
ODIN BJØRNEBO
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Decentralized Identity for Industrial
Applications

Master's Thesis - Computer Science - June 2022

I,Odin Bjørnebo, declare that this thesis titled, “Decentralized Identity for
Industrial Applications” and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

“Programming is a nice break from thinking.”

– Leslie Lamport

Abstract

This thesis looks at some aspects of current authorization to applications, then

explores new ways of solving this with emerging technology originated from the

ever expanding field of blockchain. This accumulates to an architecture that could

work for organizations that want to work together. This architecture is tried im-

plemented, then drafts the outcome of the process.

iii

Acknowledgements

I would like to thank my supervisors, Ron Chunming and Jiahui Geng for their

enthusiasm and help with this project. Lastly, I would also thank the University

of Stavanger for allowing me to work with such an interesting topic.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 4

1.1 Background and Motivation . 4

1.2 Objectives . 5

1.3 Approach and Contributions . 5

1.4 Outline . 6

1.4.1 Chapter 7 . 7

2 Background 8

2.1 Blockchain Technology . 8

2.2 Containerizing . 9

3 Approach 11

3.1 Existing Approaches . 12

3.1.1 Indy . 12

3.1.2 Aries . 12

3.1.3 Complete Hyperledger solution 13

3.1.4 Microsoft . 14

4 Application Architecture Approach 16

4.1 Analysis . 16

4.2 Layer One . 16

4.3 Layer Two . 18

4.3.1 Choice . 18

4.3.2 Static Agent . 18

v

4.4 Layer Three . 18

4.5 Architecture . 19

4.5.1 Blog inspiration . 19

4.5.2 Aries Cloud Agent -Python 20

4.5.3 Proposed architecture . 20

5 Experimental Implemetation 22

5.1 Technologies . 22

5.2 Docker Compose . 23

5.2.1 ACA-Py . 23

5.2.2 Go Application . 23

5.2.3 Controller DB . 23

6 Discussion 24

6.1 Background knowledge . 24

6.1.1 Documentation . 24

6.1.2 Time spent learning . 24

6.2 Architecture design . 24

6.3 Implementation . 25

6.4 Project work . 25

7 Conclusions 26

7.1 Future work . 26

7.1.1 Putting together . 26

7.1.2 Finalizing implementation 26

7.1.3 Testing . 27

A Instructions to Compile and Run System 31

A.1 Requirements . 31

A.2 Running the code . 31

A.3 Looking at Database . 32

A.4 Video . 33

B Master presentation 34

Acronyms

2FA Two Factor Authentication. 4, 20

ACA-Py Aries Cloud Agent - Python. 19, 20, 23, 25

API Application Programming Interface. 20, 23

DID Decentralized Identifiers. 12–14, 17, 19

ION Identity Overlay Network. 14

IPFS InterPlanetary File System. 14

OS Operating System. 9

PKI Public Key Infrastructure. 18

SSI Self-Sovereign Identity. 12, 17

VM Virtual Machine. 9

3

Chapter 1

Introduction

In recent years, blockchain technology has gained more and more interest from

all around the globe. This technology is evolving beyond the original use case of

a decentralized alternative to the banking system. Blockchain technology brings

other possible use cases, especially for cooperation across organizations, and for

individuals to control their data. This is mainly due to decentralized systems that

can provide protection, trust and privacy in newways that conventional solutions

do not. Verifying users’ identity is vital to ensure that every application today

operates properly. This thesis will take a look at using new blockchain technology

to authorize users.

1.1 Background and Motivation

Most parts of the world uses a username and password combination to authorize

themselves to services. This information is usually stored at the service provider

or in the cloud, and not in the hands of the user. Therefore, the information is

constantly vulnerable to breaches and cyber attacks. In addition to this, an in-

crease of cyber related attacks are seen in recent years. Because of this, users are

more vulnerable to digital identity theft. Solutions to this exist in the form of Two

Factor Authentication (2FA), but some say that even two factors of authorizations

is not enough.

4

1.2 Objectives

This thesis focuses on designing a system for organizations to allow users to co-

operate across organizations in addition to sharing resources. The focus is not

on the actual system itself but defining an underlying authentication architecture

that lets users trust each other. The objectives of this thesis are:

• Design a decentralized identity system

• Implement and test said system

• Integrate the system with the rest of partner thesis

1.3 Approach and Contributions

The approach taken to solve these objectives were to conduct a literature study

on the different technologies available, in addition to the research being done in

this area. Afterwards a consultation with the supervisors of this thesis, and the

rest of the project team followed. This was done in order to choose a relevant

design. Following that, experimentation with different tool kits that the projects

came with, was executed. Finishing up, the design was altered and a new setup

for a development environment that could tie the different components together,

was started. The relevant components are shown below:

• System Architecture

• Controller API for talking to agent

• Infrastructure to setup development environment

Then after this a reflection in regards to what went good, what went wrong and

how it can be improved upon later on was conducted.

1.4 Outline

In this section, information about what each of the chapters will contain, is ad-

dressed.

Chapter 1

The first chapter gives some general introduction to the objective of this thesis,

and why this innovation is important to the industry.

Chapter 2

Chapter two talks about some of the essential concepts and technologies that are

used in this thesis. This includes containerizing of applications, but most impor-

tantly some of the most important aspects of blockchain technology that is useful

for understanding the rest of the thesis.

Chapter 3

This chapter looks at some of the existing solutions for conventional applications

that deal with data sharing. In addition to examining the existing solutions for

identity solutions based on blockchain technology, and how they differ.

Chapter 4

This chapter shows the choices made for designing the solution and the reason-

ing behind those choices. This chapter ends with an overview of the proposed

architecture.

Chapter 5

Chapter five goes into the different technologies used for the implementation.

What the solution looks like in terms of software and how the solution operates.

Chapter 6

In the sixth chapter, a discussion takes place to look into what went wrong, and

what worked well in this project, and why that is.

1.4.1 Chapter 7

The final chapter discusses the future work opportunities that are present, what

kind of testing use cases that would be relevant. It will also look at what is needed

to tie it together with the rest.

Chapter 2

Background

2.1 Blockchain Technology

The first decentralized blockchain system was proposed [1] by Satoshi Nakamoto

in 2008, and has beenwhat almost everyone associates with the word blockchain.

A cryptocurrency that solves the double spend issue with an ever growing public

ledger with all the transactions.

However the technology is more than just a currency. The word block-chain

in itself points to two aspects. A chain of blocks, a block, in this context is a data

structure that consists of some transactions and a header. What is contained in

the block header depends on what ledger it is part of, one of these attributes are

usually the hash of aMerkle tree that is used for proving that a transaction is part

of a block. However all block headers contain a hash of the previous block. This

makes the structure a number of blocks that point the previous one, hence the

word block-chain.

(a) Merkle tree illustra-
tion [2] (b) Blockchain data structure illustration[3]

Figure 2.1: Some illustrations about blockchain datastructures

8

There are howevermorenuances to blockchain technology than the data struc-

ture, it is also the concept of a decentralized distributed ledger that is resistant to

tampering. This is accomplished with a consensus algorithmmaintained by all or

some of the nodes that participates. Examples of such consensus algorithms are

proof of work, proof of stake, and practical byzantine fault tolerance. All these

algorithms bring their own advantages and disadvantages, but using them helps

the ledger stay immutable.

The distributed part usually depends on technology, butmost blockchain pro-

tocols require the nodes taking part by storing their own copy of the ledger. The

ledger usually contains transactions tracking ownership of assets, this could be

anything froma currency to an intellectual property like copyrights. These factors

together contribute in making the ledger resistant towards tampering, transpar-

ent and publicly accessible. Not all ledgers are publicly accessible, some ledgers

are permissioned, and others are part of a federation, this is just the accessibility

of the ledger, and usually denotes who can submit transactions or read from the

ledger. A federation can for example be between a set amount of companies that

writes to the same ledger.

2.2 Containerizing

Then unto to containerizing, whichwill be used in the implementation, so it’s best

to look at what the technology is.

Containerizing is a method to virtualize the Operating System (OS) of a com-

puter. This is different to virtualizing the a whole computer. In this section the

differenceswill be examined. AVirtualMachine (VM) is used to virtualize awhole

computer system, with kernel, OS and more. Applications running on these, is

quite resource intensive. Containerizing on the other hand, does notmake a ”full”

VM. Containerization virtualizes the hosts OS to leave more headroom for the

hardware. Containers in this context are software bundles that can run on top of

this virtualized OS. The applications run isolated from each other, but can utilize

the same kernel and if specified, libraries and binaries from the host. If they share

resources, for example a library, the application will get read-only rights so their

operations don’t interfere with each other.

FromFigure 2.2, the structure of aVM is located on the left-hand side, whereas

a similar structure for a container is located on the right. It can be observed that

Figure 2.2: Structure of VM on the left, and structure of Container on right

the container is using the host OS to run the containers in which applications

can be accessed. This differ from the VM, where all applications have their own

dedicated OS. A popular container software used in recent years is Docker, which

is a software built with GO to containerize applications [4]. Go is a lightweight

programming language developed by Google built for fast, reliable, and efficient

software at scale [5]. Large parts of the thesis is completed with containers in

Docker.

Chapter 3

Approach

The projects Diskos[6],Norce andNCS30 are platforms for data sharing. Diskos

is the Norwegian national data repository for petroleum data. This is where oil

companies can share seismic data and well data, and other relevant data to be

publicly available. Diskos also let the companies trade data amongst each other,

not disclosing the trades to the public. Norce, or ”The Norwegian Research Cen-

tre” has a solution for users to share data sets and research articles.

All these projects handle data sharing, but the traditionalway of storing data is

centralized, thus needing to trust a centralized server is amust. There exists other

options, such as a decentralized system. The advantages of having a decentralized

system in charge of authorization includes making it easier to trade secret data

or give permissions to specific data sets. This thesis aims to improve upon these

existing models by using new technologies and propose an alternate solution.

This is done by exploring the challenges and possible solutions for the autho-

rization and identification part of an industrial application system, and will in

conjunction with the other thesis projects make up a solution for a system of this

magnitude.

11

3.1 Existing Approaches

TheHyperledger Foundation is an open source collaboration project that includes

numerous sub-projects. This non-profit organization helps with hosting many

various blockchain resources and infrastructures. This ensures that the commu-

nity can utilize these resources to create commercial software or help students

learn about the new technology. Two relevant projects from the HyperLedger

Foundation that will be examined here are Indy and Aries.

3.1.1 Indy

Indy is a codebase provided by the Sovrin Foundation. Sovrinmade a solution for

a full Self-Sovereign Identity (SSI) systemwhere all the users are in full control of

their data instead of it being at themercy of a organization. The solution is a pub-

lic permissioned blockchain, with an architecture of stewards, service providers

and clients. Where the blockchain contains transactions between globally unique

Decentralized Identifiers (DID). Sovrin have publishedmanypapers on this topic,

for example on howSSI is going to be very import for the future of the Internet [7].

They have also published a detailed explanation on how Sovrin works [8].

As stated, the Sovrin project has since been altered somewhat and incorpo-

rated with The Hyperledger Foundation. The Indy project consists of multiple

repositories that are worked on by the open source community and Hyperledger

itself. This includes indy-node, indy-plenum, indy-sdk and indy-agent [9]. The

project also utilizes the Ursa project (asmany other Hyperledger projects) for im-

plementation of cryptographic code and interfaces. The Ursa implementations

range from different signature schemes to zero knowledge proofs, all of this is

modular and implemented in many different softwares. This reduces duplicate

work, and sheds more eyes on this open source solution, which will give it a leg

up in discovering vulnerabilities.

3.1.2 Aries

The Hyperledger Aries project on the other hand, is the tool components that

make up most of the clients that interact with a ledger made for verifiable cre-

dentials, either if it issuing or verifying. This includes wallet features for clients,

first of all for storing information locally in a cryptographically safe manner. It

also implements amessaging system for communicatingwith other clients, which

Aries refer to as agents. The messaging is done off-chain, more specifically peer-

to-peer with various forms of protocols. Aries include a specific protocol for re-

solving DID and another for verifiable claims exchange.

Aries is based on the agents from the original Sovrin proposed solution, but

has over time been drawn away from being an Indy/Sovrin helping component

and is becoming its own thing. It can also have a pluggable resolver so it does

not rely on one blockchain. It could resolve a transaction coming from Bitcoin

and use those values in a higher level of abstraction, like an application. This is

what makes it really versatile. There are a lot of open source Aries agents that can

be used as ”plug and play” software frameworks for specific languages, Python,

.NET, etc. However, it is also possible to build a custom agent that implements

the protocols of Aries.

3.1.3 Complete Hyperledger solution

Indy and Aries in tandem are one of the most used ways to setup a decentralized

identity system. The projects include a variety of tools to build unique solutions

to the problems at hand. Aries gives a toolkit for communicating peer-to-peer

without disclosing identity or sensitive data in the process. Indy provides tools

to make a standalone decentralized identity ledger, and a consensus protocol on

top.

Indy andAries fit in theTrust over IP technology architecture, first formalized

in the paper from the Trust Over IP [11]. The paper establishes standards on how

Trust over IP can be achieved and the different layers associated with this. Figure

3.1 is derived from this paper. In the figure Indywould be placed at layer one since

it maintains the DIDs and the actual blockchain ledger. Aries on the other hand

would be be both layer two and layer three. It enables peer-to-peer connection

and the ability to issue/verify credentials.

Figure 3.2 shows the technological components of such a system, and how

the different projects interacts with each other. For example, the cryptographic

library Ursa is used for all of them. As said earlier, this makes it less likely that

a refactoring is needed for all of the components if a security flaw found in the

Ursa project is patched there.

Figure 3.1: SSI architecture tech stack url [10].

3.1.4 Microsoft

In the last few years, Microsoft has also put time and resources into the decentral-

ized identifier space. This has resulted in the launching a new product family, the

Microsoft Entra [12]. They share anumber of the same ideas as Sovrin/Hyperledger,

but with their own twist.

First of all, they do not use the same blockchain technology, but utilize some-

thing called an Identity Overlay Network (ION). ION is based on the Sidetree

protocol [13], and uses Bitcoin as the underlying ledger. This is accomplished by

encapsulating the hash of an anchor file in a Bitcoin transaction. The ION net-

work nodes use this anchor hash to get and replicate DIDs added to other ION

nodes. This allows nodes to forgo running a consensus protocol; instead, the so-

lution relies on the Bitcoin network’s continued existence. The nodes share and

store files using a peer-to-peer file system, InterPlanetary File System (IPFS).

Users for this service will face the ”Microsoft Authenticator App”, it will act as

the agent for the decentralized system. It stores the verifiable credentials, makes

DIDs for the user and stores the seed locally and encrypted in the wallet. This

is also where the user get to decide whether or not to share the credential to a

third party. They have also developed their own resolver for a did:ion method

to deliver DID documents from the identifiers given by the ION network. Their

cloud service Azure is used for issuing and verifying the credentials.

Figure 3.2: Hyperledger technology components url [10]

Figure 3.3: Microsoft Entra architecture, URL: [14]

Chapter 4

Application Architecture

Approach

Now that we have looked at the technology and the some existing solutions, we

could try to find a solution the problem at hand. In this chapter, a proposed so-

lution is presented based on the existing technology and projects examined in

Chapter 2 and 3.

4.1 Analysis

This project is going to be a part of a bigger solution for what was introduced in

Chapter ??. The goal is to develop an industrial size application that can enable

data sharing, data trading and royalties. The group decided to use some of the

same technologies so it would be easier to piece all of them together in the end, or

for further development. This project will therefore act as a puzzle that fits into a

bigger picture.

4.2 Layer One

Layer one of the decentralized system will first and foremost be the underlying

data structures. There were also other things to consider, like the consensus pro-

tocol (or equivalent), and the nodes that would have to be employed to ensure

some form of unified state.

16

Figure 4.1: Layer one in technology stack

Figure 4.1 shows a cut out from the SSI architecture Figure 3.1 in Section 3.1.3.

This system will be designed for a federation that wants to control most of the

aspects of the solution. A public blockchain would not be optimal, therefore a

private blockchain will be used.

Indywas originally a public blockchain based on Sovrin where everyone could

join, but with the new software tools it is possible to make it permissioned and

private. This makes the ledger hidden from other parties, and only those that

federation allows, will be able to write transactions.

Another student also saw the possibilities for using Indy in his project so it

was decided to use that in this approach as well. There is a lot of useful built in

methods and tool-kits for an Indy ledger approach and the community continu-

ally improve upon and develop the software.

The IndyDID system has amethodwhich includes a namespace. Themethod

did:indy:{namespace} determines what ledger this DID is associated with.

So for our problem a namespace for the federation of organizations could be

”datasharingfederation”. So every DID created to interact with this application

could be in the ”datasharingfederation” namespace and a single identifier could

look like this:

did:indy:datasharingfederation:3NWT7arTrLdNaHeHJE393

(the identifiers are base58 encoded, but this could be changed, if requested

upon).

Each organization would have to run their own Indy node. That node would

have their copy of the ledger stored locally, and it would be updated by that client.

The organizations’ Indy node would also need to be open to communication. The

node would also need to talk to the other organizations’ Indy nodes and run the

consensus protocol, which is based on a redundant byzantine fault tolerance pro-

tocol [15].

4.3 Layer Two

As mentioned earlier, the second layer in the decentralized system will be the

communication protocol. This is where the two agents are able to communicate

without revealing sensitive information. This is usually done with multiple hops,

andmultiple intermediaries to relay amessage. They utilize an underlying Public

Key Infrastructure (PKI) to ensure that the messages are encrypted, that they

have not been tampered with, and been sent from the correct person.

Figure 4.2: Layer two in technology stack

4.3.1 Choice

Since Indy became the chosen technology, it also made sense to use Aries for the

second layer of communication. An Aries agent can communicate with others

and can write transactions to the ledger. As mentioned in Section 3.1.2, there are

multiple frameworks already present, and there are pros and cons with most of

them. So it is best to look at what the agent would need to do, and how it could

communicate with the rest of the system. The main objective here is authentica-

tion of users and usability.

4.3.2 Static Agent

From the get-go, a static Aries agent was attempted to be implemented with the

necessary features, like writing to a ledger. This did however take a lot of time,

this was partly due to the lack of good tutorials for development, will touch on

this later in the discussion.

4.4 Layer Three

A new perspective was needed, and further investigation of what the Aries agent

actually was going to solve was needed. Especially since the Aries agent will also

need to serve the purpose of credential exchange in layer three as seen in figure

4.3.

Figure 4.3: Layer three in the technology stack

When looking at the structure in Figure 4.3, and thinking about the gover-

nance for a system like this, one can see that most issuing will happen from or-

ganization to employees, and not cross organizations. A great way to make it

easier for the users in this case is for them to only deal with their own organiza-

tion and have the system overall decide whether or not they can do something at

that organizations place. This could be a proxy, so users would interact like nor-

mal, with username-passwords and have the organization keep track of their own

users decentralized identities for them. I.e. a service that creates DIDs, wallets,

credentials andwhen the user interacts with another organization it will just need

present their own info and the foreign service will reach out to their originating

provider.

4.5 Architecture

After researching many Aries frameworks and the features that they offered, a

possible architecture that could solve many of the issues that we set out to ac-

complish was suggested. This being the advantages of having verifiable creden-

tials rooted in blockchain technology and the modularity with these open source

libraries.

4.5.1 Blog inspiration

What especially inspired the solution was a blog [16] by Laurence de Jong. It

details a system with a controller that interacts with the Aries agent. This gave

the idea of a controller that could interact with the rest of the application and an

agent. The author also utilized the Aries Cloud Agent - Python (ACA-Py), and it

seems to be tailored for this use case.

4.5.2 Aries Cloud Agent -Python

This Aries agent has a lot of built-in features and abstracts some of the protocols

so it is easier to developwith. As the naming suggests the agent is supposed to run

on a server instead of mobile devices. This in somewhat contrast to what we’ve

heard about agents earlier, but this does make sense. There has to be two kinds

of agents, one for local storage of credentials and wallets for all users and then

services that they can interactwith, this iswhere this kind agent framework comes

along. It is more centered around having it constantly running and a controller

interact with the admin API. One of the built in features to be utilized is themulti-

tenant option. This enables the agent instance to manage multiple sub wallets

through a base wallet.

Figure 4.4: Multi-tenant illustration[17]

4.5.3 Proposed architecture

In figure 4.5 a proposed solution architecture is shown. The solution consists of a

controller that interacts with the ACA-Py instance, has its own database and the

overall application aswell. The ACA-Py instance is set tomulti-tenancymode and

has a persisting built-inwallet. The users login to the applicationwith an assigned

method, this could be a browser on the application with username-password, any

formof 2FA or amobile application of some sort. The controller can act as a proxy

between the application and the decentralized system of authorization. Users

only interact with the application and the underlying authorization system with

Aries and Indy fixes and resolves the rest. This by having a reverse proxy expose

the controller and agent to the rest of the internet.

With the addition of a controller, there could be applied logic logins as well.

Figure 4.5: Architecture with symbols

For example, if a user of Organization 1 wants to use a resource of Organization

2, it could try to connect, but you could have a policy that accepts or reject this

based on organization credential, or a fixed number at a time.

Chapter 5

Experimental Implemetation

5.1 Technologies

The experimental solution will be using the architecture described earlier and

implement the technological choices made. Since there is both a decentralized

part, and some conventional pieces, a presentation of technologies used is found

in Figure 5.1.

Figure 5.1: Technologies implemented in this project

22

As pictured and described earlier, Hyperledger Aries and Hyperledger Indy is

used as the decentralized technology tool kits. The Aries agent is the Aries Cloud

Agent - Python (ACA-Py) that contains many smart implemented features. One

of these are a persistent wallet made with PostgreSQL. However an instance of

a PostgreSQL database for the controller is also needed. The controller on the

other hand, is a Go application. These are instantiated with the help of Docker.

5.2 Docker Compose

To make it easier to develop upon and to launch all of the software infrastruc-

ture for someone else a docker compose is set up. A generated .yaml file defines

the different services that the application consists of. When running the docker-

compose up command at the root of the project, the program does a docker run

for all of the services in the .yaml file.

5.2.1 ACA-Py

Ended up running a static image of the Aries Cloud Agent, but it’s not too difficult

to alter the code to a custom one. This can be done be replacing the image state-

ment in the docker compose with a build statement of the local project. Multiple

ways to do this, either a custom new docker file or git pull the repository locally

and alter the code there. Other than that there is a lot of command line arguments

that need to be set up for it to work. So everything from ledger type to secrets.

5.2.2 Go Application

The controller is made from scratch and includes startup functions, and some

routes. The controller can sign up new users, and it will create a wallet on the

Aries agent through the admin API

5.2.3 Controller DB

This is a local instantiated database from the latest postgres image docker can

pull. A postgres admin instance is also run so we can alter the database ourselves

in a web browser and can explore the data present.

Chapter 6

Discussion

6.1 Background knowledge

6.1.1 Documentation

Some of the issues I had when doing this project was the different forms of docu-

mentation. There are code examples, and some demos of how stuff should work,

but these may not always be up to date, and other aren’t even implemented yet.

Say I’ve had all this knowledge about how the systems work and interact with

each other I could’ve made way more progress in one month, with production

code than the whole semester put together.

6.1.2 Time spent learning

I spent some time learning or trying to setup old protocols that is not even begin

used today. So it’s somewhat hard to get an overview of what works, and what to

use time at. For example, when trying to test Aries agents towards some ledger

there is a repository that can launch the minimum of four Indy nodes that could

work as testing environment. However i didn’t find out this before trying to setup

some failed attempt.

6.2 Architecture design

This is where most of my time was spent. It was difficult to find out exactly what

would be best, in terms of implementation, the users and the organizations. What

24

software to use and what use cases to prioritize. So I ended up with something

thatmaywork, but it is not tested through and through. However the result seems

like a good halfway point, it is not too decentralized so it becomes alien for the

users, however you get some of the advantages of decentralized technology. It

was also not goal of having a fully decentralized system, but divide some of the

authority between organization or to make it more transparent.

6.3 Implementation

This is a field I should have spent more time on and the actual application has

suffered some from this. The problem is that this is pretty new technology that

is constantly being developed, and issues as mentioned in 6.1.1 does not help in

speeding up the process. It is also a whole new way of looking at identity than we

have learned in school, and it is therefore harder to get into, and I did not have all

the background knowledge ingrained into my head. After a while i also figured

out that golang might not be the best language for a controller. Something like

JavaScript or C# could work better, this is because of the responses given by the

ACA-Py agent are big and they need to be heavily typed in golang to avoid compile

errors.

6.4 Project work

This was part of a bigger project to make a platform for data sharing, and that

meant that certain considerations had to bemade. Therewere 5 different projects

with different fields, and all of these should be able to fit together. The authoriza-

tion part is not connected to something, but it won’t be hard to accomplish since

it was designed with this is mind.

Chapter 7

Conclusions

This thesis did manage to design a system that could work for authorizing users

locally . It has a underlying decentralized structure that lets organizations issue

verifiable claims to both their own employee/users. However the implementation

is not complete and contextualized resolving is missing.

7.1 Future work

7.1.1 Putting together

The systemwas designedwith the others inmind, however the pieces has not been

put together. So the application that needs to authorize users needs to connect to

the controller to utilize its features.

7.1.2 Finalizing implementation

The most important part would be to connect the Aries agent with a Indy ledger

that can track changes in verifiable claims, and be a source of truth. A controller

in golang may not be the best way of interacting with bigger response objects,

so this could probably be changed to something else. The controller also needs

more methods to interact with the system. Another important future develop-

ment could be to implement local policies for verifiable claims. The reverse proxy

for exposing the agent to the rest of the internet is also not implemented and

would be vital in a finished solutuion. Before any of this could be put into a pro-

duction environment there is a lot of static secrets and IPs that need to be ab-

26

stracted into variables that could be set by a .env file.

7.1.3 Testing

I did not get to test the setup since it was not finished enough to emulate a sys-

tem. There are howevermany things that could be tested. This is everything from

revocation of claims, cross organization with and without policies that allow this.

A general throughput test could also be executed to find out where bottlenecks(if

any) appear.

List of Figures

2.1 Some illustrations about blockchain datastructures 8

2.2 Structure of VM on the left, and structure of Container on right . . 10

3.1 SSI architecture tech stack url [10]. 14

3.2 Hyperledger technology components url [10] 15

3.3 Microsoft Entra architecture, URL: [14] 15

4.1 Layer one in technology stack . 17

4.2 Layer two in technology stack . 18

4.3 Layer three in the technology stack 19

4.4 Multi-tenant illustration[17] . 20

4.5 Architecture with symbols . 21

5.1 Technologies implemented in this project 22

B.1 Master presentation from 1. June 35

28

Bibliography

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review, page 21260, 2008.

[2] Azaghal. Merkle tree illustration, . URL https://upload.wikimedia.org/
wikipedia/commons/thumb/9/95/Hash_Tree.svg/1920px-Hash_Tree.
svg.png.

[3] Azaghal. Illustration from: Blockchain for dynamic

spectrum management - scientific figure on research-

gate, . URL https://www.researchgate.net/figure/
The-structure-of-a-Blockchain-A-block-is-composed-of-a-header-and-a-body-where-a-header_
fig1_33730638.

[4] Home - docker. URL https://www.docker.com/.

[5] The go programming language. URL https://go.dev/.

[6] Norwegian Petroleum Directorate. Diskos: About us. URL https://www.
npd.no/en/diskos/About/.

[7] Andrew Tobin and Drummond Reed. The inevitable rise of self-sovereign

identity. The Sovrin Foundation, 29(2016), 2016.

[8] Drummond Reed, Jason Law, and Daniel Hardman. The technical founda-

tions of sovrin. The Technical Foundations of Sovrin, 2016.

[9] Tracy Kuhrt and Ry Jones. Hyperledger indy wiki. URL https://wiki.
hyperledger.org/display/indy.

[10] Evernym. Evernym: About page. URL https://www.evernym.com/blog/
hyperledger-aries.

29

https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Hash_Tree.svg/1920px-Hash_Tree.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Hash_Tree.svg/1920px-Hash_Tree.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Hash_Tree.svg/1920px-Hash_Tree.svg.png
https://www.researchgate.net/figure/The-structure-of-a-Blockchain-A-block-is-composed-of-a-header-and-a-body-where-a-header_fig1_33730638
https://www.researchgate.net/figure/The-structure-of-a-Blockchain-A-block-is-composed-of-a-header-and-a-body-where-a-header_fig1_33730638
https://www.researchgate.net/figure/The-structure-of-a-Blockchain-A-block-is-composed-of-a-header-and-a-body-where-a-header_fig1_33730638
https://www.docker.com/
https://go.dev/
https://www.npd.no/en/diskos/About/
https://www.npd.no/en/diskos/About/
https://wiki.hyperledger.org/display/indy
https://wiki.hyperledger.org/display/indy
https://www.evernym.com/blog/hyperledger-aries
https://www.evernym.com/blog/hyperledger-aries

[11] Matthew Davie, Dan Gisolfi, Daniel Hardman, John Jordan, Darrell

O’Donnell, and Drummond Reed. The trust over ip stack. IEEE Commu-

nications Standards Magazine, 3(4):46–51, 2019.

[12] Microsoft entra main page. URL https://www.microsoft.com/en-us/
security/business/microsoft-entra.

[13] Sidetree protocol specification. URL https://identity.foundation/
sidetree/spec/.

[14] Microsoft Documentation/Azure. Introduction to azure active directory

verifiable credentials (preview). Microsoft Documentation, 2022. URL

IntroductiontoAzureActiveDirectoryVerifiableCredentials(preview).
Updated: 14.06.2022.

[15] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redun-

dant byzantine fault tolerance. In 2013 IEEE 33rd International Conference

on Distributed Computing Systems, pages 297–306. IEEE, 2013.

[16] Laurence de Jong. Building an aca-py controller: Architecture. URL https:
//ldej.nl/post/building-an-acapy-controller-architecture/.

[17] Aca-py multitenant github. URL https://github.com/hyperledger/
aries-cloudagent-python/blob/main/Multitenancy.md.

https://www.microsoft.com/en-us/security/business/microsoft-entra
https://www.microsoft.com/en-us/security/business/microsoft-entra
https://identity.foundation/sidetree/spec/
https://identity.foundation/sidetree/spec/
Introduction to Azure Active Directory Verifiable Credentials (preview)
https://ldej.nl/post/building-an-acapy-controller-architecture/
https://ldej.nl/post/building-an-acapy-controller-architecture/
https://github.com/hyperledger/aries-cloudagent-python/blob/main/Multitenancy.md
https://github.com/hyperledger/aries-cloudagent-python/blob/main/Multitenancy.md

Appendix A

Instructions to Compile and

Run System

Github link: https://github.com/TheseusDeus/distributed-identity-master

A.1 Requirements

To be able to run the code, docker has to be installed on the device it’s going to

be launched at. The docker compose file format has version 3.0, so this means

that the docker engine has to be of release >1.13.0+. If running this on windows

it could be beneficial to have Windows Subsystem for Linux (WSL) installed and

run it there, and docker desktop is also an advantage.

A.2 Running the code

1. Pull the GitHub repository

git clone https://github.com/TheseusDeus/distributed-identity-master

2. Move to the correct directory

cd distributed-identity-master/system

3. Run infrastructure

docker-compose up

31

https://github.com/TheseusDeus/distributed-identity-master

If youhave docker desktop installed, all of the containers should popup there, and

you can watch their logs from their, or all of them in the terminal that launched

the program.

A.3 Looking at Database

To look at the database, you must go to http://localhost:5050 If promted for

a password, use ”password”. From there the admin tool will show all servers

associated with the login on the leftside. If the database is not connected, you

need to add a new server. Press the first button under quick links. On the first

page give it any name, then go to the Connection tab and fill in hostname with db

and password with password, and save. It should now appear on the left side.

(a) fill in this for connection tab (b) new server added

If the database does not have a tables. (can be found under, controller_db ->

Schemas -> Tables), you need to create a new one as shown below.

(a) general tab (b) columns tab

Now it is possible to right click the userinfo table and press view all data to

show it on the right side.

A.4 Video

Here is a short video of the system up and running, where a user signs up, the

data is saved to the database, and awallet is created for the user. https://drive.
google.com/file/d/1Pw-fbysFipIj_3n_SwgLjh1f5OvgVHgp/view?usp=sharing

https://drive.google.com/file/d/1Pw-fbysFipIj_3n_SwgLjh1f5OvgVHgp/view?usp=sharing
https://drive.google.com/file/d/1Pw-fbysFipIj_3n_SwgLjh1f5OvgVHgp/view?usp=sharing

Appendix B

Master presentation

Poster from presentation can found below.

34

D
ec
en

tr
al
iz
ed

Id
en

ti
ty

fo
r
In
du

st
ri
al

A
pp

li
ca
ti
on

s

01
-I
nt
ro
du

ct
io
n

O
ne

of
th
e
bi
gg
es
t
pr
ob

le
m
s
w
it
h
to
da

ys
in
te
rn
et

is
cy
be
r

att
ac
ks
.T

he
m
ai
n
in
fo

or
pr
ob

le
m

he
re

is
us
ua

lly
id
en
ti
ty

or
co
nf
id
en
ti
al
in
fo
rm

at
io
n,

es
pe
ci
al
ly

fo
r
au

th
en
ti
ca
ti
ng

ag
ai
ns
t
a
se
rv
er
/3
rd

pa
rt
y.

02
-O

bj
ec
ti
ve

B
ui
ld

up
on

w
ha

t
ha

s
be
en

pr
ov
en

to
w
or
k
in

In
dy

/A
ri
es

an
d
de
si
gn

a
sy
st
em

th
at

ca
n
co
m
m
un

ic
at
e
w
it
h
a
la
rg
e

ap
pl
ic
at
io
n
to

au
th
or
iz
e
us
er
s.

03
-M

et
ho

do
lo
gy

Th
e
pr
oj
ec
t
w
as

cr
ea
te
d

us
in
g
th
es
e
op

en
so
ur
ce

te
ch
no

lo
gi
es
:

▶
H
yp

er
le
dg

er
In
dy

:
Id
en
ti
ty

ba
se
d
bl
oc
kc
ha

in
ba
se
d
on

So
vi
n

▶
H
yp

er
le
dg

er
A
ri
es
:

To
ol
ki
t
fo
r
bl
oc
kc
ha

in
in
te
ra
ct
io
ns

fo
r
di
gi
ta
l

cr
ed
en
ti
al
s.

▶
G
ol
an

g:
St
at
ic
al
ly

ty
pe
d

pr
og
ra
m
m
in
g
la
nu

ag
e

fr
om

G
oo

gl
e

▶
D
oc

ke
r:
V
ir
tu
al
iz
at
io
n

te
ch
no

lo
gy

fo
r
ap

pl
ic
at
io
n

is
ol
at
io
n

▶
Po

st
G
re
sS
Q
L:

R
el
at
io
na

l
da

ta
ba
se

04
-A

na
ly
si
s

U
se
rs

m
ay

lo
gi
n
w
it
h
us
er
na

m
e
an

d
pa

ss
w
or
d
an

d
be

au
th
en
ti
ca
te
d
lo
ca
lly
.

Th
en

th
e
A
C
A
-P
Y
cl
ie
nt

cr
ea
te
s
a
w
al
le
t
or

m
an

ag
es

an
al
re
ad

y
ex
is
ti
ng

on
e.

A
ll
th
is
ca
n
be

do
ne

fr
om

th
e
co
nt
ro
lle
r
th
at

in
te
ra
ct

w
it
h

bo
th

th
e
Po

st
gr
es
SQ

L
an

d
th
e
A
ri
es

cl
ie
nt
.

Th
e
A
ri
es

cl
ie
nt

sp
ea
ks

to
a
In
dy

le
dg

er
an

d
ca
n
ve
ri
fy

cr
ed
en
ti
al
s
an

d
is
su
e
ne
w
on

es
.T

he
co
nt
ro
lle
r
ca
n
re
tu
rn

att
ri
bu

te
s
ba
se
d
on

th
e
lo
gi
n
w
it
h
us
er
na

m
e
an

d
pa

ss
w
or
d

lo
ca
lly
,a
nd

m
ak
es

it
ea
sy

to
im

pl
em

en
t
lo
ca
lp

ol
ic
ie
s
in

th
e

fu
tu
re
.

05
-R

es
ul
ts

Th
e
de
ce
nt
ra
liz
ed

id
en
ti
ty

sy
st
em

cr
ea
te
s
a
ba
si
s
th
at

ca
n

be
us
ed

fo
r
m
ul
ti
pl
e
di
ff
er
en
t
in
du

st
ri
al
si
ze

ap
pl
ic
at
io
ns
.

It
ca
n
be

al
te
re
d
to

fit
th
e
de
si
re
d
us
e
ca
se

an
d
ex
pa

nd
ed

up
on

if
m
or
e
fu
nc
ti
on

al
it
y
is
ne
ed
ed
.

C
on

fid
en
ti
al
in
fo
rm

at
io
n
ab
ou

t
us
er
s
ar
e
st
or
ed

lo
ca
lly

an
d
in
fo
rm

at
io
n
go
in
g
on

to
th
e
le
dg

er
is
ha

sh
ed
.S

in
ce

m
os
t
in
te
ra
ct
io
ns

ar
e
do

ne
pe
er
-t
o-
pe
er

an
d
ea
ch

re
la
ti
on

sh
ip

ge
ne
ra
te
s
a
ne
w
D
ID

th
e
sy
st
em

ha
s

ps
eu
do

ny
m
it
y
w
it
h
so
m
e
fo
rm

of
un

lik
ab
ili
ty
.

06
-C

on
cl
us

io
n

Th
e
em

er
gi
ng

w
eb
3.
0
te
ch
no

lo
gi
es

br
in
g
ne
w
po

ss
ib
ili
ti
es

fo
r
a
to
n
of

di
ff
er
en
t
ap

pl
ic
at
io
ns

an
d
ne
w
fie

ld
s,
w
ay

be
yo
nd

w
ha

t
th
e
in
it
ia
lb

lo
ck
ch
ai
n
te
ch
no

lo
gi
es

of
di
gi
ta
l

cu
rr
en
ci
es
.B

lo
ck
ch
ai
n
te
ch
no

lo
gy

al
so

gi
ve
s
cr
ed
ib
ili
ty

to
ac
ti
on

s
an

d
br
in
gs

th
e
co
nt
ro
lo

fd
at
a
ba
ck

to
th
e

or
ga
ni
za
ti
on

on
a
w
ho

le
ne
w
le
ve
l.

O
di
n
B
jø
rn

eb
o

01
.0

6.
20

22

D
ep

ar
tm

en
to

f
El
ec
tr
ic
al

En
gi
ne

er
in
g
an

d
C
om

pu
te
r
Sc
ie
nc

e,
U
ni
ve

rs
it
y
of

St
av

an
ge

r

Figure B.1: Master presentation from 1. June

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2022 Odin Bjørnebo

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Objectives
	Approach and Contributions
	Outline
	Chapter 7

	Background
	Blockchain Technology
	Containerizing

	Approach
	Existing Approaches
	Indy
	Aries
	Complete Hyperledger solution
	Microsoft

	Application Architecture Approach
	Analysis
	Layer One
	Layer Two
	Choice
	Static Agent

	Layer Three
	Architecture
	Blog inspiration
	Aries Cloud Agent -Python
	Proposed architecture

	Experimental Implemetation
	Technologies
	Docker Compose
	ACA-Py
	Go Application
	Controller DB

	Discussion
	Background knowledge
	Documentation
	Time spent learning

	Architecture design
	Implementation
	Project work

	Conclusions
	Future work
	Putting together
	Finalizing implementation
	Testing

	Instructions to Compile and Run System
	Requirements
	Running the code
	Looking at Database
	Video

	Master presentation

