
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
Robotics and Signal Processing

The spring semester, 2022

Open / Confidential
Author: Christopher Andreassen

…………………………………………
(signature author)

Course coordinator: Professor Kjersti Engan

Supervisor(s): Professor Kjersti Engan, Professor Emiel Janssen, MD and PhD student
Helga Hardardottir, PhD student Saul Fuster Navarro

Thesis title:
Melanoma prognosis prediction using image processing and
machine learning

Credits (ECTS): 30

Keywords:

Melanoma, deep learning, supervised
learning, convolutional neural network,
prognosis

 Pages: 70

 + appendix: 11 + 7z-file

 Stavanger, 14th of June, 2022
 date/year

UNIVERSITY OF STAVANGER

Department of Electrical Engineering
and Computer Science

Melanoma prognosis prediction
using image processing and

machine learning

Master’s Thesis in Robotics and Signal Processing
by

Christopher Andreassen

Supervisor

Kjersti Engan, Professor

Co-supervisors

Helga Hardardottir, MD and PhD student

Emiel Janssen, Professor

Saul Fuster Navarro, PhD student

June 14, 2022

Abstract

Death of melanoma cancer is most common in Europe, and northern Europe
has the second highest mortality rate of melanoma in the world, with 1.9 per
100 000 dying from melanoma in northern Europe in 2020.

Prognosis of melanoma is nowadays based on educated guesses by a pathol-
ogist, from analyzing patient tumors. Analyzing tumors takes much time,
which limits the pathologist’s capability for the number of tumors they are
able to analyze in a given amount of time.

The primary objective of this thesis is to suggest a machine learning based
method for predicting prognosis of melanoma, to aid the pathologist. The
proposed method is based on the VGG16 architecture with pre-trained weights
as the backbone, adding some fully connected layers. The network is trained
and validated on whole slide images (WSI) from 51 patients with known
melanoma prognosis, produced at Stavanger University Hospital. Regions of
interest (ROI) areas in these images are marked by a pathologist.

A foreground segmentation algorithm for skin histological WSI is presented.
Tiles are extracted from ROI areas in the WSIs, and resized to contain three
different magnification levels, which are used in model training and valida-
tion. Multiple magnification levels are used to mimic the way a pathologist
analyzes tissues at different magnifications.

Experiments are done by combining different magnification scales, utilizing
tiles from respectively one, two and three magnification level(s) to train the
models.

The best performing model used only one magnification scale at 20x. Cross
validation results gave a F1 score of 0.7667, and an area under the curve in
a receiver operating characteristic curve of 0.81. This result is promising,
considering the small number of patients in the dataset. For future work, the
method has to be tested on a larger dataset. It is also recommended to test
a larger set of possible hyperparameters and/or model architectures.

iii

Acknowledgments

This thesis marks the end of my M.Sc. degree in Robotics and Signal Pro-
cessing at the University of Stavanger.

I would like to express my deepest gratitude to my head-supervisor, Professor
Kjersti Engan, for her invaluable patience, guidance and feedback through
the entire work of this thesis.

I could not have undertaken this journey without co-supervisor, MD and
PhD student Helga Hardardottir, who provided me with annotations and
knowledge about the subject of melanoma. I am also grateful to my co-
supervisor, Professor Emiel Janssen, for his presentation of melanoma and
his vast knowledge in the field of pathology.

Thanks should also go to co-supervisor, PhD student Saul Fuster Navarro,
for his guidance and invaluable feedback.

A final thanks to my friends and family, especially my parents and siblings,
for encouraging me throughout five years of studies, leading to this thesis.

iv

Contents

Abstract iii

Acknowledgments iv

Glossary viii

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 2
1.3 Thesis objective . 2

2 Medical background 4
2.1 Overview of the skin tissue layers 4
2.2 Pathology and tissue processing 5
2.3 Whole slide image . 6
2.4 Melanoma . 6

2.4.1 Stages of melanoma . 7
2.4.2 Prognosis . 7

3 Technical background 11
3.1 Introduction to artificial intelligence 11

3.1.1 Machine learning . 11
3.2 Deep learning . 12

3.2.1 Neural networks . 12
3.2.2 Convolutional neural networks 13
3.2.3 VGG16 - a convolutional neural network 16
3.2.4 Transfer learning . 17

3.3 Supervised learning . 17
3.3.1 Train and validation 17
3.3.2 Cross-validation . 18
3.3.3 Gradient descent . 18

v

3.3.4 Early stopping . 19
3.3.5 Evaluation metrics . 20

4 Material and previous work 23
4.1 Data material . 23
4.2 Previous work . 24

4.2.1 Annotations . 24
4.2.2 Tile extraction . 25
4.2.3 Network . 26

5 Methods 29
5.1 Preprocessing . 29
5.2 Training and cross validation 33

5.2.1 Making tile datasets 34
5.2.2 CNN at multiple magnification levels 35

5.3 Testing . 37
5.4 Implementation . 37

6 Experiments and results 39
6.1 Experiment 1 - Preprocessing 39
6.2 Experiment 2 - Finding optimal tile magnification 44

6.2.1 Experiment 2a . 44
6.2.2 Experiment 2b . 45
6.2.3 Experiment 2c . 46

6.3 Experiment 3 - Evaluation with cross validation 47
6.3.1 Experiment 3a - Mono-scale model 48
6.3.2 Experiment 3b - Multi-scale model 49

7 Discussion 58
7.1 Experiment 1 - Preprocessing 58
7.2 Model performance . 58

7.2.1 Experiment 2 - Utilizing different tile magnifications . . 59
7.2.2 Experiment 3 - Utilizing cross validation 59

7.3 Comparisons with related work 60
7.4 Limitations . 60
7.5 Future work . 61

8 Conclusion 62

Bibliography 63

Appendices 66

vi

A Overview of WSIs used in this thesis 67

B Experiments and results details 70
B.1 Details from experiment 3a . 70
B.2 Details from experiment 3b 74

vii

Glossary

Tis Melanoma in situ

WSI Whole slide image

H&E Hematoxylin and eosin

GPU Graphics processing unit

AI Artificial intelligence

DNN Deep neural network

CNN Convolution neural network

ML Machine learning

FC Fully-connected

SGD Stochastic gradient descent

ROC Receiver operating characteristic

AUC Area under the curve

viii

1. Introduction

This chapter presents the motivations for this thesis, related work on pre-
dicting cancer prognosis and the thesis objective.

1.1 Motivation

In 2020, 120 771 people died from skin cancer, 57 043 of which being from
melanoma skin cancer [1]. Of these melanoma deaths 26 360 people died
in Europe, making Europe the continent with the most melanoma deaths in
2020. The second highest mortality rate in 2020 of melanoma in the world
was found in northern Europe, with a mortality rate of 1.9/100 000 [2].

Melanoma is one of the most dangerous type of skin cancer in Norway, with
a mortality rate of 6.8/3.8 per 100 000 (male/female) in 2020. The incidence
rate has steadily increased each year from 1961 to 2020. This resulted in
the incidence rate to increase 11.4/10.9% (male/female) from the five-year
period 2011-2015, to the next one (2016-2020) [3].

Pathologists use much time analyzing cancer tumors, limiting their capabil-
ity for the number of cancer tumors they can analyze in a given amount of
time. This creates more work for the pathologists, which gives rise to faster
methods to lower the time spent per tumor. One aspect of analyzing a can-
cer tumor is to find the prognosis of the cancer, which is used to decide the
appropriate treatment for a patient. Prognosis relies on a pathologist’s ear-
lier experience and knowledge in the field, combined with statistical models
based on prior patient histories [4]. This leads to an unsure prognosis that
is only confirmed/disproved by the development of the tumor over time.

Modern technology has given rise to digitization of glass slides containing
slices of a cancer tumor, resulting in whole slide images (WSI). Machine
learning can use these WSIs to help find a likely outcome of a cancer tumor,

1

by the use of prediction algorithms. This leads to reproducible and faster
evaluation of a tumor, which can lead to better prognosis and less work-
overload for the pathologist.

1.2 Related work

Machine learning (ML) has grown in popularity due to the increase of avail-
able data and process capabilities. This has lead to new and improved ML
algorithms that applies to new tasks. ML is used to help medical doctors
identify the prognosis of different type of cancers, e.g. breast cancer screen-
ing and cervical screening [5].

In the research part of this thesis, there were no published papers about
prognosis prediction of melanoma using machine learning. Papers about
prognosis prediction of other cancers is therefore mentioned here.

Lai et al. [6] proposed a method to predict 5-year survival of non-small cell
lung cancer (NSCLC). A bimodal deep neural network (DNN) was made by
merging the output layers of two DNNs, one feed with biomarkers and the
other with clinical data. Zhang et al. [7] also proposed a method to pre-
dict 5-year survival of NSCLC. This was done using a feature transformation
method based on convolution neural network (CNN).

Sun et al. [8] proposed a method called MDNNMD to predict prognosis of
breast cancer. This was done by using multi-dimensional data, consisting of
three datasets of medical data (gene expression, copy number alteration and
clinical data). Each dataset was then train on separate DNN models, and
the result was calculated as a weighted sum of the model’s outputs. Prog-
nosis prediction of breast cancer was done by Cheng et al. [9], by combining
ensemble learning and a bimodal DNN.

1.3 Thesis objective

The main objective of this thesis is to propose a method to predict if a
malignant melanoma in a patient will become metastatic within five years
after diagnosis. Patients with metastatic melanoma within five years after
diagnosis is classified as having bad prognosis, the rest is classified as having
good prognosis. WSIs from malignant tissues with melanoma was annotated

2

with good or bad prognosis by a pathologist. CNN was used to classify each
tile in the WSIs as good or bad prognosis, using supervised learning. The
result from this classification was then applied to predict each WSI to have
good prognosis or bad prognosis.

3

2. Medical background

2.1 Overview of the skin tissue layers

The three layers of the skin are: epidermis, dermis and hypodermis, each
of which is constructed differently and contains different parts of the skin’s
anatomy.

Epidermis

The most superficial layer of the skin is the epidermis, consisting of stratum
basale (basal layer), stratum spinosum, stratum granulosum (granular layer)
and stratum corneum (corneum layer), as shown in figure 2.1. The most
superficial layer is here described as above the other layers. The basal layer
contains stem cells that are constantly producing keratinocytes which makes
keratin, and melanocytes which makes melanin, a brown pigment used to pro-
tect the cells in the skin from ultraviolet (UV) radiation. The keratinocytes
are pushed from this layer thought the epidermis and die as it pass over to
the outer layer of the epidermis (the corneum layer). Above the basal layer
is straum spinosum, containing dendritic cells, one of the skin’s first line of
defense against incoming infections. Further up is the granular layer, where
cells makes glycolipids, which glue cells in the epidermis together to hinder
them from separating from each other. In the most superficial part of the
skin is the corneum layer and consist of keratin and dead keratinocytes [10].

High-density areas of melanocytes are referred to as nevus and leads to a
build up of melanin, leaving a brown color on the surface of the skin at this
location. This nevus is often benign and harmless, but can sometimes be
cancerous and therefore malignant.

4

Dermis and hypodermis

Dermis is placed underneath epidermis and consists of connective tissue con-
taining extracellular components e.g. vessels, glands, hair follicles, fibroblasts
and nerves. Hypodermis is located Under the dermis, deepest in the skin tis-
sue, and consists primarily of fatty tissue [10][11].

Figure 2.1: Sketch of epidermis and dermis.

2.2 Pathology and tissue processing

Pathology is the science of studying and diagnosing diseases through the
examination of surgically removed organs, tissues, bodily fluids, or whole
bodies during autopsies. Medical doctors in this field of study are called
pathologists. They look at the anatomical structure and appearance of the
cells in bodies and body tissues to find out if it is diseased. The area of stud-
ies for a pathologist is cellular adaptation to injury, necrosis, i.e. the death
of body tissue, inflammation, wound healing and neoplasia (cells growing
abnormally) [12]. Pathologists work with, among other diseases, melanoma
skin cancer, where cellular patterns in a nevus are observed through a mi-
croscope to determine if the sample is benign or malignant.

For the cells in a nevus tissue to be visible through a microscope, the nevus
has to first be sliced in to thin slices (typically 4-6 µm thick [13]) by a slic-
ing tool. The most informative slices are then mounted on a glass slide and
stained to enhance the visibility of the interesting areas in the tissue.

5

The stain hematoxylin and eosin (H&E) is widely used for examination of
human tissue, due to its capability of highlighting the detailed structures
of cells and tissues. H&E is a combination of two dyes: hematoxylin, with
a blue color, and eosin, with a pink/red color. Hematoxylin binds to the
nuclei, while eosin binds to cell membrane, proteins and the nucleolus [14].
Using this stain to examine a nevus makes the center of its cells appear in
blue/purple, and areas around the center of the cells, muscle fiber, and more
appear in pink/red, as shown in figure 2.2.

Figure 2.2: Tiles from part of a WSI containing malignant nevus.

2.3 Whole slide image

A whole slide scanner captures images of a tissue slide tile by tile or line by
line, and assembles these images to generate a digital image, called whole
slide image (WSI) [13]. This makes it possible to work with tissue slides on
a computer. A WSI can be stored in different file-formats, depending on the
scanner it’s scanned with. The format used in this thesis is the ndpi-format,
made by the Hamamatsu nanozoomer s60, which stores a WSI at different
magnifications, making it easy to extract or look through different part of
the image at these magnifications.

2.4 Melanoma

Melanoma is a cancer that occurs when the DNA in melanocytes, located in
the basal layer, gets damaged and melanocytes begin to grow out of control.
The emergence of melanoma can have different causes, e.g. through exposure
to UV radiation from the sun [15].

6

2.4.1 Stages of melanoma

Melanoma becomes deadlier if it is not found in early stages and gets enough
time to multiply and spread. It is therefore important to discover a melanoma
tumor early. Medical doctors use stages to classify the spread of melanoma,
which is described in a staging system. An example of such a system is TNM
(primary tumor, lymph node, and metastasis) system, which is based on
three factors [16]:

• How far the primary tumor (T) has grown, and if it is ulcerated (any
breakdown of the skin).

• If the cancer has spread to nearby lymph nodes (N).

• If the cancer has spread to a distant place in the body, from the primary
tumor (metastasis (M)), such as distant lymph nodes or organs.

The five stages of the TNM system are summarized in figure 2.1, where stage
0 is the least invasive stage and stage 4 is the most invasive stage. Figure 2.3
shows the growth of the primary tumor in the different stages of the TNM
system. A late diagnosis may result in a 5-year survival rate to decrease
from 94.8/98.1% (male/female) to 36.6/55.1% (male/female), depending on
the resulting stage [3].

2.4.2 Prognosis

The prognosis of a disease is a guesstimate about its outcome or course to-
wards recovery. In this thesis, prognosis was defined by the presence/absent
of cancer cells breaking away from where they first formed, and form new tu-
mors in other parts of the body (metastasis) within five years of diagnosis. A
patient with metastasis before five years after diagnosis had a bad prognosis,
and a patient with metastasis five years after diagnosis had a good progno-
sis. Prognosis of melanoma is hard to estimate, because a tissue with good
prognosis looks similar to a tissue with bad prognosis, as shown in figure 2.4,
where the difference between the malignant lesions (2.4a and 2.4b) is small,
compared to the benign lesion (2.4c).

7

Stage Melanoma stage description

0 The cancer is only found in the epidermis. This stage is also called
melanoma in situ (Tis).

1
The tumor is less than 2 mm thick and can be ulcerated (breakdown of
skin over the melanoma), and it has not spread far in to the body or to
the lymph nodes nearby.

2
The tumor is thicker than 1 mm (maybe thicker than 4 mm), can be
ulcerated, and it has not spread far in to the body or to the lymph
nodes nearby.

3
The tumor is more than 2 mm or 4 mm thick (Depending on the sub
category), can be ulcerated, it has not spread far in to the body, but it
has spread to nearby lymph nodes.1

4
The tumor can have any thickness, can be ulcerated, can have spread
to nearby lymph nodes, and has spread to distant lymph nodes or
organs (e.g. lungs, liver or brain).

1 Stage 3 has four sub-categories (3A-3D), which is summarized here.

Table 2.1: Stages of melanoma according to the TNM system [16].

8

Figure 2.3: Illustration of the T stages in the TNM system.
The figure is reprinted in unaltered form from Wikimedia Commons,

File:Diagram showing the T stages of melanoma CRUK 373.svg, licensed
under CC BY-SA 4.0 [17].

9

https://creativecommons.org/licenses/by-sa/4.0/deed.en

(a) Malignant lesion, good prognosis.

(b) Malignant lesion, bad prognosis.

(c) Benign lesion.

Figure 2.4: Malignant lesion in tissue with good and bad prognosis, and
benign lesion. Light blue surrounding contains malignant lesion, purple sur-
rounding contains ulceration, and green surrounding contains benign lesion.

10

3. Technical background

3.1 Introduction to artificial intelligence

The goal of using artificial intelligence (AI) is to make intelligent machi-
nes/ computer programs, so that they can think and preform tasks meant
for human brains. AI is used in multiple fields of study like cybernetics,
information theory, statistics, computer science, among others.

3.1.1 Machine learning

Machine learning (ML) is a sub-field of AI and relies on data to learn in-
dependently, instead of following detailed instructions. A dataset is used to
train a ML algorithm, and the resulting performance is evaluated against
an independent test-set. The algorithm is learning if the performance of
the test-set increase over time, as the algorithm is training. In short, the
algorithm is learning the underlying features of the dataset. An important
requirement for making a successful ML algorithm is large amount of data,
so the algorithm has enough features to learn from a general representation
of the data.

A machine learning algorithm is useful in many circumstances, e.g. in classi-
fication and clustering. Classification is used for labeling different categories
of data, to for example separate images of different animals (dogs from cats),
or predict the state of an illness in an medical image (good vs. bad prognosis
of cancer). Clustering is used for grouping data in a data-set, to for example
recognize behavior patterns (e.g. streaming service behavior, shopping be-
havior), or patterns in an image (group of objects).

The focus on ML has grown exponentially the past decade, with more than
32 times as many machine learning papers posted in 2018 as in 2009 [18].
This focus is still growing, with graphics processing units (GPU) computing
power exponentially increasing every year. More and bigger datasets are

11

created and challenges with focus on making the best preforming algorithm
on a dataset is arranged, to be able to make better algorithms and to advance
our understanding of machine learning.

Figure 3.1: Relation between artificial intelligence, machine learning and
deep learning

3.2 Deep learning

This section introduces neural networks and explains some deep learning
networks and techniques.

3.2.1 Neural networks

Neural networks draws inspiration from the human brain, where an artificial
neuron is a model of the biological neuron in the brain, as depicted in figure
3.2. This artificial neuron receives signals as inputs xi, where i = 0, ..., n.
These inputs are weighed against weights wi and added together in a transfer
function. The output of this function is equal to

∑n
i=0 xiwi. This output is

passed through an activation function, which decides the value of the neu-
ron’s output and whether to activate the neuron or not. The weights can
strengthen or weaken its corresponding input signal. Weight w0 is often set
to be a constant and input x0 set to be equal to 1, in order to be able to shift

12

the weighted sum with a constant value.

Figure 3.2: Artificial neuron, calculates a single output from a weighted sum
of inputs.

A neural network contains a network of multiple artificial neurons, in the
same way the brain contains a network of biological neurons. This neural
network contains an input layer as its first layer, then one or more hidden
layer(s) and an output layer as the last layer, as shown in figure 3.3. Each
of these layers contains neurons, depicted as circles in the figure, and has
each its neurons connected to all neurons in the next layer. These layers
are called fully-connected layers (FC). The number of hidden layers in a
neural network has grown the last decade, following the demand for more
complicated networks, able to solve more complicated tasks than before.
This has lead to deeper networks, with many hidden layers, called deep neural
networks (DNN).

3.2.2 Convolutional neural networks

A convolutional neural network (CNN) is a neural network where some of
the layers contain convolution layers. These layers use convolution opera-
tions between its input and an kernel with weights, to detect features from
the input. The kernel weights are updated while the CNN is training.

An example of a convolution operation is shown in figure 3.4. The image
in figure 3.4b can be seen as an input to a convolution layer. The kernel in
figure 3.4a is a 3 by 3 sized kernel that amplifies main-diagonal edges (the
diagonal going from top-left to bottom-right). The convolution between the

13

Figure 3.3: Example of a neural network with one input layer, two hidden
layers and one output layer.

image and the kernel results in an amplification along the main-diagonal of
the image, and a dampening along the anti-diagonal (the diagonal going from
bottom-left to top-right) of the image, as shown in figure 3.4c. This kernel
can therefore be seen as an filter used to find features similar to the kernel.
A convolution layer can have multiple filters like this, able to find multiple
features from one input. The convolution layer therefore makes CNNs useful
for finding features in images.

(a) Kernel K (b) Image X (c) X∗K

Figure 3.4: Convolution between an image and a kernel.

The first layers of a CNN can be seen as a feature extractor, containing
convolution layers that finds features of the input. The last layers of a CNN
can be seen as a classifier, which often consists of fully-connected layers,

14

that decides upon an outcome from the feature data made by the feature
extraction layers.

Pooling layer

A pooling layer down-samples its input to make the network more compact
and to reduce the computational burden. The most common types of pooling
layer are max-pooling and average-pooling. Max-pooling finds the maximum
value in an area of the input, and replaces this area with its maximum value.
This operation can be done on the entire input, by using a set sized kernel
and slide it a number of strides along the entire input. Max-pooling is shown
in figure 3.5, where a 2 by 2 sized kernel strides 2 pixels every time the
max-operation is used. Average-pooling is similar, but uses average instead
of max.

Figure 3.5: Example of max-pooling on a single input matrix.

Flatten layer

A flatten layer is used to transform a multidimensional input into a one
dimensional vector. This is called flattening and is shown in figure 3.6. The
flatten layer is often used to transform a matrix from a pooling layer into
a vector, and pass this vector through a fully-connected layer to be further
processed.

Dropout layer

Networks with small amounts of input data, from a dataset, may suffer from
overfitting, where the network has learned too many features from too little
data. This causes the network to not be able to correctly represent the entire
dataset. Overfitting will lead to some features being prioritized higher in the

15

Figure 3.6: Example of flattening on a single input matrix.

network than they are in general, which can lead to a poor performance of
the network. Dropout layers is used to solve this problem. This layer sets
the input of a given percentage of neurons, in a fully-connected layer, to zero.
The result of this is an simpler FC layer with deactivated neurons, forcing
the network to be less dependent on particular neurons.

3.2.3 VGG16 - a convolutional neural network

VGG16 is a CNN architecture proposed by K. Simonyan and A. Zisserman
in 2014 [19]. VGG16 took first and second place in their submission for the
ImageNet Challenge in the same year. The architecture for this network is
shown in figure 3.7, with 16 trainable layers. Weights of this network, trained
on ImageNet, are located in most framework for deep learning (e.g. PyTorch
and TensorFlow), which have made VGG16 a popular network to use.

Figure 3.7: VGG16 architecture. Convolutional layers with said number of
3x3 filter kernels and ReLu activation function. Fully-connected (FC) layers
with said amount of neurons. The architecture is described in [19].

16

3.2.4 Transfer learning

A pre-trained neural network is a network that is trained on another dataset.
This dataset can have a wide amount of data, with a lot of basic features that
can be found in many other datasets. Having knowledge about these features
when training a new network can therefore be useful. Transfer learning is a
machine learning technique, where a pre-trained network is re-purposed to
be used in another task. The layers in the pre-trained network can be used
in its entirety, or partially switched out with other layers, which have to be
trained from scratch.

A layer in a pre-trained network can be set to not be trained. A non-trainable
layer is often referred to as a frozen layer, and can be useful for not altering
weights in a layer that is important for finding basic features. The first layers
in a pre-trained network is often useful to freeze, because it is mostly these
layers that learn basic features [20].

3.3 Supervised learning

Supervised learning is the machine learning task of learning the relationship
between a list of inputs and a corresponding list of outputs. The inputs are
normally vectors or matrices and the outputs are normally single values. For
every output y in the dataset there has to be a relationship to its input x in
the dataset, such that y = f(x). The goal of using supervised learning is to
train a network to approximate this relationship and try to find y = g(x),
where g(x) is the result of input x going through the network.

3.3.1 Train and validation

A dataset can be divided in to train set and validation set. The training set
is used to fit parameters of a network during training. The validation set is
used to check how well the network is training, by testing the network on new
data, while training. This set has to have no influence on the network, in
order for the test to be a valid estimate on how well the network is training.
A test set can also be introduced, to test the network after training, but
it’s often desirable to leave this data in the train set and validation set when
working with a small dataset. The reason for this is to strengthen the training
of the network.

17

3.3.2 Cross-validation

Cross-validation uses different parts of a dataset to train and validate a net-
work on different iterations. This is done to see if the performance of the
network changes depending of which part of the dataset that is used for
validation.

Stratified K-fold

K-fold divides the dataset in to K groups, called folds, where one fold of the
dataset is used for validation and the rest of the dataset is used for training.
This is done K iterations to make K datasets of training- and validation-sets,
with each having a unique validation-set. Stratified K-fold adds one more
requirement to the setup of the dataset, where the same number of data
from each class has to be represented in each fold, as seen in figure 3.8. This
results in a good representation of each class in each iteration. K-fold can be
used in cross-validation to acquire a unique validation set in each iteration.

Figure 3.8: Example of stratified 5-fold validation. The dataset is split in to
training data and validation data for each iteration, depending on the class
distribution.

3.3.3 Gradient descent

Gradient descent is an algorithm used to find a local minimum of a differen-
tiable function. A non-zero valued gradient at point a in a function, shows
the direction where the function increases most quickly from the point. This

18

means that the quickest way from point a to a local minimum is the opposite
direction of the gradient at point a, −∇f(a). Equation 3.1 shows the formula
for gradient descent, where a point closer to a local minimum is defined to
be a set of steps along a descending direction from an original point. These
amount of steps is defined using a variable called learning rate, µ.

ai+1 = ai − µ∇f(ai) (3.1)

Figure 3.9 shows an example of gradient descent in an tree-dimensional space.
For a point to move to the function’s minimum value the learning rate has
to be grate enough to get out of other minimums, but small enough for the
point to not go past and ignore the function’s minimum value.

Figure 3.9: Example of gradient descent with tree different initial
conditions.

The figure is part of a GIF from Wikimedia Commons,
File:Gradient descent.gif, in public domain under CC0 1.0 [21].

In neural networks, a loss function is the difference between an outcome
produced by a network and the expected outcome. Gradient descent is used
to minimize this loss function in a neural network.

3.3.4 Early stopping

A network is trained with a whole train set for a set amount of cycles, called
epochs. If this network is trained on the training data for too many epochs it
tends to be too well fitted to this data. This leads to a network that is good
at finding features from the training, but bad at finding features for data

19

https://creativecommons.org/publicdomain/zero/1.0/deed.en

in general. The network is therefore overfitted to the training data. Early
stopping is used to hinder this from happening, by stopping the training
before it is overfitted. This is done by monitoring the validation during
training, if the validation does not improve after a predetermined number of
epochs, the training will be stopped. The weights from the best performing
epoch are then stored.

3.3.5 Evaluation metrics

A neural network has many hyperparameters that needs to be defined before
the network can be trained, e.g. learning rate, number of neurons in each
layer, dropout rate, and batch size, the number of data processed before the
network updates. There are usually no obvious ways of determine the opti-
mal hyperparameters, which is way one typical train a network starting with
a set of hyperparameters. These parameters are then adjusted depending on
how the network performs.

Neural networks can be evaluated using evaluation matrices. These matrices
use a validation set to gather statistical data from the training of the network.
This is then used to find a network’s performance.

Confusion matrix

A confusion matrix shows a summary of the performance of an algorithm
on different classes, which is useful in classification tasks. Each row of the
matrix shows the instances of actual conditions for a class, and each column
shows the instances of predicted condition for each class, as shown in figure
3.10. The classes in a confusion matrix represents a presence or absence of a
condition (e.g. melanoma / benign, positive / negative prediction), defined
by the task. Class 1 is here the class with a condition and class 2 is the class
without the condition. A list describing parameters in a confusion matrix is
shown in table 3.1.

Accuracy

Accuracy describes how much data in a dataset is correctly predicted. This is
calculated as shown in equation 3.2, where we want the result of the equation
to be as close as possible to 1. Accuracy can be a good indication of how
well a neural network is performing in a balanced dataset.

ACC =
TP + TN

P +N
(3.2)

20

Figure 3.10: A confusion matrix with two classes.

Sensitivity

Sensitivity is the amount of actual positive instances that are correctly pre-
dicted. It is desirable to have the number of true positive (TP) instances as
close as possible to the actual number of positive (P) instances. Therefore,
looking at the equation for sensitivity (equation 3.3), one can see the sensi-
tivity should be close to one for a well trained network. This value is useful
for noticing how many instances that have a condition, are predicted to have
the condition.

SEN =
TP

P
(3.3)

Precision

Precision, also called positive predictive value (PPV), is the amount of pos-
itive predicted instances that are correctly predicted. It is desirable to have
the number of true positive (TP) instances as close as possible to the number
of instances predicted to be positive (PP). Therefore, looking at the equa-
tion for precision (equation 3.4), one can see the precision should be close to
one for a well trained network. This value is useful for noticing how many
instances are predicted to have a condition, have the condition.

PPV =
TP

PP
(3.4)

21

Parameters Description

True positive (TP) The number of instances correctly indicating that
a condition is present.

False positive (FP) The number of instances wrongly indicating that
a condition is present.

True negative (TN) The number of instances correctly indicating that
a condition is absent.

False negative (FN) The number of instances wrongly indicating that
a condition is absent.

Actual positive (P) The number of actual positive instances.
Actual negative (N) The number of actual negative instances.
Predict positive (PP) The number of instances predicted to be positive.
Predict negative (PN) The number of instances predicted to be negative.

Table 3.1: Description of parameters used in confusion matrices.

Specificity

Specificity is the amount of actual negative instances that are correctly pre-
dicted. It is desirable to have the number of true negative (TN) instances
as close as possible to the actual number of negative (N) instances. There-
fore, looking at the equation for specificity (equation 3.5), one can see the
specificity should be close to one for a well trained network. This value is
useful for noticing how many instances without a condition are predicted to
not have the condition.

SPC =
TN

N
(3.5)

F1 score

F1 score is used for combining sensitivity and precision in to an single met-
ric by using their harmonic mean, as shown in the equation for F1 score in
equation 3.6. The result of this metric is then a measurement of a system’s
accuracy, by looking at the amount of true positive in relation to false neg-
ative and false positive. This measurement can be a good final score for
evaluating a system.

F1 =
2PPV × SEN

PPV + SEN
=

2TP

2TP + FP + FN
(3.6)

22

4. Material and previous work

4.1 Data material

The datasets in this thesis consist of tiles from 51 WSIs from 51 patients,
annotated by co-supervisor H. Hardardottir. Of these WSIs, 25 patients
has good prognosis of malignant melanoma and 26 has bad prognosis. The
prognosis depends on metastasis or no metastasis withing five year, which is
known in these WSIs. The WSIs is stained with H&E stain and scanned at
40x magnification, with a Hamamatsu nanozoomer s60 scanner. An overview
of the WSIs is shown in figure A.1.

A variable D referrers to a dataset in the form of start coordinates. The
datasets contain a number of start coordinates of tiles from one or multiple
magnifications, assigned with variable mj, extracted from a magnification
level, assigned with variable i. Stratified 5-fold is used to divide the data in
to five iterations of training data and validation data. Training datasets are
assigned with variable t and validation datasets are assigned with variable v,
both followed by a variable k, indicating the iteration the dataset is from. The
dataset variable format is: Di,mj

t/vk , and the variable options are shown in table
4.1. A detailed overview of the dataset used in this thesis is shown in table
4.2. Mono-, di-, and tri-scale is used to refer to the number of magnification
levels used for every data input. Mono-scale refer to one magnification level,
di-scale refer to two and tri-scale refer to three.

23

Variable Values Description

i 20, 40
Magnification level where start
coordinates of tiles are extracted from. i
refer to ix magnification.

mj
m10, m20,
m40, mDi,
mTri

Magnification level(s) of extracted start
coordinates. j being a number refer to jx
magnification, mDi refer to 20x and 40x
magnification and mTri refer to 10x, 20x
and 40x magnification.

t/v t, v t being training dataset and v being
validation dataset.

k
Integer in range
1 to 5

Iteration the dataset is from.

Table 4.1: Variables used to explain a dataset Di,mj
t/vk .

4.2 Previous work

This section presents work done by co-supervisor H. Hardardottir, R. Wet-
teland [22] and N. Inkawhich [23].

4.2.1 Annotations

All WSIs were annotated by co-supervisor H. Hardardottir, a pathologist at
Stavanger University Hospital. Examples of these annotations are shown in
figure 2.4. A program for annotating WSIs, made by students at University
of Stavanger, was used to annotate the WSIs in this thesis. This program
stores coordinates and other information (e.g., tag and creator) about the
annotation in XML files, with the setup shown in listing 4.1. Annotation
coordinates from a WSI was used to make an image mask containing the
annotated area, as described in section 5.1.

24

Listing 4.1: XML file with annotation data. Each XML file belongs to a WSI
and contains coordinates constituting annotated surrounding around an area
in the WSI.
<Annotations>
<Annotation>
<Regions>
<Region tags="Lesion malign" name="" creator="helgah" grade="1">
<Vertices>
<Vertex X="22275.354502193073" Y="76000.51584277466" Z="0"> </Vertex>
<Vertex X="22262.314484580576" Y="76013.55586038716" Z="0"> </Vertex>

...
<Vertex X="22275.354502193073" Y="76000.51584277466" Z="0"> </Vertex>

</Vertices>
</Region>

4.2.2 Tile extraction

A tile extraction algorithm made by R. Wetteland [22] is used in this thesis
under the GNU General Public License v3.0. The pipeline of this algorithm
is displayed in figure 4.1, conveying how the algorithm extracts x and y
coordinates from one magnification, representing tiles in a WSI. An image
mask is used to extract as many valid start coordinates of tiles as possible,
containing a predefined percentage of the mask. A predefined magnification
level is chosen as a reference for tile extraction. From this magnification level,
coordinates of tiles are extracted and resized to obtain coordinates from mul-
tiple magnifications. A visual representation of the coordinate extraction is
shown in figure 4.2, where start coordinates from three tiles (top of figure)
with magnifications 10x, 20x and 40x are extracted from a WSI. Extracted
coordinates are saved as a pickle file.

Figure 4.1: Algorithm for extracting tile coordinates, made by Rune Wette-
land [22].

25

Figure 4.2: Extracted tiles from part of a WSI containing malignant nevus.

4.2.3 Network

The code for making and training the network is based on code made by N.
Inkawhich [23], found on pytorch.org and used under the BSD license. This
code does the following:

• Initializes a pre-trained model and freezes layers.

• Setup for data augmentation and normalization.

• Creates optimizer that updates desired parameters.

• Trains the network and makes training and validation history of the
training.

This code is described in section 5.2, including changes listed in table 4.3.

26

Bad prognosis
Good prognosis

Dataset Tiles % of all tiles WSIs Avg. tiles per WSI

D20,mj
t1

4 876 41.0% 20 244
4 292 36.1% 20 215

D20,mj
v1

1 482 12.5% 6 247
1 250 10.5% 5 250

D20,mj
t2

5 108 42.9% 21 243
4 505 37.9% 20 225

D20,mj
v2

1 250 10.5% 5 250
1 037 8.7% 5 207

D20,mj
t3

5 108 42.9% 21 243
4 471 37.6% 20 224

D20,mj
v3

1 250 10.5% 5 250
1 071 9.0% 5 214

D20,mj
t4

5 108 42.9% 21 243
4 463 37.5% 20 223

D20,mj
v4

1 250 10.5% 5 250
1 079 9.1% 5 216

D20,mj
t5

5 232 44.0% 21 249
4 437 37.3% 20 222

D20,mj
v5

1 126 9.5% 5 225
1 105 9.3% 5 221

Total
6 358 53.4% 26 245
5 542 46.6% 25 222
11 900 100% 51 233

D40,mj
t1

5 000 39.5% 20 250
4 911 38.8% 20 246

D40,mj
v1

1 500 11.8% 6 250
1 250 9.9% 5 250

Total
6 500 51.3% 26 250
6 161 48.7% 25 246
12 661 100% 51 248

Table 4.2: Overview of datasets, top row for each dataset is extracted from
bad prognosis WSI and the bottom from good prognosis. Tiles shows number
of tiles corresponding to start coordinates from one magnification level, and
WSIs shows number of WSIs the tiles are extracted from.

27

Change Description

VGG16 VGG16 network is used, with pre-trained weights.

Early stopping Added early stopping to training function
(train_model()), mentioned in section 5.2.

Cross validation Cross validation is implemented, as described in
section 5.2.

Make data sets Method for making training and validation
datasets was made, as described in section 5.2.1.

Classification layer
Froze feature extraction layer weights and
changed number of output neurons. This is
described in section 5.2.2.

Save data Information about the run, best model(s) and
prediction data from validation is saved.

Table 4.3: Changes to the code from [23].

28

5. Methods

This chapter explains methods used to process, extract and classify melanoma
lesions in WSIs containing malignant nevus, utilizing traditional image pro-
cessing and deep neural networks.

The proposed method is shown in figure 5.1 and consists of a preprocessing
part and a training part. The preprocessing part extracts start coordinates of
tiles from lesion in WSIs, and the training part makes training and validation
datasets of these coordinates, and trains a CNN using these datasets.

5.1 Preprocessing

Extraction method made by R. Wetteland [22] was used to extract start co-
ordinates of tiles in a WSI, by the use of an image mask, as displayed in
figure 5.1. This image mask was made from the intersection between a mask
containing tissue in WSI (tissue mask) and mask containing annotated lesion
in WSI (annotated mask).

An image shown with RGB colors uses combinations of red, green and blue to
make different colors, which means that a series of color combinations must
be defined to represent a range of colors. Another method of representing
colors in an image is through the HSV (hue, saturation, value) color model.
This model is defined by:

• A color, hue, expressed as a number from 0 to 360 degrees 1.

• Amount of gray, saturation, in the color expressed as a number from 0
to 1 2.

• Brightness, value, of the color expressed as a number from 0 to 1 3.
1In python, cv2.inRange defines hue in range 0 to 180 degrees.
2In python, cv2.inRange defines saturation in range 0 to 255.
3In python, cv2.inRange defines value in range 0 to 255.

29

(a) Overview of preprocessing. Detailed figure shown in figure 5.2

(b) Overview of training. Detailed figure shown in figure 5.4.

Figure 5.1: Pipeline for predicting bad or good prognosis, with tile(s) from
an area going through the network.

An annotated lesion in a WSI contains background, showing the slide under-
neath the tissue. This background contributes to noise if used in a dataset.
To remove this background, a tissue mask was made, as shown in figure 5.2,
which extracted the blue, purple/pink color range, using the HSV format, to
find every area affected by the H&E stain (explained in section 2.2).

Algorithm 1 was made to remove small regions and to close small holes to
find all area in a tissue, without collecting small regions found outside the
tissue. A threshold for removing small regions and close small holes was
defined by variable size2remove, in algorithm 1. This algorithm was used to
make the tissue mask, with size2remove set to 500, through trial. Hue was

30

set to contain values from 100 to 180, which contain the blue and magenta
color range [24] present in the tissue of H&E stained WSI, all saturation and
brightness values were retained.

The annotated mask was made through creating and filling a polygon based
on the annotation data from XML file, mentioned in section 4.2.1. The inter-
section of the tissue mask and the annotated mask results in a lesion mask,
containing the area of a lesion, without background noise.

Annotating WSIs is a time consuming task, it is therefore useful to imple-
ment faster annotation methods. Figure 5.3 shows an alternative method of
obtaining mask of lesions, where an auto segmentation, e.g., the auto segmen-
tation method made by R. Amundsen [25], can be used instead of annotated
data.

Figure 5.2: Overview of preprocessing. WSI and annotation data is used
to make image mask consisting of areas in the annotated area, without the
background noise. Function for extracting tile coordinates was made by Rune
Wetteland [22].

31

Algorithm 1 Create lesion mask
Initialize:

Whole slide image, I

/∗ Find blue and magenta colors in I(x, y) /∗
RGB to HSV → I(x, y)HSV

inRange((100, 0, 0), (180, 255, 255)) → I(x, y)mask,HSV

Remove small regions(size2remove = 500) → I(x, y)mask,closed

/∗ Close small holes /∗
Invert → I(x, y)mask,inv

Remove small regions(size2remove = 500) → I(x, y)mask,inv,closed

Invert → I(x, y)mask

Result: I(x, y)mask

Algorithm 2 Remove small regions
Inputs:

Image mask, Im
size2remove, s2r

closing(footprint = square(3)) → Im(x, y)closed
Label connected regions → label
for each region ∈ Measure properties of label do

if Area of region < s2r then
Im(Area of region)closed = 0

end if
end for
Result: Im(x, y)closed

32

Figure 5.3: Method for obtaining mask of a lesion. An auto segmentation
method can be used instead of manual annotations, to lessen workload.

5.2 Training and cross validation

Coordinates saved in the preprocessing part were used to make training and
validation sets, using stratified 5-fold cross validation as shown in figure
5.4. One or multiple iterations of these folds were used to make batches of
datasets, which were feed to a CNN. This CNN was trained for a predefined
number of epochs, until the validation loss converged. A stochastic gradient
descent optimizer, calculating the gradient decent with randomized selected
samples, was used during training with 0.9 momentum. Early stopping was
used to exit training if the validation loss did not get better over time. A
new iteration was used if cross validation was utilized, and a new model was
trained on the datasets from this iteration. Evaluation data and model from
the best performing epoch(es) was saved.

33

Figure 5.4: Overview of training. Function for making tile datasets and CNN
shown in figure 5.5 and 5.6 respectively.

5.2.1 Making tile datasets

A dataset-method from PyTorch (torch.utils.data.Dataset) was used to let
the CNN find data from the training set and validation set. Functions in this
dataset-method is shown in figure 5.5, Init() and __getitem__(), which
were changed to implement the data used in this thesis.

The Init() extracted a predefined number of start coordinates of tiles from
each WSI from a dataset, in a randomized fashion. For WSIs with less co-
ordinates then the predefined number, every coordinate was used. These
coordinates were put aside, in addition to the number of coordinates ex-
tracted for each WSI, WSI names and corresponding categories.

__getitem__() extracts a tile from a WSI, referred to by the function’s
input index, using coordinates of tiles from the Init() function. These tiles
are normalized using mean and standard deviation of images in ImageNet, to
have tiles fit better with weights trained on ImageNet. Data augmentation
is used, with random resize crop and random horizontal flip on the training
set, to get variation in the training data. Train and validation set was resized
from 256 to 224, for doing random resize crop and to have same size as the
images in ImageNet.

34

Batches of train data and validation data, from the dataset-method, were
made with a predefined batch size, using a data-loader from PyTorch
(torch.utils.data.DataLoader). These batches were then feed to a CNN.

Figure 5.5: Method for making training and validation tile datasets. Init()
finds random positions for a predefined amount of tiles, for each WSI in
the dataset. __getitem__(index) finds a tile depending on the input index
and returns the tile and it’s category. Init() runs ones when the dataset is
made, while the latter function runs every time an item is requested from
the dataset.

5.2.2 CNN at multiple magnification levels

Pathologists examine malignant tissue at multiple levels to guess the prog-
nosis of a patient. Mimicking this, multiple magnification levels were used in
this thesis to predict prognosis of melanoma, as shown in figure 5.6. This was
realized using CNNs, with two different methods: one for predicting single
magnification level tiles, and one for predicting multiple magnification level
tiles. A mono-scale model was defined as a model trained on one magnifica-
tion level, di-scale model was defined as trained on two and tri-scale on three.
All of these methods used the VGG16 network pre-trained on ImageNet as
the initial feature extractor at each magnification level, with two neurons in
the network’s last FC layer. The feature extraction layers of the network
were frozen to keep weights of basic features unchanged, leaving only the FC
layers with trainable parameters. The number of trainable parameters were

35

kept low because of the low number of patients at hand.

In the method with multiple magnification level tiles two or three magni-
fication level tiles were each sent through unique feature extraction layers,
as displayed in figure 5.6. These layers where concatenated and operated
on by classification layers. An stochastic gradient descent (SGD) optimizer
was used, calculating the gradient decent with randomized selected samples.
Every single set of tile(s) going through the network resulted in a prediction
of 0 or 1 (bad or good prognosis).

The result of the CNN was used to calculate prediction/evaluation data of the
best performing epoch, with lowest validation loss. The model and prediction
data of the best performing epoch was returned as outputs of the CNN
function displayed in figure 5.4.

Figure 5.6: Overview of CNN architecture. One or multiple magnifications
of a tile are fed as an input to the CNN and prediction data of the validation
data are returned. Blue trapezoids represents frozen CNN layers and brown
trapezoids represents FC layers with trainable layers. These trapezoids fol-
lows the VGG16 structure depicted in figure 3.7, with exception to the last
FC layer, which in this function has two neurons.

36

5.3 Testing

There was not a test set to check the performance of the training, because
of the small number of WSIs available. The result from validating on a
validation set while training was therefore used as a test of the network’s
performance. The evaluation data used in this test was stored as text-files
in the end of training the network, shown in figure 5.4.

Figure 5.7 shows overview of the evaluation data displayed to evaluate the
network. The evaluation data contained validation and accuracy for every
epoch, which was analyzed to see how well the network was training. The
system was evaluated at tile-level and at WSI-level. When evaluating at
tile-level, the WSI-label of good and bad prognosis was propagated down so
that all tiles from that WSI were associated with that label. Prognosis at
tile-level were used to find sensitivity, specificity and F1 score. The prognosis
at WSI-level was predicted using a threshold, where WSIs with proportion
of predicted bad-prognosis tiles over or equal to the threshold, was predicted
to have bad prognosis. The remaining WSIs was predicted to have good
prognosis.

Figure 5.7: Overview of evaluating validation data. The result is shown
with values and plots, this is thereafter used to change hyperparameters and
evaluate the network.

5.4 Implementation

The programming language Python was used to make the software for this
thesis. Code produced by R. Wetteland [22] and N. Inkawhich [23] was com-

37

bined with self-made code. Python combined with deep learning framework
PyTorch was used for designing the CNN. Distribution of code, is displayed
in table 5.1.

Python file Function

OtherMethods.py
Extract tile coordinates.1
Make mono-scale model.2
Freeze layers.2

MyMethods.py

Make mask.3
Make dataset.3
Make multi-scale model.3
Various other functions.3

Preprocessing.py Uses functions to extract tile coordinates.3

TorchDNN.py

Setup for augmentation and normalization.2
Optimization.2
Train model.2
Make training and validation history.2
Collect prediction data.3

Prediction.py Evaluate prediction data.3
1 Made by R. Wetteland [22].
2 Made by N. Inkawhich [23].
3 Self made.

Table 5.1: Overview of python files and its functions, used in this thesis.

38

6. Experiments and results

This chapter presents experiments and results achieved in this thesis. The
main objective of this thesis was to propose a method to predict good or bad
prognosis of malignant melanoma. Experiments were done, narrowing down
to a CNN model able to do this prediction with good results.

Results from preprocessing and results from the best performing models are
presented, and the choice of parameters are discussed. Accuracy and loss
of training and validation were used to evaluate model training, and sen-
sitivity, specificity and F1 score were used to evaluate model performance.
Positive and negative labels in these metrics refers respectively to bad and
good prognosis, as shown in figure 6.1. Correctly classifying bad prognosis
was considered to be more essential then correctly classifying good progno-
sis, hence sensitivity was prioritized rather then specificity. Cross validation
was used to evaluate dataset using different iterations, and receiver operating
characteristic (ROC) curves were used to find suitable thresholds.

6.1 Experiment 1 - Preprocessing

Preprocessing of WSIs was done to find the location of lesions in the WSIs,
using annotations made by co-supervisor H. Hardardottir, as explained in
section 5.1. To find the location of a lesion, a tissue mask was made to sep-
arate the tissue from the background in a WSI, as illustrated in figure 5.2.

The preprocessing method was used on all 51 WSIs, where a predefined vari-
able, named size2remove, was used to define the size of regions to remove
and size of holes to fill. This variable was adjusted, through trail and error,
to remove all regions belonging to the background of the WSIs, without re-
moving parts of the WSIs belonging to a lesion. Through this trail and error,
size2remove was set to 500, meaning that regions containing 500 pixels or
less was removed, before holes containing 500 pixels or less was filled. The

39

Figure 6.1: Confusion matrix showing results from using validation dataset
D20,m20

v1 , with learning rate set to 0.0001. Class 1 (positive instances) refers
to bad prognosis and class 2 (negative instances) refers to good prognosis.

color range, hue, of WSIs in the HSV format was adjusted to find the colors
left by H&E staining. The hue was first set to contain the blue and magenta
colors, in range 120-180 1 as defined in [24], the hue was thereafter changed
through trail and error, to contain colors in range 100-180.

Experiments and examples of results is shown in figure 6.2 and 6.3. Areas
removed by tissue masks and annotation masks is shown in figure 6.4, where
remaining area contains a lesion, without background noise.

1Hue defined in range 0-180.

40

(a) Original image. (b) Area with blue and magenta colors.

(c) Removed small regions. (d) Filled small holes. Final tissue mask.

Figure 6.2: Process of making a tissue mask for a melanoma tissue with good
prognosis. Blue and magenta colors of original image (6.2a) makes up mask
in figure 6.2b. The small regions in this mask are removed (6.2c), before
small holes are filled, resulting in the tissue mask in figure 6.2d.

41

(a) Original image. (b) Area with blue and magenta colors.

(c) Removed small regions. (d) Filled small holes. Final tissue mask.

Figure 6.3: Process of making a tissue mask for a melanoma tissue with bad
prognosis. Blue and magenta colors of original image (6.3a) makes up mask
in figure 6.3b. The small regions in this mask are removed (6.3c), before
small holes are filled, resulting in the tissue mask in figure 6.3d.

42

Figure 6.4: Examples of tissue masks and annotated masks, showing lesion in
the WSIs, with top images having good prognosis and bottom images having
bad prognosis. The area shaded with green is outside of tissue mask and
area shaded with yellow/orange is outside of annotated mask. Olive green
shade is area outside of tissue mask and annotated mask. The area inside
both masks contains the lesion.

43

6.2 Experiment 2 - Finding optimal tile mag-
nification

Experiments were done to find a optimal tile magnification for training a
model. In these experiments, magnification level 20x or 40x were used as
reference for tile extraction, and m10, m20, m40, mDi or mTri were used
for training (variables explained in table 4.1). m10, m20 and m40 had on
magnification for every data input and was trained on a mono-scale model,
mDi had two and was trained on a di-scale model and mTri had three and
was trained on a tri-scale model. Models were trained using a learning rate of
0.001 or 0.0001, and trained until their validation loss converged. The model
weights at the epoch with lowest validation loss were saved, in addition to the
model’s prediction/evaluation data. Early stop callback for 10 epochs was
used to stop the model from overfitting. An overview of parameters used in
the experiments is shown in table 6.1.

The WSIs in the dataset had different sized lesions, which led to a significant
difference in the number of tiles extracted from each WSI, as shown in figure
A.1 and A.2. This, along with long model training time, prompted the use of
a tile limit, limiting the number of tiles extracted from each WSI to 250 tiles.

Mono-scale models converged relatively fast, so the epoch limit for these mod-
els was set to 15 epochs. The models with two magnifications took longer to
converge, so the epoch limit for these models was set to 22 epochs.

6.2.1 Experiment 2a

The objective of this experiment was to find a magnification level fit to be
used in a model. All magnification levels (mj) was used in this experiment,
and magnification level 20x was used as reference, with learning rate set to
0.001.

Figure 6.2 shows performance from predicting prognosis of tiles, with F1

scores well over 0.5 for every dataset. These datasets, except for D20,mTri
v1 ,

results in the model having sensitivity close to 0.8 and specificity over 0.5.

Looking at the accuracy and loss of the models in figure 6.5, one can see
that figures 6.5a to 6.5c refer to models that are hardly training, and figure
6.5d and 6.5e refers to models with validation loss that is failing to converge.

44

Parameter Changed Variation
Reference
magnification level Yes 20x or 40x magnification level.

Extracted
magnification
level(s)

Yes m10, m20, m40, mDi or mTri, as
described in table 4.1.

Learning rate Yes 0.001 or 0.0001.

Epoch limit Yes 15 or 22, depending on how fast the
model converged.

Tile limit No 250 tiles per WSI.

Data split No One stratified 5-fold iteration as
validation data, rest as training data.

Patient No 10 epochs.
Batch size No 32.
Data
augmentation No Random resize crop and random

horizontal flip in the training set.
Dropout rate No 50%.
Optimizer No SGD with 0.9 momentum.
Network layers to
update No Updates only classification layers.

Table 6.1: Overview of training parameters, utilized in the experiments of
this thesis.

The accuracy and loss shown in the last mentioned figures suggests that the
model has too large of a complexity and/or learning rate, as discussed by J.
Brownlee in his book about better deep learning [26].

The next experiments were done with a lower learning rate, to improve model
training.

6.2.2 Experiment 2b

The datasets used in the experiment in section 6.2.1 where used in this ex-
periment, with a learning rate set to 0.0001.

Figure 6.3 shows performance from predicting prognosis of tiles, with F1

higher than 0.7 for D20,m20
v1 , D20,m40

v1 and D20,mDi
v1 . The sensitivity is around

0.8 for these datasets, with it being over 0.85 for D20,mDi
v1 , and the specificity

45

Architecture Validation dataset Sensitivity Specificity F1 score

Mono
D20,m10

v1 0.7989 0.5088 0.7220
D20,m20

v1 0.7895 0.5512 0.7283
D20,m40

v1 0.7740 0.5408 0.7162
Di D20,mDi

v1 0.7949 0.5176 0.7220
Tri D20,mTri

v1 0.6430 0.6320 0.6584

Table 6.2: Results from experiment 2a, showing performance from predicting
prognosis of tiles in validation sets.

is just under 0.6 for D20,m20
v1 .

The accuracy and loss shown in figure 6.6 shows that the models, using these
datasets are able to learn from the datasets, which results in the validation
loss converging. This is especially visible when using D20,mDi

v1 , where valida-
tion loss drops from 0.7 to 0.6.

Architecture Validation dataset Sensitivity Specificity F1 score

Mono
D20,m10

v1 0.6916 0.5576 0.6699
D20,m20

v1 0.7928 0.5824 0.7392
D20,m40

v1 0.8205 0.4552 0.7197
Di D20,mDi

v1 0.8596 0.4440 0.7383
Tri D20,mTri

v1 0.7072 0.5720 0.6838

Table 6.3: Results from experiment 2b, showing performance from predicting
prognosis of tiles in validation sets.

6.2.3 Experiment 2c

In this experiment, datasets with m20, m40 and mDi were used, because of
fewer details in m10, contained in mTri, and inferior F1 score of m10 and
mTri in experiment shown in section 6.2.2. Magnification level 40x was used
as reference and the learning rate was set to 0.0001.

Learning and validation curves of this experiment is shown in figure 6.4,
showing a sensitivity under 0.4 when using D40,m20

v1 and specificity close to

46

zero for D40,mDi
v1 . The sensitivity is over 0.6 when using D40,m40

v1 , but the
specificity for using this dataset is close to 0.4.

Figure 6.7 shows no improvement in loss or accuracy when training on the
datasets, leading to early stopping at epoch 10.

Architecture Validation dataset Sensitivity Specificity F1 score
Mono D40,m20

v1 0.3506 0.6339 0.4292
Di D40,m40

v1 0.64071 0.4134 0.61171

Tri D40,mDi
v1 0.9953 0.0052 0.7199

1 Sensitivity and F1 score are highlighted for D40,m40
v1 because of the terrible

specificity of D40,mDi
v1 .

Table 6.4: Results from experiment 2c, showing performance from predicting
prognosis of tiles in validation sets.

6.3 Experiment 3 - Evaluation with cross vali-
dation

Correctly classifying bad prognosis was considered to be more essential then
correctly classifying good prognosis, hence high sensitivity was seen as more
important then high specificity. Cross validation was done on models trained
on D20,m20

t/vk and D20,mDi
t/vk , from experiment 2b in section 6.2, because their com-

bination of superior F1 score and high sensitivity. Cross validation was used
to find a better estimate of how well these two models performed. Sensitivity,
specificity and F1 score was compared for each iteration of a dataset, to see
if these metrics correlated. Accuracy and loss for training and validation in a
model were compared, to observe if the model was training in each iteration
of the dataset.

In this section, prediction of tiles in WSIs, labeled with the same category
as corresponding WSI, were found. These predictions where then used to
observe the network’s capability to recognize tiles from each prognosis.

Experiments was done to classify each WSI as good or bad prognosis, to find
the network’s capability to classify the WSIs. In these experiments a thresh-
old was used for the classification of WSIs, as described in section 5.3, which

47

was decided by the use of the model’s ROC. The ROC showed the sensitiv-
ity plotted over 1-specificity, which was calculated using multiple thresholds.
Area under the curve of a ROC (AUC) was used as an indication of a model’s
performance and should be as close to 1 as possible. Poor values of AUC
were in the range 0.6-0.7, while good values were over 0.8 [27]. Accuracy was
used to compare models from these experiments, with models from related
work.

The model utilized in the following experiments had a learning rate set to
0.0001, and used different iterations of datasets D20,m20

t/v1 and D20,mDi
t/v1 , which

was used in the experiment in section 6.2.2. Results of the experiment in
section 6.2.2 are shown in table 6.3, with training performance shown in
figure 6.6a and 6.6c.

6.3.1 Experiment 3a - Mono-scale model

The datasets used in this experiment were D20,m20
t/vk , with iterations in range

1 to 5.

Table 6.5 shows performance from classifying tiles, where the sensitivity and
F1 score of using the iterations, is for most of them over 0.6. The highest
sensitivity and F1 score was achieved by using iteration 1, which also gave
the lowest specificity, compared to using the other iterations.

Architecture Iteration Sensitivity Specificity F1 score

Mono

1 0.7935 0.5496 0.7302
2 0.6032 0.5689 0.6153
3 0.6152 0.6993 0.6570
4 0.6344 0.6728 0.6619
5 0.5551 0.5566 0.5578

Table 6.5: Results from experiment 3a, showing performance from predicting
prognosis of tiles in iterations, using D20,m20

t/v1−5.

Figure 6.8 shows accuracy and loss for training and validation of the model.
The model was not stopped by early stopping, but for some of the iterations
the validation loss was not distinctly decreasing.

48

The threshold for classifying WSIs in the dataset was decided by using a
ROC curve, shown in figure 6.9 with an AUC of 0.81. A detailed table of
this ROC, shown in table B.1, was used to decide a threshold of 0.3720. This
threshold was chosen because of its corresponding, relatively high sensitivity,
and specificity over 0.5 (1-specificity was under 0.5). Results from classifying
WSIs is shown in figure 6.6, where most of the iterations resulted in a sensi-
tivity equality to, or over 0.8 and a F1 score higher then 0.76. The specificity
for most of the iterations is 0.76 or higher.

Architecture Iteration Sensitivity Specificity F1 score Accuracy

Mono

1 1.0 0.6 0.8571 0.8182
2 1.0 0.4 0.7692 0.7
3 0.6 0.8 0.6667 0.7
4 1.0 0.8 0.9091 0.9
5 0.8 0.2 0.6154 0.5

Total: 0.8846 0.4400 0.7667 0.7255

Table 6.6: Results from experiment 3a, showing performance from predicting
prognosis of WSIs in iterations, using D20,m20

t/v1−5. Threshold set to 0.3720 and
AUC = 0.81.

6.3.2 Experiment 3b - Multi-scale model

The datasets used in this experiment were D20,mDI
t/vk , with iterations in range

1 to 5.

The performance from classifying tiles is shown in table 6.7, with a sensitiv-
ity and F1 score over 0.55, when using most of the iterations in the dataset.
Specificity is close to zero for iteration 2 and higher than 0.5 for most of the
other iterations.

Accuracy and loss of training and validation are shown in figure 6.10, where
the training on most of the iterations, results in a validation loss that con-
verges to an lower value. Training on iteration 2 and 5, shown in figure 6.10b
and 6.10d, results in no significant decrease in validation loss.

Figure 6.11 shows the ROC curve used to find a threshold to classify WSIs,
with an AUC of 0.68. This threshold was chosen to be 0.4480, from the
detailed table of the ROC curve, shown in table B.3. This threshold was

49

Architecture Iteration Sensitivity Specificity F1 score

Di

1 0.7605 0.5392 0.7077
2 0.8824 0.0906 0.6693
3 0.6864 0.5826 0.6716
4 0.4640 0.8526 0.5832
5 0.5613 0.4805 0.5420

Table 6.7: Results from experiment 3b, showing performance from predicting
prognosis of tiles in iterations, using D20,mDi

t/v1−5 .

chosen because it corresponded to a relatively high sensitivity, with specificity
over 0.5 (1-specificity was under 0.5). The results from predicting prognosis
of WSIs is shown in table 6.8, where most of the iterations resulted in a
sensitivity equal to, or over 0.8 and a specificity equal to, or over 0.66.

Architecture Iteration Sensitivity Specificity F1 score Accuracy

Di

1 1.0 0.6 0.8571 0.8182
2 1.0 0.0 0.6667 0.5
3 0.6 0.6 0.6 0.6
4 0.6 1.0 0.75 0.8
5 0.8 0.4 0.6667 0.6

Total: 0.8077 0.4800 0.7119 0.6667

Table 6.8: Results from experiment 3b, showing performance from predicting
prognosis of WSIs in iterations, using D20,mDi

t/v1−5 . Threshold set to 0.4480 and
AUC = 0.68.

50

(a) D20,m10
t/v1 . (b) D20,m20

t/v1 .

(c) D20,m40
t/v1 . (d) D20,mDi

t/v1 .

(e) D20,mTri
t/v1 .

Figure 6.5: Accuracy and loss of training and validation over epochs, from
experiment 2a.

51

(a) D20,m20
v1 . (b) D20,m40

v1 .

(c) D20,mDi
v1 .

Figure 6.6: Accuracy and loss of training and validation over epochs, from
experiment 2b.

52

(a) D40,m20
v1 . (b) D40,m40

v1 .

(c) D40,mDi
v1 .

Figure 6.7: Accuracy and loss of training and validation over epochs, from
experiment 2c.

53

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5.

Figure 6.8: Accuracy and loss of training and validation over epochs, from
experiment 3a, using cross validation with D20,m20

t/v1−5.

54

Figure 6.9: ROC curve and AUC from experiment 3a, using iterations from
D20,m20

t/v1−5.

55

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5.

Figure 6.10: Accuracy and loss of training and validation over epochs, from
experiment 3b, using cross validation with D20,mDi

t/v1−5 .

56

Figure 6.11: ROC curve and AUC from experiment 3b, using iterations from
D20,mDi

t/v1−5 .

57

7. Discussion

This chapter gives a review of chapter 6. Achieved results, comparisons with
related work, and limitations of data are discussed. Suggestions for future
work is also presented.

7.1 Experiment 1 - Preprocessing

In the preprocessing, the HSV color-map was found to be useful for extract-
ing colors in WSIs, left by H&E staining. The tissue masks proved useful for
extracting the tissues in the WSIs, leaving out the background.

Even though the tissue masks extracted a lot of tissue, these masks removed
parts of the tissues consisting of fat, because of the low concentration of cells
in these areas. This could be a problem in cases where these areas were in-
teresting, but did not cause any problem in this experiment, because of the
high concentration of cells in lesions.

Figure 6.3 shows that large holes in the tissue (bottom tissue in 6.3a) are
removed by the final tissue mask, but smaller holes (top tissue in 6.3a) are
not removed. This leads to some of the holes being present in the extracted
tiles, which can cause more background, then initially intended, to be present
in the tiles.

7.2 Model performance

This section summarizes and discusses the experiments and results achieved
in chapter 6. The dataset format used in this section is explained in table
4.1.

58

7.2.1 Experiment 2 - Utilizing different tile magnifica-
tions

The models showed good performance when using learning rate set to 0.001,
but an increase in model learning when utilizing a smaller learning rate.
Models trained on D20,mj

v1 , with learning rate set to 0.0001 showed good re-
sults when using m20, m40 and mDi. Models trained on D40,mj

v1 , with the
same learning rate showed worse results.

The models using D20,m20
v1 and D20,mDi

v1 where considered as the most optimal
models, because of their good sensitivity and F1 score. Nevertheless, the
experiments showed that utilizing multiple iterations of a dataset conveyed
a better overview of model performance, and could influence the choosing of
an optimal model.

7.2.2 Experiment 3 - Utilizing cross validation

Predicting prognosis of tiles in the mono-scale model showed a good prog-
nosis in most of the iterations. Predicting prognosis of WSIs showed a good
AUC of 0.81, and a good F1 score and accuracy of 0.7667 and 0.7255, re-
spectively, when using a threshold set to 0.3720. A better F1 score of 0.7812
can be achieved by lowering the threshold to 0.3320, resulting in a higher
sensitivity (from 0.8846 to 0.9615), but a lower specificity (from 0.56 to 0.48)
and no change in accuracy, as shown in figure B.1. Furthermore, a F1 score
of 0.7925 can be achieved by increasing the threshold to 0.5280, resulting in
a higher specificity (from 0.56 to 0.76) and accuracy (from 0.7255 to 0.7843),
at a cost of lower sensitivity (from 0.8846 to 0.8077).

The performance of predicting prognosis of tiles in the multi-scale model,
showed promising results in the first and fifth iterations, because of high
sensitivity, but bad results in the rest because of low sensitivity or very low
specificity. Predicting prognosis of WSIs showed a poor AUC of 0.68, and a
F1 score and accuracy of 0.7119 and 0.6667, respectively, with the threshold
set to 0.4480. A better F1 score could be achieved by lowering the threshold,
resulting in higher sensitivity, but lower specificity and lower, or same accu-
racy, as seen in figure B.3.

The mono-scale model showed better performance than the multi-scale model.
Nevertheless, different hyperparameters could prove better result for the
multi-scale model. The best mono-scale model had an AUC equal to 0.81

59

and a F1 score equal to 0.7667, with the threshold set to 0.3720. The best
multi-scale model had an AUC equal to 0.68 and a F1 score equal to 0.7119,
with the threshold set to 0.4480.

7.3 Comparisons with related work

Results from experiments, were compared to papers about prognosis predic-
tion of other cancers then melanoma. These papers predicted 5-year survival
rate of non-small cell lung cancer (NSCLC) and breast cancer. AUC and
accuracy were used for the comparisons.

Lai et al. [6] reported a result of 0.8163 AUC and 0.7544 accuracy, predicting
prognosis of NSCLC by using a di-scale DNN model trained on biomarkers
and clinical data from 614 patients. Zhang et al. [7] reported a result of
0.8508 AUC and 0.8096 accuracy, predicting prognosis of NSCLC by using a
feature transformation method based on CNN. The data used in this model
consisted of 331 patients.

Sun et al. [8] reported a result of 0.845 AUC and 0.826 accuracy, predicting
prognosis of breast cancer, using a tri-scale DNN model with three datasets
of medical data from 1 980 patients. Cheng et al. [9] reporting a result of
0.7836 AUC and 0.7179 accuracy, using a di-scale DNN model combined with
ensemble learning to predict prognosis of breast cancer. The data used in
this model consisted of 582 patients.

The best model produced in this thesis gave an AUC of 0.81 and an accuracy
of 0.7255. The best comparisons to this result might been the research done
by Lai et al. and Sun et al., because of the use of multi-scale models. This
comparisons could not be drawn directly, because of different datasets.

7.4 Limitations

The dataset in this thesis contained of 51 WSIs from 51 patients, which was
considered a small dataset for training a DNN, with increased probability for
overfitting. Transfer learning was therefore used to obtain the basic features
of images, and augmentation was utilized on the training set to expose the
network for new variants of the WSIs.

A train dataset and a validation dataset was used to train and validate the

60

network, and cross-validation was used to test the network. This could lead
to biased results, because the validation dataset, used in the decision of net-
work parameters, was used to test the network. A test dataset was not retain
for testing because of the small number of patients available.

The tiles extracted from WSIs were randomly selected, to represent the WSIs
as best as possible. This could lead to insecurity in the result, if tiles with
negligible features were chosen to represent a lesion, but the cross validation
showed good results, indicating that the network was able to find features to
correctly predict WSI prognosis.

7.5 Future work

The number of data available is a essential issue when training a DNN. Re-
trieving more data leads to more features that the network can learn from.
Experiments with other augmentation methods can be done to introduce new
variations of the existing data, in both the training and validation dataset.

Experiments with other CNN architectures, then VGG16, should be per-
formed to possibly create better models, and a wider range of hyperparame-
ters can be utilized for locating better learning curves.

A method for locating clusters of tiles can be developed, to see if tiles groups
up based on their corresponding predicted prognosis. This clustering method
can possibly improve the prediction performance and can be useful for pathol-
ogists who analyze melanoma tissues.

Auto segmentation can be utilized to automatically locate the lesions in the
WSIs, leading to less work for the pathologists.

61

8. Conclusion

The objective of this thesis was to propose a method for predicting prognosis
of melanoma. Traditional image processing techniques and annotated data
from a pathologist were used to make a image masks, which was utilized to
extract tiles from 51 WSIs, from 51 patients. Up to three magnifications of
these tiles were used for model training and validation of a CNN.

Experiments were done using mono-, di- and tri-scale models which used one,
two and three magnifications of tiles, respectively, for training and validation.
These models where thereafter compared with each-other to find a optimal
model.

The mono-scale model was shown to be the best performing model, through
the use of cross validation. The final results, of using this model to predict
prognosis of WSIs showed a F1 score of 0.7667 and an AUC of 0.81.

While the dataset is obtained from a small number of patients, the evaluation
of the obtained results shows, that the usage of this CNN is a promising
method that is worth further exploring.

62

Bibliography

[1] World Health Organization The Global Cancer Observatory. Non-melanoma
skin cancer, Source: Globocan 2020. url: https://gco.iarc.fr/
today/data/factsheets/cancers/17-Non-melanoma-skin-cancer-
fact-sheet.pdf. (accessed: 17.05.2022).

[2] World Health Organization The Global Cancer Observatory. Melanoma
of skin, Source: Globocan 2020. url: https://gco.iarc.fr/today/
data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.
pdf. (accessed: 17.05.2022).

[3] Cancer Registry of Norway. Cancer in Norway 2020 - Cancer incidence,
mortality, survival and prevalence in Norway. Oslo: Cancer Registry of
Norway, 2021.

[4] Stanford University Human-Centered AI. Machine Learning Boosts
Cancer Prognosis. url: https://hai.stanford.edu/news/machine-
learning-boosts-cancer-prognosis. (accessed: 19.05.2022).

[5] Cancer Registry of Norway. Machine learning in cancer research. url:
https://www.kreftregisteret.no/en/Research/about-research/
machine-learning-in-cancer-research/. (accessed: 19.05.2022).

[6] Yu-Heng Lai et al. “Overall survival prediction of non-small cell lung
cancer by integrating microarray and clinical data with deep learning”.
In: Scientific reports 10.1 (2020), pp. 1–11.

[7] Zhong-Si Zhang et al. “Prognostic Prediction for Non-small-Cell Lung
Cancer Based on Deep Neural Network and Multimodal Data”. In: In-
ternational Conference on Intelligent Computing. Springer. 2021, pp. 549–
560.

[8] Dongdong Sun, Minghui Wang, and Ao Li. “A multimodal deep neu-
ral network for human breast cancer prognosis prediction by integrat-
ing multi-dimensional data”. In: IEEE/ACM transactions on computa-
tional biology and bioinformatics 16.3 (2018), pp. 841–850.

63

https://gco.iarc.fr/today/data/factsheets/cancers/17-Non-melanoma-skin-cancer-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/17-Non-melanoma-skin-cancer-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/17-Non-melanoma-skin-cancer-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf
https://hai.stanford.edu/news/machine-learning-boosts-cancer-prognosis
https://hai.stanford.edu/news/machine-learning-boosts-cancer-prognosis
https://www.kreftregisteret.no/en/Research/about-research/machine-learning-in-cancer-research/
https://www.kreftregisteret.no/en/Research/about-research/machine-learning-in-cancer-research/

[9] Li-Hsin Cheng, Te-Cheng Hsu, and Che Lin. “Integrating ensemble
systems biology feature selection and bimodal deep neural network for
breast cancer prognosis prediction”. In: Scientific Reports 11.1 (2021),
pp. 1–10.

[10] Hani Yousef, Mandy Alhajj, and Sandeep Sharma. Anatomy, Skin (In-
tegument), Epidermis. url: https : / / www - ncbi - nlm - nih - gov .
ezproxy.uis.no/books/NBK470464/. (accessed: 31.01.2022).

[11] Thomas M. Brown1 and Karthik Krishnamurthy. Histology, Dermis.
url: https://www-ncbi-nlm-nih-gov.ezproxy.uis.no/books/
NBK535346/. (accessed: 31.01.2022).

[12] McGill University Department of Pathology. What is Pathology? url:
https://www.mcgill.ca/pathology/about/definition. (accessed:
08.05.2022).

[13] Mark D Zarella et al. “A practical guide to whole slide imaging: a white
paper from the digital pathology association”. In: Archives of pathology
& laboratory medicine 143.2 (2019), pp. 222–234.

[14] John KC Chan. “The wonderful colors of the hematoxylin–eosin stain
in diagnostic surgical pathology”. In: International journal of surgical
pathology 22.1 (2014), pp. 12–32.

[15] Mayo clinic. Melanoma. url: https://www.mayoclinic.org/diseases-
conditions/melanoma/symptoms-causes/syc-20374884. (accessed:
06.05.2022).

[16] American Cancer Society medical. Melanoma Skin Cancer Stages. url:
https://www.cancer.org/cancer/melanoma-skin-cancer/detection-
diagnosis- staging/melanoma- skin- cancer- stages.html. (ac-
cessed: 31.01.2022).

[17] Wikimedia Commons. File:Diagram showing the T stages of melanoma
CRUK 373.svg. url: https://commons.wikimedia.org/wiki/File:
Diagram_showing_the_T_stages_of_melanoma_CRUK_373.svg.
(accessed: 05.05.2022).

[18] Jeffrey Dean. “The deep learning revolution and its implications for
computer architecture and chip design”. In: (2020), pp. 8–14.

[19] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

64

https://www-ncbi-nlm-nih-gov.ezproxy.uis.no/books/NBK470464/
https://www-ncbi-nlm-nih-gov.ezproxy.uis.no/books/NBK470464/
https://www-ncbi-nlm-nih-gov.ezproxy.uis.no/books/NBK535346/
https://www-ncbi-nlm-nih-gov.ezproxy.uis.no/books/NBK535346/
https://www.mcgill.ca/pathology/about/definition
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/melanoma-skin-cancer-stages.html
https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/melanoma-skin-cancer-stages.html
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_T_stages_of_melanoma_CRUK_373.svg
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_T_stages_of_melanoma_CRUK_373.svg

[20] Christoph Molnar. Interpretable Machine Learning. A Guide for Mak-
ing Black Box Models Explainable. 2nd ed. 2022. url: https://christophm.
github.io/interpretable-ml-book.

[21] Wikimedia Commons. File:Gradient descent.gif. url: https://commons.
wikimedia . org / wiki / File : Gradient _ descent . gif. (accessed:
16.05.2022).

[22] Rune Wetteland, Kjersti Engan, and Trygve Eftesol. “Parameterized
extraction of tiles in multilevel gigapixel images”. In: 2021 12th In-
ternational Symposium on Image and Signal Processing and Analysis
(ISPA). IEEE. 2021, pp. 78–83.

[23] Nathan Inkawhich. FINETUNING TORCHVISION MODELS. url:
https://pytorch.org/tutorials/beginner/finetuning_torchvision_
models_tutorial.html. (accessed: 13.04.2022).

[24] Jacci Howard Bear. The HSV Color Model in Graphic Design. url:
https://www.lifewire.com/what-is-hsv-in-design-1078068.
(accessed: 30.05.2022).

[25] Roger Amundsen. “Melanoma Diagnosis and Localization from Whole
Slide Images using Convolutional Neural Networks”. MA thesis. Uni-
versity of Stavanger, Norway, June 2022.

[26] Jason Brownlee. Better deep learning: train faster, reduce overfitting,
and make better predictions. Machine Learning Mastery, 2018.

[27] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant.
Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.

65

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://commons.wikimedia.org/wiki/File:Gradient_descent.gif
https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
https://www.lifewire.com/what-is-hsv-in-design-1078068

Appendices

66

A. Overview of WSIs used in this the-
sis

Table A.1: Prognosis of each WSI used in this thesis. The information in
this table is from the xlsx-file: Master_god_dårlig_prognose.

WSI name Prognosis WSI name Prognosis

SUShud51 Bad prognosis SUShud101 Good prognosis
SUShud57 Bad prognosis SUShud102 Good prognosis
SUShud59 Bad prognosis SUShud103 Good prognosis
SUShud63 Bad prognosis SUShud104 Good prognosis
SUShud74 Bad prognosis SUShud105 Good prognosis
SUShud76 Bad prognosis SUShud106 Good prognosis
SUShud82 Bad prognosis SUShud107 Good prognosis
SUShud84 Bad prognosis SUShud108 Good prognosis
SUShud94 Bad prognosis SUShud109 Good prognosis
SUShud120 Bad prognosis SUShud110 Good prognosis
SUShud121 Bad prognosis SUShud111 Good prognosis
SUShud122 Bad prognosis SUShud112 Good prognosis
SUShud123 Bad prognosis SUShud113 Good prognosis
SUShud124 Bad prognosis SUShud114 Good prognosis
SUShud125 Bad prognosis SUShud115 Good prognosis
SUShud126 Bad prognosis SUShud116 Good prognosis
SUShud127 Bad prognosis SUShud117 Good prognosis

Continued on next page

67

Table A.1: Prognosis of each WSI used in this thesis. The information in this
table is from the xlsx-file: Master_god_dårlig_prognose. (Con-
tinued)

WSI name Prognosis WSI name Prognosis

SUShud128 Bad prognosis SUShud118 Good prognosis
SUShud129 Bad prognosis SUShud119 Good prognosis
SUShud130 Bad prognosis SUShud73 Good prognosis
SUShud131 Bad prognosis SUShud75 Good prognosis
SUShud132 Bad prognosis SUShud78 Good prognosis
SUShud133 Bad prognosis SUShud85 Good prognosis
SUShud134 Bad prognosis SUShud88 Good prognosis
SUShud135 Bad prognosis SUShud91 Good prognosis
SUShud136 Bad prognosis

Figure A.1: Histogram over the distribution of tiles in WSIs, at 20x magni-
fication.

68

Figure A.2: Histogram over the distribution of tiles in WSIs, at 40x magni-
fication.

69

B. Experiments and results details

This appendix chapter displays details from experiments and results in chap-
ter 6. The dataset format used in this appendix is explained in section 4.1.

B.1 Details from experiment 3a

Receiver operating characteristic and prediction results

Table B.1: Data from ROC and corresponding F1 score and accuracy. WSIs
with proportion of predicted bad-prognosis tiles over threshold is
predicted to have bad prognosis.

Threshold Sensitivity 1-
Specificity

F1 score Accuracy

0.9240 0.0385 0.0000 0.0741 0.5098
0.9040 0.1154 0.0000 0.2069 0.5490
0.9000 0.1154 0.0400 0.2000 0.5294
0.8960 0.1538 0.0400 0.2581 0.5490
0.8600 0.2308 0.0400 0.3636 0.5882
0.8017 0.3077 0.0400 0.4571 0.6275
0.7720 0.3077 0.0800 0.4444 0.6078
0.7440 0.4231 0.0800 0.5641 0.6667
0.7120 0.4231 0.1200 0.5500 0.6471
0.6920 0.4615 0.1200 0.5854 0.6667
0.6640 0.4615 0.1600 0.5714 0.6471
0.6400 0.5769 0.1600 0.6667 0.7059

Continued on next page

70

Table B.1: Data from ROC and corresponding F1 score and accuracy. WSIs
with proportion of predicted bad-prognosis tiles over threshold is
predicted to have bad prognosis. (Continued)

Threshold Sensitivity 1-
Specificity

F1 score Accuracy

0.6240 0.5769 0.2000 0.6522 0.6863
0.5640 0.7308 0.2000 0.7600 0.7647
0.5520 0.7308 0.2400 0.7451 0.7451
0.5280 0.8077 0.2400 0.7925 0.7843
0.4000 0.8077 0.4400 0.7241 0.6863
0.3720 0.8846 0.4400 0.7667 0.7255
0.3380 0.8846 0.5200 0.7419 0.6863
0.3320 0.9615 0.5200 0.7812 0.7255
0.2160 0.9615 0.7200 0.7246 0.6275
0.2120 1.0000 0.7600 0.7324 0.6275
0.0764 1.0000 1.0000 0.6753 0.5098

Results from testing WSIs

WSI name Number* Proportion* Predicted class Correct class
SUShud59 215/250 0.8600 Bad prognosis Bad prognosis
SUShud63 188/250 0.7520 Bad prognosis Bad prognosis
SUShud76 132/250 0.5280 Bad prognosis Bad prognosis
SUShud82 231/250 0.9240 Bad prognosis Bad prognosis
SUShud127 186/232 0.8017 Bad prognosis Bad prognosis
SUShud129 224/250 0.8960 Bad prognosis Bad prognosis
SUShud78 156/250 0.6240 Bad prognosis Good prognosis
SUShud103 225/250 0.9000 Bad prognosis Good prognosis
SUShud105 47/250 0.1880 Good prognosis Good prognosis
SUShud111 82/250 0.3280 Good prognosis Good prognosis
SUShud118 53/250 0.2120 Good prognosis Good prognosis

(a) Iteration 1.
* of tiles predicted as bad prognosis.

71

WSI name Number* Proportion* Predicted class Correct class
SUShud51 146/250 0.5840 Bad prognosis Bad prognosis
SUShud84 133/250 0.5320 Bad prognosis Bad prognosis
SUShud120 215/250 0.8600 Bad prognosis Bad prognosis
SUShud125 162/250 0.6480 Bad prognosis Bad prognosis
SUShud130 98/250 0.3920 Bad prognosis Bad prognosis
SUShud73 112/250 0.4480 Bad prognosis Good prognosis
SUShud75 18/37 0.4865 Bad prognosis Good prognosis
SUShud102 166/250 0.6640 Bad prognosis Good prognosis
SUShud104 85/250 0.3400 Good prognosis Good prognosis
SUShud108 66/250 0.2640 Good prognosis Good prognosis

(b) Iteration 2.
* of tiles predicted as bad prognosis.

WSI name Number* Proportion* Predicted class Correct class
SUShud57 226/250 0.9040 Bad prognosis Bad prognosis
SUShud121 83/250 0.3320 Good prognosis Bad prognosis
SUShud123 83/250 0.3320 Good prognosis Bad prognosis
SUShud128 186/250 0.7440 Bad prognosis Bad prognosis
SUShud136 191/250 0.7640 Bad prognosis Bad prognosis
SUShud85 138/250 0.5520 Bad prognosis Good prognosis
SUShud101 81/250 0.3240 Good prognosis Good prognosis
SUShud107 24/71 0.3380 Good prognosis Good prognosis
SUShud109 43/250 0.1720 Good prognosis Good prognosis
SUShud112 36/250 0.1440 Good prognosis Good prognosis

(c) Iteration 3.
* of tiles predicted as bad prognosis.

72

WSI name Number* Proportion* Predicted class Correct class
SUShud122 173/250 0.6920 Bad prognosis Bad prognosis
SUShud131 141/250 0.5640 Bad prognosis Bad prognosis
SUShud132 93/250 0.3720 Good prognosis Bad prognosis
SUShud133 160/250 0.6400 Bad prognosis Bad prognosis
SUShud134 226/250 0.9040 Bad prognosis Bad prognosis
SUShud88 54/250 0.2160 Good prognosis Good prognosis
SUShud106 73/250 0.2920 Good prognosis Good prognosis
SUShud113 12/157 0.0764 Good prognosis Good prognosis
SUShud115 193/250 0.7720 Bad prognosis Good prognosis
SUShud119 21/172 0.1221 Good prognosis Good prognosis

(d) Iteration 4.
* of tiles predicted as bad prognosis.

WSI name Number* Proportion* Predicted class Correct class
SUShud74 161/250 0.6440 Bad prognosis Bad prognosis
SUShud94 143/250 0.5720 Bad prognosis Bad prognosis
SUShud124 53/250 0.2120 Good prognosis Bad prognosis
SUShud126 95/166 0.5723 Bad prognosis Bad prognosis
SUShud135 173/210 0.8238 Bad prognosis Bad prognosis
SUShud91 178/250 0.7120 Bad prognosis Good prognosis
SUShud110 100/250 0.4000 Bad prognosis Good prognosis
SUShud114 52/105 0.4952 Bad prognosis Good prognosis
SUShud116 41/250 0.1640 Good prognosis Good prognosis
SUShud117 119/250 0.4760 Bad prognosis Good prognosis

(e) Iteration 5.
* of tiles predicted as bad prognosis.

Table B.2: Results from testing each WSI in validation set with cross vali-
dation. Threshold set to 0.3720.

73

B.2 Details from experiment 3b

Receiver operating characteristic and prediction results

Table B.3: Data from ROC and corresponding F1 score and accuracy. WSIs
with proportion of predicted bad-prognosis tiles over threshold is
predicted to have bad prognosis.

Threshold Sensitivity 1-
Specificity

F1 score Accuracy

1.0000 0.0000 0.0400 0.0000 0.4706
0.9640 0.0769 0.0400 0.1379 0.5098
0.9600 0.1538 0.0400 0.2581 0.5490
0.9520 0.1923 0.0400 0.3125 0.5686
0.9360 0.1923 0.1600 0.2857 0.5098
0.9200 0.2692 0.1600 0.3784 0.5490
0.9160 0.2692 0.2000 0.3684 0.5294
0.8360 0.3846 0.2000 0.4878 0.5882
0.8240 0.3846 0.2400 0.4762 0.5686
0.7920 0.5385 0.2400 0.6087 0.6471
0.6440 0.5385 0.4400 0.5490 0.5490
0.5840 0.6154 0.4400 0.6038 0.5882
0.5211 0.6154 0.4800 0.5926 0.5686
0.4480 0.8077 0.4800 0.7119 0.6667
0.4280 0.8462 0.5200 0.7213 0.6667
0.4160 0.8462 0.5600 0.7097 0.6471
0.3920 0.8846 0.5600 0.7302 0.6667
0.3640 0.8846 0.6000 0.7188 0.6471
0.3440 0.9231 0.6000 0.7385 0.6667
0.2440 0.9231 0.6800 0.7164 0.6275
0.2320 0.9615 0.6800 0.7353 0.6471
0.2160 0.9615 0.7200 0.7246 0.6275

Continued on next page

74

Table B.3: Data from ROC and corresponding F1 score and accuracy. WSIs
with proportion of predicted bad-prognosis tiles over threshold is
predicted to have bad prognosis. (Continued)

Threshold Sensitivity 1-
Specificity

F1 score Accuracy

0.1800 1.0000 0.7200 0.7429 0.6471
0.0058 1.0000 1.0000 0.6753 0.5098

Results from testing WSIs

WSI name Number* Proportion* Predicted class Correct class
SUShud59 230/250 0.9200 Bad prognosis Bad prognosis
SUShud63 120/250 0.4800 Bad prognosis Bad prognosis
SUShud76 112/250 0.4480 Good prognosis Bad prognosis
SUShud82 240/250 0.9600 Bad prognosis Bad prognosis
SUShud127 194/232 0.8362 Bad prognosis Bad prognosis
SUShud129 231/250 0.9240 Bad prognosis Bad prognosis
SUShud78 186/250 0.7440 Bad prognosis Good prognosis
SUShud103 234/250 0.9360 Bad prognosis Good prognosis
SUShud105 54/250 0.2160 Good prognosis Good prognosis
SUShud111 61/250 0.2440 Good prognosis Good prognosis
SUShud118 41/250 0.1640 Good prognosis Good prognosis

(a) Iteration 1.
* of tiles predicted as bad prognosis.

75

WSI name Number* Proportion* Predicted class Correct class
SUShud51 201/250 0.8040 Bad prognosis Bad prognosis
SUShud84 238/250 0.9520 Bad prognosis Bad prognosis
SUShud125 218/250 0.8720 Bad prognosis Bad prognosis
SUShud120 241/250 0.9640 Bad prognosis Bad prognosis
SUShud130 205/250 0.8200 Bad prognosis Bad prognosis
SUShud73 235/250 0.9400 Bad prognosis Good prognosis
SUShud75 37/37 1.0000 Bad prognosis Good prognosis
SUShud102 236/250 0.9440 Bad prognosis Good prognosis
SUShud104 229/250 0.9160 Bad prognosis Good prognosis
SUShud108 206/250 0.8240 Bad prognosis Good prognosis

(b) Iteration 2.
* of tiles predicted as bad prognosis.

WSI name Number* Proportion* Predicted class Correct class
SUShud57 240/250 0.9600 Bad prognosis Bad prognosis
SUShud121 107/250 0.4280 Good prognosis Bad prognosis
SUShud123 98/250 0.3920 Good prognosis Bad prognosis
SUShud128 204/250 0.8160 Bad prognosis Bad prognosis
SUShud136 209/250 0.8360 Bad prognosis Bad prognosis
SUShud85 179/250 0.7160 Bad prognosis Good prognosis
SUShud101 104/250 0.4160 Good prognosis Good prognosis
SUShud107 37/71 0.5211 Bad prognosis Good prognosis
SUShud109 91/250 0.3640 Good prognosis Good prognosis
SUShud112 36/250 0.1440 Good prognosis Good prognosis

(c) Iteration 3.
* of tiles predicted as bad prognosis.

76

WSI name Number* Proportion* Predicted class Correct class
SUShud122 122/250 0.4880 Bad prognosis Bad prognosis
SUShud131 86/250 0.3440 Good prognosis Bad prognosis
SUShud132 45/250 0.1800 Good prognosis Bad prognosis
SUShud133 129/250 0.5160 Bad prognosis Bad prognosis
SUShud134 198/250 0.7920 Bad prognosis Bad prognosis
SUShud88 22/250 0.0880 Good prognosis Good prognosis
SUShud106 39/250 0.1560 Good prognosis Good prognosis
SUShud113 13/157 0.0828 Good prognosis Good prognosis
SUShud115 84/250 0.3360 Good prognosis Good prognosis
SUShud119 1/172 0.0058 Good prognosis Good prognosis

(d) Iteration 4.
* of tiles predicted as bad prognosis.

WSI name Number* Proportion* Predicted class Correct class
SUShud74 121/250 0.4840 Bad prognosis Bad prognosis
SUShud94 146/250 0.5840 Bad prognosis Bad prognosis
SUShud124 58/250 0.2320 Good prognosis Bad prognosis
SUShud126 101/166 0.6084 Bad prognosis Bad prognosis
SUShud135 206/210 0.9810 Bad prognosis Bad prognosis
SUShud91 196/250 0.7840 Bad prognosis Good prognosis
SUShud110 107/250 0.4280 Good prognosis Good prognosis
SUShud114 70/105 0.6667 Bad prognosis Good prognosis
SUShud116 40/250 0.1600 Good prognosis Good prognosis
SUShud117 161/250 0.6440 Bad prognosis Good prognosis

(e) Iteration 5.
* of tiles predicted as bad prognosis.

Table B.4: Results from testing each WSI in validation set with cross vali-
dation. Threshold set to 0.4480.

77

	Abstract
	Acknowledgments
	Glossary
	Introduction
	Motivation
	Related work
	Thesis objective

	Medical background
	Overview of the skin tissue layers
	Pathology and tissue processing
	Whole slide image
	Melanoma
	Stages of melanoma
	Prognosis

	Technical background
	Introduction to artificial intelligence
	Machine learning

	Deep learning
	Neural networks
	Convolutional neural networks
	VGG16 - a convolutional neural network
	Transfer learning

	Supervised learning
	Train and validation
	Cross-validation
	Gradient descent
	Early stopping
	Evaluation metrics

	Material and previous work
	Data material
	Previous work
	Annotations
	Tile extraction
	Network

	Methods
	Preprocessing
	Training and cross validation
	Making tile datasets
	CNN at multiple magnification levels

	Testing
	Implementation

	Experiments and results
	Experiment 1 - Preprocessing
	Experiment 2 - Finding optimal tile magnification
	Experiment 2a
	Experiment 2b
	Experiment 2c

	Experiment 3 - Evaluation with cross validation
	Experiment 3a - Mono-scale model
	Experiment 3b - Multi-scale model

	Discussion
	Experiment 1 - Preprocessing
	Model performance
	Experiment 2 - Utilizing different tile magnifications
	Experiment 3 - Utilizing cross validation

	Comparisons with related work
	Limitations
	Future work

	Conclusion
	Bibliography
	Appendices
	Overview of WSIs used in this thesis
	Experiments and results details
	Details from experiment 3a
	Details from experiment 3b

Attachments/Python packages.txt

The code was built using the following Python packages:

Python==3.10.4

matplotlib==3.5.1

numpy==1.22.3

opencv-python==4.5.5

openpyxl==3.0.9

pandas==1.4.2

pickle==4.0

Pillow==9.1.0

pyvips==2.1.16

scikit-image==0.19.2

scikit-learn==1.0.2

scipy==1.8.0

seaborn==0.11.2

torch==1.11.0

torchvision==0.12.0a0+76b4a42

Attachments/Python scripts/MyMethods.py

import pyvips

from skimage.measure import label, regionprops

from skimage.filters import threshold_otsu

from skimage.morphology import closing, square, convex_hull

from sklearn.model_selection import StratifiedKFold

import numpy as np

import cv2

import pickle

import xml.etree.ElementTree as ET

from PIL import Image, ImageDraw

import openpyxl

import re

import os

import ast

import random

from torch.utils.data import Dataset

from torchvision import models, transforms

import torch

import torch.nn as nn

import OtherMethods

---------- Create background mask ----------

Returns a mask highlighting only the purple colours

def HSV_thresh(path, name, level):

 # Read image with width imgWidth, without the alpha channel

 img = read_WSI(path, name, level)

 img = img[0:3]

 # Make numpy array and transform it to HSV

 img_array = np.ndarray(buffer=img.write_to_memory(), dtype=np.uint8, shape=[img.height, img.width, img.bands])

 img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)

 # Get the purple colour of the WSI

 mask_HSV = cv2.inRange(img_hsv, (100, 0, 0), (180, 255, 255))

 return mask_HSV

Use labeling to remove regions in an image smaller then size2remove

def remove_small_regions(img, size2remove=500):

 # Closing of the image and gather the labels of the image

 img = closing(img, square(3))

 label_image = label(img)

 # Run through the image labels and set the small regions to zero

 props = regionprops(label_image)

 for region in props:

 if region.area < size2remove:

 minY, minX, maxY, maxX = region.bbox

 img[minY:maxY, minX:maxX] = 0

 return img

def create_background_mask(path, name, level, size2remove=500):

 # Thresholding the image

 mask = HSV_thresh(path, name, level)

 # Remove small regions in the image

 mask = remove_small_regions(mask, size2remove)

 # Close the holes in the image

 maskInv = cv2.bitwise_not(mask)

 maskInv_closed = remove_small_regions(maskInv, size2remove)

 mask = cv2.bitwise_not(maskInv_closed)

 return mask

---------- Create mask from annotations in XML file ----------

def read_XMLfile(path, name, level):

 # Read the data

 tree = ET.parse('{}/{}.xml'.format(path, name))

 root = tree.getroot()

 # Dictionary containing coordinates to each region

 xml_dict = {}

 # Display the data as coordinates in tuples

 # Go through each region

 for region in root.iter('Region'):

 # Make a new list for each uniq key

 if not(region.get('tags') in xml_dict.keys()):

 xml_dict[region.get('tags')] = []

 # List of coordinates belonging to one region

 xy = []

 # Rescale and append coordinates to list

 for vertex in region.find('Vertices'):

 x = int(float(vertex.get('X')))//(2**level)

 y = int(float(vertex.get('Y')))//(2**level)

 xy.append((x,y))

 # Append list of coordinates to each uniq key

 xml_dict[region.get('tags')].append(xy)

 return xml_dict

Create mask out of annotations

def maskFromAnnotations(dict_list, width, height, tag='Lesion malign'):

 # Containing multiple masks if given tag recurs multiple times in dict_list

 masks = []

 # make mask from given annotations

 for list in dict_list[tag]:

 # make new black image

 mask = Image.new('L', (width, height))

 # Draw the mask on the black image

 ImageDraw.Draw(mask).polygon(list, outline=1, fill=1)

 # Convert from 0/1 to 0/255

 mask = np.array(mask)*255

 masks.append(mask)

 return masks

---------- Set up data, dataset and model for DNN ----------

Read xlsx file containing tissue and prognosis values

def read_xlsx(path, min_row=3, max_row=55, positive_value='God prognose'):

 filename = '{}.xlsx'.format(path)

 # Read from file

 wb = openpyxl.load_workbook(filename)

 sheet = wb.active

 # Name of tissues

 tissue = []

 # Good or bad prognosis of tissues (good==1, bad==0)

 prognosis = []

 # Read values from xlsx file and append to lists

 for row in sheet.iter_rows(min_row=min_row, max_row=max_row):

 tissue.append(row[0].value)

 if row[1].value == positive_value:

 prognosis.append(1)

 else:

 prognosis.append(0)

 return tissue, prognosis

Use stratified K-fold to divide WSIs in to train and validation

def makeTrainValDataset(coord_path, xlsx_file, n_splits=5, xlsx_ant_elements=53, xlsx_min_row=3, positive_value='God prognose', crossVal = True, crossValIndex = []):

 # If no index for doing cross-validation on is chosen, use all the splits of data

 if not crossValIndex:

 crossValIndex = range(n_splits)

 # Get names and category of WSIs in xlsx file

 xlsx_max_row = xlsx_ant_elements + xlsx_min_row - 1

 imgNames_xlsx, categories_xlsx = read_xlsx(xlsx_file, min_row=xlsx_min_row, max_row=xlsx_max_row, positive_value=positive_value)

 WSInames = os.listdir(coord_path)

 # Get the categories corresponding to the WSIs with gathered coordinates

 categories = []

 for nameWSI in WSInames:

 pos_of_current_category = imgNames_xlsx.index(nameWSI)

 current_category = categories_xlsx[pos_of_current_category]

 categories.append(current_category)

 # Devide WSInames and categories in to train- and validation-sets

 skf = StratifiedKFold(n_splits=n_splits)

 WSInames = np.array(WSInames)

 categories = np.array(categories)

 skfSplit = skf.split(WSInames, categories)

 dataset_x = []

 dataset_y = []

 i = -1

 for train_index, val_index in skfSplit:

 i += 1

 if i in crossValIndex:

 dataset_x.append({})

 dataset_y.append({})

 dataset_x[len(dataset_x)-1]['train'] = WSInames[train_index]

 dataset_y[len(dataset_y)-1]['train'] = categories[train_index]

 dataset_x[len(dataset_x)-1]['val'] = WSInames[val_index]

 dataset_y[len(dataset_y)-1]['val'] = categories[val_index]

 if not crossVal:

 break

 return dataset_x, dataset_y

Map-style dataset

class tile_datasets(Dataset):

 def __init__(self, transform, coord_path, dataset_x, dataset_y, magnification_levels, tileSize=256,

 tilePerWSI=0):

 self.coord_path = coord_path

 self.magLevels = magnification_levels

 self.tile_size = tileSize

 self.dataset_x = dataset_x

 self.dataset_y = dataset_y

 self.transform = transform

 # If tiles to find is limited (tilePerWSI > 0), find random positions in the WSI to gather the tiles from

 # Find the amount of gathered tiles in each WSI

 self.coord_tiles_indexes = []

 self.lenWSIs = []

 for tileName in self.dataset_x:

 tile_coord = \

 read_pickle(self.coord_path, tileName + '/' + 'coordinate_tissue_predictions_pickle')[0]

 if tilePerWSI <= 0 or len(tile_coord) < tilePerWSI:

 self.lenWSIs.append(len(tile_coord))

 indexes = random.sample(range(0, len(tile_coord)), len(tile_coord))

 self.coord_tiles_indexes.append(indexes)

 else:

 self.lenWSIs.append(tilePerWSI)

 indexes = random.sample(range(0, len(tile_coord)), tilePerWSI)

 self.coord_tiles_indexes.append(indexes)

 def __len__(self):

 return sum(self.lenWSIs)

 def len(self):

 return self.__len__()

 def __getitem__(self, idx):

 all_magLevels = ['40x', '20x', '10x']

 # Find WSI name and tile position, in coordinate list, for the current tile

 WSInames = self.dataset_x

 lenPreWSI = 0

 for i, WSIlength in enumerate(self.lenWSIs):

 if lenPreWSI + WSIlength - 1 >= idx:

 index_tile = idx - lenPreWSI

 index = self.coord_tiles_indexes[i][index_tile]

 nameWSI = WSInames[i]

 break

 else:

 lenPreWSI += WSIlength

 WSI_coord = read_pickle(self.coord_path, nameWSI + '/' + 'coordinate_tissue_predictions_pickle')

 WSI_coord = WSI_coord[0]

 # Get the WSI file path and tile coordinates

 WSI_path = WSI_coord[index]['path']

 # Extract tiles

 tiles = []

 for magLevel in self.magLevels:

 # magnification level for extracting tile

 level = all_magLevels.index(magLevel)

 # Get the string, referring to the magnification level in the coordinate directory

 coordLevel = 'coordinates_' + magLevel

 # Extract tile from WSI image and transform to fit model

 WSI_img = pyvips.Image.new_from_file(WSI_path, level=level).flatten().rot(1)

 startX, startY = WSI_coord[index][coordLevel]

 tile_obj = WSI_img.extract_area(startX, startY, self.tile_size, self.tile_size)

 tile_img = np.ndarray(buffer=tile_obj.write_to_memory(), dtype=np.uint8,

 shape=[tile_obj.height, tile_obj.width, tile_obj.bands])

 tile_img = np.array(tile_img).reshape(tile_img.shape[0], tile_img.shape[1], 3)

 tile_img = Image.fromarray(tile_img)

 tile_img = self.transform(tile_img)

 tiles.append(tile_img)

 # Find the category of the tile

 pos_of_category = np.where(self.dataset_x == nameWSI)[0][0]

 category = self.dataset_y[pos_of_category]

 if len(tiles) == 1:

 return tiles[0], category, nameWSI

 return tiles, category, nameWSI

Make model based on multiple input images

class make_multiModel(nn.Module):

 def __init__(self, num_classes, feature_extract, num_img_inputs, use_pretrained=True):

 super(make_multiModel, self).__init__()

 model_ft = models.vgg16(pretrained=use_pretrained)

 # Extend input in the first classifier layer to accept features from multiple images

 num_in = model_ft.classifier[0].in_features

 num_out = model_ft.classifier[0].out_features

 model_ft.classifier[0] = nn.Linear(num_in*num_img_inputs, num_out)

 # Freeze feature layers

 OtherMethods.set_parameter_requires_grad(model_ft, feature_extract)

 # Change last layer to have an output equal to number of classes

 num_in = model_ft.classifier[6].in_features

 model_ft.classifier[6] = nn.Linear(num_in, num_classes)

 self.features, self.avgpool, self.classifier = nn.Sequential(*list(model_ft.children()))

 self.input_size = 224

 def forward(self, inputs):

 x_list = []

 # Extract features

 for x in inputs:

 x = self.features(x)

 x = self.avgpool(x)

 x = torch.flatten(x, 1)

 x_list.append(x)

 # Concatenate and classify

 x = torch.cat(x_list, 1)

 x = self.classifier(x)

 return x

Read WSI

def read_WSI(path, name, level):

 filename = '{}/{}.ndpi'.format(path, name)

 img = pyvips.Image.new_from_file(filename, level=level).flatten()

 return img

Get width and height of WSI

def get_imgWidthHeight(path, name, level):

 img = read_WSI(path, name, level)

 img_array = np.ndarray(buffer=img.write_to_memory(), dtype=np.uint8, shape=[img.height, img.width, img.bands])

 img_gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)

 height, width = img_gray.shape

 return width, height

Save image as jpg

def save_as_jpg(img, path, name, xPos='', yPos='', fromWSI=False):

 if xPos != '':

 filename = '{}/{}#{}#{}.jpg'.format(path, name, xPos, yPos)

 else:

 filename = '{}/{}.jpg'.format(path, name)

 if fromWSI:

 img = np.ndarray(buffer=img.write_to_memory(), dtype=np.uint8, shape=[img.height, img.width, img.bands])

 cv2.imwrite(filename, img)

Save object as pickle

def save_as_pickle(obj, path, name):

 pickle_filename = '{}/{}.obj'.format(path, name)

 with open(pickle_filename, 'wb') as pickle_writer:

 pickle.dump(obj, pickle_writer)

Read pickle file to list

def read_pickle(path, name):

 pickle_filename = '{}/{}.obj'.format(path, name)

 obj = []

 with open(pickle_filename, 'rb') as pickle_file:

 while True:

 try:

 obj.append(pickle.load(pickle_file))

 except EOFError:

 break

 return obj

Save listed objects as text files

Expects the input "list" to be a list containing objects

def save_listedObject_as_text(list, path):

 text_filename = '{}.text'.format(path)

 with open(text_filename, 'wt') as text_writer:

 for obj in list:

 text = str(obj) + '\n'

 text_writer.write(text)

Read listed objects, saved as text files

Expects the text file from the input "path" to contain a list of objects with valid Python datatypes

Will raise SyntaxError if the list does not contain a valid Python datatype

def read_listedObject_from_text(path):

 text_filename = '{}.text'.format(path)

 list_obj = []

 with open(text_filename) as text_reader:

 list_text = text_reader.readlines()

 for text in list_text:

 obj = ast.literal_eval(text)

 list_obj.append(obj)

 return list_obj

Find name of file

returns a string containing: input "rootName" + the first number after the input "rootName"

def get_name(filename, rootName='SUShud'):

 loc = filename.find(rootName)+len(rootName)

 name = filename[loc:]

 name = re.search('[0-9]+', name).group()

 return rootName + name

Attachments/Python scripts/OtherMethods.py

from skimage.measure import regionprops

from skimage import morphology

from scipy import ndimage

import numpy as np

import pyvips

import pickle

import time

import cv2

import os

from torchvision import models

import torch.nn as nn

Extract tiles from WSI and save coordinates of these tiles

def extractTiles(wsi_dataset_file_path, mask_dataset_file_path, wsi_filename, wsi_name, output_folder='Output', magLevel = '10x'):

 # Set this option to True to save tiles as JPEG images in a separate folder.

 save_tiles_as_jpeg = False

 # Set this option to True to save the binary annotation mask as a JPEG image.

 save_binary_annotation_mask = True

 # In the WSI folder, there is a file containing a dict with the 7 binary masks.

 # To specify which of these masks to use, list the tissue types in the following variable.

 # Available options: ['tissue', 'Lesion malign']

 tissue_classes_to_fit_tiles_on = ['Lesion malign']

 # How large percentage of the tile must cover the region to be consider a valid tile.

 # Float between 0-1.

 PHI = 0.7

 # Which level in the WSI to use when checking for valid tiles (level 0=40x, level 1=20x, and level 2=10x).

 # Available options: '10x', '20x', '40x'.

 ALPHA = magLevel

 # All valid tiles are displayed on the 10x image and saved as JPEG to the folder.

 # This option determines which of the three levels to include in the final image.

 # Tiles from all three levels in the WSI are saved, this option is only for visualization.

 # Available options: ['10x', '20x', '40x'].

 TILES_TO_SHOW = [magLevel]

 # Size of width/height of the tiles to extract. Integer.

 TILE_SIZE = 256

 # The level the annotation mask is on, and also the level our tiles are on. For our mask it's '10x'.

 TAU = '10x'

 # The binary masks contain small regions which is not of interest.

 # These are removed using the remove_small_objects() function.

 # This variable sets the minimum size to remove.

 # Available options: Integer values, usually between 500 and 20000.

 SMALL_REGION_REMOVE_THRESHOLD = 3000

 # Paths

 extracted_tiles_folder = 'Extracted_tiles'

 os.makedirs(output_folder, exist_ok=True)

 if save_tiles_as_jpeg:

 os.makedirs(extracted_tiles_folder, exist_ok=True)

 # Variable initialization

 dict_of_all_predicted_coordinates_dict = dict()

 list_of_valid_tiles_from_current_wsi = []

 i = 0

 # Create a dict containing the ratio for each level

 region_masks = dict()

 ratio_dict = dict()

 ratio_dict['40x'] = 1

 ratio_dict['20x'] = 2

 ratio_dict['10x'] = 4

 # Create a dict containin the index of each class

 tissue_class_to_index = dict()

 tissue_class_to_index['tissue'] = 0

 tissue_class_to_index['Lesion malign'] = 1

 # Start timer

 current_wsi_start_time = time.time()

 # Create folder for each WSI to store output

 os.makedirs(output_folder + '/' + wsi_name, exist_ok=True)

 if save_tiles_as_jpeg:

 os.makedirs(extracted_tiles_folder + '/' + wsi_name, exist_ok=True)

 # Load annotation mask. For us, this is a pickle file containing the annotation mask for all tissue classes.

 annotation_mask_path = mask_dataset_file_path + '/' + wsi_name + '/' + 'mask.obj'

 with open(annotation_mask_path, 'rb') as handle:

 annotation_mask_all_classes = pickle.load(handle)

 # Read images

 full_image_40 = pyvips.Image.new_from_file(wsi_dataset_file_path + '/' + wsi_filename + '.ndpi', level=0, autocrop=True).flatten().rot(1)

 full_image_20 = pyvips.Image.new_from_file(wsi_dataset_file_path + '/' + wsi_filename + '.ndpi', level=1, autocrop=True).flatten().rot(1)

 full_image_10 = pyvips.Image.new_from_file(wsi_dataset_file_path + '/' + wsi_filename + '.ndpi', level=2, autocrop=True).flatten().rot(1)

 # Find width/heigh of 10x image

 scn_width_10x = full_image_10.width

 scn_height_10x = full_image_10.height

 print('Loaded WSI with size {} x {}'.format(str(scn_width_10x), str(scn_height_10x)))

 # Loop through each tissue class to fit tiles on

 for current_class_to_copy in tissue_classes_to_fit_tiles_on:

 print('Now processing {} regions'.format(current_class_to_copy))

 # Extract mask for current class

 current_class_mask = annotation_mask_all_classes[tissue_class_to_index[current_class_to_copy]].copy()

 # Resize colormap to the size of 10x overview image

 current_class_mask = cv2.resize(current_class_mask, dsize=(scn_width_10x, scn_height_10x), interpolation=cv2.INTER_CUBIC)

 print('Loaded segmentation mask with size {} x {}'.format(current_class_mask.shape[1], current_class_mask.shape[0]))

 # Save the annotation mask image (If option is set to True)

 if save_binary_annotation_mask:

 annotation_mask_for_saving = current_class_mask * 255

 cv2.imwrite(output_folder + '/' + wsi_name + '/Binary_annotation_mask_{}.jpg'.format(current_class_to_copy), annotation_mask_for_saving, [int(cv2.IMWRITE_JPEG_QUALITY), 100])

 # Use a boolean condition to find where pixel values are > 0.75

 blobs = current_class_mask > 0.75

 # label connected regions that satisfy this condition

 labels, regions_found_in_wsi_before_removing_small_obj = ndimage.label(blobs)

 print('\tFound {} regions'.format(regions_found_in_wsi_before_removing_small_obj))

 # Remove all the small regions

 labels = morphology.remove_small_objects(labels, min_size=SMALL_REGION_REMOVE_THRESHOLD)

 # Get region properties

 list_of_regions = regionprops(labels)

 n_regions_after_removing_small_obj = len(list_of_regions)

 print('\tFound {} regions (after removing small objects)'.format(n_regions_after_removing_small_obj))

 # Create a new binary map after removing small objects

 region_masks[current_class_to_copy] = np.zeros(shape=(current_class_mask.shape[0], current_class_mask.shape[1]))

 # Extract all coordinates (to draw region on overview image)

 for current_region in list_of_regions:

 for current_region_coordinate in current_region.coords:

 region_masks[current_class_to_copy][current_region_coordinate[0], current_region_coordinate[1]] = 1

 # Create a grid of all possible x- and y-coordinates (starting position (0,0))

 all_x_pos, all_y_pos = [], []

 for x_pos in range(0, int(current_class_mask.shape[1] - TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])), int(TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU]))):

 all_x_pos.append(x_pos)

 for y_pos in range(0, int(current_class_mask.shape[0] - TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])), int(TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU]))):

 all_y_pos.append(y_pos)

 # Create a new list with all xy-positions in current SCN image

 list_of_valid_tiles_from_current_class = []

 for y_pos in all_y_pos:

 for x_pos in all_x_pos:

 # Equation 1 in paper

 if int(sum(sum(region_masks[current_class_to_copy][y_pos:y_pos + int(TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])),

 x_pos:x_pos + int(TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU]))]))) >= (pow((TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])), 2) * PHI):

 list_of_valid_tiles_from_current_class.append((x_pos, y_pos))

 # Add the tiles to the list of tiles of current wsi

 list_of_valid_tiles_from_current_wsi.extend(list_of_valid_tiles_from_current_class)

 tile_x = dict()

 tile_y = dict()

 # Save coordinates for each tiles to a dict to create a dataset

 for current_xy_pos in list_of_valid_tiles_from_current_wsi:

 # Equation 2 in paper.

 for BETA in ['10x', '20x', '40x']:

 tile_x[BETA] = (current_xy_pos[0] + (TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])) / 2) * (ratio_dict[TAU] / ratio_dict[BETA]) - TILE_SIZE / 2

 tile_y[BETA] = (current_xy_pos[1] + (TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])) / 2) * (ratio_dict[TAU] / ratio_dict[BETA]) - TILE_SIZE / 2

 # Save tile to coordinate dict (coordinate of top-left corner)

 id_number = len(dict_of_all_predicted_coordinates_dict.keys())

 dict_of_all_predicted_coordinates_dict[id_number] = dict()

 dict_of_all_predicted_coordinates_dict[id_number]['path'] = wsi_dataset_file_path + '/' + wsi_filename + '.ndpi'

 dict_of_all_predicted_coordinates_dict[id_number]['coordinates_40x'] = (int(tile_x['40x']), int(tile_y['40x']))

 dict_of_all_predicted_coordinates_dict[id_number]['coordinates_20x'] = (int(tile_x['20x']), int(tile_y['20x']))

 dict_of_all_predicted_coordinates_dict[id_number]['coordinates_10x'] = (int(tile_x['10x']), int(tile_y['10x']))

 dict_of_all_predicted_coordinates_dict[id_number]['tissue_type'] = current_class_to_copy

 # Extract and save tiles as jpeg-images (If option is set to True)

 if save_tiles_as_jpeg:

 tile_40x = full_image_40.extract_area(int(tile_x['40x']), int(tile_y['40x']), TILE_SIZE, TILE_SIZE)

 tile_20x = full_image_20.extract_area(int(tile_x['20x']), int(tile_y['20x']), TILE_SIZE, TILE_SIZE)

 tile_10x = full_image_10.extract_area(int(tile_x['10x']), int(tile_y['10x']), TILE_SIZE, TILE_SIZE)

 tile_40x.jpegsave(extracted_tiles_folder + '/' + wsi_name + '/tile_{}_40x.jpeg'.format(i), Q=100)

 tile_20x.jpegsave(extracted_tiles_folder + '/' + wsi_name +'/tile_{}_20x.jpeg'.format(i), Q=100)

 tile_10x.jpegsave(extracted_tiles_folder + '/' + wsi_name + '/tile_{}_10x.jpeg'.format(i), Q=100)

 i += 1

 # Save predicted coordinates dict as pickle

 with open(output_folder + '/' + wsi_name + '/coordinate_tissue_predictions_pickle.obj', 'wb') as handle:

 pickle.dump(dict_of_all_predicted_coordinates_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)

 # Save overview image

 filename = output_folder + '/' + wsi_name + '/image_clean.jpeg'

 full_image_10.jpegsave(filename, Q=100)

 # Read overview image again using cv2, and add alpha channel to overview image.

 overview_jpeg_file = cv2.imread(filename, cv2.IMREAD_UNCHANGED)

 overview_jpeg_file = np.dstack([overview_jpeg_file, np.ones((overview_jpeg_file.shape[0], overview_jpeg_file.shape[1]), dtype="uint8") * 255])

 # Convert masks from 0-1 -> 0-255 (can also be used to set the color)

 for n in tissue_classes_to_fit_tiles_on:

 region_masks[n] *= 255

 # Resize masks to same size as the overview image

 for n in tissue_classes_to_fit_tiles_on:

 region_masks[n] = cv2.resize(region_masks[n], dsize=(overview_jpeg_file.shape[1], overview_jpeg_file.shape[0]), interpolation=cv2.INTER_CUBIC)

 # Create a empty alpha channel

 alpha_channel = np.zeros(shape=(region_masks[tissue_classes_to_fit_tiles_on[0]].shape[0], region_masks[tissue_classes_to_fit_tiles_on[0]].shape[1]))

 # Each mask is 1-channel, merge them to create a 3-channel image (RGB), the order is used to set the color for each mask. Add a alpha-channel.

 if len(tissue_classes_to_fit_tiles_on) >= 1:

 region_masks[tissue_classes_to_fit_tiles_on[0]] = cv2.merge((region_masks[tissue_classes_to_fit_tiles_on[0]], alpha_channel, alpha_channel, alpha_channel))

 if len(tissue_classes_to_fit_tiles_on) >= 2:

 region_masks[tissue_classes_to_fit_tiles_on[1]] = cv2.merge((alpha_channel, region_masks[tissue_classes_to_fit_tiles_on[1]], alpha_channel, alpha_channel))

 if len(tissue_classes_to_fit_tiles_on) >= 3:

 region_masks[tissue_classes_to_fit_tiles_on[2]] = cv2.merge((alpha_channel, alpha_channel, region_masks[tissue_classes_to_fit_tiles_on[2]], alpha_channel))

 if len(tissue_classes_to_fit_tiles_on) >= 4:

 region_masks[tissue_classes_to_fit_tiles_on[3]] = cv2.merge((region_masks[tissue_classes_to_fit_tiles_on[3]], region_masks[tissue_classes_to_fit_tiles_on[3]], alpha_channel, alpha_channel))

 if len(tissue_classes_to_fit_tiles_on) >= 5:

 region_masks[tissue_classes_to_fit_tiles_on[4]] = cv2.merge((region_masks[tissue_classes_to_fit_tiles_on[4]], alpha_channel, region_masks[tissue_classes_to_fit_tiles_on[4]], alpha_channel))

 if len(tissue_classes_to_fit_tiles_on) >= 6:

 region_masks[tissue_classes_to_fit_tiles_on[5]] = cv2.merge((alpha_channel, region_masks[tissue_classes_to_fit_tiles_on[5]], region_masks[tissue_classes_to_fit_tiles_on[5]], alpha_channel))

 # Draw the selected regions on the overview image

 for _, current_tissue_mask in region_masks.items():

 overview_jpeg_file = cv2.addWeighted(current_tissue_mask, 1, overview_jpeg_file, 1.0, 0, dtype=cv2.CV_64F)

 # Draw tiles on the overview image

 for current_xy_pos in list_of_valid_tiles_from_current_wsi:

 start_x = dict()

 start_y = dict()

 end_x = dict()

 end_y = dict()

 # Equation 3 in paper.

 for BETA in ['10x', '20x', '40x']:

 start_x[BETA] = int(((current_xy_pos[0] + ((TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])) / 2)) * (ratio_dict[TAU] / ratio_dict['10x'])) - ((TILE_SIZE * (ratio_dict[BETA] / ratio_dict['10x'])) / 2))

 start_y[BETA] = int(((current_xy_pos[1] + ((TILE_SIZE * (ratio_dict[ALPHA] / ratio_dict[TAU])) / 2)) * (ratio_dict[TAU] / ratio_dict['10x'])) - ((TILE_SIZE * (ratio_dict[BETA] / ratio_dict['10x'])) / 2))

 end_x[BETA] = int(start_x[BETA] + TILE_SIZE * (ratio_dict[BETA] / ratio_dict['10x']))

 end_y[BETA] = int(start_y[BETA] + TILE_SIZE * (ratio_dict[BETA] / ratio_dict['10x']))

 # Draw tiles (Red tiles indicate which level ALPHA is, and the corresponding levels are shown in green)

 for draw_level in TILES_TO_SHOW:

 color = (0, 0, 255) if draw_level == ALPHA else (0, 255, 0)

 cv2.rectangle(overview_jpeg_file, (start_x[draw_level], start_y[draw_level]), (end_x[draw_level], end_y[draw_level]), color, 3)

 # Save overview image

 cv2.imwrite(output_folder + '/' + wsi_name + '/image_with_mask_and_tiles_alpha_{}_phi_{}_{}.jpg'.format(ALPHA, PHI, len(list_of_valid_tiles_from_current_wsi)), overview_jpeg_file, [int(cv2.IMWRITE_JPEG_QUALITY), 100])

 # Calculate elapse time for current run

 elapse_time = time.time() - current_wsi_start_time

 m, s = divmod(elapse_time, 60)

 h, m = divmod(m, 60)

 model_time = '%02d:%02d:%02d' % (h, m, s)

 # Print out results

 print('Found {} tiles in image'.format(len(list_of_valid_tiles_from_current_wsi)))

 print('Finished. Duration: {}'.format(model_time))

Freeze parameters in given model

def set_parameter_requires_grad(model, feature_extracting):

 if feature_extracting:

 for name, param in model.named_parameters():

 if 'features' in name:

 param.requires_grad = False

Make model based on one input image

def make_Model(num_classes, feature_extract, use_pretrained=True):

 model_ft = models.vgg16(pretrained=use_pretrained)

 set_parameter_requires_grad(model_ft, feature_extract)

 num_ftrs = model_ft.classifier[6].in_features

 model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes)

 input_size = 224

 return model_ft, input_size

Attachments/Python scripts/Prediction.py

import matplotlib.pyplot as plt

import seaborn as sns

import MyMethods

from sklearn.metrics import confusion_matrix, roc_curve, auc

import numpy as np

Name of current folder to get text files from

textFolder = 'mag20x_OutTiles20x'

Path to folders, with saved text files

text_folder_path = 'Text_files'

Name of text file containing prediction values

predictValues_name = 'predicValues'

Name of text file containing the confusion matrix

conf_mtx_name = 'conf_mtx'

Name of text file containing accuracy and loss of training and validation

hist_name = 'history'

The class with bad prognosis

Available options: 0 (class 1) or 1 (class 2)

class_bad = 0

Threshold to predict bad prognosis of WSI

WSIs with proportion of predicted bad-prognosis tiles over threshold is predicted to have bad prognosis

threshold = 0.3720

Path to store text files

text_path = text_folder_path + '/' + textFolder

Get prediction values from stored text file

predictValues = MyMethods.read_listedObject_from_text(text_path + '/' + predictValues_name)

Get confusion matrix from stored text file

conf_matrices = MyMethods.read_listedObject_from_text(text_path + '/' + conf_mtx_name)

Get history from stored text file

histories = MyMethods.read_listedObject_from_text(text_path + '/' + hist_name)

Show performance for tiles

for i, conf_mtx in enumerate(conf_matrices, start=1):

 TP = conf_mtx[0][0]

 FP = conf_mtx[1][0]

 TN = conf_mtx[1][1]

 FN = conf_mtx[0][1]

 F1_score = (2*TP) / (2*TP + FP + FN)

 sensitivity = TP / (TP + FN)

 specificity = TN / (FP + TN)

 print('F1 score: ' + str(F1_score))

 print('Sensitivity: ' + str(sensitivity))

 print('Specificity: ' + str(specificity))

 print('')

 # Plot confusion matrix

 f, ax = plt.subplots(figsize=(4, 4), num='Tile prediction ' + str(i))

 labels = ['Bad prognosis', 'Good prognosis']

 sns.heatmap(conf_mtx, annot=True, linewidths=0.01, cmap='Oranges', linecolor='gray', fmt='d',

 xticklabels=labels, yticklabels=labels)

 plt.xlabel('Predicted class')

 plt.ylabel('True class')

Plot accuracy and loss

for i, hist in enumerate(histories, start=1):

 fig, (ax1, ax2) = plt.subplots(1, 2, num='History plot ' + str(i))

 # Plot accuracy

 ax1.plot(range(0, len(hist['accuracy'])), hist['accuracy'], label='training accuracy')

 ax1.plot(range(0, len(hist['val_accuracy'])), hist['val_accuracy'], label='validation accuracy')

 ax1.set_title('Accuracy')

 ax1.set_ylim((0, 1))

 ax1.legend(loc="upper left")

 # Plot Loss

 ax2.plot(range(0, len(hist['loss'])), hist['loss'], label='training loss')

 ax2.plot(range(0, len(hist['val_loss'])), hist['val_loss'], label='validation loss')

 ax2.set_title('Loss')

 ax2.set_ylim((0, 2*max(hist['val_loss'])))

 ax2.legend(loc="upper left")

 val_loss = min(hist['val_loss'])

 val_index = hist['val_loss'].index(val_loss)

 val_acc = hist['val_accuracy'][val_index]

 print('Best epoch: ' + str(val_index))

 print('Minimum validation loss: ' + str(val_loss))

 print('Accuracy: ' + str(val_acc))

 print('')

Show performance for WSIs

for j, predictValue in enumerate(predictValues, start=1):

 prediction = []

 positiveValues = []

 for i, name in enumerate(predictValue['names']):

 true_label = predictValue['labels'][i]

 predTiles = predictValue['predict'][i]

 numb_correct = 0

 numb_bad = 0

 # Count number of tiles truly predicted and tiles predicted as bad prognosis

 for pred in predTiles:

 if pred == true_label:

 numb_correct += 1

 if pred == class_bad:

 numb_bad += 1

 # Proportion of tiles predicted as bad prognosis

 proportion_bad = numb_bad / len(predTiles)

 positiveValues.append(proportion_bad)

 # Find correct class

 if true_label == class_bad:

 correct_class = 'Bad prognosis'

 else:

 correct_class = 'Good prognosis'

 # Find predictions

 if proportion_bad >= threshold:

 prediction.append(class_bad)

 pred_class = 'Bad prognosis'

 else:

 prediction.append(1-class_bad)

 pred_class = 'Good prognosis'

 print('WSI: ' + name)

 print('Number of tiles predicted as bad prognosis: ' + str(numb_bad) + '/' + str(len(predTiles)))

 print('Proportion of tiles predicted as bad prognosis: ' + str(proportion_bad))

 print('Predicted class: ' + pred_class)

 print('Correct class: ' + correct_class)

 print('')

 conf_mtx = confusion_matrix(predictValue['labels'], prediction)

 TP = conf_mtx[0][0]

 FP = conf_mtx[1][0]

 TN = conf_mtx[1][1]

 FN = conf_mtx[0][1]

 accuracy = (TP + TN) / (TP + FP + TN + FN)

 F1_score = (2*TP) / (2*TP + FP + FN)

 sensitivity = TP / (TP + FN)

 specificity = TN / (FP + TN)

 print('')

 print('Accuracy: ' + str(accuracy))

 print('F1 score: ' + str(F1_score))

 print('Sensitivity: ' + str(sensitivity))

 print('Specificity: ' + str(specificity))

 # Plot confusion matrix

 f, ax = plt.subplots(figsize=(4, 4), num='WSI predictions ' + str(j))

 labels = ['Bad prognosis', 'Good prognosis']

 sns.heatmap(conf_mtx, annot=True, linewidths=0.01, cmap='Oranges', linecolor='gray', fmt='d',

 xticklabels=labels, yticklabels=labels)

 plt.xlabel('Predicted class')

 plt.ylabel('True class')

 # Make receiver operating characteristic

 fpr, tpr, thres = roc_curve(np.array(predictValue['labels']), np.array(positiveValues), pos_label=0)

 roc_auc = auc(fpr, tpr)

 print('')

 print('Thresholds Sensitivity 1-Specificity F1_score Accuracy: ')

 for i, testTheshold in enumerate(thres):

 prediction = []

 # Find predictions with different thresholds

 for posValue in positiveValues:

 if posValue >= testTheshold:

 prediction.append(class_bad)

 else:

 prediction.append(1-class_bad)

 conf_mtx = confusion_matrix(predictValue['labels'], prediction)

 TP = conf_mtx[0][0]

 FP = conf_mtx[1][0]

 TN = conf_mtx[1][1]

 FN = conf_mtx[0][1]

 accuracy = (TP + TN) / (TP + FP + TN + FN)

 F1_score = (2*TP) / (2*TP + FP + FN)

 print('{:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(thres[i], tpr[i], fpr[i], F1_score, accuracy))

 plt.figure('ROC ' + str(j))

 plt.plot(fpr, tpr, color="darkorange", lw=2, label="AUC = %0.2f" % roc_auc)

 plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")

 plt.xlim([0.0, 1.0])

 plt.ylim([0.0, 1.05])

 plt.xlabel('1-Specificity')

 plt.ylabel('Sensitivity')

 plt.title("Receiver operating characteristic")

 plt.legend(loc="lower right")

plt.show()

Attachments/Python scripts/Preprocessing.py

from OtherMethods import extractTiles

import MyMethods

import numpy as np

import cv2

import os

Folder path to WSIs, of filetype ".ndpi"

WSI_path = '/home/prosjekt/Histology/Melanoma_SUS/MSc_Good_Bad_prognosis'

Folder path to annotated areas in WSIs, located in ".xml"-file

annotation_path = '/home/prosjekt/Histology/.xmlStorage'

Folder path to save mask images

mask_path = 'Masks'

Folder path to save tile coordinates

output_path = 'Output_tiles_20x'

The common name of all WSI, followed by an ID number

rootName = 'SUShud'

Tag from the XLM file to make mask from

tag = 'Lesion malign'

Set to True, if you want to make/update masks, else set to False

makeMasks = True

Set to True, if you want to extract tiles and save tile coordinates, else set to False

extract_tiles = True

Magnification level to make the masks from (the levels available depends on the pyramid structure of the WSI-image)

Level 0 = 40x magnification, level 1 = 20x, level 2 = 10x, Level 3 = 5x,

level 4 = 2.5x, level 5 = 1.25x, and level 6 = 0.625x

Available options: integer from 0-6

level = 5

Magnification level to check for valid tiles

Level 0 = 40x magnification, level 1 = 20x, and level 2 = 10x

Available options: '10x', '20x', '40x'

magLevel = '20x'

Get the WSIs

WSI_filenames = os.listdir(WSI_path)

Delete name from list, if it is not an WSI

for filename in WSI_filenames:

 if os.path.splitext(filename)[1] != '.ndpi':

 WSI_filenames.remove(filename)

Get the annotation data

all_annotation_filenames = os.listdir(annotation_path)

Gather all annotation data, corresponding to the WSIs

annotation_filenames = []

for filename in all_annotation_filenames:

 if rootName in filename:

 annotation_filenames.append(filename)

Go through every WSI and extract wanted tiles from each WSI

for filename_WSI in WSI_filenames:

 WSI_name = MyMethods.get_name(filename_WSI)

 print('Working on WSI image: ' + WSI_name)

 filename_annotation = ''

 # Get annotation mask with same name as current WSI

 for filename in annotation_filenames:

 if WSI_name in filename:

 name = os.path.splitext(filename)[0]

 # Check that annotations contains the wanted mask

 if tag in MyMethods.read_XMLfile(annotation_path, name, level=level).keys():

 filename_annotation = filename

 break

 # Go to next if WSI is not annotated with given tag

 if filename_annotation == '':

 continue

 # To avoid the file type in the filename

 filename_WSI = os.path.splitext(filename_WSI)[0]

 filename_annotation = os.path.splitext(filename_annotation)[0]

 # Make folders for mask- and output-files, if these folders do not exist

 os.makedirs(mask_path + '/' + WSI_name, exist_ok=True)

 os.makedirs(output_path + '/' + WSI_name, exist_ok=True)

 # Make mask

 if makeMasks:

 print('Making mask')

 # Get the annotations of the WSI

 annotations = MyMethods.read_XMLfile(annotation_path, filename_annotation, level=level)

 # Make Milign mask

 width, height = MyMethods.get_imgWidthHeight(WSI_path, filename_WSI)

 maskMalign = MyMethods.maskFromAnnotations(annotations, width, height, tag=tag)

 # Make Tissue mask

 maskTissue = MyMethods.create_background_mask(WSI_path, filename_WSI, level=level)

 # Find the malign lesion mask of each area in the WSI

 malignLesionMasks = []

 for maskID in range(len(maskMalign)):

 malignLesionMasks.append(cv2.bitwise_and(maskMalign[maskID], maskTissue))

 # Set the masks together in one mask containing all the malign lesion

 for maskID in range(len(malignLesionMasks)):

 if maskID == 0:

 maskMalignLesion = malignLesionMasks[0]

 else:

 maskMalignLesion = cv2.bitwise_or(maskMalignLesion, malignLesionMasks[maskID])

 maskMalignLesion = np.rot90(maskMalignLesion, -1)

 # Save Tissue mask and Malign Lesion mask as a pickle file

 masks = [maskTissue, maskMalignLesion]

 MyMethods.save_as_pickle(masks, mask_path + '/' + WSI_name, 'mask')

 # Extract wanted tiles from WSI

 if extract_tiles:

 extractTiles(WSI_path, mask_path, wsi_filename=filename_WSI, wsi_name=WSI_name, output_folder=output_path, magLevel=magLevel)

Attachments/Python scripts/READ ME.txt

Further explanations of variables are located as comments in the python scripts.

Preprocessing.py

--- Change these parameters before use ---

Change these variables to correct folder paths: WSI_path, annotation_path.

rootName - The common name of all WSI files. The name of the utilized WSI files should contain a common name, followed by an ID number that is unique for every WSI file.

tag - Should correspond with a tag in the annotation files, containing annotated areas in WSIs

--- End of section ---

Change these variables to desired folder paths: mask_path, output_path.

These variables should be set to "True" when utilizing new data for tile extraction: makeMasks, extract_tiles.

level - Magnification level to make the masks from. This should be set to a value corresponding to a lower magnification, to minimize the time spent making each mask.

magLevel - Magnification level to extract tiles from.

TorchDNN.py

--- Change these parameters before use ---

coord_path - Should correspond to "output_path" in "Preprocessing.py".

xlsx_file - Path to ".xlsx" file, containing the global label of each WSI. First column in this file should contain WSI names (rootName + ID), second column should contain corresponding prognosis.

xlsx_min_row - First row in xlsx-file that contains a WSI name and prognosis.

xlsx_ant_elements - Number of rows in xlsx-file that contains a WSI name and prognosis. This should correspond to the number of WSIs utilized in the network.

xlsx_value - Prognosis value in xlsx-file corresponding to good prognosis. Example: 'Good prognosis'.

--- End of section ---

Change these variables to desired folder paths: text_folder_name, text_folder_path.

Change these variables to desired file paths: predicValues_name, conf_mtx_name, hist_name, model_path_name, text_info_name.

These variables are parameters used in training the network: batch_size, num_epochs, patience, lr, momentum.

feature_extract - Freeze feature layer or not.

num_classes - number of classes, should be set to 2.

crossVal - Set to "True" if it desirable to do cross validation.

crossValIndex - List of iteration(s) to be used as the validation set(s) in cross validation. Set to an empty list ([]) if no specific iteration(s) are desired.

tilePerWSI - Number of tiles to gather from each WSI.

allow_textFile_overwrite - Set to "False" to avoid stored models and information about parameters, from previous runs of the program, to be overwritten.

Prediction.py

--- Change these parameters before use ---

textFolder - Should correspond to "text_folder_name" from "TorchDNN.py".

text_folder_path - Should correspond to "text_folder_path" from "TorchDNN.py".

predictValues_name - Should correspond to "predicValues_name" from "TorchDNN.py".

conf_mtx_name - Should correspond to "conf_mtx_name" from "TorchDNN.py".

hist_name - Should correspond to "hist_name" from "TorchDNN.py".

--- End of section ---

class_bad - The class with bad prognosis. Should be set to 0 (class 1).

threshold - Threshold to predict bad prognosis of WSI.

Attachments/Python scripts/TorchDNN.py

from __future__ import print_function

from __future__ import division

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import Dataset

import numpy as np

import torchvision

from torchvision import models, transforms

from sklearn.metrics import accuracy_score, confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

import random

import time

import copy

import pyvips

import MyMethods

import OtherMethods

from PIL import Image

import os

print("PyTorch Version: ", torch.__version__)

print("Torchvision Version: ", torchvision.__version__)

--- Parameters for making the model ---

Flag for feature extracting. When False, we finetune the whole model,

when True we only update the reshaped layer params

feature_extract = True

Number of classes in the dataset

num_classes = 2

--- Parameters for training the model ---

Batch size for training (change depending on how much memory you have)

batch_size = 32

Number of epochs to train for

num_epochs = 15

Number of epochs before early stopping (patience < 0 results in no early stopping)

patience = 10

--- Parameters for making the optimizer ---

Learning rate

lr = 0.001

Moment in the training

momentum = 0.9

--- Parameters for gathering tiles, and to split them up in train and validation sets ---

Path to where the coordinates to the tiles and position of the WSI is saved

coord_path = 'Output_tiles_20x'

Path to the ".xlsx" file, containing the global label of each WSI

xlsx_file = 'Master_god_dårlig_prognose'

Position row of the first element in the xlsx file

xlsx_min_row = 3

Number of WSI in the xlsx file

xlsx_ant_elements = 53

The value displayed as class 2 (of 2) in the training, and in the confusion matrix

This value should be the same as one of the two prognosis values used in the xlsx file

xlsx_value = 'God prognose'

Flag for cross-validation. If true, multiple train- and validation-set will be used to evaluate the network,

if false, only one train- and validation-set will be used

crossVal = False

Magnification level(s) to choose tiles from

Level 0 = 40x magnification, level 1 = 20x magnification, and level 2 = 10x magnification

Available options: ['10x', '20x', '40x']

magnification_levels = ['20x']

Number of times to split the data-set, corresponding to the train/validation relationship

Percentage of train-sets from the whole data-set is equal to 100-(100/n_splits),

percentage of validation-sets is equal to 100/n_splits

n_splits = 5

List of iteration(s) to be used as the validation set(s) in cross validation.

If cross validation is not used, first iteration index in list is used

Available options: [0, 1, 2, ..., n_splits-1]

Set to an empty list ([]) if no specific iteration(s) are desired. In this case,

first iteration is used when cross validation is not used, and all iterations are used in cross validation

crossValIndex = [0]

Number of tiles to gather from each WSI

If this is equal to (or less then) 0, all tiles in each WSI will be used

tilePerWSI = 250

--- Folders and files where model and information about parameters will be saved ---

If true, then text files and stored model can be overwritten

allow_textFile_overwrite = False

Name of current folder to save text files and model

text_folder_name = 'mag20x_OutTiles20x'

Path to folders, to stored text files in

Full path to folder, to store text files in: text_folder_path + '/' + text_folder_name

text_folder_path = 'Text_files'

Name of text file containing the prediction values of training the model

predicValues_name = 'predicValues'

Name of text file containing the confusion matrix of training the model

conf_mtx_name = 'conf_mtx'

Name of text file containing accuracy and loss of training the model

hist_name = 'history'

Name of model file

model_path_name = 'model'

Name of text file containing information about the settings of this run

text_info_name = 'info'

Path to store current text files and model

text_path = text_folder_path + '/' + text_folder_name

Make folder to store text files and model

try:

 os.makedirs(text_path, exist_ok=allow_textFile_overwrite)

except OSError:

 print('\nThe folder: ' + text_path + ', already exists.'

 '\nChange to another folder, or allow text files in this folder to be overwritten.')

 exit()

Make List with information about the settings of this run

if tilePerWSI <= 0:

 real_tilePerWSI = 'all'

else:

 real_tilePerWSI = tilePerWSI

info = [

 'feature_extract = ' + str(feature_extract),

 'num_classes = ' + str(num_classes),

 '',

 'batch_size = ' + str(batch_size),

 'num_epochs = ' + str(num_epochs),

 'patience = ' + str(patience),

 '',

 'lr = ' + str(lr),

 'momentum = ' + str(momentum),

 '',

 'coord_path = ' + coord_path,

 'crossVal = ' + str(crossVal),

 'magnification_levels = ' + str(magnification_levels),

 'n_splits = ' + str(n_splits),

 'crossValIndex = ' + str(crossValIndex),

 'tilePerWSI = ' + str(real_tilePerWSI),

 ''

]

Train model

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, patience=-1):

 since = time.time()

 train_acc_history = []

 train_loss_history = []

 val_acc_history = []

 val_loss_history = []

 best_model_wts = copy.deepcopy(model.state_dict())

 best_loss = np.inf

 acc_atBestLoss = 0

 patience_count = 0

 for epoch in range(num_epochs):

 print('Epoch {}/{}'.format(epoch, num_epochs - 1))

 print('-' * 10)

 # Each epoch has a training and validation phase

 for phase in ['train', 'val']:

 if phase == 'train':

 model.train() # Set model to training mode

 else:

 model.eval() # Set model to evaluate mode

 running_loss = 0.0

 running_corrects = 0

 running_names = []

 running_labels = []

 running_preds = []

 running_conf_mtx = [[0, 0], [0, 0]]

 # Iterate over data.

 for data_inputs, labels, names in dataloaders[phase]:

 if len(magnification_levels) > 1:

 inputs = []

 inputSize = 0

 for x in data_inputs:

 inputs.append(x.to(device))

 inputSize += x.size(0)

 else:

 inputs = data_inputs.to(device)

 inputSize = inputs.size(0)

 labels = labels.to(device)

 # zero the parameter gradients

 optimizer.zero_grad()

 # forward

 # track history if only in train

 with torch.set_grad_enabled(phase == 'train'):

 # Get model outputs and calculate loss

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 _, preds = torch.max(outputs, 1)

 # backward + optimize only if in training phase

 if phase == 'train':

 loss.backward()

 optimizer.step()

 # statistics

 running_loss += loss.item() * inputSize

 running_corrects += torch.sum(preds == labels.data)

 # Make lists with WSI names, labels and predicts from this epoch

 for i, name in enumerate(names):

 if name not in running_names:

 running_names.append(name)

 running_labels.append(labels[i].item())

 running_preds.append([])

 name_index = running_names.index(name)

 running_preds[name_index].append(preds[i].item())

 # Make confusion matrix

 conf_mtx = confusion_matrix(labels.data, preds)

 for i in range(len(conf_mtx)):

 for j in range(len(conf_mtx[0])):

 running_conf_mtx[i][j] += conf_mtx[i][j]

 epoch_loss = running_loss / len(dataloaders[phase].dataset)

 epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

 print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

 # deep copy the model and statistic parameters

 if phase == 'val' and epoch_loss < best_loss:

 best_loss = epoch_loss

 names_atBestLoss = running_names

 labels_atBestLoss = running_labels

 preds_atBestLoss = running_preds

 acc_atBestLoss = epoch_acc

 conf_mtx_atBestLoss = running_conf_mtx

 best_model_wts = copy.deepcopy(model.state_dict())

 patience_count = 0

 if phase == 'val':

 val_acc_history.append(epoch_acc.item())

 val_loss_history.append(epoch_loss)

 else:

 train_acc_history.append(epoch_acc.item())

 train_loss_history.append(epoch_loss)

 # Early stopping

 if phase == 'val' and epoch_loss >= best_loss and patience >= 0:

 if patience_count == patience:

 print()

 print('Training stopped because of early stopping')

 break

 patience_count += 1

 # Break loop if previous loop is terminated by a break statement

 else:

 print()

 continue

 break

 time_elapsed = time.time() - since

 print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))

 print('Validation accuracy: {:4f}, with lowest validation loss: {:4f}'.format(acc_atBestLoss, best_loss))

 history = {

 'accuracy': train_acc_history,

 'val_accuracy': val_acc_history,

 'loss': train_loss_history,

 'val_loss': val_loss_history

 }

 predValues = {

 'names': names_atBestLoss,

 'labels': labels_atBestLoss,

 'predict': preds_atBestLoss,

 }

 # load best model weights

 model.load_state_dict(best_model_wts)

 return model, history, conf_mtx_atBestLoss, predValues

Initialize the model

if len(magnification_levels) == 1:

 model_ft, input_size = OtherMethods.make_Model(num_classes, feature_extract, use_pretrained=True)

else:

 model_ft = MyMethods.make_multiModel(num_classes, feature_extract, num_img_inputs=len(magnification_levels),

 use_pretrained=True)

 input_size = model_ft.input_size

Print the model we just instantiated

print(model_ft)

Data augmentation and normalization for training

Just normalization for validation

data_transforms = {

 'train': transforms.Compose([

 transforms.RandomResizedCrop(input_size),

 transforms.RandomHorizontalFlip(),

 transforms.ToTensor(),

 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

 'val': transforms.Compose([

 transforms.Resize(input_size),

 transforms.CenterCrop(input_size),

 transforms.ToTensor(),

 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

}

Make train- and validation-datasets

dataset_x, dataset_y = MyMethods.makeTrainValDataset(coord_path=coord_path, xlsx_file=xlsx_file, n_splits=n_splits,

 xlsx_ant_elements=xlsx_ant_elements, xlsx_min_row=xlsx_min_row,

 positive_value=xlsx_value, crossVal=crossVal, crossValIndex=crossValIndex)

--- Train each dataset in dataset_x, with true labels in dataset_y ---

histories = []

conf_matrices = []

allModels = []

allPredValues = []

for i in range(len(dataset_x)):

 # Initialize the model for this run

 if len(magnification_levels) == 1:

 model_ft, input_size = OtherMethods.make_Model(num_classes, feature_extract, use_pretrained=True)

 else:

 model_ft = MyMethods.make_multiModel(num_classes, feature_extract, num_img_inputs=len(magnification_levels),

 use_pretrained=True)

 input_size = model_ft.input_size

 # Create training and validation datasets

 print("\nInitializing Datasets and Dataloaders...")

 print('\nWSIs in training-set: ' + str(len(dataset_x[i]['train'])))

 print('WSIs in validation-set: ' + str(len(dataset_x[i]['val'])))

 image_datasets = {x: MyMethods.tile_datasets(transform=data_transforms[x], coord_path=coord_path,

 dataset_x=dataset_x[i][x], dataset_y=dataset_y[i][x],

 tilePerWSI=tilePerWSI, magnification_levels=magnification_levels)

 for x in ['train', 'val']}

 print('\nTiles in training-set: ' + str(image_datasets['train'].len()))

 print('Tiles in validation-set: ' + str(image_datasets['val'].len()) + '\n')

 # Save information about WSI and tile amount in info file

 info.append('WSIs in training-set: ' + str(len(dataset_x[i]['train'])))

 info.append('WSIs in validation-set: ' + str(len(dataset_x[i]['val'])))

 info.append('Tiles in training-set: ' + str(image_datasets['train'].len()))

 info.append('Tiles in validation-set: ' + str(image_datasets['val'].len()))

 info.append('')

 # Create training and validation dataloaders

 dataloaders_dict = {

 x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in

 ['train', 'val']}

 # Detect if we have a GPU available

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 # Send the model to GPU

 model_ft = model_ft.to(device)

 # Gather the parameters to be optimized/updated in this run. If we are

 # finetuning we will be updating all parameters. However, if we are

 # doing feature extract method, we will only update the parameters

 # that we have just initialized, i.e. the parameters with requires_grad

 # is True.

 params_to_update = model_ft.parameters()

 print("Params to learn:")

 if feature_extract:

 params_to_update = []

 for name, param in model_ft.named_parameters():

 if param.requires_grad == True:

 params_to_update.append(param)

 print("\t", name)

 else:

 for name, param in model_ft.named_parameters():

 if param.requires_grad == True:

 print("\t", name)

 print()

 # Observe that all parameters are being optimized

 optimizer_ft = optim.SGD(params_to_update, lr=lr, momentum=momentum)

 # Setup the loss fxn

 criterion = nn.CrossEntropyLoss()

 # Train and evaluate

 # Histories contain (in order) : training accuracy, validation accuracy, training loss, validation loss

 model_ft, hist, conf_mtx, predValues = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft,

 num_epochs=num_epochs, patience=patience)

 allModels.append(model_ft)

 histories.append(hist)

 conf_matrices.append(conf_mtx)

 allPredValues.append(predValues)

Save information about this run to text file

MyMethods.save_listedObject_as_text(info, text_path + '/' + text_info_name)

Save prediction values to text file

MyMethods.save_listedObject_as_text(allPredValues, text_path + '/' + predicValues_name)

Save confusion matrix to text file

MyMethods.save_listedObject_as_text(conf_matrices, text_path + '/' + conf_mtx_name)

Save history to text file

MyMethods.save_listedObject_as_text(histories, text_path + '/' + hist_name)

Save model

for i, model in enumerate(allModels):

 if crossVal:

 torch.save(model.state_dict(), text_path + '/' + model_path_name + '_' + str(i))

 else:

 torch.save(model.state_dict(), text_path + '/' + model_path_name)

