

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Data Science

Jafar Afzali & Aleksander Mark Drzewiecki

Krisztian Balog

Context Modeling for User Simulation for Conversational Information Access

30

User Simulation
Conversational Information Access

102

June 15, 2022

22

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Context Modeling for User Simulation
for Conversational Information Access

Master’s Thesis in Computer Science
by

Jafar Afzali and
Aleksander M. Drzewiecki

Internal Supervisor

Krisztian Balog

External Supervisors

External Supervisor 1
External Supervisor 2

Reviewers

Reviewer 1
Reviewer 2

June 15, 2022

Abstract

Conversational Information Access systems are systems that help satisfy the information
needs of their users via multi-turn conversations. These systems are different from
traditional information access systems as they can ask clarification questions that can
help narrow down the result set.

Traditionally, end-to-end evaluation of such systems has been online, i.e., hiring workers to
use their system and provide feedback. However, this approach suffers from key issues: it
is expensive, time-consuming, and does not scale to large amount of users. Consequently,
the idea of simulating users has received considerable attention. User simulators can
be used for evaluation, however, their performance is dependent on sophisticated user
modeling.

In this thesis, we continue on previous work [1] and build a user simulator that incorporates
more advanced user modeling by including additional contexts. The simulated users
are represented via an interaction model, a preference model, time context, and group
setting.

We evaluate our user simulator based on metrics in the literature. Furthermore, we
capture subjective measures by computing user satisfaction for each conversation. Our
work illustrates that the included contexts have an impact on the observed dialogs in
terms of these metrics. Lastly, we release DialogueKit on PyPi, a toolkit for developing
conversational agents.

Acknowledgements

We would like to thank the University of Stavanger for the past five years.

We would like to express our deep gratitude towards Krisztian Balog, Professor of
Computer Science and head of IAI group, for his indispensable guidance and supervision
throughout the thesis. Thank you for answering our questions eagerly and patiently
during our weekly meetings. It is not an understatement that this thesis would not have
been possible without your help.

At last, we would like to extend our gratitude to our parents, family, and friends for their
encouraging words and support.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Objectives . 2
1.2 Approach and Contributions . 3
1.3 Outline . 4

2 Related Work 5
2.1 Conversational AI . 5

2.1.1 Elements of Conversation . 5
2.1.2 Categorization of Conversational Systems 6
2.1.3 Developing Conversational Systems 7

2.2 Conversational Information Seeking . 8
2.2.1 Conversational Recommendation 9
2.2.2 Conversational Search . 13
2.2.3 Conversational QA . 14

2.3 Modeling Conversations . 15
2.3.1 Conversational History and State 16
2.3.2 Conversational Query Rewriting 16
2.3.3 Intent and Entity Recognition . 17
2.3.4 Dialogue Actions . 17
2.3.5 Context Modeling . 20

2.4 Evaluation . 20
2.4.1 Offline evaluation . 21
2.4.2 Online evaluation . 23
2.4.3 User simulation . 23

3 Approach 27
3.1 Overview . 27
3.2 Background - Mathematical foundations 27
3.3 Agenda-Based Simulation for Conversational Recommendation 29
3.4 User modeling . 31

3.4.1 Interaction Modeling . 31

v

3.4.2 Preference Modeling . 33
3.4.3 Context Modeling . 33

3.5 Instantiating the Simulator . 36

4 Implementation 39
4.1 Overview . 39
4.2 DialogueKit . 40

4.2.1 Core Concepts . 40
4.2.2 Architecture . 41
4.2.3 Dialogue Manager . 41
4.2.4 Platform . 41
4.2.5 Intent Classification and Entity Extraction 42
4.2.6 Natural Language Generation . 45
4.2.7 Satisfaction Classifier . 46
4.2.8 Agents and Users . 46

4.3 UserSimCRS . 48
4.3.1 Preference Model . 49
4.3.2 Interaction Model . 50

4.4 IAI MovieBot . 51

5 Experimental Evaluation 53
5.1 Experimental Setup . 53

5.1.1 Experimental Measures . 53
5.1.2 Item and Preference Data . 54

5.2 Simulator Instantiation . 55
5.2.1 Temporal Context . 55
5.2.2 Relational Context . 56
5.2.3 Persona . 58
5.2.4 Preference Model . 58
5.2.5 Simulating Conversations . 60

5.3 Experimental Results . 61
5.3.1 Interaction model verification . 61
5.3.2 IAI MovieBot . 62
5.3.3 Wizard of Oz . 68

5.4 Discussion . 71
5.4.1 Impact of Contexts . 71

6 Conclusions 73
6.1 Conclusion . 73
6.2 Future Directions . 74
6.3 Reflection . 75

A Poster 77

B Instantiated intent schema 79

Bibliography 83

Chapter 1

Introduction

Information access systems (e.g., Google) are systems that aid users in finding information.
With the vast amount of information that is available on the internet, systems that
enable users to find relevant information promptly are in high demand. Google revealed
in 2016 that their search engine serves trillions of searches per year.1 In recent years,
we have witnessed the emergence of systems that support conversational information
access, e.g., Alexa, Google Assistant, Cortana, AliMe, etc. A Conversational Information
Access (alternatively Conversational Information Seeking) (CIA/CIS) system shares the
same main task as traditional information access systems, however, the system-user
interactions are conversational [2].

Traditional information access systems are typically developed and fine-tuned on offline
datasets, before deployment. However, this is not necessarily a reasonable approach for
conversational information access systems. For example, consider a dialog between a
user and a conversational recommender system. The user is not necessarily looking for a
specific item (e.g., a specific restaurant), but is instead open to exploring their options.
That is, the specific path a conversation takes is dependent on the interactions between
the user and the system, which renders the idea of building offline datasets unfeasible.

It is more interesting to evaluate CIA systems based on users’ satisfaction with the
system. Generally, the approach consists of hiring crowd workers to use the system
followed by a survey reflecting their experience with it. For example, the survey could
include questions such as On a scale from 1-5, how satisfied are you with the system?, or
Please rate the system’s conversational abilities with respect to fluency, understandability,
and grammar on a scale of 1-5.

1https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247

1

https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247

2 Chapter 1 Introduction

This type of offline evaluation suffers from the same limitations as online evaluation:
It is expensive, time-consuming, does not scale and is not repeatable. Consequently,
researchers have looked at user simulation as a compromise. User simulation addresses the
limitations of online evaluation as it is considerably quicker, the results are reproducible
and there is no real cost to it. The purpose of a user simulator is to enable an automatic
evaluation of a CIA system that is indicative of an online evaluation. This means that
the user simulator must provide realistic simulations, i.e., it should produce situation-
dependent responses that are similar to what real users would produce. The realisticity
of a user simulator can be measured by conducting a Turing test-like evaluation on
a crowdsourcing platform [1]. The idea is that if human evaluators are not able to
consistently distinguish between real user dialogs and simulated user dialogs, then the
user simulator has successfully passed the test, and can be regarded as realistic.

However, this is also where the challenge lies: How can user simulators become more
realistic? Collecting and manually annotating a large corpus of human conversations is
not a practical solution, as we have mentioned. Instead, simulators have access to little
or no data. Agenda-based user simulators require a sample of dialogs between users and
the system in order to operate. On the other hand, model-based user simulators depend
on corpora of conversations to generate realistic responses.

In this thesis, we focus on improving the realisticity of an agenda-based user simulator
for conversational recommender systems. We attempt this by extending underlying the
user models with additional contexts (temporal, relational and conversational), consider
personal characteristics, and their interplay (patience and cooperativeness) and also take
into account the user’s satisfaction with the system.

1.1 Objectives

As our thesis is an extension of the work presented in [1], the overarching objective of
our thesis remains the same. Specifically, we want to create a user simulator that (1) is
capable of producing situation-aware responses that resemble real user responses and (2)
can compute an automatic evaluation of a conversational agent. Zhang and Balog [1]
focused on interaction and preference modeling. Our aim is to find out whether more
advanced modeling (of context and of user characteristics (persona)) can lead to more
realistic simulations. We identify the following two Research Questions (RQs):

• RQ1: Does the additional context have any impact on the characteristics of
conversation, and if so, what is the observed impact?

Chapter 1 Introduction 3

Figure 1.1: Overview architecture of the user simulator

Specifically we hypothesize that the conversations will be longer with additional context
and thus lead to more successful conversations in terms of task accomplishment.

• RQ2: Does more advanced context modeling lead to more realistic user simulation?
Specifically, given a persona and varying contexts, are the observed effects realistic?

To answer this, we will vary the temporal and relational context of the simulated persona
and observe differences across the simulations.

1.2 Approach and Contributions

In order to answer the above-mentioned questions, we build on, and extend further
two previously initiated projects: DialogueKit and UserSimCRS. Briefly explained,
DialogueKit is a toolkit for developing conversational agents, and UserSimCRS is a user
simulator built on top of DialogueKit, see Fig. 1.1.

Specifically, we extend DialogueKit with functionality that is required by any conversa-
tional agent: Natural Language Understanding (NLU), Natural Language Generation
(NLG), and other important utilities that allow for seamless processing of conversational
data. Furthermore, we modify the current implementation of preference modeling in
UserSimCRS in order to get more consistent simulations, i.e., the preferences of an
instantiated user should be consistent across all simulations. Next, we extend the context
modeling in UserSimCRS to include temporal, relational and conversational context.
We additionally develop a persona generator module that we use to instantiate the
simulator. More specifically, we generate a Persona that includes static user properties,
i.e., user cooperativeness and initial satisfaction level and sample a random context. The
persona-context pair is then used to instantiate the simulator. The interplay between
the persona and the context is used to define the patience of the simulated user, that

4 Chapter 1 Introduction

is, how many times the user will retry an action before giving up on that action. The
conversational context changes throughout the conversation and allows us to model the
user’s satisfaction with the agent.

Thus, the following contributions are made in this thesis:

• User modeling: We extend the current user models to include three new dimensions
of context: temporal (time and day of week), relational (group setting) and
conversational (satisfaction). Additionally, we modify the existing implementation
of preference modeling to enable more consistent and reproducible simulations.

• DialogueKit: A toolkit that supports development of conversational agents. We
release DialogueKit on PyPi.2

• UserSimCRS : An agenda-based user simulator supporting advanced user modeling,
including interaction-, preference- and context modeling. Additionally, simulated
users are initialized with a random persona that captures other user static variables
(user id, name, cooperativeness and initial satisfaction level).

• Evaluation: DialogueKit includes simple evaluation of conversational agents based
on metrics in [1] and overall user satisfaction.

The code developed in this thesis can be found on Github: https://github.com/

iai-group/UserSimCRS and https://github.com/iai-group/DialogueKit.

1.3 Outline

The rest of this thesis is structured as follows: Chapter 2 presents the necessary back-
ground information, as well as previous contributions in the field of conversational
information access. Chapter 3 describes our approach and the contributions we made.
In chapter 4 we introduce our evaluation methods and our experimental setup, followed
by an analysis of our findings. Finally, chapter 5 summarizes our work and findings, in
addition to providing directions for future work.

2https://pypi.org/project/dialoguekit/

https://github.com/iai-group/UserSimCRS
https://github.com/iai-group/UserSimCRS
https://github.com/iai-group/DialogueKit
https://pypi.org/project/dialoguekit/

Chapter 2

Related Work

In this chapter, we introduce conversational AI and the In this chapter, we briefly
explain the fundamentals of conversational artificial intelligence by studying existing
work. This is followed by an introduction to conversational information seeking and
the categorization of said systems. We then look at current approaches to modeling
conversations in conversational information access systems. Finally, we briefly mention
popular approaches to evaluating conversational systems.

2.1 Conversational AI

Conversational artificial intelligence (AI) refers to systems that are capable of conversing
with users in a natural way through a range of modalities [3]. Before we expand on
conversational AI, it is important to define what a conversation is. We attempt to achieve
this by explaining the elements that make up a conversation.

2.1.1 Elements of Conversation

The most basic unit in a conversation is an utterance [2]. All contiguous utterances from
a single speaker form a single turn [2, 4]. Finally, a conversation consists of multiple turns
between the participants. In [2], a conversation is defined as an interactive communication
for exchanging information between two or more participants (i.e., humans or machines)
that involves a sequence of interactions. The types of interaction include natural language,
click, touch, gestures, etc. This is important as interaction defines the most fundamental
requirement for conversational AI systems.

5

6 Chapter 2 Related Work

In order for conversations to be as natural as possible, conversational systems try to
mimic human conversations. Jurafsky and Martin [3] list subtle characteristics of human
conversations such as endpointing, grounding, mixed-initiative, implicature, and various
speech acts. Endpointing refers to the task of detecting when a speaker is finished
speaking. Grounding is often used by the hearer to acknowledge the meaning of the
speaker’s utterance. A core element of human conversations is mixed-initiative, which
refers to the shift of initiative between participants in a conversation, i.e., all participants
can be active and lead the conversation. Implicature is used in a conversation to imply
information that is understood by the hearer through a set of maxims, e.g., relevance.
Each utterance in a conversation can be thought of as an action by the speaker. These
actions are called speech acts and are often structured in pairs in a conversation, e.g.,
questions are generally followed up by an answer, proposals are either rejected or accepted
and so on. However, this is not always the case, as the pairs can be separated by a
sub-dialogue such as asking clarification questions instead of answering when a user asks
a question. These characteristics of human conversations are complicated and are among
the reasons why it is difficult to build a conversational system that can carry on natural
conversations with humans. Conversational systems facilitate this by adopting a dialogue
manager (also known as dialogue state tracker) which tracks the state of the dialogue
and updates the necessary parameters. We discuss this in more detail in the following
section.

2.1.2 Categorization of Conversational Systems

Traditionally, conversational AI systems are categorized into two classes, goal-driven
(or task-oriented) or non-goal-driven (chatbots) [5]. Goal-driven systems aim to assist
the user in completing a specific task, e.g., booking a flight or reserving seats in a
restaurant. The tasks are constrained within some domain(s) and the systems are
customized accordingly. On the contrary, non-goal-driven systems are mostly used as
social “chit-chat” chatbots. Systems of this type do not have a specific intent, rather they
are used to engage users in an extended conversation about various topics. As such, it is
natural to regard these systems as AI companions. In the early days of conversational
AI, most chatbots were built on rule-based systems, i.e., systems followed a defined set
of rules [6, 7]. However, as research continues to advance the field of AI, recent chatbots
are also corpus-based, meaning that they learn how to hold conversations from large
datasets, e.g., human-human conversations [3]. Recently, interactive question answering
(QA) has been recognized as a separate category, resulting in a 3-way categorization of
conversational AI systems [5, 8, 9]. Indeed, interactive QA does not completely fit in
either of the traditional categories: the dialogues are unstructured and do not follow

Chapter 2 Related Work 7

Table 2.1: Categorization of conversational AI systems, from [5].

Task-oriented Social chat Interactive QA
Goal Aim to assist users to

solve a specific task (as
efficiently as possible)

Aim to carry on an ex-
tended conversation
(“chit-chat”) with the
goal of mimicking human-
human interactions

Aim to provide concise,
direct answers to user
queries

Dialogue
structure

Dialogues follow a
clearly designed
structure (flow) that
is developed for a par-
ticular task in a closed
domain

Developed for unstruc-
tured, open domain
conversations

Dialogues are unstruc-
tured, but commonly
follow a question-answer
pattern; mostly open
domain (dictated by the
underlying data)

Evaluation Well-defined measure of
performance that is ex-
plicitly related to task
completion

Objective is to be
human-like, i.e., able
to talk about different
topics (breadth and
depth) in an engaging
and coherent manner

Evaluated with respect to
the correctness of an-
swers (on the turn level

any particular pattern, unlike goal-driven systems. The goal of interactive QA systems
is to provide succinct and straightforward answers to questions. A comparison of the
mentioned categories is provided in Table 2.1.

2.1.3 Developing Conversational Systems

In order to learn from human-human conversations, systems need to adopt and combine
various techniques from different fields of computer science. These include for example
natural language processing (NLP), machine learning (ML), dialogue systems (DS),
recommender systems (RecSys), human-computer interaction (HCI), and information
retrieval (IR). Each of these fields contributes to different parts of the system. NLP
focuses on language analysis, both for understanding natural language and generating
responses. Alternatively, techniques from the IR field may be used to retrieve the best
responses from a corpus given the current dialogue context. ML models may then be
used to rerank these responses.

When designing a dialogue system, there are several ethical concerns that need to be
taken into consideration. These vary on the application domain, target user group, and
the goal(s) of the system. It is therefore important to gain an understanding of the
domain, in order to identify possible ethical concerns. Due to conversational AI systems
requiring personal information, one of the biggest concerns that apply to most, if not
all systems, is privacy. These privacy issues are related to the collection and usage of
user data. Another concern is the safety of users. Systems must be careful of giving
incorrect advice in safety-critical situations, e.g., medical situations. Recently, one of the

8 Chapter 2 Related Work

most popular chatbots, Alexa, gave such a recommendation.1 Other concerns include
chatbots’ reaction to toxic language (e.g., sexual harassment) and their ability to harm
users through responses.2

Recently, Amazon released Alexa Conversations [10–12], an AI-driven dialog management
model that assists agents in responding to a broad variety of phrases and unexpected
conversational flows. In order to use Alexa Conversations (AC), the system developer
must provide a set of annotated dialogues. These dialogues are generalized by the
dialog simulator component of AC. By generalizing the annotated dialogues, the dialog
simulator is able to cover alternative ways the user might interact with the agent. This
generalization is achieved through expanding slot types, API definitions, utterance sets,
and responses in the training data, resulting in a much larger set of dialogue variants.
Then, these synthetic dialogue variants are used to train deep learning neural networks,
such as transformer models, RNNs, etc. The trained model can then predict incoming
events in the dialogue, similar to how user simulators predict the next action to perform.

2.2 Conversational Information Seeking

Conversational Information Access (CIA), also often referred as Conversational Infor-
mation Seeking (CIS), is associated with conversations (typically between users and
an information system) in which the goal is to satisfy the information need of the in-
quirer [2, 13]. CIS differs from traditional information seeking as it defines interactions
as strictly conversational, while the latter includes other types of interaction, such as
reading a book [2]. Zamani et al. [2] define a CIS system as a system that satisfies the
information needs of one or more users by engaging in information seeking conversations.
Furthermore, these systems are expected to output responses that are concise, fluent,
stateful, context-aware, and personalized. Additionally, there should be a mixed-initiative
in the conversation, meaning that the system should be able to respond to users as well
as take initiative and lead the conversation [2, 5].

In the literature, CIS systems are often categorized into three goals: conversational search
(ConvSearch), conversational recommendation (ConvRec), and conversational question
answering (ConvQA) [2]. The former two subdomains can be regarded as task-oriented
systems, where the goal is to assist users in finding information. The latter is related
to interactive QA systems. However, the boundary between these subdomains is often
blurred and there is no clear distinction. For example, a system that retrieves passages

1https://t.co/HgGgrLbdS8
2In 2016, Microsoft’s AI chatbot Tay learned toxic language from users: https://www.theverge.com/

2016/3/24/11297050/tay-microsoft-chatbot-racist

https://t.co/HgGgrLbdS8
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

Chapter 2 Related Work 9

in order to answer a series of questions from the user can be seen as either ConvSearch
or ConvQA. Similarly, helping the user in finding items can be seen as ConvSearch
or ConvRec. This suggests that CIS systems should support multiple user goals as
mentioned in [5]. Gao et al. [8] mention that one way of supporting multiple user goals
is to introduce a “top-level bot” that can switch between different user goals (i.e., choose
which agent should serve the user based on user goal). Conveniently, the different systems
share a lot in common in terms of conversational requirements.

Apart from being capable of mixed-initiative, for a system to be truly conversational,
the interactions between the user and the system should take place over multiple turns,
in which the user states and clarifies their information need. The system in turn can
e.g., ask clarifying questions or affirm the users’ intent via grounding. Consequently, the
conversation seems more realistic. Furthermore, the system should respond in a way that
shows it is context-aware, and the responses should be personalized to the user. As we
mentioned previously, this can be facilitated by implementing a dialogue manager (DM)
which tracks the state of the conversation, updates user models, and decides on which
action the system should take next. In the following section, we discuss the three goals
(ConvRec, ConvSearch and ConvQA), with an emphasis on ConvRec as this is the main
focus of this thesis.

2.2.1 Conversational Recommendation

Traditionally, recommender systems exploit user interaction history to recommend
relevant items to the user [2, 14, 15] and are thus often closed within a specific domain,
e.g., books, restaurants, or movies [2]. Conversational Recommender Systems (CRS)
however, allow for real-time interaction between the users and the system. Two recent
survey papers on CRS have proposed the following definitions for CRS:

• “A CRS is a software system that supports its users in achieving recommendation-
related goals through a multi-turn dialogue.” (Jannach et al. [14])

• “A recommendation system that can elicit the dynamic preferences of users and take
actions based on their current needs through real-time multi-turn interactions.” (Gao
et al. [15])

Both definitions agree that the interactions between the users and the system should
be over multiple turns. This implies that a CRS must implement some kind of dialogue
management module, in order to consider all user utterances when deciding which items to
recommend. Further, none of the surveys assume the modality of these interactions, i.e.,

10 Chapter 2 Related Work

the system should support multi-modality, e.g., written or spoken language, point&click
and/or gestures, which is different from e.g., ConvSearch, which is typically assumed to
be contained within natural language interactions (i.e., written or spoken form [14]).

The specific framework or architecture of a CRS depends on which functionalities it will
support, however, any CRS should have the following modules:

• User Modeling Module: The objective of this module is to correctly represent
the user by utilizing past user interactions, preferences, and other relevant user
information.

• Dialogue Management Module: This module takes in the processed input (i.e.,
intent, entities mentioned, user preferences, etc.) and updates the user model and
the dialogue state. During output time, it decides on which action to execute, e.g.,
recommend item(s), ask questions or explain a previous utterance by the system.

• Recommender Engine Module: The main functionality of the recommender engine
is to provide relevant item(s) based on the current dialogue state and user model. In
some cases, it is expanded with other capabilities, such as generating explanations.

Beyond these modules, the CRS must include some kind of user interface that can give
the processed input to the dialogue management module, as well as putting together the
output of the system. An overview of ConvRec architecture is shown in Fig. 2.1.

2.2.1.1 Challenges

With these modules come many difficult challenges. In order for the system to model a
user as accurately as possible, the system must know which questions it should ask, and
how to interpret the user responses. This is labeled as question-based user preference
elicitation in [15].

Deciding on which action to take. One of the key differences between a traditional
recommender system and a CRS is the added conversational aspect. The system must
deduce when to ask questions, and when to give recommendations. Asking more questions
will help make a better user profile and thus better recommendations, however, the
user might run out of patience and end the conversation. Thus, knowing when to ask
and when to recommend is a critical challenge [15] related to the dialogue management
module.

NLU and NLG. Another challenge with conversational recommender systems is related
to the systems capability of understanding, i.e., natural language understanding, and

Chapter 2 Related Work 11

Figure 2.1: Illustration of a typical ConvRec architecture, based on [14]. The green
arrows indicate an input utterance, while red arrows indicate output utterances. The

grey arrows show the interaction between the modules.

its ability to generate responses that are concise and fluent, i.e., natural language
generation [15]. Various techniques are implemented in the literature, from pre-defined
tags that capture semantic information to slot filling techniques, where the goal is
to fill semantic slots with values given in the user utterances [14, 15]. For responses,
some researchers deploy end-to-end frameworks for both understanding and generating
utterances [16, 17], while others use natural language templates [18].

Evaluation. Finally, evaluating static recommender systems is significantly easier
than conversational recommender systems. Offline evaluation is a standard evaluation
methodology for the former, however, it is not straightforward to use offline evaluation
for the latter. Due to its interactive nature, evaluating the conversational aspect of the
system becomes important. Unfortunately, this process generally requires human judges
for evaluating the flow of the conversation, and whether the user-system interaction was
successful or not. To this end, many researchers propose using simulation [14, 15].

Finding a useful dataset for conversational systems is difficult, often due to how the
dialogues are collected or which domain the dataset focuses on. For conversational
recommender systems, the dataset must be centered around the recommendation task,
while emphasizing natural conversations. Furthermore, not all systems implement mixed-
initiative. Some systems follow the “System Ask, User Respond” [19, 20] (SAUR)
paradigm. In this scenario, the user is passive, and system takes the initiative. Others

12 Chapter 2 Related Work

implement the opposite, i.e., “User Ask, System Respond.” This is also reflected in the
datasets that are available.

2.2.1.2 Datasets

Sun and Zhang [21] introduce a movie dataset containing 999k dialogues with 6k users,
3.4k items and 15 facets. They use the MovieLens1M3 dataset for rating information
which is used to build user models. Furthermore, it is worth noting that their dialogues
are randomly simulated based on templates collected from crowdsourcing tasks, where
crowdworkers are asked to generate natural language text from a given dialogue schema.
Assuming that they used the same procedure as for their restaurant dataset, they collected
385 dialogues from crowdsourcing and simulated the rest of the dialogues based on these.
Furthermore, the dialogues there are based on the SAUP paradigm, i.e., “System Active,
User Passive,” thus there is a lack of mixed-initiative [19].

Hayati et al. [22] present INSPIRED, a dataset containing 1k human-human dialogues for
movie recommendation with measures for successful recommendations. Their dialogues
are collected through crowdsourcing, where they pair up crowd-workers in a natural
setting and assign each with a role. The seekers are asked to talk about movie recom-
mendations without any strategy support. The recommenders are given tips on sociable
recommendation strategies before the chat, and are tasked with gathering information
about the seeker before the recommendation phase. Recommenders are also encouraged
to continue the conversation until the seeker accepts a movie recommendation. Their
analyses show that sociable recommendation strategies are correlated with successful
recommendations in dialogues. Finally, each utterance in their dataset is manually
annotated with sociable strategies.

Similarly, REDIAL consists of over 10k conversations between crowd-workers on Amazon
Mechanical Turk (AMT) platform. To construct the dataset, Li et al. [23] paired crowd-
workers and assigned each with a role; the movie seeker has to explain what kind of
movie they like, and asks for movie suggestions. Then, the recommender suggests movies
based on their understanding of the seeker’s movie preferences. Critically, the workers
were required to recommend at least 4 movies, keep the conversation for roughly 10 turns
and to use formal language. Additionally, they were asked to not mention the AMT/task
explicitly. Although similar to INSPIRED, there are some differences according to
the authors of [22]: the recommendations in REDIAL are conditioned on the movies
mentioned in the dialogue, and not directly on the language usage. Furthermore, in

3MovieLens 1M dataset: https://grouplens.org/datasets/movielens/1m/

https://grouplens.org/datasets/movielens/1m/

Chapter 2 Related Work 13

REDIAL they tend to only mention movie names rather than an in-depth discussion on
the movie preferences.

Radlinski et al. [24] focused on movie preference elicitation through natural interactions
between a pair of crowd-workers following the Wizard-of-Oz methodology. They created
CCPE-M (Coached Conversational Preference Elicitation dataset for Movies), a dataset
focusing on preference elicitation rather than recommendation. Furthermore, these
conversations were coached, i.e., the assistant (or Wizard) asks pre-designed questions in
order to minimize the bias in the terminology the “user” (or requester) employs to convey
their preferences and to obtain these in as natural language as possible. Each dialog
is annotated with entity mentions, preferences expressed about entities, descriptions of
entities provided, and more.

Finally, Dodge et al. [25] presents a ConvQA + ConvRec dialogue dataset consisting of
1M conversations, where each participant (user and system) takes three turns, resulting
in a total of six turns. The historical context of the user is given in the form of five
previously liked movies. Then, the first exchange of the conversation is a recommendation
task, where the user informs the system of a genre or topic that they like. This is followed
by a QA exchange, where the user asks a factoid question about the suggestion. The third
and final exchange consists of the user asking for an alternative recommendation while
revealing additional preferences. However, as each conversation is restricted to 6 turns,
this dataset is not fit for systems that aim for an extended conversation with the user.
Further, their dialogues are generated using a fixed set of natural language templates.
More specifically, they filter the MovieLens dataset and select a user at random. Then,
they sample 1-8 movies which the user has rated as 5 (highest score) and create a
statement expressing the users’ sentiment about these movies. A recommendation is
deemed successful if the user has seen the recommended movie and assigned it a high
score.

2.2.2 Conversational Search

Conversational search is the process of interacting with a conversational system through
natural conversations to search for information [2]. Improvements in the aforementioned
fields of AI and growing computational power allow for highly interactive systems that
go beyond the traditional “query box” search model [26]. Users can express their
information need and receive help from the system in sifting through the information that
is available, through natural conversation. Conversational search has received significant

14 Chapter 2 Related Work

attention in recent years accompanied by the development of benchmark datasets such
as MSDialog [27] and TREC CAsT. 4

The TREC Conversational Assistance Track (CAsT) is an initiative that aims to facilitate
research within CIS and to create a reusable test collection for conversational search
systems [28–30]. In both 2019 and 2020, the CAsT dataset included MS MARCO and
CAR, resulting in 38, 426, 252 passages. The CAsT-19 dataset includes 80 information-
seeking dialogs, split into train (30) and test (50). On the other hand, CAsT-20 has
only 25 information-seeking dialogs. Different from the previous two years, the CAsT-21
dataset consists of MS MARCO and Wikipedia – the KILT dump [31]. Additionally,
CAsT-21 included 26 information-seeking dialogs. Over the past three years of the
TREC CAsT, a canonical approach including query reformulation, multi-stage retrieval
and reranking has emerged [2]. Yang et al. [32] achieved the highest score in terms
of NDCG@3 (the main metric) in 2019. They expanded the MS MARCO documents
with queries, and used BM25 for initial retrieval, followed by a BERT reranker model.
CAsT 2020 saw two teams being tied for the best score. Pradeep et al. [33] employed a
T5 query reformulation model fine-tuned on the CANARD dataset [34] before passing
the queries into a hybrid dense-sparse model for retrieval. Finally, they used another
T5 model fine-tuned on MS MARCO for the reranking stage. Chang et al. [35] had a
similar approach. In addition, they expanded the queries using keyword distillation, RM3
from Anserini and sentence-level query extraction. However, they used BM25 for initial
retrieval, followed by a T5 reranker model. Overall, h2oloo’s [33] approach scored highest,
although both approaches had the same NDCG@3 score. H2oloo group continued their
success in CAsT 2021, where they also achieved the best score.

2.2.3 Conversational QA

Conversational QA (ConvQA) differs from traditional one-shot QA systems in that
questions can build on previous questions. Generally, the initial question will be well-
formed and complete, however, follow-up questions will often have missing entities and
predicates [36]. Additionally, they may implicitly and/or explicitly refer to previous
system responses. Thus, the conversational aspect of ConvQA brings new challenges
and requirements to such systems. More specifically, systems should retain the previous
question-answer pairs as they can provide context for future questions. Another major
challenge is interpreting utterances, as ellipsis phenomena appear frequently [37].

ConvQA systems are often based on either a set of knowledge bases (KB), e.g., DBPedia,
YAGO, etc., or on text collections [8, 36]. The procedures are different for the two;

4https://www.treccast.ai/

https://www.treccast.ai/

Chapter 2 Related Work 15

ConvQA systems that utilize knowledge bases (KG-ConvQA) often use semantic parsing
in order to map the question into its formal meaning e.g., logical form, while text
collection-based methods (OR-ConvQA) operate on a large corpus of passage text [2].
OR-ConvQA typically consists of a retriever and a reader. The retriever is similar to the
systems discussed in the previous subsection, Sect. 2.2.2. The reader is responsible for
extracting or generating an answer from the retrieved passages of the retriever. Similar
to the case for the retriever, the reader is often a BERT based model. Systems that
generate answers instead of extracting also have to consider the dialogue context and
ground the answers accordingly.

Two of the popular datasets for ConvQA systems are the CoQA and QuAC dataset.
Reddy et al. [38] present CoQA which contains over 8k conversations consisting of an
average 15 turns, where a turn is noted as a (question,answer) pair. The text passages
are retrieved from multiple domains which allow for both in-domain and out-of-domain
evaluation. On the other hand, the QuAC dataset contains 14k information-seeking QA
dialogs [38]. The dialogs are constructed as follows: The student, which does not have
access to the underlying Wikipedia text, asks questions to learn more about it. The
teacher, who has access to the Wikipedia text, answers the question to the best of his
ability. More specifically, if the teacher is not able to find the answer within the given
text, the question is considered unanswerable. These datasets were originally designed
for ConvQA systems that are grounded to a single paragraph.

However, as we have mentioned, OR-ConvQA systems operate on a large corpus, thus
rendering these benchmarks as non-applicable. This led to the extension of the original
QuAC dataset, named OR-QuAC, to integrate passage retrieval over Wikipedia. More
specifically, synthetic queries were created including the Wikipedia title, initial paragraph
and a rewritten question to remove ambiguities. For more details, we refer to [15, 39, 40].

Examples of datasets for KG-ConvQA systems include Wikidata [41], DBPedia [42],
FreebaseQA [43] etc. Both Wikidata and DBPedia are large knowledge graphs, with
Wikidata consisting of over 98 million items.5 FreeBaseQA is a QA dataset over the
Freebase [44] knowledge graph. It contains over 28000 questions divided into train, dev
and eval sets.

2.3 Modeling Conversations

The multi-turn interactive nature of CIS systems requires the system to keep track the
conversation history and what the system understands regarding the user’s information

5Items represent anything in human knowledge, see https://www.wikidata.org/wiki/Help:Items

https://www.wikidata.org/wiki/Help:Items

16 Chapter 2 Related Work

need. This section provides a brief introduction to conversation modeling, which entails
the task of modeling conversation history, interaction modeling and user modeling.

Most importantly, conversation modeling entails the task of modeling previous inter-
actions as the conversation progresses. This section provides a brief introduction to
modeling conversations (i.e., conversational history) and previous approaches. Modeling
conversations refers Conversational history and state, conversational query rewriting,
intent and entity recognition, dialogue actions and user modeling.

2.3.1 Conversational History and State

Conversational history modeling refers to the past utterances that were uttered and
how these are related. It is important due to the language usage in conversations;
users rightfully expect the system to understand their incomplete utterances by using
the context of the conversation (i.e., history). Indeed, in CIS systems, utterances are
more prone to ellipses, coreferences (anaphoras and zero-anaphoras) [2], see Table 2.3.
Consequently, the NLU module of any CIS system is of paramount importance. Using
the context can be of huge advantage for understanding indirect answers. For example,
given the question “Do you want to go to the gym together?” the prompted person could
answer with “I’d like to do some calisthenic exercises outside.” In this example, the user
implicitly denies the offer. Simple approaches to modeling history attempt to provide
context by including the previous k turns. These approaches were later expanded to also
include the positional relation of the turns [45]. Furthermore, their model learns the
significance of previous answers’ tokens to the current answer using a History Attention
Module. More recent approaches utilize transformer models, e.g., BERT, which are adept
at understanding semanticity. Transformer models use attention to encode long-term
conversations with separation tokens to indicate turn structure. Similarly, recurrent
networks, such as LSTMs, use latent states to encode conversations. Recent approaches
attempt to model the flow of the conversation, i.e., an explicit latent representation of
the previous context. In the information retrieval community, approaches using dense
retrieval have emerged recently. Yu et al. [46] present a Conversational Dense Retrieval
(ConvDR) system that learns contextualized embeddings for queries in a conversational
setting. More specifically, they use a teacher-student framework to train their model at
matching query and document embeddings.

2.3.2 Conversational Query Rewriting

Conversational Query Rewriting (CQR) entails the task of leveraging conversation history
to rewrite the current query. This is helpful for incorporating the conversational context

Chapter 2 Related Work 17

Table 2.3: Overview of frequent linguistic concepts in conversations

Concept Description Example
Ellipsis omitting words or topics implied by the context “That sounds logical”
Anaphora words that explicitly refer to previous conversational turns “We told you so”
Zero-anaphora omitted anaphora “Told you so”

into the query and allows for more successful retrieval, i.e., retrieving most relevant
documents. Additionally, it has proven to be useful for reranking first-pass retrieval [29]
results.

A popular approach that we have mentioned earlier is to employ sequence-to-sequence
models such as T5. These models are often pre-trained on CQR datasets such as
CANARD [34].

2.3.3 Intent and Entity Recognition

Intent and entity recognition is a critical part of any conversational system and makes
up the NLU component. It is responsible for detecting intent(s) and entities within a
user utterance, such that the system is able to act in a correct manner. Traditionally,
intent detection methods include rule-based and template-based recognition methods,
and statistical classifiers [47, 48]. While it is possible to build accurate classifiers with
rule-based templates, they are costly in that different domains require different rules and
templates. Furthermore, statistical classifiers require feature extraction which, if done
manually, is ineffective and there is no guarantee on the accuracy of features [47]. More
recent methods however, focus on deep learning architectures, such as Convolution Neu-
ral Network (CNN), Recurrent NN (RNN), Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), NNs with Attention mechanism (e.g., Transformer architectures).
RASA [49] introduces DIET (Dual Intent and Entity Transformer), a multi-task trans-
former architecture which performs intent classification and entity recognition jointly. It
allows for flexible choice pre-trained embeddings, such as BERT, GloVe, ConveRT, etc.
Its performance [49] is comparable to large-scale pre-trainted language models, while
being computationally effective [50].

2.3.4 Dialogue Actions

We have briefly mentioned speech acts (also known as dialogue acts) in Sect. 2.1, and
how each utterance in a conversation can be seen as an action. These are the same
as intents, but following recent work [51], will be referred to as actions. Thus, it is
natural to build schemes that summarize the set of actions that the user and/or the

18 Chapter 2 Related Work

system can take. While acknowledging previous work, Azzopardi et al. [51] attempt
to conceptualize a framework for the different actions and intents that can take place
in a conversation, and elaborate what they regard as key decision points within the
conversation. Moreover, they develop this under the assumption of a conversational
search agent. Thus, their framework, as they mention several times, is not complete and
would need some adjustments to include all capabilities of a CIS system (i.e., ConvQA and
ConvRec intents/actions). More specifically, Azzopardi et al. [51] identify the followings
intents and actions for the user:

• Reveal: Reveal actions refer to utterances where the user reveals more information
regarding their need, e.g., budget for a travel. This is also known as disclosing
(disclose) information. However, there are cases where the user is either not sure,
e.g., the user has not decided on a budget, or they refuse to share such information.
These are known as disclose-unsure and disclose-not respectively. Further, a user
can revise their information need, e.g., changing their budget in the middle of the
session, or refine it. Finally, the user can also expand their information need, which
is especially useful for cases where they have over-constrained their information
need and there are none or too few options available. In general, reveal actions are
used to formulate the users’ query.

• Inquire and Navigate: In order to process the query results, the user must be
able to both inquire results and navigate through these in a seamless manner. For
example, the user can inquire a list of options that satisfy their current information
need (referred to as CIN in [51]), or ask the agent to summarize the options available.
Further, they might also be interested in comparing (compare) or selecting a subset
of the results, or ask for similar options. The user should also be able to navigate
through the options that have been revealed to them, e.g., by repeating (repeat)
them, or saving (note) some particular options that have peaked their interest.
Additionally, the user could ask for more information regarding one or more options
(more), etc. Thus, while inquire considers the different means of presenting relevant
options, navigate refers to further actions that the user can perform regarding these
options.

• Interrupt and Interrogate: Sometimes, the agent could lead the conversation in
a direction that is unwanted by the user. In such cases, the user can interrupt the
agent and change the direction, e.g., by having the agent explain why it suggested
a particular item (explain). The user might also be interested in knowing what the
agent has understood so far regarding their information need (understand). Thus,
interrupt and interrogate may be used to facilitate mixed-initiative.

Chapter 2 Related Work 19

The agent must be able to respond to the above intents and actions from the user. In
this regard, [51] define these actions for the system to perform as answer to the actions
performed by the user:

• Inquire: When a user performs a reveal action, the system must be able to extract
relevant parts of the user utterance, e.g., constraints and criteria. Furthermore,
the agent must be able to elicit information that is most important in filtering the
result set. Systems that are deployed in already constrained domains implement
this via slot-filling techniques, where the agent attempts to fill pre-defined slots
with their values, e.g., “Price: $ 300.” Sometimes, the agent might not be confident
in its understanding of the user’s utterance, which creates the need for clarification
questions by the system (clarify). Clarification questions are often used in con-
versations between humans and thus make the agent-human conversations more
human like. However, it comes at the price of user patience. Indeed, if asked too
many times, the user might lose their patience and end the conversation, resulting
in an unsuccessful conversation. Note that inquire actions by the system is often
related to query formulation, similar to the set of reveal actions of the user.

• Reveal: At some point in the conversation, the agent will have to disclose what it
has found given the CIN. In [51], they also mention past and alternative information
needs (PINs and AINs respectively). Further, the system has to decide how to
present the results, i.e., should it present a list of the options or a summary.
Additionally, as the user could ask for a comparison, subset or similar options, the
agent must be able to respond correspondingly, i.e., it should support the compare,
subset and similar actions.

• Traverse: Traverse corresponds to the navigation action of the user. More
specifically, the agent must remember where the user is in the list of options, be
able to elaborate at the request of the user, save particular items that the user
showed interest in, etc.

• Suggest: Although similar to the reveal action, the agent can decide to take
initiative and recommend items despite the user not asking. This implements mixed-
initiative on the system side and can lead to a natural flow in the conversation.
Additionally, the system can suggest (hypothesize) other AINs by generating what-if
questions such as “what if you (the user) travelled to a different country/place?”
This leads to more options being available and may lead to a better experience. For
example, if the user is willing to change location for a significantly better option,
and the system fails to mention this, it could lead to regret and the user might
think less of the system’s capabilities.

20 Chapter 2 Related Work

As we mentioned earlier, this conceptual framework is incomplete, however, it provides
a good starting point as it mentions several actions that are relevant across all sub-
domains of CIS systems. Furthermore, we did not discuss the key decision points in the
conversation, where the agent must decide on which action to perform. This is generally
referred to as the agent policy and is usually implemented by the dialogue manager
module as we previously mentioned.

Finally, there are other intent/action schemes, such as the QRFA [52] model. Here,
the user-system interactions are summarised into four general categories; Query (user),
Request (system), Feedback (user) and Answer (system). Vakulenko et al. [52] show
that their QRFA model better reflects conversational flows in real information-seeking
conversations than previous models. However, it should be noted that the QRFA model
is an extremely coarse-grained model, thus facilitating the modeling of conversational
flows to a limited extent.

2.3.5 Context Modeling

The importance of context information for recommender systems has been presented
by many researchers, and it is evident that context is influential on the quality of
recommendations [53–59]. Context is any information useful to characterizing the
situation of an entity (e.g., a user) [60] and can come from many sources including user
history, preferences, and profile [61]. Villegas and Müller [62] identify five overarching
categories of context. These are: individual (i.e., information from independent users or
items), location (user’s location), time (during the day, week, and year), activity (e.g.,
shopping), and relational (i.e., relationships between the user and the environment).
Although these concepts are initially presented in the field of recommender systems, they
are also applicable for CRS.

2.4 Evaluation

Goal-driven and non-goal driven systems have different goals, and thus evaluated differ-
ently.

Chatbots are evaluated on their ability to hold a natural conversation, which is inherently
difficult to evaluate automatically. Therefore, evaluation of non-goal driven systems
usually requires human assistance/judges. There are two ways for human judges to
evaluate a human-chatbot conversation, participant evaluation and observer evaluation [3].
In the former, judges converse with the chatbot and evaluate it, while in the latter,

Chapter 2 Related Work 21

judges are given transcripts and evaluate these. Commonly used metrics revolve around
a chatbot’s ability to seem human.

As for goal-driven systems, one way of evaluating their performance is to measure how
successful the system was at solving the given task, e.g., by asking the users [63]. Jannach
et al. [14] identify four main categories of quality dimensions related to CRS:

• Task effectiveness: Related to CRS’s ability to support its main task. Can be
quantified objectively, e.g., accuracy measures and acceptance/rejection rates.
Subjective evaluation can be obtained by asking users directly (e.g., satisfaction
level [64], quality of recommendation [65]).

• Task efficiency: The efficiency of a CRS is often quantified by considering the
number of turns in the dialogue until a successful recommendation [66]. Systems
that require less interaction are preferred.

• Quality of the conversation and usability aspects: These aspects are concerned
with quantifying the conversational skills of the CRS, and its ease-of-use [65,
67]. Generally achieved through subjective assessment, with regards to fluency,
understandability or response quality [16, 17, 68].

• Subtask effectiveness: Associated with the performance of individual components,
e.g., NLU [69].

Evaluation can be broadly categorized into two categories: offline evaluation and online
evaluation.

2.4.1 Offline evaluation

One of the advantages of offline evaluation is the reproducibility of results. For this
category of evaluation, there exists many benchmarks, some of which we have already
mentioned in Sect. 2.2. One important aspect of offline benchmarks for CIS systems is that
benchmarks can have either synchronous or asynchronous dialogues, or a combination of
both [2]. Synchronous dialogues are live conversations, whereas asynchronous dialogues
allow participants to reply at their convenience, e.g., conversations on a Reddit forum. By
exploiting such free-form dialogue datasets, agents can be trained to produce a plausible
response to any given utterance [2]. However, it is important to carefully consider which
forums to use to train and evaluate the CIS system, as it can introduce bias to the
evaluation. Furthermore, the language used in these dialogues may be inappropriate,
which is undesirable for the CIS to learn. Constructing conversational datasets for

22 Chapter 2 Related Work

offline evaluation presents several challenges. Dialogues may be heavily impacted by the
motivation of the participants. For example, in a task-oriented setting, users that are
hired to complete a certain task might not approach it in the same way as someone who
wants to complete that task [2]. Furthermore, systems that are capable of solving the
task, however in a different way, could be judged unjustly, especially in dialogues where
a “correct” response exists.

In terms of automatic assessment, popular metric choices for end-to-end systems are
BLEU [2, 14, 15, 70, 71], ROUGE [72] and METEOR [73] which are based on word-
overlap, with respect to the actual user response given at the particular turn, and
typically used for machine translation tasks. However, it has been shown that word-
overlap based scores have a low correlation to human evaluation [70]. Other metrics
such as per-turn, and per-dialogue accuracy can also be implemented [3], in addition to
task completion rate, the average number of turns for completion, trust, and fairness [2].
The appropriateness of responses has also been evaluated using trained metrics [74, 75].
These have a significantly higher correlation to human judgments than word-overlap
measurements such as BLEU, ROUGE or METEOR. However, it has been shown that
simple manipulation (e.g., reversing word order) of the responses can lead to substantial
changes in the score of trained metrics, indicating that these metrics are not robust [76].

Systems can also be evaluated on component level, e.g., evaluating the NLG component
of a CIS system. Datasets that aim to evaluate single components are dubbed as
“single-step datasets” in [2]. The End-to-End NLG challenge [77] aimed at evaluating
end-to-end NLG systems capability of generating complex output by introducing a new
dataset with challenges such as open vocabulary, complex syntactic structures and various
discourse phenomena. The task showed that sequence-to-sequence models were able to
perform well according to word-overlap measures and human rankings of naturalness.
However, manual systems outperformed these models in the overall quality, diversity
and complexity of outputs. Another fine-grained metric (for chatbots) is topic-based
evaluation, in which the agents ability to talk about multiple topics is evaluated [71]. Two
aspects of topic-based evaluation include topic breadth and topic depth [78]. These refer
to the variety of topics the agent is knowledgeable about and the depth of knowledge (i.e.,
how many turns can it talk about the same topic) respectively. In [78], the correlation
between human judgments and topic-based metrics was higher than the trained metrics
we mentioned above, where topic depth was measured to have a correlation of 0.707 and
topic breadth a correlation of 0.512.

Chapter 2 Related Work 23

2.4.2 Online evaluation

In online evaluation, the system is deployed and real users have the chance to interact
with it. Therefore, online evaluations are naturally more indicative of how the system
performs. Users’ responses to system utterances can identify limitations, making this
type of evaluation more robust. Zamani et al. [2] categorize online evaluation into two
groups: lab or crowdsourced studies and real-world studies.

In lab or crowdsourced studies, paid users or volunteers are hired to assess the system
either as a whole or a sub-module of it (e.g., preference elicitation). Workers can be
tasked with e.g., providing clarification questions/answers [79], eliciting preferences, and
evaluating recommendation explanations based on these preferences [80] and so on. Note
also that many of the metrics mentioned under offline evaluation can be evaluated online
as well, such as topic-based metrics and the agent’s ability to seem human.

However, online evaluation is expensive and time-consuming to do for multiple iterations
of the system - hence the research on automatic evaluation that aims to facilitate this.
Experiments are also not repeatable, which makes it difficult to compare the system
performance across experiments.

The evaluation of a system’s overall quality, i.e., natural responses, conversation flow (such
as mixed-initiative, discourse management, etc.), vocabulary, being human-like, etc., can
be obtained through real-world studies. The Alexa Prize Challenge challenges academics
to create conversational agents to converse with users on a variety of topics [81]. At the
end of each conversation, the user is requested to rate their experience, thus providing
competing teams with real user data and enabling them to continuously improve their
conversational systems during the competition.

2.4.3 User simulation

Employing human judges and/or real users for evaluation of dialogue systems can be both
costly and time-consuming. Therefore, user simulation has become popular. However, it
remains a difficult task to create simulators that can imitate real users to a high degree.
To achieve this goal, a user simulator has to accurately model users with respect to
interaction space, preferences and other context such as preferences, cooperativeness, etc.

Generally, user simulators are broadly categorized into agenda-based or model-based.

24 Chapter 2 Related Work

2.4.3.1 Agenda-based user simulation

Agenda-based simulators build on the idea that dialogues are essentially an exchange of
actions between the participants. These actions are similar to the ones we defined in
Sect. 2.3.4. Through these actions, the initiating participant (often the user) wishes to
achieve a certain goal. This goal is the driving factor behind the user agenda and is often
described through a set of constraints. For example, consider the following utterance
from a user: “I’m looking for a nice bar serving beer in the town center.” [82] In this
example, the user goal is finding venues with the constraints that venue type must be a
bar, it should serve beer and the area should be central. Typically, the user is interested
in metadata regarding the recommended venues, such as the phone number, address, and
the name of the venue. This type of information is obtained through a set of request
actions [82].

Throughout the dialogue, the agenda and goal may be updated, depending on the agent’s
actions. For example, the agent may inquire more information about a previous user
action, thus pushing a new action with higher priority onto the agenda. Similarly, the
goal may change (i.e., the goal is too restricted, thus prompting a goal change). In each
turn, a new action is sampled from the top n actions on the current agenda. Schatzmann
et al. [82] note that n can correspond to the level of initiative taken by the simulated
user, which allows for incorporating user cooperativeness into the simulation. Thus,
a statistical model trained on prior dialogue data may be used to sample n for each
turn [82]. Naturally, such a model would be dependent on the agenda.

Zhang and Balog [1] develop an agenda-based user simulator and evaluate it by comparing
real users vs. simulated users objectively and subjectively through crowdsourcing. The
workers are presented with two dialogues side by side: one is a simulated dialogue while
the other is a real dialogue, both with the same agent. Then, the workers have to guess
which one of the dialogues was performed by a real human and provide a short explanation
of their choice. They find that by introducing a more advanced interaction model and
preference model, they are able to simulate more realistic conversations. Furthermore,
by studying the comments they collected from the workers, they conclude that future
simulators can gain substantially by focusing on these three properties: realisticity (being
human-like), response (increased transparency and less repetitive), and engagement
(involving the user in the conversation).

2.4.3.2 Model-based user simulation

User simulators that are model-based typically employ neural network architectures to
create end-to-end, (or sequence-to-sequence) user simulators [83, 84]. These models take

Chapter 2 Related Work 25

as input the dialogue context, which can be a combination of previous dialogue acts
and states to output a set of user intents for the current turn [83], or it can be the last
utterance used to generate a natural language response (NL-to-NL) [84].

Asri et al. [83] introduce a sequence-to-sequence model using an encoder-decoder RNN
architecture. The encoder receives the entire dialogue history, i.e., a sequence of dialogue
contexts, where each dialogue context consists of four components: a vector indicating
the most recent machine acts, two vectors that indicate the inconsistency between the
most recent machine information and user goal, a vector to track the status of each goal
constraint and similarly for requests. Both the encoder and the decoder are based on
Long-Short-Term-Memory (LSTM), followed by a fully connected layer. The output of
the encoder’s fully connected layer is used as input to the decoder. Finally, the decoder
outputs probabilities for the action space. In order to generate a set of actions, they first
sample an action from the first step of the LSTM and use this as input to the second
step, repetitively. Importantly, their model is limited to only generating actions, thus
necessitating a separate NLG module. Crook and Marin [84] acknowledges this limitation
and introduces a sequence-to-sequence, NL-to-NL user simulator. Excluding the specific
details, their model consists of a GRU-based encoder and an LSTM-based decoder. The
model takes as input the system utterance and generates a user response. They develop
three models with different levels of context and show that their models are close to
human level in terms of both naturalness of responses and dialogue discourse cohesion.
For further details, we refer to [84].

Chapter 3

Approach

In this chapter, we present our approach to building the user simulator. We start by
explaining the mathematical concept upon which our simulator framework is built in
Sects. 3.2 and 3.3. Then, we introduce the existing user modeling and the modifications
made to it. Furthermore, we detail our additions to the user model module, i.e., context
and persona. Next, we describe the process to instantiate the simulator. At the end of
the chapter, we detail the implementation of our approach.

3.1 Overview

Our user simulator is based on [1], thus it is agenda-based. It consists of four main parts:
interaction modeling, preference modeling, context modeling, and persona modeling. The
interaction model is based on the concept of Markov Decision Processes (MDP) and built
with a modular approach with respect to the underlying interaction model, allowing
it to be replaced with more sophisticated models and schemes. Preference modeling
facilitates the simulator to elicit preferences and is consistent for a given user. The new
concepts compared to [1], are the context model and persona model. Context modeling
encapsulates the temporal, relational, and conversational context of a user. While the
persona encapsulates the static user properties.

All these concepts and the mathematical foundation will be described in the next sections.

3.2 Background - Mathematical foundations

The underlying mathematical concept behind the user simulator is known as Markov
Decision Process (MDP). A Markov decision process is a discrete-time stochastic control

27

28 Chapter 3 Approach

Figure 3.1: An example MDP with three states, two actions and two rewards.

process [85], in which a process with decision-making situations is modeled in discrete time
steps and outcomes are partly random and partly under the control of the decision-maker.
Formally, an MDP is defined as a tuple consisting of four variables:

• S: The state space, i.e., the set of states in the process.

• A: The action space, i.e., the set of actions in the process.

• Pa(st, st+1): The probability of transitioning to state st+1 from st by taking action
a.

• Ra(st, st+1): The reward by transitioning to st+1 from st by taking action a.

As a result, we can say that at each time step the process is in state st and a set of
actions, As ⊆ A, are available to the decision-maker. By taking some action a ∈ As, the
decision-maker transitions to the state st+1 with probability Pa(st, st+1) and receives
reward Ra(st, st+1).

Figure 3.1 illustrates a MDP. In this illustration, there are three states: S0, S1 and S2.
From these states, the decision-maker can take either action a0 or a1. The squiggly
arrows that point outside the process are rewards that the decision-maker receives for
taking the corresponding action. The probabilities that are shown in the figure represent
the likelihood of continuing the specific path. For example, from S0, there is a 50%
chance that the decision-maker will take action a0. From there, the decision-maker either
stays at S0 with probability 0.5 or continues to S2 with probability 0.5. Thus, the state
transition probability from S0 to S0 can be computed as 0.5 · 0.5 = 0.25. The full mapping

Chapter 3 Approach 29

between states can be formulated in a state transition probability matrix:

P =

0.25 0 0.75
0.35 0.525 0.125
0.35 0.15 0.5

 (3.1)

Each sij in the state transition probability matrix defines the probability of the decision-
maker transitioning from state i to state j.

Markov decision processes assume that the underlying state is known to the decision-
maker. However, in most real-world applications, this is not the case. A partially
observable MDP (POMDP) [63] is different from standard MDPs as it does not assume
that the underlying state is known to the decision-maker. Instead, it relies on past
observations to compute the transitional probabilities. POMDPs are therefore often used
to model situations where the complete underlying state is unknown, e.g., simulations.

MDPs/POMDPs for simulation are especially popular in the field of Reinforcement Learn-
ing. Most reinforcement learning algorithms take advantage of the episodic simulator, in
which a decision-maker is simulated from an initial state. Each time the decision-maker
receives an input action, it yields the resulting state and reward, thus useful for training
the decision-maker to achieve an optimal policy.

The simulations in this thesis can be seen as POMDPs without rewards: the simulated
user is the decision-maker, and the past observations are given in the form of sample
dialogs between users and the agent.

3.3 Agenda-Based Simulation for Conversational Recommen-
dation

Our approach to building a user simulator is based on the work presented in [1]. In this
section, we briefly explain the core of this simulator.

Categorically, it is an Agenda-based User Simulator [82], in which the users follow
an agenda consisting of dialogue acts in order to achieve their goal, see Sect. 2.4.3.1.
Once again, consider the example where a user is looking for central bars serving beer.
Figure 3.2 illustrates the example in an agenda-based system. There are a couple of
observations to make. First, notice that the constraints and requests are defined as a list
of slot-value pairs, similar to how slot-filling techniques function. These are defined in
variables C0 and R0 respectively. Secondly, the user agenda A1 is a stack-like structure,
initialized to contain the actions necessary in order to accomplish the user goal. The

30 Chapter 3 Approach

Figure 3.2: An example of how a user agenda could look like. Taken from [82]. The
subscripts indicate turn number.

constraints are expressed through multiple inform actions, which is similar to the reveal
action defined in Sect. 2.3.4. Similarly, the desired information is represented as a set of
request actions that correspond to the more action described earlier.

As we mentioned in Sect. 2.4.3.1, the agenda is continuously updated throughout the
dialogue. Thus, by considering a dialogue as a sequence of state transitions enabled
by dialogue acts, and each state depends only on the previous state, dialogues can be
modeled as an MDP, see Sect. 3.2. In other words, the user transits from an initial state
st to the next state st+1 by performing action at from the agenda At [1]. Furthermore,
the following state transition probabilities are defined by Zhang and Balog [1]:

• P (st+1|At, st) = P (At+1|At, gt+1) · P (gt+1|At, gt): The probability of going from
one state to the next.

• P (gt+1|At, gt): An indicator function returning 1 if gt was accomplished, otherwise
0.

• P (At+1|At, gt+1): Agenda update signifying a pull operation, in cases where the
goal gt was accomplished.

• P (ãt|At, gt+1): Agenda update signifying a push operation. This probability is
used when the goal was not accomplished, and a replacement action ãt needs to be
pushed onto the agenda, with the same original goal.

Chapter 3 Approach 31

Thus, the state transition probability P (st+1|At, st) reduces down to P (At+1|At, gt+1)
when the goal was accomplished, otherwise P (ãt|At, gt+1). The agenda update probabili-
ties are determined by the interaction model.

3.4 User modeling

We model users with respect to four distinct models: interaction, preference, context
and persona. Zhang and Balog [1] model users via an interaction model and a preference
model. The interaction model is somewhat similar to what we discussed in Sect. 2.3.4 and
defines how the user agenda can update throughout the conversation. More interesting
however, is their preference model, as it attempts to capture personal tastes represented
as a set of attribute-value pairs. Out of the two preference models they develop, the
advanced one allows for consistent preferences across several simulations.

Salle et al. [86] model other contextual variables, i.e., cooperativeness and patience
for conversational search refinement. The cooperativeness is measured as a real value
between 0 to 1. For example, users with higher cooperativeness are more likely to provide
additional information in their responses, in contrast to users with lower cooperativeness.
The patience parameter indicates how many turns a user is willing to converse with
an agent before it runs out patience and ends the conversation. These values may also
change dynamically, i.e., throughout the session.

In the following sub-sections, we explain our approach to modeling these four dimensions
(interaction, preference, context and persona). An overview of our approach is illustrated
in Fig. 3.3.

3.4.1 Interaction Modeling

An interaction model can be seen as a communication protocol between the users and the
agent. It defines which actions the user can take based on the most recent agent action.
Zhang and Balog [1] experiment with two interaction models: QRFA [52] and CIR6,
a model they developed specifically for Conversational Item Recommendation (CIR).
They define a list of possible user actions A based on the framework presented in [51],
which we discussed in Sect. 2.4.3.1. Since they primarily consider the user side, they
treat the agent as a black box, with the assumption that the simulator can understand a
set of agent actions, which are also based on [51]. Specifically, A includes the following
actions (the following is a high level overview; there are other sub-categories within each
action category see Sect. 2.4.3.1.): Inquire, Reveal, Disclose, Navigate, Note and

32 Chapter 3 Approach

Figure 3.3: User modeling concepts. The green boxes indicate our main contributions.
There is an indirect link between the context model and interaction model. The context

model influences the user’s patience which in turn impacts agenda update.

Figure 3.4: User state diagram. Arrows indicate action connection.

Complete. The agent actions that the user is assumed to understand includes Reveal,
Inquire, Navigate, Interrupt and Interrogate.

The state diagram of the CIR6 model is shown in Fig. 3.4 with connections between the
different actions. In this model, the next user action is solely based on the current user
action. Using a probability distribution based on the training corpus, the most probable
action is selected. Thus, the agenda update in Sect. 3.3 can be written as:

P (At+1|At, gt+1) =

P (At+1|At) · 1(at+1, At), δ(gt+1, gt) = 1

P (ãt|bt) δ(gt+1, gt) = 0
(3.2)

where δ(gt+1, gt) is an indicator function returning 1 if the goal gt was met, otherwise 0.
ãt is the replacement action sampled based on previous agent action, bt.

The interaction model in our simulator is an extension of the CIR6 model. The difference

Chapter 3 Approach 33

is that we allow for intents that can depend on user preferences, e.g., the note intent.
This allows for more reproducible simulations, as user preferences are consistent across
simulations. Furthermore, we let agenda updates be dependent on the new contexts.
Thus, the agenda update becomes slightly different as we will see in Sect. 3.4.3.

3.4.2 Preference Modeling

Preference modeling refers to modeling users’ individual tastes and allows for a person-
alized experience. Zhang and Balog [1] experiment with two preference models. The
simplest of the two is the Single Item Preference (SIP) model, in which user preferences
for seen movies are generated randomly (i.e., by flipping a coin). In the more advanced
model, Personal Knowledge Graph (PKG), preferences are based on the MovieLens
dataset: a user’s preference for a movie (or item) is based on the rating they gave it.
The user’s preference for an attribute is computed by averaging the user’s ratings for
movies that have that attribute. The set of sampled movies is divided into liked and
disliked sets, as is the attribute. The PKG includes nodes for both items and attributes
based on eight rated1 movies. Thus it is used to elicit the user’s preferences when asked.
Preferences that are not explicitly specified by the user are inferred based on the user’s
historical preferences. For example, if an agent asks about the user’s preference for a
movie that the user has not seen yet, the preference model will infer it by aggregating
the user’s ratings for the genres in that movie.

In our approach, we use the PKG preference model, since preference modeling is not
our focus. Our attention is dedicated to incorporating other contexts that we believe
contribute to more realistic simulation. We did however implement some additional logic
to the preference model, specifically the logic for choosing the next set of annotations for
the user.

3.4.3 Context Modeling

Context modeling, as we have mentioned previously, is any information useful to charac-
terize the situation of a user. Interaction modeling and preference modeling are just two
of many ways to incorporate context. We extend the contexts used in [1] by considering
the temporal and relational contexts. For the temporal context, we distinguish between
weekdays and weekends, and the time of the day. The relational context is based on the
group setting.

1One of these eight movies must be liked, i.e., rated at least 4/5. Movies that are rated 2 or less are
considered disliked, while movies with ratings between 2 and 4 are considered neutral.

34 Chapter 3 Approach

We believe that the temporal context influences the cooperativeness of a user, and by
extension the patience. As we do not have access to real data that quantify the exact
effect the temporal and relational contexts have on the two variables, we proceed by
intuition. Specifically, we consider that users tend to be more cooperative during the
evening as opposed to earlier in the day, as users are generally busy (e.g., with work)
during the day and more relaxed in the evening. Similarly, users are less likely to be
cooperative during hectic hours but otherwise cooperative. Furthermore, we differentiate
between weekdays and weekends, to model the fact that users have fewer obligations
during weekends. Intuitively, fewer obligations imply a larger cooperativeness score

The relational context incorporates the group setting. In our project, we take a simple
approach and model it as a boolean variable, indicating whether the user is watching alone
(“false”) or with a group (“true”). We assume that groups tend to be more cooperative
than single-users.

Similar to [86], we sample cooperativeness as a number between 0.0 and 1.0. Then, we
scale this according to the user’s temporal and relational contexts, according to Eq. (3.3)
in order to compute the max number of times the user is willing to re-try when the agent
breaks down. In this equation, c is the summed quantified contexts and h is the user
cooperativeness. In our work, cooperativeness is closely connected to patience. Since the
relational and temporal contexts are dynamic variables that we model as cooperative
bonuses, we generate personas that are objects that contain static variables. For example,
the initially sampled cooperativeness score is a static variable that we store in the user
Persona. The patience of the user is changes depending on the dialog flow, i.e., it indicates
the number of consecutive retries the user has made at a particular action/intent. We
say that the user has run out of patience if the patience reaches max_retries, thus it is
dependent on cooperativeness as well. The distinction between static and dynamic user
variables allows us to observe the effect of the new contexts on the conversation, for the
same persona.

max_retries = c · h (3.3)

Further, we model the user’s satisfaction both overall and on the turn-level. We use
satisfaction as a feature to influence the user response, as seen in Fig. 3.5. The figure
depicts a situation where the conversational agent (green utterances) does not provide
relevant recommendations to the user (blue utterances.) Thus the user’s satisfaction
with the system decreases, resulting in responses that reflect a dissatisfied user. The
turn-level user satisfaction is classified using the models developed in [87]. Sun et al.
[87] introduces the following satisfaction scores: 1 - very dissatisfied, 2 - dissatisfied, 3 -

Chapter 3 Approach 35

Figure 3.5: An example dialog between an agent and a user. Although the user is
reasonably cooperative, their patience runs out and the result is a failed dialog. The
user responses also show that the user becomes less and less satisfied with the system.

Table 3.1: An overview of the variables used in the state transition probabilities with
corresponding explanation.

Variable Explanation
Ct Overall user satisfaction at time t
ct Turn-level user satisfaction at time t
et Patience level corresponding to action at

h User cooperativeness

neutral, 4 - satisfied, and 5 - very satisfied. Throughout the conversation, the current
satisfaction level will be classified using the previous turns utterances.

The state transition probabilities introduced in Sect. 3.3 are then modified to incorporate
the new contexts:

• P (st+1|At, st, et+1) = P (At+1|At, gt+1, et+1) · P (gt+1|At, gt): The probability of
going from one state to the next. Compared to [1], we incorporate turn-level
patience et into the agenda update.

• Following [1], we let P (gt+1|At, gt) = δ(gt+1, gt), i.e., an indicator function returning
1 if the goal gt was accomplished and 0 otherwise.

• We differentiate how agenda updates are done based on goal accomplishment. For
turns where the goal was accomplished, the agenda update corresponds to a pull
action from the agenda, as in [1]. If the goal was not met, we consider the context.

36 Chapter 3 Approach

Thus, a pull action results in the following agenda update:

P (At+1|At, gt+1, et+1) = P (At+1|At) · 1(at+1, at) (3.4)

where 1(at+1, at) indicates if the two consecutive actions are connected in the state
diagram (Fig. 5) or not.

• If the goal was not met, the agenda is updated according to:

P (At+1|At, gt+1, et+1) =

P (ai+1
t |gt, ai

t) δ(et+1, et) = 1

P (ãt|bt) δ(et+1, et) = 0
(3.5)

where δ(et+1, et) is an indicator function returning 1 if patience > 0, otherwise 0.
If the patience of the simulated user has not run out, the user will repeat their
previous action. On the other hand, once the patience reaches 0 (i.e., runs out), a
new action based on the last agent action bt is pushed onto the agenda.

• The overall user satisfaction is updated according to:

Ct+1 = ϕ(ct+1, ct, ..., c1) (3.6)

In other words, the overall satisfaction is an aggregation of the past turn-level
satisfaction scores, for example, the average of the last three turn-level scores:

Ct+1 = 1
3(ct+1, ct, ct−1) (3.7)

• Similarly, we update the patience as a function of the previous patience and
cooperativeness:

et+1 = σ(et, h) (3.8)

In this thesis, increase the patience by 1 if the goal was not met, and otherwise
reset it to 0, thus indicating the number of retry attempts made by the user.

Figure 3.6 illustrates the agenda update process. Comparing this illustration to Fig. 3.7,
the main difference is consideration of patience in order to decide between a new action
or re-trying the previous action.

3.5 Instantiating the Simulator

To instantiate the simulator a few components have to be provided. Specifically, the
simulator requires the interaction, preference and context models to be instantiated and a

Chapter 3 Approach 37

Figure 3.6: Illustration of the paths an agenda update can make.

Figure 3.7: Illustration of the paths an agenda update can make with the simulator
in [1].

38 Chapter 3 Approach

persona. Note that the context model contains a sampled temporal and relational context
that will be incorporated in the persona before the simulation starts. Alternatively,
it is possible generate a persona with a specific context. Additionally, the NLU and
NLG modules need to be trained and provided to the simulator. These components are
initialized as follows:

• Interaction Model: Instantiated with a file defining the action space and another
file with annotated dialogs.

• Preference Model: Requires an item collection and historical user ratings corre-
sponding to these items. Additionally takes in a user id that defines which user’s
preferences the model should retrieve. The necessary data to initialize the preference
model is also specified in two files: one containing items, and the other containing
ratings. The preference model samples n consumed items for the provided user id
and uses the corresponding user ratings to build the user’s preferences. Whenever
it is consulted for preferences, it returns the top − k ranked preferences.

• Context Model: The context model requires values for temporal and relational
contexts.

1. Temporal context: Time of the day is sampled according to specified probabil-
ities, which depend on weekend/weekday status. Similarly, the cooperativeness
bonus this context outputs, is dependent on weekend/weekday status. The
probability of a weekend situation is also specified by us.

2. Relational context: We sample the relational context based on a uniform
probability distribution.

• Persona: The persona is cooperativeness score is sampled using a normal distribu-
tion.

• Satisfaction classifier: This classifier is required in order to update the conversational
context on a turn basis.

• NLU and NLG: The NLU module is instantiated with an intent classifier and a list
of entity recognition models. Similar to the interaction model, the NLG module
requires a file with annotated dialogs and which participant’s utterances it should
extract from this file. Furthermore, the NLG can compute satisfaction scores for
these utterances if it is provided a satisfaction model.

The necessary files can be specified in a config file, which is then processed in order to
instantiate the necessary components, i.e., the interaction and the preference models.

Chapter 4

Implementation

In this chapter we describe the technical details of our approach. First, an overview of
the complete architecture is given, followed by the implementation details of DialogueKit
and UserSimCRS.

4.1 Overview

The architecture of the user simulator is shown in Fig 4.1. To explain this architecture
we will start with the red Annotated Utterance from the Conversational Agent. This
utterance is an utterance with annotations from a CIA. The Dialogue Manager (DM) is
part of DialogueKit which we will describe in more detail in the following sub-sections.
The DM sends the same utterance but without annotations, to the simulated user.
The utterance will be sent down two branches. The left branch is for understanding
the utterance and responding appropriately, while the right branch is for satisfaction
classification. Going down the left branch, the utterance will have its intent classified and
entities will be extracted, using the DialogueKit Natural language module. The intent
will be sent to the interaction model, which returns the next user intent. The annotations
from the utterance are sent to the preference model. In this model, the user’s preferences
for the utterance annotations are retrieved. Stepping back to the right branch. The DM
stores the dialogue history, the last user utterance will be retrieved from this. Then
the agent utterance and last user utterance will be sent to the DialogueKit satisfaction
classifier. The results from the interaction model, preference model, and satisfaction
classifier are used to generate natural language responses using the DialogueKit NLG.
This user response will be sent to the DM with annotations and sent back to the agent.

39

40 Chapter 4 Implementation

Figure 4.1: User simulator architecture.

4.2 DialogueKit

DialogueKit is a conversational framework that was initially part of another project. In
this thesis, we have extended it with functionality that facilitates both the development of
conversational assistants and the communication between two conversational assistants.
In the following, we formally introduce DialogueKit and the functionalities we contribute.

4.2.1 Core Concepts

The core contains the central classes for the DM. These are: AnnotatedUtterance,
Annotation, Dialogue, Intent, Ontology, SlotValueAnnotation and Utterance.
These classes have different responsibilities:

Chapter 4 Implementation 41

• Utterance: Holds the user or agent utterance. This is a simple string, without
any additional information.

• Intent: The intent of a participant utterance, i.e., the action which the participant
wishes to take.

• Ontology: The domain ontology. Contains which slot keys are allowed and
expected in the conversation.

• Annotation: Stores a key value pair of text annotation, e.g., key:GENRE,
value:comedy.

• AnnotatedUtterance: Is a subclass to Utterance, that additionally stores
annotations, Intent and satisfaction score.

• SlotValueAnnotation: Is a subclass of Annotation, that additionally stores
where in the Utterance the annotation is.

• Dialogue: Stores the User and Agent utterances.

4.2.2 Architecture

There are seven central parts that make up the DialogueKit package these are illustrated
in Figure. 4.2. The indicated interactions show how a system may look when it is built
using DialogueKit.

4.2.3 Dialogue Manager

The dialogue manager is the most important part of DialogueKit. The DM’s responsibility
is to facilitate the conversation between the participants, store the conversation in a
Dialogue and display the conversation on a Platform.

After a conversation ends, the DM can also export the conversation history to a JSON
file. This document can then be used for other parts of DialogueKit, e.g., as training data
for Natural Language Generation (NLG) and Natural Language Understanding (NLU).

4.2.4 Platform

The Platform’s responsibility is to display the conversation. DialogueKit includes a
simple terminal-based platform. However, it can support other platforms by facilitating
communication over POST requests. To avoid unnecessary complexity, the Platform is

42 Chapter 4 Implementation

Figure 4.2: Illustration of the concepts DialogueKit incorporates, and a general idea of
the interaction between the modules.

limited to only display utterances from the participants, i.e., user and agent utterances.
This approach allows the DM and the Platform to be as independent of each other as
possible and simplifies the integration of other platforms.

4.2.5 Intent Classification and Entity Extraction

The NLU module’s responsibility is twofold: intent classification (identifying which
action the participant is taking) and entity extraction (extracting annotations in the
participant utterance).

DialogueKit includes two intent classifiers: cosine intent classifier and Rasa DIET classifier.
The cosine intent classifier computes the cosine similarity between the input utterance and
the training set to identify the utterance intent. Note that this classifier was implemented
by the previous contributors of DialogueKit.

The Rasa DIET classifier, as the name suggests, uses the Dual Intent and Entity
Transformer (DIET) classifier developed by Rasa. It can perform both intent classification

Chapter 4 Implementation 43

Figure 4.3: High level DIET classifier overview.

and entity extraction and is our contribution to the NLU module of DialogueKit. Figure 4.3
includes an overview of the Rasa DIET classifier.

To implement the Rasa DIET classifier, we use Rasa as a package and re-create the
minimal implementation of DIET.1 Furthermore, since the core classes in DialogueKit
are not the same as the classes used in Rasa, we translate from DialogueKit to Rasa
during inference and back to DialogueKit afterward. In essence, we have created a
wrapper around the Rasa package. The implementation is quite minimal, using only the
WhitespaceTokenizer and CountVectorsFeaturizer for the pipeline. This is much
smaller than the default pipeline Rasa uses. The default Rasa pipeline can be seen
in listing 4.1. It is possible to add more steps in the pipeline and add configuration
parameters to tune the model, however, we omit this as it is task-dependent.

1

2 pipeline :

3 - name: WhitespaceTokenizer

4 - name: RegexFeaturizer

5 - name: LexicalSyntacticFeaturizer

6 - name: CountVectorsFeaturizer

7 - name: CountVectorsFeaturizer

8 analyzer : char_wb

9 min_ngram : 1

10 max_ngram : 4

11 - name: DIETClassifier

12 epochs : 100

13 constrain_similarities : true

14 - name: EntitySynonymMapper

15 - name: ResponseSelector

16 epochs : 100

17 constrain_similarities : true

1This is possible as Rasa has an Apache-2.0 license: https://github.com/RasaHQ/rasa/blob/main/
LICENSE.txt

https://github.com/RasaHQ/rasa/blob/main/LICENSE.txt
https://github.com/RasaHQ/rasa/blob/main/LICENSE.txt

44 Chapter 4 Implementation

18 - name: FallbackClassifier

19 threshold : 0.3

20 ambiguity_threshold : 0.1

Listing 4.1: Rasa default pipeline.

1 [

2 {

3 " conversation ID": "\"39 GHHAVOMGCMCWD 43ZNZ2ARD9RF4JH \"",

4 " conversation ": [

5 {

6 " participant ": "USER",

7 " utterance ": "hello\n",

8 " intent ": " DISCLOSE .NON - DISCLOSE "

9 },

10 {

11 " participant ": "AGENT",

12 " utterance ": "Which genres do you prefer ?\n",

13 " intent ": " INQUIRE . ELICIT "

14 },

15 ...

16 },

17 ...

18]

Listing 4.2: Sample from a dialogue export JSON.

1 version : ’3.0’

2 nlu:

3 intent : DISCLOSE .NON - DISCLOSE

4 - examples : |

5 - Let ’s start over.

6 - hello

7 - / restart

8 - /start

9 - Hello.

10 intent : DISCLOSE

11 - examples : |

12 - Sports

13 - Action

14 - How about sci -fi?

15 - Conspiracy thriller

16 - action , fantasy

17 - I want to restart for a new movie.

18 - Cyberpunk

19 - a new movie

20 - Soccer

21 - conspiracy

Chapter 4 Implementation 45

Listing 4.3: Sample from a nlu.yml document.

In order to train the DIET model, we need a nlu.yml2 file containing intent to annotated
utterances mappings, as shown in listing 4.3. The AnnotationConverter module in
DialogueKit includes functionality that generates the nlu.yml file provided a JSON
file with annotated dialogues, or Utterance and Intent pairs. A dialogue export /
annotated dialogues excerpt can be seen in Listing 4.2.

If the input to the AnnotationConverter is a JSON dialogue export file, the converter
will output two nlu.yml files, one for agent utterances, and another for user utterances.
Additionally, the converter generates two other YAML files: a simple format conversion
from JSON to YAML for the annotated dialogues and lastly a YAML document map-
ping annotation keys to corresponding values. The latter document can be useful for
verification, i.e., whether the conversion has captured all the annotations.

As the Rasa DIET classifier can handle both NLU tasks, no further entity extraction
models were created.

4.2.6 Natural Language Generation

1 {

2 " DISCLOSE .NON - DISCLOSE ": [

3 "Hi, okay .",

4 "Hi",

5 "hello",

6 "Sure, sounds fun .",

7 "Let ’s start over .",

8 "Okay, sounds good .",

9 "/ start",

10 "Hello ."

11],

12 " DISCLOSE ": [

13 " something like the {TITLE}",

14 "{GENRE} {GENRE}",

15 "{GENRE}, {GENRE}",

16 "a new movie",

17 "yes, {GENRE}",

18 "{TITLE}",

19 "I like {GENRE} movies ",

20 "I would like to restart ",

21 "{ KEYWORD }",

2Rasa nlu.yml: https://rasa.com/docs/rasa/training-data-format/

https://rasa.com/docs/rasa/training-data-format/

46 Chapter 4 Implementation

22 " something with { KEYWORD }",

23 "How about {GENRE}?",

24 "/ restart ",

25 "{GENRE}",

26 "I want to restart for a new movie .",

27 " something { KEYWORD } and { KEYWORD }"

28],

29 ...

30 }

Listing 4.4: Sample from a NLG template. Notice the placeholder annotations marked
with curly braces.

The Natural Language Generation (NLG) module is responsible for generating natural
language responses. DialogueKit’s NLG is based on [1], meaning it is template based.
Based on the training corpus, utterance (either agent or user) templates are retrieved
for each intent, including annotation placeholders. These placeholders are replaced with
actual annotations provided by the participant. A sample from the NLG template can
be seen in Listing. 4.4.

Selecting a response can be done in two ways: Randomly based on a desired Intent,
or based on a desired Intent and satisfaction score. The latter approach selects the
utterance with the closest satisfaction score to the desired one. The templates can be
generated either with a previous dialogue export or by using the core classes. We follow
the approach in [87] for satisfaction scoring. That is, we use the models introduced therein.
The current implementation uses the SVM model trained on the English datasets in [87].
This model is also used to score the utterances in the manually annotated dialogues since
this was previously missing. The satisfaction score of an utterance there is based on the
previous two utterances in the dialog.

4.2.7 Satisfaction Classifier

As mentioned in Sect. 4.2.6, DialogueKit implements a satisfaction classifier. This
classifier can be used to classify the satisfaction of a user based on the utterances of the
user and agent.

4.2.8 Agents and Users

Agents and users are the participants in a dialog. DialogueKit assumes the agent to be a
conversational system and the user to be a human. However, users of DialogueKit can

Chapter 4 Implementation 47

Figure 4.4: Illustration of the interaction between the DM, participants and Platform

Figure 4.5: Illustration of how a Agent could be implemented

change this by implementing a subclass of User. For example, UserSimCRS implements
a simulator as the user.

In a conversation, DialogueKit assumes the Agent to always start the conversation and
also end it. A User can initialize the end of a conversation, but the responsibility lies on
the Agent to stop it.

Out of the box DialogueKit contains some sample agents. These are described below:

• ParrotAgent: This agent will welcome the User, but will always parrot (echo)
the User.

48 Chapter 4 Implementation

• RasaParrotAgent: This agent looks like the ParrotAgent to the user, but is
actually just a connector to a Rasa conversational agent. This conversational agent
is also part of DialogueKit.

• MathAgent: This Agent will ask the user simple arithmetic (addition, subtraction,
multiplication and division) questions.

• MovieBotAgent: A Connector agent for IAI MovieBot3

• TerminalAgent: Allows a real human to interact with a User. This can be useful
for testing user simulators.

These agents are subclasses of the Agent class. Similarly, users of DialogueKit are
expected to extend the Agent class when creating their own implementation of an agent.

The User implementation in DialogueKit is kept simple so that it is easily extendable.
It consists of only one function, receive_utterance which the DM will call to send agent
utterances. It is up to the users of DialogueKit to decide what this function will do in
their case. For example, in the case of UserSimCRS, the simulator will perform NLU
tasks and decide how to respond based on the detected intent and entities. It is also
possible for a human to act as the user since the User class’ default behavior asks for
input via the terminal. However, these inputs (utterances) will lack the annotations in
the dialogue export. DialogueKit includes one sample user, MathUser that additionally
asks for annotations.4 Figure 4.4 illustrates the connection between the DM, Platform
and the participants.

4.3 UserSimCRS

Our simulator framework, UserSimCRS, is an extended version of the simulator in [1].
In the previous sections, we have introduced the main properties of the simulator, i.e., it
is an agenda-based user simulator with interaction-, preference- and context modeling.

UserSimCRS is built with adaptability in mind, that is, it can be used with any con-
versational agent. This is possible since it is data-driven, i.e., the simulator requires a
file with annotated user-system dialogues, see Listing 4.2 for an example. Furthermore,
unless a specific file identifying the user-system interactions is given, we assume that
the agent can understand the set of actions defined by the CIR6 model, mentioned in
Sect. 3.4.1. The framework also allows for other intent schemes to be used, however,
these should follow the same format as shown in listing 4.5.

3IAI MovieBot: https://github.com/iai-group/moviebot
4MathUser was specifically created to be used with MathAgent.

https://github.com/iai-group/moviebot

Chapter 4 Implementation 49

1 user_intents :

2 - Intent

3

4 user_preference_intents :

5 Intent :

6 - Sub - intent

7

8 user_add_preference_intents :

9 - Intent

10

11 user_remove_preference_intents :

12 - Intent

13

14 agent_intents :

15 - Intent

16

17 agent_elicit_intents :

18 - Intent

19

20 agent_set_retrieval :

21 - Intent

22

23 expected_responses :

24 Intent :

25 - Intent

Listing 4.5: The modified CIR6 intent scheme format. Modifications include
the addition of “user_preference_intents”, “user_add_preference_intents” and
“user_remove_preference_intents”. These allow for consistent preferences in simulated

dialogs.

4.3.1 Preference Model

Throughout a conversation, a user may specify various preferences and also refine or
revise these preferences. In order to enable this functionality, we extend the preference
model to store which preferences have been specified at any time during the conversation.
This way, whenever the user wants to perform a revise or refine action, the preference
model randomly samples one of these preferences.

Additionally, we implement the logic for choosing user slots in the preference model. We
implement this as a function of the agent’s annotations. The entity recognition module is
responsible for detecting which slots the agent is looking for, e.g., a certain item property
preference. The function then returns the top − k relevant values for the detected slot.

50 Chapter 4 Implementation

4.3.2 Interaction Model

As we mentioned in the previous chapter, we modify the CIR6 intent scheme. Specifically,
we make the following modifications:

• reduction: We remove a number of intents from the CIR6 scheme, as they are not
used in our case. This includes:

1. User inquire sub-intents: inquire.list, inquire.compare and inquire.subset.

2. User navigate sub-intents: navigate.back and navigate.repeat.

3. User disclose sub-intents: disclose.review and disclose.non-disclose-review.

4. Agent inquire sub-intents: inquire.clarify and inquire.elicit-review.

5. Agent reveal sub-intents: reveal.list and reveal.subset

6. Agent traverse intents.

• addition: We add a few intents to the CIR6 scheme:

1. Agent disclose sub-intent: disclose.more. This intent signifies that the agent
is disclosing more information regarding a recommendation, e.g., the dura-
tion/plot/actors of a movie.

2. Agent inquire sub-intents: inquire.more and inquire.next. The former denotes
utterances where the agent asks the user “What would you like to know about
movie?”, while the latter is used to inquire about the user’s next step in the
dialog.

3. Agent reveal sub-intent: reveal.none. This intent is detected when the agent
conveys that there are no recommendations that satisfy the user’s requirements.

• note intent: We split the previous note intent to four new sub-intents: note.yes,
note.like, note.dislike and note.accept. This is because the note intent is generally
used to express the user’s opinion on a given recommendation. The exception is
note.accept, which is used to accept a recommendation. Since the interaction model
has no knowledge of the preference model, it still outputs a note intent, which we
change during the response generation. The preference model is consulted to check
for two things: consumption status and preference. That is, whether the user has
seen (or consumed) the recommendation or not, and the user’s normalized rating for
the recommendation. Note that if the user has seen the suggested movie, the user
will respond with note.yes. On the other hand, if the user has not previously seen
the recommended movie, the output intent will be either note.like or note.dislike
based on the preference (which is inferred by the preference model).

Chapter 4 Implementation 51

• We add two new categories:

1. user_preference_intents: This category of intents was added to implement
the logic required for the note intent. The annotated dialogues contain the
specific sub-intents of the note intent, which we map back to the general note
intent during agenda initialization, as we do not know which movie the agent
will recommend, in addition to what the user’s preference for that movie will
be. Listing 4.6 displays this category.

2. user_remove_preference_intents: This category includes intents that are used
when the user removes a previously specified preference. In our case, we only
have one intent that does this, which is reveal.revise.

It should be noted that the changes we made to the intent scheme are catered to IAI
MovieBot, as it simplifies testing and usage of the simulator. In general, any intent
scheme can be used, as long as it captures the user-agent interactions. Furthermore,
these changes were propagated to the annotated dialogues file, since the dialogues need
to be annotated according to the intent scheme being used. We annotate each turn
in the dialogues according to what we believe is the most correct intent for that turn.
Annotation disagreements were resolved through discussion.

1 user_preference_intents :

2 NOTE:

3 POSITIVE :

4 - NOTE.LIKE

5 NEGATIVE :

6 - NOTE. DISLIKE

7 CONSUMED :

8 - NOTE.YES

Listing 4.6: user_preference_intents

4.4 IAI MovieBot

IAI MovieBot is a conversational movie recommender developed by the IAI group. It was
originally created to recommend movies using multi-modal interfaces, such as Telegram 5

and Facebook Messenger 6. This conversational agent is one of the agents used in previous
research for evaluating user simulation approaches. However, in order to use the bot
to evaluate our user simulator, some modifications were necessary. In particular, we
required single-modal responses (text responses) and a means of communication that did

5Telegram: https://telegram.org/
6Facebook Messenger: https://www.messenger.com/

https://telegram.org/
https://www.messenger.com/

52 Chapter 4 Implementation

Figure 4.6: Agent state diagram. Arrows indicate action connection.

not include third-party platforms. To this end, we implemented a new controller that
launches a Flask server7 and all responses are text.

Figure 4.6 illustrates the state diagram of the IAI MovieBot, which we use to test
UserSimCRS. Notice that any action can be followed by any other action, except end
which always terminates the conversation. This is mostly due to the fact IAI MovieBot
reacts to the user’s action, in addition to mistakes made by the NLU.

7Flask: https://flask.palletsprojects.com/en/2.1.x/

https://flask.palletsprojects.com/en/2.1.x/

Chapter 5

Experimental Evaluation

This chapter presents our experiments and the corresponding results. We start by
presenting our experimental setup, with the used evaluation measures, and the item and
preference data in Sect. 5.1. Further, we describe how the simulator gets instantiated with
context, preference, and interaction model, alongside the different simulator configurations
in Sect. 5.2. Finally, we present our results in Sect. 5.3, with the corresponding discussion
in Sect. 5.4.

5.1 Experimental Setup

We follow the evaluation method in [1]. Zhang and Balog [1] evaluate their user simulator
by having it converse with three conversational recommender systems in the movie domain.
In our case, we evaluate our user simulator using IAI MovieBot as the conversational
agent. Additionally, we conduct a Wizard of Oz experiment.

5.1.1 Experimental Measures

Zhang and Balog [1] compare the conversational agents against each other by considering
the following metrics:

1. AvgTurns: As suggested by its name, this metric indicates the average number of
turns in the conversation.

2. Reward: This metric reflects the performance of a simulator by assigning and
deducting points throughout the dialogue. Specifically, the authors assign 4 points
for each of the following action: Disclose, Refinement, Inquire, Navigation and

53

54 Chapter 5 Experimental Evaluation

mixed-initiative. Thus, Full is set to 20 for agents that support all of the actions
above, otherwise they deduct 4 points (from Full) for each action that is not
supported. Furthermore, the authors consider two consecutive Repeat actions
as one turn and deduct 1 point for each turn. Finally, the metric is defined as:
Reward = max0, Full − Cost ∗ T , where T indicates the number of user turns in
the dialogue.

In our case, the actions Refinement and Navigate are not supported, thus Full is set
to 20 − 8 = 12. Additionally, since each participant may only send one utterance
at a time, our results are not influenced by Repeat actions.

3. Success Rate: The authors consider a turn successful if the agent returns an
appropriate action, otherwise failure. Thus, this metric is on the turn level, in
contrast to Reward which was end-to-end.

Additionally, Zhang and Balog [1] consider the metrics UserActRatio and DS-KL. However,
these are not relevant in our case, and will thus be omitted from our results. Furthermore,
we expand on the above metrics by adding the conversational measure satisfaction from
Sect. 3.4.3, as a measure of users’ overall satisfaction with the conversation.

We believe that the contexts influence the metrics, as the contexts are used to compute
the maximum number of times a user is willing to retry their previous action whenever the
agent responds with an unexpected action. Therefore, if the agent keeps misunderstanding
the user, the AvgTurns will increase, resulting in a lower AvgReward. Additionally,
AvgSuccess will decrease as there are fewer turns where the turn goal, gt, is met. On
the other hand, if the agent understands the action being performed by the user, these
metrics should receive the opposite effect, i.e., AvgTurns should decrease, AvgReward
increase as there are fewer turns in the dialog and AvgSuccess increase as turn level goals
are being met more often.

5.1.2 Item and Preference Data

As part of our setup, we will use the MovieLens 25M dataset1. This dataset provides a
collection of 62,000 movies, 25 million user ratings, and 1 million tag applications applied
to the movies by 162,000 users. Additionally, the tag genome data comes with 15 million
relevance scores across 1,129 tags.

The dataset is separated across multiple files:

• movies.csv Stores movie data as a three-tuple: movieId, title, genres.
1MovieLens 25M Datasethttps://grouplens.org/datasets/movielens/25m/

https://grouplens.org/datasets/movielens/25m/

Chapter 5 Experimental Evaluation 55

• ratings.csv Includes user movie ratings in the following format: userID, movieId,
rating, timestamp. We omit the timestamp field.

• tags.csv User given tags to a movie are structured as: userId, movieId, tag,
timestamp. We do not use this file.

• genome-tags.csv Every tag gets associated with an identifier. The structure of
the file is: tagId, tag.

• genome-scores.csv Tags are assigned a relevance score to every movie. This file
is divided into: movieId, tagId, relevance.

5.2 Simulator Instantiation

We use a combination of distributions, hard mapped probabilities, and cooperativeness
bonuses to generate a persona’s context, as mentioned in Sect. 3.5. Every persona
should have the context features identified in Sect. 3.4.3. Every distribution is chosen by
intuition, and may not reflect real users. To augment the influence of a context feature,
cooperativeness bonuses were given. In the following subsections, we explain how we
quantify the contexts (i.e., cooperativeness bonuses).

5.2.1 Temporal Context

In this section, we describe the sampling process for temporal context.

5.2.1.1 Weekend and weekday

The distribution of weekend vs. weekday feature can be seen in Fig. 5.1. We set the
probability of there being a weekend to 2

7 to reflect the real world. The weekend feature
does not result in a direct cooperativeness bonus, however, it influences the probabilities
for time of the day feature.

5.2.1.2 Time of the Day

To sample data for the time of the day feature, we first discretize days into 3-hour
segments, e.g., 0 − 3, 3 − 6, 6 − 9 and so on. The result is a discrete probability
distribution, which depends on the weekend feature for the specific probabilities, as
shown in Fig. 5.2. The probabilities in both distributions are handcrafted to reflect

56 Chapter 5 Experimental Evaluation

Figure 5.1: The distribution of the generated personas weekend feature. True denotes
weekend, and False means it is a weekday.

Figure 5.2: The probabilities of different time slots.

that users tend to be up longer during weekends. Each time slot (segment) results in a
cooperativeness bonus b ∈ [−2, 2]. The distribution of bonuses can be seen in Fig. 5.4.
The specific values are based on our intuition that users are less cooperative during busy
hours (i.e., between 08-16), see Sect. 3.4.3.

5.2.2 Relational Context

Following our simple approach of modeling relational context as a boolean variable, we
set the probability of relational context being True to 1

4 . In our thesis, this probability is
not that important, as we want to investigate both situations. We assign a bonus of 1
for users with relational context, otherwise 0.

Chapter 5 Experimental Evaluation 57

Figure 5.3: Distribution of time of the day context feature for both weekends and
weekdays. Time slots are assigned along the x-axis, while the y-axis denotes the amount

of users.

Figure 5.4: Time of day cooperativeness bonus. Notice that during weekdays, we
assume highest cooperative bonus during 18-21 in the evening, while during weekends
this bonus continues until 24, i.e., 18-24. This is due to users staying up later and

having less obligations.

58 Chapter 5 Experimental Evaluation

Figure 5.5: Cooperativeness distribution.

Figure 5.6: Distribution of the maximum retires property.

5.2.3 Persona

The cooperativeness score is sampled from a normal distribution, normalized between
0 and 1. As we have mentioned earlier, we multiply the user cooperativeness and the
cooperativeness bonus to obtain the persona max_retries value. The distribution of
cooperativeness can be seen in Fig. 5.5, while the distribution of max_retries can be
seen in Fig 5.6.

5.2.4 Preference Model

We instantiate the preference model with the MovieLens dataset, which we detailed
earlier in Sect. 5.1.2. More specifically, we will use the ratings.csv to build a user’s
preference. If a user rates a movie highly, then the preference for that type of movie will
be increased and vice versa for low ratings. We set n, the number of items to sample, such
that all items consumed by the user are used to build the user’s preferences. Furthermore,
we set k to be 3 in the function used to retrieve user slots. This further allows us to

Chapter 5 Experimental Evaluation 59

Figure 5.7: Illustration of the user tag ranking.

consistently model consumed items for simulated users. Since the IAI MovieBot can ask
the user for keywords, we incorporate the genome data file. In particular, we take the
top-5 relevant tags for each movie to represent keywords for the movie. To infer user
tag ratings, we consider the movie ratings. That is, given a movie m with assigned user
rating ru, we add ru to the score list of each tag representing m. At last, the score list
of each tag is aggregated (by averaging) to obtain a single tag rating. The process is
illustrated in figure 5.7.

To simplify the file usage, the top five highest-rated tags per movie are added to the
movies.csv file as a new field named keywords.

Thus, the preference model is instantiated:

• item collection: This is an ItemCollection object from DialogueKit and is respon-
sible for storing the domain items. The movies.csv file from MovieLens is used to
instantiate this object.

• historical ratings: This is a Ratings object from DialogueKit and is responsible
for storing users historical ratings. Note that these ratings are normalized between
-1 and 1. The ratings.csv file from MovieLens is used in our setup to instantiate
this object.

• user id: This id comes from the persona and is used to determine which user’s
ratings should be used.

60 Chapter 5 Experimental Evaluation

Table 5.1: Context abbreviations

Temporal context
W1/0 Weekend True/False
T1 Timeslot between time 0 and time 3
T2 Timeslot between time 15 and time 18
T3 Timeslot between time 21 and time 24
Relational context
W1/0 Relational context True/False

Table 5.2: Personas and context combinations, group 1.

Persona P1 P2 P3
Cooperativeness 0.2 0.6 1.0
Initial satisfaction 3 3 3
R0_W0 Max retries
T1 0 0 0
T2 0 1 1
T3 0 1 1
R1_W1 Max retries
T1 0 1 2
T2 0 1 2
T3 1 2 3
no_context 0 0 0

5.2.5 Simulating Conversations

Setting up the simulator was done as described in Sect. 4.3. We generate 3 personas,
each with a different cooperativeness score, but the same initial satisfaction score.
Furthermore, each persona is tested with 7 contexts, arranged into 3 arrangements: one
with no relational context (i.e., group setting is set to False) and weekend status set to
False, another with relational setting (i.e., group setting is set to True) and weekend
status set to True, and finally the last arrangement includes no context. Table 5.2
displays the personas and the contexts, along with the resulting max_retries for each
persona-context combination. The blue color gradient signifies patience, i.e., a darker
color indicates higher patience.2 A persona-context pair represents a user. The contexts
are named according to their properties, see Table 5.1 for an explanation of the naming
convention. For example, R0_W0 stands for relational False and weekend False (i.e.,
the first arrangement mentioned above), and T1 denotes the time slot from 00:00-03:00.

Additionally, we run the simulator in a Wizard-of-Oz (WoZ) setting, that is, we “pretend”
to be the agent and converse with the simulator. The persona-context combination used
in the WoZ setting can be seen in Table 5.3. Note that the personas have the same values
for both cooperativeness and initial satisfaction level. The difference lies in the contexts,

2The difference between each gradient is 1 max_retries value, with blank color indicating
max_retries = 0

Chapter 5 Experimental Evaluation 61

Table 5.3: Personas and context combinations, group 2.

Persona P_A P_B
Cooperativeness 1 1
Initial satisfaction 3 3
Max retries
Time T3 T3
Group setting True False
Weekend True False
Max retries 3 1

where we differentiate between R0_W0 and R1_W1, but keep the same time slot.
This results in different max_retries property for the two personas.3

The intent scheme used to instantiate the interaction model for all simulations can be
seen in Appendix B.

5.3 Experimental Results

In this section we describe our results in terms of the metrics mentioned in Sect. 5.1.
We start by verifying the integrity of the interaction model, as this is one of the most
important aspects of the simulator. Then, we present the simulation results achieved
using IAI MovieBot as the conversational agent. At last, we describe the WoZ setting
results and point out the differences we observe when using IAI MovieBot vs. WoZ
setting.

5.3.1 Interaction model verification

To verify that the interaction model’s agenda initialization works as intended, i.e., the
agenda is initialized based on observations, we first sample 3 simple “toy” agendas as
training data and then simulate 10 000 agendas. Figure 5.8 shows the resulting intent
distributions of both the training data and the simulated agendas. The x-axis indicates
current intent and the bars the following intent. For example, in the upper row of Fig. 5.8,
we observe that the DISCLOSE intent is followed by either NOTE (∼ 0.4 probability) or
DISCLOSE (∼ 0.6 probability). Notice that the distribution of the simulated agendas
follows the training data distribution very closely. This verifies that the interaction
model initializes the agendas correctly. Figure 5.9 shows the intent distribution of the
annotated dialogues (5 dialogues). Again, when we simulate 10 000 agendas based on
the observed intent distribution, we find that the distributions are extremely similar.

3Note that we compute a persona’s max_retries property according to Eq. 3.3, which is dependent on
both context and persona cooperativeness.

62 Chapter 5 Experimental Evaluation

Figure 5.8: Intent distribution of toy data in the upper row and simulated data in the
lower row. The intent distribution of simulated agendas closely resemble the training

data distribution. Note the small error bars. These indicate standard deviation.

Similarly, we check if the lengths of initialized agendas are similar to the ones in the
training data. Figure 5.10 shows the agenda lengths for our annotated dialogues (5
agendas) in the upper row and the agenda lengths for the simulated agendas in the
lower row. We point out that most of the simulated agendas have similar lengths to the
historical dialogues agendas, however, there are some that are longer (due to probability).

5.3.2 IAI MovieBot

We evaluate IAI MovieBot by simulating a total of 465 conversations, divided into
two categories: dynamic agenda and static agenda, with 105 and 360 conversations
respectively. The difference between the dynamic and the static agenda is that the
agenda changes between each conversation in a dynamic agenda setting. For a more
fair evaluation, we experiment with static agenda, i.e., all conversations have the same
agenda. In the following, we present the measured metrics for the two categories and
some of the issues related to IAI MovieBot.

5.3.2.1 Dynamic Agenda

Tables 5.4 and 5.5 show the resulting metrics for 105 conversations using the persona-
context pairs from Table 5.2. We simulate 5 conversations per persona-context pair. Due

Chapter 5 Experimental Evaluation 63

Figure 5.9: Intent distribution of the full set of data. The simulated agendas closely
resemble the training data. Note the small error bars. These indicate standard deviation.

to IAI MovieBot limitation in conjunction with the manual annotation process, we did not
simulate more conversations in this experiment and focused our efforts on the experiment
with static agenda. Importantly, in this experiment, the initialized user agenda is different
between the conversations. Furthermore, note that some of these persona-context pairs
result in the same max_retries for the persona. For example, personas P1, P2 and P3
paired with either context (R0_W0,T2) or (R0_W0,T3) result in three users with
max_retries of 0, 1 and 1 respectively. Therefore, the metrics for these persona-context
pairs with the same value for max_retries should be similar. However, considering
the resulting metrics for each persona in contexts (R0_W0,T1) and no_context in

64 Chapter 5 Experimental Evaluation

Figure 5.10: Agenda lengths from the full set of data. The simulated agendas resemble
the training data. Because of the probability aspect, longer conversations do occur.

Table 5.4: Comparison of characteristics of dialogues with different contexts, and
dynamic agenda. The standard deviation is presented alongside the values. Color
shading is used to indicate user patience. A darker shade indicates a more patient user.

Part 1

R0_W0 AvgTurns AvgSatisfaction
P1 P2 P3 P1 P2 P3

T1 14.5 ± 9.94 14.2 ± 8.24 13.6 ± 7.56 1.47 ± 0.62 1.93 ± 0.93 2.00 ± 0.89
T2 13.2 ± 7.31 13.4 ± 7.94 13.6 ± 7.71 1.20 ± 0.40 2.00 ± 0.89 1.80 ± 0.98
T3 13.5 ± 7.78 13.3 ± 7.65 13.2 ± 7.52 1.80 ± 0.75 1.40 ± 0.80 1.20 ± 0.40
R1_W1 P1 P2 P3 P1 P2 P3
T1 12.9 ± 7.14 12.6 ± 7.43 12.6 ± 8.14 1.87 ± 0.88 1.53 ± 0.88 1.33 ± 0.60
T2 12.7 ± 8.08 12.6 ± 8.03 12.7 ± 8.38 1.20 ± 0.40 1.20 ± 0.40 2.00 ± 0.89
T3 12.7 ± 8.29 12.9 ± 8.94 13.2 ± 8.92 1.00 ± 0.00 2.20 ± 0.98 1.00 ± 0.00
no_context 13.1 ± 8.84 13.1 ± 8.73 13.1 ± 8.64 1.20 ± 0.40 2.20 ± 0.98 1.60 ± 0.49

Tables 5.4 and 5.5, it is not obvious that these metrics are fluctuations of essentially the
same configuration. In fact, persona P1 should have similar metrics across all contexts
except (R1_W1,T3), however again, this is not clearly shown by the metrics.

AvgTurns. According to our results for this metric, users that are more patient tend to
have shorter conversations. This does not align with our hypothesis, in which we stated
that the opposite effect should be observed. However, notice that the standard deviations
are large, which could be an indicator of little data and/or agendas with notably different
lengths.

AvgSatisfaction. This metric helps us understand users’ satisfaction with IAI MovieBot.
Our understanding of the obtained results is that users’ max_retries property does not
impact these satisfaction scores. However, categorizing these measurements by persona,
we find that users with persona P1 is generally least satisfied with the conversations,

Chapter 5 Experimental Evaluation 65

Table 5.5: Comparison of characteristics of dialogues with different contexts, and
dynamic agenda. The standard deviation is presented alongside the values. Color
shading is used to indicate user patience. A darker shade indicates a more patient user.

Part 2.

R0_W0 AvgReward AvgSuccess
P1 P2 P3 P1 P2 P3

T1 2.20 ± 2.86 1.93 ± 2.67 2.33 ± 2.62 0.67 ± 0.13 0.72 ± 0.16 0.72 ± 0.15
T2 2.20 ± 2.71 0.00 ± 0.00 1.60 ± 3.20 0.67 ± 0.11 0.55 ± 0.08 0.57 ± 0.15
T3 3.60 ± 3.50 2.60 ± 2.87 3.00 ± 2.76 0.62 ± 0.18 0.44 ± 0.17 0.52 ± 0.26
R1_W1 P1 P2 P3 P1 P2 P3
T1 2.60 ± 2.44 3.00 ± 2.92 2.67 ± 2.65 0.71 ± 0.11 0.64 ± 0.13 0.53 ± 0.19
T2 3.20 ± 3.92 4.40 ± 3.01 1.80 ± 2.71 0.59 ± 0.12 0.42 ± 0.12 0.54 ± 0.19
T3 3.20 ± 3.54 0.80 ± 1.60 3.40 ± 2.80 0.45 ± 0.10 0.49 ± 0.17 0.40 ± 0.12
no_context 3.80 ± 2.71 0.40 ± 0.80 1.80 ± 1.94 0.65 ± 0.12 0.80 ± 0.07 0.76 ± 0.16

while users with persona P2 generally receives highest satisfaction scores (although these
users are still dissatisfied with the agent). This leads us to believe that the preference
model somehow impacts a user’s satisfaction with the agent.

AvgReward. The reward metric is dependent on how many turns there are in a
conversation. As we mentioned in Sect. 5.1.1, this metric should move in the opposite
direction of AvgTurns. However, the results in Table 5.5 indicate that this is not
necessarily the case, especially if we consider users with persona P1 across the different
contexts. Notice that as AvgTurns decreases in contexts R1_W1, the reward increases
as expected, however, the same observation cannot be made for contexts R0_W0.

AvgSuccess. Finally, we take a look at the average success of our simulations. Recall that
we deem a turn successful if the turn goal was accomplished and otherwise unsuccessful.
In our case, this metric will reveal whether the agent benefits from the user repeating
their action or not. If the agent recovers, this metric will not decrease significantly, but
on the other hand, if the agent does not recover, it will be clear based on this metric.
Our results from the simulations are in accordance with our personal experience with IAI
MovieBot, i.e., it does not benefit from the user repeating their action. This conclusion
can be drawn by the fact that users with increased value of max_retries overall achieve
a lower AvgSuccess, as shown in Table 5.5.

Overall, considering all four metrics, we find that our results are not helpful in identifying
the impact of our context modeling. This could be due to the fact that we only sample
5 conversations per persona-context pair, and thus the amount of data is not enough
to draw any conclusion. Additionally, the agendas in these conversations are dynamic
and could thus vary greatly in length. In our next experiment, we address both of these
issues.

66 Chapter 5 Experimental Evaluation

Figure 5.11: The static agenda used in the second experiment. This agenda was
initialized by the interaction model based on our training data. Also note that this

agenda is rather small, with only 7 actions.

Table 5.6: Comparison of characteristics of dialogues with different contexts, and static
agenda. Color shading is used to indicate user patience. A darker shade indicates a

more patient user. Part 1

R0_W0 AvgTurns AvgSatisfaction
P1 P2 P3 P1 P2 P3

T1 7.50 ± 1.80 7.67 ± 2.87 7.78 ± 2.59 1.10 ± 0.30 1.45 ± 0.80 2.05 ± 0.92
T2 7.90 ± 2.50 8.10 ± 2.99 8.27 ± 2.86 1.15 ± 0.48 2.15 ± 0.91 2.25 ± 0.94
T3 8.37 ± 2.68 8.46 ± 2.93 8.61 ± 3.07 1.60 ± 0.86 1.75 ± 0.94 2.00 ± 1.00
R1_W1 P1 P2 P3 P1 P2 P3
T1 8.67 ± 2.99 8.63 ± 3.04 8.76 ± 3.35 1.00 ± 0.00 1.65 ± 0.91 2.25 ± 0.99
T2 8.84 ± 3.27 8.83 ± 3.39 8.95 ± 3.57 1.00 ± 0.00 1.95 ± 0.92 2.00 ± 1.14
T3 9.07 ± 3.50 9.15 ± 3.68 9.35 ± 3.94 1.50 ± 0.74 2.0 ± 0.95 1.90 ± 1.18

5.3.2.2 Static Agenda

In order to gain a better understanding of the impact of our context modeling, we simulate
another 360 conversations with the same persona-context pairs as the experiment above
(i.e., 20 dialogs per persona - context pair), excluding no_context. However, since
context (R0_W0,T1) results in each persona having max_retries value of 0, the
results obtained with this context should be similar to no context. Furthermore, these
conversations are all simulated with the same agenda, meaning that the results should
be less prone to randomness with regard to agenda items and lengths. The results are
presented in Tables 5.6 and 5.7. The static agenda used in this experiment is shown in
Fig 5.11.

AvgTurns. Considering the results we obtain with a static agenda, we observe that
conversations become longer for users that are patient (i.e., higher max_retries value).
Notice that dialogs with non-patient users are on average around 7-8 turns, which is
coherent with the agenda length. Then, by increasing the patience of users, we find that
the average conversation length also increases, as indicated by e.g., the user with persona
P3 and context R1_W1_T3 (9.35 ± 3.94 AvgTurns).

AvgSatisfaction. In terms of this metric, our results suggest that users are on average
more satisfied with the agent in this experiment. The reason behind this is not immediately

Chapter 5 Experimental Evaluation 67

Table 5.7: Comparison of characteristics of dialogues with different contexts, and static
agenda. Color shading is used to indicate user patience. A darker shade indicates a

more patient user. Part 2.

R0_W0 AvgReward AvgSuccess
P1 P2 P3 P1 P2 P3

T1 4.50 ± 1.80 4.40 ± 2.56 4.10 ± 1.92 0.75 ± 0.14 0.66 ± 0.15 0.78 ± 0.09
T2 3.55 ± 2.01 3.90 ± 2.55 3.10 ± 1.76 0.75 ± 0.12 0.55 ± 0.16 0.67 ± 0.09
T3 3.15 ± 1.01 3.80 ± 2.62 2.50 ± 2.13 0.76 ± 0.12 0.57 ± 0.12 0.64 ± 0.12
R1_W1 P1 P2 P3 P1 P2 P3
T1 4.10 ± 1.84 3.90 ± 2.47 2.30 ± 2.03 0.75 ± 0.12 0.59 ± 0.10 0.58 ± 0.10
T2 3.95 ± 1.63 3.90 ± 2.41 1.75 ± 1.89 0.76 ± 0.11 0.58 ± 0.13 0.56 ± 0.13
T3 2.75 ± 1.67 2.85 ± 2.41 1.30 ± 1.93 0.66 ± 0.11 0.50 ± 0.10 0.47 ± 0.12

obvious, and requires a deeper analysis of the agenda and the general behavior of IAI
MovieBot. Generally, IAI MovieBot tends to start the conversations with an introduction,
followed by questions about the user’s movie genre and tag preferences. This is generally
followed up by a recommendation - the rest of the conversation depends more on the
user actions. Bearing this in mind and taking a deeper look at the static agenda, we find
that the first three actions on this agenda allows for this scenario to occur. Considering
that the agenda is initialized based on previous dialogs with the system, this scenario is
not unrealistic, and in fact, our simulated agendas in Sect. 5.3.1 proved that it is more
probable than not.

AvgReward. Recall that we mentioned that this metric should theoretically move in
the opposite of AvgTurns. However, this was not the case in the previous experiment,
with dynamic agendas. In this experiment however, we find that the metric does in fact
decrease with increasing AvgTurns. From Tables 5.6 and 5.7, we find that when we add
corresponding AvgTurns and AvgReward values, the result is a number close to 12,
i.e., what we initially set Full as (see Sect- 5.1.1).

AvgSuccess. Overall, we note that this metric stay consistent with its counterpart in
the experiment with dynamic agendas, although they fluctuate less in this experiment.
Our intuition is that this is due to the fact that we simulate 15 additional conversations
per user, compared to the previous experiment.

The experiment with a static agenda shows that our context modeling has a measurable
impact on the simulated conversations.

5.3.2.3 Problems with IAI MovieBot

Before we move on to the WoZ experiment, we present some of the issues concerning
IAI MovieBot. In general, there have been many inconsistencies with it. Some of the
issues/bugs were fixed by the authors of this thesis, however, as this was not part of

68 Chapter 5 Experimental Evaluation

Figure 5.12: One of the successful conversations with IAI MovieBot.

the project scope, we did not attend to the bigger issues. The main issue concerns IAI
MovieBot’s intent classification and query understanding. User utterances such as “I like
this recommendation” does not always work, although this exact utterance was part of
the multi-modal interface of IAI MovieBot previously, as a button. We suspected that
the underlying logic was causing this, however, our investigation showed that the logic
is the same. This proved to be challenging, as IAI MovieBot would not always act as
anticipated. These issues are illustrated in Figs. 5.12 and 5.13. In the former figure, we
show an example of a successful dialog taken from the experiment with static agenda. In
the latter, an unsuccessful conversation is shown, from the same experiment. Notice that
in the successful dialog, IAI MovieBot understands the utterance “Tell me something
about it”, but fails to understand the same utterance in the unsuccessful dialog. The
conversation ends up with the agent becoming stuck and the simulated user runs out of
patience, thus sampling a new action based on the agent action FAILED. In this case,
the sampled action was COMPLETE which indicates that the user wants to end the
conversation. IAI MovieBot understands this utterance and terminates the conversation.

These issues are somewhat expected since IAI MovieBot is a stale project.

5.3.3 Wizard of Oz

In the WoZ setting, we “pretend” to be the conversational agent. Specifically, in each of
these WoZ conversations, one of the thesis authors acts as the conversational agent. Using
a terminal-based interface, a response is formulated manually and sent to the simulated
user, mimicking the behavior of an ideal conversational agent. We instantiate two users,
one with persona P_A and context R1_W1_T3 and another with persona P_B and

Chapter 5 Experimental Evaluation 69

Figure 5.13: One of the failed conversations with IAI MovieBot.

Figure 5.14: Example dialogue in the WoZ setting. The user has patience above 0.
Thus it will retry the same intent when the WoZ agent fails to answer with an expected

intent. The unexpected intent is highlighted with a red border.

context R0_W0_T3. We collect 10 dialogs per user, i.e., 20 in total. Furthermore,
agendas in this experiment are dynamic.

Considering the persona max_retries property, we note that the conversations with
persona A should last longer since the simulator will be more patient and retry the same
action 3 times before giving up and trying a different action.

However, we do note that a consequence of better NLU is that the user will not repeat
itself as frequently, since the WoZ agent understands what the user is trying to achieve.
This would lead to both users having similar values for the AvgTurns and AvgSuccess
metrics. In fact, this is what we observe in Table 5.8. This premise is further backed
by the AvgReward metric, which is 1.00 ± 1.79 for persona P_A and 0.80 ± 1.54.
Considering that Full is set to 12, this metric should result in −1, however, since we
place a lower bound on this metric, it will always be above 0. Furthermore, its value

70 Chapter 5 Experimental Evaluation

Figure 5.15: Example dialogue in the WoZ setting. The user has patience equal to
0. Thus it will not retry the same intent when the WoZ agent fails to answer with an

excepted intent. The unexpected intent is highlighted with a red border.

Table 5.8: Comparison of characteristics of dialogues with different contexts and static
agenda, with WoZ evaluation. Color shading is used to indicate user patience. A darker

shade indicates a more patient user.

AvgReward AvgSuccess
P_A P_B P_A P_B

1.00 ± 1.79 0.80 ± 1.54 0.74 ± 0.20 0.78 ± 0.11
AvgTurns AvgSatisfaction

A B A B
13.1 ± 8.47 13.2 ± 8.38 1.90 ± 0.83 1.20 ± 0.60

can be explained by the fact that AvgTurns has a large standard deviation for both
personas, resulting in some conversations with a high reward which increases the overall
AvgReward. In terms of AvgSatisfaction, we do not observe a significant deviation
from the other two experiments, which is expected, as the WoZ agent utterances are
similar to IAI MovieBot.

Figures 5.14 and 5.15 illustrates two conversations in the WoZ setting. In order to
observe the effect of the contexts, we as the WoZ agent intentionally misinterpret the
user utterance. The utterance boxes with red borders indicate the turns where this
scenario occurs. The difference between these dialogs is essentially how the user reacts to
the agent misinterpreting. In Fig. 5.14, the user with high patience retries its previous
action, while the non-patient user in Fig. 5.15 immediately samples a new action, thus
moving away from its initial agenda. Although this happens for only one turn, in reality,
a general conversational agent could misinterpret the user’s utterance several times in a
row, which ends up in a less realistic dialog.

Chapter 5 Experimental Evaluation 71

5.4 Discussion

In this section, we analyze our results with regards to the research questions we formulated
in Chap. 1.

5.4.1 Impact of Contexts

In Sect. 5.1.1, we hypothesized that AvgTurns, AvgReward, and AvgSuccess will
be influenced depending on the performance of the conversational agent. For example,
IAI MovieBot does not perform well when a user restates the same intent after the
conversational agent fails to understand the user. This is reflected in the metrics we
considered. The increase in AvgTurns is evident especially for users that are patient, i.e.,
have higher max_retries value. Furthermore, AvgSuccess and AvgReward decrease as
a consequence. This hypothesis was backed by our results, especially the ones obtained
by considering more data in a static agenda setting. This observations enables us to
answer our first research question:

• RQ1: Do the additional context have any impact on the characteristics of conver-
sation, and if so, what is the observed impact?

The simple answer is that it depends on the conversational agent in use. In our case,
we experimented with an agent that had limited NLU capabilities which was reflected
in the characteristics of conversation, i.e., the metrics mentioned above. However, we
theorize that context will not affect these metrics if the conversational agent is capable
at understanding which actions the user is performing. This scenario would not trigger
the repetitive behavior of the user, thus not impacting the metrics. For this research
question, we note that impact of the contexts on characteristics of conversation is inversely
proportional to the agent’s NLU capability.

• RQ2: Does more advanced context modeling lead to more realistic user simulation?
Specifically, given a persona and varying contexts, are the observed effects realistic?

In general, to find out whether simulations are realistic or not, one would have to consider
human evaluation. An example of this would be conducting a Turing test-like evaluation,
as we mentioned in Chapter 1. However, we will attempt to give an answer based on
our results. Consider Table 5.9, which shows the results obtained for persona P3 across
different contexts. We find that the observed effects by varying the context are realistic,
as they reflect the patience of the user. For example, the difference between a non-patient

72 Chapter 5 Experimental Evaluation

Table 5.9: Comparison of characteristics of dialogues with different contexts, and static
agenda. Persona P3. Color shading is used to indicate user patience. A darker shade

indicates a more patient user.

R0_W0 AvgTurns AvgSatisfaction AvgReward AvgSuccess
P3 P3 P3 P3

T1 7.78 ± 2.59 2.05 ± 0.92 4.10 ± 1.92 0.78 ± 0.09
T2 8.27 ± 2.86 2.25 ± 0.94 3.10 ± 1.76 0.67 ± 0.09
T3 8.61 ± 3.07 2.00 ± 1.00 2.50 ± 2.13 0.64 ± 0.12
R1_W1
T1 8.76 ± 3.35 2.25 ± 0.99 2.30 ± 2.03 0.58 ± 0.10
T2 8.95 ± 3.57 2.00 ± 1.14 1.75 ± 1.89 0.56 ± 0.13
T3 9.35 ± 3.94 1.90 ± 1.18 1.30 ± 1.93 0.47 ± 0.12

user (context R0_W0_T1) vs. a patient (context R1_W1_T3) is that the patient
user tends to have longer conversations, which is reasonable. The overall satisfaction
does not decrease by a lot, which indicates that longer conversations do not necessarily
translate to less satisfaction with the system. This also indicates that our approach
to computing AvgReward is not necessarily realistic, as it is biased towards shorter
conversations. The AvgSuccess metric shows in this case that the agent has issues
understanding the user, but we note that this could also indicate that the interaction
model should include more advanced conversational flows. Therefore, our answer to this
question is mixed. The effects on the objective measures are realistic, however, we cannot
conclude the same for subjective measures, i.e., human evaluation. Considering Figs. 5.12
and 5.13, we believe that it is more realistic for a user to retry their action at least once
before trying another action. However, this is subjective and these figures show only
two conversations out of 400+. Furthermore, considering the WoZ dialogs in Figs. 5.14
and 5.15, we personally find that the conversation with the user with context modeling is
more realistic than without context modeling. This is due to the fact that the user with
context modeling attempts to steer the conversation in the right direction, while the other
user samples a random action to perform next. We present these dialogs as anecdotal
evidence that more advanced context modeling leads to more realistic simulation, leaving
a proper evaluation with humans for future work.

Chapter 6

Conclusions

This chapter provides an overview of the thesis. We start by presenting our conclusion
in Sect. 6.1. Section 6.2 presents pointers for future work. Finally, in Sect. 6.3 we reflect
on our work.

6.1 Conclusion

In this thesis, our goal was to identify new contexts that could be incorporated into
user simulators to increase their realisticity. We formulated this goal by presenting two
RQs. In order to conduct our research, we continued development on two previous
projects, DialogueKit and UserSimCRS. Both projects required the implementation of
key functionality that was previously missing. Existing user modeling in UserSimCRS
had to be revisited and extended with the new contexts, i.e., temporal, relational,
and conversational contexts. These contexts were used to affect the simulated users’
cooperativeness score, which we incorporated into different personas.

We extended DialogueKit with core conversational concepts and improved the overall
usability aspect of the package, enabling it to be used by others to develop conversational
assistants. The package is available on PyPi.1

Our results showed that the characteristics of conversation are indeed affected by the
temporal and relational contexts (RQ1). However, our results were not conclusive enough
to answer our second RQ, i.e., whether more advanced context modeling leads to more
realistic user simulation. While the metrics we considered are affected in a realistic way,
a conclusion to this question cannot be reached without human evaluation.

1https://pypi.org/project/dialoguekit/

73

https://pypi.org/project/dialoguekit/

74 Chapter 6 Conclusions

We believe this is due to the following: the agenda initialization is performed by utilizing
prior annotated dialogues. Since the agenda is probabilistic, it could be initialized to e.g.,
ask for a directors name after having disclosed genre preference. That is, we as the agent
ask the user for genres. The user provides genres, and next, we ask for keywords in order
to narrow down the search space. Since the turn-level goal was accomplished, the user
pulls the next action off the agenda, and asks for director name. As IAI MovieBot has
no way of telling the user that it has not recommended a movie yet, and can thus not
retrieve any directors, we imitate this behaviour and simply ask for keyword preferences
again. This time, the turn-level goal is not accomplished and thus the user will repeat
itself.

6.2 Future Directions

In this section, we identify key aspects for future work. These are:

1. Better interaction modeling: Improvements to the current interaction modeling
can be made by considering other intent schemes that are based on large user studies.
Lyu et al. [88] extend the taxonomies in [89] by studying dialogs between users and
CRSs. Although these datasets are partially synthetic, the resulting taxonomies
are more fine-grained and may be interesting to evaluate in user simulators. As we
mentioned in the introduction, the interaction scheme in UserSimCRS can easily
be replaced. Simultaneously, we note that the interaction taxonomies in [88, 89]
contain intents that include preference, e.g., "SEEN". Agenda-based user simulators
suffer from this.

2. Agenda initialization: In agenda-based user simulators, the agenda is initialized
before the dialog starts. The initialization is based on past user-system inter-
actions, e.g., the annotated dialogs that UserSimCRS requires. However, this
can cause issues that disrupt the dialog flow and the realisticity of the simulated
dialogs. Consider the following situation. A user is talking to a conversational
recommender system, e.g., IAI MovieBot. The user has revealed their preferences
(intent: DISCLOSE), and the next action on the agenda is INQUIRE.MORE,
i.e., the user is expecting a recommendation from the agent and will ask for more
information regarding this recommendation. However, if the agent instead asks for
more user preferences (i.e., INQUIRE.ELICIT), the conversation quickly becomes
unrealistic. This is due to the fact that the intent scheme includes this agent
intent as a possible agent response, but the agenda is already initialized with
a different dialog “path” in mind. This issue becomes more evident with user

Chapter 6 Conclusions 75

intents that are dependent on the preference model (e.g., NOTE intent in our
case). Currently, the next intent in the agenda would be based on NOTE instead
of e.g., NOTE.LIKE/NOTE.DISLIKE/NOTE.YES/NOTE.NO, which can often
lead to unexpected dialog flow. Therefore, investigating other structures for storing
the agenda that allows modeling alternative dialogue paths could be of interest.
Alternatively, one can investigate whether agenda initialization is necessary or not.

3. NLG: The NLG module of DialogueKit is currently template-based. In the future,
DialogueKit should be extended to support large language models that are capable
of generating real user responses based on intent, satisfaction, and annotations.

4. NLU: The DIET classifier implementation in DialogueKit is limited as the pipeline
includes only WhitespaceTokenizer and CountVectorsFeaturizer. A more advanced
DIET pipeline would lead to better intent and entity classification.

5. Persona generation / context modeling: Our approach to persona generation
is based on intuition and not grounded in real data. The cooperative bonuses
and the distributions that were used to sample context variables should reflect
users realistically. This could be facilitated by studies on user patience in different
contexts.

6. Evaluation: Although we compute the same metrics as in [1], we were not able to
compare these metrics against metrics obtained with real users. In the future, this
could be accomplished by using crowdsourcing to collect dialogs with real users
and compute the same metrics for these dialogs. Furthermore, a Turing test could
be advantageous for evaluating the user simulator’s realisticity.

6.3 Reflection

To conclude our thesis, we would like to reflect upon our approach and takeaways.

Briefly explained, we started off by conducting a comprehensive literature review and
investigated what other researchers in the field had experimented with. In hindsight, this
was very helpful in order to gain a better understanding of our task, and what worked
vs. not. This also helped us understand the importance of user simulators.

We decided early on to follow the approach in [1]. We adapted the interaction and
preference models from [1], including the intent scheme which was based on [51]. After a
long development process in both DialogueKit and UserSimCRS, we were able to run
simulations with additional context.

76 Chapter 6 Conclusions

In hindsight, we should have spent more time on interaction modeling and investigating
other interaction schemes, e.g., the user study in [88]. The same applies to agenda
initialization techniques, although most of the literature here supported the current
technique. Furthermore, we wish we had spent more time at exploring replacements for
IAI MovieBot instead of addressing its issues, as we faced a lot of difficulties due to its
limited capability.

Lastly, to our knowledge, there are no previous works that experiment with the same
contexts as we do in a conversational setting. In general, there is a lack of information
available on how these contexts (temporal and relational) can be quantified in user
modeling. In retrospect, it would have been beneficial to conduct user studies to learn
which contexts impact user cooperativeness and patience, and how to quantify these.

Appendix A

Poster

77

78 Appendix A Poster

Figure A.1: Poster used for the poster presentation.

Appendix B

Instantiated intent schema

1 # Possible user intents with optional description .

2 user_intents :

3 COMPLETE :

4 DISCLOSE :

5 - DISCLOSE .NON - DISCLOSE

6 REVEAL :

7 - REVEAL . EXPAND

8 - REVEAL . REFINE

9 - REVEAL . REVISE

10 INQUIRE :

11 - INQUIRE . SIMILAR

12 - INQUIRE . ITEMINFO

13 - INQUIRE .MORE

14 NAVIGATE :

15 - NAVIGATE .MORE

16 NOTE:

17 - NOTE.LIKE

18 - NOTE. DISLIKE

19 - NOTE.YES

20 - NOTE.NO

21 - NOTE. ACCEPT

22 INTERROGATE :

23 COMPLETE :

24

25 user_preference_intents :

26 NOTE:

27 POSITIVE :

28 - NOTE.LIKE

29 NEGATIVE :

30 - NOTE. DISLIKE

31 CONSUMED :

32 - NOTE.YES

79

80 Appendix B Instantiated intent schema

33

34 user_add_preference_intents :

35 - REVEAL . EXPAND

36 - REVEAL . REFINE

37

38 user_remove_preference_intents :

39 - REVEAL . REVISE

40

41 # Possible agent intents with optional description .

42 agent_intents :

43 END:

44 DISCLOSE :

45 - DISCLOSE .NON - DISCLOSE

46 - DISCLOSE .MORE

47 INQUIRE :

48 - INQUIRE . ELICIT

49 - INQUIRE .MORE

50 - INQUIRE .NEXT

51 REVEAL :

52 - REVEAL .NONE

53 - REVEAL . SIMILAR

54 RECORD :

55 END:

56

57 # List of agent intents (including sub - intents) that elicit preferences .

58 agent_elicit_intents :

59 - INQUIRE

60 - INQUIRE . ELICIT

61

62 # List of agent intents (including sub - intents) that are for set

retrieval .

63 agent_set_retrieval :

64 - REVEAL

65 - REVEAL .NONE

66 - REVEAL . SIMILAR

67 - DISCLOSE .MORE

68

69 # Expected agent intents in response to a (simulated) user intent .

70 expected_responses :

71 DISCLOSE .NON - DISCLOSE :

72 - INQUIRE

73 - INQUIRE . ELICIT

74 - DISCLOSE .NON - DISCLOSE

75 DISCLOSE :

76 - INQUIRE . ELICIT

77 - REVEAL

78 - REVEAL .NONE

79 REVEAL . REVISE :

Appendix B Instantiated intent schema 81

80 - INQUIRE . ELICIT

81 - REVEAL

82 - REVEAL .NONE

83 REVEAL . REFINE :

84 - INQUIRE . ELICIT

85 - REVEAL

86 - REVEAL .NONE

87 REVEAL . EXPAND :

88 - INQUIRE . ELICIT

89 - REVEAL

90 - REVEAL .NONE

91 NOTE:

92 - INQUIRE .NEXT

93 - INQUIRE .MORE

94 - END

95 - REVEAL

96 - REVEAL . SIMILAR

97 NOTE.YES:

98 - INQUIRE . ELICIT

99 - REVEAL

100 - REVEAL . SIMILAR

101 NOTE.NO:

102 - INQUIRE . ELICIT

103 - REVEAL

104 - REVEAL . SIMILAR

105 NOTE.LIKE:

106 - INQUIRE .NEXT

107 - REVEAL

108 - REVEAL . SIMILAR

109 NOTE. DISLIKE :

110 - REVEAL

111 - REVEAL . SIMILAR

112 - REVEAL .NONE

113 NOTE. ACCEPT :

114 - INQUIRE .NEXT

115 - INQUIRE .MORE

116 - END

117 INQUIRE :

118 - INQUIRE . ELICIT

119 - REVEAL

120 - REVEAL . SIMILAR

121 - REVEAL .NONE

122 INQUIRE . SIMILAR :

123 - REVEAL

124 - REVEAL . SIMILAR

125 - REVEAL .NONE

126 INQUIRE . ITEMINFO :

127 - INQUIRE .MORE

82 Appendix B Instantiated intent schema

128 INQUIRE .MORE:

129 - DISCLOSE .MORE

130 COMPLETE :

131 - END

Listing B.1: The instantiated intent schema.

Bibliography

[1] Shuo Zhang and Krisztian Balog. Evaluating Conversational Recommender Systems
via User Simulation. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’20, pages 1512–1520,
2020.

[2] Hamed Zamani, Johanne R. Trippas, Jeff Dalton, and Filip Radlinski. Conversational
Information Seeking. cs.IR. 2022.

[3] Dan Jurafsky and James H. Martin. Speech and Language Processing. 2021. URL
https://web.stanford.edu/~jurafsky/slp3/.

[4] David R. Traum and Peter A. Heeman. Utterance units in spoken dialogue, volume
1236 of Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics. Springer, 1997.

[5] Krisztian Balog. Conversational AI from an Information Retrieval Perspective:
Remaining Challenges and a Case for User Simulation. In Proceedings of the 2nd
International Conference on Design of Experimental Search & Information REtrieval
Systems, DESIRES ’21, pages 1–11, 2021.

[6] Joseph Weizenbaum. ELIZA—A Computer Program for the Study of Natural
Language Communication between Man and Machine. Communications of the ACM,
9:36–45, 1966.

[7] Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. Artificial Paranoia.
Artif. Intell., 2:1–25, 1971.

[8] Jianfeng Gao, Michel Galley, and Lihong Li. Neural Approaches to Conversational
AI. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR ’18, page 1371–1374, 2018.

[9] Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft, Yongfeng Zhang, and Mohit Iyyer.
BERT with History Answer Embedding for Conversational Question Answering.
CoRR, abs/1905.05412, 2019.

83

https://web.stanford.edu/~jurafsky/slp3/

Bibliography BIBLIOGRAPHY

[10] Drew Meyer. Introducing Alexa Conversations (beta), a New AI-Driven Approach to
Providing Conversational Experiences That Feel More Natural, 2020. URL https:

//developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2020/07/

introducing-alexa-conversations-beta-a-new-ai-driven-approach-to-providing-conversational-experiences-that-feel-more-natural.
Accessed: 2022-04-15.

[11] Amazon Inc. About Alexa Conversations, 2022. URL https://www.developer.

amazon.com/en-US/docs/alexa/conversations/about-alexa-conversations.

html. Accessed: 2022-04-15.

[12] Amazon Inc. How Alexa Conversations Works, 2022. URL
https://www.developer.amazon.com/en-US/docs/alexa/conversations/

how-alexa-conversations-works.html. Accessed: 2022-04-15.

[13] J. Shane Culpepper, Fernando Diaz, and Mark D. Smucker. Research Frontiers in
Information Retrieval: Report from the Third Strategic Workshop on Information
Retrieval in Lorne (SWIRL 2018). SIGIR Forum, 52(1):34–90, 2018.

[14] Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and Li Chen. A Survey on
Conversational Recommender Systems. CoRR, abs/2004.00646:1–35, 2021.

[15] Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng
Chua. Advances and Challenges in Conversational Recommender Systems: A Survey.
CoRR, abs/2101.09459:1–33, 2021.

[16] Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang,
and Jie Tang. Towards Knowledge-Based Recommender Dialog System. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), EMNLP-IJCNLP ’19, pages 1803–1813, 2019.

[17] Dongyeop Kang, Anusha Balakrishnan, Pararth Shah, Paul Crook, Y-Lan Boureau,
and Jason Weston. Recommendation as a Communication Game: Self-Supervised
Bot-Play for Goal-oriented Dialogue. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), EMNLP-IJCNLP
’19, pages 1951–1961, 2019.

[18] Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe Zhou, and Zhoujun Li.
Building Task-Oriented Dialogue Systems for Online Shopping. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI ’17, pages
4618––4625, 2017.

https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2020/07/introducing-alexa-conversations-beta-a-new-ai-driven-approach-to-providing-conversational-experiences-that-feel-more-natural
https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2020/07/introducing-alexa-conversations-beta-a-new-ai-driven-approach-to-providing-conversational-experiences-that-feel-more-natural
https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2020/07/introducing-alexa-conversations-beta-a-new-ai-driven-approach-to-providing-conversational-experiences-that-feel-more-natural
https://www.developer.amazon.com/en-US/docs/alexa/conversations/about-alexa-conversations.html
https://www.developer.amazon.com/en-US/docs/alexa/conversations/about-alexa-conversations.html
https://www.developer.amazon.com/en-US/docs/alexa/conversations/about-alexa-conversations.html
https://www.developer.amazon.com/en-US/docs/alexa/conversations/how-alexa-conversations-works.html
https://www.developer.amazon.com/en-US/docs/alexa/conversations/how-alexa-conversations-works.html

Bibliography 85

[19] Zuohui Fu, Yikun Xian, Yongfeng Zhang, and Yi Zhang. Tutorial on Conversational
Recommendation Systems, page 751–753. ACM ’20. Association for Computing
Machinery, 2020.

[20] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Croft. Towards Conversa-
tional Search and Recommendation: System Ask, User Respond. In Proceedings of
the 27th ACM International Conference on Information and Knowledge Management,
CIKM ’18, pages 177–186, 2018.

[21] Yueming Sun and Yi Zhang. Conversational Recommender System. In The 41st
International ACM SIGIR Conference on Research &; Development in Information
Retrieval, SIGIR ’18, page 235–244. Association for Computing Machinery, 2018.

[22] Shirley Anugrah Hayati, Dongyeop Kang, Qingxiaoyang Zhu, Weiyan Shi, and
Zhou Yu. INSPIRED: Toward Sociable Recommendation Dialog Systems. CoRR,
abs/2009.14306:1–20, 2020.

[23] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent
Charlin, and Chris Pal. Towards Deep Conversational Recommendations. CoRR,
abs/1812.07617:1–17, 2018.

[24] Filip Radlinski, Krisztian Balog, Bill Byrne, and Karthik Krishnamoorthi. Coached
Conversational Preference Elicitation: A Case Study in Understanding Movie
Preferences. In Proceedings of the Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), SIGDIAL ’19, pages 1–8, 2019.

[25] Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra, Alexan-
der H. Miller, Arthur Szlam, and Jason Weston. Evaluating Prerequisite Qualities for
Learning End-to-End Dialog Systems. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, ICLR ’16, 2016.

[26] Johanne R. Trippas, Damiano Spina, Lawrence Cavedon, Hideo Joho, and Mark
Sanderson. Informing the Design of Spoken Conversational Search: Perspective
Paper. In ACM SIGIR Conference on Human Information Interaction and Retrieval,
CHIIR ’18, page 32–41, 2018.

[27] Liu Yang, Minghui Qiu, Chen Qu, Jiafeng Guo, Yongfeng Zhang, W. Bruce Croft,
Jun Huang, and Haiqing Chen. Response Ranking with Deep Matching Networks
and External Knowledge in Information-seeking Conversation Systems. CoRR,
abs/1805.00188, 2018.

Bibliography BIBLIOGRAPHY

[28] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. CAsT 2019: The Conversational
Assistance Track Overview. In Proceedings of the 28th Text REtrieval Conference,
TREC ’19, 2019.

[29] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. CAsT 2020: The Conversational
Assistance Track Overview. In Proceedings of the 29th Text REtrieval Conference,
TREC ’20, 2020.

[30] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. CAsT 2021: The Conversational
Assistance Track Overview. In Proceedings of the 30th Text REtrieval Conference,
TREC ’21, 2021.

[31] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,
Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. KILT: a Benchmark
for Knowledge Intensive Language Tasks, 2020.

[32] Jheng-Hong Yang, Sheng-Chieh Lin, Chuan-Ju Wang, Jimmy J. Lin, and Ming-Feng
Tsai. Query and Answer Expansion from Conversation History. In Proceedings of
the 28th Text REtrieval Conference, TREC ’19, 2019.

[33] Ronak Pradeep, Xueguang Ma, Xinyu Zhang, Hang Cui, Ruizhou Xu, Rodrigo
Nogueira, and Jimmy Lin. H2oloo at TREC 2020: When all you got is a hammer...
Deep Learning, Health Misinformation, and Precision Medicine. In Proceedings of the
Twenty-Ninth Text REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg,
Maryland, USA], November 16-20, 2020, volume 1266 of NIST Special Publication.
National Institute of Standards and Technology (NIST), 2020.

[34] Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. Can You Unpack That?
Learning to Rewrite Questions-in-Context. In Empirical Methods in Natural Lan-
guage Processing, 2019.

[35] Chia-Yuan Chang, Ning Chen, Wei-Ting Chiang, Chih-Hen Lee, Yu-Hsuan Tseng,
Chuan-Ju Wang, Hsien-Hao Chen, and Ming-Feng Tsai. Query Expansion with
Semantic-Based Ellipsis Reduction for Conversational IR. In Proceedings of the 29th
Text REtrieval Conference, TREC ’20, 2020.

[36] Rishiraj Saha Roy and Avishek Anand. Question Answering for the Curated Web:
Tasks and Methods in QA over Knowledge Bases and Text Collections. Morgan &
Claypool, 2021.

Bibliography 87

[37] Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian Yin. Dialog-to-Action:
Conversational Question Answering over a Large-Scale Knowledge Base. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS ’18, page 2946–2955, 2018.

[38] Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A Conversational
Question Answering Challenge. CoRR, abs/1808.07042, 2018.

[39] Chen Qu, Liu Yang, Cen-Chieh Chen, Minghui Qiu, W. Bruce Croft, and Mohit
Iyyer. Open-Retrieval Conversational Question Answering. Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020.

[40] Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas, Christof Monz,
and Maarten de Rijke. Conversations with Search Engines. CoRR, abs/2004.14162,
2020.

[41] Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative Knowl-
edgebase. Commun. ACM, 57(10):78—-85, 2014.

[42] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In Proceedings
of the 6th International The Semantic Web and 2nd Asian Conference on Asian
Semantic Web Conference, ISWC ’07/ASWC ’07, pages 722–735, 2007.

[43] Kelvin Jiang, Dekun Wu, and Hui Jiang. FreebaseQA: A New Factoid QA Data
Set Matching Trivia-Style Question-Answer Pairs with Freebase. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), NAACL ’19, pages 318–323, 2019.

[44] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A Collaboratively Created Graph Database for Structuring Human Knowledge.
In Proceedings of the 2008 ACM Special Interest Group on Management of Data
International Conference on Management of Data, SIGMOD ’08, pages 1247—-1250,
2008.

[45] Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang, Cen Chen, W. Bruce Croft, and
Mohit Iyyer. Attentive History Selection for Conversational Question Answering.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management (CIKM 2019), CIKM ’19, 2019.

[46] Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and Zhiyuan Liu. Few-Shot
Conversational Dense Retrieval. CoRR, abs/2105.04166, 2021.

Bibliography BIBLIOGRAPHY

[47] Jiao Liu, Yanling Li, and Min Lin. Review of Intent Detection Methods in the
Human-Machine Dialogue System. Journal of Physics: Conference Series, 1267(1):
012059, 2019.

[48] John Dowding, Jean Mark Gawron, Doug Appelt, John Bear, Lynn Cherny, Robert
Moore, and Douglas Moran. GEMINI: A Natural Language System for Spoken-
Language Understanding. In 31st Annual Meeting of the Association for Computa-
tional Linguistics, ACL ’93, 1993.

[49] Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and Alan Nichol. DIET: Lightweight
Language Understanding for Dialogue Systems, 2020.

[50] Mady Mantha. Introducing DIET: state-of-the-art architecture that outperforms
fine-tuning BERT and is 6X faster to train, 2020. URL https://rasa.com/blog/

introducing-dual-intent-and-entity-transformer-diet-state-of-the-art-performance-on-a-lightweight-architecture/.
Accessed: 2022-04-22.

[51] Leif Azzopardi, Mateusz Dubiel, Martin Halvey, and Jeffrey Dalton. Conceptualizing
agent-human interactions during the conversational search process. In The Second
International Workshop on Conversational Approaches to Information Retrieval,
2018.

[52] Svitlana Vakulenko, Claudio Revoredo, Kate nd Di Ciccio, and Maarten de Rijke.
QRFA: A Data-Driven Model of Information-Seeking Dialogues. In Proceedings of
the 43rd European Conference in Information Retrieval, ECIR ’19, pages 541–557.
Springer International Publishing, 2019.

[53] Norha M. Villegas, Cristian Sánchez, Javier Díaz-Cely, and Gabriel Tamura. Char-
acterizing context-aware recommender systems: A systematic literature review.
Knowledge-Based Systems, 140:173–200, 2018.

[54] Umberto Panniello and Michele Gorgoglione. Incorporating context into recom-
mender systems: an empirical comparison of context-based approaches. Electronic
Commerce Research, 12:1–30, 2012.

[55] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749, 2005.

[56] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. Rec-
ommender system application developments: A survey. Decision Support Systems,
74:12–32, 2015.

https://rasa.com/blog/introducing-dual-intent-and-entity-transformer-diet-state-of-the-art-performance-on-a-lightweight-architecture/
https://rasa.com/blog/introducing-dual-intent-and-entity-transformer-diet-state-of-the-art-performance-on-a-lightweight-architecture/

Bibliography 89

[57] Hao Ma, Tom Chao Zhou, Michael R Lyu, and Irwin King. Improving recommender
systems by incorporating social contextual information. ACM Transactions on
Information Systems (TOIS), 29(2):1–23, 2011.

[58] Gediminas Adomavicius and Alexander Tuzhilin. Context-Aware Recommender
Systems. Springer US, 2011.

[59] Sahar Ebrahimi, Norha Villegas, Hausi Müller, and Alex Thomo. SmarterDeals:
A Context-aware Deal Recommendation System based on the SmarterContext
Engine. In Proceedings of the 2012 Conference of the Center for Advanced Studies
on Collaborative Research, CASCON ’12, 2012.

[60] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a Better Understanding of Context and Context-Awareness,
booktitle=Handheld and Ubiquitous Computing. HUC ’99, pages 304–307. Springer
Berlin Heidelberg, 1999.

[61] S. Arun Nair, Amit Anil Nanavati, and Nitendra Rajput. Conspeakuous : Contex-
tualising Conversational Systems. In Human-Computer Interaction. HCI Intelligent
Multimodal Interaction Environments, HCI ’07. Springer Berlin Heidelberg, 2007.

[62] Norha M. Villegas and Hausi A. Müller. Managing Dynamic Context to Optimize
Smart Interactions and Services. Springer Berlin Heidelberg, 2010.

[63] Milica Gasic, Catherine Breslin, Matthew Henderson, Dongho Kim, Martin Szummer,
Blaise Thomson, Pirros Tsiakoulis, and Steve J. Young. POMDP-based dialogue
manager adaptation to extended domains. In Proceedings of the Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIGDIAL), SIGDIAL ’13,
2013.

[64] Pearl Pu, Maoan Zhou, and Sylvain Castagnos. Critiquing Recommenders for Public
Taste Products. In Proceedings of the Third ACM Conference on Recommender
Systems, RecSys ’09, page 249–252. Association for Computing Machinery, 2009.

[65] Peter Grasch, Alexander Felfernig, and Florian Reinfrank. ReComment: Towards
Critiquing-Based Recommendation with Speech Interaction. In Proceedings of the 7th
ACM Conference on Recommender Systems, RecSys ’13, page 157–164. Association
for Computing Machinery, 2013.

[66] Yuichiro Ikemoto, Varit Asawavetvutt, Kazuhiro Kuwabara, and Hung-Hsuan Huang.
Tuning a conversation strategy for interactive recommendations in a chatbot setting.
Journal of Information and Telecommunication, 3:1–16, 11 2018.

Bibliography BIBLIOGRAPHY

[67] Yucheng Jin, Wanling Cai, Li Chen, Nyi Nyi Htun, and Katrien Verbert. MusicBot:
Evaluating Critiquing-Based Music Recommenders with Conversational Interaction.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM ’19, page 951–960. Association for Computing
Machinery, 2019.

[68] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao,
Wen-tau Yih, and Michel Galley. A Knowledge-Grounded Neural Conversation
Model. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[69] Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, and Tat-Seng
Chua. Deep Conversational Recommender in Travel. CoRR, abs/1907.00710, 2019.

[70] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and
Joelle Pineau. How NOT To Evaluate Your Dialogue System: An Empirical Study of
Unsupervised Evaluation Metrics for Dialogue Response Generation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP ’16’, pages 2122–2132. Association for Computational Linguistics, 2016.

[71] Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset,
Eneko Agirre, and Mark Cieliebak. Survey on evaluation methods for dialogue
systems. Artificial Intelligence Review, 54:755–810, 2021.

[72] Chin-Yew Lin. ROUGE: Ebrahimis. In Workshop on Text Summarization Branches
Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain, ACL ’04, pages
74–81, 2004.

[73] Satanjeev Banerjee and Alon Lavie. METEOR: An Automatic Metric for MT Eval-
uation with Improved Correlation with Human Judgments. In Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Trans-
lation and/or Summarization, ACL ’05, pages 65–72. Association for Computational
Linguistics, 2005.

[74] Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier,
Yoshua Bengio, and Joelle Pineau. Towards an Automatic Turing Test: Learning
to Evaluate Dialogue Responses. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1116–1126. Association for Computational Linguistics, 2017.

Bibliography 91

[75] Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. RUBER: An Unsuper-
vised Method for Automatic Evaluation of Open-Domain Dialog Systems. CoRR,
abs/1701.03079, 2017.

[76] Ananya B. Sai, Mithun Das Gupta, Mitesh M. Khapra, and Mukundhan Srinivasan.
Re-Evaluating ADEM: A Deeper Look at Scoring Dialogue Responses. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):6220–6227, 2019.

[77] Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the State-of-
the-Art of End-to-End Natural Language Generation: The E2E NLG Challenge.
2019.

[78] Fenfei Guo, Angeliki Metallinou, Chandra Khatri, Anirudh Raju, Anu Venkatesh,
and Ashwin Ram. Topic-based Evaluation for Conversational Bots. CoRR,
abs/1801.03622, 2018.

[79] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft.
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations.
ACM, 2019.

[80] Krisztian Balog and Filip Radlinski. Measuring Recommendation Explanation
Quality: The Conflicting Goals of Explanations, page 329–338. Association for
Computing Machinery, 2020.

[81] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing
Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate
Bland, Amanda Wartick, Yi Pan, Han Song, Sk Jayadevan, Gene Hwang, and Art
Pettigrue. Conversational AI: The Science Behind the Alexa Prize. 2018.

[82] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young.
Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue System. In
Human Language Technologies 2007: The Conference of the North American Chapter
of the Association for Computational Linguistics; Companion Volume, Short Papers,
NAACL ’07, 2007.

[83] Layla El Asri, Jing He, and Kaheer Suleman. A Sequence-to-Sequence Model for
User Simulation in Spoken Dialogue Systems. CoRR, abs/1607.00070, 2016.

[84] Paul Crook and Alex Marin. Sequence to Sequence Modeling for User Simulation in
Dialog Systems. pages 1706–1710, 08 2017. doi: 10.21437/Interspeech.2017-161.

[85] Wikipedia. Markov decision process, 2022. URL https://en.wikipedia.org/

wiki/Markov_decision_process. Accessed: 2022-04-15.

https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process

Bibliography BIBLIOGRAPHY

[86] Alexandre Salle, Shervin Malmasi, Oleg Rokhlenko, and Eugene Agichtein. Studying
the Effectiveness of Conversational Search Refinement Through User Simulation. In
Proceedings of the 43rd European Conference in Information Retrieval, ECIR ’21’,
pages 587–602. Springer International Publishing, 2021.

[87] Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun Ren, Pengjie Ren, Zhumin
Chen, and Maarten de Rijke. Simulating User Satisfaction for the Evaluation of
Task-Oriented Dialogue Systems. In Proceedings of the 44th International ACM
SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’21,
pages 2499–2506. Association for Computing Machinery, 2021.

[88] Shengnan Lyu, Arpit Rana, Scott Sanner, and Mohamed Reda Bouadjenek. A Work-
flow Analysis of Context-Driven Conversational Recommendation. In Proceedings
of the Web Conference 2021, WWW ’21, page 866–877. Association for Computing
Machinery, 2021.

[89] Wanling Cai and Li Chen. Predicting User Intents and Satisfaction with Dialogue-
based Conversational Recommendations. In Proceedings of the 28th ACM Conference
on User Modeling, Adaptation and Personalization, UMAP ’20, pages 33–42, 07
2020.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Objectives
	1.2 Approach and Contributions
	1.3 Outline

	2 Related Work
	2.1 Conversational AI
	2.1.1 Elements of Conversation
	2.1.2 Categorization of Conversational Systems
	2.1.3 Developing Conversational Systems

	2.2 Conversational Information Seeking
	2.2.1 Conversational Recommendation
	2.2.2 Conversational Search
	2.2.3 Conversational QA

	2.3 Modeling Conversations
	2.3.1 Conversational History and State
	2.3.2 Conversational Query Rewriting
	2.3.3 Intent and Entity Recognition
	2.3.4 Dialogue Actions
	2.3.5 Context Modeling

	2.4 Evaluation
	2.4.1 Offline evaluation
	2.4.2 Online evaluation
	2.4.3 User simulation

	3 Approach
	3.1 Overview
	3.2 Background - Mathematical foundations
	3.3 Agenda-Based Simulation for Conversational Recommendation
	3.4 User modeling
	3.4.1 Interaction Modeling
	3.4.2 Preference Modeling
	3.4.3 Context Modeling

	3.5 Instantiating the Simulator

	4 Implementation
	4.1 Overview
	4.2 DialogueKit
	4.2.1 Core Concepts
	4.2.2 Architecture
	4.2.3 Dialogue Manager
	4.2.4 Platform
	4.2.5 Intent Classification and Entity Extraction
	4.2.6 Natural Language Generation
	4.2.7 Satisfaction Classifier
	4.2.8 Agents and Users

	4.3 UserSimCRS
	4.3.1 Preference Model
	4.3.2 Interaction Model

	4.4 IAI MovieBot

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.1.1 Experimental Measures
	5.1.2 Item and Preference Data

	5.2 Simulator Instantiation
	5.2.1 Temporal Context
	5.2.2 Relational Context
	5.2.3 Persona
	5.2.4 Preference Model
	5.2.5 Simulating Conversations

	5.3 Experimental Results
	5.3.1 Interaction model verification
	5.3.2 IAI MovieBot
	5.3.3 Wizard of Oz

	5.4 Discussion
	5.4.1 Impact of Contexts

	6 Conclusions
	6.1 Conclusion
	6.2 Future Directions
	6.3 Reflection

	A Poster
	B Instantiated intent schema
	Bibliography

