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Abstract

In today’s dynamic energy landscape, renewable energy sources are steadily in-
creasing their share of electricity on the grid. The world population recognises the
benefits of going carbon neutral and is now willing to invest heavily in this cause.
The biggest drawback with renewables like wind and solar is their intermittent
nature, thus not being able to meet the demand timely. Retrofitting state-of-the-
art machinery is a viable solution for satisfying the increasing need for electricity.
Low-emission technology complementary to renewable energy production should
be invested in and researched. The goal of this thesis is dedicated to precisely this,
studying the potential of innovative solutions for future energy systems.

Research has been conducted at the Vrije Universiteit in Brussels on transforming
a micro gas turbine into a micro humidified air turbine. The results have shown
numerous benefits, including reduced levels of NOx and increased electrical effi-
ciency. However, there are still areas that need improvement, and in cooperation
with the University of Stavanger, a task has been set to develop data-driven models
adapted for condition monitoring. These models are built using sensor measure-
ments, which will be used to predict failures and contribute to reliable operation.

In this work, autoencoder models have successfully been trained and evaluated in
detail. The task of denoising sensor measurements has produced satisfying results
and has significantly enhanced the data quality. These results will be used as a
preprocessing step to improve the performance of the multi-layered perceptron
developed in association with this project. The second task was to develop an
autoencoder model that should be able to give early alerts based on normal- and
faulty operational data. A suitable baseline model has been identified for this
purpose. However, a residual calculation has not been performed due to the lack of
time. The development and analysis of such a model are suggested for future work.
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Chapter I

Introduction

1.1 Motivation
One of the primary outcomes of the 2021 United Nations Climate Change Con-
ference (COP26) held in Glasgow was to secure net zero emissions by 2050 and
keep a maximum of 1.5�C of warming within reach. In order to achieve this goal,
two of the target areas are encouraging investments in renewables and accelerating
the phase-out of coal [4]. Additionally, in light of the current European political
situation, i.e., Russia’s war in Ukraine, and natural gas from Russia making up 40%
of European Unions (EU) gas imports, the European Commission has proposed to
make Europe independent from Russian fossil fuels before 2030 [5]. Consequently,
this is the chance for Europe to accelerate the transition to renewable energy.

How energy is generated, distributed, and consumed is rapidly changing. Histor-
ically the power production systems in Europe have been built to accommodate
central power plants, nuclear plants and hydropower stations. However, the energy
landscape is under transition driven by digitalisation, decarbonisation and decent-
ralisation trends. Decentralised power generation is becoming an essential part of
the energy transition because of the increasing amount of intermittent renewable
energy on the grid, the expensive nature of energy storage, and the need for grid
resilience.

The drivers for decentralisation are not only to reduce pollutant emissions and
increase the share of renewables but also to improve energy efficiency, increase
power production capacity, and support the grid. Micro Gas Turbines (mGTs) could
be an interesting option in small-size energy generation as the most competitive
alternative to the Internal Combustion Engine (ICE). Benefits like significantly
lower CO2 and NOx emissions, reduced Operation and Maintenance (O&M) costs
and lower noise and vibration levels makes the mGT an attractive option [6, 7].
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mGTs can be used in many applications such as continuous power generation,
premium power, peak shaving, emergency standby, remote power, mechanical drive,
wastes and bio-fuels [8]. However, the most promising application lies in Com-
bined Heat and Power (CHP) production, with the capability of delivering a power
output ranging from 30 kWel to 200 kWel and 450 kWth. Additionally, mGTs offer
operation and fuel flexibility, low maintenance costs, and short ramp-up times [9].
In 2019, estimates suggest that CHP plants generated 11.7% (348TWh) of EU
electricity demand. Approximately 50% of this came from plants with less than
10 MWe capacity [10, 11].

Despite the benefits, the mGT has not been able to penetrate the CHP market as
the ICE is still preferred mainly due to its higher electrical efficiency and lower
investment costs [8]. The economic performance of the mGT stumbles when there
is no heat demand, and consequently, the installation needs to be shut down. There-
fore, for the mGT to be profitable, improved electric efficiency and flexibility are
needed. Research on humidification of mGTs has shown great potential to increase
electrical efficiency by decoupling the heat and electricity production [12, 13]. By
humidifying the cycle, the heat in the exhaust gases can be utilised to warm up
water to be re-injected into the cycle during periods with low heat demand [14].

Moreover, for the humidified mGT to become a viable alternative, operation and
maintenance need to have a reliable monitoring system with fast processing, real-
time surveillance and the possibility for ad hoc installations for existing systems.
A maintenance program should be made so that end-users can monitor and do
the essential measures. This thesis will use Artificial Neural Networks (ANN) to
develop a data-driven model for monitoring a mGT. The final model can be used for
noise reduction, feature detection and performance monitoring applications. This
work is based on experimental data obtained from a humidified mGT test rig in
Belgium at the Vrije Universiteit Brussel (VUB).

1.2 Objective
The main objective of this thesis is to investigate the potential benefits of run-
ning innovative distributed energy technologies. This will be accomplished by
studying the possibilities for operational flexibility of a micro Humidified Air Tur-
bine (mHAT) cycle, which has been identified to complement the future energy
production systems. This thesis is a part of an ongoing University of Stavanger
(UiS) funded research project for improving the performance of small-scale energy
conversion technologies to curb future emissions. A detailed description of the
objectives is as follows:

• To analyse sensor measurements from a humidified mGT test rig at VUB and
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identify influential parameters. This work has given the basis for modelling
and optimising a data-driven model.

• To use Python and Keras to train and validate a data-driven model using
autoencoders. The model is developed based on experimental gas turbine
data from a testing rig in Brussels and is beneficial for validating results
on an actual application. This will contribute to improving the reliability
of the technology in question. The model is expected to provide accurate
and reliable alerts in real-time applications. The aim is to use the model in
condition monitoring or predictive monitoring.

• To develop a denoising autoencoder that can be used as a preprocessing step
or a pre-trained layer for an ANN model. This thesis is based on and is
complementary to a project involving the same technology and methods. A
layered feed-forward neural network has been used to analyse the system,
but some results were unsatisfactory due to noisy data inputs. Thus, a part of
this thesis is dedicated to improving this data with an autoencoder model.

• To develop a baseline autoencoder model capable of detecting failure using
data from normal operation. Failure detection can be done by comparing the
residuals between the two operational modes and is the basis for a predictive
monitoring model.

• To provide a tested and validated model that can generalise well and poten-
tially be used to evaluate and improve system performance of other monitor-
ing applications.

1.3 Limitations
The key focus of the thesis is developing an autoencoder model, wherein most of
the limitations lie. The main goal has been to identify the model that can give an
acceptable output compared with the initial inputs. Due to the features’ different
nature and denoising requirements, no specific criteria have been set to define what
an "acceptable output" looks like.

The hyperparameter space of the networks has been explored and compared as best
possible. However, some hyperparameter combinations are still left to be evaluated
due to the time limit, leading to improved network performance.

Furthermore, a network suitable for failure prediction has been identified. It is
ready to be analysed but has not been tested against turbine failure data to measure
sensitivity due to the restricted time frame. These limitations are further discussed,
and suggestions for future work are described in chapter 6.
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1.4 Methodology
A literature study was conducted on turbomachinery and mHATs, followed by a
study on the fundamentals of ANNs and how to construct them. It was conducted
in parallel with material and coding exercises in Python and Keras. The work for
this thesis can be divided up as follows:

• Extensive literature has been reviewed on turbomachinery essentials, cent-
rifugal compressors and pumps and radial turbines better to understand the
components and structural influences on gas turbines. Additionally, a literary
review of the current distributed energy generation technologies and progress
within the innovative gas turbine field has been conducted to gain insight into
the advancements and potential of the humid air turbine cycle.

• Knowledge of machine learning techniques and programming has been de-
veloped and has laid the basis for the modelling process. Study topics in-
clude machine learning fundamentals, examples of building learning pro-
jects, training models, an introduction to ANN using Keras, training of deep
neural networks and representation learning using autoencoders. This part
has been essential to understanding the model training process and the influ-
ences of hyperparameters and tuning. Programming fundamentals are based
on exercises and examples from "Hands-On Machine Learning with Scikit-
Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems" [15, 16].

• The sensor measurements from the mHAT set up at VUB have laid the basis
for developing a monitoring program. The data has been preprocessed and
normalised, then divided into validation, training and test sets suitable for
modelling. A preliminary model was developed using all the input features
available and was used as the primary model to develop the base code struc-
ture. Several models with different input feature parameters were tested to
investigate their significant impact on the final denoising capability, as the
impact of parameters with no noise was unknown. When picking a denoising
model, the goal is not to find the model that yields the lowest error but the
best denoising capability; it has been chosen visually. The results of all the
training runs have been thoroughly documented.

• The results of denoised inputs have been assessed and ranked to find the final
model configuration. The choice has been based on the model with the best
ability to generally denoise all the input parameters. At the same time, the
best individual denoised inputs have also been identified, as some models
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would give satisfying results for a few inputs but far less inferior for the rest
of the results.

• Finally, the best model was optimised by manually tweaking a set of hyper-
parameters. This was done instead of using an automated grid search because
the lowest errors do not give this type of analysis the best results.

1.5 Thesis outline
Chapter 1 gives an overview of the thesis and relates the problem to the current
global energy situation, a proposal to curb greenhouse gas (GHG) emissions, an
outline of the objectives and limitations, and a description of the methodology.
Chapter 2 provides an overview of the mHAT technology and advances within this
field. It gives a detailed description of the test rig at VUB, sensors and data collec-
tion process and the motivation for data-driven methods. This chapter also presents
fundamental concepts within machine learning and neural network modelling—the
model’s structure and development are described in Chapter 3. Chapter 4 presents
the results of the data-driven models, together with a discussion og the different
models and hyperparameter choices and their impacts. Chapter 5 concludes the
work introduced in this thesis and the final chapter 6 gives suggestions for im-
provements and future work.
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Chapter II

Technology

This chapter gives the fundamental concepts of the mHAT cycle and the advance-
ments within this field. It describes the test rig set up at VUB and the importance of
monitoring this system. This chapter also introduces monitoring with data-driven
methods and basic machine learning concepts such as artificial neural networks and
autoencoders.

2.1 Micro humid air turbine cycle
In order to increase the economic performance of the gas turbine, compared to the
ICE, the heat-driven component and the electrical efficiency need to be improved
[8]. The conversion of the mGT into a mHAT still allows for heat production,
making the cycle the perfect candidate for flexible heat production from a mGT
[1, 17]. Water or steam injection allows for decoupling heat and electricity pro-
duction when heating is not required. When heat demand is high, the unit can run
in cogeneration mode following the traditional gas turbine configuration; when the
heat demand decreases, water injection enables re-usage of the heat in the exhaust
gases to increase the electrical efficiency of the engine [9].

A humidified gas turbine uses air-water mixtures as working fluid and promises
high electrical efficiencies, high specific power outputs, reduced specific invest-
ment costs, reduction of NOx in the combustor, reduced power output degradation
and improved part-load performance compared with simple cycles [18].

There are several options for humidifying a gas turbine cycle: steam injection,
water injection and evaporative cycles with humidification towers. The main idea
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is the same: injected water or steam increases the mass flow rate through the turbine
and thus increases the specific power output because much less work is required to
increase the pressure of a liquid than a gas. Additionally, the cycle efficiency is
raised when the gas turbine exhaust preheats water or generates steam for injection
or preheating the combustion air in a recuperator.

In 2005, Jonsson and Yan published "Humidified gas turbines—a review of pro-
posed and implemented cycles", a literature review of the most significant humid-
ified gas turbine research and development published at the time [18]. The paper
points out that the Humid Air Turbine (HAT) cycle offered the highest potential
efficiency increase compared to the classic Brayton cycle. The HAT cycle was first
patented by Rao in 1989 [19] and involves water injection in a humidification tower
with a recirculation water loop. The interest in this type of evaporative gas turbine
cycle increased in the 1980s, with research programs such as the HAT project in
the US, followed by the Evaporative Gas Turbine (EvGT) project in Sweden. The
Swedish research program was initiated to demonstrate the EvGT in a pilot plant,
investigate the humidification process and propose future plant designs. Many
configurations and fuels have been tested, especially tackling the flow mismatch
between the compressor and turbine. Various cycle layouts and modifications have
been researched and suggested, but there is still only one EvGT in operation today;
the pilot plant is in Lund, Sweden.

Research by De Paepe identified the mHAT cycle as the perfect candidate for waste
heat recovery through humidification with limited necessary cycle modifications
[20]. Montero Carrero et al. have analysed the economic advantages of con-
verting into a mHAT for domestic operations [21]. Simulations to investigate the
thermodynamic efficiency have been assessed by Parente et al. [22], alongside
Wang and Xiao, who studied the thermodynamic effects of humidification on mGT
components [23]. Experimental tests have been performed by coupling a mHAT
with a Water Atomizing inlet air Cooling (WAC) line. Nakano et al. could show a
3% efficiency increase through water injection experiments [24] while Dodo et al.
could exhibit a 32% electrical efficiency and lowered NOx levels. A recent study by
Wei and Zang demonstrated an increase in the power output when investigating the
off-design behaviour of a small-sized HAT [25]. Moreover, the first experiments at
VUB by De Paepe et al. could document an electrical efficiency increase of 1.2%
and 2.4% [26].

2.2 System description: mHAT setup
This thesis is based on a modified Turbec T100 mGT installed at VUB. In cogen-
eration mode, otherwise dry operation mode, the T100 produces a power output
of 100kWe and 166 kWth at a rotational speed of 70 000 rpm and total energy
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efficiency of 80%, with an electrical efficiency of 30%. It follows the recuperated
Brayton cycle as indicated by the black components on Figure 2.1. Additionally,
an innovative spray saturation tower has been developed and integrated to reduce
pressure and efficiency loss for the VUB testing rig [27].

Air is compressed in a radial compressor and humidified by spraying hot water in
the saturation tower. The water vapour content increases air enthalpy and air mass
flow as the air advances through the saturator. At the same time, heat is extracted
from the circulating water below boiling temperature. Afterwards, the saturated air
is preheated by the exhaust gases in the recuperator before entering the combustion
chamber, where the air is burned with natural gas increasing the maximum turbine
inlet temperature of 886�C. The hot gases are expanded over the turbine and deliver
mechanical power to drive the compressor and the high-speed generator for electric
power production. After passing through the recuperator, the exhaust gas heat is
used to heat the water in the economiser. The hot water is then routed towards the
saturation tower, which is sprayed over the air from the compressor. However, only
2% of the sprayed water evaporated in the saturator, and the rest will be pumped
back to the water heater.

Figure 2.1: Schematic of the modified mGT cycle from VUB testing rig [1]. When a
saturation tower is added between the compressor outlet and recuperator inlet, the water

saturates compressed air and the cycle runs in mHAT mode.
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The test rig is equipped with sensors to measure the effect of the water injection.
The following sensors have been installed at the mGT unit:

• Temperature sensors to monitor water and compressed air temperature

• Thermocouples to measure turbine outlet-, compressor inlet- and recuperator
outlet temperature

• A differential pressure sensor to measure pressure loss over the saturation
tower

• Two rotameters, one to measure the amount of injected feedwater rate and the
other measures the exact amount of injected water into the saturation tower.

• A water flow rate meter to measure the circulating water mass flow rate

• A flow meter that monitors the injected natural gas flow rate

• A vortex flow meter to measure compressor mass flow rate

• Rotational speed sensors and electrical power measurers have been installed
to identify the impact of humidification on the total cycle performance

The Turbec T100 has a control system composed of two primary operational modes,
which allows for an efficient nominal and part-load operation:

• Turbine Outlet Temperature (TOT) control - the TOT is kept at a constant of
645�C. The thermal input of the combust chamber can be altered by adjusting
the valve opening time of the fuel valves in the combustion chamber and thus
the injected rate of natural gas.

• Power output control - the engine delivers a constant power output by varying
the rotational speed of the shaft.

The TOT has been kept constant for the experimental test runs with a slight change
in the power output. This configuration has allowed for operation at a constant
rotational speed. Tests are typically performed by starting the engine using a
specific start-up procedure and include water injection before the engine starts,
which allows for improved flame stability. After reaching a steady state, the engine
typically runs for at least 30 minutes at a predefined power output or rotational
speed with constant and stable water injection before switching to a new setpoint.
All cycle parameters documented during these tests are taken with a sampling ratio
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of 10Hz. Detailed descriptions of the mGT testing rig and installed measurement
equipment have been thoroughly documented in [28, 29].

Nevertheless, some challenges must be addressed when converting to a mHAT
cycle. The introduction of the saturation tower and additional piping to the system
changes the operating conditions for the mGT. The additional components lead to a
pressure loss, and a pressure mismatch arises between the compressor outlet and the
turbine inlet. Compressor surge is a result of pressure loss over the humidification
unit, piping network and reduced surge margin [28]. Moreover, adding water to the
compressed air increases the mass flow entering the turbine, and since the turbine
limits the total mass flow rate, the compressor mass flow rate is reduced. This
results in pushing the compressor operating point closer to the surge margin. The
injection rate must be restricted to keep the pressure ratio below the surge line,
which is the limit of stable operation for the compressor. Compressor blades tend
to stall in the surge region, which reduces the flow between the blades and can lead
to flow separation. Some working fluid may rotate opposite the rotor, resulting in
vibrations that may damage the compressor [30]. The cycle is equipped with a
series of valves to limit these activities as much as possible including:

• A bleed valve to increase the compressor surge margin

• A blow-off valve protects the compressor from a shutdown surge.

• Bypass valves enable dry mode operation by bypassing the saturation tower.

Moreover, the humidification of the working fluid negatively impacts combustion
efficiency and flame stability. The increase in water content alters the specific
capacity of the working fluid, causing a reduction in the combustion chamber
temperature and reaction rate, which leads to lower efficiencies and rise in CO
emissions. The combustion chamber maintains the flame during wet operation
while keeping a high combustion efficiency (>99%). The problems are mainly
observed during the start-up phase, load changes or oversaturation. For example,
during start-up, due to the sudden injection of water, the composition of the com-
bustor inlet air changes rapidly. The existing control system cannot anticipate
this change, resulting in a flameout. When a flameout occurs, the pressure ratio
and rotational speed decrease, leading to a compressor surge. The bleed valves
must stay open during wet start-up to keep the compressor operating point away
from surging. Opening the blow-off valve during engine shutdown also keeps the
compressor away from compressor surge.

The underlying factors leading to compressor surge are not fully understood, mak-
ing it hard to predict. The existing Turbec T100 mGT controller is not able to detect
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surges. When a drop in rotational speed and produced power was detected in past
experiments, it would always be alerted as a flameout, as there is no actual flame
detector installed in the combustor. Compressor surge should be avoided at all costs
since, ultimately, it can damage and lead to destroying the compressor. Therefore,
flame-out needs to be detected quickly and ensure that the blow-off valve can be
opened before compressor surge. Today there are no available control options for
flame-out detection or surge prevention. Previously, alternative measurements like
TOT, pressure and rotational speed drop have been used to predict flame-out but
have proven unsuccessful as surge occurs before any drop has been observed.

In a cooperation project with UiS, it is expected that by using data-driven meth-
ods, potential flame-outs can be predicted with better accuracy and fast enough to
protect the compressor and avoid surges and unpredictable engine shutdown.

2.3 Monitoring with data-driven methods
Condition Monitoring (CM), otherwise predictive maintenance, has changed over
the past decades. Traditionally CM has been based around vibration analysis, but
modern-day sensors and software can provide reliable alerts in real-time whenever
a change is detected. This makes CM one of the most innovative solutions for
anticipating failures in machinery and is therefore widely used in the industrial
sector. CM systems are crucial for understanding the behaviour of machinery,
especially rotating machinery [31].

The advantages of CM implementation are many; early detection of damage allows
for better maintenance planning and preventive actions to prevent further failure
and unplanned downtime. The CM system can improve operation safety, increase
plant availability through efficient operation and consistent quality, and reduce
costs. Early detection, while the damage is still slight, can provide meaningful
insight into machine design improvement and development.

CM can be performed using different methods such as physics-, model-, or data-
driven methods [32]. Regardless of the approach, a monitoring system should
be able to distinguish normal variation apart from variation caused by failure,
degradation or sensor faults. The decision between a mathematical and a data-
driven modelling approach depends on what kind of information is available for
model development. A popular model-based approach is the Kalman filters. Whilst
this technique for fault detection has advantages such as on-board and real-time
implementation, their health monitoring reliability decreases with increasing sys-
tem nonlinearity, complexity and model uncertainties [33]. Developing an accurate
mathematical model that considers modelling errors and uncertainties can be com-
plicated because sources of uncertainty are not easily quantifiable.
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On the other hand, data-driven methods work on historical data captured within
a time-varying interval, an excess resource not used to its full potential. Data-
driven methods are essential in modern monitoring systems, especially for large-
scale industry applications, since they do not require many computations. Hence,
they are compatible with the real-time constraints of dynamic complex systems
[34].

Data-driven approaches can be distinguished between supervised and unsupervised
learning. In supervised learning, it is necessary to define the classes and label
the training data before the training procedure. Meanwhile, unsupervised learning
consists of a feature extraction step that maps the high-dimensional vectors to
feature space to find specific projecting vectors with low-dimension. Supervised
learning methods use historical data to construct a learning model for fault detection
and diagnosis of new data. The most popular methods are Bayesian Networks,
and ANNs [35]. ANN is the most common data-driven method for gas turbine
modelling, monitoring and diagnosis applications. It is commonly utilized in fault
detection and isolation and for developing condition-based diagnosis models [36].

In the last decade, more studies can be found using ANNs for CM and diagnostics
for rotating machinery, which has repeatedly proven to outpace existing methods.
These results come from neural networks’ abilities to find non-linear relationships
between input and output data. Asgari et al. developed system identification models
for gas turbines using ANN techniques, and the final model was able to predict per-
formance with high accuracy [37]. Barad et al. trained a health-monitoring model
capable of giving robust and early warnings using mechanical parameters. The
ANN techniques used were feed-forward neural networks, and back propagation
[38]. Sampath and Singh presented a nested neural network function that could
be used as a pre-processor or filter to reduce the number of network fault classes.
The model gave results with improved accuracy, reliability and consistency [39].
A study by Yoon et al. evaluated the implanted deterioration data from a mGT.
The data was used to train an ANN to evaluate component failure and network
predictability. [40]. Needless to say, the development of data-driven methods can
lead to more accurate and computationally effective engine assessment systems.

2.4 A brief introduction to machine learning
Artificial Intelligence (AI) is a broad term for machines emulating human intelli-
gence. The goal of AI is simple; to create autonomous machines able to replicate
human behaviour. Machine Learning (ML), a subset of AI, implements algorithms
to replicate human behaviour and learns by finding underlying structures within
data provided by humans. Learning methods, also known as training methods,
can be categorized as supervised, unsupervised or reinforcement. These ML tech-
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niques have been applied successfully for numerous applications, including pattern
recognition, computer vision, spacecraft engineering, finance, entertainment, com-
putational biology, biomedical and medical applications [41]. ML has inspired the
development of a network structure based on the human brain known as artificial
neural networks. These networks attempt to replicate human behaviour by identi-
fying the interrelation between input- and output variables. When information is
passed through the network, the model finds methods to learn useful patterns within
the data efficiently. ANNs, in turn, can be divided into shallow and deep networks.
Shallow networks are accustomed to linear behaviour, while deep networks are
multi-layered and are suitable for more complex and non-linear problems.

Figure 2.2: The relation between artificial intelligence, machine learning and deep
learning.

2.4.1 Artificial neural networks
The first ANN architecture was introduced in "A Logical Calculus of Ideas Im-
manent in Nervous Activity" by Warren McCulloch and Walter Pitts [42]. The
interest in neural networks has fluctuated since this paper was published in 1943.
However, in the past two decades, the interest in this field has adequately matured
to become one of the most popular research areas. The rise in popularity is due
to breakthroughs like Deep Learning (DL), Support Vector Machines (SVM) and
access to more data and better computational power. These steps are now paving the
way for advancement in fields such as visual object recognition, speech processing,
natural language understanding, neuroscience and medicine.

The ANN architecture is made to mimic the biological behaviour of the brain, with
interconnected processing units called artificial neurons. These artificial neurons
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have five components: an input, a weight, a linear transfer function, an activation
function and a bias, as illustrated on Figure 2.3. Multiple neurons stacked together
in a row constitute a layer, and multiple layers connected make a multi-layer neural
network, or Multi Layered Perceptron (MLP). The ANN can be described as a
statistical data modelling tool capable of structuring the non-linear functional rela-
tionship between a set of input and output parameters during training.

Figure 2.3: An image from Towards Data Science [2] showing a single brain biological
and single artificial neuron. A neuron is a connecting point for input signals which are

transformed and transmitted as outputs

When data is fed into a neural network, each neuron in one layer passes information
via a transfer function to the connected neurons in the proceeding layer. The
feedforward neural network is a network where information is passed from input to
output via neurons. This network can provide a predicted output based on a set of
inputs. The output function can be described as follows:

y = fNN(x) (2.1)

The fNN function is a nested function due to the network layers. Equation 2.2 is an
example of a 3-layer neural network that returns a scalar.

y = fNN(x) = f (3)(f (2)(f (1)(x))) (2.2)

f(2) and f(3) are vectors functions that can be defined as follows
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y = f (l)(z) = �(l)(W(l)z + v(l)) (2.3)

Where l is the layer index equal to the number of hidden layers in the architecture.
The activation function is denoted by � and is set according to the problem that will
be solved. In a neural network, the activation function defines how the weighted
sum of the inputs is transformed into a non-linear output. Popular activation func-
tion are logistic functions like Sigmoid (Equation 2.4), Tangens hyperbolicus (Tanh,
Equation 2.5) and Rectified Linear Unit (ReLU, Equation 2.6) The interconnections
between neurons are known as weights and are represented in the W matrix, to-
gether with the bias vector v, they constitute the adjustable hyperparameters of the
network which are changed according to a cost function. These weights determine
the importance of a given variable and are tuned during the training process to store
knowledge of the trained data. Lastly, z represents the inputs from the previous
layer.

�(z) =
1

1 + e�z
(2.4)

tanh(x) =
ex � e�x

ex + e�x
(2.5)

Relu(z) = max(0, z) (2.6)

The cost function is used to evaluate the accuracy of the trained model and will
indicate how the model is performing. Going backwards through the network
nodes, the model adjusts its weights and biases to reach convergence, or the local
minimum. This process is called backpropagation, and with each training example,
the parameters adjust to converge to a minimum gradually. The cost function is
directly related to the activation function of the output layer, and for most problems,
the goal is to minimise the cost function.

However, the performance of the ANNs is highly dependent on the underlying data.
Consistency, completeness, and data accuracy play a significant part in training a
DL model. Noisy and unclean data can make it harder for the system to detect
underlying patterns, giving inaccurate or faulty predictions. A significant part
of ML involves preparing data for analysis or cleaning. This process includes
removing outliers, duplicate or irrelevant data, filtering missing values, and remov-
ing unwanted features. Methods for learning features from low-quality data have
been presented by Vincent et al. [43], a denoising autoencoder model that learns
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features and representations for noisy data. In these architectures, the model trains
parameters by reconstructing the original input from the corrupted output.

2.4.2 Autoencoders
An autoencoder (AE) is an unsupervised type of ANN trained to copy its input from
its output. By constraining the network, it is possible to learn the most useful rep-
resentations from the input data efficiently. AEs are used to find structures within
data by compressing representations of input data to a latent space. The latent space
has a lower dimensionality than the input space, and the model must learn how to
reconstruct the data from the reduced space. The typical AE architecture consists
of three parts:

• encoder compresses the high-dimensional data into the low-dimensional lat-
ent space.

• bottleneck, the latent space that contains the compressed representation of
the input data.

• decoder, decompresses the knowledge representation and reconstruct the
data back to its encoded form.

A simple autoencoder architecture illustrated in Figure 2.4 and has the recognisable
hourglass shape with a bottleneck layer. The input layer consists of six input nodes,
each representing a data feature for this layout. The inputs are compressed to a
lower dimension mapping layer. The outputs of the mapping layer are then further
compressed into the bottleneck layer, which is the most crucial hyperparameter of
the network. The bottleneck restricts the information flow from the encoder to the
decoder, thus only allowing the most vital information to pass. The bottleneck layer
is followed by the decoder that includes a (de)mapping layer and the output layer,
which comprises the same number of feature nodes as in the input. The goal for the
output x̂ to be as similar to the input x as possible.
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Figure 2.4: Stacked autoencoder architecture which is made of an encoder-, bottleneck-
and decoder part. This network consists of one input and output layer and three hidden

layers.

The metric for the loss between input and output is called reconstruction loss and
is a part of the cost function that penalises the model when the inputs differ from
the reconstructed outputs. The cost function is selected depending on the type of
problem that is being solved. For a regression problem, a popular cost function is
given by the Mean Squared Error (MSE) described as follows:

1

M

MX

i=1

(xi � x̂))2 (2.7)

where M is the number of samples, x is the inputs and x̂ is the predicted output.

Autoencoders were initially used for dimensionality reduction and feature learning
but have evolved over the years and are now widely used for learning generative
data models. However, an interesting practical application for autoencoders is
denoising. A denoising autoencoder (DAE) should be able to find patterns in
corrupted data and predict a "clean" version. For a DAE, the model that gives
the lowest reconstruction loss is usually not good at generalising to new instances.
Therefore, it is essential to balance the model as follows:
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1. Sensitive enough to the inputs to build an accurate reconstruction

2. Insensitive enough to the inputs that the model does not memorise or overfit
the training data. If the model is trained to reconstruct data perfectly, it will
learn any useful data representations.

This sensitivity measure is adjusted by changing the number of neurons in the
bottleneck and mapping layers.

Another practical application for AEs is anomaly detection or fault detection. The
objective is to train a model based only on normal operational data and then be able
to identify the samples not conforming to the normal profile as anomalies. There
have been many successful studies on applying autoencoders for system monitoring
of rotating machinery [44, 45]. The utilisation of AE for fault detection assumes
that a trained autoencoder would learn the latent subspace of normal samples. Once
trained, it would result in a low reconstruction loss for normal samples and a high
reconstruction loss for anomalies.
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Chapter III

Development of autoencoder model

This chapter describes the structure of a elementary machine learning project. The
modelling choices are presented and explained in three main parts: preprocessing,
training and testing. Different modelling and hyperparameter choices typical for
this data are accounted for and discussed.

This code aims to create an algorithm capable of denoising measurement data using
precisely the measurement data. The quality of specific features received from
VUB is not optimal for modelling, and it could be advantageous to enhance them.
The task of a neural network is to find non-linear patterns within data; when a
model is based on poor data, the system’s performance, accuracy and reliability will
be affected negatively. The data used for network modelling comes from normal
operating conditions, which are generally easily obtainable and accessible. This
data can make a baseline model for detecting deviating operations. This method
is cheap and effective in studying turbine conditions, potentially giving accurate
failure indications within a reasonable time margin.

AEs is an unsupervised ML technique, meaning the training is done without la-
belling. The task itself can be categorised as a dimensionality reduction and regres-
sion task as it tries to reconstruct the inputs to the output by transforming inputs
into a low dimension space. The goal is to predict "clean" and noise-free values of
the original data. These specifications are essential to define as it determines which
activation function and performance measure will be used for modelling.

The training and evaluation of the model have been done in Python with Keras as
the framework library. Keras is a Tensorflow API and is easy to use and learn
as it offers consistent and straightforward APIs. The code has been written in
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Jupyter Notebook, which offers to combine software code, computational output,
explanatory text and multimedia resources in a single document. The main code
files can be found in Appendix C.

The data used to train the model is received from the lab in VUB. The set-up for data
collection has been described in section 2.1. The parameters used in the modelling
process are as follows:

Parameter Definition Unit
T1 Compressor Inlet Temperature �C
�P Pressure difference over fine filter mbar
Pamb Ambient pressure bar
VwSat Injection flow rate of water in saturation tower m3/h
TwSatin Water temperature entering saturation tower �C
TwIn Water temperature entering system �C
Pgen Generated power kW
N Engine rotational speed rpm
TOT Turbine Outlet Temperature �C
COT Compressor Outlet Temperature �C
COP Compressor Outlet Pressure bar
RITa Recuperated Air Inlet Temperature �C
CCIT Combustion Chamber Inlet Temperature �C
EIT1 Economiser Inlet Temperature 1 �C
EIT2 Economiser Inlet Temperature 2 �C

The process of model development and the structure of the code is divided into the
three following parts:

• Preprocessing, preparing the data for training which includes splitting and
normalising the data

• Training, using training and validation to make sure that the model is not
overfitting the training set and tune the network to find the optimum model
performance

• Testing, test the generalisation ability of the network on an unseen testing
data set

3.1 Preprocessing
Data cleaning and preparation is an essential preprocessing step in modelling, as
data is crucial for determining the quality of model predictions and the ability to
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generalise. Utilising time to explore preprocessing techniques can increase the
model accuracy and save computational costs. The data has already been cleaned
for the most significant outliers beforehand. Additionally, the input parameters
containing excessive outliers have been left out entirely of the modelling process.

3.1.1 Train Test Split
The only way to know how well a model will generalise to new instances is to
present it to new instances. Therefore, an essential preprocessing step is to split the
data set into two parts: a training set and a testing set. The testing set is only used
at the end of the training to assess the performance of a fully-trained model. This
set estimates the loss rate, also named generalisation loss, after the final model has
been chosen. After assessing the final model on the test set, the model should no
longer be tuned. This type of evaluation gives an estimate of how well the model is
going to perform on unseen data.

It can be convenient for data sets with many instances to split data randomly, usually
a division of 80% training data and 20% testing data. In this study, there has not
been generated a significant amount of data; thus, to avoid over-representation of
sampling groups and sampling bias, it is convenient to divide the data set using
stratified sampling. This method involves dividing the data into representative
subgroups (strata) and then splitting these subgroups into a training and testing
set. Previously different features have been analysed using stratified sampling, and
the parameter for T1 was considered the most appropriate for this task. In addition,
T1 pose as a critical parameter in an air aspirated engine such as the mGT, as the
ambient air temperature and, in turn, the air density has a significant impact on the
engine performance. The feature was divided into four strata and split into 80%
training and 20% testing. Table 3.1 gives an overview of the overall average value
of each stratum when comparing random and stratified sampling. It can be seen
that the % error for stratified sampling is almost identical to the complete training
set, while purely random sampling gives skewed values.

Table 3.1: The table compares the category proportions for feature T1 generated using
stratified sampling and random sampling

Strata Overall Stratified Random Strat%error Rand. %error
1 0.272759 0.272780 0.272416 0.007774 -0.125854
2 0.201493 0.201487 0.202508 -0.002916 0.503582
3 0.273911 0.273874 0.272853 -0.013561 -0.386148
4 0.251837 0.251859 0.252223 0.008663 0.153393
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After applying stratified sampling to split the training and data set, it is important
to arrange the indexes chronologically for visualisation purposes.

Finally, the testing set needs to be saved as a separate file and is used after the
training is finished. All data exploration must be carried out on the training set sep-
arately to avoid data leakage, which is when information from outside the training
data set is used to create the model.

3.1.2 Feature scaling
The last preprocessing step is feature scaling. This scaling ensures that features
with higher magnitudes will not govern or control the trained model. In general,
algorithms do not perform well when attributes are scaled differently, and the
sensors that are measuring parameters are, by nature, scaled differently. Min-
max scaling and standardisation are the two most popular scaling methods. In this
thesis, min-max scaling was used to scale the entries between 0 and 1, as this is the
preferred method when there are no significant outliers in the data.

xnormalised =
x�min(x)

max(x)�min(x)
(3.1)

3.2 Training
This is considered the central part of the development task, also known as the
modelling part. This part uses the training and validation set to build a model
and perform error analysis. Different hyperparameters and optimisation methods
are described to understand specific choices and trade-offs.

3.2.1 Input and output parameters
The task of an AE is to copy its outputs from its inputs. Thus, all parameters
are set as inputs, and the outputs will be the denoised version of the inputs. The
visualisation of the data parameters to time can be seen in Figure 3.1. Individual
plots of the inputs can be further studied in Appendix A.
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Figure 3.1: All input parameters have been plotted with respect to the same time index.
This visualisation contains all data measurements with the exception of removed outliers.

3.2.2 Selection of training and validation data
Before training the model, the training set has been split once more, introducing
a third validation set. While a testing set is used to estimate the generalisation
capability for new instances, a validation set provides an unbiased evaluation of the
model to find the optimal hyperparameters. The model is trained on the training
set and simultaneously evaluated by the validation set after each training epoch.
Validation loss is the metric to assess the models’ performance on the validation
set.
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Overfitting is when a model fits precisely to the training data, which means that the
model is not likely to perform well on new data samples. Thus, a validation set
also ensures that the model will overfit to data by terminating the training process
once it detects that the network is sufficiently trained. Overfitting can be verified
when testing the final model: if the training loss is low and generalisation is high,
the model is overfitted to the training data.

Figure 3.2: An image from Medium [3] showing different ways to fit a model. The goal of
the training is to develop a balanced model that is neither underfitting nor overfitting the

data

Balancing the train, validation, and test split is essential. If the training set is too
small, there will be high variance in the training set, and the network will not have
enough data to learn. On the contrary, if the validation set is too small, evaluation
metrics will have a significant variance, and the model will not be tuned adequately.
A common ratio has not been established to cover all problems and networks.
However, a rule of thumb for smaller data sets is splitting into a 70:30 or 80:20
ratio.

The traning-validation set split was split using randomized sampling. The data set
was split into an 80% training part and 20% validation part. The total number of
samples is 68 621 and are split as shown in Table 3.2.

Table 3.2: The distribution of samples in training-, validation- and test set

Training Validation Testing
43 896 10 979 13 718
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3.2.3 Define Keras model
The model is fully connected (dense) and based on Keras’ sequential API. A dense
network is a model where layers stack on top of one another, and each neuron is
connected to every unit in the next layer. An AE architecture has two independent
parameters: the number of neurons in the bottleneck and mapping layers. The
goal is to compress the data as much as possible, simultaneously preserving the
data reconstruction capability. The number of inputs is equal to the number of
parameters that are being modified. The dimensions of the layers are described in
Equation 3.2.

<I > <M > <B (3.2)

Where <I , <M and <B are the dimensions of the input-, mapping- and bottleneck
layer, respectively.

Several combinations of layer- and neuron numbers have been used to evaluate
the model’s performance, including models with no mapping layer. There are 15
input parameters; thus, the mapping layer neurons have been tested for 6, 8 and 10.
Bottleneck neurons between 1 to 5 have been tested. One neuron in the bottleneck
is when the information is the most compressed, and the reconstruction loss is
expected to be higher than for a bottleneck of 5. For this setup, the reconstruction
loss is based on validation loss values. Another popular choice of cost function
besides MSE is the Mean Absolute Error (MAE) as shown in Equation 3.3. Both
metrics have been used for the evaluation of the model.

1

M

MX

i=1

|xi � x̂| (3.3)

The goal is for the network to minimise the cost function, which is done through the
optimisation algorithm Gradient Descent (GD). This algorithm iteratively adjusts
the parameters until it has reached a minimum. It measures the local gradient
of the cost function with regard to ✓, which is the vector containing all model
parameters and is initialised with random numbers at the start of the training. As the
network starts to learn from instances, the parameters are adjusted, and ✓ follows
the direction of descending gradient by taking the partial derivative of each model
parameter ✓j
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@

@✓j
MSE(✓) =

2

N

NX

i=1

(✓Txi � x̂)xj (3.4)

An important parameter of GD is the learning rate, a hyperparameter that determ-
ines the step of how quickly the model adapts to the problem. The learning rate
needs to be set correctly, as a high learning rate can cause the model to converge
too quickly to a sub-optimal solution (local minimum). In contrast, with a low
learning rate, many iterations are needed for the network to converge, spending
unnecessary computational power and time. The best practice when finding the
correct learning rate is to start with a low learning rate (10-5) and augment with a
constant value, for example, the log scale, right until the reconstruction loss starts
to increase [46].

For this model, a variation of GD has been implemented, namely Mini-batch Gradi-
ent Descent. This algorithm splits the training data set into smaller parts, called
mini-batches, each used to calculate the model loss and update the weights. This
implementation allows for a more robust convergence, avoiding the local minima
[16]. Due to these reasons, mini-batch GD is the most popular variant of GD in DL.
The choice of batch size influences both network performance and training time.
Though data scientists are still discussing the different effects, using the largest
batch size possible for the GPU RAM has been recommended to allow the most
effective utilisation of GPU acceleration. However, the practical implementation of
large batch sizes tends to lead to modelling instabilities, especially at the beginning
of training.

On the contrary, it has been argued that small batch sizes can be more advantageous,
yielding better models in less training time. Nevertheless, as previously stated, it is
more sensible to use a smaller batch size for this network due to the small number
of available data samples. Around one thousand samples were contained in each
batch, and a mini-batch size of 42 represents how many times the model parameters
were updated in one epoch. Other mini-batch sizes have also been explored to
observe the effect of CPU and GPU processing. This change dramatically affected
the training duration, both in the number of epochs until convergence and the time
spent calculating each epoch.

The number of training epochs is closely related to GD, which quantifies how long
the model will train. The epoch number is a critical parameter, as too many epochs
can lead to overfitting and poor generalisation. By contrast, too few epochs can lead
to underfitting when the model cannot accurately capture the relationship between
input and output variables. A simple and practical approach is to implement early
stopping, which halts the training when the performance of the validation set no
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longer improves. Early stopping is implemented by setting an arbitrarily large
number of training epochs and stopping the training after a certain number of
epochs with no progress in the validated loss. This parameter is named patience
and has been set to 50 for most of the developing process.

ReLU is the preferred activation function when designing deeper neural networks
as it is less complex and thus less computationally expensive than the implement-
ation of tanh or sigmoid. However, as the AE works with a relatively shallow
network, the convergence time did not play a significant role. Initial test simulations
were made with ReLU and tanh as activation functions, and the two functions did
not give notably different reconstruction losses. In addition, the tanh activation
function was identified to perform the best in the previous project with ANNs
using the same data. Thus, this thesis has mainly focused on using tanh for the
simulations.

3.2.4 Fine-tuning of Hyperparameters
Considering vast network flexibility due to the high number of hyperparameters,
finding the combination that provides the best model can be challenging. Keras
offers automated grid searches like Grid Search CV and Randomised search CV,
which automates the search process of hyperparameter combinations. These func-
tions will give the model parameters with the lowest reconstruction loss. However,
the lowest reconstruction loss for a DAE model will not give the optimal model. A
low cost function is equivalent to a near-perfect reconstruction, meaning virtually
no data compression has been performed, and the model simply maps input to
output. The model’s objective is to find a sensitivity balance of building a precise
reconstruction while not simply copying the inputs. Trial and error is the most
efficient way to find the best model in regard to the objective of this work. Several
different model configurations have been explored. In the end 20 different bottle-
neck and mapping neuron combinations have been mapped out based on the MAE
and MSE values. This mapping gave a better understanding of the model behaviour
and how to identify the best networks.

3.3 Testing
The final modelling process is the testing, which consists of the evaluation and
prediction. The independent testing set is treated as new unseen data and is used to
give the final generalisation loss. The model can be said to generalise well if the
predicted values, the generalisation loss, do not deviate from the values obtained
from the training process, the reconstruction loss. Detailed tables containing the
values for the cost functions for the 20 different simulated model configurations
can be found in Appendix B.
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The model should be able to make predictions on new instances. However, as no
new data is available for this project yet, the same testing data set has been used to
make predictions and visualise the models’ denoising capability. The prediction has
been visualised by plotting the time series data and the corresponding predictions in
the same plot to compare the differences. The best model has been chosen through
a visualised ranking based on the general denoising ability for all features. Once the
best model was found, early stopping, mini-batch size, learning rate and activation
function parameters were explored to find the final optimised model.
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Chapter IV

Results

This chapter presents the final predictions from the model and explains the selection
process. The best network is presented first, then the best individual features,
fine-tuning of the model and the effect of changing the number of input features.
Interpretations are based of comparison of the results.

4.1 Reconstruction loss
The reconstruction loss measures the difference between input and reconstructed
output. However, it is also a value that indicates how much the inputs have been
compressed. This is well illustrated when the reconstruction loss is plotted together
with the different neuron configurations, as seen in Figure 4.1 and Figure 4.2. Both
charts show the reconstruction loss, based on the validation loss and calculated
using MSE and MAE, with respect to the number of neurons in the bottleneck- and
mapping layer. One detail that must be noted is the scaling of the charts; the loss
values are minimal and differ by only thousandths, which further emphasises how
sensitive the models are.

Using MAE to calculate the reconstruction loss makes the values more uniformly
distributed. The squared sum when using MSE has made it easier to distinguish the
loss pillars. Studying the figures, it is hard to initially draw a limit between adequate
feature extraction or a direct duplication of input. Nevertheless, the reconstruction
loss is high for both charts when there are no mapping layers and data are only
being compressed in the bottleneck layer. This loss value shows that the network
is successfully compressing the samples into a <B-dimensional space but precedes
to fail in reconstructing the data. The reconstruction loss significantly decreases
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when adding intermediate mapping layers before and after the bottleneck. This
drop shows that the information flow drastically increases when mapping neurons
are added to the network, and including them is essential to get enough information
for detailed reconstructions. From Figure 4.2, it can be seen that when using ten
neurons for mapping, the reconstruction is very low, especially with a bottleneck
of 3, 4 and 5. It can be assumed that since the loss values are so low and do not
differ significantly, these networks do not compress the input data for the network
to learn any valuable patterns.

When considering the three-layered models, i.e. zero mapping neurons, the most
significant value drop can be observed from 1 to 2 and from 2 to 3 bottleneck
neurons with 6 or 8 mapping neurons. These models can be identified as sensitive
enough to find underlying patterns while not copying the inputs. In theory, the
best model should still have a minimum reconstruction loss if possible. It can
be observed that by increasing bottleneck neurons from 3 until 5, the loss does
not differ a lot. Thus, the two models picked out to be explored further are the
bottleneck of 3 and mapping neurons of 6 (3-6) and 8 (3-8) 1.

Figure 4.1: Mean Absolute Error (MAE) as reconstruction loss function for different
model node configurations

1Moving forward, two numbers will note the networks: the first represents the number of bottleneck
neurons followed by the number of mapping layer neurons
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Figure 4.2: Mean Squared Error (MSE) as reconstruction loss function for different model
node configurations

The preceding step is to evaluate the network using the hold-out testing set. The
complete table with an overview of all losses and values can be found in Ap-
pendix B. As previously mentioned, the reconstruction loss vales alone are in-
adequate to measure the models’ denoising capability. Therefore, the data before
and after denoising have been plotted against each other to compare the denoising
performance. It was not sufficient to only compare the two best models that have
been picked out. Thus a comparison of all 20 models has been made for all 15
parameters. Only the most relevant results have been presented for the sake of the
appendix section not being too lengthy.

A comparison between the model with the highest and lowest reconstruction loss
can be seen on Figure 4.3. The blue plotting represents the data points before
any modelling, and the orange parts are the predictions after being fed into the
algorithm. Figure 4.3(a) is a network where all inputs get compressed into a 1-
dimensional space and then reconstructed again. The result shows that barely any
information has gotten through the bottleneck giving the model a poor reconstruc-
tion capability. Contrarily, Figure 4.3(b) is the visualisation of a network where the
inputs are first compressed into a 10-dimensional space and then to 5-dimensions.
This figure demonstrates how a low reconstruction loss yields a model where barely
any information has been compressed and all data has been reconstructed near



34 4. Results

perfectly.

(a) Network 1-0 modelling Pgen (b) Network 5-10 modelling Pgen

Figure 4.3: Example of two networks with vast different denosing capabilities. The
reconstruction loss is well reflected through the visualisation.

Following the model plotting, a ranking was carried out to find the best network.
The ranking was made visually by comparing the dynamic behaviour of every plot
from the same feature, corresponding to 20 images per data feature. The denoised
output has been assessed by

• Capability of following the original input pattern and not creating additional
deviations. This point includes how well the network can follow measured
curve changes and the noise amplitudes.

• How the networks compare against each other. This comparison has been
made by identifying the best-denoised plot of each feature, which has been
the benchmark and assesses the best reconstruction capabilities.

• Studying certain focus regions within the different features. For example,
to observe the network’s ability to capture sudden declines or rises or how
well it manages to replicate regions with little noise. A broad range of data
represents the inputs; several input features do not contain any noise, while
others suffer a significant amount of noise.

It was observed that individually or combined features would affect the network
denoising ability and the results for the final model. However, since the goal of
the network is to improve noise in sensor measurements, the emphasis is on noisy
features such as �P, Pgen, TOT, CCIT and T1.

In order to find the network that performed the best, the denoised images were
compared with each other, and the network images that were not up to par did not
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receive points. A ranking selection can be found in Table 4.1, where only the best
networks are presented. This table gives an overview of the level of performance on
the various features for different networks. The ranking shows that left-out models
with 1 or 2 neurons in the bottleneck layer did not perform the best, particularly
the networks that did not have intermediate mapping layers. Despite the presented
ranking table, networks 1-6, 1-8, 2-6, 2-8 and 2-10 also gave many reasonable
denoised images. The networks with the best denoising ability based on features
have 3, 4 or 5 neurons in the bottleneck layer. It can be seen that networks with
mapping layers perform well, but networks 4-0 and 5-0 also created promising
models. It should also be questioned whether this augmented number of neurons in
the bottleneck is high enough for the network to start copying the inputs.

Based on Figure 4.1, Figure 4.2 and Table 4.1 an upper limit for reconstruction loss
can be set for when the model starts finding good patterns within the data. Consid-
ering the network with the highest loss, 4-0, the limit can be set to approximately
0,0042 for both MSE and MAE as cost functions.

Table 4.1: The ranking table in order to identify the best models. The indication of a cross
(x) is equivalent to a point, thus represents an acceptable result.

Network 3-10 3-6 3-8 4-0 4-10 4-6 4-8 5-0 5-6 5-8

CCIT x x x x x x x x x
COP x x x x x x x x
COT x x x x x x x x x x
�P x x x x
EIT1 x x x x x x x x x x
EIT2 x x x x x x x x x
N x x x x x x x x x x
Pamb x x x
Pgen x x x x x
RITa x x x x x x
T1 x x x x x x x x x x
TOT x x x x x x x x x
TwIn x x x x x x x x x x
TwSatIn x x x x x x x x x x
VwSat x x x x x x x x x x

Ultimately, only the network with the best scoring and thus the highest number of
acceptable images was deemed to have the best general denoising ability. The table
shows that 3-6 is the model that gives the best predictions when considering all
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the input features. It performs less adequately for �P, a feature that typically gave
good results when modelled with a higher number of mapping neurons. The 3-6
network was further explored with fine-tuning of hyperparameters. In addition, the
classical elimination technique has been used to identify the best individual fea-
tures, independent of other networks and parameters. These features are presented
in the following sections.

4.2 Best network
An overview of the best model and its parameter configurations are presented in
Table 4.2. This model has been used for hyperparameter fine-tuning. Keras offers
a practical tool that automates the task of exploring the hyperparameter combina-
tions, known as grid search. However, this approach will give the parameters that
makes the model with the lowest reconstruction loss, which is not the goal of this
task. Thus, the hyperparameter space needs to be explored manually and the results
compared visually.

Table 4.2: The configuration of for the best network before hyperparameter fine-tuning.

Input nodes 15
Output nodes 15
Number of hidden layers 3
Hidden layer neurons 6
Bottlenecklayer neurons 3
Learning rate 0.1
Activation function tanh
Optimizer Mini-batch GD
Loss Algorithm MSE, MAE
Batch size 42
Total training epochs 2 273

To get a better understanding of the denoising potential of the network the feature
plots have been grouped and is presented in the following manner:

• High noise: �P, Pgen, TOT, T1, CCIT

• Low noise: N, COT, COP, EIT1, EIT2, RITa

• No noise: Pamb, VwSat, TwSatIn, TwIn

The plots from the first group, "high noise", are the most interesting subjects to
study, as these showcases the AEs real ability to improve noisy sensor data. These
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are the inputs with the highest amount of noise and contains the data that has a
significant effect for baseline network modelling. They are presented in Figure 4.4
(�P ), Figure 4.5 (Pgen), Figure 4.6 (TOT), Figure 4.7 (T1) and Figure 4.8 (CCIT).

The second group represents the features that contains measurement oscillations,
but to a smaller degree. The refinement of these data could potentially have a
impact on the final accuracy of a baseline ANN model. These images are presented
in Figure 4.9 (N), Figure 4.10 (COT), Figure 4.11 (COP), Figure 4.12 (EIT1),
Figure 4.13 (EIT2) and Figure 4.14 (RITa).

The final grouping is the plots with virtually no noise. These parameters could,
in practice, be left out of the modelling process as no models could produce any
satisfactory replications. On the flip side, leaving out parameters means that the
network has less data for the basis of the algorithm. However, a complete set of
models, reconstruction losses and a ranking have also been completed leaving out
these input features. The results are further discussed later in section 4.5.

4.2.1 Parameters with high levels of noise
In the previous chapter, it was pointed out that �P (Figure 4.4) was the parameter
that did not perform as well as the other networks. This rating was primarily due to
3-6 networks’ inability to measure well around time index 1 000 - 4 000, and other
models giving superior results for this feature. On the contrary, Pgen (Figure 4.5) is
a feature with similar noise levels, but the model has been able to dampen nearly
all the noise. �P and Pgen have similar noise patterns to TOT (Figure 4.6), which
is the feature with the best denoising outcome among the three noisiest inputs.
Although these features have a relatively similar noise pattern, the predictions made
by networks 3-6 have demonstrated that the amount of removed noise differs a lot
for each feature. For T1 (Figure 4.7), hardly any noise has been removed, which
cannot be observed using any other model either, due to lower levels of oscillations
in measurements if compared with TOT. Finally, CCIT (Figure 4.8) is the parameter
with the highest level of dynamics, which has been hard for the model to replicate
perfectly but has managed to filter out the oscillations.
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Figure 4.4: Best network prediction for �P

Figure 4.5: Best network prediction for Pgen
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Figure 4.6: Best network prediction for TOT

Figure 4.7: Best network prediction for T1
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Figure 4.8: Best network prediction for CCIT

4.2.2 Parameters with low levels noise
This subsection presents the group of features with minor noise. For these fea-
tures, it is no longer a big emphasis on the denoising capability but rather on how
the predictions can replicate the measurement pattern. The pattern has been well
captured for N, COT and COP seen on Figure 4.9, Figure 4.10 and Figure 4.11,
respectively. They all behave fairly alike in both noise amplitude and measure-
ment curve behaviour. Moreover, a less accurate resemblance between true and
predicted values are seen for EIT1 on Figure 4.12, EIT2 on Figure 4.13 and RITa
on Figure 4.14. Although EIT1 and EIT2 are both measuring the temperature in
the economiser, the only difference being the sensors’ placement; they do produce
different results, with EIT2 being the feature that resembles the true values the
most. Studying RITa, the predictions produce more noise than the true values, and
the performance is poorer after the predictions. The issue with this parameter is
that a high number of neurons in the mapping- and bottleneck layer is needed to
make a good reconstruction, which might stipulate that the underlying data of this
feature is not closely related to the others.
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Figure 4.9: Best network prediction for N

Figure 4.10: Best network prediction for COT
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Figure 4.11: Best network prediction for COP

Figure 4.12: Best network prediction for EIT1
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Figure 4.13: Best network prediction for EIT2

Figure 4.14: Best network prediction for RITa
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4.2.3 Parameters with zero noise levels

Figure 4.15: Best network prediction for Pamb

This final subsection presents plots that do not contain any noise, like Pamb, or
the noise level is very low like VwSat, and in reality, do to be filtered. They are
still included for modelling, as networks can learn good features from quality data.
Despite most networks’ ability to duplicate these features, this network yields good
results for Pamb depicted on Figure 4.15. These predictions are neither perfect
nor far from the best result presented in the next chapter. Furthermore, VwSat on
Figure 4.16 does not show better predictions than true values, but the results are not
counted as unsatisfactory. Conversely, TwSatIn and TwIn, presented on Figure 4.17
and Figure 4.18 respectively, can be said to be the most inferior results from the
3-6 model. The predictions amplify the small oscillations, which might be due
to the model not having enough data to recreate oscillations of this magnitude,
highlighting the need for diverse data to make a model that can deliver all features.
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Figure 4.16: Best network prediction for VwSat

Figure 4.17: Best network prediction for TwSatIn
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Figure 4.18: Best network prediction for TwIn

4.3 Best parameters
This section presents the individual best parameters and a side-by-side comparison
with the same parameters from the best network. These plots have been set as the
benchmark when comparing the networks against each other. It can be seen that
over half of the plots are modelled with ten neurons in the mapping layer but with
the number of bottleneck neurons varying from three to five. Nevertheless, it cannot
be concluded that models with ten mapping neurons are superior as they perform
poorer for the features that have not been presented. Nevertheless, it can already
be presumed that with the number of measured features and the amount of data
available, it is impossible to capture all the variations in the features adequately.
This assumption is based on the fact that different network configurations have
produced the best parameters. However, the reconstruction loss for a good model
should be 0,0042 still holds.

Since the plots have been picked out from a visual examination and not, for ex-
ample, by a loss function, biases are sure to arise. In addition, for a few of the
features, there was not a remarkable difference between some of the best paramet-
ers, especially for features like T1, TwSatIn, TwIn, VwSat, CCIT, EIT1, EIT2 and TOT,
which are also typical inputs features that are less noisy.
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(a) Network 2-10 prediction for Pgen

(b) Network 3-6 prediction for Pgen

Figure 4.19: Network 2-10 has produced the best results for Pgen.

From Pgen on Figure 4.19(a), it can be seen that model 2-10 has decreased the
sensors’ noisy measurements enormously while also following the pattern of the
actual values. It is sensitive enough to be affected by significant disturbances.
Additionally, it has managed to capture the two peaks around time index 5000,
compared to model 3-6 on Figure 4.19(b). Nonetheless, both models have managed
to reduce a substantial amount of noise. Finally, it can be questioned whether the
inputs have been excessively denoised. Due to the lack of time, verifying the result
functionalities in an ANN has not been possible. In practice, with clean data and
thus better quality data, the performance of the ANN should be improved.
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Network 3-10 has produced the model with plots of T1 on Figure 4.20(a) , COT
on Figure 4.20(c) and RITa on Figure 4.20(e). As previously mentioned, these
features, especially T1, did not differ much from plots produced by other networks.
This can be seen in comparing images from models 3-6 and 3-10 because there
is not a peculiarly high amount of noise among these features, making them less
interesting to improve further.

(a) Network 3-10 prediction for T1 (b) Network 3-6 prediction for T1

(c) Network 3-10 prediction for COT (d) Network 3-6 prediction for COT

(e) Network 3-10 prediction for RITa (f) Network 3-6 prediction for RITa

Figure 4.20: Network 3-10 has produced the best results for T1, COT and RITa.

CCIT on Figure 4.21(a) and COP on Figure 4.21(c) have been modelled by network
4-10. Both these features have the same type of noise pattern and amplitude. This
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level of detail can be difficult to capture for a network with a number of bottleneck
neurons of less than four. Especially CCIT can be considered an excellent result,
cutting out unnecessary noise and following the true predictions. COP adds a bit of
noise but can generally be considered a satisfactory model.

(a) Network 4-10 prediction for CCIT (b) Network 3-6 prediction for CCIT

(c) Network 4-10 prediction for COP (d) Network 3-6 prediction for COP

Figure 4.21: Network 4-10 has produced the best results for CCIT and COP

The 5-10 model is the network with the lowest reconstruction loss presented in this
work. The reconstructions can be seen for N, EIT1, EIT2 and TSatIn corresponding
to Figure 4.22(a), Figure 4.22(c), Figure 4.22(e) and Figure 4.22(g). Compared
with network 3-6, it is not a big difference when comparing the two networks of
N, EIT1 or EIT2. Moreover, there is a big discrepancy for TwSatIn which can be
assumed is due to the network not capable of finding any reasonable underlying
patterns to connect to the rest of the features. Earlier, these features have been
categorised with "low noise", and it can be assumed that the 5-10 network is merely
copying its inputs from outputs.
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(a) Network 5-10 prediction for N (b) Network 3-6 prediction for N

(c) Network 5-10 prediction for EIT1 (d) Network 3-6 prediction for EIT1

(e) Network 5-6 prediction for EIT2 (f) Network 3-6 prediction for EIT2

(g) Network 5-10 prediction for TwSatIn (h) Network 3-6 prediction for TwSatIn

Figure 4.22: Network 5-10 has produced the best results for N, EIT1, EIT2 and TwSatIn.
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Pamb is depicted on Figure 4.23(a) and is modelled by network 1-6. From the previ-
ous plots, it could be reasonable to assume that a network with many nodes should
easily replicate a simple figure like this, but this result demonstrates the opposite.
The use of complex models, with a large number of nodes in the bottleneck- and
mapping layers, have a high level of non-linearity for data. When these models are
applied to simple and linear behaviour, the prediction performance deteriorates due
to overfitting. Thus, this simple replication ability is because these networks are
taught to be insensitive to disturbances in the data.

(a) Network 1-6 prediction for Pamb (b) Network 3-6 prediction for Pamb

Figure 4.23: Network 1-6 has produced the best results for Pamb.

The model constructs oscillations when the original data becomes stable before
time stamp 2 000. These oscillations might appear due to the algorithm learning
from other features that the data regularly becomes noisy after a "change of state".

The best plot of �P is a result of network 2-6 as seen on Figure 4.24(a). This plot
was chosen as it was the most consistent throughout the measured time period and
did not contain any vast inconsistencies in the size of the "orange thread". It is
essential for a feature like this not to use a too high number of bottleneck neurons.
Additional plots have been presented in Figure 4.24 to show the variations when
adding a bottleneck neuron or removing two neurons in the mapping layer. When
going from two to three neurons in the bottleneck layer, much more information
is featured in Figure 4.24(c), which once more highlights how important this para-
meter is. When two mapping neurons are removed to the best parameter model in
Figure 4.24(b), the model has become slightly more insensitive to the noise. The
best network model 3-6 is included on section 4.5, demonstrating how poorly it
compares with the other features.
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(a) Network 2-8 prediction for �P (b) Network 2-6 prediction for �P

(c) Network 3-8 prediction for �P (d) Network 3-6 prediction for �P

Figure 4.24: Network 2-8 has produced the best results for �P. Supplementary plots are
presented with different neurons in the bottleneck- and mapping giving an insight of the

tuning process.

(a) Network 4-6 prediction for TOT (b) Network 3-6 prediction for TOT

Figure 4.25: Network 4-6 has produced the best results for TOT

The best feature for TOT is challenging to select, as the model returned relatively
similar results for a range of networks. However, all networks were in a bottleneck
range of 2, 3 or 4 and mapping neurons equal to 6 or 8. Figure 4.25 compares
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the 4-6 network (Figure 4.25(a)) with the 3-6 network (Figure 4.25(b)), and for the
naked eye, they can almost be deemed to be the same plot.

VwSat and TwIn on Figure 4.26 are the two final parameters and have been plotted
by network 5-8, which is one of the models with the lowest reconstruction loss.
Even though the reconstruction loss values cannot directly give the network the best
denoising capability, the loss can indicate where features will perform efficiently.
In this case, the features have low noise and variation levels, and it can be assumed
that a high number of neurons in the bottleneck and mapping layers is the only
network close to reconstructing this type of feature. It can be seen that the models
create a lot of excessive, added and unnecessary noise. For TwIn the true values do
not contain any oscillations, but the model still reproduces a plot containing noise.
This added noise behaviour is similar to the reconstruction of Pamb, where the model
also included noise that should not have been there. VwSat is the parameter with
many smooth areas but has not been translated well when fed into the algorithm,
and the explanation could be the same as for TwIn.

(a) Network 5-8 prediction for VwSat (b) Network 3-6 prediction for VwSat

(c) Network 5-8 prediction for TwIn (d) Network 3-6 prediction for TwIn

Figure 4.26: Network 5-8 has produced the best results for VwSat and TwIn

Based on these plots of best parameters, nearly all best model parameters (3-6)
do not deviate substantially from the benchmark plots. It has been demonstrated
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how networks with a high number of neurons, in both mapping- and bottleneck
layers, can successfully reproduce plots with great detail. The input contains a
certain amount of noise. These networks can be restricted not to copying too much
by changing the number of neurons in the mapping layer. Nevertheless, these
networks are susceptible to any amplified noise produced and can give varying
end results. Thus, choosing a less sensitive model that is not easily influenced by
more significant disturbances can be advantageous. This balance is crucial when
choosing a model for anomaly detection.

4.4 Fine-tuned model
This section is going to address the fine-tuning process of the model. After finding
the network that can generalise the best for all features, it is fine-tuned by finding
the hyperparameter combinations that give the best final results, namely the plots
for this work. The fine-tuning has been performed manually, as test runs with fine-
tuning grid search algorithms would run for an excessive amount of time and give
the model the lowest reconstruction loss. A manual approach involves individually
tuning each parameter in the code and visually comparing the results. The analysed
hyperparameters are patience for early stopping, mini-batch size, learning rate and
activation function.

Figure 4.27: Pgen depicted to compare the visual effect of changing the patience from 50 to
200

The early stopping parameter patience was set to a default of 50 during the model-
ling part, and the network has been evaluated using patience of 100 and 200. When
prolonging the patience takes longer before the model lands on a final loss value.
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The patience decides how many stable epochs the results need to be before giving
a value and ending the training. From a numerical perspective, the reconstruction
loss would improve by less than a thousandth when increasing the patience from
50 to 200. Figure 4.27 presents the model when patience is set to 200, specified by
the green parts. It precisely overlaps the model with patience of 50, and it is safe
to assume that extending the early stopping does not bring any benefits. In fact, it
doubles the training epochs and thus the total simulation duration.

Mini-batch size has been altered to test whether simulation time or results could
be improved. The mini-batch number was set to 1024, and the CPU was enabled,
but no good results came from this run. The calculation time per step increased
substantially with this setup, and the simulation ran beyond a reasonable time frame
to continue. The second run was performed with a mini-batch 64 on GPU. The
reconstruction loss was identical to when running on 42, except for an increase
from 2273 to 3458 epochs before finishing. The last mini-batch size tested was
32, which shortened the simulation time. From the visual aspect, there were no
deviations worth documenting.

(a) Learning rate 0,05 (b) Learning rate 0,1

(c) Learning rate 0,1 (d) Learning rate 1

Figure 4.28: Pgen depicted to compare the visual effect of changing the learning rate
between 0,1 and 1.

A wide range of learning rates has been analysed by exploring values around the
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starting point of 0,1. The reconstruction loss would be very stable when increasing
the learning rate from 0,1 to 5. However, the solution diverges when increasing the
learning rate to 5 and upwards. When opting for a learning rate of 0,005, the values
improved insignificantly and tripled the simulation duration. The finding from thus
tuning was that the computational costs could be saved by raising the learning rate
to 1.

The activation function has been changed from tanh to ReLU, as both are ap-
propriate options for a regression problem. ReLU is considered a more complex
function due to the vanishing gradient problem. However, vanishing gradients is
only a problem when dealing with deeper neural networks; thus, for this problem,
there should not be any significant setbacks by choosing one over the other. When
switching to ReLU, the plots are drastically changed, which can be seen from a
selection of comparisons when using tanh and ReLU as the activation function for
network 3-6. From Figure 4.29, it is evident that by using ReLU, the network
is behaving entirely different, and a separate tuning of this network should be
completed. Due to the lack of time, the ReLU network has not been explored
any further, but there is a potential to find an equivalent, if not better, network with
this function if tuned correctly.

(a) COP (b) VwSat

(c) COT (d) deltaP

Figure 4.29: Depictions of the difference when changing between tanh and ReLU.
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4.5 Changed number of inputs
Previously it has been discussed whether including all data inputs to make a de-
noising model is beneficial or not, particularly the features that do not need to be
improved. A full modelling process including reconstruction loss calculations and
a ranking has been completed with leaving out Pamb, TwSatIn, TwIn and VwSat. This
leaves a total of 11 features left to be modelled. The comparison for the 3-6 model
for all features can be seen from Figure 4.30 to Figure 4.40.

Some slight improvement can be seen for Pgen on Figure 4.38, against apparent
performance decline for �P (Figure 4.34). There are minor details that can be
pointed out. However, ultimately the network with 11 inputs instead of 15 performs
at the same level, each with its minor setbacks. These results demonstrate that
leaving out data does not contribute to improving the quality as the network with
11 inputs seems to perform better, especially for COP, COT, EIT1, EIT2 and RITa.
Including these parameters also has a deeper impact than possible to point out only
by studying the outputs numerically or visually.s

(a) 11 inputs (b) 15 inputs

Figure 4.30: CCIT when using different number of input features for modelling
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(a) 11 inputs (b) 15 inputs

Figure 4.31: COP when using different number of input features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.32: COT when using different number of features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.33: deltaP when using different number of input features for modelling
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(a) 11 inputs (b) 15 inputs

Figure 4.34: EIT1 when using different number of input features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.35: EIT2 when using different number of input features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.36: N when using different number of input features for modelling
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(a) 11 inputs (b) 15 inputs

Figure 4.37: Pgen when using different number of input features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.38: RITa when using different number of input features for modelling

(a) 11 inputs (b) 15 inputs

Figure 4.39: T1 when using different number of input features for modelling
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(a) 11 inputs (b) 15 inputs

Figure 4.40: TOT when using different number of input features for modelling



62 4. Results



63

Chapter V

Conclusion

The main objective of this thesis has been to contribute to the research on the
benefits of running a mHAT as a complementary technology for future energy
production systems.

Machine learning techniques have been used to analyse the primary data obtained
from sensor measurements of a mHAT rig at the VUB. A data-driven model has
been successfully developed for predictive maintenance application, thus improv-
ing the reliability of promising low-emission machinery like the humidified mGT.
Two of the primary utilisation areas for this autoencoder have been focused around:

• improving the measurements from the experimental test by filtering noisy
inputs, which can be used as a preprocessing step for an ANN.

• creating a predictive monitoring model capable of detecting turbine failure
by finding underlying variations in the residual levels.

The network with three neurons in the bottleneck layer and six neurons in each
mapping layer has been identified, validated, and tested based on a trial and error
method. This network can produce good denoising results across all provided
parameter features. However, even with a network that yields satisfying results,
it could not predict the best results for any single parameter due to the different
identities of the features. Features such as �P, Pgen, TOT and CCIT contains much
noise and have been massively improved, others parameters like Vwsat, TwsatIn, TwIn
and Pamb did not need to be denoised from the beginning. The best reconstruction
of individual parameters has been identified, which indicates that more than one
network should be chosen to find the best single feature.

Accordingly, tailored networks for each parameter are an excellent solution when
the goal is to find the prediction with the lowest amount of noise. On the other
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hand, for the case of creating a monitoring model, only one AE network should be
selected as a basis for calculating residuals, which potentially is the best network
that has been identified. This network efficiently balances how much information
is reproduced through the appropriate number of neurons in the bottleneck and
mapping layers. However, due to time limitations, the predictive model has not
been completely developed; hence, the current study focused on the use of AE
for preprocessing and denoising application, which was a demanding research task
involving detailed analysis of different network setups and tuning work.

In conclusion, the developed models have successfully improved the sensor meas-
urements. These results have proven the functionality of integrating machine learn-
ing models for enhancing data that can be used for predictive maintenance. The
outcomes from this work can be utilised to enhance condition monitoring of the
mHAT, improving the system reliability and promoting its further utilisation in
future energy systems.
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Chapter VI

Future work

While the overall results from this work are satisfactory, some tasks should still be
followed up to make the best use of the data. The main reason is the lack of time
combined with the possibilities to explore different machine learning techniques.
As this is a relatively new field, more effective libraries, methods and algorithms are
frequently presented, and there are still debates about best practices. One example
is the size of the mini-batch, as discussed prior. In addition to that, data science
competence to better compare results would be beneficial for future studies.

Due to the delicate work of finding the best hyperparameters for the denoising task,
the time to develop a baseline model using AEs fell short. The setup for making
the model has already been established. Therefore, it is only needed to test the
sensitivity of the different networks against failure data, which would correspond
to measurements when the gas turbine is experiencing a surge. When comparing
regular to faulty operation, a residual can be calculated, and a certain threshold,
or average network residual, can be established for early detection of compressor
surge. Further exploring this method makes it possible to find the correlations
between the features and the potential to leave out features, thus saving compu-
tational power or adding new sensor measurements that can strengthen the early
detection model.

A minor task would be to explore further the denoising model’s hyperparameter
space and, in particular, the activation function ReLU. The same hyperparameters
as the baseline ANN model created earlier at UiS have been set for the DAE
model. While some hyperparameter assumptions have been correct for this net-
work, others needed additional tuning. Moreover, the activation function was the
last parameter to be fine-tuned; thus, time fell short when ReLU results behaved
entirely differently from the tested tanh. An entire reconstruction error analysis
should be performed together with a visual comparison to find the best networks
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and parameters for ReLU.

The last suggestion for improvement is the development of an algorithm in order
to compare the visual results better. The method that has been used for this work is
sufficient. However, the possibility for faults and bias is higher for visual compar-
ison. When developing an algorithm or function, it should distinguish between the
different types of noise models and set a threshold for deviation from the actual
data, which could, for example, be based on the reconstruction error. Such a
function would contribute to validating the quality and reliability of the chosen
final model.



REFERENCES 67

References

[1] De Paepe, W., Montero Carrero, M., Bram, S., and Contino, F., 2015,
“T100 Micro Gas Turbine Converted to Full Humid Air Operation:
A Thermodynamic Performance Analysis,” American Society of
Mechanical Engineers Digital Collection, doi:10.1115/GT2015-43267,
https://manufacturingscience.asmedigitalcollection.asme.
org/GT/proceedings/GT2015/56673/V003T06A015/236735

[2] Pramoditha, R., 2021, “The Concept of Artificial Neurons (Perceptrons) in
Neural Networks,” https://towardsdatascience.com/the-concept-of-artificial-
neurons-perceptrons-in-neural-networks-fab22249cbfc.

[3] Chavhan, A., 2019, “How to determine Overfitting and
Underfitting?” https://medium.com/@ankitchavhan212/
how-to-determine-overfitting-and-underfitting-eab0c52099b6

[4] “COP26 Goals,” https://ukcop26.org/cop26-goals/

[5] “REPowerEU: affordable, secure and sustainable energy
for Europe,” https://ec.europa.eu/info/strategy/
priorities-2019-2024/european-green-deal/
repowereu-affordable-secure-and-sustainable-energy-europe_
en

[6] Parente, J., Traverso, A., and Massardo, A. F., 2009, “Micro Humid Air
Cycle: Part A — Thermodynamic and Technical Aspects,” American
Society of Mechanical Engineers Digital Collection, pp. 221–229, doi:
10.1115/GT2003-38326, https://thermalscienceapplication.
asmedigitalcollection.asme.org/GT/proceedings/GT2003/
3686X/221/298394

https://manufacturingscience.asmedigitalcollection.asme.org/GT/proceedings/GT2015/56673/V003T06A015/236735
https://manufacturingscience.asmedigitalcollection.asme.org/GT/proceedings/GT2015/56673/V003T06A015/236735
https://medium.com/@ankitchavhan212/how-to-determine-overfitting-and-underfitting-eab0c52099b6
https://medium.com/@ankitchavhan212/how-to-determine-overfitting-and-underfitting-eab0c52099b6
https://ukcop26.org/cop26-goals/
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en
https://thermalscienceapplication.asmedigitalcollection.asme.org/GT/proceedings/GT2003/3686X/221/298394
https://thermalscienceapplication.asmedigitalcollection.asme.org/GT/proceedings/GT2003/3686X/221/298394
https://thermalscienceapplication.asmedigitalcollection.asme.org/GT/proceedings/GT2003/3686X/221/298394


68 REFERENCES

[7] Dinçer, I., Rosen, M. A., and Ahmadi, P., 2017, Optimization of Energy
Systems.

[8] Pilavachi, P. A., 2002, “Mini- and micro-gas turbines for combined heat and
power,” Applied Thermal Engineering, 22(18), pp. 2003–2014.

[9] Montero Carrero, M., Rodríguez Sánchez, I., De Paepe, W., Parente, A.,
and Contino, F., 2019, “Is There a Future for Small-Scale Cogeneration in
Europe? Economic and Policy Analysis of the Internal Combustion Engine,
Micro Gas Turbine and Micro Humid Air Turbine Cycles,” Energies, 12(3),
p. 413, Number: 3 Publisher: Multidisciplinary Digital Publishing Institute.

[10] Commission, E. and Energy, D.-G. f., 2021, EU energy in figures : statistical
pocketbook 2021, Publications Office.

[11] Altmann, M., Brenninkmeijer, A., Lanoix, J.-C., Ellison, D., Crisan, A.,
Hugyecz, A., Koreneff, G., and Hänninen, S., 2009, “Decentralized Energy
Systems, European Parliament’s Committee on Industry, Research and En-
ergy,” https://www.europarl.europa.eu/document/activities/
cont/201106/20110629ATT22897/20110629ATT22897EN.pdf

[12] Lee, J. J., Jeon, M. S., and Kim, T. S., 2010, “The influence of water and
steam injection on the performance of a recuperated cycle microturbine for
combined heat and power application,” Applied Energy, 87(4), pp. 1307–
1316.

[13] Nikpey, H., Mansouri Majoumerd, M., Assadi, M., and Breuhaus,
P., 2014, “Thermodynamic Analysis of Innovative Micro Gas Turbine
Cycles,” American Society of Mechanical Engineers Digital Collection,
doi:10.1115/GT2014-26917, https://asmedigitalcollection.asme.
org/GT/proceedings/GT2014/45653/V03AT07A029/241950

[14] De Paepe, W., Carrerro, M. M., Bram, S., Parente, A., and Contino, F., 2017,
“Advanced Humidified Gas Turbine Cycle Concepts Applied to Micro Gas
Turbine Applications for Optimal Waste Heat Recovery,” Energy Procedia,
105, pp. 1712–1718.

[15] Geron, A., 2022, “Machine Learning Notebooks,” original-date: 2019-01-
08T03:49:07Z, https://github.com/ageron/handson-ml2

[16] Geron, A., 2019, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.,
O’Reilly Media, Inc, Canada.

https://ebookcentral-1proquest-1com-1008395ji0232.emedia1.bsb-muenchen.de/lib/bsb/reader.action?docID=4856145
https://ebookcentral-1proquest-1com-1008395ji0232.emedia1.bsb-muenchen.de/lib/bsb/reader.action?docID=4856145
http://dx.doi.org/10.1016/S1359-4311(02)00132-1
http://dx.doi.org/10.3390/en12030413
http://dx.doi.org/doi/10.2833/511498
http://dx.doi.org/doi/10.2833/511498
https://www.europarl.europa.eu/document/activities/cont/201106/20110629ATT22897/20110629ATT22897EN.pdf
https://www.europarl.europa.eu/document/activities/cont/201106/20110629ATT22897/20110629ATT22897EN.pdf
http://dx.doi.org/10.1016/j.apenergy.2009.07.012
https://asmedigitalcollection.asme.org/GT/proceedings/GT2014/45653/V03AT07A029/241950
https://asmedigitalcollection.asme.org/GT/proceedings/GT2014/45653/V03AT07A029/241950
http://dx.doi.org/10.1016/j.egypro.2017.03.557
https://github.com/ageron/handson-ml2


REFERENCES 69

[17] Montero Carrero, M., De Paepe, W., Bram, S., Musin, F., Parente, A., and
Contino, F., 2016, “Humidified micro gas turbines for domestic users: An
economic and primary energy savings analysis,” Energy, 117, pp. 429–438.

[18] Jonsson, M. and Yan, J., 2005, “Humidified gas turbines—a review of
proposed and implemented cycles,” Energy, 30(7), pp. 1013–1078.

[19] Rao, A. D., 1989, “Process for producing power,” https://patents.
google.com/patent/US4829763A/en

[20] De Paepe, W., Paepe, W. D., Delattin, F., Bram, S., and Ruyck, J. D., 2013,
“Water injection in a micro gas turbine – Assessment of the performance using
a black box method,” Applied Energy, 112, pp. 1291–1302.

[21] Montero Carrero, M., De Paepe, W., Parente, A., and Contino, F., 2016, “T100
mGT converted into mHAT for domestic applications: Economic analysis
based on hourly demand,” Applied Energy, 164, pp. 1019–1027.

[22] Parente, J., Traverso, A., and Massardo, A. F., 2009, “Micro Humid Air Cycle:
Part B — Thermoeconomic Analysis,” American Society of Mechanical
Engineers Digital Collection, pp. 231–239, doi:10.1115/GT2003-38328,
https://turbomachinery.asmedigitalcollection.asme.org/GT/
proceedings/GT2003/3686X/231/298404

[23] Zhang, S. and Xiao, Y., 2006, “Steady-State Off-Design Thermodynamic
Performance Analysis of a Humid Air Turbine Based on a Micro Turbine,”
doi:10.1115/GT2006-90335.

[24] Nakano, S., Kishibe, T., Araki, H., Yagi, M., Tsubouchi, K., Ichinose, M.,
Hayasaka, Y., Sasaki, M., Inoue, T., Yamaguchi, K., and Shiraiwa, H., 2007,
“Development of a 150kW Microturbine System Which Applies the Humid
Air Turbine Cycle,” doi:10.1115/GT2007-28192.

[25] Wei, C. and Zang, S., 2013, “Experimental investigation on the off-design
performance of a small-sized humid air turbine cycle,” Applied Thermal
Engineering, 51(1), pp. 166–176.

[26] De Paepe, W., Carrero, M. M., Bram, S., Parente, A., and Contino, F., 2014,
“Experimental Characterization of a T100 Micro Gas Turbine Converted to
Full Humid Air Operation,” Energy Procedia, 61, pp. 2083–2088.

[27] De Paepe, W., Contino, F., Delattin, F., Bram, S., and De Ruyck, J.,
2014, “New concept of spray saturation tower for micro Humid Air Turbine
applications,” Applied Energy, 130, pp. 723–737.

http://dx.doi.org/10.1016/j.energy.2016.04.024
http://dx.doi.org/10.1016/j.energy.2004.08.005
https://patents.google.com/patent/US4829763A/en
https://patents.google.com/patent/US4829763A/en
https://www.academia.edu/17256419/Water_injection_in_a_micro_gas_turbine_Assessment_of_the_performance_using_a_black_box_method
http://dx.doi.org/10.1016/j.apenergy.2015.03.032
https://turbomachinery.asmedigitalcollection.asme.org/GT/proceedings/GT2003/3686X/231/298404
https://turbomachinery.asmedigitalcollection.asme.org/GT/proceedings/GT2003/3686X/231/298404
http://dx.doi.org/10.1016/j.applthermaleng.2012.08.061
http://dx.doi.org/10.1016/j.applthermaleng.2012.08.061
http://dx.doi.org/10.1016/j.egypro.2014.12.081
http://dx.doi.org/10.1016/j.apenergy.2014.03.055


70 REFERENCES

[28] De Paepe, W., Montero Carrero, M., Bram, S., and Contino, F., 2014,
“T100 Micro Gas Turbine Converted to Full Humid Air Operation: Test Rig
Evaluation,” American Society of Mechanical Engineers Digital Collection,
doi:10.1115/GT2014-26123, https://asmedigitalcollection.asme.
org/GT/proceedings/GT2014/45653/V03AT07A020/241948

[29] Montero Carrero, M., De Paepe, W., Magnusson, J., Parente, A., Bram,
S., and Contino, F., “Experimental characterisation of a micro Humid Air
Turbine: assessment of the thermodynamic performance,” Applied Thermal
Engineering, 118, pp. 796–806.

[30] Bathie, W. W., 1996, Fundamentals of gas turbines, 2nd ed., Wiley, New
York.

[31] Jauregui Correa, J. C. A. and Lozano Guzman, A. A., 2020, “Chapter
Eight - Condition monitoring,” Mechanical Vibrations and Condition
Monitoring, J. C. A. Jauregui Correa and A. A. Lozano Guzman,
eds., Academic Press, pp. 147–168, doi:10.1016/B978-0-12-819796-7.
00008-1, https://www.sciencedirect.com/science/article/pii/
B9780128197967000081

[32] Malik, H., Fatema, N., and Iqbal, A., 2021, “Chapter 1 - Advances
in Machine Learning and Data Analytics,” Intelligent Data-Analytics
for Condition Monitoring, H. Malik, N. Fatema, and A. Iqbal, eds.,
Academic Press, pp. 3–29, doi:10.1016/B978-0-323-85510-5.00001-6,
https://www.sciencedirect.com/science/article/pii/
B9780323855105000016

[33] Sina Tayarani-Bathaie, S., Sadough Vanini, Z. N., and Khorasani, K., 2014,
“Dynamic neural network-based fault diagnosis of gas turbine engines,”
Neurocomputing, 125, pp. 153–165.

[34] Brighenti, G. D., Orts-Gonzalez, P. L., Sanchez-de Leon, L., and Zachos,
P. K., 2017, “Design Point Performance and Optimization of Humid Air
Turbine Power Plants,” Applied Sciences, 7(4), p. 413, Number: 4 Publisher:
Multidisciplinary Digital Publishing Institute.

[35] Tidriri, K., Chatti, N., Verron, S., and Tiplica, T., 2016, “Bridging data-
driven and model-based approaches for process fault diagnosis and health
monitoring: A review of researches and future challenges,” Annual Reviews
in Control, 42, pp. 63–81.

[36] Tahan, M., Tsoutsanis, E., Muhammad, M., and Abdul Karim, Z. A.,
2017, “Performance-based health monitoring, diagnostics and prognostics for

https://asmedigitalcollection.asme.org/GT/proceedings/GT2014/45653/V03AT07A020/241948
https://asmedigitalcollection.asme.org/GT/proceedings/GT2014/45653/V03AT07A020/241948
http://dx.doi.org/10.1016/j.applthermaleng.2017.03.017
http://dx.doi.org/10.1016/j.applthermaleng.2017.03.017
https://www.sciencedirect.com/science/article/pii/B9780128197967000081
https://www.sciencedirect.com/science/article/pii/B9780128197967000081
https://www.sciencedirect.com/science/article/pii/B9780323855105000016
https://www.sciencedirect.com/science/article/pii/B9780323855105000016
http://dx.doi.org/10.1016/j.neucom.2012.06.050
http://dx.doi.org/10.3390/app7040413
http://dx.doi.org/10.1016/j.arcontrol.2016.09.008
http://dx.doi.org/10.1016/j.arcontrol.2016.09.008


REFERENCES 71

condition-based maintenance of gas turbines: A review,” Applied Energy,
198, pp. 122–144.

[37] Asgari, H., Chen, X., Menhaj, M. B., and Sainudiin, R., 2013, “Artificial
Neural Network–Based System Identification for a Single-Shaft Gas Tur-
bine,” Journal of Engineering for Gas Turbines and Power, 135(9).

[38] Barad, S. G., P.v., R., R.k., G., and G., K., 2012, “Neural network approach for
a combined performance and mechanical health monitoring of a gas turbine
engine,” Mechanical Systems and Signal Processing, 27, pp. 729–742.

[39] Sampath, S. and Singh, R., 2004, “An Integrated Fault Diagnostics Model
Using Genetic Algorithm and Neural Networks,” Journal of Engineering for
Gas Turbines and Power, 128(1), pp. 49–56.

[40] Yoon, J. E., Lee, J. J., Kim, T. S., and Sohn, J. L., 2008, “Analysis of
performance deterioration of a micro gas turbine and the use of neural network
for predicting deteriorated component characteristics,” Journal of Mechanical
Science and Technology, 22(12), p. 2516.

[41] El Naqa, I. and Murphy, M. J., 2015, “What Is Machine Learning?” Machine
Learning in Radiation Oncology: Theory and Applications, I. El Naqa,
R. Li, and M. J. Murphy, eds., Springer International Publishing, Cham, pp.
3–11, doi:10.1007/978-3-319-18305-3_1, https://doi.org/10.1007/
978-3-319-18305-3_1

[42] McCulloch, W. S. and Pitts, W., 1990, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical Biology, 52(1), pp.
99–115.

[43] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A., 2008, “Extract-
ing and composing robust features with denoising autoencoders,” Proceedings
of the 25th international conference on Machine learning - ICML ’08, ACM
Press, Helsinki, Finland, pp. 1096–1103, doi:10.1145/1390156.1390294,
http://portal.acm.org/citation.cfm?doid=1390156.1390294

[44] Shao, H., Jiang, H., Zhao, H., and Wang, F., 2017, “A novel deep autoencoder
feature learning method for rotating machinery fault diagnosis,” Mechanical
Systems and Signal Processing, 95, pp. 187–204.

[45] Lu, C., Wang, Z.-Y., Qin, W.-L., and Ma, J., 2017, “Fault diagnosis of rotary
machinery components using a stacked denoising autoencoder-based health
state identification,” Signal Processing, 130, pp. 377–388.

[46] Goodfellow, I., Bengio, Y., and Courville, A., 2016, Deep Learning, MIT
Press, Google-Books-ID: omivDQAAQBAJ.

http://dx.doi.org/10.1016/j.apenergy.2017.04.048
http://dx.doi.org/10.1115/1.4024735
http://dx.doi.org/10.1016/j.ymssp.2011.09.011
http://dx.doi.org/10.1115/1.1995771
http://dx.doi.org/10.1115/1.1995771
http://dx.doi.org/10.1007/s12206-008-0808-8
http://dx.doi.org/10.1007/s12206-008-0808-8
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
http://dx.doi.org/10.1016/S0092-8240(05)80006-0
http://portal.acm.org/citation.cfm?doid=1390156.1390294
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
http://dx.doi.org/10.1016/j.sigpro.2016.07.028


72 REFERENCES



73

Appendix - A

Unprocessed features

This section presents the plots of the original features that has been used for mod-
elling. The only modifications done to these plots is the removal of significant
outliers.

Figure A.1: T1 before denosing
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Figure A.2: �P before denosing

Figure A.3: Pamb before denosing
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Figure A.4: Vwsat before denosing

Figure A.5: Twsatin before denosing
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Figure A.6: TwIn before denosing

Figure A.7: P before denosing
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Figure A.8: N before denosing

Figure A.9: TOT before denosing
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Figure A.10: COT before denosing

Figure A.11: COP before denosing
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Figure A.12: RITa before denosing

Figure A.13: CCIT1 before denosing
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Figure A.14: EIT1 before denosing

Figure A.15: EIT2 before denosing
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Appendix - B

Results from reconstruction loss calculations

The following tables presents the different model configurations. The tables are
specified with the number of neurons in the bottle- and mapping layer, together
with the corresponding errors calculated from the training-, validation- and testing
set. The % error column is the error percentage between validation and evaluation
loss.
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Table B.1: Overview over MSE loss with varying number of neuron configurations

Bottle Mapping MSE MSE Val. MSE E. % Error
1 0 0.0203 0.0203 0.0204 0.5825
1 6 0.0037 0.0037 0.0037 0.1171
1 8 0.0027 0.0032 0.0027 -13.5874
1 10 0.0027 0.0027 0.0027 0.4249

2 0 0.0108 0.011 0.0110 0.0085
2 6 0.0026 0.0027 0.0026 -0.6335
2 8 0.0019 0.0019 0.0019 0.6476
2 10 0.0015 0.0015 0.0015 1.7767

3 0 0.0062 0.0062 0.0063 2.8799
3 6 0.0018 0.0018 0.0018 0.8494
3 8 0.0013 0.0013 0.0013 0.0605
3 10 0.0010 0.0010 0.0010 2.9075

4 0 0.0042 0.0042 0.0043 3.9355
4 6 0.0017 0.0017 0.0016 -1.5511
4 8 0.0009 0.0009 0.0010 2.1125
4 10 0.0007 0.0007 0.0007 1.4185

5 0 0.0027 0.0027 0.0027 0.7304
5 6 0.0016 0.0016 0.0016 1.6099
5 8 0.0008 0.0008 0.0008 0.4226
5 10 0.0005 0.0005 0.0005 -0.4241
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Table B.2: Overview over MAE loss with varying number of neuron configurations

Bottle Mapping MAE Val. MAE E. MAE % Error
1 0 0.1098 0.1099 0.1099 0.0788
1 6 0.0401 0.0401 0.0402 0.2716
1 8 0.0345 0.0375 0.0347 7.8381
1 10 0.034 0.0339 0.0343 1.2572

2 0 0.0715 0.0717 0.0718 0.1970
2 6 0.0346 0.0345 0.0347 0.5860
2 8 0.0298 0.0297 0.0300 1.1083
2 10 0.0266 0.0266 0.0269 1.2937

3 0 0.0558 0.0561 0.0563 0.3810
3 6 0.0282 0.0284 0.0282 0.3990
3 8 0.0255 0.0255 0.0257 0.8706
3 10 0.0215 0.0217 0.0216 0.0351

4 0 0.0423 0.0424 0.0427 0.7148
4 6 0.0279 0.0278 0.0278 0.2428
4 8 0.0224 0.0225 0.0226 0.6123
4 10 0.0188 0.0189 0.0190 0.5725

5 0 0.0357 0.0359 0.0359 0.0398
5 6 0.0278 0.0277 0.0278 0.4194
5 8 0.0201 0.0201 0.0201 0.4116
5 10 0.0158 0.0158 0.0158 0.6259
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Appendix - C

Jupyter Notebook code

The following code explains the whole operation in order to get comparable results.
From preprocessing of the data, to training the different networks using the data and
testing in order to evaluate and predict visualisations.



Preprocessing

June 7, 2022

1 Processing of all data no outliers

This part of the project is set up for importing and preprocessing of the raw data. This includes
using all available data without outliers. Following the book “Hands-On Machine Learning with
Scikit-Learn, Keras & Tensorflow” by Aurélien Géron:

• Get an overview of the available data, loading the excel values into pandas dataframe, gener-
ated as a separate file.

• The data has been described in tables and plots. Linear relationships have been researched.

• The dataset has been separated into a training set and a test set, stored
as two new separate files: “unprocessed_test_data_no_outliers.csv” and “pro-
cessed_training_data_no_outliers.csv”

• The training set has been scaled using normalization method

1.1 Setup

[1]: # Python 3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Is this notebook running on Colab or Kaggle?
IS_COLAB = "google.colab" in sys.modules
IS_KAGGLE = "kaggle_secrets" in sys.modules

# Scikit-Learn 0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

# TensorFlow 2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

if not tf.config.list_physical_devices('GPU'):
print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
if IS_COLAB:
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print("Go to Runtime > Change runtime and select a GPU hardware�
,!accelerator.")

if IS_KAGGLE:
print("Go to Settings > Accelerator and select GPU.")

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "autoencoder"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:

plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)

Init Plugin
Init Graph Optimizer
Init Kernel

1.2 Load data

[2]: # returns pandas DatamFrame containing all the data

import pandas as pd
data = pd.read_csv('data/all_data_no_outliers.csv')

data.head()
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[2]: Index Preq T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N \
0 195 70 4.2 91.785 0.074415 -0.01 33.5 30.5 72.504 63840.0
1 196 70 4.2 90.482 0.074415 -0.01 33.4 30.5 72.500 63840.0
2 197 70 4.2 89.614 0.074415 -0.01 33.4 30.5 72.500 63840.0
3 198 70 4.2 88.919 0.074415 -0.01 33.5 30.5 72.500 63840.0
4 199 70 4.2 88.381 0.074415 -0.01 33.5 30.5 72.500 63840.0

TOT COT COP RITa CCIT1 EIT1 EIT2
0 606.079 153.4 2.97 99.5 533.1 143.2 140.8
1 606.116 153.5 2.97 99.5 533.2 143.2 140.8
2 606.139 153.4 2.97 99.5 533.4 143.2 140.8
3 606.157 153.6 2.97 99.6 533.4 143.2 140.8
4 606.176 153.5 2.97 99.5 533.6 143.2 140.8

[3]: # Set the time column as the index, because outliers were taken out

data = data.drop('Index', axis=1)

[4]: # drop the Preq column as it is set by

data = data.drop('Preq', axis=1)

[5]: data.head()

[5]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N TOT \
0 4.2 91.785 0.074415 -0.01 33.5 30.5 72.504 63840.0 606.079
1 4.2 90.482 0.074415 -0.01 33.4 30.5 72.500 63840.0 606.116
2 4.2 89.614 0.074415 -0.01 33.4 30.5 72.500 63840.0 606.139
3 4.2 88.919 0.074415 -0.01 33.5 30.5 72.500 63840.0 606.157
4 4.2 88.381 0.074415 -0.01 33.5 30.5 72.500 63840.0 606.176

COT COP RITa CCIT1 EIT1 EIT2
0 153.4 2.97 99.5 533.1 143.2 140.8
1 153.5 2.97 99.5 533.2 143.2 140.8
2 153.4 2.97 99.5 533.4 143.2 140.8
3 153.6 2.97 99.6 533.4 143.2 140.8
4 153.5 2.97 99.5 533.6 143.2 140.8

[28]: #plot features

%matplotlib inline
data.plot(subplots=True, layout=(6,3), figsize=(15,18))
plt.grid()
save_fig("attribute_plots")

Saving figure attribute_plots
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1.3 Create stratified training + test set

Need to create a stable test/train split every time the dataset gets updated. But is stratified
sampling necessary for gas turbine data, can this data be biased?

[7]: #split T1 into 1 categories & view count of each category

data["T1_cat"] = pd.cut(data["T1"],
bins=[0, 4.5, 4.8, 5.1, np.inf],
labels=[1, 2, 3, 4])

data["T1_cat"].value_counts()
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[7]: 3 18787
1 18708
4 17273
2 13820
Name: T1_cat, dtype: int64

[8]: #split the train and test sets

from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(data, data["T1_cat"]):

strat_train_set = data.loc[train_index]
strat_test_set = data.loc[test_index]

[9]: strat_train_set.head()

[9]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N \
25564 5.1 87.000 0.074453 1.09 51.1 49.9 70.300 60660.079
22533 4.9 82.162 0.074453 -0.01 48.4 45.7 69.120 62776.852
51133 5.0 85.789 0.074453 -0.02 51.7 49.5 69.403 62483.433
8834 5.3 93.004 0.074451 -0.01 47.7 42.8 68.700 64056.694
10162 5.3 91.527 0.074453 -0.01 48.3 43.5 68.900 64042.635

TOT COT COP RITa CCIT1 EIT1 EIT2 T1_cat
25564 609.599 159.2 2.60 60.4 542.0 106.2 110.1 3
22533 609.437 166.0 2.83 63.0 553.2 114.1 118.0 3
51133 609.618 163.5 2.80 62.4 546.5 108.1 110.6 3
8834 612.576 170.5 2.95 102.1 561.5 156.3 154.2 4
10162 612.200 169.9 2.95 101.4 562.2 154.3 155.9 4

[10]: strat_test_set.shape

[10]: (13718, 16)

[11]: #look at T1 category proportions in test set

strat_test_set["T1_cat"].value_counts() / len(strat_test_set)

[11]: 3 0.273874
1 0.272780
4 0.251859
2 0.201487
Name: T1_cat, dtype: float64

[12]: #look at T1 category proportions in overall data set

data["T1_cat"].value_counts() / len(data)
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[12]: 3 0.273911
1 0.272759
4 0.251837
2 0.201493
Name: T1_cat, dtype: float64

[13]: #table comparing overall and test stratification and error
from sklearn.model_selection import train_test_split

def T1_cat_proportions(data):
return data["T1_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(data, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
"Overall": T1_cat_proportions(data),
"Stratified": T1_cat_proportions(strat_test_set),
"Random": T1_cat_proportions(test_set),

}).sort_index()
compare_props["Strat. %error"] = 100 * compare_props["Stratified"] /�
,!compare_props["Overall"] - 100

compare_props["Rand. %error"] = 100 * compare_props["Random"] /�
,!compare_props["Overall"] - 100

compare_props

[13]: Overall Stratified Random Strat. %error Rand. %error
1 0.272759 0.272780 0.272416 0.007774 -0.125854
2 0.201493 0.201487 0.202508 -0.002916 0.503582
3 0.273911 0.273874 0.272853 -0.013561 -0.386148
4 0.251837 0.251859 0.252223 0.008663 0.153393

[14]: #remove the T1_cat attribute
for set_ in (strat_train_set, strat_test_set):

set_.drop("T1_cat", axis=1, inplace=True)

2 Arrange Indexes

[15]: strat_test_set.head()

[15]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N \
34687 4.400 79.351 0.074453 2.02 60.4 60.7 70.500 59860.000
31021 4.450 80.745 0.074453 2.04 57.1 56.5 68.624 59644.969
40663 4.400 92.048 0.074453 -0.01 54.6 52.1 70.287 62502.826
5271 4.957 98.268 0.074437 -0.01 44.4 40.3 67.505 64000.000
1974 4.400 94.445 0.074423 -0.01 39.2 35.5 67.200 63878.899
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TOT COT COP RITa CCIT1 EIT1 EIT2
34687 607.100 152.1 2.52 61.1 533.1 104.2 107.8
31021 609.200 153.4 2.49 60.5 534.3 99.1 109.5
40663 606.072 160.9 2.81 62.2 544.9 107.8 109.4
5271 609.511 168.3 2.94 102.6 559.1 154.1 155.6
1974 607.278 164.3 2.95 101.7 553.8 152.7 150.1

[16]: sorted_test = strat_test_set.sort_index('index')

/var/folders/3x/ssqftytd2xz72_28lg_8dbjw0000gn/T/ipykernel_83000/2039066215.py:1
: FutureWarning: In a future version of pandas all arguments of
DataFrame.sort_index will be keyword-only.

sorted_test = strat_test_set.sort_index('index')

[17]: sorted_test.shape

[17]: (13718, 15)

[18]: #plot features

%matplotlib inline
sorted_test.plot(subplots=True, layout=(4,4), figsize=(15,10))
#save_fig("attribute_plots")

[18]: array([[<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
[<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
[<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
[<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>]],

dtype=object)
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3 Save Test Data

[19]: #save the test data to separate file

sorted_test.to_csv("data/unprocessed_strat_test_data.csv")

3.1 Prepare the Data for ML Algorithms

3.1.1 Feature scaling

p. 109 One of the most iportant transformations need to be applied to data. ML algorithms don’t
perform well when input attributes have very different scales. This part of the book does, or the
rest of the book, does not describe how to actually normalize a dataset.

• Min-max scaling (normalization)
• Standardization = for many outliers

Fit the scalers to the training data only, not the full dataset. Only then can you use them to
transform the training set and the test set.

We normalize training and test data separately to avoid data leakage.

[20]: strat_train_set
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[20]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N \
25564 5.100 87.000 0.074453 1.09 51.1 49.9 70.300 60660.079
22533 4.900 82.162 0.074453 -0.01 48.4 45.7 69.120 62776.852
51133 5.000 85.789 0.074453 -0.02 51.7 49.5 69.403 62483.433
8834 5.300 93.004 0.074451 -0.01 47.7 42.8 68.700 64056.694
10162 5.300 91.527 0.074453 -0.01 48.3 43.5 68.900 64042.635
... ... ... ... ... ... ... ... ...
66208 4.600 90.203 0.074453 1.07 54.1 53.2 69.469 62650.000
68396 4.898 90.958 0.074453 1.07 56.7 55.7 69.815 62790.000
4193 4.900 94.639 0.074432 -0.01 43.2 38.8 68.274 63951.806
48833 4.742 92.015 0.074453 -0.01 52.0 49.6 69.700 62541.687
45982 4.600 90.449 0.074453 -0.01 52.3 50.1 70.447 62463.327

TOT COT COP RITa CCIT1 EIT1 EIT2
25564 609.599 159.2 2.60 60.4 542.0 106.2 110.1
22533 609.437 166.0 2.83 63.0 553.2 114.1 118.0
51133 609.618 163.5 2.80 62.4 546.5 108.1 110.6
8834 612.576 170.5 2.95 102.1 561.5 156.3 154.2
10162 612.200 169.9 2.95 101.4 562.2 154.3 155.9
... ... ... ... ... ... ... ...
66208 607.998 163.8 2.82 62.9 550.8 108.0 113.3
68396 608.202 165.0 2.84 63.1 547.9 110.6 112.9
4193 608.363 168.0 2.95 103.7 558.3 155.9 153.8
48833 609.158 162.8 2.80 62.4 548.2 108.2 110.5
45982 608.200 163.0 2.80 62.5 545.0 106.7 109.9

[54870 rows x 15 columns]

[21]: sorted_train = strat_train_set.sort_index('index')

/var/folders/3x/ssqftytd2xz72_28lg_8dbjw0000gn/T/ipykernel_83000/905008516.py:1:
FutureWarning: In a future version of pandas all arguments of
DataFrame.sort_index will be keyword-only.

sorted_train = strat_train_set.sort_index('index')

[22]: sorted_train

[22]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N \
0 4.200 91.785 0.074415 -0.01 33.5 30.5 72.504 63840.000
1 4.200 90.482 0.074415 -0.01 33.4 30.5 72.500 63840.000
2 4.200 89.614 0.074415 -0.01 33.4 30.5 72.500 63840.000
3 4.200 88.919 0.074415 -0.01 33.5 30.5 72.500 63840.000
4 4.200 88.381 0.074415 -0.01 33.5 30.5 72.500 63840.000
... ... ... ... ... ... ... ... ...
68580 4.798 103.955 0.074453 1.09 57.2 55.9 70.700 62660.812
68581 4.753 102.979 0.074453 1.11 57.2 55.9 70.700 62663.435
68582 4.680 101.190 0.074453 1.11 57.3 55.9 70.700 62665.482
68585 4.620 96.244 0.074453 1.11 57.2 55.9 70.700 62678.297
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68586 4.651 94.933 0.074453 1.11 57.1 55.9 70.700 62687.332

TOT COT COP RITa CCIT1 EIT1 EIT2
0 606.079 153.4 2.97 99.5 533.1 143.2 140.8
1 606.116 153.5 2.97 99.5 533.2 143.2 140.8
2 606.139 153.4 2.97 99.5 533.4 143.2 140.8
3 606.157 153.6 2.97 99.6 533.4 143.2 140.8
4 606.176 153.5 2.97 99.5 533.6 143.2 140.8
... ... ... ... ... ... ... ...
68580 610.001 164.7 2.82 63.4 548.2 108.7 113.6
68581 610.017 164.7 2.82 63.2 548.2 108.7 113.6
68582 610.047 164.7 2.82 63.2 548.0 108.7 113.6
68585 610.135 164.6 2.82 63.1 547.9 108.7 113.6
68586 610.164 164.6 2.83 63.3 547.9 108.7 113.7

[54870 rows x 15 columns]

[23]: #plot features

%matplotlib inline
sorted_train.plot(subplots=True, layout=(4,4), figsize=(15,10))
save_fig("attribute_plots")

Saving figure attribute_plots
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[24]: sorted_train.shape

[24]: (54870, 15)

[25]: from sklearn.preprocessing import MinMaxScaler

# define min max scaler
scaler = MinMaxScaler()

# define data to be scaled
normalize_these = ['T1', 'deltaP','Pgen', 'N',

'TOT','COT', 'COP', 'RITa',
'CCIT1', 'EIT1', 'EIT2',

'Pamb', 'Twsatin', 'TwIn', 'Vwsat']

# transform data
sorted_train[normalize_these] = scaler.
,!fit_transform(sorted_train[normalize_these])

sorted_train

[25]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
0 0.055556 0.735371 0.000000 0.004695 0.003448 0.000000 0.572754
1 0.055556 0.719058 0.000105 0.004695 0.000000 0.000000 0.572464
2 0.055556 0.708190 0.000210 0.004695 0.000000 0.000000 0.572464
3 0.055556 0.699489 0.000314 0.004695 0.003448 0.000000 0.572464
4 0.055556 0.692754 0.000419 0.004695 0.003448 0.000000 0.572464
... ... ... ... ... ... ... ...
68580 0.387778 0.887736 1.000000 0.521127 0.820690 0.801262 0.442029
68581 0.362778 0.875516 1.000000 0.530516 0.820690 0.801262 0.442029
68582 0.322222 0.853119 1.000000 0.530516 0.824138 0.801262 0.442029
68585 0.288889 0.791196 1.000000 0.530516 0.820690 0.801262 0.442029
68586 0.306111 0.774783 1.000000 0.530516 0.817241 0.801262 0.442029

N TOT COT COP RITa CCIT1 EIT1 \
0 0.935906 0.274701 0.083333 1.00 0.863636 0.306452 0.762069
1 0.935906 0.277710 0.088542 1.00 0.863636 0.308756 0.762069
2 0.935906 0.279580 0.083333 1.00 0.863636 0.313364 0.762069
3 0.935906 0.281044 0.093750 1.00 0.865801 0.313364 0.762069
4 0.935906 0.282589 0.088542 1.00 0.863636 0.317972 0.762069
... ... ... ... ... ... ... ...
68580 0.683934 0.593641 0.671875 0.70 0.082251 0.654378 0.167241
68581 0.684495 0.594942 0.671875 0.70 0.077922 0.654378 0.167241
68582 0.684932 0.597381 0.671875 0.70 0.077922 0.649770 0.167241
68585 0.687670 0.604538 0.666667 0.70 0.075758 0.647465 0.167241
68586 0.689601 0.606896 0.666667 0.72 0.080087 0.647465 0.167241
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EIT2
0 0.677419
1 0.677419
2 0.677419
3 0.677419
4 0.677419
... ...
68580 0.129032
68581 0.129032
68582 0.129032
68585 0.129032
68586 0.131048

[54870 rows x 15 columns]

[26]: #save the test data to separate file

sorted_train.to_csv("data/processed_strat_train_data.csv")
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Training

June 7, 2022

0.1 Part II: Create Model

This part of the project focusing on creating a model with training data in the file “pro-
cessed_training_data_no_outliers.csv”.

• The training data is loaded, then split into a training and validation set
• Create AE model (layer, activation functions, initializer, regularizer)
• Compile model (loss function, optimizer, metrics)
• Train model

0.2 Setup

[1]: # Python 3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Is this notebook running on Colab or Kaggle?
IS_COLAB = "google.colab" in sys.modules
IS_KAGGLE = "kaggle_secrets" in sys.modules

# Scikit-Learn 0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

# TensorFlow 2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

if not tf.config.list_physical_devices('GPU'):
print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
if IS_COLAB:

print("Go to Runtime > Change runtime and select a GPU hardware�
,!accelerator.")

if IS_KAGGLE:
print("Go to Settings > Accelerator and select GPU.")

# Common imports
import numpy as np
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import os

# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "autoencoder"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:

plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)

Init Plugin
Init Graph Optimizer
Init Kernel

[2]: # disable GPU for faster calculations
# for bigger batch sized (=>1024) GPU will be faster

tf.config.set_visible_devices([], 'GPU')

0.3 Load data

[3]: # load the csv into a pandas dataframe

import pandas as pd
def load_data(data_path):

csv_path = pd.read_csv(data_path)
return csv_path

[4]: # returns pandas DatamFrame containing all the data

data = pd.read_csv('data/processed_strat_train_data.csv', index_col=0)
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data

[4]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
0 0.055556 0.735371 0.000000 0.004695 0.003448 0.000000 0.572754
1 0.055556 0.719058 0.000105 0.004695 0.000000 0.000000 0.572464
2 0.055556 0.708190 0.000210 0.004695 0.000000 0.000000 0.572464
3 0.055556 0.699489 0.000314 0.004695 0.003448 0.000000 0.572464
4 0.055556 0.692754 0.000419 0.004695 0.003448 0.000000 0.572464
... ... ... ... ... ... ... ...
68580 0.387778 0.887736 1.000000 0.521127 0.820690 0.801262 0.442029
68581 0.362778 0.875516 1.000000 0.530516 0.820690 0.801262 0.442029
68582 0.322222 0.853119 1.000000 0.530516 0.824138 0.801262 0.442029
68585 0.288889 0.791196 1.000000 0.530516 0.820690 0.801262 0.442029
68586 0.306111 0.774783 1.000000 0.530516 0.817241 0.801262 0.442029

N TOT COT COP RITa CCIT1 EIT1 \
0 0.935906 0.274701 0.083333 1.00 0.863636 0.306452 0.762069
1 0.935906 0.277710 0.088542 1.00 0.863636 0.308756 0.762069
2 0.935906 0.279580 0.083333 1.00 0.863636 0.313364 0.762069
3 0.935906 0.281044 0.093750 1.00 0.865801 0.313364 0.762069
4 0.935906 0.282589 0.088542 1.00 0.863636 0.317972 0.762069
... ... ... ... ... ... ... ...
68580 0.683934 0.593641 0.671875 0.70 0.082251 0.654378 0.167241
68581 0.684495 0.594942 0.671875 0.70 0.077922 0.654378 0.167241
68582 0.684932 0.597381 0.671875 0.70 0.077922 0.649770 0.167241
68585 0.687670 0.604538 0.666667 0.70 0.075758 0.647465 0.167241
68586 0.689601 0.606896 0.666667 0.72 0.080087 0.647465 0.167241

EIT2
0 0.677419
1 0.677419
2 0.677419
3 0.677419
4 0.677419
... ...
68580 0.129032
68581 0.129032
68582 0.129032
68585 0.129032
68586 0.131048

[54870 rows x 15 columns]
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0.4 Split into training and validation set

[5]: from sklearn.model_selection import train_test_split

X_train, X_val = train_test_split(data, test_size=0.2, random_state=42)

[6]: data.shape

[6]: (54870, 15)

[7]: X_train.shape

[7]: (43896, 15)

[8]: X_val.shape

[8]: (10974, 15)

[9]: X_train.shape[1]

[9]: 15

[10]: X_train

[10]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
10465 0.573889 0.794276 1.000000 0.004695 0.520690 0.413249 0.365362
59759 0.500000 0.650424 1.000000 0.004695 0.606897 0.580442 0.449275
59396 0.444444 0.690162 1.000000 0.004695 0.606897 0.570978 0.268116
17936 0.444444 0.669868 1.000000 0.004695 0.572414 0.457413 0.479565
45207 0.256667 0.766657 1.000000 0.004695 0.679310 0.630915 0.463768
... ... ... ... ... ... ... ...
55818 0.635000 0.780667 1.000000 0.004695 0.627586 0.593060 0.575000
67928 0.333333 0.725505 1.000000 0.516432 0.782759 0.776025 0.376957
47572 0.295000 0.769449 1.000000 0.004695 0.648276 0.605678 0.427536
1052 0.111111 0.825337 0.114274 0.004695 0.110345 0.088328 0.253623
19766 0.645000 0.339873 1.000000 0.004695 0.555172 0.447950 0.391304

N TOT COT COP RITa CCIT1 EIT1 \
10465 0.954410 0.753517 0.973958 0.96 0.906926 0.944700 0.982759
59759 0.525919 0.561031 0.494792 0.54 0.041126 0.571429 0.141379
59396 0.513928 0.539481 0.494792 0.52 0.041126 0.631336 0.143103
17936 0.922536 0.508498 0.953125 0.98 0.532468 0.894009 0.858621
45207 0.660256 0.427096 0.552083 0.66 0.067100 0.617512 0.132759
... ... ... ... ... ... ... ...
55818 0.644402 0.595836 0.656250 0.68 0.067100 0.670507 0.158621
67928 0.705057 0.422786 0.645833 0.72 0.077922 0.684332 0.182759
47572 0.658247 0.443929 0.598958 0.66 0.067100 0.656682 0.132759
1052 0.919091 0.300886 0.520833 0.94 0.891775 0.758065 0.862069
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19766 0.882485 0.556884 0.911458 0.88 0.201299 0.838710 0.572414

EIT2
10465 0.945565
59759 0.024194
59396 0.018145
17936 0.798387
45207 0.084677
... ...
55818 0.106855
67928 0.149194
47572 0.100806
1052 0.848790
19766 0.532258

[43896 rows x 15 columns]

[11]: X_val

[11]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
44269 0.166667 0.715277 1.0 0.004695 0.675862 0.643533 0.325507
23736 0.555556 0.615094 1.0 0.521127 0.541379 0.482650 0.565870
38886 0.110000 0.651626 1.0 0.004695 0.751724 0.697161 0.414275
34711 0.166667 0.575306 1.0 0.976526 0.937931 0.952681 0.451957
62136 0.491667 0.711295 1.0 0.488263 0.600000 0.580442 0.173913
... ... ... ... ... ... ... ...
45260 0.222222 0.613116 1.0 0.004695 0.672414 0.627760 0.297246
51517 0.445556 0.713023 1.0 0.004695 0.627586 0.596215 0.528986
68271 0.388889 0.755039 1.0 0.497653 0.793103 0.791798 0.434783
65565 0.475556 0.748253 1.0 0.502347 0.689655 0.687697 0.434783
34526 0.166667 0.673623 1.0 0.957746 0.927586 0.946372 0.480507

N TOT COT COP RITa CCIT1 EIT1 \
44269 0.611841 0.237863 0.552083 0.62 0.064935 0.573733 0.113793
23736 0.460801 0.592340 0.671875 0.46 0.045455 0.490783 0.125862
38886 0.735045 0.325201 0.364583 0.78 0.051948 0.410138 0.317241
34711 0.097673 0.271123 0.026042 0.12 0.032468 0.290323 0.086207
62136 0.598202 0.561031 0.510417 0.58 0.041126 0.672811 0.132759
... ... ... ... ... ... ... ...
45260 0.640992 0.325201 0.546875 0.64 0.060606 0.638249 0.139655
51517 0.657660 0.560706 0.635417 0.68 0.064935 0.654378 0.143103
68271 0.707266 0.517281 0.661458 0.74 0.077922 0.695853 0.191379
65565 0.687682 0.617956 0.661458 0.70 0.060606 0.682028 0.162069
34526 0.107731 0.211352 0.057292 0.12 0.038961 0.387097 0.086207

EIT2
44269 0.074597
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23736 0.098790
38886 0.149194
34711 0.014113
62136 0.030242
... ...
45260 0.070565
51517 0.092742
68271 0.129032
65565 0.088710
34526 0.040323

[10974 rows x 15 columns]

[12]: X_val.shape

[12]: (10974, 15)

1 Create model + Compiling

[13]: # defining root log directory for TensorBoard logs
# for visualization of data

root_logdir = os.path.join(os.curdir, "my_logs")

def get_run_logdir():
import time
run_id = time.strftime("run_%Y_%m_%d-%H_%M_%S")
return os.path.join(root_logdir, run_id)

run_logdir = get_run_logdir()
run_logdir

[13]: './my_logs/run_2022_06_07-14_20_25'

[14]: # callback for TensorBoard
# creates log directory, create event files and summaries
# during training

tensorboard = keras.callbacks.TensorBoard(run_logdir)

2022-06-07 14:20:25.110222: I
tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session
initializing.
2022-06-07 14:20:25.110234: I
tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
2022-06-07 14:20:25.110533: I
tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session tear
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down.

[15]: # Create model
# With hidden layers

n_neurons = 6
b_neurons = 3
hl_activation = "tanh"

encoder_input = keras.Input(shape=(X_train.shape[1]))
x = keras.layers.Dense(n_neurons, hl_activation)(encoder_input)
encoder_output = keras.layers.Dense(b_neurons, hl_activation)(x)

encoder = keras.Model(encoder_input, encoder_output)

decoder_input = keras.layers.Dense(n_neurons, hl_activation)(encoder_output)
decoder_output = keras.layers.Dense(X_train.shape[1])(decoder_input)

autoencoder = keras.Model(encoder_input, decoder_output)

autoencoder.summary()

Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 15)] 0
_________________________________________________________________
dense (Dense) (None, 6) 96
_________________________________________________________________
dense_1 (Dense) (None, 3) 21
_________________________________________________________________
dense_2 (Dense) (None, 6) 24
_________________________________________________________________
dense_3 (Dense) (None, 15) 105
=================================================================
Total params: 246
Trainable params: 246
Non-trainable params: 0
_________________________________________________________________

Create model No hidden layers, only bottleneck

bneurons = 6hlactivation = ”tanh”

encoderinput = keras.Input(shape = (Xtrain.shape[1]))encoderoutput =
keras.layers.Dense(bneurons, hlactivation)(encoderinput)

encoder = keras.Model(encoderinput, encoderoutput)

decoderoutput = keras.layers.Dense(Xtrain.shape[1])(encoderoutput)
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autoencoder = keras.Model(encoderinput, decoderoutput)

autoencoder.summary()

2 Training and Evaluating

[16]: # early stopping callback method, should also be added in fit see below.

checkpoint_cb = keras.callbacks.ModelCheckpoint("ae_keras_model_3-6.h5",
save_best_only=True)

early_stopping_cb = keras.callbacks.EarlyStopping(patience=50,
restore_best_weights=True)

[17]: opt = keras.optimizers.SGD(learning_rate=1)

autoencoder.compile(loss="mse",
optimizer = opt,
metrics=['mae'])

[18]: history = autoencoder.fit(X_train, X_train, epochs=100000,
batch_size=42, #implement mini-batch GD
validation_data=(X_val, X_val),
callbacks=[checkpoint_cb, early_stopping_cb]) # early�

,!stopping

Epoch 1/100000
1/1046 [...] - ETA: 1:53 - loss: 0.3656 - mae:

0.5168

2022-06-07 14:20:25.184747: I
tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR
Optimization Passes are enabled (registered 2)
2022-06-07 14:20:25.187293: W
tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU
frequency: 0 Hz

1046/1046 [==============================] - 0s 328us/step - loss: 0.0121 - mae:
0.0743 - val_loss: 0.0067 - val_mae: 0.0579
Epoch 2/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0062 - mae:
0.0552 - val_loss: 0.0059 - val_mae: 0.0532
Epoch 3/100000
1046/1046 [==============================] - 0s 267us/step - loss: 0.0052 - mae:
0.0487 - val_loss: 0.0051 - val_mae: 0.0472
Epoch 4/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0048 - mae:
0.0452 - val_loss: 0.0050 - val_mae: 0.0463
Epoch 5/100000
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1046/1046 [==============================] - 0s 274us/step - loss: 0.0046 - mae:
0.0439 - val_loss: 0.0048 - val_mae: 0.0457
Epoch 6/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0044 - mae:
0.0436 - val_loss: 0.0043 - val_mae: 0.0431
Epoch 7/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0042 - mae:
0.0437 - val_loss: 0.0041 - val_mae: 0.0433
Epoch 8/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0039 - mae:
0.0435 - val_loss: 0.0039 - val_mae: 0.0424
Epoch 9/100000
1046/1046 [==============================] - 0s 279us/step - loss: 0.0038 - mae:
0.0432 - val_loss: 0.0039 - val_mae: 0.0444
Epoch 10/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0037 - mae:
0.0427 - val_loss: 0.0038 - val_mae: 0.0446
Epoch 11/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0036 - mae:
0.0423 - val_loss: 0.0038 - val_mae: 0.0422
Epoch 12/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0035 - mae:
0.0419 - val_loss: 0.0036 - val_mae: 0.0438
Epoch 13/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0033 - mae:
0.0411 - val_loss: 0.0033 - val_mae: 0.0405
Epoch 14/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0031 - mae:
0.0399 - val_loss: 0.0030 - val_mae: 0.0391
Epoch 15/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0029 - mae:
0.0379 - val_loss: 0.0031 - val_mae: 0.0384
Epoch 16/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0027 - mae:
0.0364 - val_loss: 0.0027 - val_mae: 0.0355
Epoch 17/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0026 - mae:
0.0352 - val_loss: 0.0025 - val_mae: 0.0352
Epoch 18/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0025 - mae:
0.0345 - val_loss: 0.0028 - val_mae: 0.0370
Epoch 19/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0024 - mae:
0.0341 - val_loss: 0.0024 - val_mae: 0.0339
Epoch 20/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0024 - mae:
0.0337 - val_loss: 0.0024 - val_mae: 0.0335
Epoch 21/100000
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1046/1046 [==============================] - 0s 274us/step - loss: 0.0023 - mae:
0.0335 - val_loss: 0.0023 - val_mae: 0.0331
Epoch 22/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0023 - mae:
0.0332 - val_loss: 0.0024 - val_mae: 0.0337
Epoch 23/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0023 - mae:
0.0329 - val_loss: 0.0023 - val_mae: 0.0329
Epoch 24/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0023 - mae:
0.0328 - val_loss: 0.0022 - val_mae: 0.0321
Epoch 25/100000
1046/1046 [==============================] - 0s 288us/step - loss: 0.0022 - mae:
0.0325 - val_loss: 0.0023 - val_mae: 0.0336
Epoch 26/100000
1046/1046 [==============================] - 0s 318us/step - loss: 0.0022 - mae:
0.0324 - val_loss: 0.0024 - val_mae: 0.0339
Epoch 27/100000
1046/1046 [==============================] - 0s 239us/step - loss: 0.0022 - mae:
0.0321 - val_loss: 0.0022 - val_mae: 0.0325
Epoch 28/100000
1046/1046 [==============================] - 0s 244us/step - loss: 0.0022 - mae:
0.0319 - val_loss: 0.0025 - val_mae: 0.0344
Epoch 29/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0022 - mae:
0.0318 - val_loss: 0.0022 - val_mae: 0.0328
Epoch 30/100000
1046/1046 [==============================] - 0s 268us/step - loss: 0.0021 - mae:
0.0317 - val_loss: 0.0022 - val_mae: 0.0327
Epoch 31/100000
1046/1046 [==============================] - 0s 229us/step - loss: 0.0021 - mae:
0.0314 - val_loss: 0.0022 - val_mae: 0.0322
Epoch 32/100000
1046/1046 [==============================] - 0s 239us/step - loss: 0.0021 - mae:
0.0314 - val_loss: 0.0022 - val_mae: 0.0321
Epoch 33/100000
1046/1046 [==============================] - 0s 260us/step - loss: 0.0021 - mae:
0.0311 - val_loss: 0.0022 - val_mae: 0.0318
Epoch 34/100000
1046/1046 [==============================] - 0s 255us/step - loss: 0.0021 - mae:
0.0310 - val_loss: 0.0022 - val_mae: 0.0320
Epoch 35/100000
1046/1046 [==============================] - 0s 290us/step - loss: 0.0021 - mae:
0.0311 - val_loss: 0.0021 - val_mae: 0.0316
Epoch 36/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0021 - mae:
0.0309 - val_loss: 0.0021 - val_mae: 0.0314
Epoch 37/100000
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1046/1046 [==============================] - 0s 278us/step - loss: 0.0021 - mae:
0.0308 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 38/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0021 - mae:
0.0308 - val_loss: 0.0027 - val_mae: 0.0375
Epoch 39/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0021 - mae:
0.0306 - val_loss: 0.0026 - val_mae: 0.0365
Epoch 40/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0305 - val_loss: 0.0023 - val_mae: 0.0335
Epoch 41/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0305 - val_loss: 0.0020 - val_mae: 0.0303
Epoch 42/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0305 - val_loss: 0.0026 - val_mae: 0.0356
Epoch 43/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0304 - val_loss: 0.0020 - val_mae: 0.0299
Epoch 44/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0303 - val_loss: 0.0021 - val_mae: 0.0306
Epoch 45/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0020 - mae:
0.0305 - val_loss: 0.0022 - val_mae: 0.0320
Epoch 46/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0302 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 47/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0020 - mae:
0.0302 - val_loss: 0.0020 - val_mae: 0.0301
Epoch 48/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0020 - mae:
0.0302 - val_loss: 0.0020 - val_mae: 0.0300
Epoch 49/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0302 - val_loss: 0.0020 - val_mae: 0.0304
Epoch 50/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0302 - val_loss: 0.0020 - val_mae: 0.0300
Epoch 51/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0301 - val_loss: 0.0022 - val_mae: 0.0311
Epoch 52/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0023 - val_mae: 0.0325
Epoch 53/100000
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1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 54/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0301 - val_loss: 0.0022 - val_mae: 0.0313
Epoch 55/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 56/100000
1046/1046 [==============================] - 0s 271us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0021 - val_mae: 0.0304
Epoch 57/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0021 - val_mae: 0.0309
Epoch 58/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0299 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 59/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0021 - val_mae: 0.0304
Epoch 60/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0300 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 61/100000
1046/1046 [==============================] - 0s 269us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0022 - val_mae: 0.0328
Epoch 62/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0020 - mae:
0.0299 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 63/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0299 - val_loss: 0.0022 - val_mae: 0.0316
Epoch 64/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0305
Epoch 65/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 66/100000
1046/1046 [==============================] - 0s 279us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0301
Epoch 67/100000
1046/1046 [==============================] - 0s 266us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 68/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0021 - val_mae: 0.0308
Epoch 69/100000
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1046/1046 [==============================] - 0s 270us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 70/100000
1046/1046 [==============================] - 0s 267us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0020 - val_mae: 0.0293
Epoch 71/100000
1046/1046 [==============================] - 0s 265us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0027 - val_mae: 0.0366
Epoch 72/100000
1046/1046 [==============================] - 0s 264us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 73/100000
1046/1046 [==============================] - 0s 264us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0020 - val_mae: 0.0296
Epoch 74/100000
1046/1046 [==============================] - 0s 266us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0021 - val_mae: 0.0305
Epoch 75/100000
1046/1046 [==============================] - 0s 267us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0020 - val_mae: 0.0293
Epoch 76/100000
1046/1046 [==============================] - 0s 265us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0025 - val_mae: 0.0341
Epoch 77/100000
1046/1046 [==============================] - 0s 263us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 78/100000
1046/1046 [==============================] - 0s 263us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0299
Epoch 79/100000
1046/1046 [==============================] - 0s 262us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 80/100000
1046/1046 [==============================] - 0s 262us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0022 - val_mae: 0.0319
Epoch 81/100000
1046/1046 [==============================] - 0s 260us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0020 - val_mae: 0.0302
Epoch 82/100000
1046/1046 [==============================] - 0s 259us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0317
Epoch 83/100000
1046/1046 [==============================] - 0s 257us/step - loss: 0.0020 - mae:
0.0298 - val_loss: 0.0021 - val_mae: 0.0306
Epoch 84/100000
1046/1046 [==============================] - 0s 260us/step - loss: 0.0020 - mae:
0.0294 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 85/100000
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1046/1046 [==============================] - 0s 260us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0022 - val_mae: 0.0310
Epoch 86/100000
1046/1046 [==============================] - 0s 258us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 87/100000
1046/1046 [==============================] - 0s 259us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 88/100000
1046/1046 [==============================] - 0s 257us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0025 - val_mae: 0.0356
Epoch 89/100000
1046/1046 [==============================] - 0s 259us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0021 - val_mae: 0.0314
Epoch 90/100000
1046/1046 [==============================] - 0s 260us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0308
Epoch 91/100000
1046/1046 [==============================] - 0s 279us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0019 - val_mae: 0.0291
Epoch 92/100000
1046/1046 [==============================] - 0s 282us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0022 - val_mae: 0.0327
Epoch 93/100000
1046/1046 [==============================] - 0s 289us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 94/100000
1046/1046 [==============================] - 0s 265us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0288
Epoch 95/100000
1046/1046 [==============================] - 0s 261us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0302
Epoch 96/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0019 - val_mae: 0.0292
Epoch 97/100000
1046/1046 [==============================] - 0s 269us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0027 - val_mae: 0.0380
Epoch 98/100000
1046/1046 [==============================] - 0s 264us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0025 - val_mae: 0.0349
Epoch 99/100000
1046/1046 [==============================] - 0s 261us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0022 - val_mae: 0.0309
Epoch 100/100000
1046/1046 [==============================] - 0s 278us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0020 - val_mae: 0.0302
Epoch 101/100000
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1046/1046 [==============================] - 0s 277us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 102/100000
1046/1046 [==============================] - 0s 266us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 103/100000
1046/1046 [==============================] - 0s 265us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0308
Epoch 104/100000
1046/1046 [==============================] - 0s 267us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0304
Epoch 105/100000
1046/1046 [==============================] - 0s 260us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0027 - val_mae: 0.0373
Epoch 106/100000
1046/1046 [==============================] - 0s 333us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0314
Epoch 107/100000
1046/1046 [==============================] - 0s 326us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0300
Epoch 108/100000
1046/1046 [==============================] - 0s 285us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 109/100000
1046/1046 [==============================] - 0s 270us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 110/100000
1046/1046 [==============================] - 0s 301us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 111/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0021 - val_mae: 0.0309
Epoch 112/100000
1046/1046 [==============================] - 0s 269us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0294
Epoch 113/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 114/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0291
Epoch 115/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0020 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 116/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0287
Epoch 117/100000
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1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0297
Epoch 118/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0020 - mae:
0.0297 - val_loss: 0.0024 - val_mae: 0.0345
Epoch 119/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0302
Epoch 120/100000
1046/1046 [==============================] - 0s 268us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 121/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 122/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0023 - val_mae: 0.0326
Epoch 123/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 124/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0289
Epoch 125/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0296 - val_loss: 0.0019 - val_mae: 0.0291
Epoch 126/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 127/100000
1046/1046 [==============================] - 0s 278us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0021 - val_mae: 0.0307
Epoch 128/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 129/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0295
Epoch 130/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0021 - val_mae: 0.0302
Epoch 131/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0296
Epoch 132/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0303
Epoch 133/100000
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1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0021 - val_mae: 0.0313
Epoch 134/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0020 - mae:
0.0296 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 135/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0020 - val_mae: 0.0301
Epoch 136/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 137/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0022 - val_mae: 0.0320
Epoch 138/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0023 - val_mae: 0.0321
Epoch 139/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0024 - val_mae: 0.0346
Epoch 140/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0020 - val_mae: 0.0306
Epoch 141/100000
1046/1046 [==============================] - 0s 277us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0024 - val_mae: 0.0341
Epoch 142/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 143/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0022 - val_mae: 0.0326
Epoch 144/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 145/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0021 - val_mae: 0.0319
Epoch 146/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0020 - val_mae: 0.0299
Epoch 147/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0022 - val_mae: 0.0313
Epoch 148/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0023 - val_mae: 0.0329
Epoch 149/100000
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1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0025 - val_mae: 0.0343
Epoch 150/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0020 - val_mae: 0.0305
Epoch 151/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0289
Epoch 152/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0021 - val_mae: 0.0306
Epoch 153/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0301
Epoch 154/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 155/100000
1046/1046 [==============================] - 0s 272us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0291
Epoch 156/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0020 - val_mae: 0.0300
Epoch 157/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 158/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0020 - val_mae: 0.0297
Epoch 159/100000
1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 160/100000
1046/1046 [==============================] - 0s 287us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0019 - val_mae: 0.0292
Epoch 161/100000
1046/1046 [==============================] - 0s 276us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0298
Epoch 162/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0286
Epoch 163/100000
1046/1046 [==============================] - 0s 290us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0019 - val_mae: 0.0292
Epoch 164/100000
1046/1046 [==============================] - 0s 279us/step - loss: 0.0019 - mae:
0.0296 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 165/100000
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1046/1046 [==============================] - 0s 273us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0019 - val_mae: 0.0290
Epoch 166/100000
1046/1046 [==============================] - 0s 274us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0021 - val_mae: 0.0318
Epoch 167/100000
1046/1046 [==============================] - 0s 275us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0021 - val_mae: 0.0310
Epoch 168/100000
1046/1046 [==============================] - 0s 317us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 169/100000
1046/1046 [==============================] - 0s 290us/step - loss: 0.0019 - mae:
0.0295 - val_loss: 0.0022 - val_mae: 0.0319
Epoch 170/100000
1046/1046 [==============================] - 0s 281us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0020 - val_mae: 0.0291
Epoch 171/100000
1046/1046 [==============================] - 0s 292us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0020 - val_mae: 0.0303
Epoch 172/100000
1046/1046 [==============================] - 0s 283us/step - loss: 0.0019 - mae:
0.0294 - val_loss: 0.0022 - val_mae: 0.0321
Epoch 173/100000
1046/1046 [==============================] - 0s 280us/step - loss: 0.0019 - mae:
0.0293 - val_loss: 0.0019 - val_mae: 0.0294
Epoch 174/100000
1046/1046 [==============================] - 0s 288us/step - loss: 0.0019 - mae:
0.0292 - val_loss: 0.0020 - val_mae: 0.0304

[19]: from matplotlib import pyplot

# plot loss during training

pyplot.subplot(211)
pyplot.title('Loss')
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='val')
pyplot.legend()

[19]: <matplotlib.legend.Legend at 0x157223220>
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[20]: # plot absolute error during training

pyplot.subplot(212)
pyplot.title('MAE')
pyplot.plot(history.history['mae'], label='train')
pyplot.plot(history.history['val_mae'], label='validation')
pyplot.legend()
pyplot.show()

[21]: # plot learning curve using pandas

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 0.150) # set the vertical range to [0-1]
plt.show()
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3 Evaluate the model

[22]: # load test set
test_data = pd.read_csv('data/unprocessed_strat_test_data.csv', index_col=0)

[23]: # normalize test data

from sklearn.preprocessing import MinMaxScaler

# define min max scaler
scaler = MinMaxScaler()

# define data to be scaled
normalize_these = ['T1', 'deltaP', 'Pamb', 'Vwsat',

'Twsatin', 'TwIn', 'Pgen', 'N','TOT',
'COT', 'COP', 'RITa', 'CCIT1', 'EIT1',
'EIT2']

# transform data
test_data[normalize_these] = scaler.fit_transform(test_data[normalize_these])

[24]: test_data
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[24]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
6 0.055897 0.671608 0.000000 0.004695 0.000000 0.000000 0.568550
9 0.055897 0.663082 0.000315 0.004695 0.003448 0.000000 0.568550
11 0.055897 0.688156 0.000524 0.004695 0.003448 0.000000 0.554804
13 0.055897 0.738010 0.000760 0.004695 0.006897 0.000000 0.527744
16 0.055897 0.728026 0.001075 0.004695 0.010345 0.003155 0.533213
... ... ... ... ... ... ... ...
68577 0.391280 0.773572 1.000000 0.516432 0.817241 0.801262 0.394243
68579 0.391280 0.873056 1.000000 0.521127 0.820690 0.801262 0.432890
68583 0.288988 0.824699 1.000000 0.530516 0.820690 0.801262 0.439007
68584 0.280045 0.803485 1.000000 0.525822 0.820690 0.801262 0.439007
68587 0.325321 0.750805 1.000000 0.530516 0.820690 0.801262 0.439007

N TOT COT COP RITa CCIT1 EIT1 \
6 0.936372 0.285435 0.083770 1.00 0.865801 0.324138 0.760345
9 0.936372 0.296852 0.089005 1.00 0.863636 0.335632 0.762069
11 0.935999 0.311287 0.094241 1.00 0.861472 0.340230 0.763793
13 0.934714 0.328821 0.099476 1.00 0.863636 0.344828 0.765517
16 0.927944 0.337628 0.099476 1.00 0.861472 0.354023 0.770690
... ... ... ... ... ... ... ...
68577 0.679291 0.599821 0.670157 0.70 0.080087 0.645977 0.167241
68579 0.682321 0.593541 0.670157 0.70 0.077922 0.650575 0.167241
68583 0.684861 0.599087 0.670157 0.72 0.080087 0.645977 0.167241
68584 0.685606 0.601289 0.670157 0.70 0.080087 0.645977 0.167241
68587 0.690805 0.607894 0.664921 0.72 0.075758 0.645977 0.167241

EIT2
6 0.680162
9 0.682186
11 0.682186
13 0.678138
16 0.680162
... ...
68577 0.125506
68579 0.125506
68583 0.125506
68584 0.127530
68587 0.129555

[13718 rows x 15 columns]

[25]: X_test = test_data

[26]: autoencoder.evaluate(X_test, X_test)

429/429 [==============================] - 0s 195us/step - loss: 0.0019 - mae:
0.0291
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[26]: [0.0018976136343553662, 0.029116839170455933]

[ ]:
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Testing

June 7, 2022

1 Part III: Testing

Individual file made to: - Load test data - Load model.h5 with weights

Evaluate the different models, and make predictions with these readings.

[1]: # Python 3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Is this notebook running on Colab or Kaggle?
IS_COLAB = "google.colab" in sys.modules
IS_KAGGLE = "kaggle_secrets" in sys.modules

# Scikit-Learn 0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

# TensorFlow 2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

if not tf.config.list_physical_devices('GPU'):
print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
if IS_COLAB:

print("Go to Runtime > Change runtime and select a GPU hardware�
,!accelerator.")

if IS_KAGGLE:
print("Go to Settings > Accelerator and select GPU.")

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)
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# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "HPtweaking"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:

plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)

Init Plugin
Init Graph Optimizer
Init Kernel

[2]: # disable GPU for faster calculations
# for bigger batch sized (=>1024) GPU will be faster

tf.config.set_visible_devices([], 'GPU')

[3]: # load test set

import pandas as pd
test_data = pd.read_csv('data/unprocessed_strat_test_data.csv', index_col=0)

[4]: test_data.head()

[4]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen N TOT \
6 4.2 87.657 0.074415 -0.01 33.4 30.5 72.500 63840.000 606.234
9 4.2 87.014 0.074415 -0.01 33.5 30.5 72.500 63840.000 606.374
11 4.2 88.905 0.074415 -0.01 33.5 30.5 72.309 63838.258 606.551
13 4.2 92.665 0.074415 -0.01 33.6 30.5 71.933 63832.270 606.766
16 4.2 91.912 0.074415 -0.01 33.7 30.6 72.009 63800.720 606.874

COT COP RITa CCIT1 EIT1 EIT2
6 153.5 2.97 99.6 533.9 143.1 140.9
9 153.6 2.97 99.5 534.4 143.2 141.0

2



11 153.7 2.97 99.4 534.6 143.3 141.0
13 153.8 2.97 99.5 534.8 143.4 140.8
16 153.8 2.97 99.4 535.2 143.7 140.9

#plot features

%matplotlib inline test_data.plot(subplots=True, layout=(4,4), figsize=(15,10))
save_fig(“attribute_plots”)

[5]: # normalize test data

from sklearn.preprocessing import MinMaxScaler

# define min max scaler
scaler = MinMaxScaler()

# define data to be scaled
normalize_these = ['T1', 'deltaP', 'Pamb', 'Vwsat',

'Twsatin', 'TwIn', 'Pgen', 'N','TOT',
'COT', 'COP', 'RITa', 'CCIT1', 'EIT1',
'EIT2']

# transform data
test_data[normalize_these] = scaler.fit_transform(test_data[normalize_these])

[6]: test_data

[6]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
6 0.055897 0.671608 0.000000 0.004695 0.000000 0.000000 0.568550
9 0.055897 0.663082 0.000315 0.004695 0.003448 0.000000 0.568550
11 0.055897 0.688156 0.000524 0.004695 0.003448 0.000000 0.554804
13 0.055897 0.738010 0.000760 0.004695 0.006897 0.000000 0.527744
16 0.055897 0.728026 0.001075 0.004695 0.010345 0.003155 0.533213
... ... ... ... ... ... ... ...
68577 0.391280 0.773572 1.000000 0.516432 0.817241 0.801262 0.394243
68579 0.391280 0.873056 1.000000 0.521127 0.820690 0.801262 0.432890
68583 0.288988 0.824699 1.000000 0.530516 0.820690 0.801262 0.439007
68584 0.280045 0.803485 1.000000 0.525822 0.820690 0.801262 0.439007
68587 0.325321 0.750805 1.000000 0.530516 0.820690 0.801262 0.439007

N TOT COT COP RITa CCIT1 EIT1 \
6 0.936372 0.285435 0.083770 1.00 0.865801 0.324138 0.760345
9 0.936372 0.296852 0.089005 1.00 0.863636 0.335632 0.762069
11 0.935999 0.311287 0.094241 1.00 0.861472 0.340230 0.763793
13 0.934714 0.328821 0.099476 1.00 0.863636 0.344828 0.765517
16 0.927944 0.337628 0.099476 1.00 0.861472 0.354023 0.770690
... ... ... ... ... ... ... ...
68577 0.679291 0.599821 0.670157 0.70 0.080087 0.645977 0.167241
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68579 0.682321 0.593541 0.670157 0.70 0.077922 0.650575 0.167241
68583 0.684861 0.599087 0.670157 0.72 0.080087 0.645977 0.167241
68584 0.685606 0.601289 0.670157 0.70 0.080087 0.645977 0.167241
68587 0.690805 0.607894 0.664921 0.72 0.075758 0.645977 0.167241

EIT2
6 0.680162
9 0.682186
11 0.682186
13 0.678138
16 0.680162
... ...
68577 0.125506
68579 0.125506
68583 0.125506
68584 0.127530
68587 0.129555

[13718 rows x 15 columns]

[7]: X_test = test_data

[8]: model = keras.models.load_model("Keras.h5_models/ae_keras_model_3-6.h5")

[9]: model.evaluate(X_test, X_test)

429/429 [==============================] - 0s 194us/step - loss: 0.0018 - mae:
0.0283

2022-06-07 14:34:48.622091: I
tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR
Optimization Passes are enabled (registered 2)
2022-06-07 14:34:48.622240: W
tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU
frequency: 0 Hz

[9]: [0.001815290073864162, 0.02828710898756981]

2 Predict

[10]: # use X_test data to make predictions

prediction = model.predict(X_test)

[11]: prediction

[11]: array([[ 0.02983552, 0.77770114, -0.18384627, ..., 0.5908542 ,
0.73574334, 0.687926 ],
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[ 0.03215212, 0.77497536, -0.18029156, ..., 0.5921429 ,
0.7371589 , 0.68956214],

[ 0.03471732, 0.77433187, -0.17627841, ..., 0.59538627,
0.7392304 , 0.6918317 ],

...,
[ 0.32124677, 0.7725279 , 0.99784327, ..., 0.64910287,

0.1727834 , 0.11896542],
[ 0.32032055, 0.7656436 , 0.9974869 , ..., 0.6457251 ,

0.17085572, 0.11741717],
[ 0.3445112 , 0.73623514, 0.9953272 , ..., 0.6474879 ,

0.1705122 , 0.1193455 ]], dtype=float32)

[12]: # Transform prediction from array to pandas dataframe

new_pred = pd.DataFrame(prediction, columns = ['T1', 'deltaP', 'Pamb', 'Vwsat',
'Twsatin', 'TwIn', 'Pgen',�

,!'N','TOT',
'COT', 'COP', 'RITa', 'CCIT1',�

,!'EIT1',
'EIT2'])

[13]: new_pred

[13]: T1 deltaP Pamb Vwsat Twsatin TwIn Pgen \
0 0.029836 0.777701 -0.183846 0.005558 -0.001267 0.013378 0.247462
1 0.032152 0.774975 -0.180292 0.005650 0.000154 0.014244 0.247796
2 0.034717 0.774332 -0.176278 0.005747 0.001082 0.014574 0.248410
3 0.037210 0.775621 -0.171459 0.005859 0.001932 0.014747 0.249217
4 0.038438 0.773193 -0.169673 0.005908 0.002918 0.015439 0.249292
... ... ... ... ... ... ... ...
13713 0.376725 0.756784 0.996698 0.468293 0.653505 0.634777 0.441525
13714 0.371364 0.801496 0.999627 0.425008 0.654937 0.635656 0.431595
13715 0.321247 0.772528 0.997843 0.463099 0.669182 0.650599 0.437188
13716 0.320321 0.765644 0.997487 0.469088 0.670245 0.651858 0.438180
13717 0.344511 0.736235 0.995327 0.496024 0.661360 0.642915 0.446352

N TOT COT COP RITa CCIT1 EIT1 \
0 0.782192 0.304519 0.286109 0.799265 0.883091 0.590854 0.735743
1 0.782794 0.305988 0.288673 0.799756 0.883175 0.592143 0.737159
2 0.786726 0.307299 0.294449 0.803639 0.883328 0.595386 0.739230
3 0.793717 0.308204 0.303173 0.810643 0.883637 0.600390 0.742025
4 0.792640 0.309123 0.303255 0.809476 0.883646 0.600289 0.742535
... ... ... ... ... ... ... ...
13713 0.653397 0.469130 0.627312 0.671032 0.051216 0.652332 0.168549
13714 0.670425 0.466279 0.634371 0.687531 0.063753 0.660927 0.173029
13715 0.671947 0.424230 0.624209 0.692468 0.056838 0.649103 0.172783
13716 0.666502 0.423622 0.619756 0.687110 0.054540 0.645725 0.170856
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13717 0.659191 0.441395 0.625841 0.679215 0.047003 0.647488 0.170512

EIT2
0 0.687926
1 0.689562
2 0.691832
3 0.694819
4 0.695462
... ...
13713 0.115463
13714 0.116748
13715 0.118965
13716 0.117417
13717 0.119346

[13718 rows x 15 columns]

[14]: # Undo the scaling of X according to feature_range.

X_trans = scaler.inverse_transform(new_pred)

[15]: X_trans

[15]: array([[4.1533756e+00, 9.5658447e+01, 7.4407756e-02, ..., 5.4550214e+02,
1.4167311e+02, 1.4128355e+02],

[4.1575203e+00, 9.5452866e+01, 7.4407898e-02, ..., 5.4555823e+02,
1.4175522e+02, 1.4136436e+02],

[4.1621094e+00, 9.5404335e+01, 7.4408047e-02, ..., 5.4569928e+02,
1.4187537e+02, 1.4147649e+02],

...,
[4.6747108e+00, 9.5268280e+01, 7.4452847e-02, ..., 5.4803595e+02,
1.0902144e+02, 1.1317689e+02],

[4.6730537e+00, 9.4749077e+01, 7.4452832e-02, ..., 5.4788904e+02,
1.0890964e+02, 1.1310040e+02],

[4.7163305e+00, 9.2531120e+01, 7.4452750e-02, ..., 5.4796576e+02,
1.0888971e+02, 1.1319566e+02]], dtype=float32)

[16]: # Transform prediction from array to pandas

new_pred = pd.DataFrame(X_trans, columns = ['T1', 'deltaP', 'Pamb', 'Vwsat',
'Twsatin', 'TwIn', 'Pgen',�

,!'N','TOT',
'COT', 'COP', 'RITa', 'CCIT1',�

,!'EIT1',
'EIT2'])

[17]: new_pred
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[17]: T1 deltaP Pamb Vwsat Twsatin TwIn \
0 4.153376 95.658447 0.074408 -0.008161 33.363251 30.924086
1 4.157520 95.452866 0.074408 -0.007965 33.404480 30.951527
2 4.162109 95.404335 0.074408 -0.007758 33.431389 30.962006
3 4.166569 95.501587 0.074408 -0.007520 33.456024 30.967468
4 4.168765 95.318436 0.074408 -0.007416 33.484612 30.989410
... ... ... ... ... ... ...
13713 4.773962 94.080879 0.074453 0.977465 52.351639 50.622425
13714 4.764370 97.453026 0.074453 0.885267 52.393169 50.650307
13715 4.674711 95.268280 0.074453 0.966401 52.806267 51.123989
13716 4.673054 94.749077 0.074453 0.979157 52.837101 51.163891
13717 4.716331 92.531120 0.074453 1.036531 52.579445 50.880390

Pgen N TOT COT COP RITa \
0 68.038483 63121.398438 606.468018 157.364685 2.869632 100.398819
1 68.043129 63124.207031 606.486023 157.413651 2.869878 100.402672
2 68.051651 63142.535156 606.502075 157.523987 2.871819 100.409729
3 68.062866 63175.121094 606.513245 157.690598 2.875322 100.424042
4 68.063911 63170.097656 606.524414 157.692184 2.874738 100.424423
... ... ... ... ... ... ...
13713 70.734993 62521.117188 608.486450 163.881653 2.805516 61.966187
13714 70.597015 62600.480469 608.451538 164.016495 2.813766 62.545376
13715 70.674736 62607.574219 607.935913 163.822388 2.816234 62.225910
13716 70.688515 62582.199219 607.928467 163.737335 2.813555 62.119724
13717 70.802055 62548.125000 608.146423 163.853577 2.809608 61.771530

CCIT1 EIT1 EIT2
0 545.502136 141.673111 141.283554
1 545.558228 141.755219 141.364365
2 545.699280 141.875366 141.476486
3 545.916992 142.037460 141.624039
4 545.912598 142.067032 141.655792
... ... ... ...
13713 548.176453 108.775841 113.003899
13714 548.550354 109.035667 113.067329
13715 548.035950 109.021439 113.176888
13716 547.889038 108.909637 113.100403
13717 547.965759 108.889709 113.195663

[13718 rows x 15 columns]

#plot features

%matplotlib inline new_pred.plot(subplots=True, layout=(4,4), figsize=(15,10))

[18]: new_pred.to_csv("data/Predict3-6.csv")
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[19]: data = pd.read_csv('data/Predict3-6.csv', index_col=0)

all_data = pd.read_csv('data/unprocessed_strat_test_data.csv')

[20]: from IPython.display import Math

plt.plot(all_data['T1']) #blue
plt.plot(data['T1']) #orange
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("T1-3-6")
plt.show

Saving figure T1-3-6

[20]: <function matplotlib.pyplot.show(close=None, block=None)>

[21]: plt.plot(all_data['deltaP'])
plt.plot(data['deltaP'])
plt.legend(['Tanh', 'ReLU'], loc='lower right')
plt.xlabel('Time index')
plt.ylabel("Pressure (mbar)")
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plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("deltaP-3-6")
plt.show

Saving figure deltaP-3-6

[21]: <function matplotlib.pyplot.show(close=None, block=None)>

[22]: plt.plot(all_data['Pamb'])
plt.plot(data['Pamb'])
plt.legend(['Tanh', 'ReLU'], loc='lower right')
plt.xlabel('Time index')
plt.ylabel("Pressure (bar)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("Pamb-3-6")
plt.show

Saving figure Pamb-3-6

[22]: <function matplotlib.pyplot.show(close=None, block=None)>
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[23]: plt.plot(all_data['Vwsat'])
plt.plot(data['Vwsat'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Flow rate ($m^3/h$)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("Vwsat-3-6")
plt.show

Saving figure Vwsat-3-6

[23]: <function matplotlib.pyplot.show(close=None, block=None)>
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[24]: plt.plot(all_data['Twsatin'])
plt.plot(data['Twsatin'])
plt.legend(['Tanh', 'ReLU'], loc='lower right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("Twsatin-3-6")
plt.show

Saving figure Twsatin-3-6

[24]: <function matplotlib.pyplot.show(close=None, block=None)>
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[25]: plt.plot(all_data['TwIn'])
plt.plot(data['TwIn'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("TwIn-3-6")
plt.show

Saving figure TwIn-3-6

[25]: <function matplotlib.pyplot.show(close=None, block=None)>
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[26]: plt.plot(all_data['Pgen'])
plt.plot(data['Pgen'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Power (kW)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("Pgen-3-6")
plt.show

Saving figure Pgen-3-6

[26]: <function matplotlib.pyplot.show(close=None, block=None)>
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[27]: plt.plot(all_data['N'])
plt.plot(data['N'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Rotational speed (rpm)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("N-3-6")
plt.show

Saving figure N-3-6

[27]: <function matplotlib.pyplot.show(close=None, block=None)>
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[28]: plt.plot(all_data['TOT'])
plt.plot(data['TOT'])
plt.legend(['True values', 'Prediction values'], loc='lower right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("TOT-3-6")
plt.show

Saving figure TOT-3-6

[28]: <function matplotlib.pyplot.show(close=None, block=None)>

15



[29]: plt.plot(all_data['COT'])
plt.plot(data['COT'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("COT-3-6")
plt.show

Saving figure COT-3-6

[29]: <function matplotlib.pyplot.show(close=None, block=None)>
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[30]: plt.plot(all_data['COP'])
plt.plot(data['COP'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Pressure (bar)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("COP-3-6")
plt.show

Saving figure COP-3-6

[30]: <function matplotlib.pyplot.show(close=None, block=None)>

17



[31]: plt.plot(all_data['RITa'])
plt.plot(data['RITa'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("RITa-3-6")
plt.show

Saving figure RITa-3-6

[31]: <function matplotlib.pyplot.show(close=None, block=None)>
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[32]: plt.plot(all_data['CCIT1'])
plt.plot(data['CCIT1'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("CCIT1-3-6")
plt.show

Saving figure CCIT1-3-6

[32]: <function matplotlib.pyplot.show(close=None, block=None)>
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[33]: plt.plot(all_data['EIT1'])
plt.plot(data['EIT1'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("EIT1-3-6")
plt.show

Saving figure EIT1-3-6

[33]: <function matplotlib.pyplot.show(close=None, block=None)>
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[34]: plt.plot(all_data['EIT2'])
plt.plot(data['EIT2'])
plt.legend(['Tanh', 'ReLU'], loc='upper right')
plt.xlabel('Time index')
plt.ylabel("Temperature ($^\circ$C)")
plt.grid(True, color="#93a1a1", alpha=0.3)
save_fig("EIT2-3-6")
plt.show

Saving figure EIT2-3-6

[34]: <function matplotlib.pyplot.show(close=None, block=None)>
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2.1 To write over to xlsx file

load full data set

import pandas as pd testdata = pd.readcsv(0data/alldatanooutliers.csv0, indexcol =
0)withpd.ExcelWriter(”data/Predict.xlsx”)aswriter : testdata.toexcel(writer, sheetname =0

Before0)newpred.toexcel(writer, sheetname =0 After0)
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