e s s u r e . c sv ’ , ’
NumHeaderLines ’ , 1) ;

2 I n i t i a l B i t D e p t h = 1700 ;
3 Depths = t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) ;
4 I n i t i a l D e p t h R a n g e = 1 7 5 0 : 1 0 : 2 2 0 0 ;
5

6 I n i t i a l C h o k e O p e n i n g = 1 ;
7

8 f o r i d r = 1 : l e n g t h (I n i t i a l D e p t h R a n g e)
9

10 I n i t i a l B i t D e p t h = I n i t i a l D e p t h R a n g e (i d r) ;

102 APPENDIX A. DEVELOPMENT CODE

11 PP = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , t a b l e 2 a r r a y (
t a b l e O f P r e s s u r e s (: , 2)) , I n i t i a l B i t D e p t h) %1915 comes from
g e o p r e s s u r e s t a b l e

12 FP = i n t e r p 1 (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 1)) , t a b l e 2 a r r a y (
t a b l e O f P r e s s u r e s (: , 3)) , I n i t i a l B i t D e p t h) ; %2046 comes from
g e o p r e s s u r e s t a b l e

13 %h t t p s : / / www. s c i e n c e d i r e c t . com / t o p i c s / e n g i n e e r i n g / f o r m a t i o n −pore −
p r e s s u r e −

14 %Always r e c h e c k t h e d e p t h v a l u e m u l t i p l i e d h e r e
15 P o r e P r e s s u r e L i m i t = (8 . 3 4 5 * PP) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h * 3 . 2 8)

* 6 8 9 4 . 7 6 ; % s . g t o ppg , t h e n p s i t h e n t o P a s c a l s
16 F r a c t u r e P r e s s u r e L i m i t = (8 . 3 4 5 * FP) * (0 . 0 5 1 9 4 8 * I n i t i a l B i t D e p t h

* 3 . 2 8) *6894 .76 ; % Same t o P a s c a l s
17

18 kpRange = − 0 . 2 5 1 : 0 . 0 1 : − 0 . 0 0 1 ;
19 s e t p t s R a n g e = (c e i l (P o r e P r e s s u r e L i m i t / 1 E5) +3) : 6 :

F r a c t u r e P r e s s u r e L i m i t / 1 E5 ;
20 C = { kpRange , s e t p t s R a n g e } ;
21 D = C ;
22 [D{ : }] = n d g r i d (C { : }) ;
23 Z = c e l l 2 m a t (c e l l f u n (@(m)m(:) ,D, ’ u n i ’ , 0)) ;
24 Act = t r a n s p o s e (num2ce l l (Z , 2)) ;
25

26 f o r i d x = 1 : l e n g t h (Act)
27 % Add t o t h e ma t l ab p a t h t h e f o l d e r where t h i s f i l e i s

l o c a t e d and a l l t h e
28 % s u b f o l d e r s
29 a c t i o n s = c e l l 2 m a t (Act (i d x)) ;
30

31 a d d p a t h (g e n p a t h (pwd)) ;
32

33 I d e n t i t y S e r v e r U R L = ’ h t t p s : / / l i v e . o p e n l a b . app / ’ ;
34

35 [username , ap i_key , l i c e n s e _ g u i d] = GetLoginData () ;
36

37 Conf igu ra t ionName = ’MPD TEST v6 ’ ;
38 Simula t ionName = ’ Flow sweep wi th bhp c o n t r o l (Mat lab) ’ ;
39 I n i t i a l B i t D e p t h = I n i t i a l D e p t h R a n g e (i d r) ; % [m]
40 I n i t i a l T o p O f S t r i n g P o s i t i o n = 2 0 ;
41

42 % C r e a t e s i m u l a t i o n o b j e c t
43 t r y
44 Sim = OpenLabCl ien t (I d e n t i t y S e r v e r U R L , username , ap i_key ,

l i c e n s e _ g u i d , Conf igura t ionName , Simulat ionName , I n i t i a l B i t D e p t h ,
I n i t i a l T o p O f S t r i n g P o s i t i o n) ;

45 c a t c h e r r
46 i d x = idx −1;
47 end
48 % Ramp s e t t i n g s
49 RampIndex = 1 ;
50

A.10. CODE FOR COLLECTING DATA FOR MULTI-ARMED BANDIT PROBLEM 103

51 higherRampValue = 2800 + (2900 −2800) . * rand (1 , 1) ;
52 lowerRampValue = higherRampValue − 400 ;
53

54 RampValuesDown = (higherRampValue : −5 0 : lowerRampValue) / 6 0 0 0 0 ;
% [m3 / s e c]

55 %RampValuesUp = (lowerRampValue : 5 0 : higherRampValue) / 6 0 0 0 0 ; %
[m3 / s e c]

56 RampValues = [RampValuesDown] ; % [m3 / s e c]
57 RampStepDura t ion = 3 0 ; % [s e c]
58 RampStar tTime = 100 ; % [s e c]
59 RampTimeSteps = RampStar tTime : RampStepDura t ion : l e n g t h (

RampValues) * RampStepDurat ion −1+ RampStar tTime ;
60

61 % Time s t e p s t o s i m u l a t e
62 MaxTimeSteps = (RampTimeSteps (end) +100) ;
63

64 % C o n t r o l l e r s e t t i n g s
65 Kp = a c t i o n s (1) ; Ki = Kp / 1 3 ; Ts = 1 ;
66 Refe renceBHPPres su re = a c t i o n s (2) * 1E5 ; % [Pa]
67 I n i t i a l C h o k e O p e n i n g = 1 ; % [c l o s e d : 0 , open : 1]
68 PI = P I c o n t r o l l e r (Kp , Ki , Ts , Refe renceBHPPressu re ,

I n i t i a l C h o k e O p e n i n g) ; % C r e a t e PI c o n t r o l l e r o b j e c t , p r e s s u r e i n [
Pa]

69

70 Reward = Reward_PBH (t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 2)) ,
t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s (: , 3)) , t a b l e 2 a r r a y (t a b l e O f P r e s s u r e s
(: , 1)) , a c t i o n s (2) , I n i t i a l B i t D e p t h) ;

71

72 l o l = Sim . B i t D ep t h ;
73 i f Sim . IsOK
74 t r y
75 BHP_arr= [] ;
76 f o r t i m e S t e p = 1 : MaxTimeSteps
77 t S t a r t S t e p = t i c ;
78

79 i f t i m e S t e p >= RampStar tTime % Flow sweep and PI
c o n t r o l o f t h e choke

80 i f (RampIndex < l e n g t h (RampTimeSteps) &&
RampIndex < l e n g t h (RampValues))

81 i f (t i m e S t e p >= RampTimeSteps (RampIndex)
&& t i m e S t e p < RampTimeSteps (RampIndex + 1))

82 FlowRate In = RampValues (RampIndex) ;
83 i f (t i m e S t e p == RampTimeSteps (

RampIndex + 1) − 1)
84 RampIndex = RampIndex + 1 ;
85 end
86 end
87 e l s e i f (RampIndex == l e n g t h (RampTimeSteps) &&

RampIndex == l e n g t h (RampValues))
88 FlowRate In = RampValues (RampIndex) ;
89 end

104 APPENDIX A. DEVELOPMENT CODE

90

91

92 % R e s e t PI c o n t r o l l e r b e f o r e usage , s e t
r e f e r e n c e v a l u e and i n i t i a l o u t p u t (= i n i t i a l

93 % choke open ing)
94 PI . R e s e t (Refe renceBHPPressu re , Sim .

ChokeOpen ingS ta tus) ;
95

96

97 ChokeOpening = PI . Ge tOutpu t (Sim .
B o t t o m H o l e P r e s s u r e) ; % Get choke open ing from PI c o n t r o l l e r

98

99 e l s e % C o n s t a n t f low r a t e and choke open ing
100 FlowRate In = RampValues (1) ;
101 ChokeOpening = I n i t i a l C h o k e O p e n i n g ;
102 end
103

104 % S e t s e t p o i n t s t o t h e s i m u l a t o r
105 Sim . F lowRate In = FlowRate In ; % [m3 / s e c]
106 Sim . ChokeOpening = ChokeOpening ; % [0 −1]
107 Sim . ChokePumpFlowRateIn = 0 / 6 0 0 0 0 ; % [m3 / s e c]
108 Sim . T o p O f S t r i n g V e l o c i t y = 0 ; % [m/ s e c]
109 Sim . SurfaceRPM = 0 / 6 0 ; % [r e v o l u t i o n s p e r s e c .]
110 Sim . ROP = 0 / 3 6 0 0 ; % [m/ s e c]
111

112 % Step s i m u l a t o r
113 t r y
114 Sim . S tep () ;
115 c a t c h e r r
116 t i m e S t e p = t imeS tep −1;
117 end
118

119 i f ~Sim . IsOK % S i m u l a t o r f a i l s
120 break ;
121 end
122

123 %d i s p l a y (Sim . SPP) ;
124 %d i s p l a y (Sim . C h o k e P r e s s u r e) ;
125 d i s p l a y (I n i t i a l B i t D e p t h) ;
126 i f (abs ((Sim . B o t t o m H o l e P r e s s u r e −

Refe renceBHPPres su re) / Re fe r enceBHPPres su re) > 0 . 0 1)
127 Reward = Reward − 0 ;
128 di sp (Reward) ;
129 di sp (" Ove r shoo t p e n a l i t y i n ") ;
130 e l s e
131 Reward = Reward + 0 ;
132 end
133

134 end
135 d i s p l a y (Sim . ChokeOpening) ;
136 I n i t i a l C h o k e O p e n i n g = Sim . ChokeOpening ;

A.11. CODE FOR IMPLEMENTING EPSILON-GREEDY ON THE DATA COLLECTED IN APPENDIX
A.10 105

137 f i d 1 = fopen (" D a t a _ r e c o r d . t x t " , ’ a+ ’) ;
138 f p r i n t f (f i d 1 , ’%f %f %f %f %f %f %f , \ n ’ ,

I n i t i a l B i t D e p t h , Refe renceBHPPressu re , Kp , Reward , P o r e P r e s s u r e L i m i t ,
F r a c t u r e P r e s s u r e L i m i t , I n i t i a l C h o k e O p e n i n g) ;

139 f c l o s e (f i d 1) ;
140

141 % Stop s i m u l a t i o n p r o c e s s
142 Sim . Stop ;
143 Sim . D e l e t e ;
144 c a t c h e r r
145 % Stop s i m u l a t i o n
146 Sim . Stop ;
147 Sim . D e l e t e ;
148 end
149

150

151 end
152

153 end
154

155 end

A.11 Code for implementing Epsilon-greedy on the data

collected in Appendix A.10

This code is responsible for implementing the epsilon-greedy algorithm on the multi-armed

bandit problem at hand, the data used in this code is derived from appendix A.10. The imple-

mentation is inspired from the work of Steve Roberts [47].

1 # −*− c od i ng : u t f −8 −*−
2 " " "
3 @author : muham
4 " " "
5

6 # LIBRARIES
7

8 import pandas as pd
9 import numpy as np

10 import math
11 import m a t p l o t l i b . p y p l o t a s p l t
12 import m a t p l o t l i b . w i d g e t s a s w i d g e t s
13 from p l o t l y . g r a p h _ o b j s . s c a t t e r import Line
14 import p l o t l y . g r a p h _ o b j s a s go
15 from p l o t l y . s u b p l o t s import m a k e _ s u b p l o t s
16

106 APPENDIX A. DEVELOPMENT CODE

17

18 #FUNCTIONS AND CLASSES USED
19

20 def p l o t s (n_rows , n_co l s , t i t l e s , y_ax i s , x_ax i s , p l o t _ t o g e t h e r = F a l s e) :
21

22 " " "
23 F u n c t i o n f o r p l o t t i n g v e r y t h i n g t o g e t h e r t o g e t h e r
24

25 " " "
26

27 i f (p l o t _ t o g e t h e r == F a l s e) :
28 # i n i t i a l s u b p l o t w i th two t r a c e s
29 f i g = m a k e _ s u b p l o t s (rows=n_rows , c o l s = n_co l s , s h a r e d _ y a x e s =

True ,
30 s u b p l o t _ t i t l e s = t i t l e s)
31

32 f o r i in range (n _ c o l s) :
33

34 f i g . a d d _ t r a c e (
35 go . S c a t t e r (x= x _ a x i s [i] , y= y_ax i s , name= t i t l e s [i] ,

l i n e = Line ({ ’ wid th ’ : 1})) ,
36 row =1 , c o l = i +1
37)
38 e l s e :
39 None
40

41 f i g . u p d a t e _ y a x e s (a u t o r a n g e =" r e v e r s e d ")
42 f i g . u p d a t e _ l a y o u t (h e i g h t =1000 , wid th =1800 , t i t l e _ t e x t =" Managed

P r e s s u r e D r i l l i n g ")
43 f i g . show ()
44 # f i g . w r i t e _ i m a g e (" f i g 1 . png ")
45 #Open an HTML F i l e
46

47 wi th open (’ Wi threward . h tml ’ , ’ a ’) a s f :
48 f . w r i t e (f i g . t o _ h t m l (f u l l _ h t m l = F a l s e , i n c l u d e _ p l o t l y j s = ’ cdn ’))
49

50 c l a s s e p s _ b a n d i t :
51 ’ ’ ’
52 e p s i l o n − g re ed y k− b a n d i t problem
53

54 I n p u t s
55 ===
56 k : number o f arms − a c t i o n s i n our c a s e (i n t)
57 eps : p r o b a b i l i t y o f random a c t i o n 0 < eps < 1 (f l o a t)
58 i t e r s : number o f s t e p s (i n t)
59 mu : s e t t h e a v e r a g e r e w a r d s f o r each of t h e k−arms .
60 S e t t o " random " f o r t h e r e w a r d s t o be s e l e c t e d from
61 a normal d i s t r i b u t i o n wi th mean = 0 .
62 S e t t o " s e q u e n c e " f o r t h e means t o be o r d e r e d from
63 0 t o k −1 .
64 Pass a l i s t o r a r r a y o f l e n g t h = k f o r use r − d e f i n e d

A.11. CODE FOR IMPLEMENTING EPSILON-GREEDY ON THE DATA COLLECTED IN APPENDIX
A.10 107

65 v a l u e s .
66 ’ ’ ’
67

68 def _ _ i n i t _ _ (s e l f , k , eps , i t e r s , mu= ’ random ’) :
69

70 # Number o f arms
71 s e l f . k = k
72 # Se a r ch p r o b a b i l i t y
73 s e l f . eps = eps
74 # Number o f i t e r a t i o n s
75 s e l f . i t e r s = i t e r s
76 # S tep c o u n t
77 s e l f . n = 0
78 # S tep c o u n t f o r each arm
79 s e l f . k_n = np . z e r o s (k)
80 # T o t a l mean reward
81 s e l f . mean_reward = 0
82 s e l f . r eward = np . z e r o s (i t e r s)
83 # Mean reward f o r each arm
84 s e l f . k_reward = np . z e r o s (k)
85

86 i f type (mu) == l i s t or type (mu) . __module__ == np . __name__ :
87 # User − d e f i n e d a v e r a g e s
88 s e l f . mu = np . a r r a y (mu)
89 e l i f mu == ’ random ’ :
90 # Draw means from p r o b a b i l i t y d i s t r i b u t i o n
91 s e l f . mu = np . random . normal (0 , 1 , k)
92 e l s e :
93 # I n c r e a s e t h e mean f o r each arm by one
94 s e l f . mu = mu
95

96 def p u l l (s e l f) :
97

98 " " "
99 The a c t i o n p a i r s e l e c t i n g f u n c t i o n o r h e r e we c a l l i t p u l l i n g

t h e arm
100

101 " " "
102

103 # G e n e r a t e random number
104 p = np . random . rand ()
105 i f s e l f . eps == 0 and s e l f . n == 0 :
106 a = np . random . c h o i c e (s e l f . k)
107 e l i f p < s e l f . eps :
108 # Randomly s e l e c t an a c t i o n
109 a = np . random . c h o i c e (s e l f . k)
110 e l s e :
111 # Take g r ee d y a c t i o n
112 a = np . argmax (s e l f . k_reward)
113

114 r eward = np . random . normal (s e l f . mu[a] , 1)

108 APPENDIX A. DEVELOPMENT CODE

115

116 # Update c o u n t s
117 s e l f . n += 1
118 s e l f . k_n [a] += 1
119

120 # Update t o t a l
121 s e l f . mean_reward = s e l f . mean_reward + (
122 r eward − s e l f . mean_reward) / s e l f . n
123

124 # Update r e s u l t s f o r a_k
125 s e l f . k_reward [a] = s e l f . k_reward [a] + (
126 r eward − s e l f . k_reward [a]) / s e l f . k_n [a]
127

128 def run (s e l f) :
129

130 " " "
131 Using i t e r a t i o n s i n run f u n c t i o n s t o g e t a s t a b l e measure o f

reward .
132 Not r e a l l y used i n MPD as Reward f u n c t i o n does t h i s j o b
133 " " "
134 f o r i in range (s e l f . i t e r s) :
135 s e l f . p u l l ()
136 s e l f . r eward [i] = s e l f . mean_reward
137

138 def r e s e t (s e l f) :
139

140 " " "
141 R e s e t s r e s u l t s w h i l e k e e p i n g s e t t i n g s
142 " " "
143 s e l f . n = 0
144 s e l f . k_n = np . z e r o s (k)
145 s e l f . mean_reward = 0
146 s e l f . r eward = np . z e r o s (i t e r s)
147 s e l f . k_reward = np . z e r o s (k)
148

149 def e p s i l o n _ m e t h o d (d a t a) :
150

151 " " "
152 Only e p s i l o n = 0 . 1 i s k e p t and r e s t a r e o m i t t e d i n f i n a l t e s t i n g ,
153 Code l i n e s can be uncommented t o t e s t o t h e r v a l u e s o f e p s i l o n
154 Thi s s h o u l d be done c a r e f u l l y .
155

156 Thi s f u n c t i o n r u n s t h e e p s i l o n − g re e dy method f o r t h e s e l e c t e d
d a t a

157

158 For t h e c a s e o f MPD t h i s means a s e c l e c t e d d e p t h
159 " " "
160 s o c k e t _ o r d e r = d a t a . i n d e x . t o _ l i s t ()
161 socke t_means = d a t a [" Reward "] . t o _ l i s t ()
162 # socke t_means = [word [: 8] f o r word i n socke t_means]
163 socke t_means = np . a r r a y (socke t_means) . a s t y p e (f l o a t)

A.11. CODE FOR IMPLEMENTING EPSILON-GREEDY ON THE DATA COLLECTED IN APPENDIX
A.10 109

164 lo , h i = min (socke t_means) , max (socke t_means) ;
165 r e t u r n _ a r r a y = []
166

167

168 f o r i in socke t_means :
169 r e t u r n _ a r r a y . append ((i − l o) / (h i − l o))
170 socke t_means = r e t u r n _ a r r a y
171

172 k = l e n (socke t_means)
173 i t e r s = 10000
174

175 # e p s _ 0 _ r e w a r d s = np . z e r o s (i t e r s)
176 # e p s _ 0 1 _ r e w a r d s = np . z e r o s (i t e r s)
177 e p s _ 1 _ r e w a r d s = np . z e r o s (i t e r s)
178 # e p s _ 2 _ r e w a r d s = np . z e r o s (i t e r s)
179 # e p s _ 5 _ r e w a r d s = np . z e r o s (i t e r s)
180

181 e p i s o d e s = 1000
182 # Run e x p e r i m e n t s
183 f o r i in range (e p i s o d e s) :
184 # I n i t i a l i z e b a n d i t s
185 # eps_0 = e p s _ b a n d i t (k , 0 , i t e r s , mu = socke t_means)
186 # eps_01 = e p s _ b a n d i t (k , 0 . 0 1 , i t e r s , eps_0 . mu . copy ())
187 eps_1 = e p s _ b a n d i t (k , 0 . 1 , i t e r s , mu = socke t_means)
188 # eps_2 = e p s _ b a n d i t (k , 0 . 2 , i t e r s , eps_0 . mu . copy ())
189 # eps_5 = e p s _ b a n d i t (k , 0 . 5 , i t e r s , eps_0 . mu . copy ())
190

191 # Run e x p e r i m e n t s
192 # eps_0 . run ()
193 # eps_01 . run ()
194 eps_1 . run ()
195 # eps_2 . run ()
196 # eps_5 . run ()
197

198 # Update long − term a v e r a g e s
199 # e p s _ 0 _ r e w a r d s = e p s _ 0 _ r e w a r d s + (
200 # eps_0 . reward − e p s _ 0 _ r e w a r d s) / (i + 1)
201 # e p s _ 0 1 _ r e w a r d s = e p s _ 0 1 _ r e w a r d s + (
202 # eps_01 . reward − e p s _ 0 1 _ r e w a r d s) / (i + 1)
203 e p s _ 1 _ r e w a r d s = e p s _ 1 _ r e w a r d s + (
204 eps_1 . reward − e p s _ 1 _ r e w a r d s) / (i + 1)
205 # e p s _ 2 _ r e w a r d s = e p s _ 2 _ r e w a r d s + (
206 # eps_2 . reward − e p s _ 2 _ r e w a r d s) / (i + 1)
207 # e p s _ 5 _ r e w a r d s = e p s _ 5 _ r e w a r d s + (
208 # eps_5 . reward − e p s _ 5 _ r e w a r d s) / (i + 1)
209

210

211 p l t . f i g u r e (f i g s i z e = (1 2 , 8))
212 # p l t . p l o t (eps_0_rewards , l a b e l =" $ \ e p s i l o n =0$ (g r e ed y) ")
213 # p l t . p l o t (eps_01_rewards , l a b e l =" $ \ e p s i l o n =0 .01 $ ")
214 p l t . p l o t (eps_1_rewards , l a b e l =" $ \ e p s i l o n =0 .1 $ ")

110 APPENDIX A. DEVELOPMENT CODE

215 # p l t . p l o t (eps_2_rewards , l a b e l =" $ \ e p s i l o n =0 .2 $ ")
216 # p l t . p l o t (eps_5_rewards , l a b e l =" $ \ e p s i l o n =0 .5 $ ")
217 p l t . l e g e n d (b b o x _ t o _ a n c h o r = (1 . 3 , 0 . 5))
218

219 p l t . x l a b e l (" I t e r a t i o n s ")
220 p l t . y l a b e l (" Average Reward ")
221 p l t . t i t l e (" Average $ \ e p s i l o n − greedy$ Rewards a f t e r " + s t r (

e p i s o d e s)
222 + " E p i s o d e s ")
223 p l t . show ()
224

225

226 i t e r s = 10000
227 # e p s _ 0 _ r e w a r d s = np . z e r o s (i t e r s)
228 # e p s _ 0 1 _ r e w a r d s = np . z e r o s (i t e r s)
229 e p s _ 1 _ r e w a r d s = np . z e r o s (i t e r s)
230 # e p s _ 2 _ r e w a r d s = np . z e r o s (i t e r s)
231 # e p s _ 5 _ r e w a r d s = np . z e r o s (i t e r s)
232

233 # e p s _ 0 _ s e l e c t i o n = np . z e r o s (k)
234 # e p s _ 0 1 _ s e l e c t i o n = np . z e r o s (k)
235 e p s _ 1 _ s e l e c t i o n = np . z e r o s (k)
236 # e p s _ 2 _ s e l e c t i o n = np . z e r o s (k)
237 # e p s _ 5 _ s e l e c t i o n = np . z e r o s (k)
238

239 e p i s o d e s = 1000
240 # Run e x p e r i m e n t s
241 f o r i in range (e p i s o d e s) :
242 # I n i t i a l i z e b a n d i t s
243 # eps_0 = e p s _ b a n d i t (k , 0 , i t e r s , mu = socke t_means)
244 # eps_01 = e p s _ b a n d i t (k , 0 . 0 1 , i t e r s , eps_0 . mu . copy ())
245 eps_1 = e p s _ b a n d i t (k , 0 . 1 , i t e r s , mu = socke t_means)
246 # eps_2 = e p s _ b a n d i t (k , 0 . 2 , i t e r s , eps_0 . mu . copy ())
247 # eps_5 = e p s _ b a n d i t (k , 0 . 5 , i t e r s , eps_0 . mu . copy ())
248

249 # Run e x p e r i m e n t s
250 # eps_0 . run ()
251 # eps_01 . run ()
252 eps_1 . run ()
253 # eps_2 . run ()
254 # eps_5 . run ()
255

256 # Update long − term a v e r a g e s
257 # e p s _ 0 _ r e w a r d s = e p s _ 0 _ r e w a r d s + (
258 # eps_0 . reward − e p s _ 0 _ r e w a r d s) / (i + 1)
259 # e p s _ 0 1 _ r e w a r d s = e p s _ 0 1 _ r e w a r d s + (
260 # eps_01 . reward − e p s _ 0 1 _ r e w a r d s) / (i + 1)
261 e p s _ 1 _ r e w a r d s = e p s _ 1 _ r e w a r d s + (
262 eps_1 . reward − e p s _ 1 _ r e w a r d s) / (i + 1)
263 # e p s _ 2 _ r e w a r d s = e p s _ 2 _ r e w a r d s + (
264 # eps_2 . reward − e p s _ 2 _ r e w a r d s) / (i + 1)

A.11. CODE FOR IMPLEMENTING EPSILON-GREEDY ON THE DATA COLLECTED IN APPENDIX
A.10 111

265 # e p s _ 5 _ r e w a r d s = e p s _ 5 _ r e w a r d s + (
266 # eps_5 . reward − e p s _ 5 _ r e w a r d s) / (i + 1)
267

268 # Average a c t i o n s p e r e p i s o d e
269 # e p s _ 0 _ s e l e c t i o n = e p s _ 0 _ s e l e c t i o n + (
270 # eps_0 . k_n − e p s _ 0 _ s e l e c t i o n) / (i + 1)
271 # e p s _ 0 1 _ s e l e c t i o n = e p s _ 0 1 _ s e l e c t i o n + (
272 # eps_01 . k_n − e p s _ 0 1 _ s e l e c t i o n) / (i + 1)
273 e p s _ 1 _ s e l e c t i o n = e p s _ 1 _ s e l e c t i o n + (
274 eps_1 . k_n − e p s _ 1 _ s e l e c t i o n) / (i + 1)
275 # e p s _ 2 _ s e l e c t i o n = e p s _ 2 _ s e l e c t i o n + (
276 # eps_2 . k_n − e p s _ 2 _ s e l e c t i o n) / (i + 1)
277 # e p s _ 5 _ s e l e c t i o n = e p s _ 5 _ s e l e c t i o n + (
278 # eps_5 . k_n − e p s _ 5 _ s e l e c t i o n) / (i + 1)
279

280 p l t . f i g u r e (f i g s i z e = (1 2 , 8))
281 # p l t . p l o t (eps_0_rewards , l a b e l =" $ \ e p s i l o n =0$ (g r e ed y) ")
282 # p l t . p l o t (eps_01_rewards , l a b e l =" $ \ e p s i l o n =0 .01 $ ")
283 p l t . p l o t (eps_1_rewards , l a b e l =" $ \ e p s i l o n =0 .1 $ ")
284 # p l t . p l o t (eps_2_rewards , l a b e l =" $ \ e p s i l o n =0 .2 $ ")
285 # p l t . p l o t (eps_5_rewards , l a b e l =" $ \ e p s i l o n =0 .5 $ ")
286

287 f o r i in range (k) :
288 p l t . h l i n e s (eps_1 . mu[i] , xmin =0 ,
289 xmax= i t e r s , a l p h a = 0 . 5 ,
290 l i n e s t y l e ="−−")
291

292 p l t . l e g e n d (b b o x _ t o _ a n c h o r = (1 . 3 , 0 . 5))
293 p l t . x l a b e l (" I t e r a t i o n s ")
294 p l t . y l a b e l (" Average Reward ")
295 p l t . t i t l e (" Average $ \ e p s i l o n − greedy$ Rewards a f t e r " +
296 s t r (e p i s o d e s) + " E p i s o d e s ")
297 p l t . show ()
298

299 b i n s = np . l i n s p a c e (0 , k −1 , k)
300

301 p l t . f i g u r e (f i g s i z e = (1 2 , 8))
302 # p l t . b a r (b ins , e p s _ 0 _ s e l e c t i o n ,
303 # wid th = 0 . 3 3 , c o l o r = ’ b ’ ,
304 # l a b e l =" $ \ e p s i l o n =0$ ")
305 # p l t . b a r (b i n s + 0 . 3 3 , e p s _ 0 1 _ s e l e c t i o n ,
306 # wid th = 0 . 3 3 , c o l o r = ’ g ’ ,
307 # l a b e l =" $ \ e p s i l o n =0 .01 $ ")
308 p l t . b a r (b i n s + 0 . 6 6 , e p s _ 1 _ s e l e c t i o n ,
309 wid th = 0 . 3 3 , c o l o r = ’ r ’ ,
310 l a b e l =" $ \ e p s i l o n =0 .1 $ ")
311

312 # p l t . b a r (b i n s + 0 . 6 6 , e p s _ 1 _ s e l e c t i o n ,
313 # wid th = 0 . 3 3 , c o l o r = ’ r ’ ,
314 # l a b e l =" $ \ e p s i l o n =0 .2 $ ")
315

112 APPENDIX A. DEVELOPMENT CODE

316 # p l t . b a r (b i n s + 0 . 6 6 , e p s _ 1 _ s e l e c t i o n ,
317 # wid th = 0 . 3 3 , c o l o r = ’ r ’ ,
318 # l a b e l =" $ \ e p s i l o n =0 .5 $ ")
319

320 p l t . l e g e n d (b b o x _ t o _ a n c h o r = (1 . 2 , 0 . 5))
321 p l t . x l im ([0 , k])
322 p l t . t i t l e (" A c t i o n s S e l e c t e d by Each Algo r i t hm ")
323 p l t . x l a b e l (" A c t i o n ")
324 p l t . y l a b e l (" Number o f A c t i o n s Taken ")
325 p l t . show ()
326

327 # o p t _ p e r = np . a r r a y ([e p s _ 0 _ s e l e c t i o n , e p s _ 0 1 _ s e l e c t i o n ,
328 # e p s _ 1 _ s e l e c t i o n , e p s _ 2 _ s e l e c t i o n ,

e p s _ 5 _ s e l e c t i o n]) / i t e r s * 100
329

330 o p t _ p e r = np . a r r a y ([e p s _ 1 _ s e l e c t i o n]) / i t e r s * 100
331

332 # df = pd . DataFrame (o p t _ p e r , i n d e x =[’ $ \ e p s i l o n =0$ ’ ,
333 # ’ $ \ e p s i l o n =0 .01 $ ’ , ’ $ \ e p s i l o n =0 .1 $ ’ , ’ $ \ e p s i l o n =0 .2 $ ’ , ’ $ \

e p s i l o n =0 .5 $ ’] ,
334 # columns =[" a = " + s t r (x) f o r x i n r a n g e (0 , k)])
335

336 df = pd . DataFrame (o p t _ p e r , i n d e x =[’ $ \ e p s i l o n =0 .1 $ ’] ,
337 columns =[" a = " + s t r (x) f o r x in range (0 , k)])
338

339 p r i n t (" P e r c e n t a g e o f a c t i o n s s e l e c t e d : ")
340 df . max (a x i s = 1)
341 arm_index = df . idxmax (a x i s = 1) . t o _ l i s t ()
342

343 re turn arm_index
344

345

346 # C l e a n i n g t h e d a t a − P r e p r o c e s s i n g d a t a
347 columns = [" Depth " , " R e f e r e n c e BHP" , "Kp" , " Reward " , " Pore P r e s s u r e " ,

" F r a c t u r e P r e s s u r e " , " ChokeValveOpening "]
348 df = pd . r e a d _ t a b l e (’ D a t a _ c o n t i n u o u s c h o k e . t x t ’ , names=columns , sep =" " ,

l i n e t e r m i n a t o r = ’ \ n ’)
349 df . r e s e t _ i n d e x (drop = F a l s e , i n p l a c e =True)
350 df = df . d rop (’ l e v e l _ 0 ’ , 1)
351 df . columns = [" Depth " , " R e f e r e n c e BHP" , "Kp" , " Reward " , " Pore

P r e s s u r e " , " F r a c t u r e P r e s s u r e " , " ChokeValveOpening " , " e x t r a "]
352 df = df . d rop (’ e x t r a ’ , 1)
353 d a t a = df . d ropna ()
354 d a t a [" Depth "] = pd . t o _ n u m e r i c (d a t a [" Depth "] , downcas t =" f l o a t ")
355 Depths = np . a r a n g e (1 7 8 0 , 2 1 3 0 , 1 0)
356 Data_ f r ames = []
357

358 # D i v i d i n g d a t a i n t o Depths and e v e r y d e p t h g e t s a d a t a f r a m e
359 f o r d in Depths :
360 df = d a t a . l o c [d a t a [’ Depth ’] == d]
361 df . r e s e t _ i n d e x (i n p l a c e = True)

A.11. CODE FOR IMPLEMENTING EPSILON-GREEDY ON THE DATA COLLECTED IN APPENDIX
A.10 113

362 Data_ f r ames . append (d f)
363

364 # P r i n t i n g t h e s e l e c t e d arm a t e v e r y d e p t h i n each i t e r a t i o n
365 arms = []
366 Data_ f r ames [9]
367 f o r f rame in Data_ f r ames :
368 arms . append (e p s i l o n _ m e t h o d (f rame))
369 p r i n t (arms [− 1])
370

371 # E x t r a c t i n g t h e i n d e x from t h e s t r i n g
372 def i n d e x s t r i n g e x t r a c t i o n (i t em) :
373 s t r i n g = i t em [0]
374 from i t e r t o o l s import groupby
375 arm_number = [’ ’ . j o i n (v) f o r k , v in groupby (s t r i n g , s t r . i s d i g i t)

] [− 1]
376

377 re turn i n t (arm_number)
378

379 map_ob jec t = map (i n d e x s t r i n g e x t r a c t i o n , arms)
380

381 n e w _ l i s t _ a r m s = l i s t (map_ob jec t)
382

383 c l a s s S n a p t o C u r s o r (o b j e c t) :
384 " " "
385 Adding c u r s o r t o t h e p l o t
386 " " "
387 def _ _ i n i t _ _ (s e l f , ax , x , y) :
388 s e l f . ax = ax
389 s e l f . l y = ax . a x v l i n e (c o l o r = ’ k ’ , a l p h a = 0 . 2) # t h e v e r t l i n e
390 s e l f . marker , = ax . p l o t ([0] , [0] , marker =" o " , c o l o r =" c r imson " ,

z o r d e r =3)
391 s e l f . x = x
392 s e l f . y = y
393 s e l f . t x t = ax . t e x t (0 . 7 , 0 . 9 , ’ ’)
394

395 def mouse_move (s e l f , e v e n t) :
396 i f not e v e n t . i n a x e s : re turn
397 x , y = e v e n t . xda ta , e v e n t . y d a t a
398 i ndx = np . s e a r c h s o r t e d (s e l f . x , [x]) [0]
399 x = s e l f . x [i ndx]
400 y = s e l f . y [i ndx]
401 s e l f . l y . s e t _ x d a t a (x)
402 s e l f . marker . s e t _ d a t a ([x] , [y])
403 s e l f . t x t . s e t _ t e x t (’ x=%1.2 f , y=%1.2 f ’ % (x , y))
404 s e l f . t x t . s e t _ p o s i t i o n ((x , y))
405 s e l f . ax . f i g u r e . c a nv as . d r a w _ i d l e ()
406

407 # I n i t i a l i z i n g empty l i s t s t o s t o r e r e q u i r e d p a r a m e t e r s
408 P l o t l i s t = []
409 Ref_BHP = []
410 F r a c t u r e _ P r e s s u r e = []

114 APPENDIX A. DEVELOPMENT CODE

411 P o r e _ P r e s s u r e = []
412 Kp = []
413 Depth = []
414 Choke = []
415

416 f o r i in range (l e n (n e w _ l i s t _ a r m s)) :
417 P l o t l i s t . append (Da ta_ f r ames [i] . i l o c [n e w _ l i s t _ a r m s [i]])
418 Kp . append (P l o t l i s t [− 1] . l o c ["Kp"])
419 Ref_BHP . append (P l o t l i s t [− 1] . l o c [" R e f e r e n c e BHP"])
420 P o r e _ P r e s s u r e . append (P l o t l i s t [− 1] . l o c [" Pore P r e s s u r e "])
421 F r a c t u r e _ P r e s s u r e . append (P l o t l i s t [− 1] . l o c [" F r a c t u r e P r e s s u r e "])
422 Depth . append (P l o t l i s t [− 1] . l o c [" Depth "])
423 Choke . append (P l o t l i s t [− 1] . l o c [" ChokeValveOpening "])
424

425 # P r e p a r a t i o n o f d a t a from
426 c o n v e r s i o n = 100000 # C o n v e r s i o n t o b a r
427

428 # F r a c t u r e _ P r e s s u r e [:] = [x [: − 1] f o r x i n F r a c t u r e _ P r e s s u r e]
429 F r a c t u r e _ P r e s s u r e = l i s t (map (f l o a t , F r a c t u r e _ P r e s s u r e))
430 F r a c t u r e _ P r e s s u r e = np . a r r a y (F r a c t u r e _ P r e s s u r e) / c o n v e r s i o n
431 F r a c t u r e _ P r e s s u r e = np . c e i l (F r a c t u r e _ P r e s s u r e)
432

433 # P o r e _ P r e s s u r e [:] = [x [: 9] f o r x i n P o r e _ P r e s s u r e]
434 P o r e _ P r e s s u r e = l i s t (map (f l o a t , P o r e _ P r e s s u r e))
435 P o r e _ P r e s s u r e = np . a r r a y (P o r e _ P r e s s u r e) / c o n v e r s i o n
436 P o r e _ P r e s s u r e = np . f l o o r (P o r e _ P r e s s u r e)
437

438 Ref_BHP = l i s t (map (f l o a t , Ref_BHP))
439 Ref_BHP [:] = [f l o a t (x) / c o n v e r s i o n f o r x in Ref_BHP]
440 Ref_BHP = np . a r r a y (Ref_BHP)
441 Ref_BHP = np . c e i l (Ref_BHP)
442

443 Kp = l i s t (map (f l o a t , Kp))
444

445 Depth = l i s t (map (f l o a t , Depth))
446

447

448 # Pore # F r a c t u r e # R e f e r e n c e BHP #Kp #Choke
449 p l o t _ l i s t = []
450

451 p l o t _ l i s t . append (P o r e _ P r e s s u r e)
452 p l o t _ l i s t . append (F r a c t u r e _ P r e s s u r e)
453 p l o t _ l i s t . append (Ref_BHP)
454 p l o t _ l i s t . append (Kp)
455 p l o t _ l i s t . append (Choke)
456

457 p l o t s (1 , 5 , [" Pore P r e s s u r e " , " F r a c t u r e P r e s s u r e " , " R e f e r e n c e Bottom h o l e
p r e s s u r e " , "Kp − P r o p o t i o n a l i t y c o n s t a n t f o r PID " , " Choke Opening "

] , Depth , p l o t _ l i s t)
458

459 # i n d e x s t r i n g e x t r a c t i o n (arms [3 9])

	Abstract
	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background, Motivation and Challenge
	Objectives and Scope
	Methodology

	Literature Review
	Managed Pressure Drilling
	Conventional Drilling vs Under-balanced Drilling vs Managed Pressure Drilling
	Automation techniques in Managed Pressure Drilling

	Reinforcement Learning
	Brief Introduction
	Modelling a Reinforcement Learning problem
	Reinforcement Learning Techniques

	Applications of Reinforcement Learning
	Control Problems
	Other applications

	Reinforcement Learning for MPD
	Modelling MPD as a RL Problem
	System Block Diagram
	States, Actions and Episode

	Resources for implementation of the Reinforcement Learning agents and environment
	MATLAB Reinforcement Learning Toolbox
	Python - Multi armed bandit algorithms
	Environment design in MATLAB

	Simulation Environment and Reward Function design
	Simulation Environment Design
	Backend Models
	Environment Block Diagram

	Reward Function
	Reward function design for Reference point decision
	Reward Function design for oscillations

	Reinforcement Learning Implementation
	Implementation of Environment and Agents
	Case 1: Markov Decision Process Problem
	Limitations of MDP framework for this study

	Implementation of Multi-Armed Bandit Problem

	Results and discussions
	Results from PPO Implementation
	Results from - greedy method
	Brief Comparison
	Objectives completed

	Future work and Conclusion
	Conclusion
	Future works

	References
	Appendices
	Appendix Development Code
	Installed Packages
	Code for Step Function - Version 1
	Code for Reset Function - Version 1
	Code for setting up Environment - Version 1
	ENVIRONMENT STEP FUNCTION ONE STATE MDP
	ENVIRONMENT RESET FUNCTION ONE STATE MDP
	ENVIRONMENT SETUP CODE ONE STATE MDP
	Code for PI controller
	Code for Reward function for BHP Setpoint
	Code for collecting data for Multi-armed bandit problem
	Code for implementing Epsilon-greedy on the data collected in Appendix A.10

