
EINAR HAEGER SOLFJELL
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Homomorphic Signatures: Implementation and
Performance Evaluation

Master's Thesis - Computer Science - June 2022

I, Einar Haeger Solfjell, declare that this thesis titled, “Homomorphic
Signatures: Implementation andPerformanceEvaluation” and theworkpresented

in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

Abstract

Homomorphic signatures allow users to outsource computation on their data

while ensuring the integrity of the results, and to prove certain facts about of-

ficial documents to third parties without sharing those documents. The signa-

ture scheme is capable of efficiently calculating several data analytical functions,

including the average and standard deviation, on signed data and produce a sig-

nature for the result.

We present a fully functional implementation of the homomorphic signature

scheme for polynomial functions by Boneh and Freeman (2011). We give a per-

formance evaluation of our implementation, andmeasure the effects of twomajor

performance improvements.

ii

Acknowledgements

I would like to thank my supervisors for their enthusiasm and help with writing

this thesis.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 2

1.1 Approach and Contributions . 4

1.2 Related Work . 4

2 Background 6

2.1 Homomorphic Encryption and Signatures 6

2.2 Integer Lattices . 9

2.2.1 Prime Ideal Lattices . 10

2.2.2 Evaluating Polynomials on a Lattice 11

2.3 Gram-Schmidt Orthogonalization 12

2.4 Lattice-based cryptography . 12

3 Approach 14

3.1 Existing Approaches/Baselines . 15

3.2 Proposed Solution . 15

3.2.1 Generate Key . 16

3.2.2 Sign . 17

3.2.3 Verify . 20

3.2.4 Evaluate . 21

4 Experimental Evaluation 23

4.1 Experimental Setup . 23

4.2 Experimental Results . 24

4.3 Bottlenecks and Optimizations . 25

iv

4.3.1 Modular Resultant Calculation 26

4.3.2 Floating Point Gram-Schmidt Orthogonalization 27

5 Conclusions and Further Work 32

5.1 Further Work . 32

Chapter 1

Introduction

Homomorphic signatures allow users to outsource computation on their data

while ensuring the integrity of the results, and to prove certain facts about official

documents to third parties without sharing those documents. We provide a Go

implementation of the homomorphic signature scheme by Boneh and Freeman

(2011) and evaluate the performance of our implementation.

Using homomorphic signatures, companies can outsource computation on

their data to a third party and be sure that it has returned the correct result with-

out needing to trust this third party. Homomorphic signatures also let users prove

that a calculation on their data is correct without also sharing the underlying data

set. This feature is useful for companies and individuals who wish to share some

facts about official documents without sharing the documents themselves. For

example, a student who wishes to apply for a student loan could convince the

loan agency that his grade point average is what he says it is, without sharing his

actual grades and without needing a citation from the university that issued him

those grades.

The primary goal of this thesis is to produce an implementation of the homo-

morphic signature scheme for homomorphic functions by Boneh and Freeman

(2011) in Go. This signature scheme achieves homomorphic properties by ex-

pressing its signatures in terms of polynomials, which when evaluated on a spe-

cific value of x behave the same way as an integer would under addition, subtrac-

tion and multiplication. For a set of signed values x and corresponding signa-

tures S, performing a series of additions, subtractions and multiplications on S

produces a new valid signature on the result of the same calculations on x.

2

A B A+B A ·B
value 2 3 5 6

signature x2 + x 4x− 1 x2 + 5x− 1 4x3 + 3x2 − x
x = 1 12 + 1 = 2 4 · 1− 1 = 3 12 + 5 · 1− 1 = 5 4 · 13 + 3 · 12 − 1 = 6

Table 1.1: Example of polynomials as homomorphic signatures

A simple example demonstrating thesemathematical properties of signatures

expressed as polynomials is shown in Table 1.1. The example shows two values A

and B, each signed with a polynomial and a value of x for which the polynomial

evaluates to the signed value. The sum and product of these two signatures can

be calculated like the sum and product of the values themselves, and produce new

polynomials that evaluate to the new results for the same value of x.

Anyone with access to S can generate a new homomorphic signature on any

function applied to x. The party generating this new signature can do so without

needing access to the secret key used to sign values, nor the public key used to

verify signatures, nor the values x that were signed.

As an example, consider a student who has graduated from university, and

wants to apply for a student loan in another country. To be eligible for this loan,

the student needs to prove that his average grades are above a certain limit. The

student could prove his grades simply by giving the loan agency access to his

grades so they can calculate the average. This however exposes more data than

necessary, has higher overhead in terms of accessmanagement, and increases the

risk of data leaks. Alternatively, the student could calculate the average himself

and use homomorphic signatures to convince the loan agency that the result is

credible. The process could be as follows:

• Bob receives his diploma, including homomorphic signatures for his grade

in each course, from the university;

• Bob calculates the average of his grades, and also derives a homomorphic

signature certifying the result;

• Bob applies for a student loan, and includes his grade point average as well

as the homomorphic signature;

• The loan agency verifies the signature and is convinced that Bob’s grade

point average is what Bob stated it to be.

In this scenario, the university has allowed the student Bob, an untrusted

source, to make verifiable statements about his grades, without revealing those

grades to the loan agency and without consulting the university.

This workwas commissioned for the Verifiable Ranking (vrank) project bymy

supervisors Meling and Saramago. Vrank seeks to ensure the integrity of rank-

ings of university students based on their grades, eliminating vulnerabilities such

as bribery from affecting the rankings. Vrank intends to use homomorphic sig-

natures to let the university, which in this scenario is considered untrusted, cal-

culate students’ scores based on their grades as well as homomorphic signatures

verifying these scores, then produce an official ranking of these scores. This offi-

cial ranking can then be verified by verifying the homomorphic signature of each

entry, which confirms both that the score itself is correct and that the correct

function was used to calculate that score. This process is visualized in figure 1.1.

Figure 1.1: Verifiable ranking using homomorphic signatures

1.1 Approach and Contributions

Wepresent a fully functional implementation of the homomorphic signature scheme

for polynomial functions by Boneh and Freeman (2011). We give a performance

evaluation of our implementation, and measure the effects of two major perfor-

mance improvements.

1.2 RelatedWork

Jong (2011) made an effort to implement the signature scheme discussed in this

thesis. While Jong has correctly implemented amajority of the signature scheme,

his implementation appears to be incomplete. Jong’s implementation deviates

from the protocol designed by Boneh and Freeman (2011) in ways that compro-

mise both the security of its signatures and the scheme’s context hiding property1.

ORide (Pham et al., 2017) is an example of another application using homo-

morphic encryption for its main functionality. ORide is a ride hailing service pro-

tocol. Their protocol uses homomorphic encryption to match riders and drivers

while preserving privacy. Ride hailing services typically match users based on

the distance between them. When a rider requests a ride, he is provided with a

list of nearby drivers along with information about the distance between them,

the driver’s reputation score, etc. Typical ride hailing service protocols are able

to inform riders of nearby drivers’ locations because a central server keeps track

of their 0. ORide seeks to provide privacy to both drivers and riders by imple-

menting the driver matching feature with homomorphic encryption. Riders and

drivers using ORide encrypt their location before sending it to the central server.

The central server then homomorphically calculates the distance between the

rider and several drivers before sending the encrypted results back to the rider

for him to decrypt. With ORide, riders and drivers canmake use of matchmaking

features offered by a ride hailing service provider without revealing their location

to the service provider.

1Signatures derived homomorphically using this scheme should reveal nothing about the orig-
inal data set beyond the result of a given calculation.

Chapter 2

Background

This chapter provides the technological and mathematical background informa-

tionwe use to explain the homomorphic signature schemebyBoneh andFreeman

(2011) and our implementation of this scheme.

2.1 Homomorphic Encryption and Signatures

Homomorphic encryption refers to encryption protocols that allow mathematic

manipulation of datawhile it is encrypted. Homomorphic encryption allowsusers

to outsource computation on their data without revealing the data itself to the one

doing the computation, ensuring data privacy. This is illustrated in Figure 2.1.

6

User Cloud
Server

ciphertext

request
compute average

avgCiphertext

ciphertext :=
Encrypt(dataset)

avgCiphertext :=
Average(ciphertext)

average :=
Decrypt(avgCiphertext)

Figure 2.1: Delegating computation while ensuring privacy using homomorphic

encryption

Homomorphic signatures allows anyone to perform calculations on signed

data, and simultaneously generate a new signature certifying the result. This new

signature is generated by performing the same calculations on the signatures as

on the plaintext data. These calculations can be done without requiring access to

the signing key, letting users outsource calculation and ensure that the calcula-

tionwas done correctly by also producing a verifiable signature. This is illustrated

in Figure 2.2.

The homomorphic signature scheme discussed in this thesis achieves its ho-

momorphic properties by expressing signatures in terms of polynomials. These

polynomials, when evaluated on specific values of x, equal the value that is being

signed. Polynomials give homomorphic properties because polynomials evalu-

ated on a specific value behave the same as integers under addition and multipli-

cation.

Consider an example where we want to produce a homomorphic signature on

theproduct of two integers. We first select our two integers, for example a = 2 and

b = 3. We then produce a polynomial for a and b encoding their values, such as

A(x) = x2+1 andB(x) = 2x+1, whereA(x) andB(x) equal a and b respectively

when evaluated on x = 1. We can easily evaluate that A(1) = 12 + 1 = 2 and

B(1) = 2 · 1 + 1 = 3. We can then calculate the product of the two polynomials

C(x) = A(x) ·B(x) = 2x3+x2+2x+1, then evaluateC(1) = 6, which also equals

the result of multiplying a · b.

User Cloud
Server

signatures,
dataset

request
compute averages

average,
avgSignature

signatures :=
Sign(dataset)

average :=
Average(dataset)

correct :=
Verify(average,
avgSignature)

avgSignature :=
Average(signatures)

Figure 2.2: Delegating computation while ensuring integrity using homomorphic

signatures

2.2 Integer Lattices

The signature scheme discussed in this thesis is a lattice-based signature scheme.

The scheme uses integer lattices to generate short vectors, which when inter-

preted as polynomials make up the signatures used in this scheme. This section

will explain what an integer lattice is, and describe some properties that are rele-

vant to the signature scheme.

A lattice consists of every point in a coordinate space that can be reached by

adding or subtracting together an integer number of a set of basis vectors. An in-

teger lattice is a latticewhose basis vectors have integer coordinates. We generally

refer to this set of basis vectors for a lattice simply as a ”basis”.

The rank of a lattice refers to the number of independent vectors that make

up the basis of that lattice. A set of vectors with the property of being linearly

independent means that none of these vectors can be expressed in terms of an

integer sum of the other vectors, or equivalently, that any non-trivial integer sum

of these vectors can equal the null vector. The dimension of a lattice is equal to

the number of coordinates in each of the lattice’s basis vectors. A lattice’s rank is

independent of its dimensions. However for lattices used by the signature scheme

discussed in this thesis, rank and dimension are chosen to be equal.

A common example of a lattice is the XY coordinate plane, where the basis

consists of the vectors [0, 1] and [1, 0], and the intersection points between grid

lines in this coordinate plane make up the lattice. This is an example of a two-

dimensional lattice with unit vectors.

For cryptography applications however, we usually consider latticeswith hun-

dreds to thousands of dimensions , and with longer and more complex basis vec-

tors (Peikert, 2016).

2.2.1 Prime Ideal Lattices

The signature scheme discussed in this thesis uses a specific type of lattices called

prime ideal lattices. Prime ideal lattices are used because they are closed under

multiplication, and because they can be described succinctly with the so-called

”two-element” representation.

The property of a set of numbers being closed under amathematical operation

means that performing the operation on any pair of numbers from that set will

result in another number in the set. Lattices generally are closed under addition,

since the points that are in the lattice are all points that can be reached by adding

together any number of basis vectors. Prime ideal lattices are also closed under

multiplication, meaning that multiplying two lattice points, when interpreted as

polynomials, results in a new point that is also in the lattice.

This property naturally lets us perform both addition and multiplication on

polynomials, which makes up the signatures for this signature scheme. By us-

ing addition and multiplication, we can evaluate any polynomial on both signa-

tures and the values they sign, resulting in a polynomially homomorphic signa-

ture scheme.

Prime ideal lattices are structured in a way that makes it possible to describe

them succinctly with the so-called ”two-element” representation. A prime ideal

lattice can be described by how it relates to R, the lattice containing all points

with integer coordinates. R can also be described as the lattice with unit basis

vectors, i.e. vectors of length 1 where one coordinate is 1 and the rest are 0s. A

prime ideal lattice λ can be described as λ = p ·R+h(x) ·R for some prime p and

some polynomial h of the form h(x) = x − α. Thus the two-element representa-

tion consists of the prime p and the variable α which defines h. A more in-depth

description of the two-element representation is given by Boneh and Freeman

(2011) in chapter 5.

2.2.2 Evaluating Polynomials on a Lattice

Signatures in the signature scheme discussed in this thesis are polynomials which

encode the signed message in that they are equal to the message when evaluated

on two lattices. Evaluating a signature on one lattice returns the value that was

signed, and evaluating it on another lattice returns a number corresponding to

the function that was used to generate that value.

Given the two-element representation of a lattice (p, α), we evaluate a poly-

nomial on a lattice by reducing the polynomial mod p and h(x) = x− α. To take

a polynomial Amodulo another polynomial B, we set B = 0 then perform basic

algebraic operations to find xd = rest, and replace every instance of xd in A with

the rest. For example, if we want to take A mod B where A = x4 + 2x3 + 1 and

B = x2 − 3, we calculate x2 = 3, replace every instance of x2 in A with 3, and

we get A mod q = 32 + 2x · 3 + 1 = 6x + 10. Since h(x) = x − α, taking A

mod h(x)means to replace every instance of xwith α, i.e. to evaluate the polyno-

mial on x = α. In summary, evaluating a polynomial A on a lattice (p, α)means

evaluating A(α) mod p.

2.3 Gram-Schmidt Orthogonalization

Signatures in the homomorphic signature scheme discussed in this thesis consist

of polynomials corresponding to short vectors generated relative to a lattice. We

generate these short vectors by taking a long vector target with certain proper-

ties, then finding a lattice point near target, and returning the difference between

the two vectors. There exists an efficient, polynomial time algorithm called the

Nearest Plane algorithm (Micciancio and Goldwasser (2002), figure 2.5) which

finds lattice points near a given vector. The signature scheme uses a variant of

this algorithm to generate its signatures. Both the Nearest Plane algorithm and

the variant used to generate signatures depend on the Gram-Schmidt Orthogo-

nalisation (GSO) of a basis for the lattice to find lattice points in.

The GSO of a set of vectors is a corresponding set of vectors consisting of the

component of each vector that is orthogonal1 to each previous vector in the set.

We calculate the GSO b∗ of a matrix b by setting b∗0 = b0, then each subsequent

vector b∗i is first set equal to bi, and for each previous vector in the GSO b∗j (j < i),

the component of b∗i parallel to b
∗
j is subtracted from b∗i .

2.4 Lattice-based cryptography

The security of the signature scheme discussed in this thesis is based on two cen-

tral problems in lattice-based cryptography, the Shortest Independent Vectors

Problem (SIVP) and the Small Integer Solution (SIS) problem. In the following

we explain these problems in more detail.

The Shortest IndependentVectors Problem is definedbyMicciancio andGold-

wasser (2002) as:

Given a basis B of rank n, find linearly independent lattice vectors

s1, ..., sn such that ||si|| ≤ γ · λn(L(B)) for all i = 1, ..., n.

In this definition, the rank of a basis refers to the number of linearly independent

vectors it contains. The condition ||si|| ≤ γ · λn(L(B)) means that the euclidean

length of each vector ||si||must be shorter than some limit determined by γ andB.
1Orthogonal vectors can be thought of as vectors that form a 90 degree angle between each of

them.

This problem is a hard problem because the vectors inBmay bemade up of com-

plex combinations of vectors in the shortest possible basis, and untangling these

is by no means straight-forward. There are deterministic, polynomial time algo-

rithms that solve SIVP for ”large” values of γ (Micciancio and Goldwasser (2002)

chapter 2.2), but SIVP becomes a hard problem for smaller γ.

Micciancio andRegev (2007) showed that severalworst-case hard lattice prob-

lems can be reduced to the average-case SIS problem. That is, the SIS problem

in the average case is at least as hard as the worst case hardness of several lattice

problems, including SIVP.

TheSmall Integer Solutionproblem is definedbyMicciancio andRegev (2007)

as:

Given an integer q, a matrix A ∈ Zn×m
q and a real β, find a nonzero

integer vector z ∈ Zm \ {0} such that Az = 0 mod q and ||z|| ≤ β.

The problem consists of finding a non-zero integer sum z of basis vectors which

produces a vector s = Az, such that s mod q = 0. A version of this problemwith

no constraints on z can be solved trivially by setting z = {q, 0, 0, ...}. The problem
can also be solved easily if the constraint β is large. SIS becomes a hard problem

when β becomes small enough.

Chapter 3

Approach

The signatures used in this scheme are polynomials which encode both the value

being signed and the mathematical function used to generate that value. Signa-

ture polynomials encode these values by the results of evaluating these polyno-

mials on parameters of two lattices. Evaluating a signature polynomial on the

first lattice returns the value being signed, and evaluating it on the second lattice

returns a number representing the function.

Forging signatures in the signature scheme is as hard as the SIS problem due

to the requirement that signature polynomials, when interpreted as vectorsmade

up of the polynomials’ coefficients, need to be short. To generate these short poly-

nomials, we start by generating a long polynomial that evaluates to the value and

function when evaluated on the two lattices. We then find a polynomial in the

lattice near the long polynomial, and return the difference between the two.

The signature scheme is capable of generating valid signatures verifying the

result of any polynomial function on signed data. Polynomial functions aremath-

ematical functions that use only addition, subtraction and multiplication. The

signature scheme can be used to verify the results of several commonly used data

analysis functions, including the average and standard deviation.

Signatures encode both a numerical value and the function used to generate

that value. Signatures are verified by checking three conditions:

• the polynomial must equal the value when evaluated on the first lattice.

• the polynomial must equal a number corresponding to the function when

evaluated on the second lattice.

14

• the vector whose coordinates equal the coefficients of the polynomial must

be shorter than some limit.

3.1 Existing Approaches/Baselines

While developing our code, we used a C++ implementation of the same homo-

morphic signature scheme by Jong (2011) as a reference. We eventually discov-

ered this implementation to be incomplete, but it served as a good baseline to

guide us through developing our own implementation in Go. Jong’s implemen-

tation also contained correct implementations of several algorithms described in

the paper by Boneh and Freeman, allowing us to take inspiration from their im-

plementation.

3.2 Proposed Solution

While implementing the homomorphic signature scheme, we followed the de-

scription of the polynomially homomorphic scheme given on page 19 of the paper

by Boneh and Freeman (2011). The code for our implementation can be found on

github (Solfjell et al., 2022).

The scheme contains four functions: Generate Key, Sign, Verify and Evaluate.

Generate Key generates the public and secret key pair used for generating, verify-

ing and calculating functions on signatures. The public key contains two lattices

given in the two-element representation, as well as the number of dimensions

the lattices span which equals the security parameter n. Signatures are generated

relative to these lattices, and signatures are verified by evaluating them on these

lattices. The public key also contains parameters that define which functions can

be calculated over signatures using this public key. The set of admissible func-

tions is limited to a maximal degree and a maximal size of the coefficient of each

term in the function. These parameters, as well as the security parameter n, are

given as parameters to the GenerateKey function. GenerateKey also generates a

secret key, which is needed for generating signatures. This secret key contains a

lattice basis for the union of the two lattices described in the public key. The sig-

natures in this scheme consist in part of a linear sum of vectors from this lattice

basis.

Sign samples a signature in the form of a polynomial corresponding to a short

vector in the lattice. This polynomial is generated so that it corresponds to the

message that was signed when evaluated on the lattices in the public key.

Verify simply checks that the signature polynomial evaluates to the message,

and that the vector corresponding to the signature is short enough. To verify that

the signature polynomial evaluates to the message, we evaluate it on the two-

element representation (p, α) of the two lattices in the public key. We evaluate

a polynomial A on the two-element representation by evaluating A(α) mod p.

If the signature is correct, evaluating it on the first lattice returns the number

that was signed, and evaluating it on the second lattice returns a number corre-

sponding to the function used to generate the signature. The maximal length of a

valid signature is calculated based on parameters in the public key. This maximal

length is derived from a theoretical analysis on the distribution of polynomials

output by the algorithms used to generate signatures.

For a set of message-signature pairs, Evaluate generates a signature for the

result of a function on these messages. This new signature is generated by per-

forming the same additions and multiplications as on the messages themselves.

The signature scheme can be used to calculate any polynomial function, such as

the average or standard deviation of a set of numbers.

3.2.1 Generate Key

To produce and verify signatures in this signature scheme we first need a pair

of public and secret keys. GenerateKey uses an algorithm proposed by Smart

and Vercauteren (2010), referred to as PrincGen, to generate prime ideal lattices.

Princgen generates a prime ideal lattice, and returns its two-element representa-

tion as well as a generator polynomial for this lattice. We use PrincGen to gener-

ate two lattices, then use the two generator polynomials to generate a lattice basis

for the union of these lattices. The two lattices along with some parameters that

define the admissible functions for this key pair make up the public key, and the

lattice basis for the union of the two lattices makes up the secret key.

Generating Lattices

The signature scheme uses prime ideal lattices for their property of being closed

under both addition andmultiplication, and for their concise two-element repre-

sentation. GenerateKey uses PrincGen to generate the two-element representa-

tion of and a generator polynomial for two such lattices.

PrincGen works by checking if random polynomials G generate lattices that

are prime ideal lattices. The first element p of the two-element representation of

a lattice generated by G is equal to the resultant between G and an irreducible

polynomial irre1. If p is prime, then G generates a prime ideal lattice.

Algorithm 1 Prime Ideal Lattice generator
function PrincipalPrime(polynomial irre)

p← 0
while p is not prime do

S ← random polynomial
G← 2S + 1
p← Resultant(G, irre)

D ← GCD(irre, G) mod p
α← unique root ofD
return G, (p, α)

UnionBasis

Using a generator polynomial G, we can generate a set of linearly independent

vectors that span the lattice, forming a basis for that lattice. The coordinates of

the vectors in this lattice basis are the same as the coefficients of G, rotated left

one spot for each vector in the basis. We generate this lattice basis bymultiplying

G by powers of x (i.e. 1, x, x2, ..., xn−1), and take the results mod irre. To gen-

erate a basis for the union of two lattices, we replace G with the product of the

generator polynomials of the two lattices. Pseudocode for UnionBasis is shown

in Algorithm 2.

3.2.2 Sign

Sign generates a signature for each message to be signed in the form of a polyno-

mial that equals that message when evaluated on parameters of the lattice. Each

message to sign is defined by a value, a tag, and the message’s index in the set of

1irre is an irreducible polynomial defining the number field our lattices are in. We select irre :=
xn − 1 based on the security parameter n. Polynomials constructed in this manner are irreducible
if n is a power of 2.

Algorithm 2 Two-lattice Union Basis Generator
function UnionBasis(polynomials pGen, qGen, irre, int n)

basis← n× nmatrix
for i← 0, ..., n− 1 do

basis[i]← pGen · qGen · xi mod irre

return basis

messages to sign. The value is a number, such as a student’s grade in a given sub-

ject. The tag is a text string describing the set of messages. Each message in the

set is given a unique identifier, generated by hashing the tag and the message’s

index.

A signature has three requirements to be considered valid. First, it needs to be

equal to the message’s value when evaluated on the first lattice in the public key.

Second, it needs to be equal to the message’s unique identifier when evaluated

on the second lattice. Third, the vector with coordinates corresponding to the

polynomial’s coefficients needs to be short. Signature polynomials need to be

short because generating short vectors in a lattice is difficult without knowing a

basis for that lattice with short vectors.

Sampling Short Polynomials

To sample vectors from the lattice we use an algorithm by Gentry et al. (2008),

referred to as ”SamplePre” by Boneh and Freeman (2011). SamplePre produces

samples from a Gaussian distribution over a given lattice, with a given center and

variance. We produce short vectors by sampling a vector sample near a given

vector target, and returning target− sample.

The signature scheme uses SamplePre to sample vectors from the union of the

two lattices in the public key. Vectors sampled by SamplePre, when interpreted

as polynomials, equal zero when evaluated on the two-element representation of

either of the two latticesmaking up the lattice we’re sampling from. Tomake sure

that sampled polynomials are both short and evaluate to the right numbers, we

first produce a polynomial target, independent of the lattice, which evaluates to

the right numbers. We then generate a vector sample from a distribution over the

lattice centered on target, and subtract sample from target. The result is a short

vector, since it is target minus a vector within a short distance from target, and

when interpreted as a polynomial it evaluates to the right numbers since target

evaluates to the right numbers and any sample evaluates to zero.

SamplePre is a randomized version of the Nearest Plane algorithm (Miccian-

cio and Goldwasser (2002), figure 2.5) for solving the closest vector problem. In-

stead of adding a deterministic multiple ci of each basis vector bi to the result, it

samples integers zi from a distribution centered on ci and adds zi ·bi to the result.
In each iteration, the algorithm produces a sample zi from a Gaussian distri-

bution over the integers, and adds the i-th basis vector bi multiplied by zi to the

output. The parameters for the Gaussian distribution over the integers are based

on the Gram-Schmidt orthogonalization of the lattice’s basis b∗, and the target

and variance parameters given as inputs to the function. With each iteration,

the algorithm uses the component of the target vector that is parallel to the i-

th Gram-Schmidt vector b∗i to determine the center of the Gaussian distribution

over the integers. Then it subtracts bi multiplied by the sample zi from the target

vector before calculating the center for the next iteration. The variance for the

Gaussian distribution over the integers is simply the parameter variance divided

by the euclidean length of the i-th Gram-Schmidt vector ||b∗i ||.

Algorithm 3 Sampling Gaussian Distribution Over Lattice
1: function SampleGaussLattice(matrix b, b∗, polynomial target, int variance)
2: vn ← 0
3: cn ← target
4: for i← n, ..., 1 do
5: c′i ← ⟨ci, b∗i ⟩/⟨b∗i , b∗i ⟩
6: s′i ← variance/||b∗i ||
7: zi ← Sample(Z, s′i, c′i)
8: ci−1 ← ci − zi · bi
9: vi−1 ← vi + zi · bi
10: return v0

Constructing a polynomial evaluating to the right numbers

SamplePre outputs polynomials in the lattice near a given vector. The signature

scheme uses SamplePre to generate sample vectors near a target vector which

evaluates to the right numbers. The sample vector is then subtracted from the

target vector, producing a short vector. Because target encodes the signed mes-

sage’s value and unique identifier, the vector target− sample also encodes the

message’s value and unique identifier.

The polynomial corresponding to the target vector needs to equal the mes-

sage’s value v when evaluated on the public key’s first lattice, and to equal the

message’s unique identifier id when evaluated on the second lattice. We produce

such a polynomial in the form of a degree zero polynomial, i.e. a constant. Given

the two-element representations of two lattices (p, α), (q, β), we select a constant

target such that target mod p = v and target mod q = id. A simple way of con-

structing target would be to start by setting target = id, then iteratively adding

q until target mod p = v. This process however would take a long time to fin-

ish when p and q become large. Instead of constructing target iteratively, we use

modular arithmetic to calculate the number x of times we need to add q, as shown

below:

id+ x · q = v mod p

x · q = v − id mod p

x · q · q−1 = (v − id) · q−1 mod p

x = (v − id) · qp−2 mod p

Now that we know x, we can set target← id+x·q. We know that target mod p =

v by the first line of the above equations. We also know that target mod q = id

since id+x · q mod q = id+0. Since target mod p = v and target mod q = id,

we have the target vector we need to sample signature polynomials.

Algorithm 4 Constructing a polynomial evaluating to the right numbers
function targetVector(int v, id, p, q)

x← (v − id) · qp−2 mod p
return id+ x · q

3.2.3 Verify

Verify simply verifies that a signature σ meets the three conditions to consider a

signature valid. To verify that σ evaluates to the message’s value v and unique

identifier id when evaluated on the first and second lattice respectively, we eval-

uate σ on these and compare the results to the message. Given the two-element

representations of two lattices (p, α) and (q, β), if σ(α) mod p = v, the first con-

dition is verified. If σ(β) mod q = id, the second condition is verified. To verify

the signature’s length, we calculate a maximum valid length based on parameters

from the public key that define the set of admissible functions. Signatures may

be longer if the public key allows functions with higher coefficients, with more

variables or with higher maximal degree of terms in the function. If σ is shorter

than this limit, the third condition is verified.

3.2.4 Evaluate

Evaluate calculates functions on a set of signatures, producing a new signature

for the result of the same function on the original signed values. The signature

scheme is capable of calculating any polynomial function, including commonly

useddata analytical functions like the average and standarddeviation. The result-

ing signature is verified in the same way as a signature on a single value, by eval-

uating the signature on the two lattices in the public key. Given the two-element

representations of two lattices (p, α), (q, β) and a signature σ, σ(α) mod p equals

the result of the function on the signed values, and σ(β) mod q is equal to a num-

ber uniquely corresponding to the function.

Evaluate takes a set of signatures S, a set of integers c specifying the coeffi-

cients of the function to calculate over S, and an integer d specifying the highest

degree of the function. The function consists of the sum of every way of multi-

plying together d or fewer signatures, multiplied by the corresponding coefficient

in c. If we denote each signature in S as an independent variable (like x, y, z, ...),

then a ”way of multiplying d or fewer signatures” can be denoted as a monomial

of degree up to d. The coefficient ci is applied to the i-th such monomial listed in

lexicographic order2.

Consider an example where S = {x, y, z} and d = 2. In this case, all possible

monomials are:

x, y, z, x2, xy, xz, y2, yz, z2

To calculate a function of degree d = 2 over S, Evaluate needs a set of coef-

ficients c with 9 elements. To calculate the function (x + 2xz + 3yz), we set

2All monomials of degree d appear beforemonomials of degree d+1, andmonomials withmore
x-s appear before monomials with more y-s which appear before monomials with more z-s, and so
on.

c = {1, 0, 0, 0, 0, 2, 0, 3, 0} and call Evaluate(S, c, 2).

Monomial Iterator

To generate this set of all possiblemonomials given a number of distinct variables

k and a maximal degree d, in lexicographic order, we implemented a monomial

iterator type. This type holds the parameters k and d, as well as an encoding of

the ”current” monomial. The ordered set of monomials is generated through the

iterator’sNext()method. The encoding of the currentmonomial is in the formof a

non-decreasing sequence3 of numbers of length d, where each number represents

an instance of one of the variables in the monomial. For example, the sequence

(0, 0, 1, 1, 2) represents the monomial x2y in a monomial with degree at most 5.

For monomials in k variables and max degree d, the Next() method treats the

monomial encoding as a base-k, d-digit integer, and repeatedly ”adds one” to this

base-k integer until the resulting sequence is non-decreasing. Pseudocode for the

monomial iterator’s Next and AddOne functions is given in Algorithm 5 and 6.

Algorithm 5
function Next(int k, []intmonomial)

AddOne(monomial, k + 1)
while !IsNonDecreasing(monomial) do

AddOne(monomial, k + 1)

Algorithm 6
function AddOne([]intmonomial, int k)

l← len(monomial)
monomial[l]← (monomial[l] + 1) mod k
for i← l, ..., 1 do

if monomial[i] ̸= 0 then
break

monomial[i− 1]← (monomial[i− 1] + 1) mod k

3each number is greater than or equal to the previous number

Chapter 4

Experimental Evaluation

In this chapter we give a performance evaluation for our implementation of the

homomorphic signature scheme for polynomial functions by Boneh and Freeman

(2011). We describe our performance testing procedure and experimental setup,

and present our results. First we show the overall performance of our implemen-

tation with all optimizations, then we explain each optimization individually and

show its impact on the performance of the relevant function.

The experimental results can be found in the github repository (Solfjell et al.,

2022) hosting our code. The results are in the directory titled ”data”, which at the

time of this writing is located in the branch titled ”performance_data”.

4.1 Experimental Setup

We gathered performance data by executing each of the four main functions of

the signature scheme with random data, and recorded the execution time of each

function. We ran tests using values of n equal to powers of two from 4 to 128,

and a set of 5, 10 or 20 values to sign. For each set of testing parameters, we

repeated this testing procedure for 30 repetitions or for two minutes, whichever

took longer. Finally we calculated the average and standard deviations of the

results for each set of testing parameters for display in the graphs in this chapter.

Unless otherwise stated, the results presented in this chapter were gathered from

tests with 20 signed values.

The results displayed in this chapter were generated using Windows Subsys-

tem for Linux (WSL) on a Windows 10 computer with an Intel Core i3-8350K

23

CPU at 4.00 GHz. WSL had access to 308.6 MB of RAM.

4.2 Experimental Results

We were not able to make our implementation efficient enough to use the ”hun-

dreds to low thousands of dimensions” of lattices as mentioned by Peikert (2016)

on the computer we used for performance testing. The results of our performance

testing of the four main functions in the signature scheme with a range of values

of n can be seen in Figure 4.1.

The highest value of the security parameter n we could use and get reason-

ably short execution times for GenerateKey and Sign is n = 64. With n = 64, our

implementation was able to complete GenerateKey in an average of 15 seconds,

and generate signatures in an average of 0.75 seconds per signature. Our imple-

mentation is however able to complete Evaluate and Verify much faster, taking

an average of 3milliseconds to compute a linear function over 20 signatures, and

an average of 0.6milliseconds to verify the signature validating the result of this

calculation, also with n = 64.

The time it takes to execute each main function in the signature scheme is de-

pendent on the security parameter n. While we have not analysed the running

times of the algorithms themselves, we can make estimates based on imperial

data. Of the four main functions, GenerateKey and Sign take the longest to cal-

culate for values of n between 8 and 128. The time to execute these functions also

scales significantly faster with n than Evaluate and Verify. The execution time

of GenerateKey scales faster than that of Sign, with GenerateKey being roughly

O(n4) where Sign is roughly O(n3). Evaluate and Verify scale more slowly with

n, where Evaluate takes roughly O(n) time. While Verify appears to take roughly

O(n) for small values of n, its average execution time jumps somewhat for n = 64

and n = 128. This jump appears to be due to a slowdown in the big numbers

library for Go when calculating high exponents of large numbers.

Certain factors other than n affect the execution speeds of Sign, Evaluate and

Verify. Sign takes a roughly constant amount of time for each signature with little

overhead for signing a batch of values, thus time to execute Sign depends linearly

on the number of values k to be signed. Evaluate and Verify also depend on k, and

also depend on the complexity of the function. A function over k messages with

degree d is encoded by a set of coefficients with a length of l =
(
k+d
d

)
. For each of

these coefficients, Evaluate and Verify multiply together the appropriate number

of polynomials and integers respectively, and add the result to the output.

8 16 32 64 128
0.01

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Security parameter n

T
im
e
to
ca
lc
u
la
te
(m
s)

GenerateKey
Sign
Evaluate
Verify

Figure 4.1: Performance of each main function

4.3 Bottlenecks and Optimizations

After completing a working implementation of the signature scheme, we discov-

ered some performance bottlenecks. Lattice-based cryptography systems usually

operate in lattices with hundreds to low thousands of dimensions (Peikert, 2016).

However, our initial implementation was only able to use lattices of up to 32 di-

mensions and still achieve acceptable execution times.

The largest bottlenecks were due to repeated division and addition of rational

numbers from the Go big numbers library. Rational numbers from the big num-

bers library store numbers with perfect precision as a ratio of two relatively prime

numbers. The problem occurs when rational division results are carried over to

the next iteration of a loop, increasing the numbers’ numerator and denomina-

tor by a few orders of magnitude with each iteration, making each iteration take

longer and longer to complete.

This bottleneck affected two of the main functions of the signature scheme,

GenerateKey and Sign. GenerateKey encountered the bottleneck in the algorithm

for calculating the resultant between two polynomials. Sign encountered the bot-

tleneck in the algorithm we use to calculate the Gram-Schmidt Orthogonaliza-

tion of a lattice basis. We were able to work around both of these bottlenecks and

achieve significant improvements in performance for the affected functions.

4.3.1 Modular Resultant Calculation

To get around the bottleneck in GenerateKey of calculating the resultant between

two polynomials, we took inspiration from the Number Theory Library (NTL) by

Steuer and Shoup (2021). NTL calculates the resultant usingmodular arithmetic.

Expressing the algorithm in terms of modular arithmetic allows us to replace di-

vision with multiplying by themodular inverse of the divisor, thus circumventing

the bottleneck. Calculating a resultant mod some prime number won’t always

produce the correct result however, and the result may change for different mod-

uli. Here we can use the Chinese Remainder Theorem (Pei et al., 1996) to retrieve

the correct resultant from the results of several modular resultant calculations

with different moduli.

Performance improvement

The results of implementing the modular resultant algorithm are shown in Fig-

ure 4.2. Implementing the resultant algorithm using modular arithmetic and the

Chinese Remainder theorem resulted in GenerateKey taking slightly longer for

n ≤ 16, but taking much less time for n ≥ 64. The modular variant starts out

taking longer to complete, but the time it takes increases more slowly with n than

the non-modular variant. At n = 64, GenerateKey using themodular resultant al-

gorithm completes on average almost 10 times faster than using the non-modular

resultant algorithm.

The basic resultant algorithm was the biggest bottleneck affecting our imple-

mentation, as such it took a long time to run the basic resultant experiment with

high values of n. The data shown in Figure 4.2 of the basic resultant algorithm

with n = 128 is based on a single trial of the experiment, as opposed to the 30 or

more trials we used for most other experiments.

8 16 32 64 128
0.1

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Security parameter n

T
im
e
to
ca
lc
u
la
te
(m
s)

Modular resultant
Basic resultant

Figure 4.2: Resultant optimization: Time to GenerateKey

4.3.2 Floating Point Gram-Schmidt Orthogonalization

The Sign function uses SamplePre to generate signatures. SamplePre depends

on the Gram-Schmidt Orthogonalization b∗ of the basis b of the lattice it samples

vectors from. The algorithm for calculating b∗ is affected by the bottleneck of

repeated division and addition with perfect precision.

Thebig numbers library forGo features three data types: big.Int for arbitrarily

large integers, big.Rat for arbitrarily precise rational numbers, and big.Float for

arbitrarily large numberswith limited precision. Simply expressing the algorithm

for calculating b∗ in terms of big.Float instead of big.Rat does indeed make the

calculation swift, but this also changes the behaviour of SamplePre.

SamplePre outputs a vector sample in the lattice from a distribution with a

given variance centered around a given target vector. To generate vectors from

the correct distribution, SamplePre requires that b∗ be given with perfect preci-

sion. If the error in b∗ is too large, vectors output by SamplePre do not come from

the correct distribution and are frequently too long to be valid signatures.

Specifically, the error in b∗ affects the fifth line of Algorithm 3:

c′i ← ⟨ci, b∗i ⟩/⟨b∗i , b∗i ⟩

The variable c′i defines the center of the distribution from which zi is sampled

from, which is the number of times the i-th basis vector is added to the output.

The error in c′i is proportional to both the error in b
∗ and the length of ci, and if the

error is large enough to significantly change the distribution of zi, then SamplePre

will output vectors with an incorrect distribution. Thewaywe construct the initial

target vector as explained in Section 3.2.2 results in a vector with length on the

order of p · q.
With security parameters as low as n = 8, target vectors constructed in this

way are large enough to make errors in b∗ on the order of 10−15 drastically alter

the distribution of vectors output by SamplePre.

When we calculate the b∗ using the big.Float number type instead of big.Rat,

the result typically has errors on the order of 10−14. This error is large enough for

SamplePre to not output valid signatures, but the output distribution has another

useful property. SamplePre given a GSO b∗ with a small error consistently pro-

duces sample vectors closer to target than target is to the origin. The distance

between sample and target appears to be proportional to both the length of target

and the magnitude of the error. For example, given a target vector of length 1060

and an error in b∗ on the order of 10−15, the sample output by SamplePre will be

approximately a distance of 1045 away from target. The vector target− sample

will be shorter than target, and since any sample will evaluate to 0 on either of

the two lattices in the public key, target− sample also encodes the same mes-

sage that target does. Iteratively replacing target with target− sample in this

way allows us to generate a target vector with otherwise the same properties that

is short enough for the error in b∗ to not significantly alter the output distribution

from SamplePre. Thus we can sample valid signatures while cicrumventing the

bottleneck of calculating b∗ with perfect precision.

As mentioned previously, SamplePre is a randomized version of the Nearest

Plane algorithm for producing vectors in a lattice near a given target vector. The

distribution of vectors output from SamplePre has properties necessary for the

security of the homomorphic signature scheme, but takes longer to execute than

Nearest Plane. Thus we use the Nearest Plane algorithm to iteratively shorten the

target vector to an acceptable length, then finally produce a sample vector from

SamplePre using the shortened target vector.

Performance improvement

The results of implementing the imprecise GSOmethod are shown in Figure 4.3.

Implementing the GSO algorithm using big.Float numbers in addition to using

the iterative target shorteningmethod resulted in Sign taking roughly half as long

to complete for n = 64 compared to using a GSOwith perfect precision. The vari-

ant of the Sign algorithm using an imprecise GSO and iterative target shorten-

ing appears to have achieved a reduction in execution time of roughly O(n) after

n = 32.

4 8 16 32 64 128
0.01

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Security parameter n

T
im
e
to
ca
lc
u
la
te
(m
s)

Imprecise GSO
Precise GSO

Figure 4.3: GSO optimization: Time to Sign

Interestingly, whenwe consider just the time it takes to sign 20 values without

counting the additional overhead fromcalculating theGSOwith perfect precision,

both variants take almost the same amount of time to generate signatures. This

is illustrated in Figure 4.4. The two variants take roughly the same amount of

time and have roughly the same scaling with n despite the imprecise GSO version

performing a series of transformations on target. This suggests that arithmetic

involving rational numbers from the GSO with perfect precision carries an addi-

tional cost that is similar to that of iteratively shortening the target vector enough

that an imprecise GSO is acceptable.

4 8 16 32 64 128
0.01

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Security parameter n

T
im
e
to
ca
lc
u
la
te
(m
s)

GSO optimization: Time to Sign without GSO overhead

Float GSO
Rat GSO

Figure 4.4: GSO optimization: Time to Sign without GSO overhead

Chapter 5

Conclusions and Further

Work

We have presented our implementation of Boneh and Freeman’s homomorphic

signature scheme for polynomial functions in Go. We have given a description of

key components of our implementation, including two significant performance

optimizations. Lastly we have given a performance evaluation of our implemen-

tation, and measured the effects of our optimizations.

5.1 Further Work

We were not able to optimize our implementation enough to use more than 64-

dimensional lattices and still get reasonable execution times on the computer we

used for performance testing. Much work is yet to be done in making our imple-

mentation more efficient, particularly for the two slowest functions GenerateKey

and Sign.

Multithreading

Theparts of bothGenerateKey andSign that take themost time can fairly straight-

forwardly be made more efficient by making use of parallel processing.

GenerateKey spends a majority of the time it takes to execute searching for

two prime ideal lattices. It does this by randomly sampling polynomials, then

checking if these produce a prime ideal lattice. This process could be made par-

allel by starting a number of threads, each searching for prime ideal lattices in

32

parallel. When two prime ideal lattices have been found, the threads would then

be terminated before finishing the rest of GenerateKey.

Sign generates a signature for each value to be signed. Each signature is gen-

erated entirely independently from each other signature in the same batch. This

process could be made parallel by simply spawning a new thread for each call of

the function that generates signatures.

Bibliography

Dan Boneh and David Mandell Freeman. 2011. Homomorphic signa-

tures for polynomial functions. https://theory.stanford.edu/ dfree-

man/papers/homsigs.pdf

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for

hard lattices and new cryptographic constructions. In Proceedings of the forti-

eth annual ACM symposium on Theory of computing. 197–206.

Jason Y Jong. 2011. Homomorphic Signatures on Polynomial Functions.

https://github.com/jasonyjong/Homomorphic-Signatures-for-Polynomial-

Functions

DanieleMicciancio and Shafi Goldwasser. 2002. Complexity of lattice problems:

a cryptographic perspective. Vol. 671. Springer Science & Business Media.

Daniele Micciancio and Oded Regev. 2007. Worst-case to average-case reduc-

tions based on Gaussian measures. SIAM J. Comput. 37, 1 (2007), 267–302.

Dingyi Pei, Arto Salomaa, and Cunsheng Ding. 1996. Chinese remainder theo-

rem: applications in computing, coding, cryptography. World Scientific.

Chris Peikert. 2016. Lattice-Based Cryptography.

https://www.youtube.com/watch?v=FVFw_qb1ZkY.

Anh Pham, Italo Dacosta, Guillaume Endignoux, Juan Ramon Troncoso Pastor-

iza, Kévin Huguenin, and Jean-Pierre Hubaux. 2017. {ORide}: A {Privacy-
Preserving} yet Accountable {Ride-Hailing} Service. In 26th USENIX Security

Symposium (USENIX Security 17). 1235–1252.

34

Nigel P Smart and Frederik Vercauteren. 2010. Fully homomorphic encryption

with relatively small key and ciphertext sizes. In International Workshop on

Public Key Cryptography. Springer, 420–443.

Einar Haeger Solfjell, Hein Meling, and Rodrigo Queiroz Saramago. 2022. HSig.

https://github.com/relab/hsig

Patrick Steuer andVictor Shoup. 2021. NTL– a library for doing numbery theory.

https://github.com/libntl/ntl

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2022 Einar Haeger Solfjell

