
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialization: Spring semester, 2022

MSc. Petroleum Engineering Open
Author:

Alina Shashel ..
Alina Shashel

Programme coordinator:
Øystein Arild

Supervisors:
Postdoktor Jie Cao
Prof. Dan Sui

Title of master’s thesis:
Uncertainty analysis of Supervised machine
learning predictions applied to Lithology classification

Credits: 30

Keywords: Number of pages: 86
Supervised Machine Learning, Uncertainty
Quantification, Model evaluaton, Real-time
drilling, Volve, Lithology classification.

+ supplemental material/other: 13

Stavanger, 15th July 2022

a

Alina Shashel

Uncertainty analysis of Supervised machine
learning predictions applied to Lithology
classification

Master Thesis Project for the degree of
MSc in Petroleum Engineering

Stavanger, July 2022

University of Stavanger
Faculty of Science and Technology
Department of Energy and Petroleum Engineering

ii

Abstract

Geosteering is the technique of guiding directional drilling to remain within the pay zone.
This process demands a thorough survey of the lithological properties of the surrounding geo-
logical strata. Since logging while drilling (LWD) tools are positioned a few meters above the
bit, it generates depth lag and, thus, a time delay between what the LWD sensors report to the
surface and the performance of the bit. Drill bit and drill string performance factors are the
earliest markers to determine formations’ characteristics without the temporal delay.

Implementing automated lithology identification would enhance the quality of the geosteer-
ing operation. This thesis investigated the extent to which various supervised machine learning
(ML) classification algorithms may be utilized to recognize the lithological features of drilled
formations.

ML models were trained using preprocessed real-time drilling data from the Volve field.
The data included nine wells with a total of 198 928 tagged observations and the accompanying
measured parameters at various depths within the wells. The ML algorithms were tested on the
selected well with a minority of samples presented in the dataset.

The progress in ML algorithms application provides an incentive for more study on model
trustworthiness, including uncertainty analysis, to improve classification algorithms used in
lithology identification. Most ML algorithms may be thought of as "black box" models, mean-
ing that the process by which variables are integrated to form predictions cannot be seen or
transparently understood. Hence, it is required to quantify and limit the uncertainties in mod-
els’ performance to apply ML to real-life classification problems successfully.

Within the scope of this research, Feature Sensitivity and Vulnerability Analysis, as well as
Dataset shift Measurement, were applied to investigate the reliability of ML models. A novel
Black Box Metamodel approach and Bayesian Neural Networks were employed to compute
aleatoric and epistemic uncertainties.

After testing seven ML classification algorithms, the Random Forest and Adaptive Boosting
ones demonstrated the most accurate results and were chosen for comparative reliability analy-
sis.

In classification tasks, it is more crucial to estimate the probability that an observation be-
longs to a specific class than the prediction results. Consequently, the Probability Calibration
techniques improved the quality of the quantified uncertainties. It was proven that the Adaptive
Boosting algorithm with the better scoring results is less confident and ambiguous regarding
epistemic uncertainty than the Random Forest one after calculating and comparing the differ-
ence between the confidence and accuracy results obtained after the Probability Calibration.

Keywords – Supervised Machine Learning, Uncertainty Quantification, Model evaluaton,
Real-time drilling, Volve, Lithology classification

Acknowledgments

I would like to express my gratitude towards my supervisors Postdoctoral researcher Jie Cao

and Professor Dan Sui at UiS. Their guidance and valuable advice carried me through all the

stages of writing my thesis.

Many thanks to my parents Vadim and Elena and little sister Uliana for having a space for

me in their minds and hearts regardless of the distance. And to my incredible grandmothers

for their understanding and limitless support. Special thanks to my partner Miguel who went

through this challenging journey with me.

Per Aspera Ad Astra!

Alina Shashel

iii

Table of Contents

Abstract ii

Acknowledgments iii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Thesis Structure . 2

2 Disclosed Volve dataset 4

2.1 The Volve Dataset . 4

2.2 General Information . 4

2.3 Geology . 5

2.3.1 Lithostratigraphy Description . 5

2.4 Wells . 8

2.5 Drilling data . 9

3 Methodology 12

3.1 Supervised Machine Learning Classification 12

3.1.1 K-Nearest Neighbor . 12

3.1.2 Decision Trees . 14

3.1.3 Logistic Regression . 15

3.1.4 Ensemble Learning . 16

iv

TABLE OF CONTENTS v

3.1.5 Gradient Boosting . 19

3.1.6 Naïve Bayes . 21

3.2 Classification on Imbalanced Data . 22

3.2.1 Oversampling and Undersampling 22

3.2.2 Class weights . 25

3.3 Model Analysis . 26

3.3.1 Model Evaluation Metrics . 26

3.3.2 ROC curve . 28

3.3.3 Precision-Recall (PR) curve . 29

3.3.4 Dataset Shift . 29

3.3.5 Model Interpretability . 31

3.4 Uncertainty Quantification . 34

3.4.1 Intristic and Extrinsic UQ Algorithms 34

3.4.2 Calibration . 35

3.4.3 Metamodel . 38

3.4.4 Bayesian Neural Network . 39

4 Data Analytics 42

4.1 Data Labeling . 42

4.2 Lithology Classes Distribution . 42

4.3 Feature creation . 45

4.4 Data Quality . 46

4.5 Feature Selection . 48

4.5.1 Wrapper Methods . 49

4.5.2 Filter Methods . 49

4.5.3 Embedded methods . 50

5 Classification Results 52

5.1 Train/Test Split . 52

5.2 Categorical Encoding . 54

vi TABLE OF CONTENTS

5.3 Experimental Setting 1 - Gradient Boosting 55

5.4 Experimental Setting 2 - Decision Tree . 57

5.5 Experimental Setting 2 - Random Forest 60

5.6 Experimental Setting 4 - Adaptive Boosting 62

6 ML Model Analysis - Case Study 65

6.1 Model Evaluation . 65

6.1.1 ROC and Precision-Recall Curves 65

6.2 Feature Sensitivity and Model Vulnerability 66

6.3 Covariate Shift Measurement . 68

6.4 Uncertainty Quantification . 70

6.4.1 Blackbox Metamodel Classification 71

6.4.2 Bayesian Neural Network . 73

6.4.3 Probability Calibration . 75

7 Conclusions and Future Work 81

References 85

Appendices 86

Appendix A Python Code 88

A.1 Installed Packages . 88

A.2 Decision Tree . 88

A.3 Random Forest . 89

A.4 Gradient Boosting . 89

A.5 Adaptive Boosting . 90

A.6 Model Analysis . 90

A.7 Blackbox Metamodel . 92

A.8 Isotonic Regression Recalibration . 93

A.9 BNN . 93

TABLE OF CONTENTS vii

Appendix B Lithology columns for the tested wells F-14, F-15, F-15S 96

List of Figures

1.1 Thesis workflow . 3

2.1 Location of Volve field in the North Sea. Source: [1] 5

2.2 Regional stratigraphic sequence of the study area, Volve field. Source: [1] . . . 6

3.1 A simple example of 3-Nearest Neighbour Classification. Source: [2] 13

3.2 Result of the Decision Tree for Classification 15

3.3 Sigmoid Function . 16

3.4 Example of a random forest. Source: [3] . 17

3.5 An illustration of synthetic data points in the SMOTE algorithm. Source: [4] . . 24

3.6 Confusion matrix for binary classification . 26

3.7 Examples of a PR curve and a ROC curve. The red plot shows ideal PR and

ROC curves. The blue plot shows some PR and ROC curves, as they typically

arise in experiments. Arrows indicate the increase of the threshold level value.

Source: [5] . 29

3.8 Illustrative explanation of Covariate Shift. Source: [6] 30

3.9 Toy example to present intuition for LIME. Source: [7] 33

3.10 Taxonomy of the uncertainty estimation algorithms included in the UQ360 toolkit.

Source: [8] . 34

3.11 Example of Confidence Histogram and Reliability Plot. 37

3.12 The concept of meta modeling. Source: [9] 39

3.13 Workflow to design (a), train (b) and use a BNN for predictions (c). Source: [10] 40

3.14 Difference between Standard NN Bayesian NN. Source: [11] 40

viii

LIST OF FIGURES ix

4.1 Distribution of the formations in the data set. The figure illustrates the skewness

in the percentage distribution of the formations. 43

4.2 Lithology columns for wells F-5, F-14, F-15, F-15S. 44

4.3 Lithology columns for wells F-7, F-9, F-9a. 45

4.4 Distribution of the formations in the data set after elimination of wells F-9 and

F-9a to balance the class distribution. 46

4.5 Lithology column for the well F-14 before and after implementing SMOTE

technique. 47

4.6 Outlier detection with boxplots. 48

4.7 Descriptive statistics of the dataset. 48

4.8 Cross correlation plot. 51

4.9 Feature Information Gain. 51

5.1 Train/test split process. 52

5.2 Lithology columns . 53

5.3 The samples percentage for each well in the dataset. 54

5.4 Histogram of the class distribution the training and testing sets. 54

5.5 Lithology column for tested well F-5 and predicted lithology classes - Gradient

Boosting algorithm. 56

5.6 Confusion matrix for Gradient Boosting algorithm. 57

5.7 Lithology column for tested well F-5 and predicted lithology classes - Decision

Tree algorithm. 59

5.8 Confusion matrix for Decision Tree algorithm. 59

5.9 Lithology column for tested well F-5 and predicted lithology classes - Random

Forest algorithm. 61

5.10 Confusion matrix for Random Forest algorithm. 61

5.11 Lithology column for tested well F-5 and predicted lithology classes - Adaptive

Boosting algorithm. 63

5.12 Confusion matrix for Adaptive Boosting algorithm. 63

x LIST OF FIGURES

6.1 ROC- and PR-curves for Random Forest algorithm. 66

6.2 ROC- and PR-curves for Adaptive Boosting algorithm. 66

6.3 Feature Sensitivity . 67

6.4 Models Vulnerability . 67

6.5 Histogram of the shifted features. 69

6.6 Distribution of the shifted features. 69

6.7 Guidance on choosing UQ algorithms. Source: [12] 70

6.8 The synthetic example of Risk vs Rejection and Risk vs Selection Threshold

plots for well performed model. 72

6.9 Metamodel results for Random Forest algorithm. 73

6.10 Metamodel results for Adaptive Boosting algorithm. 73

6.11 BNN Uncertainties based on Random Forest’s probabilities score for different

classes . 74

6.12 Perfectly Calibrated Model. 75

6.13 Calibration plot for the Random Forest algorithm. 75

6.14 Calibration plot for the Adaptive Boosting algorithm. 76

6.15 Recalibration plot for the Random Forest algorithm. 76

6.16 Confidence Histogram and Reliability plot for each class (Random Forest algo-

rithm). 77

6.17 Confidence Histogram and Reliability plot - Average (Random Forest algorithm). 77

6.18 Recalibration plot for the Adaptive Boosting algorithm. 78

6.19 Confidence Histogram and Reliability plot for each class (Adaptive Boosting

algorithm). 78

6.20 Confidence Histogram and Reliability plot - Average (Adaptive Boosting algo-

rithm). 79

B.1 Lithology columns of tested well F15 and predicted outcomes 97

B.2 Lithology columns of tested well F15S and predicted outcomes 98

B.3 Lithology columns of tested well F14 and predicted outcomes 99

List of Tables

4.1 Class weights. 46

4.2 Number or percentage of outliers for the features. 49

5.1 Encoded labels for the lithology classes. 55

5.2 Scoring metrics for the Gradient Boosting algorithm. 57

5.3 Scoring metrics for the Decision Tree algorithm. 58

5.4 Scoring metrics for the Random Forest algorithm. 60

5.5 Scoring metrics for the Adaptive Boosting algorithm. 64

6.1 Aleatoric and epistemic uncertainties for the Random Forest and Adaptive Boost-

ing algorithms. 74

6.2 The results after calculation the Accuracy - Confidence gap for Random Forest

and Adaptive Boosting algorithms. 79

6.3 Accuracy scores for the wells: F-15, F-15S, F-14 80

A.1 Required packages. 89

xi

Chapter 1

Introduction

1.1 Background and Motivation

Geosteering is the process of directional steering the drilling according to the geology. It re-

quires understanding the lithology properties of the formation surrounding it. Despite obtaining

this information through logging while drilling (LWD), a cost-efficient and almost real-time

solution is lacking. In general, there is a depth lag, and therefore, a temporal delay, between

what the LWD tool transmits to the surface and the bit location at the current time (Gupta et al.,

2020) [13].

Moreover, the incorporation of real-time drilling data enables asset monitoring teams to

simultaneously update the static and dynamic reservoir model with the data collected from

newly drilled wells.

Throughout this study, drill-bit, and drillstring-performance data is used in a machine learn-

ing (ML) pipeline to predict the lithology classes in the drilled wells.

Even though ML holds much promise, its results are not entirely unreliable because of the

challenges brought about by uncertainties. ML models generate optimal predictions based on

the training data. When uncertainties in data and algorithms are not considered, these optimal

predictions will likely fail in real-life deployment.

Most studies on ML application in petroleum engineering aim to train the model and obtain

satisfactory prediction results. Contrary to that, the model quality evaluation and uncertainty

quantification (UQ) receive too little attention.

1

2 CHAPTER 1. INTRODUCTION

ML model analysis and UQ methods employed in this study are essential in detecting weak-

nesses in models’ performance and reducing the impact of uncertainties during decision-making

processes.

While training the model for lithology classification, it is crucial to have an insight into the

prediction boundaries of the model. This will help to determine the probability of each class

being correctly identified. Since, in real life, the trained model would be tested on unseen data

acquired from the newly drilled wells. Therefore, it will be reliable only if the uncertainties are

eliminated, and the user is sure about the model’s prediction efficiency.

1.2 Thesis Structure

This thesis is divided into seven chapters. Chapter 2 provides a description of the formations’

lithostratigraphy and essential background information on drilling parameters and wells in-

cluded in the dataset. Chapter 2 covers the methodological framework of the ML classifica-

tion algorithms applied to lithology identification in addition to model analysis and uncertainty

quantification approaches. Chapter 4 addresses the data preprocessing before its introduction

to the models. The findings of four modeling experiments are presented in Chapter 5. Chapter

6 provides the comparative analysis of model assessment and uncertainty quantification. The

validity of the model’s performance is discussed in this chapter, along with ideas for its further

enhancement. Chapter 7 concludes the finding of the thesis and proposes further work on the

research.

The reserach workflow is presented on the Diagram 1.1.

1.2. THESIS STRUCTURE 3

Figure 1.1: Thesis workflow

Chapter 2

Disclosed Volve dataset

2.1 The Volve Dataset

Equinor released the data for subsurface and production in June 2018. This dataset has approx-

imately 40 000 files, which represent all phases of the field development. The most important

folders are those containing well data, real-time drilling data, daily reports, and final reports.

Initially, real-time drilling data is stored in WITSML format, a standard one for transmitting

technical data between organizations in the petroleum industry. The parsed and pre-processed

dataset in CSV format developed by Andrzej Tunkiel, Tomasz Wiktorski, and Dan Sui (Tunkiel

et al., 2020) [14] is used for lithology classification.

2.2 General Information

Located 200 kilometers west of Stavanger at the southern end of the Norwegian sector, Volve

is a shallow-water oil field discovered in 1993 in the central part of the North Sea (Figure 2.1).

A jack-up drilling and processing facility was installed at the field. With a life expectancy

of about 3-5 years, the field started well drilling in 2007 and started producing after pressure

support from water injection in February 2008. During the peak of production, Volve produced

about 56,000 barrels of oil per day, delivering 63 million barrels more than anticipated. With a

recovery rate of 54% of reserve estimates, it was shut down in September 2016 after operating

for over 8 years.

4

2.3. GEOLOGY 5

Figure 2.1: Location of Volve field in the North Sea. Source: [1]

2.3 Geology

Volve extracted oil from middle Jurassic sandstones of the Hugin formation. It is believed

that the dome-shaped reservoir was formed by the downfall of contiguous salt ridges during

the Jurassic period. This field is characterized by salt tectonic faults. Western parts of the

structure are heavily faulted, with most of the faults being influenced by regional extension.

Communication across the faults is uncertain. This reservoir is located at a depth of 2750-3120

m TVDSS, and is about 20 m thick at the crest, reaching up to 100 m thick on either side of the

structure (Ganguli et al., 2019) [1].

Generalized regional stratigraphy has been presented in Table 2.2.

2.3.1 Lithostratigraphy Description

The formation subdivision is based on wireline logs, lithostratigraphy, biostratigraphy of well

15/9-19 SR, and correlation to neighbouring wells (Discovery Evaluation Report Well 15/9-19

SR, Statoil) [?].

6 CHAPTER 2. DISCLOSED VOLVE DATASET

Figure 2.2: Regional stratigraphic sequence of the study area, Volve field. Source: [1]

The Nordland Group (84.0 - 1034.3 m TVD

It is composed of silty claystone with some sand stringers, down to the Utsira Formation’s top.

The Utsira Formation (817.5 - 1034.3 m TVD) consists of mainly sand with some claystone

stringers.

The Hordaland Group (1034.3 - 2206.8 m TVD)

Claystone is found mostly in the upper part, along with some stringers of limestone. Two sand

sequences were encountered, the first being the Skade Formation (1156.3 -1230.3 m TVD).

The Grid Formation is the second one (2040.2 - 2169.6 m TVD), consisting of sand. The lower

Hordaland Group is composed of claystone below the Grid Formation.

2.3. GEOLOGY 7

The Rogaland Group (2206.8 - 2527.6 m TVD

Balder Formation (2206.8 - 2268.0 m TVD) consists primarily of gray to dark gray or red-brown

claystone with occasional limestone stringers.

The Sele Formation (2268.0 - 2318.0 m TVD) is composed of dark gray to brown-gray

claystone, with thin limestone and dolomitic stringers.

The Lista Formation claystone is medium to dark in color (2318.0-2405.0 m TVD). Dolomitic

limestone and limestone stringers occur frequently.

The Shetland Group (2527.6 - 2758.6 m TVD)

The Ekofisk Formation (2527.3-2542.5 m TVD) is characterized by white to occasionally light

gray limestone with minor claystone.

There is predominantly white limestone in the Tor Formation (2542.5 - 2669.6 m TVD).

There is no apparent lithological change in the Hod Formation (2669.6 - 2740.4 m TVD).

Blodøks Formation (2740.4 - 2752.9 m TVD) is composed of gray marl. At the base of the

formation, the marl grades to calcareous claystone.

The Hidra Formation (2752.9 - 2758.6 m TVD) is lithologically the same as the Blodøks

Formation.

The Shetland Group (2527.6 - 2758.6 m TVD)

Rødby Formation (2758.6 - 2767.3 m TVD) is composed of marl and claystone as described for

the Blodøks Formation.

A major part of the Åsgard Formation (2777.2 - 2854.4 m TVD) consists of interbedded

limestone and marl with some minor claystone.

The Viking Group (2854.4 - 2864.0 m TVD)

The group has two formations: Draupne (2854.4-2858.6 m TVD) and Heather (2858.6-28864.0

m TVD). Between the formations, there are no obvious lithological differences. Draupne and

Heather formations are composed of very dark brownish gray claystone.

8 CHAPTER 2. DISCLOSED VOLVE DATASET

The Vestland Group (2864.0 - 2882.0 m TVD)

It is represented by a minor part of the Hugin Formation. The formation consists of olive grey

sandstone.

The Trlasslc (2882.0 -3110.3 m TVD))

A part of the Skagerrak Formation represents the Triassic interval. It consists primarily of

sandstone, interbedded with some silty sections.

2.4 Wells

Well 15/9-F5

15/9-F-05 is planned as a water injection well to support production from the 15/9-F-14 Hugin

producer. Sulfate-free water for injection will be produced from the Utsira water-producing

wells.

Well 15/9-F14

15/9-F-14 is the second producer in the Volve development drilling program. This production

well is located in a structurally high position on the crest of the structure 800 m up the flank of

the 15/9-19 (discovery well).

Well 15/9-F15

15/9-F-15 is the third oil producer in the Volve development drilling program. The well will be

drilled in the south/southwestern part of the structure. Volve wellhead module slot 15 is used to

drill the well.

Well 15/9-F15S

15/9-F15S is drilled as an exploration well on slot no. 15.

2.5. DRILLING DATA 9

Well 15/9-F7

15/9-F7 is planned as a water producer producing low-sulfate water from the Utsira Fm. The

well is drilled through the Utsira Fm and completed with screens in the reservoir section.

2.5 Drilling data

The attributes recorded while drilling:

Measured Depth m

Wellbore length, as if measured with a measuring stick. Except in vertical wells, this measure-

ment differs from the true vertical depth.

Hole Depth (TVD) m

A vertical distance is measured from the bottom of a well (the current or ultimate depth) to the

surface, often the height of the rotary kelly bushing (RKB).

Weight on Bit, kkgf

A combination of downward force exerted by thick-walled tubular pieces in the drilling assem-

bly, referred to as drill collars, on the drill bit and gravity’s downward pressure on these steel

tubes provide the force necessary to break rock effectively.

Average Standpipe Pressure, kPa

Pressure drops occur when drilling fluid is circulated due to friction between the fluid and the

surface in contact. The drilling fluid is forced to circulate through the hydraulic system through

the mud pump. The mud pump pressure is partly used to overcome the friction between the

fluid and the hole, casing, and surface equipment. The remaining pump pressure is lost to bit

nozzle pressure, where the high nozzle speed assists in removing cuttings from the bit and its

surroundings. The standpipe pressure is the total pressure drop due to fluid friction.

Average Surface Torque, kN.m

The surface torque is the moment required to rotate the drill string and the bit on the bottom

of the hole. It is used to overcome rotational friction against the wellbore, the viscous force

between the drilling fluid and pipe string, as well as bit torque.

Rate of Penetration, m/h

10 CHAPTER 2. DISCLOSED VOLVE DATASET

In drilling, a measure of the speed at which a bit drills into formations is usually expressed in

feet (meters) per hour or minutes per foot (meter).

Average Rotary Speed, rpm

The rotary speed is measured by how many revolutions the rotary table makes in one minute

(rpm). The rotary table on a drilling platform provides clockwise rotation to the drill string in

order to facilitate the drilling process.

Mud Flow In L/min

A drilling fluid, also known as mud flow, is circulated within a construction. The drilling fluid is

used to transport drill cuttings, lubricate and cool equipment, and apply pressure to the borehole.

Mud flow rate is one of the monitored measurements to ensure that drilling is done correctly.

Mud Density In g/cm3

In a wellbore, mud weight controls hydrostatic pressure and prevents unwanted flow. Addition-

ally, the mud prevents casings and openholes from collapsing. As a result of the weight of the

mud, fractures in the rock can propagate and be filled, leading to lost circulation. The API has

standardized and published mud weight test procedures using a mud balance.

Diameter, mm

Diameter refers to the nominal wellbore diameter. Caliper logs record the diameter of the

wellbore measured with spring-loaded caliper arms. Caliper logs are usually run simultaneously

with an acoustic log or a neutron log. The average diameter of the wellbore is usually measured

and recorded.

Average Hookload, kkgf

The total force pulling the hook down. The total force comprises the weight of the drill string

in air, the drill collars, and any ancillary equipment, reduced by any force that tends to reduce

that weight. Friction along the wellbore wall (especially in deviated wells) and buoyant forces

caused by the drill string immersed in drilling fluid may reduce the weight.

USROP Gamma, gAPI

Gamma rays are naturally emitted by a formation, which can be measured in an inexpensive

and common way. A gamma ray log is particularly useful since sandstones and shales typically

have different gamma ray signatures that can be correlated. The Gamma Ray sensor is located

2.5. DRILLING DATA 11

right before the drill bit, so the data is not significantly delayed even though it is referred to as

the logging-while-drilling (LWD) measurements. As there was no unified gamma reading for

all of the wells in the original Volve dataset, a new attribute, USROP Gamma, was introduced

by Andrej Tunkiel (Tunkiel et al., 2020) [14]. Data was recorded under different names and

with different equipment, sometimes even within the same well.

Chapter 3

Methodology

3.1 Supervised Machine Learning Classification

The supervised learning process involves training the machines with well-labeled training data

and then predicting the output using the loss function, adjusting until the error is minimized.

Tagged data is input data that is already associated with the correct output.

During supervised learning, the algorithm learns how to correctly predict the outcome based

on the training data provided. The concept is the same as a student learning under the supervi-

sion of a teacher.

There are two types of supervised learning problems - regression and classification:

• The objective of regression is to determine the connection between dependent and inde-

pendent variables. It is utilized to predict continuous variables.

• When the output variable is categorical, classification methods are utilized. Based on the

observed data, algorithms attempt to generate some conclusions on how to label or define

these entities.

3.1.1 K-Nearest Neighbor

A K-Nearest Neighbor (K-NN) classifier is used for supervised ML, and it should not be con-

fused with a K-mean classifier used for unsupervised learning. Cover and Hart introduced the

12

3.1. SUPERVISED MACHINE LEARNING CLASSIFICATION 13

method in 1967 /citeCover1967, which is widely used in various ML applications. Classifi-

cation is done based on K-Nearest Neighbors. Training examples need to be in memory at

run-time, so this method is known as Memory-Based Classification.

Figure 3.1 shows the 3-Nearest Neighbour Classifier applied to a two-class problem in a

two-dimensional feature space. Point q1 is classified as class 0 based on all three of its nearest

neighbors being of class 0. There are two neighbors in class 2 and one in class 0 for point

q2, so the situation is a bit more complicated. It can be resolved by simple majority voting

or by distance weighted voting, where greater weight is assigned to the closest neighbors in

determining the class of the point (Cunnigham et al., 2007) [2].

Figure 3.1: A simple example of 3-Nearest Neighbour Classification. Source: [2]

The k-NN classification consists of two steps: the first step is to determine the nearest

neighbors, and the second is to determine the class based on those neighbors.

A more mathematical approach to the problem can be found by studying the observation

point x0 and its neighbors. The K-neighboring points to x0 are defined as N0 in the K-NN

classifier. As a result of the classifier’s calculations, on the formula below, the probability for

class j is calculated as a fraction of the points in N0 whose response values equal j.

14 CHAPTER 3. METHODOLOGY

Pr (Y = j | X = x0) =
1

K

X

i2N0

I (yi = j) (3.1)

By using the Bayes rule to identify the neighbor with the highest probability, x0 is then

given a new class (Hastie et al., 2014) [15].

3.1.2 Decision Trees

The root node of a decision tree (DT) is comprised of all the instances given in a dataset. In

the attribute node, the instances are divided into several subsets starting from the first instance.

A decision tree may contain an attribute more than once but not in the same path. A path will

eventually lead to a leaf node.

Typically, attribute selection criteria include a measure of the purity of a node, that is, the de-

gree to which the node consists only of a single class examples. In terms of impurity measures,

the information-theoretic entropy and the Gini index are defined as:

GiniIndex = 1�
X

j

p2j (3.2)

Entropy = �
X

j

pj · log2 ·pj (3.3)

Where pj is the probability of class j.

Gini index represents the likelihood that any element in a dataset will be mislabeled when it

is randomly labeled.

The Gini index has a minimum value of zero. It occurs when a node is pure, meaning all

the elements contained are of one unique class. This node cannot be split again. Therefore, the

features with the lowest Gini Index determine the best split.

Entropy measures the degree of disorder in the relationship between the features and the

target. As with the Gini Index, the feature with less entropy is chosen as the optimum split.

When the probabilities of the two classes are equal, a node is pure, and its entropy is minimum.

As much as possible, a good attribute should divide the dataset into subsets that are as

pure as possible, ideally into sets that contain only examples from the same class. A desirable

3.1. SUPERVISED MACHINE LEARNING CLASSIFICATION 15

attribute, the so-called gain, would be the one that results in the most significant decrease in

average impurity:

Gain(S,A) = Impurity(S)�
X

t

|St|
|S| · Impurity (St) (3.4)

where t is a test for attribute A which partitions the set S into non-overlapping disjoint sub-

sets St , and Impurity is any measure of impurity. Considering that the first term, Impurity(S),

is constant for all attributes, it is possible to omit it and directly minimize the average impurity.

This is typically done when Gini is used to measure impurity.

For large datasets, the decision tree can become very complex. As the amount of data

is increased, more subsets will be generated, causing the variations between the outcomes to

become smaller. Additionally, excessively complex decision trees can lead to overfitting, which

is a common consequence of the algorithm being trained on too much data (Fürnkranz et al.,

2010) [16].

Figure 3.2: Result of the Decision Tree for Classification

3.1.3 Logistic Regression

The most common application of logistic regression is binary classification, which enables ob-

servations to be assigned to discrete classes. Logistic Regression is basically a Linear Regres-

sion algorithm, but it utilizes a more complex cost function referred to as the Sigmoid Function,

16 CHAPTER 3. METHODOLOGY

which is illustrated in the Figure 3.3.

Figure 3.3: Sigmoid Function

In logistic regression, the cost function tends to be in the range of 0 and 1.

h✓(X) =
1

1 + e�(�0+�1X)
(3.5)

X is a vector of data points, and h(x) represents the probability P (x) belongs to a particular

class. 1 is the slope, and 0 is the y-intercept of the Sigmoid Function.

3.1.4 Ensemble Learning

An ensemble is a combination of learning machines that improve the overall system’s perfor-

mance. Over the past decade, one of the leading research areas in ML has been the development

of ensembles of learning machines.

The empirical evidence shows that ensembles of classification or regression problem learn-

ers are often more accurate than the individual base learners that make them up, and several

theoretical explanations have recently been proposed in order to justify the effectiveness of

some of the commonly used ensemble methods (Valentini et al., 2002) [17].

3.1. SUPERVISED MACHINE LEARNING CLASSIFICATION 17

Random Forests

Random forests are a type of classifier that combines decision tree-based classifiers {h(x, ✓k),

k = 1,...} where the ✓k are independent identically distributed random vectors, and each tree

decides the most popular class based on input x (Bernard, 2014) [18].

Bagging, also known as Bootstrap Aggregation, is a technique used by the random forest

algorithm. It involves choosing a random sample from the data set. Thus, each model is gen-

erated from the samples in the dataset using row sampling. The method of row sampling with

replacement is called bootstrapping. With each model trained separately, results can be gener-

ated. Combining the results of all models, the final output is based on majority voting. This

process is known as aggregation.

Figure 3.4: Example of a random forest. Source: [3]

Key Benefits

A reduced risk of overfitting: Decision trees tend to tightly fit all samples in training data,

which increases the chance of overfitting. When there are a large number of decision trees in a

random forest, the classifier will not overfit the model since the averaging of uncorrelated trees

will reduce the variance and prediction error.

Feature importance: Random forest provides a simple way to assess the influence variables

have on the model. There are a few ways to evaluate the importance of features. Gini impor-

tance and Mean Decrease in Impurity (MDI) are usually used to assess how much the model’s

18 CHAPTER 3. METHODOLOGY

accuracy decreases when certain variables are excluded. Another critical metric is Permuta-

tion importance, or Mean Decrease Accuracy (MDA), which identifies the average decrease in

accuracy by randomly permuting the feature values.

Key Challenges

Time-consuming process: Random forest algorithms are one of the most accurate prediction

methods. However, they take a long time to process since they compute data for each decision

tree separately.

Demanding more resources: As random forests are employed to evaluate larger data sets,

more storage capacity will be required.

Adaptive Boosting

Most ensemble techniques rely on simple averages of models in the ensemble. Boosting meth-

ods use different, constructive strategies for forming ensembles. The idea behind adaptive

boosting is to add new models to the ensemble sequentially. In each iteration, a weak, base-

learner model is learned based on the error of the whole ensemble.

• AdaBoost’s weak learners are decision trees with one split, called decision stumps.

• AdaBoost prioritizes difficult-to-classify instances over those that are already effectively

handled.

AdaBoost was the first practical boosting algorithm developed by Freund and Schapire [19],

and it remains one of the most studied and widely used algorithms, with applications in many

different fields.

AdaBoost algorithm steps [19]:

Given:

(x1, y1) , . . . , (xm, ym)

where xi 2 X, yi 2 {�1,+1}.

Initialize:

D1(i) = 1/m for i = 1, . . . ,m. (3.6)

3.1. SUPERVISED MACHINE LEARNING CLASSIFICATION 19

For t = 1, . . . , T :

• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X ! {�1,+1}.

• Aim: select ht with low weighted error:

"t = Pri⇠Dt [ht (xi) 6= yi] (3.7)

• Choose:

↵t =
1

2
ln

✓
1� "t
"t

◆
. (3.8)

• Update, for i = 1, . . . ,m :

Dt+1(i) =
Dt(i) exp (�↵tyiht (xi))

Zt
(3.9)

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution). Output the

final hypothesis:

H(x) = sign

TX

t=1

↵tht(x)

!
(3.10)

h✓(X) =
1

1 + e�(�0+�1X)
(3.11)

3.1.5 Gradient Boosting

A gradient boosting machine, or GBM, successfully fits new models to provide a more accurate

estimate of the response variable. With this algorithm, the new base-learners are constructed

to be maximally correlated with the negative gradient of the loss function associated with the

entire ensemble. If the loss function is the classic squared-error loss, the learning procedure will

result in sequential error-fitting. Gradient boosting is a method that excels at predicting large,

complex datasets with speed and accuracy (Natekin and Knoll, 2013) [20].

20 CHAPTER 3. METHODOLOGY

Gradient Boosting Algorithm steps [21]:

1. Initialize model with a constant value:

F0(x) = argmin
�

nX

i=1

L (yi, �) (3.12)

2. for m = 1 to M :

• Compute residuals:

rim = �

@L (yi, F (xi))

@F (xi)

�

F (x)=Fm�1(x)

(3.13)

for i = 1, . . . , n

• Train regression tree with features x against r and create terminal node regions Rjm for

j = 1, . . . , Jm

• Compute:

�jm = argmin
�

X

xi2Rjm

L (yi, Fm�1 (xi) + �) (3.14)

for j = 1, . . . , Jm

• Update the model:

Fm(x) = Fm�1(x) + v
JmX

j=1

�jm1 (x 2 Rjm) (3.15)

AdaBoost requires users to specify a set of weak learners (alternatively, it will randomly

generate weak learners before the actual learning process begins). The weights of the incorrectly

predicted instances are increased, while those of the correctly predicted ones are decreased.

Weak learners thus focus on difficult instances. Weak learners are added to strong learners

based on the strength of their performance (alpha weight). The greater its performance, the

more it contributes to a strong learner.

In contrast, gradient boosting does not change the sample distribution. The weak learner

trains on the residual errors of the strong learner instead of on a newly sampled distribution.

3.1. SUPERVISED MACHINE LEARNING CLASSIFICATION 21

This is another way to give more weight to difficult instances. A weak learner is fitted to the

pseudo-residuals at the end of each iteration. After that, the contribution of the weak learner to

the strong learner is not computed based on its performance on a new distributed sample but on

a gradient descent optimization process. The contribution computed by the strong learner is the

one that minimizes the overall error.

3.1.6 Naïve Bayes

The Naïve Bayes algorithm uses the Bayes rule in conjunction with the assumption that the

attributes are conditionally independent, given the class. Despite often violating this indepen-

dence assumption in practice, Naïve Bayes offers competitive classification accuracy.

Bayes Rule:

P(y | x) = P(y)P(x | y)
P (x)

, (3.16)

where y is a class, and x represents the feature vector. Based on the class, it is assumed that

the features are conditionally independent.

For feature-value data, this assumption entitles:

P(x | y) =
nY

i=1

P (xi | y) , (3.17)

xi is the value of the ith feature in x, and n is the number of them.

P(x) =
kY

i=1

P (ci) P (x | ci) , (3.18)

k is the number of classes, and ci is the ith class. Hence, Bayes Rule can be calculated by

normalizing the numerators on the right-hand side of the equation.

Numeric attributes are either discretized or probability density estimates are employed (Webb,

2011) [22].

22 CHAPTER 3. METHODOLOGY

3.2 Classification on Imbalanced Data

The imbalanced classification problem occurs when there is an imbalance in the distribution

of examples across the known classes. There can be a slight bias or a severe imbalance where

there is one example in a minority class for multiple examples in a majority class or classes.

As most ML algorithms used for classification assume an equal number of examples for

each class, imbalanced classification presents a challenge for predictive modeling. This causes

models to have poor predictive performance, especially for the minority class. Usually, the

minority class is more important than the majority, so the problem is more sensitive to classifi-

cation errors for the minority class.

Several solutions to the class-imbalance problem have been proposed at the data and algo-

rithmic levels. These methods include oversampling with replacement, random undersampling,

directed oversampling (in which no new samples are created, but the samples to replace are

informed rather than random), directed undersampling (in which the examples to eliminate are

informed), oversampling with the informed generation of new samples, and combinations of

these methods. At the algorithmic level, we can adjust the costs of various classes to coun-

terbalance class imbalance, adjust the probabilistic estimate at the leaf of the tree (when using

decision trees) and adjust the decision threshold (Kotsiantis et al., 2005) [23].

3.2.1 Oversampling and Undersampling

Sampling is one of the major methods for addressing the problem of imbalanced learning. Dif-

ferent procedures are used to modify a set of imbalanced data to provide a more balanced or

adequate data distribution for the learning tasks.

There are two types of sampling approaches: undersampling, which reduces the data by

eliminating examples belonging to the majority class, to equalize the number of examples of

each group; and oversampling, which aims to generate new positive examples to gain impor-

tance (Fernández et el, 2018) [4].

3.2. CLASSIFICATION ON IMBALANCED DATA 23

Oversampling Techniques

Random oversampling

Oversampling involves randomly replicating data from minority classes and adding them to

the training dataset.

In the training dataset, samples are selected randomly with replacement. This allows exam-

ples from the minority class to be added more than once to the new "balanced" training dataset

since they are selected from the original dataset, added to the new dataset, and then returned to

the original dataset so they can be selected again.

Using this technique can be effective for ML algorithms affected by skewed distributions

and where multiple duplicates for a given class can impact the model’s fit.

Overfitting is more likely to occur due to random oversampling, which copies the exact mi-

nority class examples. Thus, a symbolic classifier, for example, may construct rules that appear

to be accurate but are based on one example (Fernández et al., 2018) [4].

Synthetic Minority Oversampling Technique (SMOTE)

In order to rebalance the original training set, the SMOTE algorithm employs oversampling.

Rather than merely replicating minority class instances, SMOTE introduces synthetic examples.

These new examples are created by interpolating between several positive instances that lie

together. The procedure is thus said to be centered around the "feature space" and not the "data

space".

A simple example of this oversampling process is illustrated in Figure 3.5. A new syn-

thetic data point is created by selecting an Xi instance as a basis. From the training set, a

distance metric is used to select several samples of the same class (points xi1 to xi4). Lastly, a

randomized interpolation is applied to obtain new instances r1 to r4 (Fernández et al., 2018) [4].

Adaptive Synthetic (ADASYN)

ADASYN generates minority examples adaptively, based on the distribution of minority

classes: more synthetic data is generated for minority classes that are more difficult to learn in

comparison with minority classes that are easier to learn. In addition to reducing the learning

24 CHAPTER 3. METHODOLOGY

Figure 3.5: An illustration of synthetic data points in the SMOTE algorithm. Source: [4]

bias introduced by the original unbalanced distribution of data, the ADASYN method is also

able to adapt the decision boundary to focus on the hard-to-learn samples (Fernández et al.,

2018) [4].

Undersampling Techniques

Random undersampling

During random undersampling, examples from the majority class are randomly selected to

be deleted from the training set.

In the transformed version of the training dataset, fewer examples appear in the majority

class. This process can be repeated until the desired class distribution is achieved, such as an

equal number of examples per class.

It may be more appropriate to use this approach for datasets with an imbalance between

classes, but there are enough examples in the minority class.

A major disadvantage of random undersampling is that this method can omit potentially

valuable data that could be vital to the learning process. Undersampling is a critical decision,

and many heuristics are used to overcome the limitations of nonheuristics when deciding how

to remove data (Fernández et al., 2018) [4].

NearMiss

The family of four methods uses informed heuristics. In the first "NearMiss-1" method,

we select samples from the majority class similar to some of the minority class samples. This

3.2. CLASSIFICATION ON IMBALANCED DATA 25

method selects samples of the majority class when the average distance between them and the

three samples of the closest minority class is the smallest.

In the second “NearMiss-2” method, the majority samples are selected when their average

distance to the three largest minority samples is the smallest.

A third method, called "NearMiss-3" determines how many majority class samples are clos-

est to each minority class sample (Fernández et al., 2018) [4].

Tomek’s Links

Tomek’s Links can be defined as follows: given two examples Ei = (xi, yi) and Ej =

(xj, yj) where yi 6= yj and d (Ei, Ej) being the distance between Ei and Ej . A pair (Ei, Ej)

is called Tomek’s links if there is not an example El, such that d (Ei, El) < d (Ei, Ej) or

d (Ej, El) < d (Ei, Ej).

Tomek’s links can be used as an undersampling method by removing only examples belong-

ing to the majority class in each Tomek link (Fernández et el, 2018) [4].

3.2.2 Class weights

To modify the current training algorithm to take into account the skewed distribution of the

classes, different weights are given to both the majority and minority classes. During the train-

ing phase, the weight difference will impact classification. To penalize the minority class for

misclassification, the weights of each class are set higher while weights for the majority class

are reduced.

The weight of the minority class is higher than that of the majority class. ML models pay

more attention to observations with a higher weight as they are being learned.

The weights of the classes are automatically assigned inversely proportional to their fre-

quencies when the classweights =0 balanced0 option is specified as the hyperparameter in the

classification algorithm in the Scikit-learn library.

26 CHAPTER 3. METHODOLOGY

Within the framework, the balanced class weights are calculated:

wj =
nsamples

nclasses ⇤ nsamplesj
(3.19)

• wj is the weight assigned to each class (where j is the class)

• nsamples is the total number of samples or rows in the dataset

• nclasses is the total number of distinct classes in the target

• nsamplesj is the total number of rows of the respective class

3.3 Model Analysis

3.3.1 Model Evaluation Metrics

Confusion Matrix

In classification problems, the confusion matrix is a prevalent measure. It can be applied to

both binary and multiclass classification. The confusion matrix, displayed in the Figure 3.6

represents counts from predicted and actual values.

Figure 3.6: Confusion matrix for binary classification

For the binary classification, True Negatives (TN), False Positives (FP), False Negatives

(FN), and True Positives (TP) are intuitively clear, where negative classes are referred to as

class X and positive ones as class Y.

3.3. MODEL ANALYSIS 27

• The true negatives (TN): class X which is correctly predicted as class X

• The false positives (FP): class X which is wrongly predicted as class Y

• The false negatives (FN): class Y which is wrongly predicted as class X

• The true positives (TP): class Y which is correctly predicted as class Y

Positives and negatives cannot be directly defined in the multiclassification problem. The

classes that were predicted correctly/wrongly in relation to the rest:

• The true negatives (TN): X’s which is correctly predicted as X’s

• The false positives (FP): X’s which are wrongly predicted as non-X’s

• The false negatives (FN): non-X’s which are wrongly predicted as non-X’s

• The true positives (TP): non-X’s which are correctly predicted as non-X’s

Therefore, True Positive and False Positive rates are computed individually for each class.

True positive rate (TPR) gives the proportion of correct predictions in predictions of positive

class:

TPR =
TP

TP + FN
(3.20)

False positive rate (FPR) gives the proportion of incorrect predictions in positive class:

FPR =
FP

FP + TN
(3.21)

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(3.22)

Accuracy is a metric used to describe how the model performs across all classes. It works

only if the number of samples in each class is equal.

For example, if 10 samples out of a dataset with 100 data points belong to class Limestone

and if the model predicts every data as non–Limestone, it has the accuracy of 90%. However,

28 CHAPTER 3. METHODOLOGY

in this case, the model did nothing to indicate the right class. The accuracy of classifications

typically does not allow for differentiating errors in predictions.

Precision

Precision =
TP

TP + FP
(3.23)

Provides a measure of the class prediction correctness. This evaluation is based on positive

predictions. For example, if precision equals 0.25, then the model will correctly predict a class

25% of all time.

Recall

Recall =
TP

TP + FN
(3.24)

Recall measures of how accurately the model can define the relevant class. It helps to

measure how many ML models correctly classified positive samples.

While evaluating the ML model, there is a trade-off between precision and recall metrics. In

lithology classification, it is critical that each class is classified correctly rather than the number

of correctly predicted data points related to the class. Therefore, one should aim for higher

precision, not recall.

F1-score

F1 � score = 2⇥ Precision⇥Recall

Precision+Recall
=

2TP

2TP + FP + FN
(3.25)

F1-score combines precision and recall into a single measure. Mathematically it’s the har-

monic mean of precision and recall.

3.3.2 ROC curve

Receiver operating characteristic (ROC) curves plot the true positive rate against the false posi-

tive rate at all possible thresholds and thus represent their trade-off as shown in the Figure 3.7a.

The decision threshold � is the borderline between predicting one or another class. In the multi-

classification problem, it predicts all instances with p > � as X and all others as non�X . The

3.3. MODEL ANALYSIS 29

(a) ROC Curve (b) Precision Recall Curve

Figure 3.7: Examples of a PR curve and a ROC curve. The red plot shows ideal PR and ROC curves. The blue
plot shows some PR and ROC curves, as they typically arise in experiments. Arrows indicate the increase of the
threshold level value. Source: [5]

true positive rate increases with a lower threshold �, but the false positive rate also tends to rise.

A ROC curve should be as close as possible to the top-left corner, and a diagonal line represents

random guessing. In addition, the area under the ROC curve (AUC or AUROC) summarizes

this curve in one single number. The larger the AUC, the better. With an AUC value of 0.7, the

classifier is expected to correctly rank two randomly chosen test points 70% of the time.

3.3.3 Precision-Recall (PR) curve

Precision-recall (PR) curves plot precision vs. recall (=true positive rates) for all possible de-

cision thresholds (3.7b). An overall goal is to have both a high recall and a high precision.

Precision and recall are linked in an inverse relationship: the lower the threshold , the better the

recall, but the worse the precision. This curve can be summarized in one number through the

area under the precision-recall curve (AUPRC or average precision). The higher the AUPRC,

the better. In contrast to the AUC, the AUPRC does not have an intuitive interpretation.

3.3.4 Dataset Shift

Shifting datasets occurs predominantly in supervised ML and hybrid models of semi-supervised

learning.

Dataset shift can be caused by several factors, including the type of features utilized, how

training and test sets are selected, data sparsity, and shifts in the data distribution caused by

30 CHAPTER 3. METHODOLOGY

non-stationary environments. Of all the notations of dataset shift, the simplest to understand is

covariate shift.

Covariate shift appears only in X→Y problems, i.e probabilistic classification including

conditional probabilities, where Ptra(y|x) = Ptst(y|x) and Ptra(x) 6= Ptst(x). It occurs in

supervised learning when the training and prediction distributions differ from each other, but

the concept being learned remains stationary (Herrera, 2011) [6].

Causes of Dataset Shift

• Sample selection bias. The distribution discrepancy is because the training examples

have been obtained through a biased method and thus do not represent the operating

environment where the classifier is to be deployed reliably.

• Non-stationary stationary environments. It appears when the training environment is dif-

ferent from the test one, whether it is due to a temporal or a spatial change.

Figure 3.8: Illustrative explanation of Covariate Shift. Source: [6]

3.3. MODEL ANALYSIS 31

Handling Dataset Shift

If possible, the model should be retrained. There may be situations, however, where this is

impossible, for example, if retraining is delayed. In such cases, several techniques are available

for correcting dataset shift.

1. Feature Removal There is a trade-off between removing features that contribute to the

covariate shift and adding features and tolerating some covariate shift. When a feature is

very different between training and testing and doesn’t provide much predictive power, it

should always be dropped.

2. Importance Reweighting Refers to upweighting training instances that are very similar

to test instances. This is accomplished by altering the training data set so that it appears

that it is drawn from the test data set. The relative probability of the training and test sets

should be reweighted for each of the training examples. Various methods such as density

estimation, kernel mean matching, or discriminative reweighting can be used.

3. Adversarial Search In the adversarial search method, the ML models are tricked by the

learning algorithm by providing false input. In this way, it includes both generating and

detecting adversarial examples, which are inputs that are intended to deceive classifiers.

This problem is defined as finding the optimal minimax strategy for an adversary that

deletes features, and bundle optimization is shown to be effective in finding the optimal

strategy.

3.3.5 Model Interpretability

The model’s interpretability can be divided into two categories: global interpretability, which

explains the model’s behavior over the entire population, and local interpretability, which ex-

plains a specific prediction. Feature sensitivity relates to the global model interpretability of

black-box models. LIME explanation provides local model interpretability. It modifies a single

data sample by tweaking the feature values and observing the output’s resulting impact. LIME

offers a list of explanations reflecting the contribution of each feature to the prediction of a data

sample.

32 CHAPTER 3. METHODOLOGY

Feature Sensitivity

The easiest and most effective way to understand the ML model is through sensitivity analysis,

which examines how each feature impacts the model’s predictions. As a result of changing

the feature value or ignoring it somehow while keeping all the other features constant, one

calculates feature sensitivity. Changes in feature value drastically alter the model’s outcome, so

this feature significantly impacts the prediction.

Feature Sensitivity report provided by Pytolemaic toolbox [24] gives the insight about:

• Feature Importance score is calculated for each input feature in a given model - the score

represents the "importance" of each feature. A higher score indicates a greater impact of

a particular feature on predicting a certain class.

• Imputation vulnerability provides insight into how the model deals with missing values.

An increase in these values indicates that the imputation mechanism is prone to mistakes,

so the model should be improved. Imputation techniques are used to fill in the missing

data to create a complete data matrix.

• Data Leakage - Term used in ML to identify data that contains unexpected extra infor-

mation about the subject being estimated. Learning leaks occur when information about

a target label or number is introduced but not lawfully available during training. Such

cases, however rare, cause models to have an excellent score but be entirely useless.

• Data Leakage refers to the error when information about the target variable from the

testing dataset is leaking into the model’s input during the model’s training. The model

will perform well on the specific training set but poorly in production.

• Analysis on too many features indicates the risk of the model overfitting and wasted effort

in the data engineering phase.

many features mean two things: a) higher risk of overfitting and b) wasted effort in the

data engineering phase. If the sensitivity to too many features is high, feature selection or

regularization should be considered. The regularization process is used to optimize ML

models, minimizing the adjusted loss function and preventing overfitting or underfitting.

3.3. MODEL ANALYSIS 33

Lime Explanation

Local Interpretable Model-Agnostic Explanations (LIME) is an explanation technique that ex-

plains classifier predictions in a faithful manner by learning an interpretable model locally

around the predictions (Ribeiro et al., 2016) [7].

LIME Algorithm [25]:

• By sampling X values from a Normal distribution inferred from the training set, generate

points all around the Rp space

• Utilize the ML model to predict the Y coordinate of each sampled point

• Assign weights based on the distance from the chosen point

• Use the generated weighted dataset to train the linear ridge regression: E(Y) = �0 +

⌃�jXj . The � coefficients are regarded as the LIME explanation.

Figure 3.9: Toy example to present intuition for LIME. Source: [7]

A black-box model’s complex decision function f (unknown to LIME) is illustrated by the

blue/pink background in Figure 3.9, which a linear model cannot adequately approximate. The

bold red cross represents the instance being explained. With LIME, instances are sampled, f

function predictions are derived, and they are weighted based on their proximity to the instance

being explained (represented by the size of the crosses and circles). The dashed line is the

learned explanation that is locally faithful but not globally (Ribeiro et al., 2016) [7].

34 CHAPTER 3. METHODOLOGY

3.4 Uncertainty Quantification

ML has become a preferred methodology for data analysis and prediction in the modern world

due to the availability of data and computational technologies. Despite ML’s great promise,

the results from such models are not entirely reliable due to the challenges presented by uncer-

tainty. The ML model generates the optimal solution based on the training data. However, if

the uncertainty in the data and the model parameters are not taken into account, such optimal

solutions may fail in the real world (Ghosh et al., 2021) [8].

Uncertainty Quantification 360 (UQ360) is an open-source toolkit with a Python package

developed by IBM for data science practitioners and researchers to calculate, evaluate, improve,

and communicate the uncertainty of ML models as common practice for AI transparency.

3.4.1 Intristic and Extrinsic UQ Algorithms

There are two types of uncertainty quantification algorithms, intrinsic and extrinsic, depending

on how the uncertainties are derived from the AI models. The following diagram shows the

taxonomy of the UQ algorithms. Most of them are included in the UQ360 toolkit.

Figure 3.10: Taxonomy of the uncertainty estimation algorithms included in the UQ360 toolkit. Source: [8]

3.4. UNCERTAINTY QUANTIFICATION 35

Intrinsic UQ Algorithm

Algorithms produce uncertainty estimates along with predictions. Bayesian and ensemble/re-

sampling approaches are employed in the UQ360 toolkit to train models that capture data and

model uncertainty. A Bayesian approach has a general computational cost advantage but is

based on a robust theory. In this study, the Bayesian Neural Network algorithm is tested on the

predicted class probabilities score obtained from the trained model.

Extrinsic UQ Algorithm

Algorithms to calculate the post-hoc uncertainty of trained models. Although neural networks

can capture data and model uncertainties, commonly used supervised and unsupervised algo-

rithms cannot. Therefore, methods such as Infinitesimal Jackknife or Meta-Models could be

applied.

3.4.2 Calibration

Before elaborating on the topic of calibration, let us define the notations of probability and

conditional probability in notations of ML:

• Probability or Confidence refers to how likely is the event to occur. In the case of ML,

class probabilities are any real number between 0 and 1. The model objective is to match

predicted probabilities with class labels, i.e. to maximize the likelihood by observing

class labels given the predicted probabilities.

P(~x, ~y) =
NY

i=1

p̂ (xi) · yi (3.26)

Likelihood for class labels y and predicted probabilities based on features x.

• Conditional probability is the likelihood of one condition being true if another state is

known to be true. In ML notation, the conditional probability distribution of Y given X

is the probability distribution of Y if X is known to be a particular feature of another

parameter.

36 CHAPTER 3. METHODOLOGY

P (Yi | Xi) =
P (Yi \Xi)

P (Xi)
(3.27)

Conditional probabilities for class labels y based on their known predicted probabilities

on features x.

In classification tasks, it is often essential to estimate the probability that an observation

belongs to a particular class - the conditional class probability.

Calibrating a model involves applying a post-processing operation to an already trained

model to improve its probability estimation. This is required when the likelihood of a prediction

is more important than classification results.

A well-calibrated model should have data points related to a class in the testing set at a

frequency of 60% if it correctly predicts that class using 60% probability. Accordingly, "relative

frequency" can also be referred to as "conditional probability", which is the probability of a

specific class prediction, i.e., a positive outcome conditioned upon a predicted likelihood of

60%.

A calibration model is perfect if a class prediction with confidence p is correct 100 ⇤ p

percent of the time for any probability value p.

Brier Score

Brier Score is in the nature of a cost function. A low value indicates accurate predictions

and vice versa. The objective of dealing with this concept is to decrease it. According to the

type of predicted variable, the Brier Score for class labels y and predicted probabilities based

on features x is formed as follows:

Brier Score(~x, ~y) =
1

N

NX

i=1

(p̂ (xi)� yi)
2 (3.28)

Expected Calibration Error:

An indicator of the calibration of uncertainty produced by a classifier. This is defined as the

difference between the classifier’s accuracy and confidence.

Confidence histogram and Reliability plot:

The confidence histogram shows each bin’s sampling fraction and the class prediction’s

3.4. UNCERTAINTY QUANTIFICATION 37

confidence. In the reliability diagram, the X-axis shows the average confidence for each bin,

and the Y-axis shows the prediction accuracy for each bin. The accuracy and confidence should

be equal. The confidence score could be interpreted as a probability if the model is calibrated.

The diagonal represents the ideal level of accuracy for each confidence level. If the reliabil-

ity curve is below the diagonal, the model has too much confidence in its predictions. Whenever

the reliability curve crosses the diagonal, the accuracy is greater than the confidence, and the

model is not confident enough.

Figure 3.11: Example of Confidence Histogram and Reliability Plot.

Recalibration Techniques

Platt scaling:

A method for transforming model’s outputs from [-1;+1] to posterior probabilities proposed

by Platt in 1999 [26]. Mostly efficient for SVM algorithm. F (xi) is the probability assigned

to the record by the classifier for xi. Two classes -1 and +1 are assumed to be arbitrarily

labeled, and the classifier assigns those records a class of sign (f(xi)). Given that xi is observed,

P (y = 1) is the probability that xi belongs to the class y = 1. Based on the logistic regression

equation, the calibrated probabilities are as follows:

38 CHAPTER 3. METHODOLOGY

P (y = 1 | xi) =
1

1 + exp (Af (xi) + B)
(3.29)

A and B are scaling parameters that control how scaling is applied in a fitting process (using

a maximum likelihood estimation algorithm). They are calculated per neighborhood or bin by

applying a maximum likelihood estimation algorithm, which seeks to find the slightest differ-

ence between the mean and true probability.

Isotonic Regression:

A method developed by Zadrozny and Elkan in 2002 [27] for calibrating predictions from

Naive Bayes, SVM, and Decision Tree models. In statistics, isotonic or monotonic regression

is applied when fitting a line to a sequence of observations under certain conditions: the fitted

line must be non-decreasing (or non-increasing) everywhere, and it must be as near to the ob-

servations as possible. Since isotonic regression is unconstrained by any functional form, such

as linear regression’s linearity, so long as the function is monotonically increasing, it has the

advantage of being unbiased.

yi = m (fi) + ✏i (3.30)

m̂ = argminz

X
(yi � z (fi))

2 (3.31)

3.4.3 Metamodel

Meta Modeling (MM), illustrated in the Figure, combines two models, a base model that per-

forms the primary task (e.g., regression) and a meta model that predicts the error behavior of the

base model. The amount of information shared between these two is what separates the differ-

ent settings, namely (1) base and meta components are trained jointly (joint models), (2) base

and meta components are trained separately (black-box), and (3) base and meta components are

trained independently (white-box).

With white-box and joint models, the meta model has access to rich information to capture

salient patterns, which lets it generate accurate predictions. On the other hand, the black-box

3.4. UNCERTAINTY QUANTIFICATION 39

setting often occurs in practice (Navratil et al., 2020) [9].

Figure 3.12: The concept of meta modeling. Source: [9]

3.4.4 Bayesian Neural Network

The literature defines BNNs slightly differently, but a widely accepted definition is that a BNN

is a stochastic artificial neural network trained with Bayesian inference.

The goal of standard neural networks (SNNs) is to represent an arbitrary function y = �(x).

SNNs are built using one input layer l0, a succession of hidden layers li, i = 1, ..., n � 1, and

one output layer ln. Here, n + 1 is the total number of layers (Jospin et al., 2020) [10].

A BNN is designed by choosing a deep neural network architecture, i.e., a functional model.

To determine the probability distribution p(✓) and the confidence in the predictive power of a

model p(y|x, ✓), one has to choose a stochastic model (Figure 3.13a). The hypothesis H is

the model parameterization, and the data D is the training data. A BNN’s stochastic model is

analogous to the choice of a loss function when training a point estimate neural network. Model

parameters are defined by ✓, the training set by D, the training inputs by Dx, and the training

labels by Dy. The Bayesian posterior can be expressed as follows by applying Bayes’ theorem

and enforcing independence of parameters and input:

p(✓ | D) =
p (Dy | Dx,✓) p(✓)R

✓ p (Dy | Dx,✓
0) p (✓0) d✓0 / p (Dy | Dx,✓) p(✓) (3.32)

When using a BNN for prediction, the probability distribution p(y|x,D), called the marginal

and quantifies the model’s uncertainties on its prediction, is of particular interest.

40 CHAPTER 3. METHODOLOGY

p(y | x, D) =

Z

✓

p (y | x,✓0) p (✓0 | D) d✓0 (3.33)

Figure 3.13: Workflow to design (a), train (b) and use a BNN for predictions (c). Source: [10]

The main difference between the SNNs and BNN is that SNN focuses on optimization

while BNN focuses on marginalization. Optimization would find one optimal point to represent

a weight, while marginalization would treat each weight as a variable and find its distribution

(Jospin et al., 2020) [10].

Figure 3.14: Difference between Standard NN Bayesian NN. Source: [11]

Uncertainties in statistics can be divided into two types which are epistemic and aleatory

uncertainties:

3.4. UNCERTAINTY QUANTIFICATION 41

• Aleatoric Uncertainty

Statistical uncertainty is also known as aleatoric or data uncertainty. A random variable

is representative of different unknowns each time we run the same experiment (train the

ML model). This refers to the degree of uncertainty associated with the model outputs

in ML. It can be regarded as the confidence level of the prediction. Aleatoric uncertainty

refers to the irreducible part of the uncertainty.

• Epistemic Uncertainty

A systematic uncertainty is also known as epistemic or algorithmic uncertainty. In deep

learning, epistemic uncertainty primarily refers to the uncertainty of the model weights.

In this case, a tiny number of training data points in some regions causes uncertainty,

and one cannot be sure how the model should behave. The weights may change slightly

each time the model is trained. These variations are the result of epistemic uncertainty.

As opposed to aleatoric uncertainty, epistemic uncertainty can be reduced with additional

information.

In general, epistemic uncertainty focuses on the possibility of a single event (or a single

statement that may be true). In contrast, aleatoric uncertainty focuses on the possible results of

repeated experiments.

Chapter 4

Data Analytics

4.1 Data Labeling

In ML, labeled data consists of data marked up or annotated to show the target, which is the

outcome to be predicted by the model. The term "data labeling" encompasses many tasks that

include data tagging, annotations, moderation, transcription, and processing.

The first step of the process has been the data extraction from the Volve field dataset and

labeling of the penetrated depth intervals. There are 9 wells in the preprocessed Volve dataset:

F-5, F-7, F-9, F-9a, F-14, F-15, F-15S, F-9 and F-9a. According to the Mud Sampling reports

and Well Log Interpretation results, each depth interval is labeled with a certain formation and

its lithology class.

4.2 Lithology Classes Distribution

An important discovery was that target classes are imbalanced, with Claystone samples reaching

up to 40% of the data as shown on the histogram 4.1. Analyzing the lithology columns in

Figures 4.2 and 4.3, the wells F-9 and F-9a penetrate the formation belonging to Nordland GP,

which predominantly consists of the Claystone class. These wells were eliminated from the

dataset to reduce the skewness in lithology class distribution.

42

4.2. LITHOLOGY CLASSES DISTRIBUTION 43

Figure 4.1: Distribution of the formations in the data set. The figure illustrates the skewness in the percentage
distribution of the formations.

Handling the Imbalanced Data

Because of the imbalanced distribution of the target classes, classification ML algorithms tend

to get biased towards the majority values and do not perform well on the minority values.

There are several drawbacks to the resampling techniques described in section 3.2.1. These

include the loss of a lot of majority class data points using undersampling or creating multi-

ple samples within a minority class. This may result in overfitting the model in the case of

oversampling.

Considering the nature of the dataset, resampling techniques applied to the training dataset

could lead to depth points overlapping. Hence, the trained model would provide more inaccurate

predictions.

After testing the SMOTE techniques on the well F-14, the synthetic samples filled in the

depth interval where no original data or information about the lithology was available.

To handle the imbalanced data, Scikit-learn comes with the class weight parameters for all

Decision Trees, Random Forests, Logistic Regression, and Support Vector Machine algorithms.

Regardless of how many samples we have of each class in the training data, class weights

give all classes equal weight in gradient updates. It prevents models from predicting the more

frequent class.

44 CHAPTER 4. DATA ANALYTICS

Figure 4.2: Lithology columns for wells F-5, F-14, F-15, F-15S.

The formula for calculating the weights used in this study:

Wi =
⌃ Training set [Class i]

⌃n
i=1 Training set

(4.1)

where the number of rows for each class is divided on the the total number of rows in the

training dataset.

4.3. FEATURE CREATION 45

Figure 4.3: Lithology columns for wells F-7, F-9, F-9a.

4.3 Feature creation

Feature creation involves deriving new features from existing ones.

Mechanic specific energy (MSE) was calculated based on the given features in.

MSE =
WOB

Ab
+

120⇡ ·RPM · T
Ab ·ROP

[MPa] (4.2)

46 CHAPTER 4. DATA ANALYTICS

Figure 4.4: Distribution of the formations in the data set after elimination of wells F-9 and F-9a to balance the
class distribution.

Class Weights
Lithology Class Weight

Claystone 0.36
Limestone 0.20

Marl 0.16
Sandstone 0.15

Sandstone/Claystone 0.12

Table 4.1: Class weights.

where WOB - Weight on Bit, kkgf

TOB - Average Surface Torque, kN*m

Ab - Cross-sectional area of bit, m2

RPM - Revolutions Per Minute, min-1

ROP - Rate of Penetration, [m/h]

4.4 Data Quality

Outlier Detection

To identify the number of outliers in the data, the IQR score method was applied.

The interquartile range – IQR – is a widely used statistical method to identify outliers. A

range between the first and third quartiles is known as the interquartile range. An outlier is a

data point that is located outside either the first quartile or the third quartile by 1,5 times the IQR

4.4. DATA QUALITY 47

Figure 4.5: Lithology column for the well F-14 before and after implementing SMOTE technique.

[28]. The graphical representation of the IQR method in Python is a boxplot from the Seaborn

library, with outliers displayed as black dots (Figure 4.6).

According to the descriptive statistics on the Figure 4.7, the total dataset has no missing

values. When comparing the mean and median for all attributes, it is evident that outliers have

little impact upon the distribution of the data, however IQR scores were used to identify the

number of outliers.

Based on Table 4.2, the highest percentage of outliers is for Average Hookload kkgf, 14.83%,

and Average Rotary Speed rpm, 7.02%. These outliers were removed from the total dataset.

48 CHAPTER 4. DATA ANALYTICS

Figure 4.6: Outlier detection with boxplots.

Figure 4.7: Descriptive statistics of the dataset.

4.5 Feature Selection

In terms of dimensionality reduction, feature selection aims to select a small number of rele-

vant features from the original features by eliminating irrelevant, redundant or noise features.

Feature selection usually leads to better learning performance, i.e., better learning accuracy,

4.5. FEATURE SELECTION 49

Feature Number of outliers Percentage of outliers
Weight on Bit kkgf’ 4859 2.42%
Average Standpipe Pressure kPa 237 0.11%
Average Rotary Speed rpm 13975 7.02%
Rate of Penetration m/h 4939 2.48%
Mud Flow In L/min 0 0%
Mud Density In g/cm3 0 0%
Average Hookload kkgf 29519 14.83%
Hole Depth (TVD) m 0 0%
USROP Gamma gAPI 2073 1.04%
MSE 7695 3.86%

Table 4.2: Number or percentage of outliers for the features.

lower computational costs, and better interpretation of the model. There are also three types of

feature selection based on the different strategies for searching, namely filter methods, wrapper

methods, and embedded methods (Miao and Niu, 2016) [29].

4.5.1 Wrapper Methods

A wrapper method uses an inductive ML algorithm to estimate a subset’s or an attribute’s merit.

The process of inductive learning involves creating a generalized rule for all data given to the

algorithm. It is widely accepted as a superior method in supervised learning problems because,

by engaging the inductive algorithm to evaluate options, they take into account the biases of the

algorithm. Even for algorithms with moderate complexity, the number of executions required

during feature search may result in high computational cost, particularly as we move towards

more exhaustive search strategies (Nnamoko et al., 2014) [30].

4.5.2 Filter Methods

Filter methods use evaluation functions based solely on data properties, thus are independent

of any particular ML algorithm. A common method would be to score each feature based on

some criterion and provide a ranking. Several feature subsets can be selected from the ranking

list either manually or by setting a threshold. As a single step approach without any search, this

filter may be less optimal, but can still be extremely efficient. However, the efficiency depends

on the computational complexity of the ranking procedure (Nnamoko et al., 2014) [30].

50 CHAPTER 4. DATA ANALYTICS

4.5.3 Embedded methods

Contrary to filter and wrapper approaches, embedded methods do not separate the learning of

a class of functions from the selection of its features - it is the structure of the class of func-

tions under consideration that is crucial. Regularization methods are among the most common

embedded methods. The methods require considerable computational resources.

In order to find the most suitable features, two filter techniques Information Gain along with

Correlation Coefficient were tested.

Correlation measures a linear relationship between the variables. It gives us the ability to

predict one variable based on another. The logic behind using correlation for feature selection

is that the variables are not correlated with one another.

Information gain is a measure of entropy reduction resulting from a transformation. This

can be used for feature selection by assessing each variable’s information gain in relation to the

target variable.

According to the Figure 4.8, Diameter mm highly correlates with Mud Flow in L/min, 0.91.

Measured depth m is well correlated with the Hole Depth (TVD) m, 0.98. From the Figure

4.9 it is seen that Diameter mm, Mud Density in g/cm3 and Measured Depth m reach lower

gains than other attributes. However, Mud Density has a low correlation with other parameters.

Therefore, it was made a decision to exclude Diameter mm and Measured Depth m from the

dataset.

4.5. FEATURE SELECTION 51

Figure 4.8: Cross correlation plot.

Figure 4.9: Feature Information Gain.

Chapter 5

Classification Results

Seven ML models were trained, including k-Nearest Neighbors, Logistic Regression, Naive

Bayes, Decision Trees, Random Forests, Gradient Boosting, and Adaptive Boosting algorithms.

The last four algorithms demonstrated the best prediction results and are presented in this chap-

ter.

5.1 Train/Test Split

Train/test splits serve to simulate how a model will perform on unseen data by dividing the

dataset into training and testing sets.

Figure 5.1: Train/test split process.

There are relatively few data samples. It was decided to test the model for the well with a

minimal percentage of the total dataset. The model cannot be tested for the well F-7 since it

includes only two types of lithology classes (Figure 5.2a). Therefore, F-5 was chosen to test.

52

5.1. TRAIN/TEST SPLIT 53

(a) Well F7 (b) Well F5

Figure 5.2: Lithology columns

54 CHAPTER 5. CLASSIFICATION RESULTS

Figure 5.3: The samples percentage for each well in the dataset.

Figure 5.4: Histogram of the class distribution the training and testing sets.

5.2 Categorical Encoding

ML and Data Science activities often involve a data set containing text or categorical values

(basically non-numerical values).

Label Encoding A popular method of encoding categorical variables is label encoding. The

5.3. EXPERIMENTAL SETTING 1 - GRADIENT BOOSTING 55

Label Encoding
Lithology Class Label

Claystone 0
Limestone 1

Marl 2
Sandstone 3

Sandstone/Claystone 4

Table 5.1: Encoded labels for the lithology classes.

technique uses alphabetical ordering to assign a unique integer to each label.

One-Hot Encoding Another popular technique for handling categorical variables is One-

Hot Encoding. Additional features are created based on the number of unique values in the

categorical feature. For every unique value, a feature is created.

The One-Hot Encoding method is used to create dummy variables.

In this study, Label Encoding was used. In label encoding, the class names are ranked based

on the alphabets, and since there are different numbers in the same column, the model interprets

the data as being in some kind of order, 0 < 1 < 2.

5.3 Experimental Setting 1 - Gradient Boosting

A model hyperparameter is a characteristic of a model that is external to the model and whose

value cannot be estimated from data. The value of the hyperparameter has to be set before the

learning process begins.

Grid-search is used to determine the hyperparameters of a model that produce the most

’accurate’ predictions. With the param_grid setting, it exhaustively generates candidates based

on a grid of parameter values. Cross-validation splitting is determined by cv and n _jobs is the

number of parallel jobs to run, where -1 means that all the processors are being used.

Some of the hyperparameters that influence the performance of the Gradient Boosting algo-

rithm are:

• n_estimators is the number of boosting stages to be performed

• max _depth is the maximum depth of individual regression estimators

• learning _rate reduces the contribution of each tree

56 CHAPTER 5. CLASSIFICATION RESULTS

1 from s k l e a r n . t r e e import G r a d i e n t B o o s t i n g C l a s s i f i e r

2 from s k l e a r n . m o d e l _ s e l e c t i o n import GridSearchCV

3 gbc = G r a d i e n t B o o s t i n g C l a s s i f i e r ()

4 # C r e a t e t h e p a r a m e t e r g r i d based on t h e r e s u l t s o f random s e a r c h

5 params = { " n _ e s t i m a t o r s " : [5 , 5 0 , 2 5 0 , 5 0 0] ,

6 " max_depth " : [1 , 3 , 5 , 7 , 9] ,

7 " l e a r n i n g _ r a t e " : [0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0] }

8 g r i d _ s e a r c h = GridSearchCV (e s t i m a t o r = gbc , p a r a m _ g r i d = params , cv =

3 , n _ j o b s = −1 , v e r b o s e = 1 , s c o r i n g = " a c c u r a c y ")

9 # F i t t h e g r i d s e a r c h t o t h e d a t a

10 g r i d _ s e a r c h . f i t (X _ t r a i n , y _ t r a i n)

11 p r i n t (’ Bes t P a r a m e t e r s : ’ , g r i d _ s e a r c h . bes t_pa rams_ , ’ \ n ’)

12 Bes t P a r a m e t e r s : { ’ n _ e s t i m a t o r s ’ : 50 , ’ max_depth ’ : 7 , ’

l e a r n i n g _ r a t e ’ : 0 . 1 }

Listing 5.1: Code for Hyperparameter Tuning (Decision Tree)

Figure 5.5: Lithology column for tested well F-5 and predicted lithology classes - Gradient Boosting algorithm.

5.4. EXPERIMENTAL SETTING 2 - DECISION TREE 57

Figure 5.6: Confusion matrix for Gradient Boosting algorithm.

Classification Report for Gradient Boosting
Precision Recall F1-score

Claystone 0.97 0.57 0.72
Limestone 0.78 0.92 0.84

Marl 0.85 0.24 0.38
Sandstone 1.00 0.66 0.80

Sandstone/Claystone 0.16 1.00 0.28
Weighted Average 0.75 0.68 0.60

Accuracy 0.69

Table 5.2: Scoring metrics for the Gradient Boosting algorithm.

The scoring results are presented in Table 5.2. From the confusion matrix (Figure 5.5), it

is evident that the algorithm has poorly predicted class 2 (Marl) and class 3 (Sandstone) but

provided the absolutely accurate prediction of class 4 (Sandstone/Claystone).

5.4 Experimental Setting 2 - Decision Tree

The following hyperparameters among others control the Decision Tree’s algorithm:

• max_depth identifies the maximum number of nodes from the root to the farthest leaf

• criterion measures the split quality

58 CHAPTER 5. CLASSIFICATION RESULTS

Classification Report for Decision Tree
Precision Recall F1-score

Claystone 0.62 0.22 0.33
Limestone 0.92 0.86 0.89

Marl 0.48 0.76 0.59
Sandstone 0.96 0.88 0.92

Sandstone/Claystone 0.19 0.62 0.29
Weighted Average 0.63 0.67 0.60

Accuracy 0.70

Table 5.3: Scoring metrics for the Decision Tree algorithm.

• min_samples_leaf is the minimum number of samples must be present at each leaf node

1 from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

2 from s k l e a r n . m o d e l _ s e l e c t i o n import GridSearchCV

3 d t = D e c i s i o n T r e e C l a s s i f i e r (c l a s s _ w e i g h t = c l a s s _ w e i g h t s)

4 # C r e a t e t h e p a r a m e t e r g r i d based on t h e r e s u l t s o f random s e a r c h

5 params = { ’ max_depth ’ : [2 , 3 , 5 , 10 , 2 0] ,

6 ’ m i n _ s a m p l e s _ l e a f ’ : [5 , 10 , 20 , 50 , 1 0 0] ,

7 ’ c r i t e r i o n ’ : [" g i n i " , " e n t r o p y "] }

8 g r i d _ s e a r c h = GridSearchCV (e s t i m a t o r = dt , p a r a m _ g r i d = params , cv =

3 , n _ j o b s = −1 , v e r b o s e = 1 , s c o r i n g = " a c c u r a c y ")

9 # F i t t h e g r i d s e a r c h t o t h e d a t a

10 g r i d _ s e a r c h . f i t (X _ t r a i n , y _ t r a i n)

11 p r i n t (’ Bes t P a r a m e t e r s : ’ , g r i d _ s e a r c h . bes t_pa rams_ , ’ \ n ’)

12 Bes t P a r a m e t e r s : { ’ max_depth ’ : 10 , ’ m i n _ s a m p l e s _ l e a f ’ : 20 , ’

c r i t e r i o n ’ : " g i n i " }

Listing 5.2: Code for Hyperparameter Tuning (Decision Tree)

The performance results for the Decision Tree algorithm are shown in Table 5.2. Based on

the confusion matrix 5.8, none of the classes were accurately predicted. However, compared to

Gradient Boosting, class 2 (Marl) and class 2 (Sandstone) were predicted more accurately.

5.4. EXPERIMENTAL SETTING 2 - DECISION TREE 59

Figure 5.7: Lithology column for tested well F-5 and predicted lithology classes - Decision Tree algorithm.

Figure 5.8: Confusion matrix for Decision Tree algorithm.

60 CHAPTER 5. CLASSIFICATION RESULTS

Classification Report for Random Forest
Precision Recall F1-score

Claystone 0.99 0.08 0.15
Limestone 0.84 1.00 0.92

Marl 0.85 0.53 0.65
Sandstone 0.97 0.83 0.89

Sandstone/Claystone 0.16 0.88 0.27
Weighted Average 0.89 0.72 0.72

Accuracy 0.72

Table 5.4: Scoring metrics for the Random Forest algorithm.

5.5 Experimental Setting 2 - Random Forest

Hyperparameters which are controlling the Random Forest algorithm:

• n_estimators is the number of trees in the forest

• max_depth is the maximum depth of the tree

• min_samples_leaf is the minimum number of samples needed at a leaf node

1 from s k l e a r n . t r e e import R a n d o m F o r e s t C l a s s i f i e r

2 from s k l e a r n . m o d e l _ s e l e c t i o n import GridSearchCV

3 r f = R a n d o m F o r e s t C l a s s i f i e r (c l a s s _ w e i g h t = c l a s s _ w e i g h t s)

4 # C r e a t e t h e p a r a m e t e r g r i d based on t h e r e s u l t s o f random s e a r c h

5 params = { ’ max_depth ’ : [8 0 , 90 , 100 , 1 1 0] ,

6 ’ m i n _ s a m p l e s _ l e a f ’ : [3 , 4 , 5] ,

7 ’ n _ e s t i m a t o r s ’ : [1 0 0 , 200 , 300 , 1000]}

8 g r i d _ s e a r c h = GridSearchCV (e s t i m a t o r = r f , p a r a m _ g r i d = params , cv =

3 , n _ j o b s = −1 , v e r b o s e = 1 , s c o r i n g = " a c c u r a c y ")

9 # F i t t h e g r i d s e a r c h t o t h e d a t a

10 g r i d _ s e a r c h . f i t (X _ t r a i n , y _ t r a i n)

11 p r i n t (’ Bes t P a r a m e t e r s : ’ , g r i d _ s e a r c h . bes t_pa rams_ , ’ \ n ’)

12 Bes t P a r a m e t e r s : { ’ max_depth ’ : 100 , ’ m i n _ s a m p l e s _ l e a f ’ : 5 , ’

n _ e s t i m a t o r s ’ : 100}

Listing 5.3: Code for Hyperparameter Tuning (Random Forest)

5.5. EXPERIMENTAL SETTING 2 - RANDOM FOREST 61

Figure 5.9: Lithology column for tested well F-5 and predicted lithology classes - Random Forest algorithm.

Figure 5.10: Confusion matrix for Random Forest algorithm.

The Random Forest algorithm does not distinguish the Claystone from the Sandstone/Clay-

stone class (Figure 5.9). Marl class was also poorly differentiated from the Limestone class.

62 CHAPTER 5. CLASSIFICATION RESULTS

However, other classes were predicted quite precisely. According to the Confusion matrix 5.10,

the algorithm performed better regarding class error differentiation than the Gradient Boosting

and Decision Tree algorithms.

5.6 Experimental Setting 4 - Adaptive Boosting

The main hyperparameters which are impacting the Adaptive Boosting algorithm are:

• n_estimators is the maximum number of estimators at which boosting is terminated.

• learning_rate refers to the weight applied to each classifier at each boosting iteration.

• algorithm is the option that includes the choice between a real boosting algorithm (SAMME.R)

and a discrete boosting algorithm (SAMME). The SAMME.R algorithm typically achieves

a lower test error with fewer boosting iterations than SAMME.

1 from s k l e a r n . ensemble import A d a B o o s t C l a s s i f i e r

2 from s k l e a r n . m o d e l _ s e l e c t i o n import GridSearchCV

3 ab = A d a B o o s t C l a s s i f i e r ()

4 # C r e a t e t h e p a r a m e t e r g r i d based on t h e r e s u l t s o f random s e a r c h

5 params = { ’ n _ e s t i m a t o r s ’ : [5 0 , 53 , 55 , 57 , 60 , 6 2] ,

6 ’ l e a r n i n g _ r a t e ’ : [(0 . 9 7 + x / 100) f o r x in range (0 , 20 , 2)] ,

7 ’ a l g o r i t h m ’ : [’SAMME’ , ’SAMME. R ’] }

8 g r i d _ s e a r c h = GridSearchCV (e s t i m a t o r = ab , p a r a m _ g r i d = params , cv =

3 , n _ j o b s = −1 , v e r b o s e = 1 , s c o r i n g = " a c c u r a c y ")

9 # F i t t h e g r i d s e a r c h t o t h e d a t a

10 g r i d _ s e a r c h . f i t (X _ t r a i n , y _ t r a i n)

11 p r i n t (’ Bes t P a r a m e t e r s : ’ , g r i d _ s e a r c h . bes t_pa rams_ , ’ \ n ’)

12 Bes t P a r a m e t e r s : { ’ a l g o r i t h m ’ : ’SAMME’ , ’ l e a r n i n g _ r a t e ’ : 1 . 0 8 9 , ’

n _ e s t i m a t o r s ’ : 60}

Listing 5.4: Code for Hyperparameter Tuning (Adaptive Boosting)

5.6. EXPERIMENTAL SETTING 4 - ADAPTIVE BOOSTING 63

Figure 5.11: Lithology column for tested well F-5 and predicted lithology classes - Adaptive Boosting algorithm.

Figure 5.12: Confusion matrix for Adaptive Boosting algorithm.

Among other algorithms, adaptive boosting one demonstrated the best predictions results

(Figure 5.11), although none of the classes were predicted totally accurately.

64 CHAPTER 5. CLASSIFICATION RESULTS

Classification Report for Adaptive Boosting
Precision Recall F1-score

Claystone 0.84 0.75 0.79
Limestone 0.94 0.96 0.95

Marl 0.89 0.81 0.85
Sandstone 0.90 0.95 0.92

Sandstone/Claystone 0.93 0.88 0.90
Weighted Average 0.90 0.90 0.90

Accuracy 0.90

Table 5.5: Scoring metrics for the Adaptive Boosting algorithm.

After analyzing the classification results, the Random Forest and Adaptive Boosting al-

gorithms were chosen to imply the comprehensive model evaluation analysis and uncertainty

quantification.

Chapter 6

ML Model Analysis - Case Study

6.1 Model Evaluation

For the case study, it was chosen to perform a comparative analysis on the two ML models with

the most accurate prediction results: Random Forest and Adaptive Boosting.

Model evaluation is the process of using different evaluation metrics to understand a ML

model’s performance and its strengths and weaknesses. The general metrics that evaluate the

classification metrics are Accuracy, Recall, Precision, F1-score, and Confusion Matrix.

Pytolemaic package for Python, developed by Orion Talmi [31], was used in this study to

analyze the classification model and dataset and measure their quality.

It is evident that the scoring metrics (Tables 5.4 and 5.5) are better for Adaptive Boosting

algorithms.

By analyzing the confusion matrixes (Figures 5.10 and 5.12), the Adaptive Boosting algo-

rithm has higher accuracy than Random Forest because of the difference in Claystone class

prediction. The rest of the classes’ Adaptive Boosting Classifier predicted slightly worse.

6.1.1 ROC and Precision-Recall Curves

ROC curves and Precision-Recall curves are diagnostic tools that can help interpret probabilistic

forecasts for multiclassification predictive modeling problems.

a AUC: higher for Random Forest algorithm for all five classes, although its confidence in-

65

66 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

Figure 6.1: ROC- and PR-curves for Random Forest algorithm.

Figure 6.2: ROC- and PR-curves for Adaptive Boosting algorithm.

terval is lower and uncertainty in score calibration is higher in comparison with Adaptive

Boosting algorithm. Hence the ROC curve in the case of Random Forest is not the most

reliable technique to check the model’s quality. Keeping in mind that the accuracy score

for Adaptive Boosting reaches 90%, the AUC resembles it with a low uncertainty score.

b AUPRC: it is challenging to compare models using this metric. Considering the trade-

off between recall and precision, the Random Forest is better balanced than Adaptive

Boosting. The recall score is lower for Random Forest.

6.2 Feature Sensitivity and Model Vulnerability

The feature sensitivity was determined by altering or ignoring the feature value while all other

features remained constant and observing the model’s output. As the model’s outcome changes

dramatically after changing the feature value, this implies that this feature has a significant

impact on the prediction.

6.2. FEATURE SENSITIVITY AND MODEL VULNERABILITY 67

(a) Random Forest (b) Adaptive Boosting

Figure 6.3: Feature Sensitivity

(a) Random Forest (b) Adaptive Boosting

Figure 6.4: Models Vulnerability

Model vulnerability is part of feature sensitivity report. It includes three quality measure-

ments answering the questions of how the model handles the missing values in the dataset –

imputation vulnerability, were samples from the testing set used to train the model – data leak-

age, and is there a risk of model overfitting – too many features.

The feature sensitivity was in detail described in the section 3.3.1.

Random Forest is sensitive to the different degrees of all of the features in the training

dataset. Adaptive Boosting is sensitive to USROP Gamma and Hole Depth attributes (Figures

6.3).

Adaptive Boosting is vulnerable to data leakage to a great extent, but Random Forest has

68 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

no vulnerability (Figure 6.4). The reason could be that the Random Forest algorithm allows the

introduction of class weights to the model.

What could be done to improve the Adaptive Boosting algorithm?

• Minimize data leakage:

a By evaluating simple rule-based models that identify leaky variables, then remove

them. A rule-based models produces pre-defined outcomes that are based on a set

of certain rules coded by the user.

b In input data add the random noise for the purpose to smooth out the effects of

possibly leaking variables.

c By using pipelines architectures, it is easy to do a different sequence of steps for

data preparation which is used to be performed in cross-validation. Cross-validation

is a technique for validating the model efficiency by training it on the subset of input

data and testing on previously unseen subset of the input data. For this purpose, a

Python Scikit-learn library could be used.

• Train the model with the sensitive features only, i.e., USROP Gamma and Hole Depth.

6.3 Covariate Shift Measurement

Covariate shift refers to the change in the distribution of the input variables present in the train-

ing and the test data.

Since the covariate shift refers only to the difference between training and testing datasets

distributions, it is model agnostic. As observed, Average Surface Torque, Average Standpipe

Pressure cause the covariate shift with high sensitivity, and Mud Flow cause it to a lower extent.

What could be done to improve the models?

• Adaptive Boosting is not sensitive to mentioned above attributes. Hence dataset shift does

not affect its prediction quality. In Random Forest, the reweighting of the training points,

which are similar to the testing, could be implemented.

6.3. COVARIATE SHIFT MEASUREMENT 69

Figure 6.5: Histogram of the shifted features.

Figure 6.6: Distribution of the shifted features.

70 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

• Adversarial Search method, described in section 3.3.4, could be applied to handle the

shift in the current datashift both for Random Forest and Adaptive Boosting algorithms.

6.4 Uncertainty Quantification

Model evaluation metrics and model analysis provide information about the predictive model’s

performance. However, it does not reveal the model’s efficacy when classifying a particular

sample. To estimate whether the model’s predictions are reliable, the probabilities of each

predicted class should be calibrated, and the model’s aleatoric/epistemic uncertainties should

be calculated.

The choice of the UQ algorithm depends on whether you intend to train a new model or

already have a trained model. In the former case, intrinsic methods can be used to train a model

that provides uncertainty estimates. If the model is already trained, extrinsic methods can be

used to either improve the quality of the model’s existing uncertainty estimates or generate

post-hoc uncertainty estimates if your model does not provide them.

Figure 6.7: Guidance on choosing UQ algorithms. Source: [12]

In the current case, the analyzed models were already trained. Neither Random Forest nor

Adaptive Boosting does not capture the data or model uncertainties. Therefore the Metamodel

Classification approach will be applied to measure the post-hoc uncertainties.

Afterward, the evaluation metric for classification, the behavior of Risk vs Rejection Rate/Risk

6.4. UNCERTAINTY QUANTIFICATION 71

vs Selection Threshold plots, provided in UQ360, is to be examined. The next step is to imple-

ment probability calibration measurement, and if the model is not well calibrated, the recalibra-

tion techniques are applied to improve UQ quality. After analyzing the confidence histogram

and reliability plot, it would be possible to conclude the models’ performance regarding the

probabilities of each predicted class.

The intrinsic algorithm, Bayesian Neural Networks (BNN), allows obtaining information

about the aleatoric and epistemic uncertainties of the pre-trained model. Instead of training the

BNN algorithm on the testing dataset, it is trained on calibrated class probabilities matrix.

6.4.1 Blackbox Metamodel Classification

A base model performs a task, whether classification or regression, on one side, while a sec-

ondary model acts as an observer on the other. Using input and output data from the base model

and the ground truth data, it is trained to capture the base model’s aleatoric uncertainty.

There are several types of meta-modeling. As a more straightforward variant, the observer

only sees the inputs and outputs of the base model, also known as the BlackBox method, which

was used in this study.

In this study the Gradient Boosting algorithm was chosen to behave as an observer.

Risk vs Rejection Rate and Risk vs Selection Threshold plots

While analyzing the model performance, one of the condition was that the classifiers gave a

prediction for all the samples.

However, in the Metamodel approach, the prediction are made only when they are suffi-

ciently reliable, with no prediction made by the classifier in other cases. This adds the ’rejection’

option to the classifier.

The classifier rejects an observation if the category to which it should be classified cannot

be predicted reliably, in which case no class labels are assigned. Chow (1970) introduced the

reject option, whereby decisions are not taken for samples with low confidence to reduce the

possibility of error. A classifier’s performance with reject options depends on accuracy and

rejection rate (Nadeem et al., 2010) [32].

72 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

The risk function is the expected value of an inverted loss function. In ML, the loss function

is used to measure how well your algorithm models your featured data set. In other words, loss

functions measure how good your model is in predicting the expected outcome, which is, in the

current case, the accuracy score.

The selection threshold refers to the model’s rate of failure based on the aleatoric uncertainty

score.

If both Risk vs Rejection Rate and Risk vs Selection Threshold plots are decreasing and

tend to be diagonal. In that case base model performs well, and the blackbox uncertainty score

is possible y_prob as the confidence to filter individual instances of the test set. The post-hoc

UQ quality should be improved by checking the probabilities calibration.

Figure 6.8: The synthetic example of Risk vs Rejection and Risk vs Selection Threshold plots for well performed
model.

The Metamodel results for Random Forest demonstrate that with the decreasing accuracy,

the rejection and selection threshold rates, and therefore aleatoric uncertainty, increase. Thus,

the Random Forest probability score is uncertain. On the other hand, the results for Adap-

tive Boosting illustrate that even though the rejection and selection threshold rates decrease,

the model probability score is not perfectly correlated but more confident than in the case of

Random Forest.

6.4. UNCERTAINTY QUANTIFICATION 73

Figure 6.9: Metamodel results for Random Forest algorithm.

Figure 6.10: Metamodel results for Adaptive Boosting algorithm.

6.4.2 Bayesian Neural Network

The Bayesian neural network (BNN) combines neural networks with Bayesian inference. The

BNN uses weights and outputs as variables to find the marginal distributions that best fit the

data. Ultimately, a BNN aims to explain a prediction’s reliability by quantifying the uncertainty

introduced by a model’s outputs and weights.

The BNN algorithm was trained on calibrated prediction probability scores from Random

Forest and Adaptive Boosting algorithms.

Aleatoric or statistical uncertainty refers to the notion of randomness, that is, the variability

in an experiment’s outcome caused by inherent randomness.

74 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

(a) Aleatoric Uncertaity (b) Epistemic Uncertainty

(c) Total Uncertainty

Figure 6.11: BNN Uncertainties based on Random Forest’s probabilities score for different classes

Epistemic uncertainty, also called systematic uncertainty, refers to uncertainty arising from

a lack of knowledge, that is, the agent’s epistemic state.

In contrast to aleatoric uncertainty, epistemic uncertainty can, in principle, be reduced with

additional information.

With respect to epistemic uncertainty, the Random Forest algorithm is seen to be more

reliable but produces less trustworthy predictions since aleatoric uncertainty is higher.

Mean Uncertainty Random Forest Adaptive Boosting
Aleatoric 1.12 0.72
Epistemic 0.0008 0.001

Table 6.1: Aleatoric and epistemic uncertainties for the Random Forest and Adaptive Boosting algorithms.

6.4. UNCERTAINTY QUANTIFICATION 75

6.4.3 Probability Calibration

Probability calibration is the process of calibrating an ML model to return the true likelihood

of an event. This is necessary when one needs the probability of the event in question rather

than its classification, which is extremely important while conducting the model uncertainties

evaluation. The theory behind the calibration method is comprehensively described in section

3.4.2.

Ideally, the calibration plot should represent the diagonal line, reflecting that each fraction

of positive predictions if perfectly predicted by the model as shown on the Figure 6.12.

Figure 6.12: Perfectly Calibrated Model.

The Pytolemaic package provides the algorithm for model calibration.

Figure 6.13: Calibration plot for the Random Forest algorithm.

76 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

Figure 6.14: Calibration plot for the Adaptive Boosting algorithm.

Models are not well calibrated. Recalibration methods, such as Isotonic regression and Platt-

scaling methods, could be applied to achieve better calibration. These methods are described in

section 3.4.2. After running several tests, the Isotonic method provided better results for recal-

ibration. ClassificationCalibration in the UQ360 framework was used to run the recalibration

process.

Figure 6.15: Recalibration plot for the Random Forest algorithm.

Usually, the average confidence for a bin lies on or close to the diagonal. The calibration

analysis shows how confident the model’s predictions are. The model is overconfident if confi-

dence is higher than accuracy (below the diagonal line). Otherwise, the model is underconfident.

It is difficult to conclude the prediction confidence visually in a multiclassification problem.

The gap between accuracy and confidence is calculated using the formula below. The formula

6.4. UNCERTAINTY QUANTIFICATION 77

Figure 6.16: Confidence Histogram and Reliability plot for each class (Random Forest algorithm).

Figure 6.17: Confidence Histogram and Reliability plot - Average (Random Forest algorithm).

is derived based on results from the Reliability plot and Confidence Histogram.

Accuracy�ConfidenceGap [ibins] = ⌃(Accuracy [i]� Confidence [i])⇤Fraction of samples [i]

(6.1)

The chosen Accuracy - Confidence Gap threshold to prove the model confidence is in the

range [-0.25, 0.25]. Lower than -0.25: the model is overconfident. Higher than 0.25: undercon-

fident.

What do over-confidence and under-confidence mean?

78 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

Figure 6.18: Recalibration plot for the Adaptive Boosting algorithm.

Figure 6.19: Confidence Histogram and Reliability plot for each class (Adaptive Boosting algorithm).

Over-confidence (confident > accuracy): model gives more false positives, it provides ob-

servations that are not actually true. If the threshold for distinguishing between classes is too

low, this could occur.

Under-confidence (accuracy > confidence): model gives more false negatives. The decision

threshold is high. There should be a small gap between accuracy and confidence as long as the

aim is to interpret predictions as probabilities. In our case, the Adaptive Boosting algorithm

could have been improved by decreasing the decision threshold.

Table 6.2 shows that the Random Forest is more trustful than Adaptive Boosting in terms

6.4. UNCERTAINTY QUANTIFICATION 79

Figure 6.20: Confidence Histogram and Reliability plot - Average (Adaptive Boosting algorithm).

Random Forest Adaptive Boosting

Average
confidence

Confidence
vs
Accuracy

Result Average
confidence

Confidence
vs
Accuracy

Result

Claystone 0.39 -0.1 Confident 0.5 0.28 Underconfident

Limestone 0.72 0.27 Underconfident 0.68 0.27 Underconfident

Mark 0.4 -0.04 Confident 0.62 0.22 Confident

Sandstone 0.62 0.38 Underconfident 0.5 0.48 Underconfident

Sandstone/Claystone 0.55 0.42 Underconfident 0.53 0.42 Underconfident

Overall (Average) 0.57 0.16 Confident 0.58 0.32 Underconfident

Table 6.2: The results after calculation the Accuracy - Confidence gap for Random Forest and Adaptive Boosting
algorithms.

of confidence notation. This is one of the most discoveries that even though Adaptive Boosting

produced a better result in terms of accuracy for the tested well, the Random Forest is proven

to be more reliable in a case if the trained model would be tested on other wells. The Random

Forest and Adaptive Boosting algorithms were tested on other wells from the Volve dataset to

prove this statement.

Before running the models, the tested well were removed from the training dataset. To keep

the training dataset almost unchanged, the tested well F-5, on which the model and uncertainty

analysis was based, was not added to the dataset.

The results of the testing experiments are presented in Appendix B. The experiment has

proven that the Random Forest algorithm performs better for other testing datasets (Table 6.3).

Therefore, even though the Adaptive Boosting demonstrated the high accuracy for one tested

80 CHAPTER 6. ML MODEL ANALYSIS - CASE STUDY

Accuracy

Tested well Random Forest Adaptive Boosting

F-15 0.85 0.75

F-15S 0.64 0.38

F-14 0.33 0.23

Table 6.3: Accuracy scores for the wells: F-15, F-15S, F-14

well, if the trained model is tested on the new well, it is more likely to fail. In conclusion,

the discovery demonstrated that it is crucial to conduct the model performance and uncertainty

quantification before deploying the model in real life applications.

Chapter 7

Conclusions and Future Work

Conclusion

This thesis aimed to investigate to what extent ML techniques can use the preprocessed real-time

drilling data from the Volve field as input to label the lithological properties of the formations.

To achieve this, seven different supervised algorithms were trained on one selected well with

the minority of the samples presented in the dataset.

One of the conclusions that can be drawn from the thesis is that supervised ML algorithms

can classify lithology classes with relatively high accuracy.

The two best performing models were the Random Forest algorithm with an accuracy of

72% and the Adaptive Boosting one, reaching an accuracy of 90%. Hyperparameter tuning

was applied to improve the algorithms’ predictive power. Sequentially, these two algorithms

were evaluated, and uncertainties were quantified. From the Model Vulnerability analysis, it

is observed that the Adaptive Boosting algorithm is prone to the Data Leakage, meaning that

some of the attributes from the testing dataset were implemented in the model training phase.

Another drawback of the Adaptive Boosting algorithm is that it is not sensitive to most features.

Both algorithms were affected by the Covariate Data Shift, which referred to the difference

between training and testing datasets distributions resulting in the less predictive power of the

algorithms. The data shift issue should be eliminated in the data preprocessing phase.

The uncertainty quantification (UQ) consisted of the Blackbox Metamodel approach, Bayesian

Neural Networks (BNNs), and Probability Calibration. Metamodeling measured the aleatoric

81

82 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

or data uncertainty, demonstrating that the Random Forest algorithm is more uncertain than the

Adaptive Boosting one. The problem arises from the nature of testing data nature.

BNNs were utilized to quantify the aleatoric and epistemic uncertainties. After running the

algorithm based on the predicted class probability score, the Random Forest algorithm is more

reliable regarding the model uncertainty than the other algorithm.

To enhance the quality of UQ, Probability Calibration returns the predicted class’s actual

likelihood. This technique is necessary when the probability of the prediction is more crucial to

consider than the classification results.

After comparing the calibration results and computing the Accuracy - Confidence based

on Confidence Histogram and Reliability Plot, the most important discovery was that the less

accurate algorithm, according to the scoring classification report, is more confident than the

best-performed algorithm.

When training the model on the selected well, there is no evident risk that the trained model

would not perform satisfactorily on the other testing wells. In a real-life application, the before-

hand trained model would be tested on the obtained data from the newly drilled wells. After

running the trained algorithms on the other available wells in the Volve dataset, it was proven

that the Random Forest algorithm is more reliable due to its higher confidence in the predictions.

Future work

The thesis opens up several areas for further research. The supervised classification algorithms

applied to the Volve field dataset considered in Model Analysis Case Study could be improved

by the proposed methods, including eliminating the Data Leakage and Covariate Data Shift.

A more advanced intrinsic UQ technique, the Gaussian Process Regression (GPR) algo-

rithm, which is similar to BNN, is suggested to quantify the uncertainties. GPR is an excep-

tionally effective ML algorithm that, in contrast to many of today’s UQ techniques, estimates

uncertainties with few parameters required. The algorithm is incorporated in the UQ360 toolkit,

and as stated in the documentation, it is better to handle relatively small datasets.

The extrinsic method, Infinitesimal Jackknife, is recommended to improve UQ quality. A

closed-form Gaussian distribution can characterize this standard statistical technique for con-

83

structing a pseudo-ensemble without retraining. The approach approximates the impact of

changes to training data on the model’s predictions (Lu et al., 2020) [33].

The next step in the current research is to train and analyze the sequential ML approach,

called Recurrent Neural Networks (RNNs). A recurrent neural network (RNN) is an artificial

neural network that employs sequential or time-series data. The notion of ’memory’ enables

RNNs to retain the states or data of prior inputs to construct the subsequent output in a series.

This algorithm would allow predicting lithology classes based on previously recorded parame-

ters in a drilled wellbore.

References

[1] Shib Ganguli and Souvik Sen. Estimation of pore pressure and fracture gradient in volve field, norwegian
north sea. SPE Journal, 04 2019.

[2] Padraig Cunningham and Sarah Delany. k-nearest neighbour classifiers. Mult Classif Syst, 54, 04 2007.

[3] Nikolaos Sapountzoglou, Jesus Lago, and Bertrand Raison. Fault diagnosis in low voltage smart distribution
grids using gradient boosting trees. Electric Power Systems Research, 182:106254, 05 2020.

[4] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo Prati, Bartosz Krawczyk, and Francisco Herrera.
Learning from Imbalanced Data Sets. 01 2018.

[5] Ines Dedovic. Efficient probability distribution function estimation for energy based image segmentation
methods. PhD thesis, 02 2017.

[6] Francisco Herrera. Dataset shift in classification: Approaches and problems. https://www.inf.ufpr.br/

lesoliveira/sticamsud/fr14-simon.pdf, 2011. Accessed: 2022–05-11.

[7] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predic-
tions of any classifier. CoRR, abs/1602.04938, 2016.

[8] Soumya Shubhra Ghosh, Qingzi Vera Liao, Karthikeyan Natesan Ramamurthy, Jirí Navrátil, Prasanna Sat-
tigeri, Kush R. Varshney, and Yunfeng Zhang. Uncertainty quantification 360: A holistic toolkit for quanti-
fying and communicating the uncertainty of ai. ArXiv, abs/2106.01410, 2021.

[9] Jiri Navratil, Matthew Arnold, and Benjamin Elder. Uncertainty prediction for deep sequential regression
using meta models, 07 2020.

[10] Laurent Valentin Jospin, Wray L. Buntine, Farid Boussaïd, Hamid Laga, and Mohammed Bennamoun.
Hands-on bayesian neural networks - a tutorial for deep learning users. CoRR, abs/2007.06823, 2020.

[11] Why you should use bayesian neural network. https://towardsdatascience.com/

why-you-should-use-bayesian-neural-network-aaf76732c150. Accessed: 2022-04-24.

[12] Uncertainty quantification 360. https://uq360.mybluemix.net/. Accessed: 2022-05-05.

[13] Ngoc Tran Deepak Devegowda Vikram Jayaram Chandra Rai Carl Sondergeld Gupta, Ishank and Hamidreza
Karami. Looking ahead of the bit using surface drilling and petrophysical data: Machine-learning-based
real-time geosteering in volve field.

[14] Andrzej Tunkiel, Tomasz Wiktorski, and Dan Sui. Drilling dataset exploration, processing and interpretation
using volve field data. 08 2020.

[15] Trevor Hastie Robert Tibshirani Gareth James, Daniela Witten. An Introduction to Statistical Learning with
applications in R. Springer, 2013.

[16] Johannes Fürnkranz. Decision Tree, pages 263–267. Springer US, Boston, MA, 2010.

[17] Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. volume 2486, pages 3–22, 05
2002.

[18] Simon Bernard. Random forests - parametrization and dynamic induction. https://www.inf.ufpr.br/

lesoliveira/sticamsud/fr14-simon.pdf, 2014. Accessed: 2022–05-11.

[19] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line learning and an applica-
tion to boosting. In Paul Vitányi, editor, Computational Learning Theory, pages 23–37, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

84

REFERENCES 85

[20] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7, 2013.

[21] Understanding gradient boosting from scratch with a small dataset. https://towardsdatascience.com/

understanding-gradient-boosting-from-scratch-with-small-dataset-587592cc871f. Accessed:
2022-04-20.

[22] Geoffrey I. Webb. Naïve Bayes, pages 713–714. Springer US, Boston, MA, 2010.

[23] Sotiris Kotsiantis, D. Kanellopoulos, and P. Pintelas. Handling imbalanced datasets: A review. GESTS
International Transactions on Computer Science and Engineering, 30:25–36, 11 2005.

[24] Pytolemaic — a toolbox for model quality. https://towardsdatascience.com/

pytolemaic-package-for-model-quality-analysis-2b7bea751cfd. Accessed: 2022-03-04.

[25] Lime: explain machine learning predictions. https://towardsdatascience.com/

lime-explain-machine-learning-predictions-af8f18189bfe. Accessed: 2022-04-04.

[26] John Platt. 1999, month = 06, pages = , title = Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods, volume = 10, journal = Adv. Large Margin Classif.

[27] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers. ICML, 1, 05 2001.

[28] Interquartile range, statistic how to. https://www.statisticshowto.datasciencecentral.com/

probability-and-statistics/interquartile-range/, note = Accessed: 2022-04-20.

[29] Jianyu Miao and Lingfeng Niu. A survey on feature selection. Procedia Computer Science, 91:919–926, 12
2016.

[30] Nonso Nnamoko, Farath Arshad, David England, Jiten Vora, and James Norman. Evaluation of filter and
wrapper methods for feature selection in supervised machine learning. 06 2014.

[31] Pytolemaic Github Repository, https://github.com/broundal/pytolemaic.

[32] Malik Nadeem, Jean-daniel Zucker, and Blaise Hanczar. Accuracy-rejection curves (arcs) for comparing
classification methods with a reject option. Journal of Machine Learning Research - Proceedings Track,
8:65–81, 01 2010.

[33] Zhiyun Lu, Eugene Ie, and Fei Sha. Uncertainty estimation with infinitesimal jackknife, its distribution and
mean-field approximation. CoRR, abs/2006.07584, 2020.

[34] SLEIPNER PETEK. Discovery Evaluation Report Well 15/9-19 SR Theta Vest Structure, Dec 1993.

[35] Ajay Kulkarni, Deri Chong, and Feras A. Batarseh. 5 - foundations of data imbalance and solutions for a
data democracy. In Feras A. Batarseh and Ruixin Yang, editors, Data Democracy, pages 83–106. Academic
Press, 2020.

[36] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory,
13:21–27, 1967.

Appendices

86

Appendix A

Python Code

A.1 Installed Packages

The packages required to run the codes and visualize results (Table A.1).

A.2 Decision Tree

1 from s k l e a r n . m e t r i c s import c l a s s i f i c a t i o n _ r e p o r t
2 from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r
3

4 # C r e a t e D e c i s i o n Tree c l a s s i f e r o b j e c t
5 # c l f = D e c i s i o n T r e e C l a s s i f i e r (max_depth =10 , m i n _ s a m p l e s _ l e a f =20 ,

c r i t e r i o n = " g i n i ")
6 c l f = D e c i s i o n T r e e C l a s s i f i e r (c l a s s _ w e i g h t = c l a s s _ w e i g h t s)
7

8 # T r a i n D e c i s i o n Tree C l a s s i f e r
9 c l f = c l f . f i t (X _ t r a i n , y _ t r a i n)

10

11 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
12 y _ p r e d _ d t = c l f . p r e d i c t (X _ t e s t)
13

14 p r i n t (’ D e c i s i o n Tree Re p o r t \ n ’)
15 p r i n t (c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , y _ p r e d _ d t))
16

Listing A.1: Decision Tree algorithm

88

A.3. RANDOM FOREST 89

Package Version
aif360 0.4.0
imbalanced-learn 0.8.1
imblearn 0
matplotlib 3.2.2
matplotlib-inline 0.1.3
numpy 1.21.6
pandas 1.3.5
plotly 5.5.0
pytolemaic 0.14.1
scikit-learn 1.0.2
scipy 1.4.1
seaborn 0.11.2
sklearn 0.0
tensorflow 2.8.2
uq360 0.2

Table A.1: Required packages.

A.3 Random Forest

1

2 from s k l e a r n . m e t r i c s import c l a s s i f i c a t i o n _ r e p o r t
3 from s k l e a r n . t r e e import Random F o r e s t C l a s s i f i e r
4

5 # C r e a t e Random F o r e s t c l a s s i f e r o b j e c t
6 c l f = R a n d o m F o r e s t C l a s s i f i e r (c l a s s _ w e i g h t = c l a s s _ w e i g h t s , max_depth =

100 , m i n _ s a m p l e s _ l e a f = 5 , n _ e s t i m a t o r s = 100)
7

8 # T r a i n Random F o r e s t C l a s s i f e r y_pred = c l f . p r e d i c t (X _ t e s t)
9 c l f . f i t (X _ t r a i n , y _ t r a i n)

10

11 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
12 y _ p r e d _ r f = c l f . p r e d i c t (X _ t e s t)
13

14 p r i n t (’Random F o r e s t Re p o r t \ n ’)
15 p r i n t (c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , y _ p r e d _ r f))
16

Listing A.2: Random Forest algorithm

A.4 Gradient Boosting

1 from s k l e a r n . m e t r i c s import c l a s s i f i c a t i o n _ r e p o r t
2 from s k l e a r n . t r e e import G r a d i e n t B o o s t i n g C l a s s i f i e r

90 APPENDIX A. PYTHON CODE

3

4 # C r e a t e G r a d i e n t B o o s t i n g c l a s s i f e r o b j e c t
5 g r ad = G r a d i e n t B o o s t i n g C l a s s i f i e r (n _ e s t i m a t o r s = 50 , max_depth = 7 ,

l e a r n i n g _ r a t e = 0 . 1)
6

7 # T r a i n G r a d i e n t B o o s t i n g C l a s s i f e r
8 model = g rad . f i t (X _ t r a i n , y _ t r a i n)
9

10 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
11 y _ p r e d _ g r a d = model . p r e d i c t (X _ t e s t)
12

13 p r i n t (’ G r a d i e n t Boos t R e p o r t \ n ’)
14 p r i n t (c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , y _ p r e d _ g r a d))
15

Listing A.3: Gradient Boosting algorithm

A.5 Adaptive Boosting

1 from s k l e a r n . m e t r i c s import c l a s s i f i c a t i o n _ r e p o r t
2 from s k l e a r n . t r e e import A d a B o o s t C l a s s i f i e r
3

4 # C r e a t e a d a b o o s t c l a s s i f e r o b j e c t
5 abc = A d a B o o s t C l a s s i f i e r (a l g o r i t h m = ’SAMME’ , l e a r n i n g _ r a t e = 1 . 0 8 9 ,

n _ e s t i m a t o r s = 60)
6

7 # T r a i n Adaboost C l a s s i f e r
8 model = abc . f i t (X _ t r a i n , y _ t r a i n)
9

10 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
11 y_pred_ad = model . p r e d i c t (X _ t e s t)
12

13 p r i n t (’ AdaBoost C l a s s f i e r Re p o r t \ n ’)
14 p r i n t (c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , y_pred_ad))
15

Listing A.4: Adaptive Boosting algorithm

A.6 Model Analysis

1

2 from p y t o l e m a i c import M e t r i c s
3 from p y t o l e m a i c import P y T r u s t
4 from p y t o l e m a i c . u t i l s . g e n e r a l import G e n e r a l U t i l s
5

6 def run () :

A.6. MODEL ANALYSIS 91

7

8 # T r a i n e s t i m a t o r
9 e s t i m a t o r = R a n d o m F o r e s t C l a s s i f i e r (c l a s s _ w e i g h t = c l a s s _ w e i g h t s ,

max_depth = 100 , m i n _ s a m p l e s _ l e a f = 5 , n _ e s t i m a t o r s = 100)
10 e s t i m a t o r . f i t (X _ t r a i n , y _ t r a i n)
11

12 # I n i t i a t i n g P y T r u s t
13 p y t r u s t = P y T r u s t (
14 model= e s t i m a t o r ,
15 x t r a i n = X _ t r a i n , y t r a i n = y _ t r a i n ,
16 x t e s t = X_ te s t , y t e s t = y _ t e s t)
17

18 # I n i t i a t i n g P y T r u s t w i th more i n f o r m a t i o n
19 p y t r u s t = P y T r u s t (
20 model= e s t i m a t o r ,
21 x t r a i n = X _ t r a i n , y t r a i n = y _ t r a i n ,
22 x t e s t = X_ te s t , y t e s t = y _ t e s t ,
23 f e a t u r e _ n a m e s = f e a t u r e _ n a m e s ,
24 t a r g e t _ l a b e l s = l a b e l s)
25

26 p y t r u s t . s c o r i n g _ r e p o r t . p l o t ()
27

28 p y t r u s t . s e n s i t i v i t y _ r e p o r t . p l o t ()
29

30 p y t r u s t . d a t a s e t _ a n a l y s i s _ r e p o r t . p l o t ()
31

32 p y t r u s t . q u a l i t y _ r e p o r t . p l o t ()
33

34 i f __name__ == ’ __main__ ’ :
35 run ()
36 p l t . show ()
37

Listing A.5: Pytolemaic Code to run Model Evaluation for the Random Forest algorithm

1

2 from p y t o l e m a i c import M e t r i c s
3 from p y t o l e m a i c import P y T r u s t
4 from p y t o l e m a i c . u t i l s . g e n e r a l import G e n e r a l U t i l s
5

6 def run () :
7

8 # T r a i n e s t i m a t o r
9 e s t i m a t o r = A d a B o o s t C l a s s i f i e r (a l g o r i t h m = ’SAMME’ , l e a r n i n g _ r a t e

= 1 . 0 8 9 , n _ e s t i m a t o r s = 60)
10 e s t i m a t o r . f i t (X _ t r a i n , y _ t r a i n)
11

12 # I n i t i a t i n g P y T r u s t
13 p y t r u s t = P y T r u s t (
14 model= e s t i m a t o r ,
15 x t r a i n = X _ t r a i n , y t r a i n = y _ t r a i n ,
16 x t e s t = X_ te s t , y t e s t = y _ t e s t)

92 APPENDIX A. PYTHON CODE

17

18 # I n i t i a t i n g P y T r u s t w i th more i n f o r m a t i o n
19 p y t r u s t = P y T r u s t (
20 model= e s t i m a t o r ,
21 x t r a i n = X _ t r a i n , y t r a i n = y _ t r a i n ,
22 x t e s t = X_ te s t , y t e s t = y _ t e s t ,
23 f e a t u r e _ n a m e s = f e a t u r e _ n a m e s ,
24 t a r g e t _ l a b e l s = l a b e l s)
25

26 p y t r u s t . s c o r i n g _ r e p o r t . p l o t ()
27

28 p y t r u s t . s e n s i t i v i t y _ r e p o r t . p l o t ()
29

30 p y t r u s t . d a t a s e t _ a n a l y s i s _ r e p o r t . p l o t ()
31

32 p y t r u s t . q u a l i t y _ r e p o r t . p l o t ()
33

34 i f __name__ == ’ __main__ ’ :
35 run ()
36 p l t . show ()
37

Listing A.6: Pytolemaic Code to run Model Evaluation for the Adaptive Boosting algorithm

A.7 Blackbox Metamodel

1

2 from uq360 . a l g o r i t h m s . b lackbox_metamode l import
M e t a m o d e l C l a s s i f i c a t i o n

3

4 # s p l i t t h e t r a i n i n g p a r t i t i o n t o p r o v i d e base and meta t r a i n i n g s e t s
5 X _ t r a i n _ b a s e , X_ t ra in_meta , y _ t r a i n _ b a s e , y _ t r a i n _ m e t a =

t r a i n _ t e s t _ s p l i t (X _ t r a i n , y _ t r a i n , t e s t _ s i z e = 0 . 4 , r a n d o m _ s t a t e =42)
6

7 # S i m u l a t e a pre − e x i s t i n g , pre − t r a i n e d base model
8 c l f _ m d l = R a n d o m F o r e s t C l a s s i f i e r () # o r A d a B o o s t C l a s s i f i e r ()
9

10 b a s e _ c o n f i g = {} # a c c o r d i n g t o t h e h y p e r p a r a m e t e r s o f t h e a l g o r i t h m
11

12 m e t a _ c o n f i g = {}
13

14 meta_mdl = G r a d i e n t B o o s t i n g C l a s s i f i e r ()
15 uq_model = M e t a m o d e l C l a s s i f i c a t i o n (base_model = c l f_mdl , meta_model=

meta_mdl , b a s e _ c o n f i g = b a s e _ c o n f i g , m e t a _ c o n f i g =None)
16

17 # now f i t t h e meta model on ly
18 _ = uq_model . f i t (X=None , y=None , b a s e _ i s _ p r e f i t t e d =True ,

m e t a _ t r a i n _ d a t a =(X_ t r a in_me ta , y _ t r a i n _ m e t a))
19

A.8. ISOTONIC REGRESSION RECALIBRATION 93

20 y _ t e s t _ p r e d , y _ t e s t _ s c o r e = uq_model . p r e d i c t (X _ t e s t)
21

Listing A.7: BlackBox Metamodel code

A.8 Isotonic Regression Recalibration

1

2 from uq360 . a l g o r i t h m s . c l a s s i f i c a t i o n _ c a l i b r a t i o n import
C l a s s i f i c a t i o n C a l i b r a t i o n

3

4 # I n i t i a l i z e t h e c a l i b r a t i o n f u n c t i o n
5 c a l i b = C l a s s i f i c a t i o n C a l i b r a t i o n (n u m _ c l a s s e s = 5 , f i t _ m o d e = ’ p r o b s ’ ,

method= ’ i s o t o n i c ’ , b a s e _ m o d e l _ p r e d i c t i o n _ f u n c =None)
6

7 # C l a s s p r o b a b i l i t y s c o r e from t h e p r e t r a i n e d model c l f
8 s c o r e = c a l i b r a t e d _ c l f . p r e d i c t _ p r o b a (X _ t e s t)
9

10 # Score o u t p u t a f t e r r e c a l i b r a t i o n
11 _ = c a l i b . f i t (s c o r e , y _ t e s t)
12 pred , s c o r e _ i s o = _ . p r e d i c t (s c o r e)
13

Listing A.8: Isotonic Regression Recalibration code

A.9 BNN

1

2 from uq360 . a l g o r i t h m s . v a r i a t i o n a l _ b a y e s i a n _ n e u r a l _ n e t w o r k s . bnn import
B n n C l a s s i f i c a t i o n

3

4 import t o r c h
5 import t o r c h . nn as nn
6 import t o r c h . nn . f u n c t i o n a l a s F
7 import t o r c h . opt im as opt im
8 from t o r c h . u t i l s . d a t a import DataLoader
9 import t o r c h . u t i l s . d a t a a s d a t a _ u t i l s

10

11 # F i t t e s t d a t a t o t h e Tensor a r r a y
12 t e s t = d a t a _ u t i l s . T e n s o r D a t a s e t (t o r c h . Tensor (y _ t e s t _ s c o r e) , t o r c h .

Tensor (y _ t e s t . v a l u e s))
13 t e s t _ l o a d e r = d a t a _ u t i l s . Da taLoader (t e s t , b a t c h _ s i z e =1 , s h u f f l e =True)
14

15 # C l a s s p r o b a b i l i t y s c o r e from t h e p r e t r a i n e d model c l f _ m d l
16 y _ t e s t _ s c o r e = c l f _ m d l . p r e d i c t _ p r o b a (X _ t e s t)
17

94 APPENDIX A. PYTHON CODE

18 #BNN c o n g i f u r a t i o n s e t t i n g s
19 c o n f i g = { " ip_dim " : y _ t e s t _ s c o r e . shape [1] , " op_dim " : 5 , " num_nodes " :

128 , " num_laye r s " : 1 ,
20 " num_epochs " : 5 , " s t e p _ s i z e " : 0 .001}
21 c o n f i g [’ h s h o e _ s c a l e ’] = 1e −1
22 c o n f i g [’ u s e _ r e g _ h s h o e ’]= True
23 d e v i c e = t o r c h . d e v i c e (" cuda : 0 " i f t o r c h . cuda . i s _ a v a i l a b l e () e l s e " cpu

")
24

25 # T r a i n BNN
26 bnn = B n n C l a s s i f i c a t i o n (c o n f i g = c o n f i g , d e v i c e = dev i ce , p r i o r =" RegHshoe

")
27

28 # F i t BNN a l g o r i t h m wi th p r o b a b i l i t y c l a s s s c o r e and t e s t e d t a r g e t s
29 bnn = bnn . f i t (X= y _ t e s t _ s c o r e , y= y _ t e s t . v a l u e s)
30

31 #BNN o u t p u t s
32 def g e t _ t e s t _ r e s u l t s (t e s t _ l o a d e r , bnn) :
33 c o r r e c t = 0
34 t o t a l = 0
35

36 a l l _ m e a n = []
37 a l l _ v a r = []
38 a l l _ t r u e _ l a b e l s = []
39 a l l _ p r e d _ l a b e l s = []
40

41 a l l _ t o t a l = []
42 a l l _ e p i s t e m i c = []
43 a l l _ a l e o t o r i c = []
44

45 f o r t e s t _ b a t c h _ x , t e s t _ b a t c h _ y in t e s t _ l o a d e r :
46

47 w i th t o r c h . no_grad () :
48 p r e d i c t e d , pred_mean , p red_va r , y_p rob_sample s = bnn .

p r e d i c t (t e s t _ b a t c h _ x)
49 p r e d _ t o t a l _ u q , p r e d _ a l e o , p r e d _ e p i =

e n t r o p y _ b a s e d _ u n c e r t a i n t y _ d e c o m p o s i t i o n (y_p rob_sample s)
50

51 a l l _ m e a n . append (pred_mean)
52 a l l _ v a r . append (p r e d _ v a r)
53 a l l _ t r u e _ l a b e l s . append (t e s t _ b a t c h _ y)
54 a l l _ p r e d _ l a b e l s . append (p r e d i c t e d)
55

56 a l l _ t o t a l . append (p r e d _ t o t a l _ u q)
57 a l l _ e p i s t e m i c . append (p r e d _ e p i)
58 a l l _ a l e o t o r i c . append (p r e d _ a l e o)
59

60 t o t a l += t e s t _ b a t c h _ y . s i z e (0)
61 c o r r e c t += (p r e d i c t e d == t e s t _ b a t c h _ y . numpy ()) . sum ()
62 p r i n t (" a c c u r a c y : %d %%" % (100 * c o r r e c t / t o t a l))
63

A.9. BNN 95

64 a l l_mean_mat = np . c o n c a t e n a t e (a l l_mean , a x i s =0)
65 a l l _ t r u e _ l a b e l s _ m a t = np . c o n c a t e n a t e (a l l _ t r u e _ l a b e l s , a x i s =0)
66 a l l _ p r e d _ l a b e l s _ m a t = np . c o n c a t e n a t e (a l l _ p r e d _ l a b e l s , a x i s =0)
67

68 a l l _ t o t a l _ m a t = np . c o n c a t e n a t e (a l l _ t o t a l , a x i s =0)
69 a l l _ e p i _ m a t = np . c o n c a t e n a t e (a l l _ e p i s t e m i c , a x i s =0)
70 a l l _ a l e o _ m a t = np . c o n c a t e n a t e (a l l _ a l e o t o r i c , a x i s =0)
71

72 re turn a l l_mean_mat , a l l _ t r u e _ l a b e l s _ m a t , a l l _ p r e d _ l a b e l s _ m a t ,
a l l _ t o t a l _ m a t , a l l _ e p i _ m a t , a l l _ a l e o _ m a t ,

73

74

Listing A.9: BNN code

Appendix B

Lithology columns for the tested wells

F-14, F-15, F-15S

96

97

(a) Random Forest Classifier

(b) Adaptive Boosting Classifier

Figure B.1: Lithology columns of tested well F15 and predicted outcomes

98 APPENDIX B. LITHOLOGY COLUMNS FOR THE TESTED WELLS F-14, F-15, F-15S

(a) Random Forest Classifier

(b) Adaptive Boosting Classifier

Figure B.2: Lithology columns of tested well F15S and predicted outcomes

99

(a) Random Forest Classifier

(b) Adaptive Boosting Classifier

Figure B.3: Lithology columns of tested well F14 and predicted outcomes

