@

University of

Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study Program /Specialization:

Spring semester 2022

Master of Science in Computer Science | Open / Genfidential

Data Science

Author: Sondre Tenng

Supervisor: Ass. Prof. Nacem Khademi

Title of Master’s Thesis: Further Developing a Procedural Digital Twin for Road Tunnels

ECTS: 30

Keywords:
Road Tunnels
Digital Twins

Sensor Communications

Number of Pages: 74

Stavanger, 15 June 2022

University
of Stavanger

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Further Developing a Procedural
Digital Twin for Road Tunnels

Master’s Thesis in Computer Science - Data Science by
Sondre Tenng
Supervisor
Ass. Prof. Naeem Khademi

June 15, 2022

Abstract

A Digital Twin is a close to as possible replica of a real world application,
in the digital world. The Digital Twin aims to simulate a process, in real
time so the user can generate information and value from the process. It
is a representation of a physical asset, object or service. Often the Digital
Twin takes data from real sensor to mimic the live process in a digital rep-
resentation. In this thesis, the focus is on Digital Twin representations of
road tunnels in Norway. This thesis builds further on previously designed
implementation and thesis written at University of Stavanger. The project
creates tunnel twins for any given Norwegian tunnel, by using Satens Veg-
vesen public API for tunnel information.

Extending work made previously that connects static models with gener-
ated sensor data to display sensors in a tunnel made in Unity. This thesis
furthers develops this project, by aiming to find ways to improve the archi-
tecture made in the current implementation while also finding new features
to add based on what is seen in other Digital Twins in the academic world.
Implementing these new features and changes to see how they are helpful
to the continuous work of this Digital Twin project.

ii

Acknowledgements

I would like to thank my supervisor, Ass. Prof.Naeem Khademi for sup-
porting me through writing this thesis and giving guidance when needed.

I would also like this time to thank my friends and family for always sup-
porting me in my journey.

iii

Contents

Abstract
Acknowledgements
Contents

1 Introduction

1.1 Motivation.
1.2 Objectives
1.3 Thesis Structure
1.4 Key Concepts
1.4.1 Previous Stack
1.4.2 Stack to be Implemented

2 Background

2.1 Related Work

iv

ii

iii

iv

CONTENTS

2.1.1 Digital Twins oL
2.1.2 Digital Twins Architecture
2.1.3 Cloud in Digital Twins
2.1.4 InfluxDB in Digital Twins

3 Methodology

3.1 Idea
3.1.1 Academia
3.2 Methodology
4 Design
4.1 Current Architecture L.
4.2 Digital Twins Layers of Architecture
4.3 Proposed features to be Added to the Digital Twin
4.3.1 Monitoring oo
4.3.2 Security
4.3.3 Graphical User Interface
4.4 Digital Twin Areas of Improvement
4.4.1 Integration Layer
4.4.2 Information Layer
4.4.3 Communication Layer

CONTENTS

4.4.4 Functional Layer 36

4.4.5 Security Layer L. 36

4.46 New Proposed Architecture Layer Model 37

5 Implementation 38
5.1 GUIL .. oo 38
5.2 Login System 42
5.3 Realistic OPC Emulator 45
5.4 Kafka Broker oo 46
5.5 Monitoringo 48

6 Results 50
6.1 Experimental Setup 50
6.1.1 Requirements 51

6.1.2 Current State 53

6.1.3 OPC Emulator 53

6.1.4 Broker 55

6.2 Research Questions 56
6.3 Visualization 0L 58

7 Conclusion 68

vi

CONTENTS

7.1 Future Work 69
7.1.1 Complete failed implementations 69

7.1.2 Platform 69

7.1.3 Quality of textures 70

7.1.4 Moresensors 70

7.1.5 Cloud 70

7.1.6 Security 71
References 75

vii

List of Figures

1.1

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Component Diagram taken from the thesis "Digital Tunnel
Twin Using Procedurally Made 3D Models" [5] 5

Replica of model described in the six layered cloud based
Digital Twin [12] o 12

Gantt Chart 19

Component Diagram taken from the thesis "Digital Tunnel

Twin Using Procedurally Made 3D Models" [5] 22
Previous Architecture in Layers 24
GUI Wireframe 28
Login Screen Lo o 29
Sign Up Screen 29
Current and Proposed Layer Architecture 37
Running the OPC Emulator 39

viii

LIST OF FIGURES

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

6.1

6.2

6.3

6.4

6.5

6.6

Running the Broker 39
Running the Digital Twin Framework 40
Screenshot of the GUI main screen 41
Screenshot of the GUI login screen 43
Screenshot of the GUI register screen 43
SQL Table for user data 44
Database flow 44
Current OPC data flow 45
Figure showing example of OPC Mainserver with OPC Servers

connected and sensor 46
Publisher subscriber with Broker, taken from Nohut thesis [5] 47
View from Grafana with table view for a specific sensor . . 48
View from Grafana with bar view for a specific sensor . . . 48
Screenshot of the GUI login screen 59
Screenshot of the main GUl screen 60
View of the zoomed out Virtual Twin in Unity 61
Immediate view of "Kleppetunnelen" as of running the Dig-

ital Twin o 62
View of the entrance of "Kleppetunnelen" 63

View of the entrance of "Kleppetunnelen", taken from No-
hut’s thesis with the old implementation [5] 64

ix

LIST OF FIGURES

6.7 View of "Kleppetunnelen" midway in, with some objects . . 65
6.8 View of selecting objects inside the Virtual Twin 65
6.9 View of the car fire simulation 66
6.10 View from Grafana with bar view for a specific sensor . . . 66

List of Tables

2.1

2.2

4.1

4.2

6.1

6.2

6.3

6.4

Table Showing Cloud Based Digital Twins in Academia.

Table Showing Digital Twins in Academia Using InfluxDB .

Table Showing Time-Series Databases based on popularity
from db-engine.com

Table Showing Benchmarks Tests for Several Time-Series
Databases

Software Dependencies
Computer hardware used for testing

Testing done by Nohut on old implementation, Reaction Time

1 I

Testing done by Nohut on old implementation, Notification
Time [B]

xi

13

15

33

34

92

93

95

Chapter 1

Introduction

1.1 Motivation

The ability to simulate a process, or the lifetime of an object can be very
valuable to many different industries. To simulate everything that would
also happen to a physical asset, in a digital space. While a simulation
usually studies one particular process, a digital twin can run any number
of useful simulations in order to study multiple processes at a time |7].
Digital twins also benefit from the two-way communication with real time
data, which simulations usually do not [7]. To study the entire process of a
production line, or the performance of a motor in a vehicle in real time can
be very valuable to companies.

The concept of a digital twin has been known for almost twenty years now,
but the growth in the field has increased exponentially in the last five years.
This growth is largely due to the increased use of IoT and access to quality
networking. Digital twin was predicted in IEEE(Institute of Electrical and
Electronics Engineers) as a top three tech trend to be adopted in 2020.

A digital twin is a digital representation of a physical asset, object or service.
A digital twin will replicate the instance in a digital space, in essence, a
computer program that uses real world data to create simulations that can
predict outcomes of the physical asset. There are a lot of different use cases

1.2 Objectives

for digital twins, and for each year that goes by, the concept will be tested
in new fields [6].

In recent years, a digital twin for Norwegian tunnel systems has been de-
veloped at the UiS(University of Stavanger). This framework is built on
the data collection of the NVDB database, which is a database containing
information about every tunnel in Norway. Given digital twins’ dependency
on data, this project wouldn’t have been possible without this data. Moti-
vation for this thesis is to further develop the application previously made
at UiS and see if any improvement can be made to its architecture and what
features could be added.

1.2 Objectives

The main goal of this project is to focus on further developing a proce-
dural method devised for the creation of digital twins for tunnels at a low
cost. Previously at UiS, there have been developed methods to procedurally
create low-fidelity 3D models for Norwegian tunnels using NVDB’s public
data. These 3D models have then been used to procedurally create a digital
twin framework that uses these models to replicate Norwegian tunnels.

Given that the problems I want to solve aren’t directly related to each other,
I have divided them into separate milestones:

e Studying and understanding the state of the art of digital twins. How
are they made up from an architectural standpoint. Identify which
parts of the digital twin framework can be further developed or re-
designed to increase performance and easier implement new features.

e Study the currently used sensor communication protocol and see if
the framework can be improved by using a different one.

e Adding analytics or monitoring and visualization interface for the
database.

e Adding GUI(Graphical User Interface) to the Digital Twin.

1.3 Thesis Structure

By implementing these objectives as stated above, I hope to could answer
the following research questions:

e Are there improvements to be made to the architecture of the Digital
Twin?

e What features are there to be added to the Digital Twin that could
improve functionality?

e Are the InfluxDB a suitable database to be used for this project?

e It is important to get people to use this application, how can changes
be done to the implementation to ease the barrier to entry?

1.3 Thesis Structure

The structure of the chapters of this thesis will be as followed:

e Chapter 1 - Introduction - Introduces what the thesis will be about
and what the goal of this thesis is.

e Chapter 2 - Background - Introduces similar types of projects from
academia and industry. Comparing how they are similar to this thesis
and what makes them different.

e Chapter 3 - Methodology - Presents the idea behind the project, and
the steps taken accomplish the goals set for this thesis.

e Chapter 4 - Design - Presents the design of the project. All design
and architectural choices that were taken will be discussed in this
chapter.

e Chapter 5 - Implementation - Explains all the implementations in
detail that were added in this thesis.

e Chapter 6 - Evaluation - Evaluates all the new changes that were
made to the original work with tests and showing the given results.

1.4 Key Concepts

e Chapter 7 - Conclusion - Gives a conclusion of the work that was
done in this thesis. Discuss what was done, what went well, what
went bad, what can be done in the future.

1.4 Key Concepts

This section of the thesis will introduce some methods and technologies
used in this thesis. Briefly mentioning what has been used, and will be
explained in more detail later in the report. All the concepts mentioned
here are closely related to the work of this project.

Starting with the technologies and methods used in the previous work that

this thesis will build on, I will briefly explain what has been used followed
by what I will implement.

1.4.1 Previous Stack

The previous stack is built upon this component diagram and these tech-
nologies and methods are already implemented:

1.4 Key Concepts

<<component>>
NoB Digital Twin Framework g InfudB
a .
- = NVDE Client InfluxDE Client -
IR O rr—
- ‘ i
)
Request T A Portass '
pEssssase 4
i
OPC UA Client H Broker Client
'
4 Resd
'
0 L
" I
']
: k2
Port:51000 } Port50000 Port:2028
.
' <<component=> =
H Virtual Twin
.
.
<<component>> ' <<component>> Broker Client
OPC UA Emulation Server a ' Broker Server m]ﬂ’ N roker Llen
' _| -
! Port50000) InfluxDB Client
\
; [
N T
i
<<component>> 1}
Procedural 30 Model Generator E< LE k- z

Figure 1.1: Component Diagram taken from the thesis "Digital Tunnel Twin
Using Procedurally Made 3D Models" [5]

NVDB

NVDB(Nasjonal Vegdatabank) is a database containing information about
all Norwegian roads and tunnels. NVDB is a free to use database by Statens
Vegvesen. The application should be able to generate and run any tunnels
from this database, given the tunnel id number and is dependent on infor-
mation from this database.

Influx Database

The database used is the InfluxDB datics, sensor data abase. It is an
open-source time-series database. Main use case for using InfluxDB are
monitoring, analytics and sensor data [8]. The digital twin will write all the
information that is happening to this database, and the data will then be

1.4 Key Concepts

read by the virtual twin which handles all the visualization for the user to
see.

MQTT Communication

MQTT is a network protocol to transport messages between devices. MQTT
was developed to work on any type of device, designed for cases where re-
source constraints can exist, or cases with limited bandwidth. It’s main
purpose is for reliable communication and is often used in sensor communi-
cation. It supports most types of network protocols, but since it’s purpose
is reliable communication, it usually will be used for TCP /IP.

MQTT uses a publish-subscribe pattern, where the sender of the message
are called the publishers, and the receivers of the messages are called sub-
scribers. The idea here is that the publishers only publish the messages
without knowing who will be listening(subscribing) to them, so the mes-
sages are not tailored for a specific subscriber, but to any subscriber that
wants to listen to that publisher.

Unity

Unity was originally a game engine that was mostly used for video-game
development. However in the 2010s Unity began its transition into other
industries as well, using it as a real time 3D platform. Unity is now used a lot
in simulation projects where it’s engine is used for visualization for the end
user. Its non-gaming simulation and modeling are used in a lot of industries,
including automotive, architecture, construction and engineering. It is also
used in this project to simulate the digital twin in a visual and interactive
space.

1.4 Key Concepts

1.4.2 Stack to be Implemented

Apache Kafka

Apache Kafka is an open-source software platform which is used for handling
real-time data feeds. One of the things Kafka provides is a publish-subscribe
pattern like MQTT, however Kafka is a software platform that also provides
many other services than only the publish-subscribe pattern. Kafka focuses
on storage and reading of data and data streaming processing scenarios in
real-time with high performance and high scalability.

Grafana

Grafana is an open-source analytics and interactive visualization web appli-
cation. Grafana is a popular component when it comes to monitoring stacks,
and is often used in combination with time-series databases. Grafana’s use
is to provide charts, graphs and alerts when connected to a time-series
database [9]. Users can create monitoring dashboards as a visualization
tool to track their monitoring data.

Chapter 2

Background

2.1 Related Work

In this section I will talk about previous academic work that will present an
overview of the research that has been done on digital twins. Specifically
digital twin work related to tunnel systems and sensor communications.
The academic work mentioned here has been used as inspiration for this
thesis.

The digital twins have so far had a brief history and have only been around
for closer to twenty years. Digital twins first entered the academic world in
2003 by Michael Grieves, where the concept was introduced as a product
life cycle management system for manufacturing [22]. Digital twins were
theorized earlier, and anticipated in 1991 by David Gelernter [23]. Digital
twins got its name in 2010 when it was shown on NASA’s road map report,
and has been the usual name for this technology since [24].

Digital twins rely on getting information from the physical world, usually
through sensors, to be able to display a realistic digital view. Digital twin
technology was probably a little premature when it was first introduced
given that it relies on IoT(Internet of Things) and good networking for all
the data to be displayed in real time. The last ten years, IoT has had an
exceptional growth in the industry, paired with increasingly good internet

2.1 Related Work

connections, which makes digital twins now more relevant than ever.

2.1.1 Digital Twins

Digital Twins were first introduced as a product life cycle management
system where it was used to simulate manufacturing, but has since then
been adopted by many different industries.

Examples of Digital Twins can be found in city planning and construction
industry. Where Digital Twins can simulate parts of a city to plan out with
construction work. With the upcoming of smart cities, where the use of
sensors for every part of the infrastructure is used, we can see the potential
of creating entire cities as digital twins. In smart cities sensors can gather
data collected from citizens, devices, buildings and assets that is processed
and analyzed to monitor and manage traffic and transportation systems,
power plants, utilities, water supply networks, etc. to get vast information
that can be used to simulate the city[2]. In the UK, Centre for Digital
Built Britain(CDBB) are working on a connected network of Digital Twins
platform, to connect the UK’s digital twins to work together|3].

In healthcare we can find that use of Digital Twins can be used in almost any
part of the industry, from simulating the operations of a hospital and risk
management, to Digital Twins of human bodies or healthcare applications.
In the paper “Digital Twin for Intelligent Context-Aware [oT Healthcare
Systems” a Digital Twin framework has been proposed to detect ECG heart
rhythms to diagnose heart disease and detect heart problems[4].

2.1.2 Digital Twins Architecture

In 2018, Fei Tao et al. [1] went through the academic papers about Digital
Twins from 2003 to 2015. This paper reviews DT applications in industry
from this time span. To understand the development that has been done
on Digital Twins and their application in industry, this paper thoroughly
reviews the state-of-the-art of Digital Twin research concerning the key
components of Digital Twins, the current development of them, and their
major applications in industry [1].

2.1 Related Work

The research and development of DTs has rapidly increased in the last few
years, so given the last papers from this review is from 2015, the tech may be
a little outdated. However, what is still being used today from this paper,
is the way of thinking of the DT architecture in forms of either three or five
layers. In this paper, they introduced the idea of thinking of Digital Twins
as a five layer architecture instead of the previous three layer architecture
implemented by Grieves.

In 2020, Wolfgang Kastner et al. [10] reviewed concepts, architectures, and
frameworks for Digital Twins in literature in order to develop a Generic
Digital Twin Architecture(GDTA) based on five layers of a digital twin
which was not dependent on any technologies [10]. The layers are Asset,
Integration, Communication, Information and Functional. Asset, being the
physical entity of the digital twin, how the sensors are set up in the real
world. Integration holds the run-time data or engineering data, which are
given by the sensors, which are usually time-series data and holds the state
of the physical object. Communication layer is a representation of how the
digital twin is communicating with its components, the concrete protocols it
is running or if it has publish-subscribe pattern support. Information layer
acts as a semantic integration layer for run-time data, engineering data and
historical data. Functional is the last layer of this model. The functional
layer is what implements interaction with the digital twin and gives insight.
Here we have the simulation, the monitoring and AI predictions etc. These
five layers of architecture are no standards for how a digital twin should be
implemented, but are a suggestion of the architecture of a general digital
twin.

2.1.3 Cloud in Digital Twins

In the last few years, cloud computing has also had an extreme growth
due to its higher availability and lower costs than what cloud computing
has been offering in the past. With this growth, cloud computing has also
entered the digital twin ecosystem, and the idea of connecting the digital
twin directly to the cloud. The cloud can operate as a storage provider, run
the computations and provide analytics.

In 2017, Alam et al. [11]| released a paper on a cloud-based digital twin
reference model with an approach to implement cloud in a digital twin. This

10

2.1 Related Work

paper explains the general use of this architecture, and with an example
of how it can be used in telemetries-based prototype driving assistance
applications for the vehicular domain [11].

Redelinghuys et al. [12] released in 2018 a paper on a six layered cloud-based
digital twin. The Digital Twin infrastructure was meant for a manufactur-
ing cell in Germany but could also act as a general architecture for other
applications. This model is somewhat similar to the five layer architec-
ture, except here the communication layer has been removed as a layer,
and replaced with two layers, IoT gateway and Cloud-based information
repositories as layers [12].

11

2.1 Related Work

Cloud-Based
Information
Repositories

loT
Gateway

Local Data
Repository

Emulation
And
Simulation

Local
Controllers

Physical
Devices

Figure 2.1: Replica of model described in the six layered cloud based Digital

Twin [12]

12

2.1 Related Work

Table 2.1: Table Showing Cloud Based Digital Twins in Academia.

Table Showing Cloud Based Digital Twins in Academia.

Digital Twin Published | Industry Layers | Cloud

C2PS: A Digital 2017 General 5 Yes
Twin Architecture
Reference Model for
the Cloud-Based
Cyber-Physical Sys-

tems [11]

Digital Twin Driven 2019 Manufacturing 5 Yes
Smart Manufactur-

ing [20]

A Six-Layer Digital 2018 General 6 Yes

Twin Architecture

for a Manufacturing
Cell [12]

Generic Digital 2020 General 5 No
Twin Architecture
for Industrial En-
ergy Systems [10]

A Cyber-Physical 2014 Manufacturing 5 No
Systems architecture
for Industry 4.0-
based manufacturing
systems [21]

2.1.4 InfluxDB in Digital Twins

In order to look into if the database we have has been used for this type
of work, we will look into how this database has been used in other Digital
Twin projects.

Kamath et al. [13] published in 2020 a paper about using industrial IoT in

13

2.1 Related Work

a Digital Twin Smart Factory, by using InfluxDB as the database, Grafana
as the analytics tool and Kafka as the publish-subscribe pattern. The aim
was to use only open-source tools for their DT architecture [13].

Zhou et al. [14] wrote a paper in 2020 for reducing energy consumption in
a iron making facility by using a digital twin for replicating the manufac-
turing. This paper used InfluxDB as their database for the output data of
their cloud-based digital twin architecture [14].

Vering et al. [15] published in 2021 a paper about a digital twin for calibrat-
ing HVAC systems in buildings. The goal was to create a DT to increase
efficiency through operational optimization and predictive maintenance of
real processes [15]. The project used InfluxDB as their database, and a
non-specified dashboard tool [15].

14

2.1 Related Work

Table 2.2: Table Showing Digital Twins in Academia Using InfluxDB

Table Showing Digital Twins in Academia Using InfluxDB

Digital Twin Published| Industry InfluxDB| Grafang Kafka

Industrial IoT 2020 Manufacturing | Yes Yes Yes
and Digital Twins
for a Smart
Factory[13]

A Collaborative 2020 Manufacturing | Yes No No
Optimization
Strategy for En-
ergy Reduction
in Iron making
Digital Twin[14]

Digital Twin De- 2021 Buildings Yes No No
sign with On-Line
Calibration for
HVAC Systems in
Buildings [15]

An open source 2019 Manufacturing | Yes Yes Yes
approach to the
design and im-
plementation of
Digital Twins for
Smart Manufac-
turing [16]

AT environment 2021 Manufacturing | Yes Yes Yes
for predictive
maintenance in
a manufacturing
scenario [17]

An IToT Solution | 2020 Manufacturing | Yes Yes Yes
for SME’s [1§]
IoTwins: Design 2021 General Yes Yes No

and Implementa-
tion of a Platform
for the Manage-
ment of Digital
Twins in Indus-
trial Scenarios

[19]

15

2.1 Related Work

Digital Twins in Tunnel Systems

In this thesis I will focus on the Digital Twin for tunnel systems.

A very similar project to this thesis is a project done by Jeroen van Hegelsom
and published in 2021[7]. Which is a project designing a Digital Twin of
Swalmen Tunnel in the Netherlands. Swalmen Tunnel is set to be renovated
between 2023 and 2028, and by proving how a Digital Twin can be utilized,
the project aims to support the need for more and reliable sensor systems
in the renovation. This project also uses Unity and BIM models to visualize
the tunnel. However this project only seeks to create a Digital Twin for this
specific tunnel only, and not every tunnel from a database.

Tunnelware is a company that aims to accelerate construction by improv-
ing information flow between contractors. Tunnelware is a digital twin of
a tunnel construction system that monitors everything there is to monitor
about this system, through its entire lifetime[9]. The goal is to create a
digital twin of a tunnel construction site which enables architects and plan-
ners to come together and work in the digital space. This in return, creates
an interactive project which promotes real-time collaboration. This is not
exactly what we try to do in this project, but it is in the same kind of
similarity.

In a paper published in 2020 by Jinwooung Kim et al. the authors create
a Digital Twin of a Noise Barrier Tunnel to predict the lifespan of the
components inside the tunnel[8]. The possibility of analyzing the life and
damage caused to components using a digital twin was verified, thereby
proving that a digital twin can be used in the component reuse scenario via
visualization|8|. This project does not aim to achieve the same goals as we
are, but they are using a Digital Twin of a tunnel using sensors to arrive at
a conclusion of their goal.

Related Work from UiS

This thesis is based on and will continue the work from a previous thesis
written at the University of Stavanger(UiS), by Berke Kagan Nohut [5]. We
will use this previous work as a basis to expand on to further develop the

16

2.1 Related Work

project[5]. The introduces a framework to create digital twins for any tunnel
in Norway, gathered from the NVDB(Nasjonal vegdatabank) database.

17

Chapter 3

Methodology

This chapter will present the idea behind this project and how I did my
research to come up with the ideas and solutions I will suggest in further
sections.

3.1 Idea

In the current implementation of the Digital Twin in road tunnels, the appli-
cation runs a few sensors and replicates them as object inside a procedural
made tunnel. The idea behind my thesis is to find ways to improve on this
solution in several different ways. I need to find out if the currently used
architecture is the best use cases for each component, as it was not really
studied in the previous thesis [5] why choices were made to choose different
kinds of software or frameworks. I will also try to look at what more func-
tionality can be added to the current implementation for it to be a better
version and provide a better use of it.

18

3.2 Methodology

3.1.1 Academia

The main way I have been researching to find the answer to my questions
is by looking through many, many, published papers online where Digital
Twins are discussed. Some of the articles are very wage about implemen-
tation, but are good at explaining their use case, while other focuses more
on how they are architecturally made up. By looking through these papers
I get more of an idea which types of features and functionality many of the
Digital Twins have, and a lot of it are the same for many of them even
though they are in vastly different technical fields. That makes sense given
that Digital Twins are made to replicate a real world scenario, it does not
really matter what kind of scenario needs to be replicated, as long as you
can feed the Digital Twin information, and monitor how it behaves.

3.2 Methodology

Here I will show the timeline I will be basing my work on. I have made a
Gantt chart describing my progress. The timeline is based on milestones
that will be completed in certain time frames. Gantt chart of the work is
being displayed below.

Milestones
Worckpackage 1 Research
- Study state of the art of digital twins
- Study previous work

Workpackage 2 Tools
- Study communication APIs for industrial networking and SCADA
- Study Time-series database(influx)
- Study Pub/Sub APIS(MQTT, Kafka)

Workpackage 3 Implementations
- Implementation 1 - Implement more realistic OPC emulator
- Implementation 2 - Implement Kafka
- Implementation 3 - Implement GUI
- Implementation 4 - Implement Login
- Implementation 5 - Implement Grafana
Workpackage 4 Documentation
- Write first sections of thesis, introduction and methods
- Write next sections of thesis, implementations
- Write next sections of thesis, evaluation

- Write next sections of thesis, conclusion q
- Go over thesis and correct mistakes
Figure 3.1: Gantt Chart

As seen in the Gantt chart, the work is represented by milestones. The thesis

19

3.2 Methodology

work start off in the first milestone, in Workpackage 1 Research. Basically
saying that the first weeks of the thesis goes to researching the topic and
mostly do the work represented in Chapter 1 and Chapter 2. Really get to
to know the topic and find about as much about it as possible before going
in to how this information can be used. Then I move on to Workpackage 2
Tools. In this work package I learn about all the technologies used in the
previous project work, and about the new ones that I want to implement.
It is important that I learn how to use them to their full extent before I
just throw them into the architecture.

After Workpackage 2 is done, I start on the implementation part of the
project in Workpackage 3. Here I go through one implementation at the
time, to be sure that I have the time to go through all five of them, instead
of starting on all of them and doing little by little on each. I start on
implementing the more realistic sensor emulator, as this takes big chunk of
the time as seen in the Gantt chart. Next up I implement the Kafka broker,
which also takes a big chunk of the time. The three next implementations
are less time consuming. I then implement GUI, Login and Grafana, which
all takes about the same time. At the end of the project, and also kind
of overlapping Workpackage 3, I do the last work package, Workpackage
4. The last work package is all about writing the thesis to document the
research, findings and the work that has been done in the project.

20

Chapter 4

Design

In this thesis the main objective is to explore how I can improve the pre-
viously made Digital Twin for Norwegian road tunnels. Until now, intro-
duction and related work has been presented. This coming chapter will
go over the methods used to improve different aspects of the Digital Twin
and how they are implemented. The complete setup and results of these
implementations will be described fully in chapter five and six respectively.

4.1 Current Architecture

As this thesis is continuing the work by a previous thesis, there is already a
complex architecture in place for the Digital Twin. The current architecture
is built by the components as shown in the figure below, Figure 4.1. The
main part of this thesis is to find ways to improve this already established
architecture, while also introducing new features to compliment the Digital
Twin and improve its usefulness.

21

4.1 Current Architecture

Figure 4.1: Component Diagram taken from the thesis "Digital Tunnel Twin
Using Procedurally Made 3D Models" [5]

The Digital Twin framework is built up by five main components, internal
communication, sensor communication, database, virtual twin and NVDB
communication.

22

4.2 Digital Twins Layers of Architecture

Internal Communication MQTT (Message Queuing Telemetry Trans-
port:

— Broker Server

— Broker Clients

Sensor Communication

— OPC UA Emulation Server
— OPC UA Client

Database

— Influx Server

— Influx Client

Virtual Twin

— Unity Project
NVDB

— NVDB client

4.2 Digital Twins Layers of Architecture

If we look at the architecture of the Digital Twin by using layers of archi-
tecture, like we looked at the different Digital Twins in the related work
section. We can see the architecture of a Digital Twin is usually divided
into five layers. The layers can be asset, integration, information, commu-
nication and functional. If we take the components from Figure 4.1 above,
we can divide them into a layer model as seen below in Figure 4.2.

23

4.2 Digital Twins Layers of Architecture

Security

Functional Unity Simulation

'
A

Communication REST MQTT | OPC (}::}

Information InfluxDB NVDB
Integration Emulated :
) Data ‘
Physical
Asset -
>t Asset : ’

Figure 4.2: Previous Architecture in Layers

Asset layer contains the physical assets of a Digital Twin. How the real
world sensors are set up. In this case we don’t actually have access directly
to the hardware, as we are just getting NVDB data from an API, and
emulating the sensor data. Asset layer is not something we can do anything
about at this point.

Integration layer contains the data we are gathering to the Digital Twin to
work with. It holds the run-time data or engineering data which are given
by the sensors in the tunnels. In our case, this data is emulated since we
don’t have access to the sensors in the tunnels. The data is emulated by
the OPC emulation server.

Information layer contains all the data from all different sources of the ap-
plication and how they are stored. In our case, it holds the data gathered
from the NVDB API and the data we are emulating from the OPC emu-
lation server. All this data is combined and stored in an Influx time-series
database that will be read by our Virtual Twin to be shown in Unity.

24

4.3 Proposed features to be Added to the Digital Twin

Communication layer is a representation of how the Digital Twin communi-
cates with its components in the application. We have three main communi-
cations in this Digital Twin, HTTP communication with NVDB API, OPC
TCP communication for the emulated data, and MQTT communication
between the Digital Twin and the Virtual Twin.

Functional layer is a representation of functionality that can interact with
the user of the application. The functional layer is what implements inter-
action with the digital twin and gives insight. Here we have the simulation,
the monitoring and Al predictions etc. In this application, here is where we
have the Unity application where we can interact with the tunnel in a 3D
space.

4.3 Proposed features to be Added to the Digital
Twin

The main objective of this thesis is studying what can be done to improve
this Procedural Digital Twin. Improving the Digital Twin can come in dif-
ferent ways, either finding ways to improve on already implemented features,
and finding new features we can add to further develop the application. In
this section we will look through all the features we are going to add to the
Digital Twin to increase functionality.

4.3.1 Monitoring

When it comes to Digital Twins information is key. The whole idea is to
have as much information about the processes and everything that is going
on as possible. With the current architecture we don’t really have that
much information except for what we can see in Unity and the database,
but it’s hard to see what is going on in the database in real-time. Therefore
I want to implement some way to monitor the data and have real-time
monitoring of the database in a way that it is easy to observe for the user.
To solve this task I have decided to add a real-time dashboard system, or
interactive visualization application. For this project I have decided to go
with Grafana as the monitoring application. As previously mentioned in

25

4.3 Proposed features to be Added to the Digital Twin

the Introduction, I have explained what Grafana is, and what it can do.
There are several reasons why I have chosen Grafana. First, it is free to
use, which is important for this project since it is a non-profit research
project and it is important that it is not expensive to be able to run it.
This also comes in handy when trying to get new people to try out this
application, free to use makes it an easier choice for people to try it out for
themselves. Grafana is also open-source, which is important so that we can
always know what is in the program and what changes are being made to
the application. And as discovered in the related work section, Grafana is
often used in combination with InfluxDB, as we can see in Table 2.2. Both
are free to use, open-source applications with very good connection to each
other. Grafana was mainly used for time-series databases but has widen
it’s horizon to also be used for relational databases. But since Grafana was
first mainly made for time-series databases, it was focusing on being easy
to use for time-series databases, and there is a lot of configurations made
specifically for InfluxDB, which makes them a good combination. Adding
monitoring would add a feature to the functional layer, since it gives more
functionality for the user in the Digital Twin.

4.3.2 Security

It is desired to add some kind of authentication system to the Digital Twin.
Right now there is no confidential information or specific reason to hinder
usage of the Digital Twin, but this project is continuously being developed
for future use and future use cases so having authentication system is needed
in the future. Right now an authentication system will stop people with
unauthorized access to misuse the NVDB API from being used a lot without
purpose and for people without authorization to use the features we have
added to this project. For now we will add a simple authorization system
that just stores the users name, username and password but in the future
there might be more information added to the user accounts, for example,
remember user setting and configurations for future use, or the accounts may
be used in the future to be used against a cloud solution for the project.
The optimal solution would be to host the authorization application and
database on the UiS servers and send calls to this web server. But since
I don’t have access to this system and getting that setup and authorized
would take a long time, I have decided to just have the database locally
for now and work more as a temporary concept for now. I have decided to

26

4.3 Proposed features to be Added to the Digital Twin

use SQLite as the database for this authorization. SQLite is an embedded
database that follows PostgreSQL syntax.

Adding this authorization system to the Digital Twin will add a feature to a
sixth layer of the architecture, security layer. Usually Digital Twins operate
with five layers to describe the architecture, but when adding authorization
or cloud connection, they often are added as their own layer. Here we will
add it as the sixth layer.

4.3.3 Graphical User Interface

With the current build, the Digital Twin is somewhat clunky to use and
get started with. You have to open three different command windows and
run the correct python files with the correct parameters and using the same
tunnel ID on all of them. A suggested implementation is to add a GUI to
run the Digital Twin from, where we can fill in the parameters once and run
all python files in the correct order from. To create the GUI I have chosen to
use the python package Tkinter which is a standard GUI library for Python
applications. Adding GUI to the application would add a feature to the
functional layer since it gives the user an easier way to use and configure
the Digital Twin.

It is also important to consider that one of the goals of the research team
working on Digital Twins at UiS is to get people to use it. If a program is
very hard to use and to get people to try it, it is going to be hard to convince
new people to try it. Adding a GUI which decreases a lot of the steps to
get the Digital Twin going, and at the same time looks more appealing to
use than running a lot of commands, might be more appealing for people
to try it out.

27

4.3 Proposed features to be Added to the Digital Twin

Procedural Digital Twin

Digital Twin ID: 201468

OPC Digital
Emulator Broker Twin
RUN ON
Number of PORT: 7001
OPC Servers: ’

RUN ON

RUN OPC RUN BROKER RUN DIGITAL
EMULATOR SERVER TWIN

Exit

Figure 4.3: GUI Wireframe

In Figure 4.3 above is a suggested design for how the GUI will look like, and
what I will try to replicate when I design the GUI part of the application.
It will have an input at the top for the Digital Twin ID, so we don’t have
to rewrite it several times when running all the python files. The OPC
Emulator will have its own input for the number of OPC Servers should be
deployed and what port to communicate on. The Broker will only have an
input for which port to run on. The Digital Twin will only have the general
input for tunnel ID. All three of them will have its individual button to run
each part, since they need to be run individually in a specific order.

We will also have GUI for the login system discussed previously. So the
first thing that meets the user when launching the program will be the login
screen, in which the user will have to login to continue to the Digital Twin
GUI where the user can run the applications. The GUI for the login system
will have a input field for username and password, and a login button which
will confirm the input fields to be correct before it sends the user further.

It is also necessary to have a sign up screen for new users to create an
account that they can later login with. This screen will have fields for
users to enter the username they want and the password they want for that
account and a register button. In the figures below, Figure 4.4 and 4.5,

28

4.3 Proposed features to be Added to the Digital Twin

are a suggested layout for the login screen and sign up screen.

Procedural Digital Twin

Username: []

Password: []

Login

Register New User

Figure 4.4: Login Screen

Register new user

Name: L]
Username:]
Password:]

Register

Confirm Password: []

Figure 4.5: Sign Up Screen

29

4.4 Digital Twin Areas of Improvement

4.4 Digital Twin Areas of Improvement

In this section I will look through all layers of architecture from Figure 4.1
and see which section could get an improvement or new feature. Since I
can’t really do anything about the physical layer, I will skip that one for
now.

4.4.1 Integration Layer

The Integration Layer is currently containing the emulation data from the
OPC Emulation server. The only data that I are interesting in using at the
moment, are data from NVDB and OPC Emulated data, so here is not really
anything I want to add at the moment. However, there are things that I can
change or improve on from the features that are previously implemented.

Emulated Data

The OPC UA Emulation Server currently creates all the emulated sensor
data, and sends it over to the Digital Twin through OPC communication.
This implementation skips the steps that sensors are creating the data,
sending it to OPC Servers, then sending them all to the same application,
and then sending them to the desired user of this data. The OPC UA
Emulation Server is just an application that generates all this data and sends
it over. I want to create an emulation server that is more realistic to how
it is done in the real world, creating each sensor that will send information
on its own with the configurations specified in Statens Vegvesen. It is also
desired to be able to specify the number of OPC Servers in the tunnel that
gathers the information from the sensors. Current implementation assumes
only one OPC Server in the tunnel.

4.4.2 Information Layer

The Information Layer is the layer that is responsible for the information
being contained. In this case it is where I store the emulated data and the

30

4.4 Digital Twin Areas of Improvement

data I gather from NVDB. In the current architecture NVDB is stored at
Statens Vegvesen and I gather it with an API and use it to create tunnels.
Emulated data is sent to the Digital Twin, processed and sent to an In-
fluxDB database. There are not really anything to add here at this point,
since I do have the types of data I want. However, as in the Integration
Layer, there are things to improve on.

NVDB

When it comes to the NVDB data, there is not a huge change I want to
make. The change that I would like to implement is updating the API from
NVDB API v2 to NVDB API v3. NVDB API v2 stopped being support
by August 2021, so it will no longer receive updates. This is the version
currently being used in this application. Therefore it is desired to update
it to the newest version, which is NVDB API v3. The structure will mostly
be the same, with some new elements, and continuous updates.

InfluxDB

The question in this section will be to find out if InfluxDB is a viable
database for this kind of project. In the current implementation, the choice
of database was not really justified, and since there is a lot of databases in
the world, I will take a look into if this database is a good choice for this
kind of project.

First I will look into some of the functional reasons for why to choose In-
fluxDB. Cost, InfluxDB is a free to use database, which as stated earlier,
is very important in this project. This project need to be as cost effective
as possible since it is not a commercial product that makes money. A free
database is very important. Secondly, InfluxDB is a open-source applica-
tion, as stated in the Monitoring section 4.3.1, open-source is important to
always have control of what is actually in the application.

Time-series databases are the best when I have data that are continually

capturing metrics combined with a timestamp for analytical purposes. Rela-
tional databases are usually for general use and not optimized for time-series

31

4.4 Digital Twin Areas of Improvement

data and tend to be slower at inserting and retrieving time-series data [25].
However, relational databases are more flexible for other cases and have
more use cases. But, as I will only use this database for one specific thing,
and that is gathering sensor data for metric use, combined with a times-
tamp, a dedicated time-series database looks to be the optimal choice [25].

However, there is a lot of different time-series databases, and I need to
figure out if this one is the best for this use case. It is important to know
if the selected database is used a lot by other programmers. This will give
a sign that it is a popular database because how well it is made, and by
picking a widely used database, it will be easier to find people that has
wast knowledge using this database. In the table below, Table 4.1, I have
gathered data from www.db-engines.com [26]. This data shows a ranking
of popularity from all time-series databases. Popularity ranking are based
of many different metrics, some being number of search queries on Google
and Stackoverflow [26]. For a full method of ranking the scores, go to
https://db-engines.com/en/ranking_definition [27]. The table below
shows the top 10 time-series databases based on popularity as of June 2022
[26]. Table 4.1.

32

https://db-engines.com/en/ranking_definition

4.4 Digital Twin Areas of Improvement

Table 4.1: Table Showing Time-Series Databases based on popularity from db-
engine.com

Table Showing Time-Series Databases based on popularity from db-engine.com
June June Database Type
2022 2022
Rank Score
1. 29.86 InfluxDB Time-
series
2. 9.12 Kdb+ Time-
series
3. 6.32 Prometheus Time-
series
4. 5.35 Graphite Time-
series
5. 4.56 TimescaleDB| Time-
series
6. 2.94 Apache Time-
Druid series
7. 2.43 RRDtool Time-
series
8. 1.86 OpenTSDB Time-
series
9. 1.65 DolphinDB Time-
series
10. 1.33 Fauna Time-
series

Even though this is a very popular database, and fits the use case of this
project, it is important to find out how well it compares to other databases
on a performance level. It is not easy to find a well made performance
metric test that use the same test for all the databases to consider, however

33

4.4 Digital Twin Areas of Improvement

I did find a test used for six different time-series databases using the same
test and metrics. Below is a table, Table 4.2, showing the scores of metrics
test done by the InfluxDB team, so this test might be a test to show off
specifically where InfluxDB does the best. However it does show that in
this specific case, InfluxDB does have best performance, and it is a case
that is similar to the own in this project. The benchmark test focused
on a system that models a common DevOps monitoring and metrics use
case. The system had a fleet of servers that were monitoring and reporting
application metrics at given intervals. The data set had 100 servers with
100 values measured per server, on 10s measure interval, over a period of
24 hours. The experiment gathered a total value of 87M samples of data
per day. The exact same experiment were done on all the databases in
Table 4.2 below. The benchmark scores tested write throughput, on-disk
compression and query performance. Write throughput had a bulk load
performance of the 24-hour data set for 100 hosts with four concurrent
writers, here the higher score is the better performer. Table 4.2 shows how
many writes are written to the database per second. On-disk compression
data represents 24 hours of metric for 100 hosts, here the lower score is
the better performer since it shows the amount of space used for the given
data. Query performance shows the maximum value across random 1-hour
intervals, grouped by minute, here the higher number is the best performer
as it shows amount of queries per second|28, 29, 30, 31].

Table 4.2: Table Showing Benchmarks Tests for Several Time-Series Databases

Table Showing Benchmarks Tests for Several Time-Series Databases
Database Write On-Disk Query Per-
Through- Storage formance
put
InfluxDB|28] 2.674.948 /s 155MB 925/s
Graphite[28] 180.606 /s 1120MB 92.8/s
Splunk|29] 161.578 /s 3146MB 37/s
Elasticsearch[30] | 702.825/s 1400MB 120/s
Cassandra|31] 625.711/s 375MB 275/s

34

4.4 Digital Twin Areas of Improvement

In all of the benchmark tests done on these databases, I can see that the
InfluxDB outperforms the other databases it was tested on by a very good
margin. Since it was not tested on all time-series databases, just a few
specific ones, I can not guarantee that it is the best performing database,
but I can safely say that it does perform a lot better than many of them,
and it has a similar use case to this project, monitoring sensor data.

By now it has been established that InfluxDB seems like a pretty good
choice for this project. It is convenient when it comes to cost and open-
source, it seems like a very good performer as I talked about in the previous
paragraph, and by looking at the Table 2.2 in Chapter 2 it is shown to also
be a popular database when it comes to Digital Twins. By the research
done by now, it does seem that InfluxDB is a very good database for this
project, and it will not be necessary to change the architecture to be using
a different database.

4.4.3 Communication Layer

The Communication Layer is the layer that is responsible for the way infor-
mation travels in the application. In the current architecture, I have three
different type of communications, REST, MQTT and OPC.

REST is the communication used to talk to Statens Vegvesen and gather
the NVDB data. Since I can not change this API, this communication
can not be changed in any way and will remain the same. Using OPC
communication to talk to the sensors in a tunnel is the way Statens Vegvesen
is doing it now in the real world, so changing this would decrease the realism
of the project, so this communication is going to remain the same.

MQTT

MQTT protocol is the pub/sub system that is currently being used to no-
tify the Virtual Twin whenever there is an update in the database so that
the Virtual Twin can update itself. By researching the architecture in the
Digital Twin, I believe that MQTT is not the best use for this, and I should
be looking into changes to this pub/sub system.

35

4.4 Digital Twin Areas of Improvement

As many sources are referencing, MQTT protocol is the pub/sub system
you want to use when you are working with low power machines that needs
a as lightweight as possible application to transfer the data (32, 33, 34].
For example if you are places with bad network connection or low compute
power, MQTT seems like the pub/sub system to use [32, 33, 34]. While
Kafka is to be preferred in situations with high power, and stable connection
[32, 33, 34]. As the pub/sub system are used between the Digital Twin and
the Virtual Twin, I can be sure that it will always be a high power and
stable connection so it does seem like Kafka is a more natural choice to go
for. Kafka is made for high throughput and high availability.

RabbitMQ is also an option to look into when it comes to pub/sub systems.
However, by the research I have done so far, RabbitMQ is more of a niche
pub/sub system, when special routing needs or special file types are needed
to be sent[35]. Kafka seems to be the best option for high availability and
best throughput, and RabbitMQ are better for special routing and special
file types|35].

4.4.4 Functional Layer

In the Functional Layer is where the Unity feature is placed. Unity let the
user go around in a virtual representation of the Digital Twin and inter-
act with objects. This feature is the core of the project, and will not be
replaced or improved upon architecture wise. However I will look into fea-
tures to add to compliment the application to gain additional functionality
to the project. Here two sections previously mentioned comes in. I will
do no changes to what has been previously made, but it is here I will add
monitoring and GUI to the functional layer of the architecture.

4.4.5 Security Layer

Usually Digital Twins are represented as layers of five as I have talked about
several times earlier in this thesis, however when applications have either
cloud or security implemented in them, they usually add another layer, the
sixth layer. In this case I have added the security layer to make it a six
layer application and added the login system in this layer.

36

4.4 Digital Twin Areas of Improvement

4.4.6 New Proposed Architecture Layer Model

By now I have gone through several changes to bed made to the archi-
tecture of the Digital Twin, whether it is adding new functionality with
new features, or changing what has been made previously with the current
implementation. With that said I have made a proposed six layer architec-
ture model as seen in the figure below, Figure 4.6, where all the proposed
changes have been added. The core of the architecture will remain the same,
with some changes added. In the next chapter I will go through how I will
implement them to the application.

Security

Functional

Communication

Information

Integration

Asset

Unity Simulation

\
be

REST | MQTT [OPC

\

A

InfluxDB NVDB

Emulated
Data

Physical
Asset

Old Implementation

(0 T o

Login
L System
Unity | Grafana [GUI
e <
REST | KAFKA | OPC

\
>

Y

InfluxDB NVDB

A

(D T oo

"

Emulated
Data

Physical
Asset

New Implementation

Figure 4.6: Current and Proposed Layer Architecture

37

Chapter 5

Implementation

Until now I have talked about what changes and implementations can be
done to alter the Digital Twin to make it a better application to use. I have
talked about the design and how it should be altered. In this chapter I will
talk about how these implementations will be implemented and how they
are going to be working. I will only go over what I will implement, and not
all the components of the Digital Twin. Parts of this section might be ac-
companied by diagrams and charts to further provide understanding. I will
start with the individual parts that will be added, and go through sections
that was changed last. Instead of talking about the current architecture or
implementation, it will now be referred to as the previous architecture or
implementation.

5.1 GUI

In order to increase the functionality and the ease of use of the Digital
Twin, the GUI was implemented. This GUI eliminates the need for the
user to open up three different command windows and run the specific
python scripts in the desired order with desired parameters that you have
to repeat several times.

In the previous implementation the user would first need to locate the OPC

38

5.1 GUI

project files and with a command window, run "python main.py". This
would start up the OPC Emulator. Then the user would need to locate the
broker project files and with a command window, run "python main.py".
This would start up the MQTT broker. Next the user would need to locate
the "digitaltwinframework" project files and with a command window, run
"python main.py <tunnel id>". The tunnel ID for the OPC Emulator
was also hard coded into the code, making the user have to go inside the
code and change tunnel ID. Figures below show the process of running the
previous implementation. Figure 5.1, 5.2, 5.3.

:\Users\Sondre\Desktop\DigiTun\DigiTUN\OPC>python3 main.py
Endpoints other than open requested but private key and certificate are not set.
Listening on localhost:51000
digitun_opc_ua_emulation_server started at opc.tcp://localhost:51000

Figure 5.1: Running the OPC Emulator

:\Users\Sondre\Desktop\DigiTun\DigiTUN\Broker>python3 main.py
Broker is running...

Figure 5.2: Running the Broker

39

5.1 GUI

:\Users\Sondre\Desktop\DigiTun\DigiTUN\DigitalTwinFramework>python3
main.py 233122161
Object ID: 233122161
etting data from NVDB. Please wait...
Checks if tunnel tube(s) contain(s) data...
Tunnel tube #1 with ID: 233122161 - Contains required data!
Getting local start point...

Checking if the geometry have 3 dimensions...
The geometry is 3 dimensionall!
Got local start point!
Fetching tunnel tube #1 with ID: (233122161, 67)...
Running data request...
Finished data request!
Putting data in dictionary...

Figure 5.3: Running the Digital Twin Framework

By developing a GUI based on the proposed design Figures in chapter 4,
I have developed a GUI that can run all these three applications from the
same window, and removing the need to write in the same parameter several
times, for example the tunnel ID. Figure below shows a screenshot of the
GUTI that I have developed with Tkinter in Python. Figure 5.4.

40

5.1 GUI

Procedural Digital Twin

DIGITAL TWIN ID

OPC EMULATOR BROKER DIGITAL TWIN

Number of OPC Servers BROKER PORT:

OPC PORT:

RUN OPC EMULATOR RUN BROKER RUN DIGITAL TWIN
Exit

Figure 5.4: Screenshot of the GUI main screen

In this main screen of the GUI, we have four main sections. The top part
of the screen is the title of the application, and just below it are the input
field for inputting the tunnel ID. To the left we have the OPC Emulator
section. Here we have two input fields, where I can input the number of
desired OPC Servers and choose the wanted port to run the OPC Emulator
on. In the middle section is the Broker section, here the user can input the
desired port for the Broker application to run on. To the right we have the
Digital Twin section, which does not have any input fields, it only requires
the tunnel ID input from the top section.

The three sections, OPC Emulator, Broker and Digital Twin has their own
run button. When the run button for the OPC Emulator is clicked, it
will take the input from the tunnel ID, Number of OPC Servers and OPC
Port, and will with these inputs run a command window that runs the OPC
Emulator with these specific parameters. When the run Broker button is
clicked, it will take the input from the Broker Port input only, as the broker
does not need the tunnel ID to run. When the button for the Digital Twin
is clicked, it will take the input from Broker Port and the tunnel ID, open a
command window, and run the Digital Twin with these specific parameters.
The button on the bottom which states "Exit" will exit the application when

41

5.2 Login System

clicked.

With this logic in place for the GUI, it is much easier for the user to start
running Digital Twins without opening a lot of command windows manually
and locating each specific file in different directories to run. This will also
make it faster to run several Digital Twins with the same configurations, or
small changes. The goal of this implementation is to make the life easier
for the user, and increase that chance that a user will use this program or
that it is so intuitive that a user will continue to use it.

5.2 Login System

The Login System is designed with a GUI part similar to the previous
section. It is designed with Tkinter in Python so users can log in by plotting
in inputs in the GUIL. From the GUI the user can both log in and create
an account to log in with. Given that there is no sensitive information
and the log in system is mostly made for testing purposes at the moment,
anyone can register as a new user without needing to have admin rights.
This makes the project easier to work on without every person involved
will need to contact an admin to have their rights given. The main idea
of adding this login system is to show more ways to add functionality to a
Digital Twin.

The first thing that meets the user after running the application, is the
login screen. Here the user can enter their username and password to log
in and get to the main window as explained in the previous section. Also
on this screen is the option to register a user, which takes the user to a new
window, where a user can be registered. In the Figures below, you can see
how these two screens looks. Figure 5.5, 5.6.

42

5.2 Login System

Username

Password

Register User

Figure 5.5: Screenshot of the GUI login screen

§ User Registration — O X

Register User

Name
Username
Password

Re-enter password

Register User

Figure 5.6: Screenshot of the GUI register screen

43

5.2 Login System

Since the optimal solution would be to create a login system that ran on
the University of Stavanger servers with a database and an API system,
the system implemented here is very easy and lightweight since it most
likely will be changed when getting a hosting system. Also the current
Digital Twin does not store any data that is user specific as of now, so
the database that connects to the login system will only hold username,
name and password for now. The database is a SQLite database running
locally on the computer, so users who does not have the database on their
computer can not use it to log in as of now. As mentioned, this is more to
show a concept as of now since I do not have hosting available, so it is a

pretty naive implementation. Table 5.7 showing user data table.

user_info

Name
Username

Password

Figure 5.7: SQL Table for user data

Login

<

Main
Screen

Figure 5.8: Database flow

User data

=

44

SQLite DB

5.3 Realistic OPC Emulator

Figure 5.8 shows the simple flow of the login system. In the Login screen
the user will call the database to see check if the username and password
match. If there is a match the user will be sent to the Main screen where
the user can start working with the Digital Twin.

5.3 Realistic OPC Emulator

With the current implementation of the OPC Emulator, the emulator gen-
erates sensor data, and then sends it directly to the Digital Twin. But I
wanted to create an implementation that is more realistic to the real world,
where each sensor generates its own data, sends it to an OPC Server, which
then sends it to an OPC Mainserver, which then can send it to be used, like
a Digital Twin.

OoPC
communication

OPC ::
Emulator Digital

Twin

Figure 5.9: Current OPC data flow

Figure 5.9 shows how the current implementation works, very simple one
step communication. With the new implementation I have developed there
is a much more realistic approach to the communication. The data gener-
ation is being done in the exact same way as the previous implementation,
except for that one program making all sensor data, it makes only the sen-
sor data for itself. The data is then sent to an OPC Server, which is sent
to an OPC Mainserver, which is then sent to the Digital Twin. This may
create a little latency for the Digital Twin to receive its data, but it is im-
portant to create an implementation that is as realistic as possible. This
approach also gives more power over each individual sensor, so it is easier

45

5.4 Kafka Broker

to create different working sensors that does not have to be created by a
generic program that generates them all. Sensors will now also be in charge
of their own OPC connection and can be found in the network as a single
sensor instead of the entire OPC Emulator. With the new implementation
I can also specify the amount of OPC Servers within a tunnel, since this
can change from tunnel to tunnel in the real world.

OPC
Mainserver
OPC OPC OPC
Server Server Server
Sensor Sensor Sensor Sensor Sensor Sensor

Figure 5.10: Figure showing example of OPC Mainserver with OPC Servers
connected and sensor

5.4 Kafka Broker

The current implementation are using MQTT protocol as the pub/sub sys-
tem to notify the Virtual Twin whenever the database has been updated
with new data so the Virtual Twin can send a request to the database to
get the newest data. In this implementation implemented here, MQTT
protocol will be replaced with Apache Kafka as the pub/sub system.

46

5.4 Kafka Broker

Broker Digital Twin Virtual Twin Virtual Twin

T
|
|
|.|-.|<_S ubscri be—L-lr|

Subscribe

-

1

|

I

I

I

|

I

I

| I

Notiﬂcation_[J :

- - ‘Notification - - Tl ———————— >¢|
|

I

1

T

I

I

|

I

.

|
|
I
|

-

Subscribe—L—r'
I |
Dd—Notiﬂcation—[J
[|

- = “Nofification = = - = = = = = = = =

I
- - -Nofification- - - =---=----~- T---=-=-=--- >L_r|
|
|
dnsubscribe—m
|

|
|
|
I
Motification 1
|'-rl 1
IJ_T - - -Notification- - L - = - - - == - - e >|j

o0

T

Figure 5.11: Publisher subscriber with Broker, taken from Nohut thesis [5]

The flow of the pub/sub system will work exactly like the pub/sub system
with MQTT. As seen in Figure 5.11, it is the same model as MQTT used in
Nohut’s thesis [5]. The changes to be made are to remove the Broker Client
and Broker Server from the application, and instead replace them with
running Kafka in the command window. Kafka comes prebuilt with tons of
functions and libraries to ease the connection and usage of the framework,
so a client and server class are no longer needed. Kafka will implement its
pub system in Python and Sub system in Unity.

47

5.5 Monitoring

5.5 Monitoring

To monitor the Digital Twin, I have connected it to as monitoring dashboard
called Grafana. By connecting the Digital Twin to a monitoring visualiza-
tion web app, I can watch all the sensor values live in a clean and modifiable
dashboard which makes it a lot easier to watch the specific sensors I want
to watch.

Table

Time
2022-06-1510:19:15 counts:d

2022-06-1510:19:24 counts:6

2022-06-15 10:19:57 counts:7

2022-06-15 10:20:26 counts:8

2022-06-15 10:20:56 counts:9

2022-06-1510:21:24 counts:10

2022-06-15 10:21:57 counts:11

2022-06-15 10:22:26 counts:12

Figure 5.12: View from Grafana with table view for a specific sensor

Panel Title

271551752

10:19:16 10:21:54 10:24:57 10:27:56

Figure 5.13: View from Grafana with bar view for a specific sensor

In Figure 5.12 T chose to watch a specific sensor and see its counts value in
table view. In Figure 5.13 I chose to watch the same sensor but switched
up the view form. Grafana makes it really easy to connect the database to
the visualization tool and customize the view all I want. This is however
connected straight to the database, so it will only work as a ground truth

48

5.5 Monitoring

for the sensor data, actions done in the Unity that affects sensor values
will not be seen in this implementation. To get the live data straight from
Unity, a new database needs to be created that live reads the data from
Unity, and connect that one also to the Grafana system.

49

Chapter 6

Results

This chapter I will go over the current state of the project and what results
I have found during this thesis and answer the research questions stated in
Chapter 1. The proposed architecture will be justified by results and the
findings done in Chapter 4 and Chapter 5, to best state if these proposed
changes still are considered to be useful.

In the previous thesis that this project is based on [5], it was stated that the
results section was based on the Digital Twins ability to produce said Digital
Twins and collect data from multiple sources. However, I have looked more
in to the architecture choices made in that thesis and how each section
could be approved upon from how they originally was implemented. Not all
implementations deemed successful, and some I can not really see the full
impact of yet, since the Digital Twin project is still in an early stage and
there is room for a lot more improvements, features and scalability. I will
also in this section do a experimental run of the Digital Twin and how it is
setup.

6.1 Experimental Setup

In order to run the Digital Twin application, there is a lot that needs to be
set up before the user can run it. Some frameworks needs to be downloaded

50

6.1 Experimental Setup

and set up correctly, and some parameters needs to be set in different config-
uration files to be sure to have correct paths to programs on the computer.
All of these steps will be walked through in the following section.

6.1.1 Requirements

The Digital Twin application is programmed and tested by people using
Windows OS, and therefore it is currently only known to work on this OS
since it is not tested on any of the other ones. Currently I’'m using Windows
11 to run the application. There are two main programming languages used
in the Digital Twin, Python and C#. To be able to run the Digital Twin a
working version of both Python2 and Python3 are necessary. Python2 are
being used to create the tunnel models, and Python3 are used for all the
other components, OPC Emulator, GUI, Broker, etc. C# are being used for
the code that are running in Unity to control the objects inside the tunnel.
All of these programs should have its own version for different OS, but they
are all OS specific, given that I have only used windows specific versions of
the needed applications, I can not guarantee it will work on another OS. As
seen in the table below, Table 6.1, all programs should be able to be run on
Windows, Linux, MacOS except for the Unity 2019.4.5f1 version.

51

6.1 Experimental Setup

Table 6.1: Software and their platform dependencies

Software and their platform dependencies

Software Program Version Platform Accessibility

Digital Twin Frame- InfluxDB 1.8.4 Windows/Linux/MacOS

work

Digital Twin Frame- Unity 2019.4.5f1 Windows/MacOS

work

Model Generator Maya 2020 Windows/Linux/MacOS

Broker Apache 3.2 Windows/Linux/MacOS
Kafka

Broker Zookeeper | 3.4.9 Windows/Linux/MacOS

Digital Twin Frame- Python 2 Windows/Linux/MacOS

work

Entire Application Python 3 Windows/Linux/MacOS

Broker JRE 8+ Windows/Linux/MacOS

Monitoring Grafana 9.0 Windows/Linux/MacOS

52

6.1 Experimental Setup

I have only used a single computer through this project and therefore only
tested the system on this one computer with specific resources. Since ev-
erything in the application is running locally, the resources the computer
possess can have a big impact on how well and fast the application is run-
ning. In Table 6.2 below I have specified which components the computer
I have used contains.

Table 6.2: Computer hardware used for testing

Computer hardware used for testing.
CPU Intel Core i7 (8. generation)
8565U
GPU NVIDIA GeForce GTX 1650
Memory 16GB
Drive 512 GB SSD
Operating System Windows 10 Home

6.1.2 Current State

By doing several tests on the Digital Twin with the new proposed archi-
tecture system, I can see on the performance based changes if there are
any improvement to the benchmark metrics. By doing the same kinds of
tests on the old implementation and replicating the same changes on the
new implementation, I can see if there are any improvements to time us-
age. There are several tests that would be viable to check with the new
implementation.

6.1.3 OPC Emulator

OPC Emulator time. Since the generation of sensor data has been changed
to a more realistic approach, with more servers and more communication
between different communicators, testing the new speed versus the old one
is desired. The optimal way of measuring would be to time every step of the

53

6.1 Experimental Setup

way and compare it to the old implementation. This will give an overall idea
of the difference between the implementation, and by logging every single
step, it is possible to spot bottlenecks more easily in case of finding further
improvements. To start a timer when a sensor starts emulating data, time it
when it hits the OPC Server, time it when it hits the OPC Mainserver, time
it when it hits the Digital Twin, and lastly time it when it is written into
the database. This would give a good overall picture of the performance
of which data is generated and stored in the database. Doing this with
both the old implementation and new implementation and compare them
would give a good benchmark of performance, given the experiment is tested
several times to make sure there are as little randomness as possible.

However, the new implementation was not successfully developed into the
Digital Twin. The current implementation is not currently working and it
will not be possible to do an analysis of the performance since it is not
functional. The current implementation sends sensor data over to the OPC
Server, but is not able to send it forward to the OPC Mainserver, to then
be sent to the Digital Twin. As of now, this is a non-functional part of the
Digital Twin and was not a successful integration. The new implementation
would have most likely performed at a slower rate than the old implemen-
tation, given that it has increased layers of communication and applications
to go through. This is done on purpose, not to slow down the application,
but for it to be more realistic in how it is done in the tunnels in the real
world. Sensor data does not magically appear where you want them for
convenient use, but needs to be generated and go through a realistic en-
deavor. One of the biggest points of a Digital Twin, is for it to replicate the
real world as best as possible, so it is possible to make decisions based on
the information generated using such concepts. I think the approach I have
discussed and tried to implement is a better solution for realism, but at this
point I can not tell how this would effect the Digital Twin when it comes
to time performance. In Table 6.3 below is the benchmarks done by Nohut
in his thesis [5] for the previous implementation. Nohut tested the time it
took to pull the data from the OPC Server and until it was discovered as
a change in the database by the Digital Framework. He got the following
results with the old implementation Table 6.3.

54

6.1 Experimental Setup

Table 6.3: Testing done by Nohut on old implementation, Reaction Time [5]

Number of Entries Fastest Slowest Mean Median
500 3123ms 5266ms 4081.28ms 4035ms

6.1.4 Broker

Broker time performance. From the old to the new implementation when it
comes to Broker communication, is the switch from MQTT to Kafka. This
was done to improve performance, but also for the Digital Twin to have
more scalability for the future. Right now, that is not much needed, since
the MQTT worked fine for the implementation that was implemented. This
change was a change made for the future of the Digital Twin. Right now
the Digital Twin only handles three different types of sensors, light, sign,
and cabinet. Given that this is a project that will be worked a lot on and
developed even further, it is important to think about how it will scale in
the future. If the Digital Twin is able to almost fully mirror a real world
tunnel, it will be a lot more sensors than these three mentioned here. It
might be hundred of different types of sensors alone, and with this in mind
it is really important to think about solutions that can scale to fit expected
future needs.

To test the benchmark performance to test the new implementation, the
best way would be to time the time between new data is stored in the
database until the Virtual Twin receives a notification for it to update itself
with the new information from the database. However, the new implemen-
tation here also was not successfully implemented to the Digital Twin. The
current implementation is not currently working and it will not be possible
to do an analysis of the performance since it is not functional. The current
implementation sends notification to the Kafka Broker, which then sends
the notification to the Virtual Twin with a pub/sub system. However, the
Virtual Twin is not able to recognize this data, and will in turn not update
the objects in the Virtual Twin with the new data. The loaded objects
in the Virtual Twin will only have their default values when created and
never be updated. It is hard to tell how the performance would line up to
each other if they both were able to be tested for a benchmark test. The
hypothesis is that they would be very similar in performance at this point,

55

6.2 Research Questions

given the small number of sensors, but Kafka Broker would be better with
future development. As of now, there is no way to say based on the perfor-
mance if this change would increase the notification time. Nohut did make
a performance test in his thesis for the old implementation [5]. He calcu-
lated the notification time by running the project for an hour, the Digital
Twin would then produce timestamps right after the database updated, and
when the Virtual Twin produced a new timestamp after it received notifica-
tion to update [5]. In Table 6.4 below are the results from Nohut’s testing
performance for the old implementation [5].

Table 6.4: Testing done by Nohut on old implementation, Notification Time [5]

Number of Entries Fastest Slowest Mean Median
500 7ms 145ms 59.035ms 54.0ms

6.2 Research Questions

In chapter 1 I introduced some questions I wanted answered by doing this
thesis and I will now see if I am closer to give an answer for them now. The
questions was as followed:

e Are there improvements to be made to the architecture of the Digital
Twin?

o What features are there to be added to the Digital Twin that could
improve functionality?

e Are the InfluxDB a suitable database to be used for this project?

e It is important to get people to use this application, how can changes
be done to the implementation to ease the barrier to entry?

"Are there improvements to be made to the architecture of the Digital
Twin?"

I did thoroughly look into the components of the Digital Twin to find where
improvements could be made. In the big picture, of which frameworks to

56

6.2 Research Questions

be used, the only thing I would want to change is the pub/sub system,
change the MQTT protocol to Kafka. In Chapter 4 I have explained why
I think this is a good change to do, but unfortunately since the Kafka
implementation is not working, I can not test it properly and see how it
would work. I did implement some smaller changes that does not affect the
big picture of the architecture, like making more realistic sensors and how
they are set up.

"What features are there to be added to the Digital Twin that could improve
functionality?"

I have gone over several implementations that I think are good features to
add to the Digital Twin, namely GUI, login and monitoring systems. These
are systems that are present in almost every single Digital Twin I researched
and should be in all of them. Also adding analytics is an important part of
Digital Twins, which I have not tried to implement in this project. Either
real time streaming analytics or batch loads.

"Are the InfluxDB a suitable database to be used for this project?"

As T thoroughly went through in Chapter 4, I think InfluxDB is a great
choice of database for this project. InfluxDB is a database made for projects
like this, time-series sensor data. It is free to use, which is important in this
research project, and it is open source which is also important to let us
know what is inside the program.

From the benchmark tests, it was miles better than the other databases
that was tested, however there were not that many databases in the test,
it does indicate at least that it is a lot better than some similar time-series
databases, so its performance should at least be decent.

From the popularity overview InfluxDB was by far the most popular database
from the metrics used in that research. This indicates that it is a good
database since so many people are using it. And when many people use
the same software, it is easier to find solutions for them and people that
know how they work. Also by looking at InfluxDB in Digital Twins table
in Chapter 2, Table 2.2, I can see that InfluxDB are also widely used in the
creation of Digital Twins. Considering all this, I think InfluxDB is a great
fit for this project.

57

6.3 Visualization

"It is important to get people to use this application, how can changes be
done to the implementation to ease the barrier to entry?"

For people to try new things it is important that it is smooth running,
visually pleasing and easy to use. I have been focusing in this project to
implement something that makes the Digital Twin easier to use. And I
think by adding the GUI to the implementation it will make users more
appealing to try it out when they do not have to open a bunch of command
windows and typing a lot of parameters just to get the program running. I
think this is a good feature and will benefit this project with increased user
approval.

6.3 Visualization

The Digital Twin is not only used for gathering data and processing them
and putting them in to a database to be analyzed. The Digital Twin are
also used to make the person that uses them feel like this is a replica of
the real thing. The user should feel like this is close to the real world,
and that everything that happens in the Digital Twin, can also happen
in a real tunnel. The Digital Twin of the tunnels are made to look very
similar to Norwegian Tunnels, and it is important that they are as realistic
as possible, so the people that performs real life scenarios on them will have
it feel realistic. For this reason, it is important for the Digital Twin to look
good visually.

It is also important for the aesthetics to look good when it comes to sparking
an interest for new people to try out the project. As one of the goals is to
start generating a user base, either companies or other researchers, the
barrier to entry is lower when having a visually more pleasing product to
showcase.

The visualization of the Digital Twin have no way of being performance
tested, and can only be tested by people viewing the application. I have not
made any noticeable changes to how the Virtual Twin are being visualized,
other than with GUI and Monitoring device. The Virtual Twin are however
affected by Kafka Broker and OPC Emulator not working, so it will affect
how the Virtual Twin is viewed to some degree. Below I will show some

58

6.3 Visualization

visualizations of the running application.
The first thing that meets the user when running the application is the

GUI log in screen. Here I will create an account and log in with the created
account.

f Login — O X

Login

Username

Password

Figure 6.1: Screenshot of the GUI login screen

When the user has logged in, the user is taken to the main screen of the
log in GUI. After filling out the wanted parameters, the user can now run
the application. The correct order of running, is to first start the OPC
Emulator, then the broker, and last the Digital Twin Framework.

59

6.3 Visualization

Procedural Digital Twin

DIGITAL TWIN ID

OPC EMULATOR BROKER DIGITAL TWIN

Number of OPC Servers BROKER PORT:

OPC PORT:

RUN OPC EMULATOR RUN BROKER RUN DIGITAL TWIN
Exit

Figure 6.2: Screenshot of the main GUI screen

The Digital Twin will now start up, and a unity screen will open and the
user is placed inside the desired Norwegian road tunnel. Figure 6.3, below
visualizes how the tunnel looks from a distance when zooming out of the
tunnel.

60

6.3 Visualization

DD.MM.YYYY
T =]

7N

Figure 6.3: View of the zoomed out Virtual Twin in Unity

Immediately when starting up the Digital Twin and the Unity screen, the
user is placed a little bit into the entrance of the tunnel. In this scenario I
have used "Kleppetunnelen" in Rogaland as the tunnel I am replicating with
my Digital Twin. Figure 6.4 below shows the immediate view of starting
the Digital Twin in "Kleppetunnelen".

61

6.3 Visualization

Figure 6.4: Immediate view of "Kleppetunnelen" as of running the Digital Twin

In the current view I can not really see any of the objects that has been
placed in the tunnel, only the procedurally generated tunnel model of this
specific tunnel.

62

6.3 Visualization

Figure 6.5: View of the entrance of "Kleppetunnelen"

By moving a little bit back, I can now see the entrance of the tunnel in the
Figure 6.5. Here I can also see the first objects that has generated sensor
data from OPC Emulator and set to the Digital Twin and be generated as
objects. However, here I can see that since my Kafka Broker implementation
is not working, the objects in the tunnel currently has no values, and the
sign are therefore shown as a blank sign with no value inside it.

63

6.3 Visualization

Figure 6.6: View of the entrance of "Kleppetunnelen", taken from Nohut’s thesis
with the old implementation [5]

Figure 6.6 is taken from Nohut’s thesis [5] and shows the same entrance as
Figure 6.5, but in the previous implementation. I can see that his sign does
have a value assigned to it, so it shows the sign for 60 km/h. I can also see
that the lights have a different value, and therefore his tunnel are darker.

64

6.3 Visualization

Figure 6.7: View of "Kleppetunnelen" midway in, with some objects

Figure 6.7 is taken further in to the tunnel and about midway. Here I can
observe more of the objects that have been placed inside the Virtual Twin,
here I can see a new sign and a emergency cabinet.

Figure 6.8: View of selecting objects inside the Virtual Twin

65

6.3 Visualization

Figure 6.8 shows what happens when I select one of the objects. A panel
shows up on the right and is supposed to show the values of the objects.
Since the current version has no working Broker, no results are shown when
selecting the object.

Figure 6.9: View of the car fire simulation

Figure 6.9 shows what happens when I run one of the simulations that are
made for the Virtual Twin. This simulation shows what happens when a
car gets set on fire. All traffic from the cars behind will stop, and no more
cars will drive through.

Panel Title

10:19:16

Figure 6.10: View from Grafana with bar view for a specific sensor

66

6.3 Visualization

Even though the Virtual Twin can not read the data from the database,
the Grafana can. Using Grafana I can keep track of the sensor data I want
at any time. And even if the Kafka Broker had worked, it would be a lot
more tedious to go up to every sensor I wanted to know the value of, when
I could just use Grafana to check its value at any point without having to
move up to it. See Figure 6.10.

67

Chapter 7

Conclusion

There are two previous theses that have been written at University of Sta-
vanger that builds upon each other to further develop the procedural gen-
eration of Digital Twins in Norwegian road tunnels. The first one aimed to
generate tunnels in Unity based on data from NVDB, while the next one
focused on generating sensor data that could be linked to objects inside
these previously generated tunnels. This thesis aimed to further build upon
the work that was put in to generate sensor data and link them to objects
inside the tunnels.

This thesis studied the state of the art of Digital Twins to understand where
improvements could be made, and new features could be added. With this
thesis I studied several of the architectural components that was used in
the previously made implementation and argued for weather they could be
changed to a more fitting solution. I put a great deal of effort in find-
ing ways to think about the architectural structure of the model and find
improvements where it could be made.

I argued for the use of the current database, weather it was a good solution
for this specific project, and I argued for weather the communication used
between the Digital and Virtual Twin was the most optimal choice. In
which I ended up with keeping the database and change the communication
protocol used.

68

7.1 Future Work

I worked on five new implementations in this project, realistic sensor emu-
lator, communication protocol, GUI, login system and monitoring system.
Some of them failed and I was not able to implement them to test if these
implementation would progress the work of the Digital Twin, and some of
them worked. It is important to know that this Digital Twin is a very
complex piece of software, and making big changes to its architecture are
going to be very tedious and time consuming given that it is easy to disturb
other parts of the application by doing so. Literature for Digital Twins
were heavily studied to get an idea of how they generally work and how
previously made Digital Twins in other industries could help thinking how
we can further develop ours.

There are still a lot more work to be done in this project for it to be a state
of the art Digital Twin, but I believe we are on our way there.

7.1 Future Work

7.1.1 Complete failed implementations

The first thing that should be done is to implement the changes suggested
in this thesis that was not successfully implemented. Knowing how a Kafka
broker will perform compared to the MQTT protocol and if the change are
important to make. It is important to get the big architecturally pieces in
place before moving on with the application, since it will be increasingly
hard to change later with an application that is just getting bigger and
bigger. The same goes for implementing the failed OPC Emulator generator.
Having sensor that is more realistic to the real world is important for Digital
Twins to be as real as possible.

7.1.2 Platform

The application has only been tested using a Windows OS. The application
is generically created and should in theory also be running on other OS but
it has never been tested to do that. Future work should include testing if
it runs well on other OS, and in case not, implement functionality for it to

69

7.1 Future Work

work on them. It is important to get users to use this application, and by
giving more people opportunity to do that could increase the chances for it
to be used.

7.1.3 Quality of textures

The Digital Twin is a research project and not a commercially available
product. Therefore it is important to be cost effective. The textures used
for the Digital Twin are all taken free from the internet and are not profes-
sionally made to look as good as possible or to represent all the available
sign types that we have in Norway. Further development could be made to
improve the visual quality of the application.

7.1.4 More sensors

The current application only allows for four different sensors to be gener-
ated and displayed in the Digital Twin. Further work needs to increase the
amount of sensors for the tunnel to be more realistic, generate more informa-
tion and create more analytics based on the many sensors to be generated.
Right now the application can only generate sensor data and create objects
for lights, signs, and two types of cabinets. It is not enough to make the
Digital Twin a great application with thousands of data streams.

7.1.5 Cloud

A lot of the new Digital Twins that are being created are more and more
cloud based. As seen in the research work in Chapter 2, there are many
of them that are connected to the cloud in some ways. Weather it is the
application itself running on the cloud, or the sensor generators, the cloud
can save the user from needing to have an excellent computer that needs
to run everything locally. Also by using the cloud, the applications are
available everywhere, without needing to download all of the software and
frameworks on each computer that needs to run it. Microsoft Azure and
Amazon Sagemaker are two of the biggest rivals in today’s market when it

70

7.1 Future Work

comes to creating cloud solutions that work for the general purpose.

7.1.6 Security

In the implementation of user account to be able to log in to the Digital
Twin, I have used a very basic solution, and the database is also locally
stored on the computer. This is not a very good solution at all, but it was
used to create a concept for future development. A good future solution
would be to create a log in system that is hosted on the servers at University
of Stavanger, and connected to a database on these servers. The user would
than just send API calls to these servers to log in and be able to use the
application. Since the application already needs to be connected to the
internet, this would not create more hassle for the user, and it would create
a much more secure solution for the log in system. The database would also
need to be changed to a better performance based database, since SQLite
is not very scalable.

71

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

F. Tao, H. Zhang, A. Liu and A. Y. C. Nee, "Digital Twin in Industry:
State-of-the-Art," in IEEE Transactions on Industrial Informatics, vol.
15, no. 4, pp. 2405-2415, April 2019, doi: 10.1109,/TII.2018.2873186.

T. Ruohomséki, E. Airaksinen, P. Huuska, O. Keséniemi, M. Martikka
and J. Suomisto, "Smart City Platform Enabling Digital Twin," 2018

International Conference on Intelligent Systems (IS), 2018, pp. 155-161,
doi: 10.1109/1S.2018.8710517.

R. Tomar, J. Piesk, H. Sprengel, E. Isleyen, S. Duzgun, J. Rostami,
"Digital twin of tunnel construction for safety and efficiency", Tunnels
and Underground Cities: Engineering and Innovation meet Archaeology,
Architecture and Art, 2019, doi: 10.1201,/9780429424441.

H. Elayan, M. Aloqaily and M. Guizani, "Digital Twin for Intelli-
gent Context-Aware IoT Healthcare Systems," in IEEE Internet of
Things Journal, vol. 8, no. 23, pp. 16749-16757, 1 Dec.1, 2021, doi:
10.1109/J10T.2021.3051158.

Nohut, Berke Kagan, "Digital Tunnel Twin Using Procedurally Made
3D Models", 2021, University of Stavanger.

"WHAT IS DIGITAL TWIN TECHNOLOGY AND HOW
DOES IT WORK?", https://www.twi-global.com/technical-
knowledge/faqs/what-is-digital-twin. (Accessed March 13, 2022).

"What is a digital twin?" , https://www.ibm.com/topics/what-is-a-
digital-twin. (Accessed March 13, 2022).

"InfluxDB", https://en.wikipedia.org/wiki/InfluxDB. (Accessed March
13, 2022).

72

BIBLIOGRAPHY

[9] Skedler Team, "Everything You Need to Know about Grafana',
https://www.skedler.com /blog/everything-you-need-to-know-about-
grafana/. (Accessed March 13, 2022)

[10] Steindl, G.; Stagl, M.; Kasper, L.; Kastner, W.; Hofmann, R. Generic
Digital Twin Architecture for Industrial Energy Systems. Appl. Sci.
2020, 10, 8903. https://doi.org,/10.3390/app10248903

[11] K. M. Alam and A. El Saddik, "C2PS: A Digital Twin Architec-
ture Reference Model for the Cloud-Based Cyber-Physical Systems,"
in IEEE Access, vol. 5, pp. 2050-2062, 2017, doi: 10.1109/AC-
CESS.2017.2657006.

[12] Anro Redelinghuys, Anton Basson, Karel Kruger, "A Six-Layer Digital
Twin Architecture for a Manufacturing Cell", 2019, Service Orientation
in Holonic and Multi-Agent Manufacturing. SOHOMA 2018. Studies in
Computational Intelligence, vol 803. Springer, doi: 10.1007/978-3-030-
03003

[13] V. Kamath, J. Morgan and M. I. Ali, "Industrial IoT and Digital Twins
for a Smart Factory : An open source toolkit for application design and
benchmarking," 2020 Global Internet of Things Summit (GIoTS), 2020,
pp. 1-6, doi: 10.1109/GIOTS49054.2020.9119497.

[14] H. Zhou, C. Yang and Y. Sun, "A Collaborative Optimization Strategy
for Energy Reduction in Ironmaking Digital Twin," in IEEE Access, vol.
8, pp. 177570-177579, 2020, doi: 10.1109/ACCESS.2020.3027544.

[15] Vering, Christian and Borges, Sebastian and Coakley, Daniel and
Kriitzfeldt, Hannah and Mehrfeld, Philipp and Mueller, Dirk. (2021),
"Digital Twin Design with On-Line Calibration for HVAC Systems in
Buildings".

[16] Violeta Damjanovic-Behrendt and Wernher Behrendt (2019) An open
source approach to the design and implementation of Digital Twins for

Smart Manufacturing, International Journal of Computer Integrated
Manufacturing, 32:4-5, 366-384, DOI: 10.1080,/0951192X.2019.1599436

[17] R. Rossini et al., "Al environment for predictive maintenance in a
manufacturing scenario," 2021 26th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2021, pp. 1-8,
doi: 10.1109/ETFA45728.2021.9613359.

73

BIBLIOGRAPHY

[18] Cunha, B., Hernéndez, E., Rebelo, R., Sousa, C., Ferreira, F. (2021).
An IIoT Solution for SME’s. In: Gongalves, J.A., Braz-César, M.,
Coelho, J.P. (eds) CONTROLO 2020. CONTROLO 2020. Lecture Notes
in Electrical Engineering, vol 695. Springer, Cham. https://doi.org/
10.1007/978-3-030-58653-9_30

[19] A. Borghesi et al., "ToTwins: Design and Implementation of a Plat-
form for the Management of Digital Twins in Industrial Scenarios,"
2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), 2021, pp. 625-633, doi: 10.1109/CC-
Grid51090.2021.00075.

[20] Fei Tao, Meng Zhang, A.Y.C. Nee, Digital Twin Driven Smart Manu-
facturing, 2019, doi: 10.1016/B978-0-12-817630-6.00001-1

[21] Jay Lee, Behrad Bagheri, Hung-An Kao, A Cyber-Physical Systems ar-
chitecture for Industry 4.0-based manufacturing systems, Manufacturing
Letters, Volume 3, 2015, doi: 10.1016/j.mfglet.2014.12.001.

[22] Michael W. Grieves, PLM-beyond lean manufacturing, 2003, Society
of Manufacturing Engineers.

[23] David Gelernter, Mirror Worlds, 1993, Oxford University Press, ISBN-
10: 019507906X

[24] Piascik, R., et al., Technology Area 12: Materials, Structures, Mechan-
ical Systems, and Manufacturing Road Map. 2010, NASA Office of Chief
Technologist.

[25] "Time Series Database", https://hazelcast.com/glossary/time-series-
database/. (Accessed June 10, 2022)

[26] "DB-Engines ranking of Time-Series DBMS", https://db-
engines.com/en/ranking/time+series+dbms (Accessed June 10,
2022)

[27] "Method of calculating the scores of the DB-Engines Ranking", https:
//db-engines.com/en/ranking_definition (Accssed June 10, 2022)

[28] Chris Churilo, "InfluxDB vs. Graphite for Time Series Data and Met-
rics Benchmark", 2019, https://www.influxdata.com/blog/influxdb-
outperforms-graphite-in-time-series-data-metrics-benchmark (Accessed
June 10, 2022)

74

https://doi.org/10.1007/978-3-030-58653-9_30
https://doi.org/10.1007/978-3-030-58653-9_30
https://db-engines.com/en/ranking_definition
https://db-engines.com/en/ranking_definition

BIBLIOGRAPHY

[29] Chris Churilo, "InfluxDB vs. Splunk for Time Series Data, Metrics
and Management", 2019, https://www.influxdata.com/blog/influxdb-
vs-splunk-for-time-series-data-metrics-management (Accessed June 10,
2022)

[30] Chris Churilo, "InfluxDB VS. Elasticsearch for
Time Series Data and Metrics Benchmark", 2018,
https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-
in-time-series-data-metrics-benchmark (Accessed June 10, 2022)

[31] Chris Churilo, "InfluxDB Tops Cassandra in
Time Series Data and Metrics Benchmark", 2018,
https://www.influxdata.com/blog/influxdb-vs-cassandra-time-series
(Accessed June 10, 2022)

[32] Kai Waehner, "Apache Katka and MQTT (Part 1 of
5) — Overview and Comparison", 2021, https://www.kai-
waehner.de/blog/2021/03/15/apache-kafka-mqtt-sparkplug-iot-blog-
series-part-1-of-5-overview-comparison (Accessed June 10, 2022)

[33] "MQTT and Kafka", 2019, https://www.emqx.com/en/blog/mqtt-
and-kafka (Accessed June 10, 2022)

[34] Jay Clifford, "MQTT vs Kafka: An IoT Advocate’s Perspective (Part 1
- The Basics)" 2022, https://www.influxdata.com/blog/mqtt-vs-kafka-
iot-advocates-perspective-part-1 (Accessed June 10, 2022)

[35] Brian Mecclain, "Understanding the Differ-
ences Between RabbitMQ Vs Kafka", 2020,
https://tanzu.vmware.com/developer /blog/understanding-the-
differences-between-rabbitmq-vs-kafka (Accessed June 10, 2022)

75

	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Objectives
	Thesis Structure
	Key Concepts
	Previous Stack
	Stack to be Implemented

	Background
	Related Work
	Digital Twins
	Digital Twins Architecture
	Cloud in Digital Twins
	InfluxDB in Digital Twins

	Methodology
	Idea
	Academia

	Methodology

	Design
	Current Architecture
	Digital Twins Layers of Architecture
	Proposed features to be Added to the Digital Twin
	Monitoring
	Security
	Graphical User Interface

	Digital Twin Areas of Improvement
	Integration Layer
	Information Layer
	Communication Layer
	Functional Layer
	Security Layer
	New Proposed Architecture Layer Model

	Implementation
	GUI
	Login System
	Realistic OPC Emulator
	Kafka Broker
	Monitoring

	Results
	Experimental Setup
	Requirements
	Current State
	OPC Emulator
	Broker

	Research Questions
	Visualization

	Conclusion
	Future Work
	Complete failed implementations
	Platform
	Quality of textures
	More sensors
	Cloud
	Security

	References

