




Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Guidelines for Developing a Secure and
Reliable IoT Data Pipeline

Master’s Thesis in Computer Science
by

Brynjar Steinbakk Ulriksen and
Tor-Fredrik Torgersen

Internal Supervisors

Martin Georg Skjæveland

External Supervisors

Stian Grønås
Gudsteinn Arnarson

June 15, 2022





“Programming is a nice break from thinking.”

Leslie Lamport



Abstract

This thesis presents 22 recommendations in the form of guidelines to consider when
building IoT data pipelines. These guidelines should achieve security and reliability in
said pipeline. To test the adequacy of the guidelines, a pipeline is built based on these
recommendations using the Miles Connect framework. Tests are performed on the parts
of the pipeline, evaluating how Miles Connect performs as one of these parts. These
guidelines are evaluated to see how they impact the pipeline.



Acknowledgements

We would like to thank our supervisor for his help during the writing of this thesis.
Secondly, Disruptive Technologies provided us with access to their resources. For this we
are immensely grateful. Finally, we thank Miles Stavanger for sharing their expertise in
the field and inspiration for this thesis topic.

v





Contents

Abstract iv

Acknowledgements v

Abbreviations xi

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Approach and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7
2.1 Quality of Service Terminology . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Internet Of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Major Vendor’s IoT Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Google . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Amazon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Microsoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Defining an IoT Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 IoT devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Data ingestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Message broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Data load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Other Relevant Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Data silo problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Enterprise Service Bus . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.4 Integration Platform as a Service . . . . . . . . . . . . . . . . . . . 17
2.5.5 Software and hardware providers . . . . . . . . . . . . . . . . . . . 18
2.5.6 Security protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.5.7 Shared Access Signature . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Work 21
3.1 Timon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Kafka benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Stream Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Industrial Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Presentation of Guidelines 25
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 IoT security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Signal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Device battery and connectivity . . . . . . . . . . . . . . . . . . . 28

4.3 Data Ingestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Data ingestation example . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Early stage validation . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Message Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.1 Transfer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Message broker responsibilities . . . . . . . . . . . . . . . . . . . . 33

4.5 Data Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Summary of the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 IoT Pipeline Architecture 39
5.1 Why Separate All Pipeline Steps? . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Why have a dedicated data ingestion step? . . . . . . . . . . . . . 40
5.1.2 Why have a dedicated message broker? . . . . . . . . . . . . . . . 40
5.1.3 Why have a dedicated data load component? . . . . . . . . . . . . 41

5.2 Why use Disruptive Technologies Sensors? . . . . . . . . . . . . . . . . . . 41
5.3 Why Use Miles Connect? . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Azure Service Bus as an Enterprise Message Broker . . . . . . . . . . . . . 42
5.5 Applications From Asplan Viak . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5.1 Desired use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.2 Technical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.3 Use cases in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Building the Pipeline 49
6.1 Connecting to DT Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Generating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Accessing sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3 Stream and REST API . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Connecting to the Message Broker . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1 Miles Connect functionality . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Azure Service Bus Explorer . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Constructing the Data Load . . . . . . . . . . . . . . . . . . . . . . . . . . 57



6.4 Storing Data in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Verifying the Guidelines 59
7.1 Guidelines for IoT Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1 Guideline 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.2 Guideline 1.2 and 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1.3 Guideline 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.4 Guideline 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.5 Guideline 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.6 Guideline 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.7 Guideline 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Guidelines for Data Ingestion . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.1 Guideline 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Guideline 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2.3 Guideline 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2.4 Guideline 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.5 Guideline 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Guidelines for Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3.1 Guideline 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3.2 Guideline 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.3 Guideline 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.4 Guideline 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Guidelines for Data Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.1 Guideline 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.2 Guideline 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Guidelines for Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5.1 Guideline 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5.2 Guideline 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5.3 Guideline 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Discussion 101
8.1 Discussing the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.1 Are the pipeline steps correctly defined? . . . . . . . . . . . . . . . 102
8.1.2 Is the pipeline actually agnostic? . . . . . . . . . . . . . . . . . . . 103
8.1.3 Is the pipeline too complicated? . . . . . . . . . . . . . . . . . . . 103
8.1.4 General Security in the Pipeline . . . . . . . . . . . . . . . . . . . 104

8.2 Discussing Our Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2.1 Discussing Miles and Miles Connect . . . . . . . . . . . . . . . . . 104
8.2.2 Discussion Disruptive Technologies . . . . . . . . . . . . . . . . . . 106
8.2.3 Discussing Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 Discussing the Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3.1 A secure and reliable pipeline . . . . . . . . . . . . . . . . . . . . . 107
8.3.2 Following the guidelines . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.3 Do developers need guidelines? . . . . . . . . . . . . . . . . . . . . 111

8.4 Feedback From the Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4.1 Adjusting the pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4.2 Feedback from Miles . . . . . . . . . . . . . . . . . . . . . . . . . . 112



8.4.3 Feedback from DT . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusions 115
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1.1 Benchmarking Miles Connect, and the system . . . . . . . . . . . . 116
9.1.2 Real use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.1.3 Evaluate guidelines as a resource . . . . . . . . . . . . . . . . . . . 116

A 119

B Source code, Image Sources and Project Poster 125
B.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.2 Image Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1 Kafka Virtual Machine specifications . . . . . . . . . . . . . . . . . 126
B.2.2 Illustration Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.3 Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 131



Abbreviations

ETL Extract Transform Load

ESB Enterprise Service Bus

IoT Internet of Things

iPaaS integrated Platform as a Service

BI Business Intelligence

SOA Service Oriented Architecture

DT Disruptive Technologies

QoS Quality of Service

ASIC Application Spesific Integrated Circuit

LPWA Low Power Wide Area

LPWAN Low Power Wide Area Network

MITM Man In The Middle

SDS Secure Data Shot

AMQP Advanced Message Queue Protocol

SAS Shared Access Signature

HTTPS Hypertext Transfer Protocol Secure

SSL Secure Sockets Layer

TLS Transport Layer Security

xi





Chapter 1

Introduction

Internet of Things (IoT) is a technological concept where hardware embedded with
sensors are connected to the Internet, allowing other devices or software to employ data
collected by sensors. In other words, IoT connects "things" that gather information, to
"things" that act on it.

Businesses across the world are experimenting with new ways to use IoT in order to
gain a competitive advantage in today’s business environment. The possibilities for an
innovative business is endless. The problem of exploiting these possibilities, however, is
often a lack of specialization in IoT. In terms of both working with IoT and knowing where
to invest ones money. Data generated with the help of IoT will not benefit businesses if
it is only stored and never acted on.

Taking advantage of the opportunities presented by this data, and extracting the value,
necessitates a system that is capable of handling the data from production at sensors, to
consumption. This system is called an IoT data pipeline or simply IoT pipeline.

1



Chapter 1 Introduction

One of many applications that exist and takes advantage of IoT solutions, is in agriculture.
Sensors can notify farmers when their crops need watering, preventing over or under-use
of the irrigation system. This itself would free up time, labour and capital for the
farmers [1]. Going further, the irrigation system can act on the data from the sensors,
turning on when the soil becomes too dry. Connecting this system to the Internet allows
for even greater savings, as it can take into account the weather forecast. The irrigation
system can choose not to water the crops if rain is expected to fall later in the day.

By connecting more and more sensors to the pipeline, the farm becomes more and more
autonomous. This ultimately allows the farmers to produce equal amounts as before, or
even more, with less work.

Setting up an IoT pipeline as described above requires specialization. Therefore the best
option is to rely on outside expertise. This results in many providers of IoT and IoT
processes, all offering different solutions to the problem at hand.

When examining the largest technology companies in the world, such as Microsoft,
Amazon and Google, and the services they provide, one will find that all of them have
made their own versions of an IoT pipeline. These versions shared goal is to optimise
their own data platforms for IoT, but their approach to this goal varies. Whilst some vary
on naming conventions, others vary in the various services employed. This ultimately
means that each of these companies in general offers the same services, but claiming
them as their own unique solution.

Despite the number of different providers, there is a lack of knowledge in regards to what
one should take into account when deciding which vendor to choose, and how to set up
an IoT pipeline that best suits the needs of a given use case.

1.1 Background and Motivation

The telecom company Ericsson wrote about the massive amount of data generated from
devices in IoT, stating that "... frameworks with clear IoT requirements to enhance the
computation capabilities of distributed systems are still rare" [2].

The tech magazine FutureIoT discusses what an IoT pipeline needs, and how it should
be set up for maximum reward. Two notable quotes are:

"The pipeline needs to be able to integrate data from various sources in
different formats. So, it has to be an agnostic pipeline that you can expand
for other protocols as well" [3].



3

"[the pipeline] should be capable of performing data processing such as trans-
forming and filtering your data in order to increase the quality of your data
at an early stage" [3].

The latter suggestion would result in any null or non-numeric values being deleted as
soon as possible, making it easy for any employee to deal with the data later.

Furthermore, the chief IoT technologist at Deloitte Digital, claims that "Every organi-
zation that collects data from connected devices has a data pipeline, even if they do not
know it" [4].

Today common IoT core services are Azure’s IoT Hub, AWS IoT core, and Google Cloud
IoT core. There also exist some IoT services that are open source, such as Apache,
MongoDB, IBM and Oracle.

From these findings one can see that most companies that extract data from connected
devices utilize a form of IoT pipeline, and that there are many options when reaching
out to vendors for products and services. However, in order to choose wisely, certain
requirements for a given IoT pipeline is necessary, especially when realizing that the
number of IoT devices and IoT software services are rapidly increasing.

When evaluating the existing software engineer guidelines, they often include best
practices for coding, naming convention of functions, and recommendations of how to
set up tests. Similarly for data pipelines, topics such as cost, complexity, and scaling
are mentioned as things to look out for. These are either too specific best practices
or too vague topics. To watch out for means that the developer needs to spend much
time researching these topics in order to understand what is actually being demanded.
Relevant guidelines that are specific in regards to demands, but not so specific that they
themselves become reliant on the language or the parts used, is needed. There exists
guidelines and standards for IoT devices, but limited to security issues.

Therefore, for an IoT data pipeline, there is sparsity in regards to these resources. To
the best of our knowledge no such list of guidelines for IoT data pipeline development
exist per today.

Guidelines are valuable during both the architect-, and development phase. Ideally, the
software developers of an IoT pipeline would by simply following the recommendations,
easily choose and implement their own IoT pipeline, avoiding common pitfalls.

To ensure that a certain standard of quality is created in this thesis, characteristics of
what makes an IoT pipeline a "good" pipeline are presented. A "good" pipeline is defined
to contain definite Quality of Service (QoS) requirements suggested in an extensive



Chapter 1 Introduction

report [5]. These requirements include reliability, performance efficiency, portability
and security. A detailed description of these requirements are found in the terminology
section in Chapter 2.

1.2 Problem Definition

Given the overflow of IoT pipeline vendors and lack of standardization, guidelines
regarding the requirements of an IoT pipeline are needed to be able to create a secure
and reliable IoT pipeline.

As mentioned, IoT technology is in high demand and there are a lot of providers who offer
their services to be included in a pipeline. The problem is, however, that it is difficult to
properly develop, and handle an IoT pipeline to get the desired result. As more parties
seek to introduce IoT devices to their solutions, security ought to be ensured to protect
the consumers. Additionally, it is important to provide the client with a reliable and
efficient solution, without degrading the productivity of the business.

1.3 Objectives

The objectives of this thesis are:

• Identify and characterize the different parts of a typical IoT pipeline.

• Locate areas of concerns for each part of an IoT pipeline.

• Present recommendations in the form of guidelines that are important when setting
up each part of an IoT pipeline.

• Build and implement a working IoT pipeline using Miles Connect, a framework
used for operations on data in applications.

• Use the guidelines to test and evaluate the IoT pipeline on real world applications.

• Evaluate if the guidelines themselves are useful and effective.

1.4 Approach and Contributions

In this thesis a literature study is conducted to find the requirements for an IoT pipeline
system. These requirements will form the foundation for the proposed guidelines. In



5

conjunction with this, we have built an IoT pipeline in accordance with the mentioned
guidelines, using the Miles Connect integration framework. The Miles Connect framework
handles task scheduling, integration, validation, logging and formatting. The pipeline is
validated up against the guidelines with real world use cases.

We suggest 22 guidelines for creating an IoT data pipeline. In addition, this thesis will
examine how the Miles Connect framework would work as a part of an IoT pipeline.

1.5 Outline

After the introduction in Chapter 1, Chapter 2 starts by introducing the terminology
that is used in this thesis.In this chapter, the various parts in an IoT pipeline is defined
and explained in detail. In addition, preliminaries that will give contexts around concepts
that are discussed and worked with, are included.

Chapter 3 explores related works in the subject area: Timon, Kafka and Stream Bench,
as well as examining the demands for an industrial pipeline. This gives a sense of what
existing work there is today on similar topics.

Chapter 4 presents the different requirements in each of the pipeline steps, ending each
section with relevant guidelines. In Chapter 5, the pipeline’s architecture is designed in
regards to the previously presented guidelines.

After presenting the architecture, Chapter 6, concerns the actual building of the pipeline,
before testing and validating said pipeline in Chapter 7.

In Chapter 8, this thesis evaluates the tests, as well as the guidelines, and concludes the
thesis in Chapter 9.

After that follows attachments in Appendix A and the project code in Appendix B.





Chapter 2

Preliminaries

This chapter presents preliminaries that will give contexts around concepts discussed
and worked with in this thesis.

2.1 Quality of Service Terminology

This section lists Quality of Service (QoS) terminology used in this thesis. The following
descriptions are how the terms listed below are interpreted and used in this thesis, given
the context of IoT, data, and software engineering. These are also the QoS requirements
the pipeline should adhere to.

• Security - concerns the domains of confidentiality, integrity and authenticity

• Reliability - takes into account availability and fault tolerance

• Portability - an agnostic, adaptable and modular approach

• Performance efficiency - efficiency regarding time utilization, resource usage
and capacity

• Confidentiality - data, objects and resources are protected from unauthorized
viewing and other access

• Integrity - data is protected from unauthorized changes to ensure that it is
reliable and correct

• Authenticity - the user’s identity is verified and trusted

• Agnostic - a system that is independent of a specific provider and interoperable
among various systems

7



Chapter 2 Preliminaries

• Availability - authorized users have access to the systems and the resources they
need

• Fault tolerant - the capability of a system to suffer a fault, but continue to
operate

• Value and Insight - the system’s capability of providing value to the customer

2.2 Technology

2.2.1 Internet Of Things

The Internet of Things, also known as the industrial Internet or the Internet of Everything,
is the idea and technological advancement of taking physical locations and things, and
connecting them to the Internet. When these physical things are connected to the
Internet they can transmit or receive data, or both. The ability to exchange information
makes the things smart, and have benefits that compound on each other.

Collecting and sending data through the Internet, and receiving a response means that
physical devices can act and react to real world events, without the need for human
interaction.

When a global network of machines, smart devices, monitors and sensors are capable
of interacting and affecting one another, without human interaction, it enables what is
called the fourth industrial revolution [6].



9

Figure 2.1: IoT Connected devices from 2015 to 2025[7]

In 2009 there were an estimated 0.9 billion IoT devices in use [8]. At the end of 2021
over 30 billion IoT devices were in use, and the number is estimated to be between 38
and 75 billion connected devices in 2025 [9], illustrated in Figure 2.1. This indicates that
the IoT technology is rapidly gaining momentum with yet unseen potential, generating
enormous amounts of data, 79.4 Zettabytes (1021 bytes) according to the International
Data Corporation.

The value of IoT is realized when these connected devices communicate with each other,
and are integrated with business intelligence applications, business analytics, and other
service systems as inventory management [8]. Additionally, if used correctly, IoT can
lower the cost of doing business. However, given the massive amount of data generated,
the processing power required to extract value from IoT data may be significant.

Within IoT there are multiple technologies used for connecting devices such as WiFi,
Bluetooth, ZigBee and LoRaWAN. The latter focuses on low power consumption and
communication over long distances. From one of the leading telecom companies in
Norway on the subject of batteries in sensors they emphasize that "Batteries are cheap,
but changing them isn’t" [10]. Thus, these sensors often transmit little data at steady
intervals and go in sleep-mode between the intervals.



Chapter 2 Preliminaries

Another focus area within IoT is high performance. This is best described as technology
used in self-driving cars. These requirements differ from Low Power Wide Area (LPWA)
solutions in that a large amount of data must be transmitted with a low latency. Because
the IoT ecosystems are constantly expanding and the number of connected devices
appears to be increasing, it is critical to use software that can handle high-speed data
traffic while keeping costs low. In these settings, low power consumption is not as critical.
Technologies within this focus area is 5G and similar.

2.3 Major Vendor’s IoT Pipelines

There exists no established standard for what parts an IoT pipeline should contain. As
mentioned there are several providers of pipeline technology, including a few open-source
ones. Our research found a few providers which define their IoT pipeline with various
number of steps, and different naming conventions.

The three major vendors all present varying IoT pipelines, focused around their own IoT
solution. Figure 2.2 present how the largest actors within cloud technology present their
solutions. All solutions start with an IoT device, for example a temperature sensor.

Figure 2.2: IoT pipelines from major vendors

2.3.1 Google

Google’s IoT pipeline is focused around the Cloud IoT Core system. IoT Core connects,
manages, and ingests data from IoT devices. Google’s IoT pipeline starts with IoT



11

devices, communicating with the Cloud IoT Core either directly or via a gateway. A
gateway is a device that collects data from a multitude of IoT devices, before forwarding
it to the Internet. Cloud IoT Core sends messages to a publish-subscribe message broker.
A message broker is the system in charge of delivering messages to their destination.
Varying applications subscribe to the messages from the message broker, and if any
applications need to send info back to the sensor, they send it directly to Cloud IoT
Core which in turn communicates back to the sensor. Applications can be analytical
processing, business integration solutions, storage solutions or similar [11].

2.3.2 Amazon

Amazon Web Services base their pipeline around Amazon IoT Core, which connects and
manages IoT devices. Amazon IoT Core can operate as a publish-subscribe message
broker between IoT devices themselves, or operate as an ingestation step for the gateways
to the rest of the AWS Cloud Services [12].

2.3.3 Microsoft

Microsoft’s Azure uses Azure IoT Edge as a gateway between the IoT devices and Azure
IoT Hub in the cloud. In addition to being a gateway it opens up for edge processing on
the IoT Edge devices. Edge processing is when you process data close to where the data
was produced, thus not needing to do the processing in the cloud. Data sent to Azure
IoT Hub is forwarded through an analytical part before finally being sent to management
and business integration logic [13].

2.4 Defining an IoT Pipeline

In order to give guidelines that will be generally applicable, all the varying IoT pipelines
shown in Figure 2.2 are taken into account, creating a general IoT pipeline. This means
that our definition of a pipeline will be generally applicable to all IoT pipelines, however
not all IoT pipelines will need separate parts for each section in our pipeline.



Chapter 2 Preliminaries

Figure 2.3: Pipeline definition

The pipeline is divided into five separate steps: IoT devices, Data ingestation, Message
broker, Data load, and Applications, as shown in Figure 2.3. Each part has specific
demands, needs and responsibilities. All parts must be present, either separate or together,
in one form or another to have a fully functioning IoT pipeline that provides value. The
IoT devices generate data to be consumed and analyzed. Data ingestation retrieves
the data, sending it to the message broker, with relevant validation and formatting.
The message broker provides a way for multiple applications to listen to the incoming
data, and use it as intended. The data load framework is the way the data exits the
message broker to the relevant application. The applications handles storage, analytics
or any other task to provide value. As there exist many different systems, some systems
incorporate multiple parts of this pipeline, while others incorporate only one part. Thus,
when building an IoT pipeline one must choose systems that combined go through all
these steps.

This section goes through each of the steps mentioned above that is necessary in a given
pipeline. Each subsection gives an introduction to each step. In Chapter 4, the varying
requirements for the steps are introduced.



13

2.4.1 IoT devices

Devices that measure environmental effects, machines that automate factories, and
gadgets found in smart homes are hardware equipment that make up the "things" in the
Internet of Things. In a smart home or office space, one may have a handful of unique
devices that each monitor and operate different tasks. Connecting them to the Internet
and establishing communication with other things and applications, is when the solution
becomes smart. IoT devices can be used in a personal, business or industrial setting.
In 2021, the top use cases for IoT devices were remote monitoring, process automation,
location tracking and vehicle fleet management [14]. IoT is mainly used in factories as
of now, but can offer extensive aid in areas such as smart cities, personal health and
agriculture, to name a few. The communication between IoT devices can happen in many
forms, devices can transmit their data by using technologies such as Wi-Fi, Bluetooth,
5G, LoRaWAN or ZigBee [15].

2.4.2 Data ingestation

Data ingestation is the step where data is sent from the sensors and inserted into the
message broker, often using gateways. A gateway is hardware that is directly in contact
with the IoT sensors. Gateways are introduced to help IoT devices to stay small, cheap
and battery-based. The gateway locally processes the data and forwards any messages
to the Internet. An example is a smartwatch connected to a smart phone via Bluetooth,
where the phone acts as a gateway for the watch. After receiving the data, it must be



Chapter 2 Preliminaries

formatted and validated before put on the message broker. This is to ensure that the
listeners on the message broker receive the message they listen for on the correct format.

2.4.3 Message broker

A message broker has the responsibility of receiving and sending messages across platforms.
They must work with a formally established message format. It also has the characteristics
of allowing multiple applications to receive the same message, with each application
having sole ownership to its own message. As a result, the applications can process the
messages asynchronously. A message broker also has a form of structure in order to
prevent messages being lost, like a dead-letter queue. Choosing an ineffective message
broker can be the limiting factor in terms of latency and scaling. Aside from handling
multiple applications, the message broker must also provide reliable storage, guaranteed
message delivery, and transaction management as needed.

A further critical consideration is that the message broker chosen must be capable of
handling the various communication paradigms that can be present in the pipeline. A
few available options are batch processing, publish–subscribe, request–response, near
real-time processing, or fire and forget. The message broker must also lay the groundwork
for event-driven architecture in order to scale distributively on cloud, or in a hybrid



15

solution. Using an event-driven architecture also enables event-driven processing of big
data, which can easily be generated by IoT sensors, if allowed to. A quick online search
reveals that over 30 message brokers are currently in use, including Apache Kafka, Azure
Service Bus, IBM, and Amazon. With so many options, it is important to select a
message broker that fulfills the needs of the pipeline, and there is no reason to settle for
the second best.

2.4.4 Data load

Data load is defined as the process of transferring data from the message broker to
storage or other applications. Such an application can for example include analytical
tools, like machine learning, or other value-adding or legislative applications. Data load is
responsible for ensuring that the data arrives at the destination specified in the message
broker service. This step, like ingestation, includes a formatting and validating part to
ensure that the application receives correct data on the correct format. Because the
message broker uses a unique format to transfer the data, a new formatting may be
required to meet the requirements of the given application.

2.4.5 Applications

The application section is where the captured data from the IoT sensors will be put into
action to provide insight for the user. The application’s possibilities are endless, and
offer a large range of variety and use cases, each with their own requirements depending
on the job to be done. The most common applications include storage and analytics.



Chapter 2 Preliminaries

2.5 Other Relevant Preliminaries

Further on in this section other relevant preliminaries are presented. These preliminaries
are referred to in later chapters, and give context around the subject.

2.5.1 Data silo problem

A data silo is when you isolate source data. This can happen unintentionally or inten-
tionally. It is however, not necessarily a problem with many data silos, the main problem
with data silos comes when they are not connected to each other. When not connected,
someone must go through different sources, connect them and provide insight. This
leads to wasted resources such as manpower and time. Data silos often occur in large
organizations but it can also happen inside a department. The opposite of multiple silos
is a single source of truth, which is deemed more effective, as every department that
needs certain data knows where to look for it [16].

Figure 2.4: IoT spending distribution in 2020 [17]

This however requires a robust integration strategy which may be expensive, in 2020
39% of spending in IT went towards software and integration [17].

2.5.2 LoRaWAN

LoRa technology sends small portions of data at a low bit rate, but at a larger distance
than other wireless technologies, such as WiFi and Bluetooth. The LoRaWAN is a
protocol at a software layer which details how to make use of the LoRa hardware devices
including formatting and frequency of messages [18]. In a LoRaWAN network each
device uses minimal power consumption and can operate up to 10 years without changing
batteries.



17

The signal sent from these devices can reach distances from 3–10km, based on the
surrounding environments. LoRaWAN is cheap, has open-source software and requires
no license to deploy a network. A Norwegian municipality, Asker, has started using a
LoRaWAN network with thousands of sensors to monitor household waters for 3000
houses [19]. Last Mile Solutions, the company in charge of this network in Asker, believes
that IoT with LoRaWAN have several possible applications for making monitoring of
municipal services more efficient [20].

2.5.3 Enterprise Service Bus

An Enterprise Service Bus (ESB) is a form of message broker using the publish-subscribe
communication paradigm. ESB is often used in a service-oriented architecture (SOA).
This type of architecture consists of multiple software applications that are reusable
and inter-operable through the use of service interfaces. Because of the decoupling
provided by these interfaces, little to no knowledge of how the service is implemented
is required [21]. The ESB is the component that allows applications to communicate
with one another while also ensuring that messages are delivered in the expected data
format [22]. In addition, rather than having an interface for each application, the ESB
ensures communication through a single interface. It is a subset of the client-server
model, where each application can act as a client or a server. ESB employs a message
queue system on the bus so that each application can publish their message to the
bus. This relieves the application of responsibility for delivery, allowing it to focus
on other tasks. Another advantage of the ESB is that it adds an additional layer of
security. Each message is authenticated by the ESB before it is sent, and it can even
log actions to another application component, if desired. A centralized ESB’s goal is
to standardize and greatly reduce the complexity in communication, messaging, and
integrating services between enterprise systems. From a business standpoint, the time
previously spent integrating various applications can now be spent on improving the
applications. Furthermore, because the integrations are reusable across projects, higher
productivity and lowered costs are possible.

2.5.4 Integration Platform as a Service

Integration Platform as a Service (IPaaS) is another way of dealing with the same issues
as ESB. IPaaS has the added benefit of being scalable on cloud while at the same time
enabling integration with off-cloud integration. This represents the new generation of
integration as it is transforming the on-premise integration, allowing the service to be
subscribed to as any *aaS service [23].



Chapter 2 Preliminaries

2.5.5 Software and hardware providers

Miles AS

Miles AS is a Norwegian IT consulting firm founded in 2005 with offices in the four
largest cities in Norway. In this project, we conduct our development, research and
experiments on behalf of Miles AS in Stavanger. Miles is also the product owner of the
Miles Connect framework that will be used in this thesis.

Disruptive Technologies

Disruptive Technologies (DT) is a tech company based in Norway and produces small
wireless sensors and IoT infrastructure. Their sensors operate with their own design for
an Application Specific Integrated Circuit (ASIC), named DT Silicon. This technology
allows their sensors to use ultra-low power which is 100 times more power-saving than
other market-leading Bluetooth controllers [24]. DT’s products have led them to win
several awards including Sustainability Product of the year 2021 and IoT Sensor Company
of the year 2022.

2.5.6 Security protocols

In this section security protocols used in this thesis is presented.

HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is a secure transfer protocol that is used in
communication between a user’s personal computer and a website. The goal of HTTPS
is to ensure encryption, authentication and integrity [25]. The content of messages are
secured by encrypting the data with a public-key cryptography, which strengthen the
defense against various cyber attacks.

HTTPS also includes a Secure Sockets Layer/ Transport Layer Security (SSL/TLS)
protocol, which is a website’s certificate that includes a public key, that is used to confirm
that the documents on a server is legitimate. The documents can be confirmed as safe by
a digital signature signed with a legitimate person’s private key. When enabling HTTPS
to a website, a certificate is issued by a certificate authority.



19

The documents such as images and code files that are stored on a server through
HTTPS, have a digital signature that proves that the data has not been altered during
transportation. If any of the data has been modified or corrupted, it will be detected [26].

2.5.7 Shared Access Signature

The .NET packages used for communication with our storage in Azure are
Azure.Messaging.ServiceBus and Azure.Storage.Blobs. They are both verified as of-
ficial packages in .NET package manger, and are published by Microsoft. When using
these packages, we also use the official documentation provided by Microsoft on how to
correctly set them up and enable their safety conditions. Shared access signature (SAS),
is a security protocol used within these packages. When using SAS, keys are used to
cryptographically sign information that can be verified by the service in use [27].





Chapter 3

Related Work

This chapter introduces literature and research on data ingestation benchmarking, build-
ing, and testing data pipelines in order to provide an insight to existing work on similar
topics to our thesis topic.

3.1 Timon

Timon is a testing framework, aimed at testing the configuration of IoT pipelines [28],
in order to find the best configuration of the specific pipeline. The framework focuses
on testing multiple configurations of the same system, which makes it relevant in order
to optimize a single pipeline. It is however, pipeline-specific, such that using Timon to
compare varying pipelines would be problematic. For an industrial use case where a
pipeline already exists, Timon would be of great support to optimize said pipeline. While
our thesis focuses more on choosing the correct pipeline amongst several options.

3.2 Kafka

Apache Kafka is the most popular open-source event streaming platform to date. From
a list of the top 100 most successful American companies, more than half of them
use Kafka as their data stream service provider [29]. Similar solutions include Google
Cloud Pub/Sub, RabbitMQ, IBM MQ, Amazon MQ and Amazon Kinesis [30]. In one
study where Kafka was examined, it focused largely on the insert rate factor [31]. In
another study covering the same technology, it examined how parameters affected the
performance. [32].

21



Chapter 3 Related Work

3.2.1 Kafka benchmark

The first paper evaluates Kafka by benchmarking the number of messages processed per
second [31]. In the study they put three identical setups on three servers, inserting data
into Kafka as fast as possible in order to benchmark it. The second paper mentioned
tested Kafka in sections to clearly identify bottlenecks [32]. The authors separately test
the process with producers and consumers. They also utilized a variety of parameters
in these tests and list a set of performance metrics. Parameters to include and adjust
are message size, batch size, acquisition strategy, hardware used, and network threads.
Performance metrics to record are throughput, latency, CPU usage, disk usage, memory
usage, and network usage.

These studies are both of significant relevance, but only as a portion of our validation
section for our guidelines. The scenarios in these papers focus on inserting user-created
documents, whilst we focus on IoT data collection. Reading these papers gave us great
insight to benchmarking the insertion of data, and impact of different parameters, and
will be taken in account when creating our tests in this thesis.

3.3 Stream Bench

Stream Bench [33] is a framework for benchmarking streaming services. The authors
look at multiple streaming services and seek out to establish criteria for these modern
distributed stream processing frameworks. Stream Bench aims to take an early step
towards establishing a benchmark for the mentioned frameworks. They employ their
framework to Apache Storm and Apache Spark to see the impact. They highlight the
challenge of massive data generation on the fly and point out to take both burstiness
and durability of stream computing as the target of measurement. In their tests they
measure how performance, fault tolerance, ability, and durability act during workload of
streaming processes.

A challenge with streaming is that a computation framework can grow as needed, and if
the input is not scaled, the computation ability of the system may be overshadowed by
bandwidth bottleneck or undersized input, this results in loss of preciseness of benchmark.
This challenge lays the foundation for why Stream Bench was created. However, these
solutions mainly focus on streaming frameworks, whereas we have a more general approach
in regards to our contributions.



23

3.4 Industrial Pipelines

A paper from 2020 [34] introduces a framework for designing data pipelines for manu-
facturing systems where they depict possible technologies available for such a pipeline.
In conjunction with this, the authors comment on the pipeline design: "Frameworks for
data driven manufacturing are available, but they are not useful for guiding one how to
design a data pipeline." Similarly, we encountered an issue that supports this critique:
most researchers present a pre-designed data pipeline as a framework or architecture they
use, without including the process of design. The authors deliver a simplistic framework
for selecting solutions for each step in a pipeline, and a guideline for how to use their
framework. Their research provides us with inspiration and insight in their process of
developing a pipeline with focus on manufacturing processes.

While applying an IoT pipeline to manufacturing facilities that mostly operate with
legacy equipment, numerous challenges are expected to occur. These challenges are
discussed later in a paper, where also the possibilities of introducing such a pipeline in
this scenario are introduced [35]. In the paper they list a number of criteria for their
suggested pipeline which includes fault tolerance, accessibility and scalability, which
are also applicable for our use case. Especially on scalability they mention the rapid
expansion of digitization and that the number of connected devices to be used may be
unknown, thus dynamic scalability is a desired attribute in such a system.

Even though the authors have provided a thorough research on the topic of industrial
big data pipeline, they merely suggest a single pipeline for a manufacturing scenario,
where we aim to introduce general guidelines for pipelines.





Chapter 4

Presentation of Guidelines

Figure 4.1: The five steps in an IoT pipeline, used to illustrate guideline affiliation

This chapter explores the requirements of the different steps of an IoT pipeline. In
addition to this, it presents the guidelines that should be adhered when building and
implementing an IoT pipeline.

4.1 Methodology

The methodology used to locate and define relevant guidelines in this chapter is threefold:
1) lessons learned from real world examples, 2) a literature study from relevant academic
sources and 3) speaking with industry experts.

When a pipeline is created it is often to solve a specific use case, and an IoT pipeline
is no different. Guidelines that come from real word applications and use cases grant
depth and relevance. By following them, one often avoid practical problems not thought
of before the pipeline is in production, and it is too late. Thus, in order to define and
present important guidelines, studying issues that have arisen in actual IoT pipelines are
conducted, meaning that some guidelines come from lessons learned. This ensures that
the guidelines prevent repeating previous mistakes.

25



Chapter 4 Presentation of Guidelines

To gain theoretical knowledge, a literature study is conducted on relevant papers. These
papers describe how things are done in the past, as well as relevant technology. These
are helpful when introducing new guidelines that are better suited for technological
advancements. This results in better quality of the guidelines, in turn preparing the IoT
pipelines for the future.

In addition to this, talking to industry experts from Disruptive Technologies, Miles and
Miles’ customer, Asplan Viak, provides this project with relevant knowledge of the IoT
area at the current moment, and learn how it is used today.

With these three approaches, the guidelines cover many of the relevant aspects when
building an IoT pipeline.

The guidelines will be presented in sections based on the parts of an IoT pipeline as
defined in Chapter 2. The methodology described above is used when creating the
guidelines.

4.2 IoT Devices

To maintain the communication and stability between the IoT devices and the rest of
the system, configuration, authentication, and the software must be up-to-date. Issues
that occur when dealing with IoT devices is lack of security, overloading the device or
lack of connectivity [36].

4.2.1 IoT security

When dealing with a large number of wireless devices, IoT security is critical because
any breach at any of the many sensors will compromise the solution’s integrity.

As recently as 2017, the Norwegian Consumer Council discovered significant security and
privacy flaws in smart watches for kids sold from many known vendors in Norway. This
enabled strangers to take control, eavesdrop and communicate with children via their



27

smartphone. This could be done without their parents’ realization. Furthermore, they
could alter the clock’s GPS signal leading parents to believe the clock and child were in
a different location than they actually were. In addition, data stored on the watch was
not encrypted, and it was impossible for users to delete their own data [37]. All serious
flaws caused by poor choice of IoT equipment.

Encrypting the signals sent by the IoT device to the gateway with a standardized
encryption algorithm is a low-cost and dependable way to prevent sensitive data from
being read. With small and simple devices used for monitoring and transmitting data,
the devices lack the software for built-in security, hence limiting the possible security
measures. Another regard to security is budgeting, as many industrial companies want
hundreds or thousands of sensors and want to keep the price per sensor low.

It is very common that devices do not enforce sufficient limiting in terms of access
control. In particular when the access should be limited to the owner, or any legitimate
user. Without any limiting factor any person connected to the network can access the
device [38]. When vulnerabilities are discovered by developers, they roll out new and
patched software updates for its devices. The installation of the latest software might be
required to be executed manually, and administrators of devices should be up-to-date
with the latest software [39]. Based on these findings the following guidelines related
to IoT security are introduced. The format will continue in a similar manner for the
following chapter.

Guideline 1.1. The IoT devices in use should be created by a trusted source.

Guideline 1.2. Users of IoT devices should be authenticated with modern standards.

Guideline 1.3. Common IoT security measures such as encryption should be imple-
mented on the IoT device.

Guideline 1.4. To ensure that each IoT device has the latest software which patches
security flaws, software used in IoT devices should have the newest version available.

Guideline 1.5. The access control of the IoT devices and data produced, should be
limited to the owners or certified operators.

4.2.2 Signal strength

In some use cases, sensor data availability must be fast and stable, therefore signal
strength must be prioritized in critical solutions or when sensors are located in poor
signal strength zones. While in dead zones or other use cases where poor signal is a
reality, such as underground parking or with flood sensors in basements, one must employ



Chapter 4 Presentation of Guidelines

solutions to handle these environments. According to an article, as the development of IoT
applications accelerates, reliable network connectivity becomes increasingly important
for all aspects of IoT. Weak or intermittent cell signals can have an impact on inventory,
revenue, and security [40].

Transmitting data is considerably power consuming, thus poor signal can have a direct
impact on battery life as the sensor must transmit data over a longer period of time [41].

Guideline 2.1. Ensure that the IoT device and gateway are able to handle poor signal
strength.

4.2.3 Device battery and connectivity

Device connectivity includes efficient communication, reliability, and that the solutions
is fast to scale. As stated before, Battery packs are cheap, changing them isn’t. Thus,
it is ideal in a LPWAN scenario that each sensor does as little as possible to prevent
excessive drainage on the battery. In another scenario, such as high performance IoT
setting, the connectivity to devices is essential for making an IoT pipeline operational,
so maintaining a stable connection should be prioritized. IoT device technology has
improved dramatically in recent years. In addition to the sheer number of devices in
use increasing, it is possible that the system can be overloaded due to the huge amount
of data generated. Therefore device load and bandwidth in an IoT pipeline must be
controlled by some form of scaling functionality.

Guideline 3.1. Employ a battery-saving scheme that ensures sufficiently long battery
life for the devices.

Guideline 3.2. Control that the IoT device load and bandwidth is not exhausted, and
scale resources if necessary.

4.3 Data Ingestation



29

The data ingestation part of a pipeline is responsible for connecting data producers to
the rest of the pipeline and fully integrating them. In addition to this, it is responsible
for validating and formatting the data in the proper format.

A study from 2002 [42] argues that integration of applications will be the major challenge
to Application Service Providers (ASP) for their competitiveness in the modern business
environment. Due to the wide range of software available that can be used to perform
any job with little to no training, different departments within a company can choose
their own app to meet their specific needs. Business processes like procedure-to-pay,
quote-to-cash, and item management necessitate a large number of applications and
departments in order to operate efficiently. All of these apps generate a set of new data
while also requiring a data input, and as a result, data is stored within departments as
ever-expanding data silos as discussed in Section 2.5.1. This can lead to organizational
invisibility, management via e-mail or spreadsheets, and human errors.

The process of connecting all these different applications is referred to as integration. To
handle these various applications and avoid data silo build-up and manual organization
between departments, a robust integration automation strategy is required. Data
ingested into a central message broker is an efficient way of addressing these challenges
of integration. The way the ingestation process in the pipeline is represented is with the
data ingestation step.

4.3.1 Data ingestation example

Major cloud service providers offer specialized software for data ingestation in IoT.
Amazon as an example, uses AWS IoT as a data ingestation step. AWS IoT functions as
a connector from IoT devices to the cloud, operating as a gateway between the devices
and other AWS services [43], as shown in Figure 4.2



Chapter 4 Presentation of Guidelines

Figure 4.2: AWS IoT

In order for AWS IoT to work, the IoT devices need AWS software installed on them to
communicate with AWS. This requires either choosing IoT equipment that already is
optimized for AWS IoT, or installing said software in the IoT sensors in use.

4.3.2 Gateway

As gateways are used to collect data from IoT devices and send them forwards, they are
a natural part of the data ingestation step. To start off, the gateway must be able to
integrate with the varying sensors it will communicate with.

The gateway must be able to handle everywhere from one to many sensors. Thus a
gateway that is able to handle the load it is assumed it will be under is needed. If the
amount of devices is too much, multiple gateways must be able to work concurrently
to share the load of the system. Each IoT device can also lose connection for varying
lengths of time. This results in the message size varying greatly based on how much data
was generated since last time it made contact.

The gateway also needs to be able to handle varying signal strength, as well as recognising
what to do if it finds out that the data is corrupt. Data can be classified as business
as usual, nice to have, essential or similar categories. Some data can arrive late, but
never be lost, like logging data. Other data is nice to have, but can be dropped to
manage load or reduce replication, examples of this is metadata. Hence, an IoT pipeline
needs different mechanisms to handle different message types and priorities. This can be
handled in the gateway as it is the entry point for data to the system. By adding an IoT
gateway to the system architecture one can enable security measures such as encryption,
tamper detection and user access management [44][45].



31

Guideline 4.1. The gateway should scale gracefully with a growing number of devices
in the architecture.

Guideline 4.2. The gateway in the IoT pipeline should be able to connect to other
gateways to expand the load of data, working in parallel.

Guideline 4.3. The gateway should be capable of performing edge computing tasks
such as pre-processing, cleansing, and filtering.

4.3.3 Early stage validation

To be able to put the data on the message broker the data needs to be in the correct
format, with the correct tags. In addition to also making sure that the data is valid and
not corrupt. Examples of validation can be checking for missing data, removing invalid
or redundant data, and clean noisy data [46]. Such actions at an early stage will reduce
the amount of useless bits of data from ever entering the cloud, which will make the
system more resource efficient. Thus, the main features that need to be present is:

Guideline 5.1. The data ingestation step should ensure that the format of the data is
correct so that the data transfer will work as expected.

Guideline 5.2. The data ingestation step should validate that the incoming values are
correct and usable, removing any invalid data.

4.4 Message Broker

An important part of a pipeline is to transfer data from the producer to the consumer.
In large organizations this is often done by a central message broker, to handle some of
the integration challenges that lead to data silos. How data is transferred however, has
changed over the recent years.



Chapter 4 Presentation of Guidelines

4.4.1 Transfer process

Figure 4.3: Extract, Transform, Load - Process

A common way to move data is via the Extract, Transform and Load (ETL) [47] method,
meanwhile a new way of using event streaming has seen increasing popularity. The ETL
approach is the general approach used when copying or moving data from one producer
or storage to a data consumer, shown in Figure 4.3. It gained traction in the 1970’s and
has been popular since then, often used in data warehouses. In an ETL process, data is
first extracted from the database of the source’s system. The second step is to transform
the data extracted to meet requirements of the target system. When transformed, the
data is loaded into the target’s database. This concludes the ETL process. From the
target’s database, varying forms of analytical processes can happen and give insight in
the data via different Business Intelligence (BI) applications. A key challenge with this
way of moving data is that all data needs to be structured, neatly organized in rows and
columns. Unstructured data like audio and video however, struggles with this approach.
There also exist issues with the actual processing speed and scalability [47].

The ETL process of extracting data can be thought of as pull queries, where the system
asks what data exists in the database at this time. In event streaming, data is pushed
instead, illustrated in Figure 4.4.



33

Figure 4.4: ETL vs event streaming [48]

Event streaming allows us to treat all data in near real time by leveraging events rather
than data stores as a core principle. In ETL, one can think of data as data at rest,
something to be generated, transferred and analyzed. This prevents us from building agile
and flexible services that can act on the data while it is relevant and newly generated.
Using an event-driven architecture allows the consumption of data closely after the
data is generated, and while in motion. This event-driven architecture gives much more
flexibility when it comes to continuous analyzing, which is often what is desired in IoT.

As the data is generated continuously for a multitude of purposes, an ETL method would
be a slow way to handle this. Thus, the event-based data ingestation method with a
publish–subscribe communication paradigm is a better option. With this one can send
the event to all relevant parts via a service bus.

Guideline 6.1. Data transfer should happen with event streaming or similar technology,
avoiding ETL. This allows for fast and reliable data transfer.

4.4.2 Message broker responsibilities

As stated in Section 2.4.3, a message broker is the central authority from which all
applications connect and communicate with each other. ESB and iPaaS are two techniques
employed to move data from producers to consumers. Both ESB and iPaaS integrate
systems and applications to share data between applications. IPaaS is centered around



Chapter 4 Presentation of Guidelines

public and private clouds, trying to eliminate having to connect systems through on-
premises software and hardware. ESB, on the other hand, are usually designed for
on-premises integration rather than cloud integration.

In a system, message brokers can be used to validate, store, route and deliver messages
to the desired destinations. Most importantly brokers ensure that recipients receive the
message even if they are not online or active [49]. Message brokers utilize a queue system,
so if any message is unsuccessful in its delivery, it will be delivered at a later point.
A benefit of message queues is that applications can function asynchronously so that
processes and applications are kept separate. So, in the event of a process or connection
failure, the system remains active.

In an application workflow where senders and receivers are coordinated to send to, and
read from a queue, one may be able to eliminate the dependencies between each step.
This can be done with careful design principles. And if implemented, multiple receivers
can process messages from senders in parallel [50]. With this in mind, the following
guidelines are presented:

Guideline 7.1. Message brokers must ensure that the consumers will receive its messages
by employing backup strategies. These strategies include external storage for message
retrieval, and delivery protocols such as ’at-least-once’.

Guideline 7.2. Message brokers should have the ability to perform asynchronous
processing.

Guideline 7.3. Message brokers should allow different applications to communicate
regardless of the programming language.

4.5 Data Load

This step is responsible for moving data from the message broker to the specific application.
The data load is defined as application-specific. This means that each application that
wants the specific data, has its own data load step.



35

Figure 4.5: Data load step, illustrated

As can be seen in Figure 4.5 three applications want the same set of data to conduct
operations on. The message broker creates three queues, one for each application. To
illustrate the issue it is assumed that the first application takes JSON as input, the
second XML and the third demands a string format. As the message broker is agnostic
and does not know or care which applications demand what, a converting step is needed.
This means converting the data from the format the message broker delivers to the format
the application accepts. Additionally, an application-specific validation to ensure that no
invalid data passes through to the end application. This validation can be much more
thorough than the ingestation validation. This step may be optional if the application
itself can do this, but given the vast amounts of available applications it is not possible
to guarantee that every application in use can do this. Common data validation rules
that can be application specific include [51]:

• Data type (ex. integer, float, string)

• Range (ex. A number between 35–40)

• Uniqueness (ex. Postal code)

• Consistent expressions (ex. Using one of St., Str, Street)

• No null values

A key element of this is to ensure that this extra step does not dampen the effectiveness
of the pipeline while at the same time ensuring that the application receives quality data
in the correct format.

Guideline 8.1. The data load step should perform small data processing validations to
increase data quality.



Chapter 4 Presentation of Guidelines

Guideline 8.2. The data load step should conduct application-specific operations before
delivery is complete.

4.6 Applications

On average each company uses 1 742 different applications [52], resulting in a growing
threat surface and an inability for IT professionals to keep up with the ever changing
architecture, platforms and standards. This has a direct impact on app security, visibility
and compliance [52].

At the same time it must be acknowledged that each department in a company on
average uses 30-60 different applications, and that applications bought directly by the
departments that want to use them have higher engagement rates than those handed
down by IT [53].

This results in a dilemma for tech leadership where the security risk, threat surface and
amount of money the business spend on applications stands against engagement rates
and consequently effectiveness of the employees.

It is reasonable to assume that the company implementing an IoT pipeline is not immune
to these effects, and thus this must be taken into consideration when choosing relevant
apps.

As there exists a tendency to use whatever apps are provided by a cloud provider to
solve a certain problem [52], it is necessary to focus on application security. Hackers are
targeting the applications more and more instead of the network [52]. The data load
step helps mitigate this by decoupling the applications from the rest of the pipeline.

In addition, security breaches may come from different sources as well. A study from 2021
discovered that 63% of employees acknowledged that they used unauthorized applications
daily to share files with co-workers [54]. This can be mitigated with a solid integration
strategy, as Amazon is the most common example of, with their API- mandate from
2002, stating that all services shall be exposed to other teams via an API [55].



37

In general there exist a wast amount of applications to solve specific problems, thus the
main issue becomes to choose applications that are company-approved, cheap and secure.
As well as offering all services necessary for employees to prevent the use of unauthorized
apps. As it is nearly impossible to control all applications regardless, security measures
should be taken to prevent an intruder from breaking into one application, in order to
break further into the system.

Guideline 9.1. The applications in a pipeline should be verified as secure.

Guideline 9.2. Applications in use should generate valuable insight from the data they
receive, in order to make data analysis easier for the user.

Guideline 9.3. The selection of applications in an IoT pipeline should benefit the
company in a cost-efficient manner.

4.7 Summary of the Pipeline

After the literature study is complete the guidelines listed in this chapter is the recom-
mended assumptions and measures one should implement in a pipeline to ensure the
efficiency, security and stability of the system.

As many huge vendors already follow these guidelines by default, using trusted vendors
might already mean that the IoT pipeline follows these guidelines. The findings may
not be exhaustive, but following them should provide greater quality to the pipeline
in question. However, these guidelines are general enough to cover the majority of
problems that can occur while simultaneously not being application-specific. Following
these guidelines should benefit the reader of this paper when creating a pipeline. The
guidelines help in the prevention of future problems caused by incomplete architecture
or insufficient technical justification.





Chapter 5

IoT Pipeline Architecture

This chapter introduces the architecture of our IoT pipeline. The architecture that
scaffolds the IoT pipeline that is used for this project is based on the guidelines presented in
Chapter 4. Our pipeline uses emulators and sensors provided by Disruptive Technologies,
using the Miles Connect framework as a data load step to connect to Azure Service
Bus. From the service bus an application-specific instance of Miles Connect is used to
connect to third party applications. The applications are based on three distinct use
cases presented in Section 5.5.3.

5.1 Why Separate All Pipeline Steps?

Figure 5.1: Parts of an IoT pipeline

It is already established that all five steps shown in Figure 5.1, must be present in an
IoT pipeline for it to function properly, but why have five separate softwares to handle
each step? IoT sensors and applications must be present as it is the start and end point
of the pipeline. Data ingestation, message broker and data load step, however is not so
clear as to why one would want them to operate separately from each other.

39



Chapter 5 IoT Pipeline Architecture

5.1.1 Why have a dedicated data ingestion step?

To keep the pipeline simple it is possible to try to skip the data ingestation step, letting
the IoT gateway or the sensors go directly to the message broker. This would result in
losing validation and formatting that is required to give the message broker the expected
format. This means that invalidated and possibly corrupt data is sent on the message
broker, taking up unnecessary bandwidth. In addition, the validation process becomes
the responsibility of a later part of the pipeline. This would not be good in regards
to edge computing principles [56], where computation should happen as close to the
production of data as possible. As IoT sensors send data via analog signals a gateway
must be implemented to collect data from the sensors, thus, it is not possible to go directly
from the IoT sensors to the message brokers. As this step has to exist nevertheless,
it can include the recommendations for the data ingestation step, ensuring QoS and
that the recommendations are followed. Keeping validation close to production, as well
as formatting, to a standardized format also helps limit technical debt, and addresses
scaling issues. Any developer working with the pipeline also knows what format is used
before they implement anything new, no matter the origin of the data source.

5.1.2 Why have a dedicated message broker?

As the need for a data ingestation step has been established, one can wonder if it is
possible to skip the message broker altogether. Using a data ingestation step to simply
ingest data into the application layer would greatly simplify the pipeline, as well as
removing costs associated with operating a centralized message broker.

Often the problem with data ingestation is that the communication paradigms used are
quite basic, usually operating in a 1:1 relationship. This means that only one application
would be able to get the data, preventing more complex communication paradigms such
as publish-subscribe, as well as creating topics, etc. In addition, the message broker
would not be an agnostic central authority which is recommended to prevent data silos.
As long as only one application needs the data from the sensors this is not a problem,
but the second more applications could make use of the data a message broker would be
necessary. This is therefore an interesting conflict between the ’You Aren’t Gonna Need
It’ coding principle [57], and standardizing pipelines inside the organization as well as
the general recommendation of a central message broker as discussed in Section 4.4.

To summarize, in order to centralize the message broker and also use the complex
communication paradigm publish-subscribe and topic handling, the choice of using a
dedicated message broker was made.



41

5.1.3 Why have a dedicated data load component?

To keep the pipeline simple one could trust the application component to be able to
handle data directly from the message broker, or choose an application that accepts the
format already established in the data ingestation step.

This breaks the separation of concerns coding principle, where each component should
have responsibility of a specific part [58]. Often the application chosen is a third party
application for a specific use case, and generally it is not ideal to be reliant on third party
applications for logging, validation and formatting. Some applications would manage this
great, but as mentioned in Section 4.6, it is not possible to ensure that all applications
chosen can manage this. Hence, we choose to have a dedicated data load component that
will format and have application-specific validation. For this reason, any application that
is deemed necessary, can be used. Even though it only accepts a specialized format, or
has poor logging and error handling capabilities.

5.2 Why use Disruptive Technologies Sensors?

Disruptive Technologies is an award winning company famous for the smallest wireless
sensors in the world. Their sensors are known for being tiny, robust, affordable, and
adaptable. Already in use in offices, hospitals, warehouses and in water quality control,
their value-adding capabilities are well documented. In addition, they have quite good
emulators as well as documentation, allowing us to develop easily. The emulators operate
in the same environment as real IoT sensors, allowing us to easily replace the emulator
with their own sensors, should that be applicable.

Their sensors focus mainly on energy efficiency, sustainability, workplace health and
well-being, desk occupancy, smart cleaning, and feedback and service. This opens up
the possibility to use a wide range of applications. To ensure security in their sensor
they hire an external security firm each year to go through the devices, trying to detect
security flaws.

Using this cutting edge technology firm as the first part of our pipeline ensures that the
IoT devices are well suited for today’s business environment, while at the same time
following our recommendations for secure devices (Guideline 1.1–1.5). The sensor battery
has an expected lifetime of 20+ years, with a 10 year guarantee which means that there
won’t be any cost associated with changing the battery in the near future (Guideline 3.1).



Chapter 5 IoT Pipeline Architecture

5.3 Why Use Miles Connect?

The sensors from Disruptive Technologies operate in a way where a stream of data from
IoT sensors end up in DT’s servers. From there it can be accessed either via a REST API
or a stream. As the data must be inserted into the message broker, an endpoint must
be set up, capable of handling incoming messages before inserting it into the message
broker. One could set up a stream that would forward any incoming messages from the
stream to the message broker. However, then we would have to build our own converting
and validation schemes, as well as logging etc.

Miles AS has developed an extensive framework called Miles Connect, which is used to
implement services and integrations that run tasks for their customers. These tasks include
data retrieval, conversion, validation, and consumption. Miles Connect is built with the
two components: Miles.Connect and Miles.ServiceProcess. The former is used to generate
Business Object Documents (BOD), whereas the latter is a framework for scheduling
and optimizing integration tasks. Miles.ServiceProcess offers logging, diagnostics, error
handling, testing, and life cycle management. In other words, Miles.Connect is the link
that Miles.ServiceProcess controls between various services and integrations.

One can use the data retrieval properties to retrieve data from DT and also from
the message broker in the data load component. Using the validation and conversion
properties to adhere Guidelines 5.1 and 5.2 as well as Guidelines 8.1 and 8.2. The
consumption property is used to deliver data to the message broker, in addition to the
application in the data load step. As Miles Connect fit our requirements for the data
ingestation component, we choose to use this framework for both data ingestation and
data load.

5.4 Azure Service Bus as an Enterprise Message Broker

Azure Service Bus is a message broker known for reliability and scalability, while offering
message queuing and publish-subscribe communication along with topics. This queuing
system is used for sending and receiving messages. The sender will store a message
in the queue, and it will stay there until the receiver is ready to accept the incoming
message (Guideline 7.2). The messages are safely stored in redundant numbers of storages,
and never in volatile memory (Guideline 7.1). The message queue operates in a pull
mode, only sending messages when requested [59].



43

While queuing is often peer-to-peer messaging, the topics operate in a publish-subscribe
manner. A message is sent to a certain topic, and all subscribers following such a topic,
will receive a copy of the message regardless of their programming language (Guideline 7.3).
The messaging is similar to that of message queue, but enables multiple recipients of the
same message. With additional filtering and actions, one can limit which messages the
subscriber will receive, and see if any extra metadata is attached to a message.

Azure Service Bus offer some additional features that is found compelling and worth
mentioning. The auto-forwarding feature enables messaging from a queue as a source to
another queue, which enables chaining of queues and topics in the environment. They
also have a dead-letter queue which can hold on to any message that is not delivered to



Chapter 5 IoT Pipeline Architecture

a receiver. This queue is also used in messages that cannot be processed. If desirable
in a situation, messages can also be delayed for later processing at a specified time. By
using a message broker developed by one of the largest distributors of IT service, it is
ensured that security measures and protocols are up-to-date for the users’ privacy and
security [59].

In a research paper about ESB [60], they conduct an empirical survey of all enterprise
level service buses and how they compare. When they present the comparison of existing
ESBs in the market, we can see that Azure Service Bus and Oracle ESB are the ones
that score the best [60].

After a discussion with Miles we chose Azure Service Bus going forward as we have
relevant experience working with Azure.

5.5 Applications From Asplan Viak

To make sure our tests were as close to a real life scenario as possible, we reached out to
one of Miles’ customers, Asplan Viak, to get a use case suitable for them. Our plan being
that this would ensure that the pipeline built would be usable in the real business world.



45

5.5.1 Desired use case

Asplan Viak presented their desired use case as any form of people counting, bicycling
counting or car counting as viable use cases. And that this was information they in turn
could sell or make use of in a value-adding way.

5.5.2 Technical issues

Given the specific use case, special sensors were needed in order to be able to actually
count the people. Reaching out to DT and explaining the use case, they checked if they
had any sensors that would work for this use case. Their response being this specific
sensor is not a sensor that DT are offering at the moment. As we already were in a
process with DT it was decided not to change IoT provider. This however, means that
the IoT pipeline’s applications could not be based on use cases provided by Asplan Viak.

5.5.3 Use cases in this thesis

Instead of performing the use case presented by Asplan Viak, three fictional use cases
are created. These three use cases are created to illustrate different scenarios where IoT



Chapter 5 IoT Pipeline Architecture

devices might be used, and to ensure that the pipeline is able to function in various
environments. More use cases could be created and tested upon, but as IoT can be
applied to any scenario one wishes, three distinctly different use cases with different
requirements are deemed sufficient for testing.

The three use cases chosen for this thesis are chosen as they cover typical scenarios where
monitoring via IoT devices is applicable. In addition, these three cover a broad range of
environmental characteristics, which is helpful when verifying some of the guidelines.

As our pipeline takes input from Disruptive Technologies’ sensors, all three use cases
focuses on storage and analytics, with different premises for the sensors and the particular
use case. The use cases are:

Storage and Analytics

Our first use case involves IoT sensors monitoring temperature and motion data in a
typical office building. A multitude of sensors will send temperature and motion detection
data at regular intervals. These data messages will be processed by the pipeline and
stored in the cloud. A large number of sensors sending data is expected in this use case.
This is the thesis’ general use case, and it will serve as the foundation for most guideline
validations in Chapter 7.

Basement monitoring

In this use case, sensors for monitoring a basement deep underground are needed. In our
fictitious scenario, heavy rain is common, and the risk of flooding is present. To combat
this, a couple of water-detecting sensors in the basement are required. This way, if water
is detected, one can be notified and initiate counter-measures to prevent flooding.

In this use case poor signal quality, a few sensors, and little to none data to be transferred
is expected. This use case is referenced primarily when verifying Guideline 2.1 in
Section 7.1.5.

Mr. Freezer

In this final use case, the fictional client Mr. Freezer owns a shop. In the shop there
is a freezer where he stores heat-sensitive products. To maintain the highest possible
quality of his products, the freezer temperature should not surpass 0° Celsius. Mr.
Freezer installs temperature sensors in his freezer to monitor this, and keeps track of the



47

temperature using visualization tools on his data. This use case is used when verifying
Guideline 9.2 in Section 7.5.2.





Chapter 6

Building the Pipeline

In order to build the pipeline Disruptive Technologies’ framework, DT Studio, had to
be set up. DT Studio is how we access DT’s sensors, and determine where to send the
data. Then Miles Connect was used as data ingestation to connect data coming from
DT Studio to Azure Service Bus. Before another instance of Miles Connect picks it up
and loads it into the relevant application, either in the cloud or locally.

6.1 Connecting to DT Studio

DT Studio has the benefit of using the same interface for both emulated sensors and
real ones, thus, one can easily swap out emulators with real sensors with little to no

49



Chapter 6 Building the Pipeline

additional programming, should that be required. With access to DT Studio emulated
sensors can be created inside their studio, or via a REST API. With their REST API
one could easily setup a new device within seconds. Both real and emulated devices have
a unique device ID and properties relating to the type of sensor. Creating a temperature
sensor, it could report a temperature between -40°C and +85°C, just like a real sensor.

6.1.1 Generating data

Operating with emulators while building the pipeline, it was necessary to create a C#
script that on timed intervals sends a request to the emulators in DT Studio. The request
contains data the emulated sensors should mock. This is not needed when using real
sensors, but a way to make the emulated sensors create data that is expected. This allows
us to generate valid and invalid data, and different quantities of data. This flexibility
helps when testing the pipeline in Chapter 7.

6.1.2 Accessing sensors

To be able to access these sensors and their data, one needs to authenticate oneself to
DT Studio using a service account. A service account is used to create a service account
key (username) and secret (password), which is known as basic authentication. DT
Studio also supports OAuth which is recommended in a production setting. In OAuth,
values are disabled after one hour. Therefore a scheme must be created to update these
properties regularly if using OAuth. For testing purposes, basic authentication works
fine.

By connecting with our service account details the pipeline fulfills Guideline 1.5: The
access control of the IoT devices and data produced, should be limited to the owners
or certified operators. On the topic of whether or not basic authentication is enough
to ensure the security of the pipeline will be discussed in Chapters 7 and 8. After a
successful connection, one can manipulate the digital sensor to send and receive events
from DT Studio.



51

6.1.3 Stream and REST API

Figure 6.1: Two possible communication paths from DT [61]

The events received depend on how we choose to communicate with DT Studio. Either
communicating via their REST API or set up a downwards stream where data ingestation
happens at the endpoint, and DT pushes any relevant data onto the stream. Both versions
are shown in Figure ??, and were built before deciding what version should be used in
the pipeline.



Chapter 6 Building the Pipeline

Stream

Figure 6.2: Integrate DT to pipeline via stream

To build the stream version, DT’s Node.js library was utilized to access a threading
package. This package is used to continuously stream events in a separate thread,
independent of the main program. With this package customization of the messages are
made possible. Every time a new event appears in the stream the data ingestation step
can ingest it into the message broker.

In this scenario DT Studio operates as a forwarding mechanism from the IoT Sensors.
Any data recorded in DT’s Cloud Connectors are sent to DT Cloud where they are
forwarded via stream to our endpoint, illustrated in Figure 6.2 as Node.js Endpoint. This
is quite fast and would also follow Guideline 6.1: Data transfer should happen with event
streaming or similar technology, avoiding ETL. This allows for fast and reliable data
transfer.

Miles Connect technical limitation

After the events have arrived at the Node.js endpoint formatting and validation is needed
to take place using Miles Connect. The choice of Miles Connect is discussed in Section 5.3.

Miles Connect operates as an advanced task scheduler, like Hangfire [62], with added
logging, validation and formatting capabilities. A task scheduler is based around tasks
starting, executing and stopping, and therefore not applicable to a pure event stream
pipeline. Thus, one can not stream events in Miles Connect. This means that the pipeline
will breach Guideline 6.1 at this step. Making the tasks pick up data from the Node.js



53

endpoint continuously would make this process operate almost like a stream. Thereby
allowing for capabilities that are quite similar to an actual stream.

To have a full event stream pipeline not breaching Guideline 6.1 the stream itself would
need to be injected directly into the service bus without a task scheduler step in between.
We perform tests in Section 7.3.1 to see how this would limit our pipeline.

REST API

Figure 6.3: Integrate DT to pipeline via REST API

A REST API operates on a request-response basis, illustrated in Figure ??. This means
that using a REST API would automatically breach Guideline 6.1. In addition to this a
drawback with the REST API is that it takes about 10 seconds longer before any events
are available in the API, then when pushed to the stream. The REST API however,
grants us larger control of what type of data the ingestation step should receive, in
addition to when it should be received. It is also possible to get historical data stored in
DT Studio. Thus, the events received and the format it is received on depends highly on
what is requested in the request. In addition to control sensors etc. via the REST API,
allowing for two-way communication.



Chapter 6 Building the Pipeline

Miles Connect is built with regards to REST APIs, gaining synergy from Miles Connect,
not needing to set up the extra Node.js endpoint step shown in Figure 6.2. In addition
to not being limited by Miles Connect’s technical limitations explained in Section 6.1.3
either, as the REST API works well with task schedulers.

After working with and building these two solutions, we trust that the benefits of the
REST API outweigh the 10 second delay the pipeline must endure, and choose to move
forwards by connecting to DT Studio via the REST API, even though this is a breach of
Guideline 6.1. This will, however, be tested in the next chapter to examine how much
this breach costs the pipeline in terms of performance.

Because the events from a sensor are historically saved within the DT Studio, one can
access recorded temperatures over a longer period of time. With an already established
connection to a sensor, it is quite easy to access the sensors’ event history and make use
of the data. For example using the matplotlib package to plot these recordings, as shown
in Figure 6.4. This type of plot could be used to make it easier for humans to detect
anomalies, or visualize temperature over a period.

Figure 6.4: Event history sensor. Example image from DT [63].

6.2 Connecting to the Message Broker

To set up the message broker we reached out to Miles and set up a service bus on
their license. Azure Service Bus is an enterprise message broker that uses queues and
publish-subscribe topics [59]. It decouples applications and services, which allows for
load balanced work processes, and can transfer data across applications. Miles Connect
is built on the .NET environment, and it is therefore easy to implement service bus by
Azure which is supported by .NET.



55

6.2.1 Miles Connect functionality

Miles Connect has a core functionality where it simplifies receiving data from a provider,
validating it in a validator, formatting it in a converter and sending it onward with a
consumer. In addition to having complete control to configure all of these steps.

Provider The provider communicates with the DT REST API, sending a GET request
containing the authentication explained in Section 6.1.2, in addition to an URI explaining
what the pipeline wants the REST API to return. In this pipeline a list of all sensors
present in our project and their current status is requested. The provider then splits this
list up into separate messages, where each message consists of one sensor and its current
status. Each message is then sent separately to the validator. The reasoning behind this
is that a message containing a temperature sensor might be sent to another application
than a message containing a proximity sensor.

Validator When the validator receives a message it validates it before it sends it through
to the converter. The validation in question can remove sensors with null values, or
otherwise if the message itself is corrupt.

Converter The message format at this point is still the same as it was in the list that
was in the response from the REST API. However, it may not be necessary to send
all this data further through to the pipeline. The converter converts this format to a
predetermined format that is used as a standard on the message broker. One can either
add a message ID or remove unwanted parameters. After the conversion is finished the
data can be sent through a validator again to make sure that the conversion did not
break the message.

Consumer The consumer is the final step in Miles Connect. This is where the converted
message is sent to its new destination. In this case this is the service bus. Connecting the
Miles Connect application to the service bus is done by inserting the service bus connection
string and topic name into the .NET functionality ServiceBusMessage, sending it with
the task ServicebusSender.SendMessageAsync(msg). When using the .NET packages
created by Azure and Miles, synergy is gained as functions for simpler implementation
are enabled.



Chapter 6 Building the Pipeline

6.2.2 Azure Service Bus Explorer

In order to control the behavior of this service bus the program Azure Service Bus
Explorer [64] was used. The service bus explorer lets us administrate messages with ease.
The app also contains features for import/export, testing of topics, subscriptions and
event hub.

The service bus explorer application is recommended when working with a service bus or
event hub as it is open-source, well documented and frequently updated. The tool makes
the use of topics, subscriptions and event hubs more intuitive and efficient. It is directly
connected to our Azure account, and can generate messages for testing as well.

Figure 6.5 shows what the application looks like.

Figure 6.5: Service Bus Explorer app

An example of the data sent is shown in Figure 6.6.



57

Figure 6.6: Service Bus Explorer message

6.3 Constructing the Data Load

When the data is located on the service bus, any subscriber to the topic name can access
this data. By using the same packages from Azure and Miles as described in Section 6.2.1,
a listener was created with our subscription. This listener is located within the Miles
Connect provider. After accessing the data stored on the service bus, one can further
format and validate any message if necessary. This process can be performed on a local
server if the data is going to be saved for backup by a local application. Otherwise
it can run in the cloud on a virtual machine, in order to rapidly load data into cloud
applications.

After the validator and converter has done their job, the consumer establishes a connection
to our SQL server. This database can be exchanged and replaced with another application
if needed. However, for our basic use case it was decided to use a standard database as
the client application. The storing of data is completed by creating a SQL transaction,
querying the database to store our message.



Chapter 6 Building the Pipeline

6.4 Storing Data in the Cloud

The data being stored in an SQL database is proof that the data was successfully
traversing every step of the pipeline and arrived at the correct place in a proper manner.
As mentioned in the previous section, a private database had to be created, and an
additional table within the database for data storage. For our initial setup phase, only a
basic version of a database service was needed to ensure that our data was not lost or
corrupted during transfer. Figure 6.7 shows messages received during a test run.

Figure 6.7: Messages received on the cloud storage



Chapter 7

Verifying the Guidelines

In this chapter, the pipeline built is examined in regards to each guideline mentioned
in Chapter 4. The aim is to verify if our pipeline follows these guidelines, performing
tests where applicable. Additionally, questions explicitly relevant about DT’s sensors are
given to DT to see if their devices follow our guidelines. The questionnaire sent to them
is located in Appendix B, along with the answers received. The discussion on whether
the guidelines themselves are useful is located in Section 8.3.3.

7.1 Guidelines for IoT Device

7.1.1 Guideline 1.1

The IoT devices in use should be created by a trusted source.

Setting up a quality IoT pipeline requires that you can trust the hardware on which the
data collection is based around. As seen in Section 4.2.1 this is not always the case.

DT claims to prioritize security and privacy in all parts of the design and development
process. Particularly for their chip design, sensor design, radio protocol design, cloud
services and APIs.

We reached out to DT to find out how they create and keep their equipment safe and
which security measures are present on the sensors. Validation of Guideline 1.1 was done
by the following question, answered by a representative of DT.

How is the IoT devices produced by a trusted source?

59



Chapter 7 Verifying the Guidelines

"In order to ensure that the sensors produced are in fact not tampered with and that the
manufacturing process is controlled, DT owns its own manufacturing line in Germany
with strict restriction on access."

Owning their own manufacturing line ensures that DT is not dependent on a third party
for making their sensors. This results in more control over the production line and better
overview over the production as a whole. Having control on what type of machinery is
used for manufacturing the sensors and what kind of quality the machines producing the
sensors have is also an added benefit.

Any further exploration on the manufacturing of DT’s IoT sensors, would go beyond the
scope of this thesis.

7.1.2 Guideline 1.2 and 1.3

Guideline 1.2: Users of IoT devices should be authenticated with modern standards.

Guideline 1.3: Common IoT security measures such as encryption should be imple-
mented on the IoT device.

These guidelines are validated with the following question sent to DT.

How are security measures like encryption and authentication implemented
in Disruptive Technologies IoT devices?

DT’s response referred to an article [65] with information around the security of their
sensors as well as the SecureDataShot (SDS) protocol.

DT’s IoT sensors encrypt all data within the sensors themselves. The data is encrypted
while transmitted until it reaches DT’s cloud. While using encrypted protocols the data
is forwarded to customers applications. This results in end-to-end encryption. Normal
encryption ensures only encryption while in transit, but not while located on the device.

SecureDataShot SDS is a high security, low energy protocol. The secure part comes as
a result of sensors being paired with the user instead of the gateway. Usually gateways
collect encrypted data, decrypt it, perform processing operations on it, and then encrypt
it again before sending it onward.

With SDS the gateways, called Cloud Connectors, collect encrypted data from the sensors,
but are unable to decrypt them. The Cloud Connector routes packages without seeing
what is inside, much like a cellular base station. Because the Cloud Connector forwards



61

data that has been encrypted by the sensor and does not decrypt it, this reduces the risk
of a man-in-the-middle (MITM) attack.

A MITM attack is when a perpetrator places itself between a conversation of two parties
in order to eavesdrop, alter messages etc. In IoT, a favorable target is the gateway. This
is partly because gateways that exist now weren’t designed with security in mind, in
addition to being in an unsecured environment. This results in many attack vectors
against the gateway [66]. In addition, DT claims the following:

"With fewer layers and a single vendor managing end-to-end encryption across sensors,
connectors and storage, management is simple and risk is decreased" [67]

As the data is encrypted when SDS is used, the perpetrator can not gain access to the
data even if they are able to successfully execute a MITM attack.

Encryption and operational security in DT’s sensors At the time of manufacturing,
each sensor is assigned a unique 256 bit asymmetric encryption key, generated by FIPS
140-2 Level three hardware security modules.

Asymmetric encryption is an encryption technique where the data is encrypted and
decrypted with two separate, but mathematically linked keys, called a public and a
private key. The opposite being symmetric encryption where you encrypt and decrypt
information using the same key.

FIPS stands for the Federal Information Processing Standard and is a collection of
IT standards which are expected to be used in non-government agencies. FIPS 140-2
describes security requirements for cryptographic modules. This standard is divided into
four levels where level three is the second highest, and is most commonly used for high
security purposes [68].



Chapter 7 Verifying the Guidelines

The public part of these keys are installed in a physically secured facility with access
control, in addition to encrypted backups on multiple secure locations in case of data loss.
Using these keys the sensor and the cloud can authenticate each other, creating secure
sessions. This is how they establish a tamper-proof end-to-end communication channel.

Third-party verification DT has completed two independent security reviews, con-
ducted by a global safety and certification consulting firm called UL. In addition, the
company Praetorian has assessed the components DT delivers to be within the top
5–10% of Praetorian’s client base in regards to Existing Vulnerability Measure. Existing
Vulnerability Measure is used to quantify the collective risk of all findings identified
during an assessment, comparing it to the rest of Preatorian’s client base [69].

The requirement for encryption and authentication on the IoT devices is verified based
on the documentation provided by DT, and additional research on their communication
protocol.

7.1.3 Guideline 1.4

To ensure that each IoT device has the latest software which patches security flaws,
software used in IoT devices should have the newest version available.

For this guideline, the following question was presented to DT:

Is it possible to update Disruptive Technologies’ sensors with software updates
or security patches after they have been installed at a location? How is this
done?

The response referenced the technology described in Section 7.1.2, DT can provide over-
the-air updates to change firmware or configurations. DT operates a fleet management
system to facilitate this. These updates are fully automatic and require no involvement
from the customer.

Any further investigation beyond this is deemed to be out of scope for our thesis.

7.1.4 Guideline 1.5

The access control of the IoT devices and data produced, should be limited to the owners
or certified operators.



63

Data produced by DT’s sensors is owned by the customer of DT. In addition DT’s
developers and staff is unable to access production data without the customers approval.
Any access to the production data is logged, and rules of what they can do is specified in
data protection policies [65].

Technical access rights From the technical documentation presented by DT on their
website regarding Managing access rights they inform how their permission hierarchy
operates. As mentioned in Chapter 6, DT practices access to their sensors through
service accounts.

A service account is given a role, which contains certain permissions. A service account
can be a member of multiple projects and organizations, and is assigned a role for each
project/organization. Even though a service account is created, it needs to be added to
a project to be given a role, which accompanies permissions.

A common project user will have access to read data, a developer can also create and
update configurations, and administrators can additionally update, create or delete
service accounts for a project. On top of that, an organization administrator can handle
project management [70]. This allows us to follow the standard security advice of granting
least privilege, or granting only the permissions required to perform a task.

To perform a thorough testing of whether or not the pipeline configurations follow
Guideline 1.5, we would need assistance from technicians that specialize within the field
of cyber security. This is deemed to be beyond the scope of this project. However, to
ensure that the basic authentication prevents illicit users from accessing or altering the
data, a small test is conducted.

Test: Verify the limitation of access control

To perform this test DT Studio is used, where a project with multiple service accounts
was created.



Chapter 7 Verifying the Guidelines

Figure 7.1: DT Service account

A new service account called access_test_service_account is created and granted project
developer role, as can be seen in Figure 7.1. This role should allow the user to see and
change sensors and settings.

We use Postman to be able to efficiently send requests to the REST API. Postman is
an API platform used for building and testing APIs [71]. This chapter utilizes Postman
extensively to simplify tests as one can easily mock servers, server responses and REST
API calls.

Figure 7.2: Postman POST request

As can be seen in Figure 7.2, a POST request is created. If the request is successful, DT
Studio should access the label of the device with ID: emuc83110satj3vmh432fv0. Then



65

DT studio should add a new label which is presented in the POST request. The body of
the request is shown in code Listing 7.1 below.

{

"key ":" ChangeLabel ",

" value ": " ShouldPass "

}

Listing 7.1: POST request body

After sending the request a 200 OK response is received with the values that has been
added to the device, as shown in Figure 7.3.

Figure 7.3: Postman Response

This is verified by logging into DT Studio and see that under labels, a new label has
been added with the correct key/value pair, as shown in Figure 7.4.

Figure 7.4: DT studio screenshot

The privileges are then changed for the service account to project user. Afterwards the
same response is sent again. A project user should not have the possibility of editing
sensors as a project developer has, according to DT’s documentation. They should only
be allowed to view data.



Chapter 7 Verifying the Guidelines

Figure 7.5: DT studio response

Running the same POST request shown in Figure 7.2, returns a 403 Not allowed as can
be seen in Figure 7.5. A 403 Not allowed response means that this user does not have
access to edit the label at this time.

The test user is then removed from the project and the request is sent once more. This
time also resulting in a 403 Not allowed. As any other more advanced way of testing the
security of the system is deemed out of scope we conclude our tests for this guideline at
this point.

Discussion: Is basic authentication enough of a security measure?

In the DT developer documentation [61] it is recommended to use the OAuth authen-
tication protocol in production settings. OAuth is an industry standard protocol for
authorization [72]. However DT does not enforce this recommendation. This means that
a developer could use basic authentication while setting up the pipeline. Forgetting to
implement OAuth prior to launching the pipeline in production, can leave the pipeline
vulnerable. This is because the basic authentication operates as a username-password
combination, and any illicit person gaining this combination would easily cause major
damage to the pipeline. This would allow a user to be authorized as the service account
linked to this username-password combination, and make use of the privilege this service
account has.

In Section 7.1.4, the levels of privilege are shown. A malicious actor with project user
access can read data, which will breach the confidentiality of the data, as described in
Section 2.1. Should a developer service account be breached, this would result in a breach
of data integrity as the data could be accessed and altered by the perpetrator. Illicit use
of administrator privileges would result in a breach of integrity for the entire pipeline, as
the perpetrator would have full leeway to edit or delete anything in the project.



67

In response to this, OAuth should be mandatory before a data pipeline starting with DT
could go operational. We suggest that DT enforce this as a requirement, not a choice.

7.1.5 Guideline 2.1

Ensure that the IoT device and gateway are able to handle poor signal strength.

Transmitting data is an energy-consuming activity, and particularly so for devices with
portable and small batteries, which often is the case for IoT sensors. By having poor
signal strength the sensors have to spend more time transmitting data, meaning more
energy will be spent for that purpose. This can dramatically decrease the lifetime of a
small battery [41].

As poor signal strength may affect battery time it is important to choose sensors that
have large batteries if operating in poor signal areas. DT’s sensor uses Varta CR1216
coin cell for battery power which claims 27 mAh capacity in room temperature. This is
roughly 74-111 times less than the average AA battery [41]. DT uses an energy-optimized
protocol to limit the transmit time, which in turn limits the power usage.

The range from the sensor to the gateway compares to standard WiFi in normal buildings.
Thus, in poor signal strength zones the range and efficiency decreases. WiFi signals, as
any radio frequency signal, degrade the further they travel and the more obstacles they
have to pass through. Signal from the sensor must travel to the closest gateway, and if
that is through walls, floors or around corners the signal strength will suffer. Contrasting
this to LoRaWAN, which can have a range of up to 300 meters in deep basements [73],
but comes at a cost of low data transfer rate.

Discussion: How well does the IoT sensors fit in the basement use case?

In this scenario, IoT sensors from DT may not be the best match as they are extremely
resource constrained, and poor signal strength may remove years off the battery lifetime.
Furthermore, the temperature and humidity of the basement may degrade the sensors’
performance. The WiFi properties of DT’s sensor are effective in normal operations
but may be more problematic in areas with poor signal strength zones. As a result,
for this use case, where we anticipate poor signal strength we would most likely choose
LoRaWAN technology, or another provider for the IoT devices.

7.1.6 Guideline 3.1

Employ a battery-saving scheme that ensures sufficiently long battery life for the devices.



Chapter 7 Verifying the Guidelines

As mentioned in Section 4.2.3, IoT sensors require batteries that should not have to be
replaced frequently. As DT claims battery life for at least ten years for their sensors, this
question was asked to validate Guideline 3.1:

What type of battery-saving scheme does Disruptive Technology sensors use
since they have a battery life of 10+ years?

Their response referred to an article [41] about their sensors’ energy consumption.

DT’s sensor is powered by coin cell batteries with a 27mAh capacity compared to an AA
battery with a capacity of 2000-3000 mAh. This means that the sensor itself has to be
extremely energy efficient in order to operate for 10+ years. The average current in the
sensor must be less than 175nA to achieve this goal [41]. This average must take into
account power for wireless communication, sensing, and anticipated leakage.

As the battery is very small, it is unable to deliver much current. However, the wireless
microcontroller needs quite a lot of current in order for it to send data to the gateway.
Wireless communication is amongst the most energy expensive operations the sensor
must execute.

One of the competitors that have created an energy-efficient wireless microcontroller
with competitive numbers, reports a usage of 550nA just to be in standby mode [41].
This leads to a problem, as the average current out of DT’s battery needs to be less than
175nA to achieve a battery life of 15 years.

The solution comes from a collection of energy storage capacitors. These can be drained
quickly for energy intensive tasks, and can be slowly recharged by the current from the
battery. This way the battery can deliver a steady current of 175nA, while the wireless
microcontroller can drain the conductors the few milliseconds it needs to be online. This
can be seen in Figure 7.6.

Figure 7.6: Sensor voltage when wireless microcontroller is active [41]

In addition to this, the ASIC DT Silicon is used in their sensors. DT Silicon is designed
with care towards extremely low power consumption. The ASIC is responsible for keeping



69

the wireless communication completely powered down most of the time to prevent it
from draining energy, only powering it up if a sensor detects anything to send, or a timer
timeout.

The ASIC’s code is written in an assembly language which ensures optimal processing
operations, as the language does not have to be compiled further down into machine
code, which is the case for other high level programming languages.

SDS

As a wireless microcontroller is a heavy drainer on energy, the amount of time the
microcontroller is spending on transmission has a severe impact on the battery. The SDS
protocol mentioned in Section 7.1.2 is designed in a way to ensure that the minimum
amounts of bits are needed to send a secure message, hence reducing the radio trans-
mission time. A temperature sensor sending an encrypted message to the cloud with 30
temperature samples demands 17 bytes of packet payload [41].

Competing technologies

After reading relevant articles [74–76], which research the possibility of 10 years of battery
life for wireless sensors, they deemed it difficult, but achievable. One of the sources claim
that their sensor can last up to 10 years if using Bluetooth Low Energy protocol, and
having the sensor in sleep mode for 99.86% of the time.

They state that low power consumption while in sleep mode is the key factor to achieve
10 years of battery life for communication devices. Depending on the time it takes
the sensor to transmit a message, the interval between measurements, and the average
current consumed while in sleep mode, one could aim for 10 years of battery life.

Discussion: How well does this battery-saving scheme fit our use case?

As mentioned DT manages to keep a battery life of minimum 10 years by employing
highly energy-efficient batteries and microcontrollers. This alongside their SDS protocol
makes sensors communicate at a energy-efficient level.

From the information provided by DT, it can be seen that they do achieve low energy
consumption during communication. However, we must compare them against existing
competitors to see if their battery-saving scheme is the best suited for our use case.



Chapter 7 Verifying the Guidelines

As stated in Section 7.1.6, an IoT sensor might achieve 10 years of battery life. The
fact that DT’s sensors achieve a minimum of 10 years in normal operations, verifies this
guideline.

Keep in mind, after deciding on a sensor provider, one must consider the transmission
strength, duration, and off/on cycle for the power saving mode for the given use case.
For our three given use cases presented in Section 5.5.3, we might have different needs
for each of them. This would greatly affect the performance of the battery life.

7.1.7 Guideline 3.2

Control that the IoT device load and bandwidth is not exhausted, and scale resources if
necessary.

In order to test that the device load and bandwidth is not exhausted, a rogue sensor that
will send unnecessary amounts of data through the pipeline is simulated. A temperature
sensor from DT will send the temperature it has measured in intervals of 15, or 5.5
minutes, depending on if its a first, or second generation sensor [77].

Therefore a temperature sensor spamming 75 messages each minute would probably be
rogue. The reason 75 messages is used is because that is the maximum one can test for
in a developer setting in DT Studio.

The fact that this sensor is malfunctioning should not exhaust the bandwidth and device
load of the rest of the pipeline.

Test: Rogue sensor

Figure 7.7: Rogue sensor handling, Request-response vs STREAM



71

We start our request-response pipeline, and set up one alternative stream pipeline as
shown in Figure 7.7. Then the emulator in DT Studio is used to mock a rouge sensor
that spams data points.

As our pipeline is operating in a request-response fashion, this rogue sensor should not
have any noticeable effect on the pipeline. The request will ask for the latest update
and gain the latest update from DT Studio. Thus, we expect to get one message on the
service bus each minute. In the stream pipeline however, any messages received will be
fast forwarded through the pipeline and we expect to get all these messages through the
pipeline. This will waste bandwidth and device load.

Checking the number of messages through the stream is done by counting all messages
that arrive at the stream endpoint.

Figure 7.8: Console screenshot, Stream pipeline

As can be seen in Figure 7.8 the total number of messages received at the stream endpoint
is 75, meanwhile a single message is passed through the request-response pipeline as
shown in Figure 7.9.

Figure 7.9: Console screenshot,Request-response pipeline

This verifies that the bandwidth is not exhausted on sending irrelevant messages.



Chapter 7 Verifying the Guidelines

7.2 Guidelines for Data Ingestion

7.2.1 Guideline 4.1

The gateway should scale gracefully with a growing number of devices in the architecture.

To test that the gateway is able to handle this, a working environment where some IoT
sensors are already sending data to the pipeline is simulated. By using POST requests
in Postman, more sensors can be added to the operation. When the newly added sensors
establish connection to the gateway, they will start transferring their own data. When
we can observe that all sensors are transmitting data as expected, the newest addition of
sensors from the pipeline is removed. Ideally, the pipeline will handle this fine and will
increase message throughput while the sensors are online, and decrease it when they are
disconnected, without the need for a restart or complete failure. When messages enter
the service bus queue, they are logged and can be viewed in Azure Portal.

Test: Add and remove sensors while online

while (true)

{

var request = new HttpRequestMessage ( HttpMethod .Post , emulatorLink );

HttpContent content = new StringContent (

"{\" temperature \": {\" value \": " + integer + "}}");

request . Content = content ;

System . Threading . Thread . Sleep (5000);

HttpResponseMessage response = await client . SendAsync ( request );

response . EnsureSuccessStatusCode ();

}

Listing 7.2: C# script to simulate working environment

The C# script as shown in Listing 7.2 uses a while-loop to command the emulated
sensors to send the value every fifth second. This is done by sending a POST message to
DT’s REST API where the StringContent parameter includes what the sensor should
emulate. For this test it is sufficient that it measures a temperature of 0°Celsius every
fifth second. In this test, only the number of messages are interesting, not the data each
message carries.

After the script has run for a time, the POST request shown in Figure 7.10 is sent from
Postman, informing DT Studio that a new emulated temperature sensor should be added.



73

Figure 7.10: Create new sensor Request

The response from the server is shown in Figure 7.11. We can see that the response
received includes the ID of the new sensor, as well as the type and name.

Figure 7.11: Create new sensor Request

This sensor will not send any data to the pipeline until an additional script that tells it
to emulate data is started. Fortunately, this is just a duplicate of the script in Listing 7.2
with a different ID. As a result, a copy of the script with the new ID was started. After a
while it was turned off. Finally, removing this new sensor from the operation. Removing
the sensor is completed by sending a DELETE request with the ID of the sensor that is
to be deleted, as shown in Figure 7.12.



Chapter 7 Verifying the Guidelines

Figure 7.12: Delete sensor Request

And as can be seen in Figure 7.12, a 200 OK response was received from the server,
informing us that the sensor is deleted.

Figure 7.13: Azure Service Bus Result

The test ran over the course of half an hour with a total of 342 messages sent. Each
sensor sent their current status every tenth second. In Figure 7.13 the status of incoming
messages to the service bus is visualized. After starting two of the sensors at Point A,
we observe that the number of incoming messages in the service bus stabilized at around
12 messages per minute. A third sensor is introduced in Point B and then one can see
that the number increases to 18 messages per minute.

At Point C the third sensor is removed and the number of messages stabilizes back to
12 messages per minute again. After the last two sensors are turned off in Point D,
there are no more messaging being sent and therefore the service bus now receives zero
messages per minute.



75

Discussion: How well can the gateway accept additional sensors while running?

From Figure 7.13, we did observe that the number of messages increased after adding
the third sensor. This is assumed to verify that our gateway is capable of accepting new
incoming sensor data.

After the disconnection of the third sensor, there is an unstable moment before reaching
Point D. Only 10 messages were received at one minute interval, two of the missing
messages being sent at the next given minute, thus, having two additional messages
during the next one-minute interval. This is assumed to occur due to Internet connection
or software related execution time and thus has no impact on the resulting evaluation.

As the pipeline operates as expected, Guideline 4.1 is deemed verified.

7.2.2 Guideline 4.2

The gateway in the IoT pipeline should be able to connect to other gateways to expand
the load of data, working in parallel.

In order to find out how load balancing was done with the gateways, or Cloud Connectors
as they are called within DT’s system, the following question was presented to the
representative of DT:

How does Disruptive Technology gateways/data connectors scale if the density
number of IoT devices in a small area is higher than the supported capability?

The representative refer to the fact that each Cloud Connector supports more than
10.000 sensors. And thus, they do not expect the number of devices to be a limiting
factor for a long time. In addition, the cloud services have load balancing features that
scale with the number of data points to process.

This guideline is verified for up to 10.000 sensors in a small area.

7.2.3 Guideline 4.3

The gateway should be capable of performing edge computing tasks such as pre-processing,
cleansing, and filtering.

As mentioned in Section 7.1.6, DT manages to keep a battery life of minimum 10 years
by employing highly energy-efficient batteries and microcontrollers. This, alongside their



Chapter 7 Verifying the Guidelines

programming code, makes sensors communicate at a energy-efficient level. However,
using these sensors in a scenario where we would like to perform edge processing is not
practical.

As the design from DT’s perspective is to send messages with a minimal package size at
given intervals, without any early processing altering the data, any quality assurance
of the data would not be possible. The goal of DT is to save battery life, not perform
operations on the data, which would be costly in regards to energy consumption.

Also because of the technology used on DT sensors regarding encryption explained in
Section 7.1.2, the Cloud Connector is unable to decrypt the data, and thus can not
support edge computing. This is a result of the sensor measurements being end-to-end
encrypted from the sensor to the cloud, where DT saves their sensor data. This results
in the fact that the gateway can not perform edge computing.

The idea behind edge computing is that operations should happen as close as possible to
the data source. In our pipeline for this thesis, the operations are performed at the first
available location, in the data ingestation step with Miles Connect.

The guideline itself may not be fulfilled, but the pipeline performs the necessary operations
at our data ingestation step instead. Which is acceptable for our pipeline which focuses
on completing data processing operations on the data before, and after, the message
broker step.

7.2.4 Guideline 5.1

The data ingestation step should ensure that the format of the data is correct so that the
data transfer will work as expected.

This guideline is validated by sending multiple variations of data formats, where one
of them should pass through the pipeline without problem, using the correct format.
The other invalid formats should be detected and denied. The pipeline should stop data
in an invalid format as early as possible to prevent unnecessary use of the pipeline’s
resources. The pipeline will forward the data from the IoT devices, but it will stop the
data messages at the data ingestation section, if it fails validation.

Inconsistent data Inconsistent data in the system often comes from human errors or
missing protocols for data handling. Examples of inconsistent data include similar data
in different formats, naming convention mistakes, or absence of data constraints. These
errors can lead to inconsistency, which may affect the processing of the data [46]. Before



77

an analysis can be performed, the observed errors require to be corrected. Therefore, it
is desirable to ensure the quality of the data at an early stage.

Test: Sending incorrectly formatted messages

In this test there are two sensors that measure temperature, in addition to one sensor
that detects motion, and another sensor that detects touch. This is shown in Figure 7.14
The motion and touch sensor will play the part of sending incorrectly formatted messages.
The pipeline is configured to only handle incoming data from the temperature sensors,
rejecting all other formats of data. The data ingestation step is configured to include a
validation process which examines the label "type" of the data object.

Figure 7.14: Different types of sensors

The test starts by asking each sensor for a status update every 30th second, giving us
two responses per minute, per sensor. These responses are set to be handled and routed
through the pipeline. To ensure that our resources are only used on the correct messages,
a filter is set up to check which type of sensor response is being received. The program
should throw a ValidationException, which informs the user that the format of the object
is incorrect. The program will however still continue to process any incoming data, only
rejecting the ones that are incorrect. The errors are displayed in the console, but will
not have any affect on the rest of the system.

Figure 7.15: Expected error in format



Chapter 7 Verifying the Guidelines

In Figure 7.15 one can observe that for each request to DT Studio, four sensor data
updates are received, but two of them are failed. This is because two of the four sensors
did not pass the format validation test. This can be confirmed with the service bus,
where only accepted messages are located. The program will over the test period ask DT
Studio for any updates on sensors, and upload valid objects to our service bus. With a
frequency of 30 seconds one should expect eight updates per minute, if all messages are
valid.

Figure 7.16: Correct formatted messages

However, in Figure 7.16 the incoming messages detected at our service bus are shown.
We can see that it stabilizes at four messages per minute, as seen in the y-axis on the
left-hand side. This plot tells us that half of the messages sent from DT Studio into the
pipeline are not accepted, this because of their invalid format.

These results acts as proof that this guideline is verified.



79

7.2.5 Guideline 5.2

The data ingestation step should validate that the incoming values are correct and usable,
removing any invalid data.

Missing data This guideline concerns any inaccurate or worthless data that might be
entering our system. The lack of information within the data create gaps that will affect
our final analysis in a bad manner, and should be fixed. These sightings of missing data
could be a cause of system downtime or physical errors from the sensors. In the early
stage validation it would be sufficient to ensure that the three most important values are
present, which is critical for any further processing. These include the device ID, time
of recording, and the measured value. If working with temperature values, one would
demand that the temperature value exists. If any of these values do not exist, it will
cause invalid data to be stored in the database or make a processing function crash at a
later point.

To ensure that our messages do not contain any missing data, the validator is extended
to perform operations on the data. The test will deliberately insert invalid data to ensure
that the validator can detect these errors.

Test: Sending invalid values

Using the setup from the previous test performed in Section 7.2.4 one of the invalid
sensor formats is swapped out to a regular temperature one. However, this time the
measured temperature is altered to be incorrect. In this test scenario there will be three
temperature sensors, in addition to one touch sensor. It is expected to see one of the
sensors fail because of its format, and another one because of its invalid value.

The DT Studio emulator is not built to send invalid values, but rather a range of correct
values one might expect in a real-life application. Postman is used instead to create a
mock server with an invalid response. By following the documentation of how to set up
a mock server, a mock response as well as a unique URI is created. The mock response
is created to be identical to the one that would be received from DT Studio, but with
invalid values. To achieve the same processing in the pipeline as if using DT Studio, the
source URI from DT Studio is replaced with the Postman URI, while all other aspects
remain the same.

In the validator a few extra checks has been added that ensure that any message that
are further delivered to the pipeline do not contain any ’null’ values in the temperature,



Chapter 7 Verifying the Guidelines

name, or date variable. If the validator detects any incorrect values, it will throw a
similar warning as seen in the testing section for Guideline 7.2.4.

Figure 7.17: Invalid value

This can be seen in Figure 7.17 where the validator is displaying a warning about one
sensor with incorrect value, and another with incorrect format.

Similar to previous validation, the arrival of correct messages is confirmed by looking at
the metrics for the connected service bus.

Figure 7.18: Valid value

In Figure 7.18, we see that the number of maximum received values is four per minute,
which equals two approved sensors sending one message each, every 30. second.



81

Figure 7.19: Approved temperature value

This can also be confirmed by investigating the messages on the service bus to see that
they do indeed contain expected correct values, as shown in Figure 7.19.

7.3 Guidelines for Data Transfer

7.3.1 Guideline 6.1

Data transfer should happen with event streaming or similar technology, avoiding ETL.
This allows for fast and reliable data transfer.

As addressed in Section 6.1.3, the pipeline is in breach of this guideline as it is using
ETL instead of event-driven architecture. This test wants to find out how much this
breach costs the pipeline in terms of performance. This is done by maximizing the load
to see how well the system can handle huge quantities of data, then comparing it to a
test run on Kafka, which is an event-driven architecture.

As it is Miles Connect that breaches this guideline, Miles Connect is the focus of the
performance test.

There are a few key aspects that are important to be aware of when designing this test.

• Latency - Latency between DT’s servers, Miles Connect and Azure will have a
significant impact on performance.

• Data size - The data size of the message which is retrieved may impact performance.

• Number of messages - Number of messages collected on each iteration may
impact performance.



Chapter 7 Verifying the Guidelines

• Waiting period - Miles Connect as a task scheduler have the option to wait a set
time before starting a new task. This waiting period may impact performance.

• Environment - Running the experiment on slow equipment may impact perfor-
mance.

To avoid latency from DT Studio being a problem, the DT response is spoofed from
a local Postman mock server. That way, the latency is kept to a minimum and the
number of messages sent and its data size can be easily altered. This includes the amount
of messages Miles Connect will retrieve on each iteration. As Miles Connect is a task
scheduler, one must choose how often the iterations should run. By using a time-specific
operation command, cron, the iteration time is set to the minimum possible with cron,
one second. Additionally, the number of sensors Miles Connect should retrieve messages
from is altered to see how well Miles Connect scales.

Figure 7.20: Environment Specifications

The environment this test ran on is a 2021 computer with specifications provided in
Figure 7.20.

To test the different configurations between Miles Connect and Kafka, Azure Service Bus
was used. Their logging reports the number of messages ingested per minute. Thus the
results equals the number of messages sent every minute the test was online. In these
test results, startup and shutdown procedure times are not included.



83

Figure 7.21: One second delay, five sensor messages

Shown in Figure 7.21 is the result of benchmarking Miles Connect with a scheduling
period of one second and five sensors connected. The start time for our benchmarking
starts at point A, and ends at point B. Throughout this interval the sensors sent 1633
messages. For each of the six minutes the test ran, the system averaged roughly 1633/6 =
272 messages per minute. The total messages collected in the service bus is a bit higher
at 1960 messages, which comes from messages sent before and after the benchmarking
interval.

Figure 7.22: Bench-mark data

A similar test is executed with a set of 5, 10, 20, 60, 120 and 240 sensors. The results of
the tests are shown in Figure 7.22.



Chapter 7 Verifying the Guidelines

Figure 7.23: Throughput of Miles Connect

The plot displayed in Figure 7.23 shows the throughput of Miles Connect. The figure
shows that the amount of messages created and processed, rapidly increase between 5–20
sensors, before it gradually lowers its efficiency and flattens out at 120 sensors.

Figure 7.24: Efficiency of Miles Connect

How many messages per minute each sensor on average got through to the service bus, is
shown in Figure 7.24.



85

Figure 7.25: All benchmarking tests. From the left: 5, 10, 20, 60, 120 and 240 sensors

Figure 7.25 shows all the benchmarking tests completed, side by side, in chronological
order. Combined 113 490 messages were sent and received.

Comparison to Kafka

The authors of the article [31] referenced in Section 3.2.1, use Docker images for easy
installation and replication. Docker is an open platform for app development, shipping,
and execution [78]. Docker allows one to decouple applications from infrastructure,
allowing the developer to deliver software more quickly. This also allows for time
synchronization between different servers. They use three identical virtual machines,
specifications given in Appendix B.

The Kafka tests are solely focused on the data ingestation step, and are executed on a
specialized setup and test environment.

"Apache Kafka producer batches messages to lower the number of requests, thereby
increasing throughput" [31]. Threading is used periodically in the insertion, with a batch
size of 16KB. Each execution only sends one message to Kafka. These executions have
a delay of 10,000 nanoseconds. As 10k nanosecond is 1 × 10−5 seconds, this results in
1 × 105 operations per second.

When using a read-in-ram configuration for their setup, they are able to achieve approxi-
mately 220k messages per second.

Discussion: How well did the system perform?

Throughput and efficiency From Figure 7.23 we observed that the throughput
increased rapidly when adjusting from 5–20 sensors, also an significant increase from



Chapter 7 Verifying the Guidelines

20 to 60. After increasing to 60 sensors, we notice that the throughput factor does not
increase as steadily as it has for the first tests. This is assumed to be a symptom of the
system’s inability to process more messages at a steadily increasing rate. When further
increasing the number of sensors, the throughput converges to a limit at a point between
2000–2500 messages per minute, or between 33–41 messages per second.

Likewise in Figure 7.24, we see that we receive most efficiency when dealing with 5–20
sensors. Even a peak at 10 sensors, as it can handle 60 messages for 10 sensors (600)
better than 55 messages for 20 sensors (1100).

It is worth noting that the test was run on a PC with specification provided in Appendix B.
Thus with a dedicated server, the tests’ upper limit would likely rise.

In a use case, such as our office building one, we might expect a number of 10–100
sensors to send their temperature measurements. As mentioned in Section 7.1.7, DT’s
sensors send temperature readings every 15 minutes for the first generation sensor and
5.5 minutes for the second generation sensor. Thus, 100 sensors in a office building would
send on average 100/15 = 6.6 messages per minute through the pipeline for the first
generation sensor, and 100/5.5 = 18.2 messages per minute for the second generation.
This is well under the maximum throughput.

If one would need more sensors, and assume an average throughput of 2000 messages
per minute, which is under the theoretical limit, we can calculate the number of sensors
supported. Using only first generation temperature sensors, each sending a message every
15th minute, the total sensors that would be supported is:

15 1st generation sensors × 2000 messages per minute

= 30, 000 sensors sending every 15th minutes
(7.1)

5.5 2nd generation sensors × 2000 messages per minute

= 11,000 sensors sending every 5.5 minutes
(7.2)

Thus, the ingestation step can handle between 11 000 – 30 000 sensors, at the current
settings. Which should be sufficient for most use cases. Increasing the amount of sensors
supported can be done by running several data ingestation programs in parallel, or
running the data ingestation on a dedicated server.



87

In comparison to Kafka however, these ingestation rates look rather bleak. In order to
efficiently compare these two tests one would have to remove the formatting, validation
and converting from Miles Connect, in addition to running it on the same server as
Kafka. We believe that Miles Connect still would not reach the same heights as Kafka,
but for most relevant IoT use cases we deem Miles Connect to be sufficient.

7.3.2 Guideline 7.1

Message brokers must ensure that the consumers will receive its messages by employing
backup strategies. These strategies include external storage for message retrieval, and
delivery protocols such as ’at-least-once’

When using Azure Service Bus as a message broker one can access features such as queues
and topics. Queues operate in a one-to-one model, where any sent message is stored in
the queue until the consumer is ready to accept the incoming message. With this, each
queue acts as a distinct broker, storing the message until the recipient is able to retrieve
it.

The queue enables a pull delivery mode, where the consumer must ask for a certain
message to receive it [59]. The queue also operated with a first-in-first-out principle, so
that the messages are delivered in order.

A publish–subscribe model with topic also has the feature of storing messages until the
consumer is ready to accept the message. In a topic, each consumer will have their own
queue they are subscribed to. The delivery method can be set to either use at-least-once
or at-most-once delivery.

If a consumer’s application crashes during the process of a message, at-least-once will
deliver the message when the consumer is back online. This approach ensures that every
message is processed at least once. At-most-once ensures that every message that is
successfully processed and delivered, will not be received by the consumer again. This
reduces the risk of duplicate data being sent to the consumer [79].

In an event where the message is not successfully delivered to a consumer, the service
bus for queues and topics also operates with a dead-letter queue. This queue has an
endpoint where the consumers may retrieve their messages at a later time.

Therefore using Azure Service Bus ensures that Guideline 7.1 is verified.



Chapter 7 Verifying the Guidelines

7.3.3 Guideline 7.2

Message brokers should have the ability to perform asynchronous processing.

As stated in Section 6.2, a message broker which utilizes asynchronous processing decou-
ples the applications of providers and consumers, and therefore make the communicating
parties independent of each other. In order to verify Guideline 7.2 research is conducted
to see if the message broker incorporated in the pipeline has these features.

By using Azure Service Bus and the accompanying queues the possibilities to take use
of Azure’s asynchronous features is enabled. Messages sent on the service bus use a
store-and-forward mechanism, which makes asynchronous processing possible [59].

Using asynchronous messaging opens up for a multitude of communication scenarios such
as decoupled workload, load balancing, load leveling, cross-platform integration, reliable
messaging and asynchronous workflow [50].

In this thesis the practice of decoupled workload happens when the message broker
pushes its messages to a specific queue based on sensor input. The consumer of these
messages can access them whenever they like, without any connection directly to the
provider. Should sudden bursts of messages from the sender happen, load leveling in the
service bus handles this.

As seen in testing of Guideline 6.1 and visualized in Figure 7.25, a large volume of
messages over a small period of time was generated. In this scenario the system might
be overwhelmed if receiving applications had a long processing time and had to fetch
all these messages at once. Instead, the queue serves as a buffer, and the receivers will
gradually deplete it at their own tempo. The load leveling characteristic is used for
service throttling and prevents resource exhaustion.

As these features are implemented directly into the service bus utilized in this thesis, the
verification of Guideline 7.2 is concluded.

7.3.4 Guideline 7.3

Message brokers should allow different applications to communicate regardless of the
programming language.

Azure Service Bus decouples applications and services which improve reliability and
scalability. As mentioned in Guideline 7.2 using service bus also enables the feature
for cross-platform integration. This opens up for the possibility to use programs on



89

different platforms, which may be built using different programming languages and
technologies [50].

The technology which enables a cross-platform integration is called Advanced Message
Queue Protocol (AMQP), which Azure Service Bus uses. This is a message protocol
created by Microsoft and competing vendors and customers. The goal of this protocol
is to have an open-standard messaging protocol that is independent of programming
language, framework and operating systems. The development of this messaging protocol
was motivated by the rapid development of new programming languages and application
frameworks appearing in the sector [80].

Message broker vendors discovered that not all existing applications supported features
of new platforms being introduced. The introduction of AMQP opened the possibility
for using cross-vendor applications, however, it is tricky and often requires integration at
application level.

After the development of AMQP it has become an international standard supported by
ISO and IEC. It was created with a collaboration of twenty world wide companies within
technology and end-user experience. An example which takes advantage of the service
bus using AMQP is illustrated below in Figure 7.26.

Figure 7.26: AMQP [80]

The image illustrates how an application running with Java language on a Linux operating
system can send its message with a connected service bus to a .Net application running
on a Windows operating system. The accessibility of AMQP on service buses can be
used with programming languages such as Java, C, Python, Go, PHP and Ruby. This
ensures that this guideline is verified.



Chapter 7 Verifying the Guidelines

7.4 Guidelines for Data Load

7.4.1 Guideline 8.1

The data load step should perform small data processing validations to increase data
quality.

In Section 7.2.5 initial validation was added to remove any values that are invalid to
minimize the amount of measurements that do not bring value to our application. In
this guideline the pipeline will further extend the cleaning of the data and introduce a
new validator. This validator seeks out to ensure that our values are within our range of
accepted values. An example of this is to only store values that are between -40°Celsius
and +85°Celsius as this is DT’s sensor’s minimum and maximum. This would remove
any unrealistic spikes the sensors detect, known as noise.

Noisy data Any rare data spikes in the data set with meaningless input, are labelled as
noisy values [46]. They create an unrealistic view of the data gathered, often created by
human mistakes, occur by rare exceptions, or other issues during the harvesting of data.
If one would observe the temperature of a living room over a longer period of time, and
suddenly detect a few seconds of negative fifty degrees Celsius, before it recovers to its
normal temperature level, this would be classified as noisy data.

Test: Remove noisy data

This test uses four sensors where all four have the correct format, and no invalid values.
However, two of them will contain values that are noisy. One of the sensors will detect
values of 125°Celsius, and another of -100°Celsius, and the final two sensors have expected
values. To achieve this, generated data is sent from Postman to the service bus, to
fill up the queue of our topic. This procedure is similar to the one seen in the test in
Section 7.2.4.

In the next step the data is fetched from the service bus. After fetching the data the
new validator is next, which checks for the values within the messages.

The validation check is to see whether or not the temperature values are in the range of
accepted values. If a temperature message is not within our range, it will be discarded and
no longer processed in our pipeline. The accepted messages will be forwarded and stored
in a SQL database service on Azure Portal. To connect to this database, a connection
string referencing our database is needed, in addition to writing SQL commands in our
C# application.



91

Figure 7.27: Incoming vs Outgoing messages

From Figure 7.27 the incoming (blue) and outgoing (orange) messages from the service
bus are displayed. This test scenario are storing four messages every 20. second, which
equals 12 messages per minute. In total, 160 messages were sent in this test. Our
validator is set to remove two out of four sensors, based on their temperature value. As
can be observed from this test the outgoing messages, the ones fetched from service bus,
are only reaching six messages per minute. Hence, half of the sensor data messages are
not accepted.



Chapter 7 Verifying the Guidelines

Figure 7.28: Accepted values in SQL

To confirm that our stored values are within the range, Figure 7.28 shows that data from
sensor3 and sensor4 are placed in the SQL database. This confirms the correctness of
our validator, and that the pipeline operates as expected, verifying our guideline.

7.4.2 Guideline 8.2

The data load step should conduct application-specific operations before delivery is com-
plete.

To verify Guideline 8.2 application-specific operations on the data received from the
message broker is conducted. As discussed in Section 4.5 and visualized in Figure 4.5
unique data load steps for each given application available is performed. This implemen-
tation aids the separation of various types of data that are intended for different forms
of analysis.

In this scenario a new application service is created in the Azure Portal. This time using
a storage account with a data storage container, to distinguish this endpoint from the
already existing SQL database. As documented by Azure in their documentation "Azure
Storage offers highly available, massively scalable, durable and secure storage for a variety
of data objects in the cloud" [81]. More on the security of this service application will be
discussed in Section 7.5.1.

With this storage account in use, blob type data can be stored, which support streaming
scenarios and can be used for big data analytics. The blob storage can also be used for



93

video, images and audio, which makes it a versatile data type. It is also recommended
for data backup and recovery.

Test: Application-specific operations

The test starts with configuring the consumer application in Miles Connect to handle
incoming data from motion sensors differently than temperature sensors. As the procedure
of storing data in the Azure SQL database with C# code is different than for storage
account, modifications to the codebase was necessary.

To allow our existing application to insert data into our storage account a unique
connection string must be used. For this test a new JSON type object that will contain
motion sensor data is created. This can be seen in Figure 7.29.

Figure 7.29: Motion sensor data

In this scenario two temperature sensors are used, and one motion sensor. Application-
specific operations are conducted on the sensors, before storing them in different services.
If the data type is motion, it is stored in the container, otherwise it is stored in the SQL
database.

By using the log-time as part of the name on the data being stored, a structured log is
created in the storage account container. The files in this test are stored in a folder path
of month/day, with the year and timestamp as unique filename for each data set, as seen
in Figure 7.30.



Chapter 7 Verifying the Guidelines

Figure 7.30: Storage account container

Now with this setup one can log the motion data and temperature data separately.
Additionally, an extra storage container could operate as a backup for the SQL database.
As these application-specific operations worked as expected, this guideline is verified.

7.5 Guidelines for Applications

7.5.1 Guideline 9.1

The applications in a pipeline should be verified as secure.

The pipeline built primarily uses Azure SQL Database as an application step in order to
have a functioning pipeline, but Azure Storage Account must also be checked as it was
used during testing. This means that to verify Guideline 9.1 research of three topics is
required, how secure is Azure SQL Database, Azure Storage Account and how secure is
Azure?

Azure security

As the applications used run on Azure, the pipeline is dependent on Azure itself being
secure. Microsoft Azure used the Secure Development Lifecycle approach when being
developed. The principle of this approach being that one should assume a breach.

This means that you should place limited trust in external and internal networks, services
and identities. The designer of Azure and Azure’s applications have to assume that these



95

are not secure and could be compromised from the start. This means that the design
should be prepared for this and in theory should make any future breaches ineffective.
Writing security requirements, and guidance for developers on this topic, should be
prepared before any code is written. During the development, threat modeling is used
to uncover risks in the application, by using a security checklist published by Microsoft.
After development, testing with static, random and invalid data is conducted.

Microsoft Azure follows ISO 27001 which is a standard which maintains hundreds of
specifications which enables infrastructure to be safe. In addition to FEDRAMP, which
is a specification for secure data storage in the US [82].

Azure SQL Database security

As securing an SQL database is a common requirement for many business needs, Azure
provides many ways of securing the database to fulfill common security standards.

For network security, firewalls by default prevent access to the database unless explicitly
told not to, based on IP-address or virtual traffic origin. For access management,
authentication with either SQL authentication or Azure AD is required to prove that
they should have access to the database. After the user has been confirmed he can only
perform operations on the database based on permissions that user has. This can be
either database or database row specific.

Azure SQL database tracks database activities, logging them to an audit log, which can
be used to monitor ongoing activities in the database. Or using the logs for historic
purposes, locating who did what, at what time. Using Advanced Threat Protection,
alerts are issued if SQL-injection, brute force or any other known threatening operation
is performed on the database.



Chapter 7 Verifying the Guidelines

Data in transit in the database is encrypted by Transport Layer Security, while data at
rest is encrypted with an AES encryption algorithm to prevent unauthorized access to
offline backups or discarded hard drives not wiped clean [83].

Azure Storage Account

In the process of validating Guideline 8.2 a storage account on Azure was created, and
thus a research on the security of this application is required. According to Microsoft,
Azure Storage uses server-side encryption to automatically encrypt the data that enters
the cloud. The encryption protects the stored data and meets organizational security and
compliance commitments [84]. The data stored within a Azure Storage are encrypted
using 256-bit AES encryption, "one of the strongest block ciphers available" [84].

The service is also FIPS 140-2 compliant. Microsoft Azure also states that "Because
your data is secured by default, you don’t need to modify your code or applications to
take advantage of Azure Storage encryption" [84].

There is also an option to enable encryption at the infrastructure level for those who
require a higher level of assurance that their data is secure. This enables double encryption
on the data with two separate algorithms, and two separate keys.

Discussion: Application security

In regards to Guideline 9.1 concerning the security of applications in a pipeline, the
validation process could be massive, either because of the sheer number of applications, or
the amount of detail the security verification each application requires. New applications
are launched daily so this is a never-ending job.

In our case, we luckily only had two applications we needed to verify. As it was produced
by Azure, a lot of thorough documentation on these applications’ own security is published.
This however, does not mean that every application which is connected to the pipeline
will have the same level of documentation and testing as Azure SQL Database or Azure
Storage Account.

A way of dealing with the applications could be to have a pre-approved list of verified
applications or vendors. This however, often results in low engagement rates as discussed
in Section 4.6. A firm security culture where employees are trusted to make this decision
themselves could work for smaller operations, while this would probably result in security
breaches in huge enterprise operations.



97

7.5.2 Guideline 9.2

Applications in use should generate valuable insight from the data they receive, in order
to make data analysis easier for the user.

For Guideline 9.2, a scenario where this project could be used in a real use case to provide
insight is presented. As we did not have time to set up and perform a test of our system
with a real client, a fictional example was created.

Thus, the fictional client named Mr.Freezer, who owns a shop is introduced. In this shop
he sells any type of products, and some of them are stored in a freezer room. To ensure
that the products are safe to consume, the temperature in the freezer room must not be
above 0°Celsius for a longer period of time.

To monitor this, Mr. Freezer would like to use a temperature sensor and store the current
temperature every hour. This data should be stored in a safe place, and be visualized in
a suitable format for easy detection of abnormalities.

We present our IoT pipeline, and decide to help Mr.Freezer with monitoring the temper-
ature of his freezer room. The pipeline contains technologies discussed throughout this
thesis in detail in Chapter 6.

The solutions includes sensors from DT, using Miles Connect to handle the data inges-
tation and export, Azure Service Bus for data transfer and storing the in Azure SQL
database.

After running the sensor and streaming the data points through our system and storing
it safely in our database, Mr. Freezer would like to visualize the collected data. When
visualizing the data it is important to keep in mind that one would want to keep it
simplistic so that Mr.Freezer easily can observe the temperature of his freezer room over
a period of time.



Chapter 7 Verifying the Guidelines

Figure 7.31: Temperature of freezer over time

After 24 hours have passed it can be observed that the temperature is rising and sinking
multiple times. And what can be seen from Figure 7.31 is at hours (4) and (16) the
temperature is above 0°Celsius, which is above the set danger point. Keeping the
temperature at such levels over a longer period of time could damage the products in
the freezer room. Hence, Mr.Freezer should quality check the mechanical settings of his
freezer room to figure out why such abnormalities occur within 24 hours.

For more critical use cases simply monitoring and visualizing the data would not be
sufficient. Connecting to an application where custom alerts can be created should be the
other alternative. With certain cloud services one could enable email/phone notification
when some values surpass a limit.

For this scenario, the pipeline and visualization of the data is deemed sufficient enough
to fulfill the guideline of generating valuable insight and making data analysis easier for
the user. The data is safely stored, and the data is visualized in a simple-to-understand
manner, which tells the client whether or not the conditions for his products are good.

7.5.3 Guideline 9.3

The selection of applications in an IoT pipeline should benefit the company in a cost-
efficient manner.



99

What is regarded as a cost-efficient manner can vary greatly from what the company
is hoping to achieve. For this pipeline, one would want to collect, transmit, store and
analyze IoT data. Thus, the relevant costs for each of these steps must be examined.

Disruptive technologies cost

DT operates in a purchase and subscribe manner, where you buy the sensors you need, and
subscribe to the access and data you receive from the sensors. The purchase price covers
the cost of hardware and one year of subscription. After one year the subscription cost
is 140.- NOK for each sensor and 320.- NOK per Cloud Connector. The subscription fee
covers updates to the sensors, sensor data reception, database hosting, cloud forwarding,
cloud API applications, in addition to customer support.

Azure costs

To calculate the costs of Azure, the pricing calculator from Microsoft Azure was used [85].

Using Azure Service bus at the basic tier would cost 0.05$ per million operations. This
would be sufficient for our use case, as a normal DT temperature sensor would send one
message each 5-15 minute. If one increases the tier to standard or premium the costs go
up to 10$ dollars per month or 677$ per month, respectively.

For the SQL database we have the option of choosing a serverless database or a provisioned
one. A serverless is only active when in use and goes into standby mode when not used,
while a provisioned one is always online. It is a substantial difference in costs based on
the demand needed. Storing 32 GB in a serverless database costs us approximately 7$
per month, while the same storage in a provisioned one costs approximately 1988$. Thus,
unless specific demands require a provisioned database, a serverless database would be
preferred, and would be the option in our use case.

Based on the services used in the pipeline, and the fact that the minimum tiers of each
service was used, a relatively cheap cloud-based solution is created. Increasing the tier
of our services could be necessary if a heavier load of messages were to pass through
our pipeline, or if it was deemed necessary to use a provisioned database, would prove
more costly. In this more expensive case, one might not find the price for the solution
cost-efficient.

Additionally, setting up such a pipeline with these services for a person without any
knowledge of cloud services and their prices, might make a misjudged decision when
choosing applications and tiers, and cost their company a lot of unnecessary expenses.



Chapter 7 Verifying the Guidelines

Discussion: Cost efficiency

Even though all services seem inexpensive at first, it appears to be quite easy to choose
expensive options. Even though they may not be necessary. It seems like it is a steep
scaling from the basic tiers where one pays very little, to the premium tiers. If however,
one manages with the cheap tiers, we believe that this pipeline would be quite cost-
efficient. Thus, this guideline proves valuable, assuming the developer following said
guideline actually checks the price of the products to be integrated.



Chapter 8

Discussion

In this chapter a general discussion of important topics in the thesis is presented, as
well as discussing how the software chosen worked for each dedicated step. The pipeline
steps and guidelines are also discussed, to figure out if they indeed are good additions to
enhance the quality of a pipeline. Relevant issues and point of views from the discussions
in Chapter 7 are included. The discussion chapter finishes by evaluating if the guidelines
are a helpful resource when building an IoT data pipeline, in addition to relevant feedback
from the industry.

8.1 Discussing the Pipeline

The result of this thesis is a fully functioning, agnostic, and modular IoT data pipeline
built based on 22 guidelines. For the three distinct use cases presented; office building,
basement, and freezer, the pipeline was deemed fit for two of them. The basement
scenario was uncertain due to the fact that other technologies could offer superb distance
communication in poor signal areas, which a basement often is. The basement scenario
could be solved with DT’s sensors as well, just with particular care towards where the
sensors and Cloud Connector are placed.

Adding more sensors or more applications to the system, making the pipeline do a
multitude of tasks, would require few modifications. Mainly in the data ingestation and
data load step. Changing any step to a different provider should prove an easy task due
to its modularity.

101



Chapter 8 Discussion

8.1.1 Are the pipeline steps correctly defined?

When building the separate steps from Section 2.4, we found that most steps adhered to
the theory of these five general steps. And thus it was easy to follow guidelines related to
each step. There was, however, a slight problem with the second step, data ingestation.

Data ingestation, Miles Connect, and gateways

Figure 8.1: Uncertainty of gateway location

The main component in the pipeline that we had problems fitting in with the actual
reality, was the gateway in the data ingestation step. As stated in Section 2.4.2, the
data ingestation step should retrieve data from the sensors and insert it into the message
broker.

In this thesis, the data ingestation step presented in Section 2.4.2 included the gateway.
But when building the pipeline, using DT’s sensors and Cloud Connectors, this was not
the case. Cloud Connectors and gateways in general are physical devices for IoT. Thus,
it may be more correct for the gateway to occur in the IoT devices step. This issue is
illustrated in Figure 8.1.

In our pipeline, data produced by IoT sensors went through Cloud Connectors to a
separate instance of Miles Connect, before being put on the message broker. Thus, the
Cloud Connector and Miles Connect are distinctly different from each other as one is a
physical gateway located close to the sensors, and the other is a task scheduler hosted
locally, or in the cloud. This creates the uncertainty of which step the gateway should
be in, to be able to distinctly separate all steps. This is illustrated in Figure 8.1.

Possible Solutions As of now the gateway became partly in the IoT device step and
partly in the data ingestation step. It may seem that there should exist a sixth step
between the IoT device and the data ingestation step, which would be the gateway.
Another solution is to fully incorporate the gateway into the IoT device step.



103

8.1.2 Is the pipeline actually agnostic?

In the terminology of this thesis, Section 2.1, the term agnostic is defined to include
a system that is independent of a specific provider and interoperable among various
systems.

In our thesis the message broker is agnostic as it simply transfers the data received
by data ingestation to the data load step. It does not perform any computations or
modifications on the messages it receives.

The data ingestation and data load steps are not agnostic however, as they are modified to
the given IoT provider or application. When the guidelines for data load were introduced,
it is stated that a converting step is needed to make the message broker agnostic. The
data load step will receive the messages in the same format, but it needs to convert the
messages depending on which application needs it. This led to Guideline 8.2, The data
load step should conduct application-specific operations before delivery is complete.

The same principle could be applied for data ingestation, as different types of IoT vendors
or sensors will operate with different types of data formats. Therefore, one can expect to
modify the data ingestation step depending on the IoT vendor, converting the data to
the format data loaders expect coming out of the message broker.

In our pipeline data ingestation and data load is incorporated to remove any invalid
values, messages, and formats depending on the use case. This will lead to increased
data quality, but at the cost of not having a fully agnostic pipeline. As we have focused
and practiced a modular approach for our steps, the agnostic approach might not be
possible. This, however, would depend on the use of the term agnostic. If one would
assume that for the entire pipeline to be agnostic, all steps in said pipeline must be
agnostic, a pipeline for these use cases might not be achievable at all. This is due to the
fact that at one point, one part of the system has to know what it is receiving and what
format the receiving data is on.

8.1.3 Is the pipeline too complicated?

Arguments can be made that our pipeline for our use cases is too complicated and
unnecessarily complex. This comes down to the modular, agnostic, performance, and
scaling features introduced.

For a simple use case where a developer wants to check the temperature inside the
building they are working from, this may very well be the case. It is reasonable to assume
there would be simpler methods of gaining access to the data and examining it.



Chapter 8 Discussion

In a scenario where someone is running a huge operation with many IoT sensor providers,
and many applications on the end of the pipeline, the features presented are critical
for successful implementation and growth of the pipeline. These features are extremely
important to prevent a complete redesign and rebuilding of the pipeline. In such a use
case, one is dependent on easy integration of multiple unknown parameters, formats
and applications. This is ensured by the modular and agnostic traits in this pipeline. If
the project gains traction and scales from one office building to a hundred, the scaling
trait becomes important. And if many different applications and use cases should make
effective use of the data, efficiency is key.

Thus, for building a robust pipeline that can meet future needs, the pipeline is just as
complicated as need be to ensure robustness.

8.1.4 General Security in the Pipeline

The guidelines in the thesis focuses on security in the IoT devices and applications. IoT
sensors and the gateway is important to secure as they are physically located in an unsafe
environment, like an office building. The applications are also important to secure as the
sheer number of applications means that some of them might have security flaws. Two
guidelines were therefore created, one for IoT devices, and another for the applications.

There exist no guidelines in this thesis for the general security of an IoT pipeline. It is
however possible to verify that the protocols for data transportation are secure. This is
because the pipeline uses HTTPS when communicating between softwares. It also use
.NET packages with the latest version, which incorporate SAS. Therefore, it is assumed
that this is deemed safe and not a topic of discussion in this thesis. As mentioned in
Section 2.5.6, both HTTPS and SAS are considered secure for usage in our pipeline.

8.2 Discussing Our Providers

In this thesis, frameworks and tools from various providers are utilized, and a discussion
on how these providers fit into our thesis follows.

8.2.1 Discussing Miles and Miles Connect

Before starting this thesis, we were already in talks with Miles regarding a joint effort
to see if the Miles Connect framework could work in an IoT scenario. The main goal
being to set up a pipeline and use their framework where applicable, executing tests to



105

see how well Miles Connect performed. When discussing with Miles, they wanted us to
investigate if Miles Connect could be used in a pipeline scenario, therefore, a point of
view is provided in regards to how well Miles Connect fit the pipeline.

Miles Connect

As discussed in Section 5.3, Miles Connect gave us the control needed to perform
validation and conversion on the data passing through. Additionally, it made the creation
of a pipeline intuitive with the logging and error handling features.

One of the research questions that Miles had was if it was possible to reduce the data
size per message for optimal storage without losing any value. This means that for Miles,
performing operations on the data is prioritized over raw throughput. The pipeline
performs operations on the data before and after data is sent to the service bus. In these
operations, data size can be reduced to only contain the necessary data points needed to
gain insight at a later stage.

To further extend the reduction of messages stored in the pipeline, it is possible to collect
data over a smaller period of time and calculate median data values. These calculated
values give an overview of what the actual measurements were, but not the full picture. In
the use case presented regarding a freezer with heat-sensitive products, or the basement
with risk of flooding, a median calculated value might not suffice. In such scenarios
any single value above a certain threshold should be processed, stored, and sent to an
operator immediately.

In the third use case of this thesis, the temperature measurements in an office building,
such an approach might be possible. In an office, one does not expect the temperature
to drop or rise at an alarming rate, and a small rise or decline in temperature would not
lead to any critical consequences. Therefore, to save resources, one might consider to
calculate a median value over a defined period of time and only store this value. This
should be done as soon as possible for optimal resource saving. In our thesis, this would
first be possible in the data ingestation step.

In this thesis we did not have enough time to set up and test this research question, but
from our experiences of the other tests executed, we deem it possible and that it would
have reduced storage usage.



Chapter 8 Discussion

8.2.2 Discussion Disruptive Technologies

In one of the early dialogues with Miles regarding this thesis, we were recommended
to investigate if DT had the resources that could be used. As the starting point was
to collect data from IoT sensors, DT did indeed have the tools needed to play the IoT
device part of a pipeline.

The fact that DT could provide access to their emulator quickly accelerated the start
of the project. This gave us a solid foundation for collecting data from emulated IoT
sensors. Furthermore, our emulated sensors could be replaced with real IoT sensors quite
easily, as was one of our goals for this thesis. However, we were unable to conduct a test
using real sensors due to time constraints. These constraints include misjudged time
management for how long it would take to build and test our pipeline, as well as the
actual delivery time of IoT sensors.

Manufacturing in DT

As DT has their own manufacturing line in Germany where they have complete control,
a client only needs to trust DT and not all of DT’s suppliers. This should increase trust
in their IoT devices. This may result in higher IoT sensor costs, as it is often more
expensive to produce in Europe than to outsource to other continents.

How has DT affected the project?

Using DT resources, the IoT parts of the pipeline were simple to set up, and the support
team helped with the project when struggling at first. Additionally, the answers received
from DT were a fine addition to the project, as an industry expert evaluated the guidelines.

In regards to edge processing, DT’s SDS encryption technology makes it impossible to
conduct edge processing on the Cloud Connectors. The limited size of DT’s ASIC, DT
Silicon, makes edge processing at the IoT sensor impossible as well. Even if the pipeline
built would have included physical sensors, they would still stream data to DT Cloud
with SDS. Both with, and without, physical sensors, the first available location for edge
processing would have been data ingestation. Therefore, a use case with focus on edge
processing may not be possible with DT’s sensors and their encryption scheme.

For our base case, DT has proved to be a sufficient supplier of IoT sensors. For other
more complex use cases such as edge processing and the basement scenario, another IoT
provider could be considered.



107

Alternative IoT providers

It is relevant to examine if another IoT sensor provider could be used. At the project start,
no preference regarding where the IoT data was coming from, was present. Therefore, at
the beginning, any IoT provider would suffice, as the pipeline would have adapted to the
provider’s requirements.

Even though our pipeline is created using DT as our sensor provider, the pipeline should
be able to handle data from any provider, due to its modularity.

8.2.3 Discussing Azure

Section 5.4 is when Azure Service Bus as the message broker for this thesis is introduced.
In the thesis, no particular focus has been given on which vendor was chosen for the
message broker part. A study of existing enterprise service buses was explored, where
Azure Service Bus was one of the services that scored the best.

The selection of Azure was in part based on this, and in part based on the authors, and
external supervisors, experiences with this technology.

The purpose of this thesis was to build a general pipeline that was independent of cloud
service providers. This is also why, rather than selecting a single cloud service provider
and using all of their components, multiple providers for the steps in our pipeline were
used.

Due to the modularity of the pipeline there should be no big issue to transfer the message
broker step from Microsoft’s Azure to AWS, Google Cloud, or any other provider if that
turns out to be the better option.

8.3 Discussing the Guidelines

This thesis has resulted in 22 distinct guidelines aimed at helping a developer build
a secure and reliable IoT data pipeline. But did these 22 guidelines actually improve
pipeline quality more than if no guidelines existed?

8.3.1 A secure and reliable pipeline

In Chapter 2, the QoS requirements for a pipeline being deemed secure and reliable
is introduced. A secure pipeline should not experience breaches in the domains of



Chapter 8 Discussion

confidentiality, integrity and authenticity. A reliable pipeline should not have a breach
in availability and have sufficient fault tolerance.

Figure 8.2: Guidelines related to each terminology from Section 2

In Figure 8.2, the QoS requirements are listed with the number of guidelines deemed
applicable to them. The source for these numbers is a classification done by the authors,
and is shown in Figure 8.3.

Figure 8.3: Applicable guidelines table

As can be seen, the QoS requirement with the most applicable guidelines is performance
efficiency, with 8 related guidelines. Followed by fault tolerance and availability. These
are the two components that make up the reliable trait.

Confidentiality, integrity, and authenticity make up the three components of the secure
trait. This means that both the reliable and the secure trait have 9 applicable guidelines
each. Value and insight, and the portability trait, has two and one related guideline,
respectively.



109

The portability trait regards the terms agnostic and modularity. This trait is related
to Guideline 7.3, which references the message broker. The message broker is the key
central part where data is exchanged, thus, one guideline should be enough to ensure an
agnostic system. Even though no specific guideline is set up for the modular trait. The
fact that the pipeline is divided into 5 distinct steps ensures modularity.

The two guidelines regarding value and insight, Guidelines 9.2 and 9.3, might seem too
limited, and too wide. This is however, due to the fact that value and insight are two
very broad terms. Thus, specifying these guidelines further would most certainly make
them irrelevant for many use cases and potential pipelines. As the goal was a general
pipeline with general guidelines, specifying the guidelines further would work against the
goal of this thesis.

Overall the guidelines are evenly distributed between performance efficiency, security,
and reliability. These three traits are the biggest three focuses of the guidelines, which
fit quite well with the intended goal.

8.3.2 Following the guidelines

Particularly helpful guidelines

It can be difficult to evaluate the helpfulness of the guidelines. Speaking out of our own
experiences, some guidelines were more helpful than others. The security guidelines
for IoT devices (Guidelines 1.1 – 1.5) meant that additional research was conducted to
ensure that the IoT devices were safe. This is most certainly something most developers
take for granted, and thus, these act as a reminder of ensuring safety. Therefore these
are deemed particularly helpful. The same can be said for Guideline 2.1, where the poor
signal strength environment is probably something that could go unnoticed until after
the sensors are set up. As emulators were used, we did not experience this, but the
reminder this guideline presents is helpful.

The security of the applications from Guideline 9.1, is deemed helpful as more often than
not, users will use applications without vetting them. Thus, this guideline ensures that a
user or developer should be certain that the applications are safe before implementing
them.

Less helpful guidelines

The guideline regarding battery-scheme (3.1), is an interesting one. The person setting up
an IoT data pipeline most likely do not have any knowledge towards battery consumption



Chapter 8 Discussion

on IoT devices, thus battery specifications might not mean much to the developer. This
means that the guideline is too specific to offer any help for this particular person.

If the developers have this deep knowledge regarding batteries, they probably already
know of the importance of battery life, thus this guideline becomes too general to offer
any help. Therefore, this guideline can be seen as less helpful.

The guidelines for the message broker (7.1 – 7.3), can be seen as less helpful due to the
fact that any developer most likely chooses a message broker from one of the existing
ones. This means that these guidelines more often than not are fulfilled from the start.

The guidelines regarding benefiting the company with cost effectiveness and valuable
insight (9.2, 9.3), may be unnecessary as this is often the point with setting up an IoT
data pipeline. It is worth mentioning that one should have a keen eye towards how much
one actually pays and how much value one actually gets. But the generality of these
pipelines makes us deem them less helpful.

Use case specific guidelines

The guidelines regarding scaling (3.2, 4.1, 4.2) depends on the specific use case. DT offer
a solution where each gateway can support up to 10 000 devices. Thus, a developer using
DT most likely would have no need for these guidelines. The guidelines are very useful if
one has more control of the IoT devices and gateways, and are able to program them.
These guidelines can then ensure that the pipeline can be scaled for future needs without
replacing important parts.

Guideline 4.3, regarding edge processing is also use case dependent. For our use cases,
this was solved at a later stage in the pipeline as discussed in Section 7.2.3. A use case
with different sensors or different communication protocols could ensure that the sensors
or the gateway can make use of edge processing. In some use cases, this is necessary for
the functionality of the pipeline, often in areas with much noisy data. In other use cases,
this guideline is close to irrelevant, as no edge processing is needed.

The guidelines regarding formatting and validation (5.1, 5.2), streaming vs ETL (6.1)
and application-specific processing (8.1, 8.2) are also highly dependent on the use case.
If one can guarantee correct formatting and correct values from the get-go, most of these
become irrelevant. But when integrating towards a bunch of endpoints, this is not often
the case. As a result, these guidelines might help the pipeline from constantly running
into errors down the line, and thus play a part in creating a robust integration strategy.

For Guideline 6.1, our tests have shown that using ETL as a data transfer architecture
works great up until a certain point. If one never reaches this point, ETL can manage



111

just fine. In other cases where huge amounts of data is to be ingested, event streaming
probably has to be used.

Breaches in the guidelines

Even though the guidelines were produced in this thesis, not all of them were followed.
The pipeline breached 2 guidelines, most notably Guideline 6.1, regarding data transfer
architecture. However, the pipeline seemed to manage fine without event streaming.
The other breach in our pipeline was the edge processing guideline (4.3). This was due
to the way DT’s technology and devices are built. However, this was compensated by
processing the data at the earliest convenience.

As not all guidelines were followed, one can not expect other developers to follow them
all. This may be a motivation towards researching if guidelines are the best way to
ensure a secure and reliable pipeline, or if alternative solutions are better.

8.3.3 Do developers need guidelines?

When setting up the IoT data pipeline, we found that guidelines, or similar solutions,
for how to build a pipeline were not present. There seemed to be no best practices or
standards which could be followed. This led to us researching more on the topic of IoT
pipelines, and found that a set of guidelines might be useful. Not just for us to keep
control of the quality of the pipeline, but also for others in a similar situation.

Starting a project with spending numerous hours on reading research papers to find out
how to build a reliable pipeline, is not a suitable approach for any pipeline development.
Thus, guidelines provide an easy way of ensuring that the pipeline being built follows best
practices. Or at least, avoids making the same mistakes as previous existing systems.

These guidelines do not guarantee that the pipeline will operate perfectly, but they grant
the developer guidance when building an IoT data pipeline.

Alternative solutions

These guidelines could be the start of a set of best practices, or even result in IoT data
pipelines being standardized. This would greatly affect the quality of pipelines being
built. This however, would take quite some time, and would include working with large
technology corporations as well as governments. An industry standard can be seen being
the most helpful and hardest to achieve. A set of best practices and know-hows, would
also benefit a developer.



Chapter 8 Discussion

8.4 Feedback From the Industry

In this section relevant feedback from the companies assisting us in this thesis is discussed.
They are as mentioned; Asplan Viak, Miles and Disruptive Technologies.

8.4.1 Adjusting the pipeline

After successfully setting up our pipeline we had a talk with Asplan Viak AS as a
potential test case provider and got recommendations to consider using technologies that
were better suited for their IoT uses. They recommended an event-streaming pipeline
using Azure Event Hub and Azure Time Series Insight.

After researching these two technologies it was found that Azure Time Series Insight is to
be deprecated within 2025. No further effort into investigating other possible migrations
other than Azure Time Series were made, as we already had set up a functional pipeline.

Service bus vs. Event hub

Azure Event Hub is a version of Azure Service Bus specially designed for IoT devices.
However, for this thesis, they did not differ greatly enough for us to notice any partic-
ular difference in our use cases. As mentioned in Section 7.3.3, the service bus offers
asynchronous processing and other useful features.

Throughout this thesis, a service bus was used as the message broker, but it would also
be possible to use an event hub. When first building the pipeline, research was conducted
in how to transport data using a message broker. The developers of Miles use a service
bus themselves when they are using the tools of Miles Connect. This rationalised the
decision to use a service bus in this pipeline as well.

As mentioned Asplan Viak suggested using the event hub service as it would be useful
when handling IoT data. Because it was decided not to focus on the application suggested
by Asplan Viak, we deemed it unnecessary to transfer to an event hub as our message
broker. During the development, both services were set up, but it was decided to proceed
with the service bus as it gave us the expected results.

8.4.2 Feedback from Miles

To get feedback from the industry, the guidelines were sent to a few developers at Miles.
The feedback we got is located in Appendix A.



113

Encryption

The first feedback from Miles was regarding Guideline 1.3 about encryption. The
suggestion being that encryption might not be necessary when handling insensitive data.
The example being used was temperature sensors, and that temperature values might
not need encryption. While this is a fair point, we argue that not encrypting data leaves
the pipeline vulnerable to a MITM attack (cf. Section ??). Any data not encrypted can
be intercepted, read, and changed, thus breaking both confidentiality and integrity. In
addition, the malicious actor can choose to block or delay certain messages, affecting
reliability and performance efficiency as well.

Guideline wording

We received feedback for the wording in some of the guidelines. The guidelines should
be general and simple enough such that most people who read them will understand
them. The background for a given guideline, and its solution, should be understood with
any further explanation. This was not made clear as one of the respondents from Miles
did not understand the abbreviation used in Guideline 6.1, where ETL is mentioned.
To ensure that such misconceptions are avoided, the guidelines should be clear and not
include any abbreviations.

In addition, the wording in Guideline 7.3 was mentioned. In this guideline, the feedback
was that the applications terminology was too wide, and should be defined more clearly.

We acknowledge this feedback, but as a pipeline should be able to handle all different
applications we do not see how to specify it any further.

Adding How to’s

The last feedback from Miles examined the possibility of adding How to’s to guidelines.
This would be a set of best practices as discussed in Section 8.3.3. The developer was
unsure if this was the best approach or not, but that it should be taken into consideration.

8.4.3 Feedback from DT

The feedback from DT is widely used in Chapter 7 in order to verify some of the
guidelines. The answers from the questionnaire are focused on the IoT device and
gateway specifications, to better understand how their products fulfill the guidelines. In
addition, feedback on the guidelines as a whole were positive.





Chapter 9

Conclusions

The purpose of this thesis was to identify what steps exist in an IoT data pipeline,
and what the most important aspects of the pipeline is, in order to make it secure and
reliable. This thesis used qualitative research to locate areas of concern, highlighting
and addressing them in guidelines. Then, building an IoT pipeline and verifying with
quantitative research that these areas of concern are handled by following said guidelines.

This thesis was able to identify and characterize the different parts of a typical IoT
pipeline, and locate areas of concern for each part in that pipeline. It provides 22
recommendations in the form of guidelines for setting up the pipeline. During this thesis
a fully functioning IoT pipeline using Miles Connect was built. This thesis was unable
to test and evaluate the pipeline on real world applications. The results indicate that
building a pipeline by following these guidelines, should address these concerns, and
therefore should reduce issues in the future of the pipeline.

This research was conducted with three main methodologies; lessons learned, talking
to the industry, and a literature study. It can be concluded that using these three
methodologies together with each other gives a broader approach than using only one of
the three.

The authors gained new insight in the importance of choosing a correct data transfer
architecture. The differences between Kafka and Miles Connect were major, even though
they operate at the same step, data ingestation. This leads to the conclusion that the
data ingestation step can be a limiting factor, or a bottleneck in some use cases, if an
unfit data ingestation software is used.

To summarize, the motivation for this thesis was that there were no general standards
or best practices when building an IoT data pipeline. This work addresses the gaps

115



Chapter 9 Conclusions

in knowledge in this area, by researching what information exists, and validating the
solutions with the help of empirical testing and industry experts.

The 22 guidelines grants practitioners some form of guidance when building an IoT
pipeline, and the authors recommendation is that these guidelines should be followed.

9.1 Future Work

To better understand the implications of these results, further studies could address
a deeper benchmarking of Miles Connect, and the system as a whole. In addition,
evaluating the pipeline using real sensors, and digging deeper into the evaluation of the
guidelines are also focus areas that can be addressed.

9.1.1 Benchmarking Miles Connect, and the system

When performing benchmarking, the system should run on a similar environment, with
equal specifications, as the comparing software. This would ensure that no other external
features have influence on the test in any way.

This thesis did not achieve this, and therefore a future project might benchmark Miles
connect using a similar environment as Kafka. This would ensure that the comparison
to Kafka would be more equal, and thus more relevant. Taking this further, to create an
optimal solution, benchmarking every step of the pipeline can be done. This would also
reveal any hidden bottleneck diminishing the overall performance of the system.

9.1.2 Real use case

As this thesis did not manage to achieve the goal of testing the pipeline on a real world
application, this can be performed at a later stage. Even though several use cases have
been introduced, and validation efforts have been made on each step of the pipeline, a
real world application is best suited to observe the performance of the pipeline.

9.1.3 Evaluate guidelines as a resource

To our knowledge, this thesis presents the first set of guidelines, and first independent
resource, for building IoT data pipelines. The guidelines have been created to be generally
applicable in most scenarios, and aims at guiding a developer to achieve a higher quality
of the pipeline.



117

Without access to a similar tool, evaluating if the guidelines are helpful or not, is difficult.
A research where one could evaluate if another type of resource is better suited than
guidelines should be conducted. As no such resource exists at the moment, the guidelines
themselves are a good baseline for defining other tools that could further increase the
quality of future IoT pipelines. In addition, these guidelines need not be set in stone
and can be changed when new technological advances are accomplished, thus a refreshed
study exploring new technology might be conducted at a relevant time.





Appendix A

In Appendix A the questionnaires and answers received are provided for any interested
parties. The yellow and red text is the response from the respondents.

119



DISRUPTIVE TECHNOLOGIES 
QUESTIONNAIRE 

Our Master Thesis has resulted in a few guidelines that should prove useful when designing 

an IoT data pipeline.  

  

An IoT Pipeline is defined as the process from which Data is generated at a sensor, through a 

gateway, into a message broker, and out to a consuming component.  

  

Following the guidelines mentioned should help create a more secure and reliable pipeline.  

  

As Disruptive Technologies is an important part of that pipeline we want to verify if 

Disruptive Technologies already is following these guidelines.  

  

We also want to take this opportunity to get feedback if there are any guidelines that are 

missing in your opinion, that should be an essential part of an IoT Pipeline.  

 

  

  
 Guideline: IoT devices should be created by a trusted source. The users should be authenticated with 

modern standards. Common IoT security measures such as encryption should be implemented on the 

device. 

 

Question 1: How is security measures like encryption and authentication implemented in Disruptive 

Technologies IoT devices? 

https://www.disruptive-technologies.com/blog/security-and-privacy-in-disruptive-technologies-sensing-

solution 

Question 2:  How is the IoT devices produced by a trusted source? 

DT owns its own manufacturing line in a factory in Germany with strict restrictions on access. 

Guideline: To ensure that each device has the latest software which patches security flaws, software used 

in IoT devices should have the newest version. 

 

Question 3: Is it possible to update Disruptive Technologies sensors with software updates or security 

patches after they have been installed at a location?  

How is this done? 

Yes, we can update all devices with over-the-air updates to change firmware or configurations. We have a 

fleet management system that facilitates this. The updates are fully automatic and require no 

involvement from the customer. 



 

Guideline: IoT devices should employ a battery-saving scheme that suffices for the situation the device is 

used in. 

 

Question 4: What type of battery-saving scheme does Disruptive Technology sensors use since they have 

an battery life of 10+ years? 

https://www.disruptive-technologies.com/blog/embedded-firmware-development-for-an-extremely-

resource-constrained-system 

Guideline: The gateway should scale gracefully with a growing number of devices in the architecture. 

Guideline: A gateway should be able to connect to other gateways to expand the load of data, working in 

parallel. 

 

Question 5: How does Disruptive Technology gateways/data connectors scale if the density number of IoT 

devices in a small area is higher than the supported capability? 

Each gateway supports more than 10.000 sensors. We do not expect the number of devices to be a 

limiting factor for a long time. The cloud services have load-balancing features that scale with the number 

of data points to process. 

Guideline: Be able to perform edge computing: pre-processing, cleansing, and 

filtering.  

 

Question 6: Do the IoT Devices or data connectors support edge computing: pre-processing, cleansing, 

and filtering of any kind? 

The gateway does not support edge computing as the sensor measurements are fully end-to-end 

encrypted from the sensor to the cloud. 

In addition, we present these guidelines:  

 

- The pipeline should be able to control that the device load and bandwidth is not exhausted, and scale 

resources if necessary. 

 

- The data transfer should use event streaming or similar technology, 

avoiding ETL. This allows for fast and reliable data transfer. 

 

- Message brokers must ensure that the consumer will receive its messages. 

 

- Message brokers should have the ability to perform asynchronous 

processing. 

 

- The message broker should allow different applications to communicate 

regardless of the programming language. 

 



- Perform small data processing operations to increase data quality. 

 

- Conduct application-specific validation before delivery is complete. 

 

- The applications in a pipeline should be verified as secure. 

 

- An application should generate valuable insight from the data it receives. 

 

- The selection of applications should benefit the company in a cost- 

efficient manner 

 

Question 7: Looking at all guidelines in question, are there any guidelines missing that should be essential 

advice in an IoT Pipeline? 

Looks good :) 



MILES QUESTIONNAIRE 

Our Master Thesis has resulted in a few guidelines that should prove useful when designing 

an IoT data pipeline.  

  

An IoT Pipeline is defined as the process from which Data is generated at a sensor, through a 

gateway, ingested into a message broker, and out to a consuming component.  

  

Following the guidelines mentioned should help create a more secure and reliable pipeline.  

  

As Miles Connect is an important part of that pipeline we want to take this opportunity to get 

feedback if there are any guidelines that are missing in your opinion, that should be an 

essential part of an IoT Pipeline.  

 

Feel free to comment on specific guidelines or the guidelines as a whole. At the end of this 

paper, feel free to comment if anything substantial is missing. 

 

  

  
 Guideline: IoT devices should be created by a trusted source. The users should be authenticated with 

modern standards. Common IoT security measures such as encryption should be implemented on the 

device. 

 

Comment(if any): 

Maybe only if the data is sensitive. Might not be necessary to encrypt temperatures from a sensor? 

 

Guideline: The data transfer should use event streaming or similar technology, 

avoiding ETL. This allows for fast and reliable data transfer. 

 

Comment(if any): 

ETL? 

 

 

Guideline: The message broker should allow different applications to communicate 

regardless of the programming language. 

 

Comment(if any): 

Maybe expand a little bit on what applications it is?  



 

General Comments(if any): 

Maybe add some how’s to the guidelines or maybe guidelines shouldn’t include how’s?  

 

 

 

 



Appendix B

Source code, Image Sources and
Project Poster

B.1 Source Code

The source code for this thesis is located at the following Google drive link: Source Code.

Appendix B.2 has the various image sources for illustrations in this project, in addition
to the specifications used when Kafka was tested. Appendix B.3 includes the project
poster for this thesis.

125

https://drive.google.com/file/d/1T8kGJ65L_l08pC2Whi8khFpYlmqFoiQU/view?usp=sharing


Appendix B Source code, Image Sources and Project Poster

B.2 Image Sources

B.2.1 Kafka Virtual Machine specifications

Figure B.1: Kafka Virtual Machine

In Figure B.1, we present the specifications used on their test in article [31], which we
compare in Section 7.3.1.

B.2.2 Illustration Sources

IoT applications in agriculture[86]



127

IoT devices [7]

Message broker [87]

Applications [88]

People counting [89]



Appendix B Source code, Image Sources and Project Poster

Man in the middle attack [66]

Azure SQL database security overview [83]

B.3 Poster

In the following attachment, the project poster which was presented at UiS 1st of June
2022, is included.



129





Bibliography

[1] Victoria State Government. Internet of things in agriculture. Agricul-
ture Victoria, 2022. URL https://agriculture.vic.gov.au/farm-management/

agtech/introduction-to-agtech/internet-of-things-in-agriculture. [Ac-
cessed: 2022-05-27].

[2] V.Tudor A.Hernandez, B.Xiao. How do we solve a problem like iot data pipelines?
2020. URL https://www.ericsson.com/en/blog/2020/11/iot-data-pipelines.
[Accessed: 2022-04-25].

[3] G.Onag Future IoT. Building an iot pipeline. 2021. URL https://futureiot.

tech/building-an-iot-data-pipeline/. [Accessed: 2022-04-25].

[4] Mary K. Pratt TechTarget. Reach business objectives with the right iot
data pipeline. 2021. URL https://www.techtarget.com/iotagenda/feature/

Reach-business-objectives-with-the-right-IoT-data-pipeline. [Accessed:
2022-04-25].

[5] Gary White, Vivek Nallur, and Siobhán Clarke. Quality of service approaches in
iot: A systematic mapping. Journal of Systems and Software, 2017. URL https://

www.sciencedirect.com/science/article/pii/S016412121730105X. [Accessed:
2022-04-25].

[6] Leverege. What is iot? 2022. URL https://www.leverege.com/iot-ebook/

what-is-iot. [Accessed: 2022-05-27].

[7] Zigurat. Iot device illustration. 2022. URL
https://www.e-zigurat.com/innovation-school/blog/

what-do-the-next-five-years-hold-for-the-iot/. [Accessed: 2022-05-
02].

[8] In Lee and Kyoochun Lee. The internet of things (iot): Applications, investments,
and challenges for enterprises. Business Horizons, 58(4):431–440, 2015. ISSN
0007-6813. doi: https://doi.org/10.1016/j.bushor.2015.03.008. URL https://

131

https://agriculture.vic.gov.au/farm-management/agtech/introduction-to-agtech/internet-of-things-in-agriculture
https://agriculture.vic.gov.au/farm-management/agtech/introduction-to-agtech/internet-of-things-in-agriculture
https://www.ericsson.com/en/blog/2020/11/iot-data-pipelines
https://futureiot.tech/building-an-iot-data-pipeline/
https://futureiot.tech/building-an-iot-data-pipeline/
https://www.techtarget.com/iotagenda/feature/Reach-business-objectives-with-the-right-IoT-data-pipeline
https://www.techtarget.com/iotagenda/feature/Reach-business-objectives-with-the-right-IoT-data-pipeline
https://www.sciencedirect.com/science/article/pii/S016412121730105X
https://www.sciencedirect.com/science/article/pii/S016412121730105X
https://www.leverege.com/iot-ebook/what-is-iot
https://www.leverege.com/iot-ebook/what-is-iot
https://www.e-zigurat.com/innovation-school/blog/what-do-the-next-five-years-hold-for-the-iot/
https://www.e-zigurat.com/innovation-school/blog/what-do-the-next-five-years-hold-for-the-iot/
https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.sciencedirect.com/science/article/pii/S0007681315000373


Bibliography BIBLIOGRAPHY

www.sciencedirect.com/science/article/pii/S0007681315000373. [Accessed:
2022-02-11].

[9] RD Statista. Internet of things-number of connected devices worldwide 2015-
2025. Statista Research Department. statista. com/statistics/471264/iot-numberof-
connected-devices-worldwide, 2019. [Accessed: 2022-02-11].

[10] Telia. Low power wide area iot. 2022. URL https://business.teliacompany.

com/internet-of-things/iot-connectivity/LPWA-IoT. [Accessed: 2022-04-25].

[11] Google Cloud. Iot core. 2022. URL https://cloud.google.com/iot-core/.
[Accessed: 2022-04-14].

[12] AWS. Aws iot core. 2022. URL https://aws.amazon.com/iot-core/?c=i&sec=

srv. [Accessed: 2022-04-25].

[13] Azure. Azure iot hub. 2022. URL https://azure.microsoft.com/en-us/

services/iot-hub/. [Accessed: 2022-04-25].

[14] Philipp Wegner IoT Analytics. The top 10 iot use cases. 2021. URL https:

//iot-analytics.com/top-10-iot-use-cases/. [Accessed: 2022-02-16].

[15] Rob Faludi Digi. How do iot devices communicate? 2021. URL https://www.digi.

com/blog/post/how-do-iot-devices-communicate. [Accessed: 2022-02-16].

[16] Gerard Adlum. What is the impact of customer data silos and how
can you fix the problem? 2022. URL https://xtremepush.com/

what-is-the-impact-of-customer-data-silos-and-how-can-you-fix-the-problem/.
[Accessed: 2022-04-25].

[17] Ana Neto. Why are it system integration costs so high?
2021. URL https://www.connecting-software.com/blog/

infographics-why-are-it-system-integration-costs-so-high/. [Accessed:
2022-05-27].

[18] The things network. What are lora and lorawan? 2022. URL https://www.

thethingsnetwork.org/docs/lorawan/what-is-lorawan/. [Accessed: 2022-02-
11].

[19] Smarte Byer Norge. Hva er lorawan og hvordan kan det gi innbyggerne bedre
tjenester? 2019. URL http://www.smartebyernorge.no/nyheter/2019/11/19/

iot-nettverk-gir-innbyggerne-bedre-tjenester. [Accessed: 2022-02-11].

[20] Synnøve Meisingset. Nye nett kan revolusjonere kommunale
tjenester:nå skal også søppelkassen på internett. 2021. URL

https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.sciencedirect.com/science/article/pii/S0007681315000373
https://business.teliacompany.com/internet-of-things/iot-connectivity/LPWA-IoT
https://business.teliacompany.com/internet-of-things/iot-connectivity/LPWA-IoT
https://cloud.google.com/iot-core/
https://aws.amazon.com/iot-core/?c=i&sec=srv
https://aws.amazon.com/iot-core/?c=i&sec=srv
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://iot-analytics.com/top-10-iot-use-cases/
https://iot-analytics.com/top-10-iot-use-cases/
https://www.digi.com/blog/post/how-do-iot-devices-communicate
https://www.digi.com/blog/post/how-do-iot-devices-communicate
https://xtremepush.com/what-is-the-impact-of-customer-data-silos-and-how-can-you-fix-the-problem/
https://xtremepush.com/what-is-the-impact-of-customer-data-silos-and-how-can-you-fix-the-problem/
https://www.connecting-software.com/blog/infographics-why-are-it-system-integration-costs-so-high/
https://www.connecting-software.com/blog/infographics-why-are-it-system-integration-costs-so-high/
https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
http://www.smartebyernorge.no/nyheter/2019/11/19/iot-nettverk-gir-innbyggerne-bedre-tjenester
http://www.smartebyernorge.no/nyheter/2019/11/19/iot-nettverk-gir-innbyggerne-bedre-tjenester


Bibliography 133

https://www.dn.no/teknologi/teknologi/tingenes-internett-iot/

nye-nett-kan-revolusjonere-kommunale-tjenester-na-skal-ogsa-soppelkassen-pa-internett/

2-1-959925. [Accessed: 2022-02-11].

[21] IBM Cloud Education. Soa (service-oriented architecture). 2021. URL https:

//www.ibm.com/cloud/learn/soa. [Accessed: 2022-02-11].

[22] IBM Cloud Education. Esb (enterprise service bus). 2021. URL https://www.ibm.

com/cloud/learn/esb. [Accessed: 2022-02-11].

[23] Martin Potočnik and Matjaz B Juric. Integration of saas using ipaas. In The 1st
international conference on CLoud Assisted ServiceS, page 35, 2012. [Accessed:
2022-02-11].

[24] Disruptive Technology AS. A truly disruptive technology. 2022. URL https:

//www.disruptive-technologies.com/technology. [Accessed: 2022-04-14].

[25] SSL.com Support Team. What is https? SSL.com, 2021. URL https://www.ssl.

com/faqs/what-is-https/. [Accessed: 2022-06-02].

[26] Google. Secure your site with https. Google Documentation, 2022. URL https:

//developers.google.com/search/docs/advanced/security/https. [Accessed:
2022-06-02].

[27] Microsoft. Service bus access control with shared access signatures.
Microsoft Docs, 2022. URL https://docs.microsoft.com/en-us/azure/

service-bus-messaging/service-bus-sas. [Accessed: 2022-06-02].

[28] Morgan Geldenhuys, Lauritz Thamsen, Kain Gontarska, Felix Lorenz, and Odej
Kao. Effectively testing system configurations of critical iot analytics pipelines. 02
2021. [Accessed: 2022-02-11].

[29] Kafka. Powered by. 2022. URL https://kafka.apache.org/powered-by. [Ac-
cessed: 2022-02-11].

[30] Top 10 apache kafka alternatives and competitors. 2022. URL https://www.g2.com/

products/apache-kafka/competitors/alternatives. [Accessed: 2022-02-11].

[31] Guenter Hesse, Christoph Matthies, and Matthias Uflacker. How fast can we
insert? an empirical performance evaluation of apache kafka. In 2020 IEEE 26th
International Conference on Parallel and Distributed Systems (ICPADS), pages
641–648, 2020. doi: 10.1109/ICPADS51040.2020.00089. [Accessed: 2022-02-11].

[32] Paul Le Noac’h, Alexandru Costan, and Luc Bougé. A performance evaluation
of apache kafka in support of big data streaming applications. In 2017 IEEE

https://www.dn.no/teknologi/teknologi/tingenes-internett-iot/nye-nett-kan-revolusjonere-kommunale-tjenester-na-skal-ogsa-soppelkassen-pa-internett/2-1-959925
https://www.dn.no/teknologi/teknologi/tingenes-internett-iot/nye-nett-kan-revolusjonere-kommunale-tjenester-na-skal-ogsa-soppelkassen-pa-internett/2-1-959925
https://www.dn.no/teknologi/teknologi/tingenes-internett-iot/nye-nett-kan-revolusjonere-kommunale-tjenester-na-skal-ogsa-soppelkassen-pa-internett/2-1-959925
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/esb
https://www.ibm.com/cloud/learn/esb
https://www.disruptive-technologies.com/technology
https://www.disruptive-technologies.com/technology
https://www.ssl.com/faqs/what-is-https/
https://www.ssl.com/faqs/what-is-https/
https://developers.google.com/search/docs/advanced/security/https
https://developers.google.com/search/docs/advanced/security/https
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas
https://kafka.apache.org/powered-by
https://www.g2.com/products/apache-kafka/competitors/alternatives
https://www.g2.com/products/apache-kafka/competitors/alternatives


Bibliography BIBLIOGRAPHY

International Conference on Big Data (Big Data), pages 4803–4806, 2017. doi:
10.1109/BigData.2017.8258548. [Accessed: 2022-02-11].

[33] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. Stream bench: Towards bench-
marking modern distributed stream computing frameworks. In 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, pages 69–78, 2014.
doi: 10.1109/UCC.2014.15. [Accessed: 2022-03-29].

[34] Omogbai Oleghe and Konstantinos Salonitis. A framework for designing data
pipelines for manufacturing systems. Procedia CIRP, 2020. URL https://

www.sciencedirect.com/science/article/pii/S2212827120305618. [Accessed:
2022-04-25].

[35] Bruton K. et al. O’Donovan P., Leahy K. An industrial big data pipeline for
data-driven analytics maintenance applications in large-scale smart manufacturing
facilities. Big Data 2, 25, 2015. URL https://journalofbigdata.springeropen.

com/articles/10.1186/s40537-015-0034-z#citeas. [Accessed: 2022-04-25].

[36] Amir Kotler iotforall. Five most common problems iot devices will encounter in
2020. 2020. URL https://www.iotforall.com/iot-problems.

[37] The norwegian consumer council. Significant security flaws in smart-
watches for children. 2017. URL https://www.forbrukerradet.no/side/

significant-security-flaws-in-smartwatches-for-children/. [Accessed:
2022-04-25].

[38] S. Langkamper. Essential requirements for securing iot consumer devices. Eu-
rofins cybersecurity, . URL https://www.eurofins-cybersecurity.com/news/

requirements-secured-iot-consumer-devices/. [Accessed: 2022-05-02].

[39] S. Langkamper. The most important security problem with iot devices. Eu-
rofins cybersecurity, . URL https://www.eurofins-cybersecurity.com/news/

security-problems-iot-devices/. [Accessed: 2022-05-02].

[40] WilsonPro. Why the future of iot depends on strong
cell signal. 2019. URL https://www.wilsonpro.com/blog/

why-the-future-of-iot-depends-on-strong-cell-signal. [Accessed: 2022-04-
25].

[41] Disruptive Technology AS. Embedded firmware develop-
ment for an extremely resource-constrained system. 2022.
URL https://www.disruptive-technologies.com/blog/

embedded-firmware-development-for-an-extremely-resource-constrained-system.
[Accessed: 2022-05-22].

https://www.sciencedirect.com/science/article/pii/S2212827120305618
https://www.sciencedirect.com/science/article/pii/S2212827120305618
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0034-z#citeas
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0034-z#citeas
https://www.iotforall.com/iot-problems
https://www.forbrukerradet.no/side/significant-security-flaws-in-smartwatches-for-children/
https://www.forbrukerradet.no/side/significant-security-flaws-in-smartwatches-for-children/
https://www.eurofins-cybersecurity.com/news/requirements-secured-iot-consumer-devices/
https://www.eurofins-cybersecurity.com/news/requirements-secured-iot-consumer-devices/
https://www.eurofins-cybersecurity.com/news/security-problems-iot-devices/
https://www.eurofins-cybersecurity.com/news/security-problems-iot-devices/
https://www.wilsonpro.com/blog/why-the-future-of-iot-depends-on-strong-cell-signal
https://www.wilsonpro.com/blog/why-the-future-of-iot-depends-on-strong-cell-signal
https://www.disruptive-technologies.com/blog/embedded-firmware-development-for-an-extremely-resource-constrained-system
https://www.disruptive-technologies.com/blog/embedded-firmware-development-for-an-extremely-resource-constrained-system


Bibliography 135

[42] P. Seltsikas and W.L. Currie. Evaluating the application service provider (asp)
business model: the challenge of integration. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, pages 2801–2809, 2002. doi:
10.1109/HICSS.2002.994341. [Accessed: 2022-02-11].

[43] AWS. What is aws iot? 2022. URL https://docs.aws.amazon.com/iot/latest/

developerguide/what-is-aws-iot.html/. [Accessed: 2022-04-14].

[44] B. Posey. Iot gateway. IoT Agenda, 2022. URL https://www.techtarget.com/

iotagenda/definition/IoT-gateway/. [Accessed: 2022-05-02].

[45] Open Automation Software. What is an iot gateway? OAS.
URL https://openautomationsoftware.com/open-automation-systems-blog/

what-is-an-iot-gateway/. [Accessed: 2022-05-02].

[46] R. Miller. Data preprocessing: what is it and why is it important? CE-
OWORLD magazine C-Suite Agenda, 2019. URL https://ceoworld.biz/2019/12/

13/data-preprocessing-what-is-it-and-why-is-important/. [Accessed: 2022-
05-02].

[47] Mark Smallcombe. Data ingestion vs. etl: Differences & how to leverage both.
2020. URL https://www.integrate.io/blog/data-ingestion-vs-etl/. [Ac-
cessed: 2022-03-29].

[48] Infoq. Databases and stream processing: a future of consolidation. 2022. URL https:

//www.infoq.com/presentations/streaming-databases/. [Accessed: 2022-05-
02].

[49] H. Subhashana. Introduction to message brokers. Medium, 2021. URL https://

hasithas.medium.com/introduction-to-message-brokers-c4177d2a9fe3. [Ac-
cessed: 2022-05-02].

[50] Azure. Asynchronous messaging primer. Azure, 2015. URL https://docs.

microsoft.com/en-us/previous-versions/msp-n-p/dn589781(v=pandp.10).
[Accessed: 2022-05-27].

[51] Safe. What is data validation? 2022. URL https://www.safe.com/what-is/

data-validation/. [Accessed: 2022-04-25].

[52] f5. Is having too many apps expanding your threat surface? 2022.
URL https://www.f5.com/solutions/secure-cloud-architecture/

is-having-too-many-apps-expanding-your-threat-surface. [Accessed:
2022-04-25].

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html/
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html/
https://www.techtarget.com/iotagenda/definition/IoT-gateway/
https://www.techtarget.com/iotagenda/definition/IoT-gateway/
https://openautomationsoftware.com/open-automation-systems-blog/what-is-an-iot-gateway/
https://openautomationsoftware.com/open-automation-systems-blog/what-is-an-iot-gateway/
https://ceoworld.biz/2019/12/13/data-preprocessing-what-is-it-and-why-is-important/
https://ceoworld.biz/2019/12/13/data-preprocessing-what-is-it-and-why-is-important/
https://www.integrate.io/blog/data-ingestion-vs-etl/
https://www.infoq.com/presentations/streaming-databases/
https://www.infoq.com/presentations/streaming-databases/
https://hasithas.medium.com/introduction-to-message-brokers-c4177d2a9fe3
https://hasithas.medium.com/introduction-to-message-brokers-c4177d2a9fe3
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn589781(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn589781(v=pandp.10)
https://www.safe.com/what-is/data-validation/
https://www.safe.com/what-is/data-validation/
https://www.f5.com/solutions/secure-cloud-architecture/is-having-too-many-apps-expanding-your-threat-surface
https://www.f5.com/solutions/secure-cloud-architecture/is-having-too-many-apps-expanding-your-threat-surface


Bibliography BIBLIOGRAPHY

[53] Roberto Torres. Enterprise app sprawl swells, with most apps out-
side of it control. 2021. URL https://www.ciodive.com/news/

app-sprawl-saas-data-shadow-it-productiv/606872/.

[54] David Jones. Security leaders: Expect more insider data leaks, threats
in 2021. 2021. URL https://www.cybersecuritydive.com/news/

insider-threat-network-perimeter/597482/. [Accessed: 2022-04-25].

[55] Nordic APIs. The bezos api mandate: Amazon’s manifesto
for externalization. 2021. URL https://nordicapis.com/

the-bezos-api-mandate-amazons-manifesto-for-externalization/. [Ac-
cessed: 2022-04-25].

[56] Redhat. What is edge architecture? 2022.
URL https://www.redhat.com/en/topics/edge-computing/

what-is-edge-architecture?sc_cid=7013a000002pu40AAA&

gclid=CjwKCAjwgr6TBhAGEiwA3aVuISIRDvXlOeG4xt2Fzdm_

oON9rPYBTfGj0wOZ0Q137vIa2hFyGk6hghoC9pAQAvD_BwE&gclsrc=aw.ds. [Ac-
cessed: 2022-05-03].

[57] Martin Fowler. Yagni. 2015. URL https://martinfowler.com/bliki/Yagni.html.
[Accessed: 2022-04-25].

[58] Deviq. Separation of concerns. 2022. URL https://deviq.com/principles/

separation-of-concerns. [Accessed: 2022-05-03].

[59] Microsoft Docs. What is azure service bus? 2022. URL https://docs.microsoft.

com/en-us/azure/service-bus-messaging/service-bus-messaging-overview.
[Accessed: 2022-02-16].

[60] Robin Singh Bhadoria, Narendra S. Chaudhari, and Geetam Singh Tomar. The
performance metric for enterprise service bus (esb) in soa system: Theoretical
underpinnings and empirical illustrations for information processing. Informa-
tion Systems, 65:158–171, 2017. ISSN 0306-4379. doi: https://doi.org/10.1016/
j.is.2016.12.005. URL https://www.sciencedirect.com/science/article/pii/

S0306437915301952. [Accessed: 2022-03-29].

[61] Disruptive Technologies. Disruptive technologies developer documentation.
2022. URL https://developer.disruptive-technologies.com/docs/. [Ac-
cessed: 2022-05-07].

[62] Hangfire. Hangfire homepage. 2022. URL https://www.hangfire.io/. [Accessed:
2022-05-03].

https://www.ciodive.com/news/app-sprawl-saas-data-shadow-it-productiv/606872/
https://www.ciodive.com/news/app-sprawl-saas-data-shadow-it-productiv/606872/
https://www.cybersecuritydive.com/news/insider-threat-network-perimeter/597482/
https://www.cybersecuritydive.com/news/insider-threat-network-perimeter/597482/
https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/
https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=CjwKCAjwgr6TBhAGEiwA3aVuISIRDvXlOeG4xt2Fzdm_oON9rPYBTfGj0wOZ0Q137vIa2hFyGk6hghoC9pAQAvD_BwE&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=CjwKCAjwgr6TBhAGEiwA3aVuISIRDvXlOeG4xt2Fzdm_oON9rPYBTfGj0wOZ0Q137vIa2hFyGk6hghoC9pAQAvD_BwE&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=CjwKCAjwgr6TBhAGEiwA3aVuISIRDvXlOeG4xt2Fzdm_oON9rPYBTfGj0wOZ0Q137vIa2hFyGk6hghoC9pAQAvD_BwE&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=CjwKCAjwgr6TBhAGEiwA3aVuISIRDvXlOeG4xt2Fzdm_oON9rPYBTfGj0wOZ0Q137vIa2hFyGk6hghoC9pAQAvD_BwE&gclsrc=aw.ds
https://martinfowler.com/bliki/Yagni.html
https://deviq.com/principles/separation-of-concerns
https://deviq.com/principles/separation-of-concerns
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://www.sciencedirect.com/science/article/pii/S0306437915301952
https://www.sciencedirect.com/science/article/pii/S0306437915301952
https://developer.disruptive-technologies.com/docs/
https://www.hangfire.io/


Bibliography 137

[63] Disruptive technologies. Plot sensor data. 2022. URL https://developer.

disruptive-technologies.com/api/libraries/python/client/examples/

plot_sensor_data.html. [Accessed: 2022-05-07].

[64] Paolo Salvatori. Service bus explorer. GitHub, 2022. URL https://github.com/

paolosalvatori/ServiceBusExplorer. [Accessed: 2022-05-07].

[65] Disruptive Technology AS. Security and privacy in disruptive technologies sens-
ing solution. 2022. URL https://www.disruptive-technologies.com/blog/

security-and-privacy-in-disruptive-technologies-sensing-solution. [Ac-
cessed: 2022-05-22].

[66] Patrick Nohe. Executing a man-in-the-middle attack in just 15 minutes. 2021. URL
https://www.thesslstore.com/blog/man-in-the-middle-attack-2/. [Ac-
cessed: 2022-05-13].

[67] Disruptive Technologies. How end-to-end sensor architecture addresses iot security
weak points. 2020. URL https://www.disruptive-technologies.com/blog/

how-end-to-end-sensor-architecture-addresses-iot-security-weak-points.
[Accessed: 2022-05-31].

[68] Annabelle Lee, Miles Smid, and Stanley Snouffer. Security requirements for cryp-
tographic modules [includes change notices as of 12/3/2002], 2001-05-25 2001.
[Accessed: 2022-05-14].

[69] Praetorian Samsung. Praetorian - samsung - artik modules engagement let-
ter. 2022. URL http://customer1st.com/wp-content/uploads/2016/10/

Praetorian-Samsung-ARTIK-Modules-Engagement-Letter.pdf. [Accessed: 2022-
05-22].

[70] Disruptive Technologies. Managing access rights. 2021. URL https:

//developer.disruptive-technologies.com/docs/service-accounts/

managing-access-rights. [Accessed: 2022-05-09].

[71] Postman Inc. What is postman? Postman, 2022. URL https://www.postman.

com/product/what-is-postman/. [Accessed: 2022-05-13].

[72] SSL.com Support Team. Oauth 2.0. 2022. URL https://oauth.net/2/. [Accessed:
2022-06-02].

[73] Atiko. What is the range of data transmission in the lorawan network
in an urban environment? 2022. URL https://www.atiko.com.ua/en/blog/

what-is-the-range-of-data-transmission-in-the-lorawan-network-in-an-urban-environment/.
[Accessed: 2022-05-23].

https://developer.disruptive-technologies.com/api/libraries/python/client/examples/plot_sensor_data.html
https://developer.disruptive-technologies.com/api/libraries/python/client/examples/plot_sensor_data.html
https://developer.disruptive-technologies.com/api/libraries/python/client/examples/plot_sensor_data.html
https://github.com/paolosalvatori/ServiceBusExplorer
https://github.com/paolosalvatori/ServiceBusExplorer
https://www.disruptive-technologies.com/blog/security-and-privacy-in-disruptive-technologies-sensing-solution
https://www.disruptive-technologies.com/blog/security-and-privacy-in-disruptive-technologies-sensing-solution
https://www.thesslstore.com/blog/man-in-the-middle-attack-2/
https://www.disruptive-technologies.com/blog/how-end-to-end-sensor-architecture-addresses-iot-security-weak-points
https://www.disruptive-technologies.com/blog/how-end-to-end-sensor-architecture-addresses-iot-security-weak-points
http://customer1st.com/wp-content/uploads/2016/10/Praetorian-Samsung-ARTIK-Modules-Engagement-Letter.pdf
http://customer1st.com/wp-content/uploads/2016/10/Praetorian-Samsung-ARTIK-Modules-Engagement-Letter.pdf
https://developer.disruptive-technologies.com/docs/service-accounts/managing-access-rights
https://developer.disruptive-technologies.com/docs/service-accounts/managing-access-rights
https://developer.disruptive-technologies.com/docs/service-accounts/managing-access-rights
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://oauth.net/2/
https://www.atiko.com.ua/en/blog/what-is-the-range-of-data-transmission-in-the-lorawan-network-in-an-urban-environment/
https://www.atiko.com.ua/en/blog/what-is-the-range-of-data-transmission-in-the-lorawan-network-in-an-urban-environment/


Bibliography BIBLIOGRAPHY

[74] Jeff Shepard. Battery life analysis and maximization for
wireless iot sensor nodes and wearables. Power Electronic
Tips, 2020. URL https://www.powerelectronictips.com/

battery-life-analysis-and-maximization-for-wireless-iot-sensor-nodes-and-wearables/.
[Accessed: 2022-06-01].

[75] Bob Card. Achieving a 10-year battery life with bluetooth
low energy and proprietary wireless protocols. Onsemi, 2020.
URL https://www.onsemi.com/company/news-media/blog/iot/

bluetooth-low-energy-wireless-protocols-battery-life. [Accessed:
2022-06-01].

[76] Evan Cornell. Achieve extremely long battery life in wireless sensor nodes. Texas
Instruments, 2015. URL https://e2e.ti.com/blogs_/b/industrial_strength/

posts/achieve-extremely-long-battery-life-in-wireless-sensor-nodes.
[Accessed: 2022-06-01].

[77] Disruptive Technology AS. Wireless temperature sensor. 2022. URL
https://www.disruptive-technologies.com/products/wireless-sensors/

wireless-temperature-sensor. [Accessed: 2022-05-22].

[78] Docker. Docker overview. Docker Docs, 2022. URL https://docs.docker.com/

get-started/overview/. [Accessed: 2022-06-01].

[79] Pająk. P. Quick dive into azure service bus. Iteo, 2020. URL https://iteo.com/

blog/post/quick-dive-into-azure-service-bus/. [Accessed: 2022-05-09].

[80] Azure. Advanced message queueing protocol(amqp) 1.0 support in ser-
vice bus. Azure, 2021. URL https://docs.microsoft.com/en-us/azure/

service-bus-messaging/service-bus-amqp-overview. [Accessed: 2022-05-27].

[81] Azure. Storage account overview. Azure, 2022. URL https://docs.microsoft.com/

en-us/azure/storage/common/storage-account-overview?toc=%2Fazure%

2Fstorage%2Fblobs%2Ftoc.json. [Accessed: 2022-05-22].

[82] ALBERTO LUGO. How secure is microsoft azure? 2017. URL https:

//invidgroup.com/how-secure-is-microsoft-azure/. [Accessed: 2022-05-22].

[83] Microsoft. An overview of azure sql database and sql managed instance security
capabilities. 2022. URL https://docs.microsoft.com/en-us/azure/azure-sql/

database/security-overview?view=azuresql. [Accessed: 2022-05-22].

[84] Azure. Azure storage encryption for data at rest. Azure, 2021.
URL https://docs.microsoft.com/en-us/azure/storage/common/

https://www.powerelectronictips.com/battery-life-analysis-and-maximization-for-wireless-iot-sensor-nodes-and-wearables/
https://www.powerelectronictips.com/battery-life-analysis-and-maximization-for-wireless-iot-sensor-nodes-and-wearables/
https://www.onsemi.com/company/news-media/blog/iot/bluetooth-low-energy-wireless-protocols-battery-life
https://www.onsemi.com/company/news-media/blog/iot/bluetooth-low-energy-wireless-protocols-battery-life
https://e2e.ti.com/blogs_/b/industrial_strength/posts/achieve-extremely-long-battery-life-in-wireless-sensor-nodes
https://e2e.ti.com/blogs_/b/industrial_strength/posts/achieve-extremely-long-battery-life-in-wireless-sensor-nodes
https://www.disruptive-technologies.com/products/wireless-sensors/wireless-temperature-sensor
https://www.disruptive-technologies.com/products/wireless-sensors/wireless-temperature-sensor
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://iteo.com/blog/post/quick-dive-into-azure-service-bus/
https://iteo.com/blog/post/quick-dive-into-azure-service-bus/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-overview
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://invidgroup.com/how-secure-is-microsoft-azure/
https://invidgroup.com/how-secure-is-microsoft-azure/
https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview?view=azuresql
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json


Bibliography 139

storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json.
[Accessed: 2022-05-22].

[85] Microsoft Azure. Pricing calculator. 2022. URL https://azure.microsoft.com/

en-us/pricing/calculator/?service=service-bus. [Accessed: 2022-05-22].

[86] IoT business news. The precision agriculture market to reach € 3.7 billion
worldwide in 2025. 2021. URL https://iotbusinessnews.com/2021/03/11/

47844-the-precision-agriculture-market-to-reach-e-3-7-billion-worldwide-in-2025/.
[Accessed: 2022-05-27].

[87] Tibco. Message broker illustration. 2022. URL https://www.tibco.com/

reference-center/what-is-a-message-broker. [Accessed: 2022-05-02].

[88] Image link. 2022. URL https://www.readingielts.com/

ielts-speaking-part-1-topic-applications/. [Accessed: 2022-05-27].

[89] Xpandretail. Count illustration. 2022. URL https://xpandretail.com/

logic-for-people-counting/. [Accessed: 2022-05-22].

https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json
https://azure.microsoft.com/en-us/pricing/calculator/?service=service-bus
https://azure.microsoft.com/en-us/pricing/calculator/?service=service-bus
https://iotbusinessnews.com/2021/03/11/47844-the-precision-agriculture-market-to-reach-e-3-7-billion-worldwide-in-2025/
https://iotbusinessnews.com/2021/03/11/47844-the-precision-agriculture-market-to-reach-e-3-7-billion-worldwide-in-2025/
https://www.tibco.com/reference-center/what-is-a-message-broker
https://www.tibco.com/reference-center/what-is-a-message-broker
https://www.readingielts.com/ielts-speaking-part-1-topic-applications/
https://www.readingielts.com/ielts-speaking-part-1-topic-applications/
https://xpandretail.com/logic-for-people-counting/
https://xpandretail.com/logic-for-people-counting/

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Definition
	1.3 Objectives
	1.4 Approach and Contributions
	1.5 Outline

	2 Preliminaries
	2.1 Quality of Service Terminology
	2.2 Technology
	2.2.1 Internet Of Things

	2.3 Major Vendor's IoT Pipelines
	2.3.1 Google
	2.3.2 Amazon
	2.3.3 Microsoft

	2.4 Defining an IoT Pipeline
	2.4.1 IoT devices
	2.4.2 Data ingestation
	2.4.3 Message broker
	2.4.4 Data load
	2.4.5 Applications

	2.5 Other Relevant Preliminaries
	2.5.1 Data silo problem
	2.5.2 LoRaWAN
	2.5.3 Enterprise Service Bus
	2.5.4 Integration Platform as a Service
	2.5.5 Software and hardware providers
	2.5.6 Security protocols
	2.5.7 Shared Access Signature


	3 Related Work
	3.1 Timon
	3.2 Kafka
	3.2.1 Kafka benchmark

	3.3 Stream Bench
	3.4 Industrial Pipelines

	4 Presentation of Guidelines
	4.1 Methodology
	4.2 IoT Devices
	4.2.1 IoT security
	4.2.2 Signal strength
	4.2.3 Device battery and connectivity

	4.3 Data Ingestation
	4.3.1 Data ingestation example
	4.3.2 Gateway
	4.3.3 Early stage validation

	4.4 Message Broker
	4.4.1 Transfer process
	4.4.2 Message broker responsibilities

	4.5 Data Load
	4.6 Applications
	4.7 Summary of the Pipeline

	5 IoT Pipeline Architecture
	5.1 Why Separate All Pipeline Steps?
	5.1.1 Why have a dedicated data ingestion step?
	5.1.2 Why have a dedicated message broker?
	5.1.3 Why have a dedicated data load component?

	5.2 Why use Disruptive Technologies Sensors?
	5.3 Why Use Miles Connect?
	5.4 Azure Service Bus as an Enterprise Message Broker
	5.5 Applications From Asplan Viak
	5.5.1 Desired use case
	5.5.2 Technical issues
	5.5.3 Use cases in this thesis


	6 Building the Pipeline
	6.1 Connecting to DT Studio
	6.1.1 Generating data
	6.1.2 Accessing sensors
	6.1.3 Stream and REST API

	6.2 Connecting to the Message Broker
	6.2.1 Miles Connect functionality
	6.2.2 Azure Service Bus Explorer

	6.3 Constructing the Data Load
	6.4 Storing Data in the Cloud

	7 Verifying the Guidelines
	7.1 Guidelines for IoT Device
	7.1.1 Guideline 1.1
	7.1.2 Guideline 1.2 and 1.3
	7.1.3 Guideline 1.4
	7.1.4 Guideline 1.5
	7.1.5 Guideline 2.1
	7.1.6 Guideline 3.1
	7.1.7 Guideline 3.2

	7.2 Guidelines for Data Ingestion
	7.2.1 Guideline 4.1
	7.2.2 Guideline 4.2
	7.2.3 Guideline 4.3
	7.2.4 Guideline 5.1
	7.2.5 Guideline 5.2

	7.3 Guidelines for Data Transfer
	7.3.1 Guideline 6.1
	7.3.2 Guideline 7.1
	7.3.3 Guideline 7.2
	7.3.4 Guideline 7.3

	7.4 Guidelines for Data Load
	7.4.1 Guideline 8.1
	7.4.2 Guideline 8.2

	7.5 Guidelines for Applications
	7.5.1 Guideline 9.1
	7.5.2 Guideline 9.2
	7.5.3 Guideline 9.3


	8 Discussion
	8.1 Discussing the Pipeline
	8.1.1 Are the pipeline steps correctly defined?
	8.1.2 Is the pipeline actually agnostic?
	8.1.3 Is the pipeline too complicated?
	8.1.4 General Security in the Pipeline

	8.2 Discussing Our Providers
	8.2.1 Discussing Miles and Miles Connect
	8.2.2 Discussion Disruptive Technologies
	8.2.3 Discussing Azure

	8.3 Discussing the Guidelines
	8.3.1 A secure and reliable pipeline
	8.3.2 Following the guidelines
	8.3.3 Do developers need guidelines?

	8.4 Feedback From the Industry
	8.4.1 Adjusting the pipeline
	8.4.2 Feedback from Miles
	8.4.3 Feedback from DT


	9 Conclusions
	9.1 Future Work
	9.1.1 Benchmarking Miles Connect, and the system
	9.1.2 Real use case
	9.1.3 Evaluate guidelines as a resource


	A 
	B Source code, Image Sources and Project Poster
	B.1 Source Code
	B.2 Image Sources
	B.2.1 Kafka Virtual Machine specifications
	B.2.2 Illustration Sources

	B.3 Poster

	Bibliography

