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Abstract: The Markforged Metal X (MfMX) printing machine (Markforged Inc., Massachusetts,
USA) is one of the latest introduced additive manufacturing (AM) devices. It is getting popular
because of its safety, simplicity, and ability to utilize various types of powders/filaments for printing.
Despite this, only a few papers have so far reported the various properties and performances of
the components fabricated by the MfMX printer. In this study, the microstructure and mechanical
properties of MfMX-fabricated 17-4 stainless steel (ss) in the as-printed and heat-treated conditions
were investigated. XRD and microscopy analyses revealed a dominant martensitic microstructure
with some retained austenite phase. The microstructure is generally characterized by patterned
voids that were unfilled due to a lack of fusion between the adjacent filaments. Disregarding these
defects (voids), the porosity of the dense region was less than 4%. Depending on the heat treatment
conditions, the hardness and tensile strength were enhanced by 17–28% and 21–27%, respectively.
However, the tensile strength analyzed in this work was low compared with some previous reports
for L-PBF-fabricated 17-4 ss. In contrast, the hardness of the as-printed (331± 28 HV) and heat-treated
samples under the H900 condition (417 ± 29 HV) were comparable with (and even better than) some
reports in the literature, despite the low material density. The results generally indicated that the
Markforged printer is a promising technology when the printing processes are fully developed
and optimized.

Keywords: additive manufacturing; Markforged Metal X; mechanical properties; microstructure;
heat treatment; stainless steel

1. Introduction

Additive manufacturing (AM) is a progressively developing manufacturing process
that uses a 3D design model to fabricate products using diverse materials, including metals,
ceramics, and plastics, for different applications [1]. AM is defined by ASTM F2792−12a as
“processes of joining materials to make objects from 3D model data, usually layer upon layer,
as opposed to subtractive manufacturing fabrication methodologies.” [2]. The technology
was developed from simple applications that were intended for rapid prototyping and is
now being used for the fabrication of functional products that can produce complex parts
that are difficult to produce using traditional fabrication techniques [3].

Though the AM processes of metal printing have a complex non-equilibrium physical,
chemical, and metallurgical nature depending on the process and material used, the part-
fabrication techniques used in all AM technologies are mostly identical, where the final part
is manufactured through the layer-by-layer addition of materials [4–6]. They use some form
of energy source to selectively melt the material in metal powder form and a laser scans the
regions in the powder layer, resulting in localized melting and solidification of the powder
to form a layer of the part until the part building is completed [7]. In these processes, it is
possible to produce a part that has an approximately 99% or higher density and has better
properties than parts produced using the casting process [8]. However, due to several
physical mechanisms involved, these methods are complex. The scanning speed is very
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high and phase changes occur over a very short time scale. All these complexities directly
impact the process and influence the properties of the processed material. Moreover,
the cost of these metal printers is not affordable for many companies and educational
institutions [9,10].

The newly introduced Metal X system (Markforged Inc. USA), also referred to as
atomic diffusion additive manufacturing (ADAM), is less complex, inexpensive, and has
a larger printing volume capacity [11,12]. Like fused deposition modeling (FDM) technol-
ogy, the Markforged Metal printing system uses materials in a filament form and deposits
them layer-by-layer to create the desired part. This fabrication process is safe and simple
with no need for powders, lasers, solvents, or volatile compounds. Besides the low cost of
the equipment, the possibility of multi-material deposition and the availability of varieties
of filament types for printing make this fabrication process popular. In FDM, the filament
is extruded through the nozzle and deposited on the building platform layer upon layer
based on the shape of the 3D CAD model and solidifies on the building platform, which is
at a temperature below the melting temperature of the filament [13]. The Markforged Metal
X system, on the other hand, uses filament-formed metal powder enclosed in a polymer,
where the polymer reduces the toxicity and flammability risk of the filament. The metal
powder used in the Metal X system is the same as that used in metal powder bed fusion,
except that they are enclosed in the polymer [14].

Due to its good weldability [15] and high market demand, 17-4 HP (precipitation
hardening) stainless steel is one of the several metals that was proposed by Markforged for
industrialized production using the MfMX process [16]. The alloy 17-4 ss has a wide range
of applications, such as aerospace, marine, nuclear, and chemical processes, because of its
excellent mechanical strength and good corrosion resistance [15]. It is mainly strengthened
by the precipitation of highly dispersed Cu-rich nanoparticles [17–19]. The hardening
process involves a solid solution heat treatment at high temperatures and a subsequent
aging heat treatment [18,20,21] that can lead to phase transformation and precipitation of
the hardening components. The typical aging temperature for 17-4 ss is 480–620 ◦C [15].
The optimal tensile strength and hardness can be achieved under the H900 condition
that adopts a solid solution heat treatment at 1038 ◦C for 0.5–1 h and aging treatment at
482 ◦C for 1 h. This is realized by the formation of Cu-rich precipitates (bcc) that maintain
a coherent relationship with the matrix [20].

Since the Markforged Metal X 3D printing technology is a recently introduced AM
process on the market, the parts that are fabricated by the machine have not been extensively
studied, and consequently, only a few papers have been published in the literature so
far. In this work, we fabricated 17-4 ss using a Markforged Metal X printer and studied
the microstructure, hardness, and tensile strength of the resulting as-printed and H900
condition samples. The results from different testing and characterization techniques are
presented and discussed herein.

2. Experimental
2.1. Materials and Methods

The stainless steel 17-4 samples studied in this work were manufactured using a Mark-
forged Metal X 3D printing machine at the University of Stavanger, Norway. The average
composition of 17-4 stainless steel is shown in Table 1.

Table 1. Composition of the 17-4 ss powder/filament.

Composition Cr Ni Cu Si Mn Nb C P S Fe

wt.% 15–17 3–5 3–5 1 max 1 max 0.15–0.45 0.07 max 0.04 max 0.03 max Bal

The feedstock material for the MfMX printing system is a wire filament with a diameter
of about 1.75 mm. The cross-sectional view of the filament and the magnified image
that displays the details inside the filament (powder) are shown in Figures 1a and 1b,
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respectively. The microstructure of the filament shows spherical powder particles of
variable sizes ranging from a few nanometers to ca. 5 µm.
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Figure 1. SEM images of a 17-4 ss filament (feedstock material): (a) cross-sectional view of a filament
and (b) high-resolution image showing components of the filament. The inset in (a) is the axial view
of the filament at low magnification.

There are four basic steps in the MfMX process for manufacturing metal parts: design,
printing, debinding, and sintering [22]. The design step is the conversion of a virtual model
into printable layers using the slicer code “Eiger”, and transfers that information to the
Metal X printer. This is followed by the selective extrusion of filaments bound with the
binder (polymer) through a nozzle and printing layer by layer on the building plate. The
first printed part at this step is called the “green part”. It is soft since it is bound in a polymer
matrix. The “green part” is then debonded by immersing it in a specialized solvent that
dissolves the primary binder thermally to form the “brown part”. The final step involves
drying the “brown part” and sintering at a high temperature (about 85% of the melting
temperature) in a horizontal tube furnace to transform the lightly bound “brown part”
into a relatively dense metallic part. Sintering is done under argon and argon–hydrogen
mixed media to prevent the parts from being contaminated. For the ease of removing
the sintered component from the support, ceramic layers are deposited with a secondary
extruder before starting the printing of the actual material. Detailed descriptions of the
MfMX manufacturing process are available in [16,22,23].

Figure 2 illustrates successive layers that are fabricated with MfMX. The layers of
printed parts have two tool paths (wall and infill), as shown in the figure. The “wall” is the
tool path on the periphery, whereas the “infill” is the inner section of the part. The “wall”
is oriented parallel with the edges of the part (parallel and normal to the part’s longer axis),
while the “infill” is oriented ±45◦ with the part axis, as shown in the magnified sections
of the sketches in Figure 2. The printing of the samples was done based on the “default
parameters” setup proposed by the manufacturer [23]. Some of the known parameters
applied for printing 17-4 ss with the MfMX system are given in Table 2.
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Table 2. Printing parameter.

Orientation of Part (X, Y, Z) (180◦, 0◦, 180◦)

Layer thickness 0.125 mm after sintering
Infill Solid infill +45/−45◦ orientation
Wall 4 walls

Surface boundary 1
Sintering T Ca. 85% of melting T

Printing chamber T 45 ◦C

2.2. Heat Treatment

The common practice in industries to improve the mechanical properties of the 17-4
stainless steel materials for various applications is a post-fabrication heat treatment. In
this work, we adopted the industry standard, namely, an H900 heat treatment scheme, to
attain the optimal mechanical strength. Accordingly, the samples were first solid solution
heat-treated at 1038 ◦C for a 0.5 or 1 h duration. When the soaking time was over, the
samples were either cooled in air or water (quenched). This step normally softens the
material by releasing the initial residual stresses partially/completely. To increase the
mechanical strength through the formation of precipitation hardening, each sample was
aged at 482 ◦C for 1 h. As shown in [24], Cu-rich fine particles, which are coherent with the
bcc matrix, are precipitated after the aging heat treatment. In addition, other samples were
directly aged (DA) to analyze the effects of bypassing the homogenization treatment. All the
heat treatments were done in a furnace (Nabertherm P300, Lilienthal/Bremen, Germany)
equipped with a K-type thermocouple. To avoid undesirable phase transformations at
lower temperatures, the samples were introduced after stabilizing the furnace at the given
target temperature. The samples that were solid solution heat-treated and aged are referred
to as H1A, H2A, H1Q, and H2Q. “H” stands for the two steps of heat treatment, whereas
the numbers 1 and 2 refer to the soaking times of 0.5 and 1 h, respectively. Similarly, the
letter “A” refers to air-cooling and “Q” stands for quenching. Furthermore, to examine
the effects of the solution heat treatment alone, two samples were subjected to a solid
solution heat treatment for 0.5 h and tested for hardness. These samples were S1A and S1Q,
where “S” stand for the solution heat treatment (not aged). The list and the heat treatment
descriptions of the samples are given in Table 3. The microstructure and mechanical
properties of the heat-treated samples were analyzed and compared with those of the
as-printed (AP) samples.
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Table 3. Descriptions of heat treatment scheme.

Sample Solid Solution Heat Treatment (SHT) Aging Cooling
T (◦C) Soaking Time (h) T (◦C) Time (h)

H1A 1038 0.5 482 1 Air
H2A 1038 1 482 1 Air
H1Q 1038 0.5 482 1 Water
H2Q 1038 1 482 1 Water
DA —- —- 482 1 Air
S1A 1038 0.5 . . . . . . . . Air
S1Q 1038 0.5 . . . . . . . . Water
AP As printed

2.3. Hardness and Tensile Testing

Hardness tests were performed using a Vickers Struers DuraScan testing machine
under a 5 kg HV force for a dwell time of 10 s. The surfaces of the specimens were
finely polished according to the requirements for Vickers hardness testing. The hardness
measurements were done on the surface normal to the building direction. The interval
between adjacent indentations was 1 mm and the closest indentation near the edge was
about 3 mm. The average hardness was calculated from 12 measurements for each of the
specimens tested.

The tensile test was performed using an Instron 5985 universal tensile testing ma-
chine whose maximum loading capacity was 250 kN at a strain rate of 0.00007 s−1. The
specimens for the tensile test were prepared following the ISO6892-1 standard preparation
procedures [25]. To ensure production repeatability, six samples were fabricated by em-
ploying the same parameters (Table 2) for every condition shown in Table 3 for the tensile
measurements. The schematic diagram of the specimens is shown in Figure 3.
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Figure 3. Geometry and dimension of the tensile test specimen.

2.4. Microstructure and Phases

The microstructure and fracture surfaces of the specimens were analyzed with scan-
ning electron microscopy (SEM) using a Gemini SUPRA 35VP (ZEISS) equipped with EDAX
energy dispersive X-ray spectroscopy (EDS). Sample preparation for the microstructure
analysis consisted of mechanical grinding, fine polishing, and ultra-polishing with OP-S
colloidal silica. Light optical microscopy (LOM, Olympus GX53) was also used for the mi-
crostructure and phase analysis. After the investigation with SEM, the samples were used
for the measurement of Vickers hardness testing. Phase analysis was done using powder
X-ray diffractograms recorded with Bruker D8 X-Ray diffraction (XRD) equipment with
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CuKα radiation (λ = 1.54060 Å) and operating at 40 kV and 25 mA. The diffractograms were
recorded within the 2θ range of 35◦ and 120◦ at a step size of 0.034◦. Further investigations
of the phases and microstructure were performed with transmission electron microscopy
(TEM), JEOL-2100 (LaB6 filament) operating at 200 kV. For the TEM analysis, thin foils were
prepared, first by thinning them down mechanically to a thickness of about 100 µm and
then punching 3 mm disks from the thin foils. These disks were then electropolished using
a dual jet polishing system, namely, Struers TENUPOL-5, operated at 13 V and −30 ◦C in
an electrolyte solution of 95% methanol and 5% perchloric acid.

3. Results and Discussions
3.1. Phase Identification

XRD measurements were performed on all the samples to identify the phases before
and after the heat treatment. The diffractograms recorded before (AP) and after the heat
treatments (H1A, H2A, H1Q, H2Q, and DA) are shown in Figure 4. The peaks were indexed
to α-bcc ferrite/martensite (a = 2.86 Å) and γ-fcc (a = 3.56 Å) phases. The intensities and
the widths of the peaks varied, but all the samples contained both phases. The peaks that
represented the fcc phase were only observed for low-index planes (111 and 200) and they
were too weak compared to those of the bcc phase. From the intensities of the peaks, it
could be inferred that the bcc phase was the dominant phase in the Markforged-Metal-X-
manufactured 17-4 ss.
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The TEM images also show the presence of martensitic structures in the as-printed
MfMX-17-4 ss samples, as shown in Figure 5a,b. The insert in Figure 5a is a SAD pattern
recorded from the same image. The SAD is indexed to a bcc structure in the [111] orientation.
The bcc phase identified using both XRD and TEM was an α′ bcc martensite phase rather
than a ferrite bcc phase. The latter is usually characterized by well-defined grain boundaries
without laths. As we can see elsewhere, the SEM and LOM also confirmed martensite as
the dominant phase in the MfMX-17-4 ss.
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grain boundary and lath structures.

All the diffractograms (including for AP) demonstrated textured crystallography per-
taining to the (110) planes of the bcc structure. This meant that the material was mainly
martensitic even before the heat treatments. Factors that favor the retention of a large
fraction of austenite in the AM 17-4 ss are suggested in the literature. These are (1) the
presence of strain at high-angle grain boundaries, which suppresses the transformation of
austenite to martensite; (2) a higher dislocation density; (3) supersaturation of the γ phase
with the corresponding phase stabilizing elements; (4) smaller grain sizes; (5) interdendritic
spacing; and (6) a powder manufacturing environment. The details can be referred to in [25].

As shown in the insert of Figure 4, it is evident that a considerable amount of austenite
material was transformed into bcc/martensite material after the heat treatment, but not
a very large quantity. Based on the intensities of the peaks, the volume fraction of the
fcc phase appeared to decrease after the heat treatment (H2Q, H2A). Since the retained
austenite material in the as-printed material was low, the transformed fraction was also
low. However, a quantitative study is required to confirm this.

There are variations in the literature regarding the amount of martensite/austenite
present in AM-manufactured 17-4 ss depending on the fabrication environment. Selective
laser melting (SLM)-fabricated 17-4 ss, which was fabricated from the powder atomized in
N2 for instance, mainly has an fcc structure (15% martensite) in a nitrogen gas environment
fabrication [26]. However, fully martensitic 17-4 ss parts can be fabricated using SLM
if the Ar-atomized powder is fabricated in a nitrogen environment according to Murr
and co-workers [26]. On the other hand, the study by Cheruvathur et al. [17] indicated
a 50% retained austenite and 50% bcc/martensite structure from SLM-built 17-4 ss using
a nitrogen-atomized powder in a nitrogen environment. Two possible reasons are sug-
gested by Murr et al. [26] for the high volume fraction of the retained austenite phase.
The first reason is that nitrogen is considered to be a stabilizer of austenite, and thus, the
absorption of the gas can lead to a reduction in martensitic transformation. The other
reason stated by the authors was the formation of very fine subgrains that tend to shift the
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martensite transformation temperature. This suggests that careful choice and control of the
gases utilized for the powder and the component fabrication of 17-4 ss using AM are im-
portant. In contrast to an AM-fabricated material, the as-received wrought 17-4 ss exhibits
a fully martensitic/body-centered cubic structure [20,27]. A full martensite transformed
as-built component is normally an advantage since it avoids post-processing, especially
heat treatment at high temperatures.

Though MfMX and SLM techniques have notable differences, the effects of the cover
gases in both cases must be identical since the thermodynamic transformation of the phases
is likely similar. In the current study, the gas utilized in the sintering chamber of the MfMX
printing system was Ar and a mixture of Ar and hydrogen. As can be inferred based on the
XRD and microscopy analysis, the amount of austenite in the as-printed material observed
in this work was significant. This signals that the amount of the martensitic phase of 17-4 ss
could be increased if sintering was done in a nitrogen environment with MfMX.

3.2. Microstructure
3.2.1. As Printed

The typical microstructure of the dense region of the AP Markforged-Metal-X-printed
17-4 ss is shown in Figure 6. The low magnification SEM images in Figure 6a,b exhibit the
microstructures of the sample from two different perspectives. In Figure 6a, “V”-shaped
ditches (or unfilled gaps) are seen at approximately equal intervals. The defects shown
as straight lines and pits in these images were related to unfilled spaces between adjacent
filaments. These voids were the spaces that were left unfilled due to the lack of insufficient
melting of the stacked filaments through the thickness layers.
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Figure 6. (a,b) SEM images of the as-printed sample surface structures from two perspectives.

The images in Figure 7 were recorded in the regions between the structural defects
(voids), showing some details of the microstructure. Figure 7a is an LOM image, which
displays lath or plate-like microstructures, which is usually identified as a martensitic
structure, while Figure 7b is an SEM image that shows different features of 17-4 AP. The
non-lath/plate regions were expected to be in the austenite phase. This was consistent with
the combined findings of the XRD and TEM that revealed the predominance of a martensite
structure in AP. Although the cooling rate of the AM process was high enough to form
a fully martensitic structure, some reverted austenite (inter-lath austenite) could be formed
due to heat-affected regions occurring during the printing process [27].
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Figure 7. The microstructure of MfMX-17-4 AP stainless steel: (a) LOM and (b) SEM (back-scattered
electron image).

On the other hand, Figure 7b shows the grains and grain boundaries clearly. The grains
appear equiaxed with an average size of about 10 µm. The grain boundaries appear in
a bright contrast compared with the core of the grains. Some nano-sized precipitates were
formed along the grain boundaries, as indicated by white arrows in the image (Figure 7b).
The precipitates were rich in Nb, as revealed by the EDS analysis. The dark contrast seen in
both images is known to be pores of variable sizes.

Most of the larger pores occurred at the triple junctions and the edges were decorated
with precipitates, as is clearly shown in Figure 8a, in which the variable-sized pores at/near
the triple junctions are shown. Figure 8b is a typical EDS spectrum of a point analysis from
the selected spots in Figure 8a. The list of Nb concentrations (wt. %) of the spots analyzed
using EDS (Figure 8a) is given in Table 4. The amount of Nb in these precipitates thus
lay between 24 and 31 wt. %. The phase of the precipitates is known to be Nb carbide
(NbC) [18,27]. The diffusion of such heavier elements into the lattice defect, mainly to the
grain boundaries, and its nucleation into carbides are the most likely phenomena during
sintering. There can also be very fine Cu-rich precipitates in the matrix formed from the
pre-existing Cu that is retained due to limited diffusion if the homogenization time is
short [24]. Niobium carbide precipitates have an fcc structure and are incoherent with the
bcc ferrite matrix that forms high-stress sites at the triple junctions. These precipitates are
assumed to be responsible for the initiation and promotion of the pores and subsequent
cracks at these sites. NbC precipitates are normally dissolved during a solid solution heat
treatment, but the pores continue to exist.

3.2.2. Post-Fabrication Heat Treatment

To obtain the optimal microstructure and mechanical strength of 17-4 ss, a two-step
post-heat treatment (solid solution heat treatment and aging) is generally performed. The
solid solution heat treatment of the current work was performed at 1038 ◦C, followed
by precipitation hardening (aging) at 482 ◦C according to the H900 scheme. The LOM
images of four samples (SA, H1A, H2A, H1Q) that exhibited the microstructure are shown
in Figure 9. Irrespective of some differences in the heat treatment and cooling type, all
the samples displayed an identical lath/plate-like microstructure that corresponded to
martensite. The result was expected since the H900 heat treatment scheme is a well-
established heat treatment scheme for obtaining the optimal mechanical strength following
the formation of martensite structures and hardening precipitates. Although the samples
were dominantly martensitic in the as-printed condition, some transformation of the fcc
phase (γ phase) into the martensitic phase also occurred, as illustrated in Figure 4.
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Table 4. The concentration of Nb at the spots shown in Figure 8a.

Spot 1 2 3 4 5 6 7 8 9

wt. % 26 24 36 25 30 31 28 0 0
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Figure 9. LOM images of heat-treated samples: (a) SA, (b) H1A, (c) H2A, and (d) H1Q. The inset in
Figure 9b is a small-magnification image showing regions where the magnified images were recorded.
The voids between the filaments appear as a dark contrast. The white square in the inset is the
approximate location from where the magnified image of Figure 9b was acquired.

3.2.3. Porosity

The porosity analysis was done without considering the pores/voids that lay between
adjacent filaments, as shown in Figure 9b. A typical image of the pores analyzed in this
study is given in Figure 10. The dark contrast/features seen in the back-scattered electron
(BSE) image were generally pores/pits. The insert in Figure 10 is a secondary electron
(SE) image that was intended to show pores that appear as a dark contrast in the BSE
image. ImageJ (free software) was used to quantify the pores using several images of
the as-printed samples recorded with SEM. The histogram shown in Figure 11 represents
the average porosity of the individual surfaces/images. The sizes of the pores varied
from a few nanometres to several micrometers. Most of the smaller pores were spherical,
while the bigger ones were elongated along one axis. The average surface porosity was
3.47 ± 0.83%, which was very close to what was reported in the literature, for example,
3.3% in both [8] and [28]. Based on the porosity values obtained, the material density of the
MfMX-17-4 ss from this study was approximately 96.6% disregarding the structural defects
in connection with the voids observed in the adjacent regions of the filaments. This value
was consistent with the relative density claimed by the Markforged company, i.e., ≥96%.
However, in our assessment, the density we obtained in this work could not be taken as
the material density of MfMX-17-4 ss because of the larger structural defects/voids that
were not considered in the analysis.
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Porosity is a common defect observed in AM-produced components that reduces
the material density and consequently negatively affects the material strength. Metals
with a high porosity density are weaker than those with a lower amount of porosity
defects. As shown from the microscopy images, the Markforged 17-4 ss contains a high
density of pores that were as large as several micrometers in size. In addition, the 17-4 ss
component fabricated using Markforged Metal X was characterized by larger structural
defects, including elongated pits/voids adjacent to deposited filaments. The structural
defects (Figure 6) due to poor infusion of the filaments during printing were probably the
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main threats to the strength of the material. In general, the structural defects related to the
porosity of MfMX-17-4 ss were significantly higher compared with materials fabricated
using powder bed AM techniques. One aspect of the MfMX to be considered to reduce
the porosity level and consequently increase the density of the material is the sintering
temperature. Singh et al. [28], for instance, studied the relationship between porosity
and sintering temperature and found a decreasing trend of the pores with increasing
temperature. They observed that shrinkage of the pores with rising temperature in the
range of 1200 to 1360 ◦C positively affected the density of MfMX-17-4 ss.

3.3. Hardness Testing

Hardness tests were performed on the surfaces parallel to the build direction. The
average hardness calculated for all the samples tested are depicted in Figure 12. The
deviations were quite large due to structural defects related to the porosity.
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Referring to Figure 12, the highest and smallest average hardnesses measured were
for H2A (417 ± 29 HV) and S1A (289 ± 36 HV), respectively. The other solid solution
heat-treated sample (S1Q) also had a lower hardness than AP. As expected, the hardness
of the samples that were only solid solution heat-treated, i.e., S1A and S1Q, became less
hard than AP by approximately 16 and 11%, respectively. Before the solid solution heat
treatment, the samples contained crystal defects, including grain boundaries and dislocation
networks, which are high-stress locations. After the solid solution heat treatment, most of
the dislocations were annihilated, and possibly, the grains were growing. In addition, some
undesirable precipitates that formed during fabrication were dissolved and the phase of
17-4 ss became supersaturated with Cu [17,18]. The stress level was thus reduced and the
material became weaker in strength.

However, all the samples that were aged (H1A, H1Q, H2A, H2Q, and DA) became
harder than the as-printed samples. The samples that were solid solution heat-treated
and aged were harder than AP by 17–24%. Similarly, the hardness of the aged-only (DA)
sample was enhanced by about 23% compared with AP. This sample may have a similar
microstructure as that of AP since the aging temperature (482 ◦C) was not high enough to
release stresses in the 17-4 ss. At the aging temperature, nano-sized intermetallic precipita-
tions are known to be formed from the super-saturated matrix. The interface between the
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nanoparticles and the matrix becomes a stress site. In addition, the precipitates prevent the
movement of dislocations such that it resists deformation caused during indentation tests
and consequently enhance the hardness/strength level of the material. The precipitates are
mainly Cu-rich nanoparticles, as identified by TEM analysis in previous studies [17–19].

The list of some of the hardness measurements from previous reports is presented in
Table 5. The average hardness of the MfMX-17-4 ss measured in this work was slightly
larger than some of the hardnesses reported in the literature. As shown in Table 5, the
average hardness of AP of this work was larger by 28 HV than the value reported in [16]
and by 3 HV than the one in [24]. Similarly, the hardness of H900 (H2A) was larger by
63 HV than the one reported in [16] and by 42 HV than the one in [29]. On the other hand,
the hardness values shown in [27] were larger than the corresponding values of both the
AP and H900 samples in this work due to different measurement conditions. The load
applied during the indentation for this work was 5 kg, whereas the load used by [27] was
0.2 kg. The superiority of the hardness from the current work relative to some values in the
literature is not clear.

Table 5. List of tensile strengths and hardnesses compared with the literature.

Sample
Condition

AM
SHT Aging YS UTS El Hardness

Reference◦C/h ◦C/h MPa MPa % HV

AP MfMX 551 847 3.1 331 ± 28 This work
SA MfMX 482 832 986 2.6 407 ± 20 This work
H1A MfMX 1038 482 513 1021 3.6 409 ± 26 This work
H2A MfMX 1038 482 602 1075 3.4 417 ± 29 This work
H1Q MfMX 1038 482 921 1078 3.0 408 ± 29 This work
H2Q MfMX 1038 482 892 1051 2.4 387 ± 26 This work
AP MfMX 800 1050 5 302 [16]
H900 MfMX 1038 482 1100 1250 6 354 [16]
AP MfMX 823 940 3.67 [28]
AP L-PBF 661 ± 24 1255 ± 3 9.9 ± 0.2 333 ± 2 [29]
H900 L-PBF 480/1 945 ± 12 1417 ± 6 11.7 ± 0.8 375 ± 3 [29]
AP L-PBF 334.5 ± 15 [27]
H900 L-PBF 1038/4 482/1 524.5 ± 6 [27]
As built Wrought 384.3 ± 8 [27]
H900 Wrought 1038/4 482/1 450.1 ± 9 [27]
AP L-PBF 784 922 16.7 328 [24]
H900 L-PBF 1038/1/AC 482/1 1280 1399 10.5 [24]
AP L-PBF 570 944 [7]

L-PBF 788/2 482/1 1126 1457 [7]

3.4. Tensile Testing

Typical engineering stress–strain curves of all the samples tested are shown in Figure 13.
The numerical values of the yield strength (YS), ultimate tensile strength (UTS), and
elongation (El) are also listed in Table 5, together with the results reported in the literature
for comparative analysis. There were notable strength differences between the as-printed
and the heat-treated samples. Generally, the UTS of the H900 samples was larger than
1000 MPa, whereas the UTS of AP was about 847 MPa. As shown in the stress–strain curve
in Figure 13 and Table 5, the UTS of the heat-treated samples under the H900 condition was
increased by 139–231 MPa. This was an increase of about 21–27% after the heat treatment
due to the precipitation of hardening nanoparticles in the matrix during aging as discussed
elsewhere in this paper. H1Q (solid solution heat-treated for 0.5 h/quenched and aged)
was the sample that exhibited the largest YS (928 MPa) and UTS (1078 MPa), but a lower
elongation (2.92%). In contrast, the smallest UTS (986 MPa) and elongation (2.52%) were
measured for DA (only aged). The directly aged sample (no solid solution heat treatment)
was strengthened only by the formation of precipitation hardening. Transformation of the
austenite phase to the martensite phase was nil or insignificant at the aging temperature.
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This meant that the directly aged sample contained more austenite compared with those
samples subjected to solid solution and aging heat treatments. When a considerable
amount of the austenitic phase co-exists with the martensitic phase, the precipitation
kinetics becomes sluggish because of the high solubility of copper in the austenite phase [7].
The relative concentration of hardening precipitates in the directly aged sample was thus
lower than in the solution and aged samples. Consequently, the directly aged sample
became less strong than those samples subjected to both heat treatments.
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There were also some significant differences in the tensile properties due to different
cooling rates (Figure 13 and Table 5). Under the same heat treatment conditions, the water-
cooled samples exhibited better YS and UTS than the air-cooled samples (H1Q vs. H1A
and H2Q vs. H2A). The exception was the UTS of H2A, which was slightly larger than
that of H2Q. As expected, the air-cooled samples showed better ductility than the water-
cooled (quenched) samples. This was consistent with the literature [19], which showed
a higher tensile strength but lower elongation for samples treated under rapid cooling
(water quenching) compared with samples cooled in the air [1].

The soaking time during the solid solution heat treatment affected the tensile proper-
ties, as shown in Table 5. For the air-cooled samples, those samples that were solid solution
heat-treated for a longer soaking time, i.e., 1 h (H2A), showed better tensile strength (both
YS and UTS) than those heat-treated for a shorter soaking time, i.e., 0.5 h (H1A), while the
elongations were nearly the same. Contrary to this, higher strength and ductility were ob-
served for the sample that was solid solution heat-treated for a shorter duration (H1Q) than
the sample that was heat-treated for a longer soaking time (H2Q). The relative comparison
of the tensile strength was also consistent with the hardness data. As shown in Table 5,
H1Q was harder than H2Q by about 21 HV. The observation from this work was also in
agreement with the reports in the literature [30]. The solid solution heat treatment scheme
for the optimal mechanical strength for 17-4 ss manufactured using MfMX in this work was
generally the one that combined a solid solution heat treatment for 0.5 h with cooling in
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water before aging. However, a more systematic investigation is required for confirmation
and justification of these observations.

The tensile test of MfMX-17-4 ss of the current work showed comparable results with
some other studies in the literature. For instance, the YS (551 MPa) and UTS (847 MPa)
of AP in this work were very close to an L-PBF 17-4 ss [7], whose reported values for YS
and UTS were 570 MPa and 944 MPa, respectively. Nevertheless, the tensile strength of
17-4 ss measured from the current work was generally lower than most of the observations
in the literature (Table 5). A typical example is reported in [29], in which the YS and
UTS of the L-PBF fabricated 17-4 ss exceeded the values obtained in the current work
(MfMX-17-4 ss) by 110 MPa and 408 MPa, respectively. Similarly, the data reported on 17-4
ss manufactured using MfMX [28] and the values claimed by the Markforged company [16]
were significantly larger than what was observed in this work. On the other hand, the study
by Kedziora and co-workers [31] on the same material using the Markforged machine
indicated a lower YS (441 MPa) and UTS (496 MPa) than even the current work. Although
further study is required, such significant differences could have been due to the fabrication
conditions. We presume that the materials in the literature might have been fabricated
under optimal conditions (e.g., sintering temperature, soaking time, build orientation with
reference to tensile load) relative to the current study, which utilized the default settings of
the MfMX machine for printing.

The tensile strength measured in this work for 17-4 ss in the H900 condition was also
lower than that of the conventional [7] and AM materials, as shown in Table 5. However,
an optimal condition can be achieved from the MfMX system by adjusting different param-
eters, such as the sintering temperatures and orientations of the filaments. The ductility
of the current work was also lower than the reports in the literature. The ductility of the
material tested in this study was comparatively low (3.6% max vs. 11.7% in [29]). The brittle
nature of the sample fabricated using the MfMX was primarily due to the orientation of
the tensile test samples to the stress applied. The stress sites were mainly the voids, which
were oriented perpendicular to the tensile direction, as pointed out by Kedziora et al. [31].
As shown in the next section, material failure occurred at the interfaces between the fila-
ments, which is an indication of weak fusion between adjacent filaments. These form voids,
especially when the distance between the layers/filaments is too large.

Fractography

The tensile fracture surfaces of all the tested samples were studied using SEM. The
images that show the fracture behavior of the samples are presented in Figure 14. In all
cases, the material fractures occurred in the gauge section of the samples. The grip sections
of the tensile samples were excluded from the images shown in Figure 14. AP, H1A, and
H2Q exhibited brittle failure characteristics, whereas DA, H2A, and H2Q appeared to have
failed in a shear manner.

The characteristics of all the fracture surfaces demonstrated brittle-like fractures on the
edges, as shown in the images in Figure 14. The edges of the test samples were the walls
(Figure 2) where the long axis of the filaments was oriented parallel to the tensile loads.
The middle region of the samples was made of “infills” whose filaments were oriented at
±45◦ with the axial orientation of the sample. However, the fracture surfaces of DA, H2Q,
and H2A coincided with the interfaces between adjacent filaments. This indicated that the
jointing between the filaments in the infill region was weaker compared with the walls.
The load-carrying capacity of the filaments along the tensile axis was higher than when the
filaments were deposited at an angle relative to the axis of the tensile test samples. A similar
observation was reported by Todd et al. [8] for MfMX-fabricated 17-4 ss. According to this
report [8], the ultimate tensile strength can be obtained when the filaments are aligned
parallel with the loading direction.
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Figure 15 presents details of the fracture surfaces whose images were acquired from
the localities where stresses were supposed to concentrate during the tensile tests. The
topographic images appear as intergranular brittle fractures with variable shapes, sizes,
and distributions. A closer examination of the images reveals that the facets in the as-
printed sample in Figure 15a were smaller than those of the rest of the samples, indicating
a uniformly distributed granular structure. On the other hand, the microvoids in certain
areas of the samples became coalesced, which is the characteristic of intergranular fracture.
Some of these regions are shown with arrows in the images.

To understand the tensile behavior of materials, it is noteworthy to examine the details
of the microstructures. The SEM images of the fracture surfaces shown in Figure 16a–d
reveal incomplete jointing of the filaments due to a lack of fusion. The material failures
were assumed to have been due to cracks that evolved due to the uniaxial stresses applied
to the tensile samples. However, the cracks that occurred at the interfaces of the infill and
wall (Figure 16c) were parallel to the applied stress. Similarly, the interfaces (voids) between
adjacent filaments were parallel to the applied stress, as seen in the fracture surfaces of the
samples. The latter indicated that the filaments were weakly joined to form compact/dense
material. The wall was also weakly bonded with the infills, resulting in cracking when
applying stresses during the tensile testing.

In most cases, the cylindrical shapes of the filaments were maintained after sintering,
which gave rise to a large volume fraction of unfilled spaces. Strong fusion occurred only
at the tangential contacts of the filaments, while most of the curved regions remained free
surfaces. This behavior is illustrated clearly in the image shown in Figure 16b. The fracture
surfaces shown in the voids/gaps in the image exhibit the curved sections of the adjacent
filaments that were not jointed due to lack of fusion. The voids appeared to be cracked, but
they were rather unfilled spaces between non-joined parts of the filaments. Such structural
defects reduced the load-carrying capacity of the material, which resulted in the brittle
nature of the fractures.
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4. Conclusions

In this work, the microstructure and mechanical properties of 17-4 PH stainless steel
manufactured using a Markforged Metal X 3D printer in as-printed and heat-treated
conditions were studied. The main observations and conclusions of the study were as
listed below.

- The Markforged-Metal-X-manufactured 17-4 ss samples were predominantly marten-
sitic in phase, with some retained austenitic phase. The XRD measurements exhibited
partial transformation of the austenite phase into the martensite phase after the heat
treatment. For the complete transformation of the austenite phase into an α′-bcc phase,
a different heat treatment scheme than the H900 needs to be considered.

- The microstructure of the Markforged-Metal-X-manufactured 17.4 ss was character-
ized by patterned voids or unfilled spaces that could eventually affect the mechanical
integrity of the material. The voids are believed to have occurred mainly due to a lack
of fusion of adjacent filaments.

- The porosity analyzed in the dense region of the material was about 3.5%. Most of the
larger pores observed were at the triple junctions that were rich in NbC precipitates.

- Post-fabrication heat treatment enhanced the hardness by 17–28% and the tensile
strength by 21–27%, depending on the heat treatment conditions.

- The hardnesses and the tensile strengths of the samples under directly aged conditions
were slightly lower than those samples tested after the solid solution and precipitation
hardening heat treatment. The difference could have been due to the transformation
of austenite into martensite structures following the solid solution heat treatment.

- The hardness of the as-printed samples (331 ± 28 HV) and heat-treated samples
under the H900 condition (417 ± 29 HV) were comparable with the reported values in
the literature.

- The maximum elongation achieved was about 3.6%, which was comparatively low
relative to results from other AM techniques.

- The maximum ultimate tensile strengths from the as-printed and H900 conditions
were 551 and 1078 MPa, respectively. These were lower than most of the observations
for conventional and AM methods.

- The presumption for lower-strength 17-4 ss from the current study relative to reports
in the literature based on the Markforged Metal X printer may have been due to
differences in fabrication conditions (e.g., sintering temperature, soaking time, and
build orientation concerning tensile load).

- The inferiority of the tensile strength relative to other AM techniques could be related
to incomplete fusion of the filament; this might have been due to the low sintering
temperature, which left behind pattered voids; the infill orientation relative to the
applied load; and the high pore concentration.

- The results indicated that the Markforged printer is a promising technology given that
the printing processes are fully developed and optimized.
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