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Preface

This thesis is written as a masters thesis in the study program of Marine and Subsea Technology at the

University of Stavanger in the spring semester of 2022. A project for 5 ECTs on the same topic was done

in the autumn semester of 2021. This thesis builds on the same process and method, but mistakes are

fixed, and the scope is widened.

It would not have been possible to write this thesis without the guidance from my supervisors or without

the help from teachers, family or friends.

I would like to especially thank Yihan Xing and Yucong Ma for their excellent guidance both during the

last two semesters.

A special thanks to Arvid Næss for the code to run the ACER method.
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Abstract

Buckling for thin metal shells are not an easy failure mode to design structures for. The large variety of

geometries, material properties, and uncertainties has med standards and best practice for designing

thin metal shells very conservative with their safety factor. The design is usually based on the theoretical

strength for buckling, and then, a knockdown factor, is multiplied with the strength in order to achieve

a strong enough structure. For many geometries, this knockdown factor reaches a value of 0.2, therefore

reducing the design strength to one fifth of the theoretical strength. Equinor is planning to create a

subsea shuttle tanker (SST) in order to transport liquids to and from subsea wells. The outer hull of

the SST will not be subjected to large external pressures dew to cargo tanks inside and a flooded inside.

However, the shell will be very large (100 meters long and 17 meters in diameter), and must be design

to withstand some pressure. This thesis will not look at the effect of stiffeners, as the main goal is to

establish a method to design a safe structure that is lighter and cheaper. Using existing studies done on

surface imperfections and physical tests (a study done on small nickel cylinders in the 1970’s known as

the A-shells), this thesis has put together both Final Element Analysis (FEA) and statistical analysis in

order to achieve a knockdown factor that is larger than what is standard and best practice today. Many

realisations of cylinders with different imperfections are simulated and then the result is fitted to a

probability distribution. The best distribution found was the distribution in the Estimation of Extreme

Values by the Average Conditional Exceedance Rate (ACER) Method. With this method, the knockdown

factor could be increased from 0.238 to 0.823 for the A7-shell and from 0.497 to 0.691 for the SST.
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1 INTRODUCTION

1 Introduction

This thesis will discuss buckling of thin cylinder structures in order to improve the design of cargo

carrying submarines. In this chapter, the method and motivation will descried, as well as the objective

with the thesis and the thesis outline.

1.1 Problem introduction

When designing a submarine, one of the most important design considerations is hydrostatic pressure.

In order to descent to 100 meters, the external hull must be able to about ten times the atmospheric

pressure in order to not collapse. To achieve this, designers must take into account the most important

failure modes. For submarines buckling is the failure mode that is going to occur first.

Equinor is planning on making a cargo carrying submarine called a Subsea Shuttle Tanker (SST).

The intended use of the SST is to carry fluids between shore and subsea wells. Much of the design

considerations of the SST is already discussed by Ma et. al. in [1]. The main element that makes this

submarine possible is that the outer shell is flooded, and compartments inside the structure helps with

maintaining strength and carrying the cargo. This makes it possible to have the outer shell thin, as it is

not exposed to external pressure in a static environment under water.

To make the outer shell as light as possible, it would be beneficial to have the safety factor for buckling as

close to the real world as possible. Today’s standards are conservative when it comes to buckling. There

fore, a statistical analysis of simulated cylinders with imperfections based on real world measurements

can be a solution to this problem. Jamissen et. al. [2] showed that there is a possibility that this method

can be made good enough that it is possible to make a design based on this method instead of current

standards.

1.2 Objectives and Method

Objectives

The main object of this thesis is to check the method described above for buckling in order to achieve a

cheaper and lighter design for the SST, the goal is that this method can be used on both failure modes

(axial load and external pressure). A secondary object is that this method can be applied to other

structures.

The method

The method is quite simple to describe, but to execute everything correctly and to the most realistic

way is not a trivial matter. In short, the method in this thesis is to perform FEA analysis on imperfect

cylinders, and then use the result of those simulations to perform a probabilistic analysis and determine

1



1.3 Outline 1 INTRODUCTION

the buckling strength. The goal of this method is that it will be less conservative than methods used in

standards today, and still be safe enough to rely on for critical structures.

1.3 Outline

It is helpful to have an overview of the thesis before staring to read it.

• Theory will introduce all of the methods used in this thesis, however, it will not go down in the

details of how it is used in this thesis, but explain the methods in a general matter.

• Method will dive down in what is written about in the theory chapter, and will justify assumptions

made, and explain what has been done in a more detailed manner.

• Results will dive down in what the results from the simulation and the statistical analysis, and

discuss how the results should be interpreted and used for the conclusion.

• Conclusion will shortly summarise the thesis and briefly explain what was achieved by this thesis.

• Future work will explain what some of the problems in this thesis was, and if someone else should

continue on this research path, what to do different and what to add.

• References is a list of references

• Appendix is added to the end of the thesis and contains data that would otherwise be to large

and note necessary to include in the thesis. When necessary, the thesis will refer to the appendix.

2



2 THEORY

2 Theory

This chapter will explain the general theory for buckling of thin walled shells and how to perform an

FEA to calculate the buckling strength for the shells, how to create surface imperfection patterns from

measurements and from the Fourier coefficients, as well as how to find probabilities of extreme values.

2.1 Buckling of Thin Walled Shells

Buckling of thin walled shells is a complicated area of structural engineering. This is because the

buckling strength is largely dependent on dimensions, stiffeners, surface imperfections, load cases

and much more. Ross [3] states that the structural strength for collapse pressure can be affected by as

much as 50% by a imperfection in shape as small as 1%. This is one of the reasons that standards for

buckling is very conservative.

2.1.1 Buckling Mechanics

One of the conservative methods to design a shell is to use the knockdown factor. The knockdown factor

is a factor, 0 ≤ λ ≤ 1, that is multiplied with the theoretical buckling strength for the shell. There has

been a lot of physical experiments done on many shells with different R/t, notably from [4, 5, 6, 7, 8, 9,

10, 11, 12]. From these tests, an equation for the lower bound curve for the design knockdown factor

has been made. The equation for the lower bound curve is shown in Equation 1 from Doup [13].

λ=
Pe x p

Pc l
= 1−0.902

�

1− e −
p

R/t
16

�

(1)

Here, Pe x p and Pc l are the lower bound knockdown factor and the theoretical buckling strength

respectively. Equation 1 is plotted on top of the test results from [4, 5, 6, 7, 8, 9, 10, 11, 12] in Figure 1. The

lower bound equation is a conservative knockdown factor, as is easy to see, because the majority of the

test results have a real knockdown factor that is larger than the lower bound curve. Though the lower

bound curve takes into account different R/t, it does not take into account the length of the cylinder. For

the A-shells, R/t varies from about 800 to a little over 1000, the SST will have an R/t in the range of 170,

which is considered very low, but the extreme length of the SST will also affect the buckling strength.

2.1.2 A-shells

The A-shells tested by Arbocz and Abrahamovich [4]was made using nickel electroplating, this made it

possible to create shells with extremely low thickness and with a very even surface. A low thickness is

desirable as buckling accrue easily when the thickness is low, as well as the testing is to fuel the research

for rockets in the aerospace industry, where the R/t ratio is quite large.
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2.2 Surface Imperfection Patterns 2 THEORY

2.2 Surface Imperfection Patterns

To create the surface imperfection pattern, a double Fourier series is used. From Arbocz and Abramovich

[4], the double Fourier series can be seen in Equation 2 and 3, where Equation 2 is the half-wave cosine

Fourier representation, and 3 is the half-wave sine Fourier representation.

W (x , y ) = t
N1
∑

i=0

Ai 0 cos
iπx

L
+ t

N1
∑

k=0

N2
∑

l=1

cos
kπx

L

�

Ak l cos
l y

R
+Bk l s i n

l y

R

�

(2)

W (x , y ) = t
N1
∑

i=0

Ci 0 sin
iπx

L
+ t

N1
∑

k=0

N2
∑

l=1

sin
kπx

L

�

Ck l cos
l y

R
+Dk l s i n

l y

R

�

(3)

Here, W is the size of the imperfection at position x and y on the surface, where 0≤ x ≤ L and 0≤ y ≤ 2π,

N1 and N2 are the size of the Fourier coefficient matrix A, B , C and D are the Fourier coefficients, L , R

and t are the length, radius and surface thickness of the shell respectively.

The Fourier coefficient matrix given in Arbocz and Abramovich [4]was obtain after measurements of

the imperfections from the A-shells before they were tested.

The surface imperfection of the A7-shell is shown in Figure 2. The x and y axis are the circumference and

the length of the circle, and the z axis is the size of the imperfections with regards to the wall thickness

Figure 1: Results from axially compressed shells with lower bound curve (tests marked within the red
ellipse is the A-shells) [14].
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2.3 FEA of Thin Walled Shells 2 THEORY

Figure 2: Surface representation of the A7-shell

of the shell. Figure 3 shows the sharpest edge of the surface representation. It is clear that there are no

sharp edges in the mesh. This can help strengthening the simulated shell, as there will be less shear

forces when the angle between the mesh elements is small.

2.3 FEA of Thin Walled Shells

A suitable computer application must be used in order to complete an FEA where the results can be

trusted. Not only does the application support proper buckling analysis, but the model, loads and

boundary conditions must be set up to reflect the real world. Another important factor for FEA is how

the mesh is setup. Both mesh size and mesh shape affects the results of the simulation.

2.3.1 Computer Program

For this thesis, ANSYS Mechanical APDL was chosen as the application to run the analysis in. ANSYS is

a trusted application for FEA, that has existed for many years, but the main reason that it was chosen

is that UiS has licenses for the full version, as well as that ANSYS have free versions for students. This

means that help is easy to get, as well as it is possible both to work from the universities computer lab,

5



2.3 FEA of Thin Walled Shells 2 THEORY

Figure 3: Surface representation of the A7-shell

as well as from home. This is important, as the Covid-19 situation was still unknown when this thesis

was started.

The reason for using the APDL version of ANSYS, instead of the regular version with a modern user

interface (UI) is that the APDL version makes it possible to write a script to run simulations from many

different models. This is crucial, as many different surface imperfection patterns had to be simulated

in order to gain enough results to run statistical analyses.

2.3.2 FEA Model

ANSYS has a programming language that lets the user create a text file with commands instead of

manually clicking and typing values for each analysis, therefore making it easier to perform multiple

analysis of with different

For structural models with thin shells, Shell type 181 in APDL is the best option. The other shell types

have other options that is not needed, thermal conductivity, electrical conductivity or other options

[15].

6



2.3 FEA of Thin Walled Shells 2 THEORY

Figure 4: Representation of rectangular mesh [16].

In the documentation for APDL, shell 181, a rectangular mesh is recommended, this is because the

geometry is simple, and the thickness of the shell is thin, therefore only requiring one element for the

whole thickness of the shell [16]. However, a triangular mesh can have certain advantages. The main

one is that for triangular mesh, all nodes lies in a single plane. In Figure 4 it is possible to see both a

rectangular mesh, and a simplified triangular mesh for shell 181. It is easy to see that if one or more of

the nodes is moved in the z-direction, that the element will twist.

To choose the correct mesh size is a trivial matter. The easiest way is to run a sensitivity analysis on

the mesh size. This is just to start with a large mesh size, and then decrease the size until the results

converges.

Boundary conditions for the model is also very important. In each end of the cylinder, there are 6

degrees of freedom that can be subjected to boundary conditions. The six boundary conditions are

listed in Table 1 an overview of the different kind of boundary conditions that can be applied to a cylinder.

For the most conservative result, the "relaxed" boundary conditions could be used. A problem with

using the "relaxed" boundary conditions at the top of the cylinder is that it is difficult to have the top of

the cylinder free in all direction when performing a physical test. Therefore, the "medium" boundary

conditions are more realistic in terms of the real world tests that is possible to perform on the cylinder,

as well when the shell is installed in its position on intended structure.

7



2.4 Probabilities of Extreme Values 2 THEORY

Table 1: Overview of different combination of boundary conditions for a cylinder (z-direction is along
the length and the value in the cell represents allowable displacement for X, Y and Z, and

allowable rotation for RotX , RotY , RotZ , where blank cells have no restrictions).

Boundary conditions X Y Z RotX RotY RotZ

Bottom
Strict 0 0 0 0 0 0
Relaxed 0 0 0

Top
Strict 0 0 0 0 0
Medium 0 0
Relaxed

2.4 Probabilities of Extreme Values

2.4.1 Gumbel Distribution

The Gumbel distribution is the most used distribution for extreme value estimations. The probability

density function (PDF), cumulative density function (CDF) and the inverse CDF are shown in Equation

4, 5 and 6 respectively [17].

f (x ) =
1

σ
exp

h

−
� x −µ
σ
+exp

�

−
x −µ
σ

��i

(4)

F (X ) = exp
h

−
�

exp
�

−
x −µ
σ

��i

(5)

F −1(p ) =µ−σ ln(− ln p ) (6)

Here, µ is the location parameter,σ is the scale parameter and p is the probability. One disadvantage

with the Gumbel distribution is that it is best suited for extreme values, where the values are greater

than the average.

2.4.2 ACER Method

Where the ACER method is superior to the Gumbel method is that it only tries to estimate the tail section

of the distribution, as well as it uses many more parameters than the Gumbel distribution. Without

going into all the details of how the ACER method works, the general equation for the distribution in

the ACER method is shown in Equation 7, from Næss et. al. [18]. This equation is only calculated from

a in the interval η≤η1, where η1 is a tail marker that limit the amount of the data that should be used

to estimate the parameters of the distribution.

εk (η) = qk (η)
�

1+ξk

�

ak (η− bk )
ck
��− 1

ξk (7)
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2.4 Probabilities of Extreme Values 2 THEORY

Here, ak , bk , ck , qk and ξk are parameters that is calculated using a Matlab script in order for Equation

7 to fit the data in the interval that is larger than the tail marker η1, and η is the probability. The ACER

method has the same problem as the Gumbel distribution, that is that it is made for large extremes.

To get around this problem, one way of going around that problem is to inverse the results from the

simulations.

9



3 METHOD

3 Method

In order to calculate the the collapse strength of a thin walled shell with this method, a fitting surface

imperfection pattern, an FEA model and a fitting probability distribution must be made. For the best

results, all of these should be as close to the real world as possible. Arguably, the surface imperfection

pattern for the SST is the most difficult to predict. Such a large and thin walled structure has not been

made outside of the aerospace industry, where the demands for strength is completely different, the

main differences,that the shell is standing upright and not exposed to a large external pressure. FEA

models for buckling has been very accurate for many years. In most cases, the inaccuracy of simulated

shells is that if a perfect shell is simulated, the analysis does not take into account for imperfections

in the surface. This problem is eliminated with this method, as the shells tested are imperfect. When

calculating a probability distribution for extreme cases, the Gumbel distribution is the most used. This

is because it fits well in the extreme values of high and low probabilities. However, it is not always the

case.

3.1 Surface imperfections

As mentioned above, it is not easy to predict the surface imperfection pattern of a structure that has not

been made. Guesses can be made on account of other studies of imperfections as well as the design of

the structure. From Teng and Rotter [14] an imperfection pattern of a shell made from three different

sheets of metal welded together can be seen in Figure ??. It is clearly possible to observe the larger

imperfections caused by the welds in the seams. Because of the size of the SST, many more seams will

be present both around the circumference and along the length. For this thesis, the seams has not

been taken into account because a design of the SST has not been made, and therefore, the surface

imperfection pattern has been based on another shell. Specifically the A7 shell. This is because the

A-Shells is thoroughly studied in Teng and Rotter [14]. Therefore, both the A7 shell and the SST is

simulated is this thesis.

The Fourier coefficients is taken from The Initial Imperfection Data Bank at the Delft University of

Technology Part I (IDB) [4]. For the A7 shell, a 15 by 8 matrix for the Fourier coefficients are used. This

gives enough coefficients in order to accurately create a surface representation of the imperfections.

3.2 FEA Model

Matlab was used in order to create the script that runs in ANSYS APDL. In total 2 Matlab scripts are

needed in order to run the simulation in ANSYS. The first script takes the material and physical data

for each shell and the Fourier coefficient matrix and uses Monte Carlo simulation in order to create a

list of all nodes and their location, and then it creates a list of all elements. The second script creates

many .inp files that run each, one simulation with one imperfection pattern. It also creates a file path

10



3.3 Simulation Inputs 3 METHOD

Table 2: Material properties and measurements.

Shell L (m) R (m) t (mm) Youngs Modulus (GPa) Poissons Ratio
A7 0.2032 0.1016 0.114 104.11 0.3
SST 100 8.5 50 200 0.3

Table 3: mesh size, number of elements in each direction and in total.

Shell Mesh size Elements (length) Elements (circumference) Total elements
A7 1.1mm 185 580 106720
SST 2.1m 476 254 120650

and moves metadata from the simulation in order to store and make it possible to retrieve all data at a

later time. At last, the script creates a .inp files that runs all other .inp files that are made. Both scripts

is attached as Appendix A and B.

3.3 Simulation Inputs

For the simulation to run properly, all the inputs to ANSYS must be correct, and as close to the real

world scenario as possible. The A-shells are made from electroplated nickel, and have different material

properties than steel. In Table 2 is the material properties and the physical measurements of the A7-shell

and the SST.

The mesh size and shape is also an essential input. As mentioned in Chapter 2.3, a rectangular mesh is

best for this type of analysis. To determine the mesh size, a sensitivity study on the mesh size is needed.

A sensitivity analysis on this exact model was performed by Jamissen et. al. [2]. The acceptable mesh

size for the A-shells are 1mm , and for the SST, the mesh can be 2m in size. The script is made such that

the mesh elements are as square as possible. In Table 3, the mesh size, number of elements in each

direction and in total is listed. Note that the mesh size is slightly higher in order to get under 128000

elements, which is the limit in the student version.

In order to achieve some variation in the imperfections on the shells, a variance of 0.4 is chosen to be

applied to the Fourier coefficients in the Monte Carlo simulation.

The last inputs needed for the simulation is the loads and boundary conditions. When performing

buckling analysis, ANSYS will output a factor that is proportional to the input load. To make it as simple

as possible, a unit load of 1N is spread across all of the top nodes in the−z -direction, this will compress

the cylinder. For external pressure, 1 bar is applied to the outside of the structure, and due to the way

the mesh is created, all the elements are facing with the same direction outwards, thus creating only

external pressure. When the simulation for the buckling are finished, the output will be the collapse load

in Newton, and the collapse pressure in bar. As discussed in Chapter 2.3, it is best to lock displacement

in all three directions in the bottom of the cylinder, but to keep the rotational constraint free. At the top,
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as well as the force, displacement in both X and Y direction is locked. This is closest to how a cylinder

will be tested in a physical test.

3.4 Analysis of Results

To have only the results of the simulation is not enough to make conclusions. After ANSYS is finished

solving the simulations, the results has to be processed. To complete the storage of the results, a third

Matlab script is run in order to sort the results and save it in the correct file path. This script is attached

as Appendix C. When all the data is collected and stored, the probabilistic analysis can begin. Both

the Gumbel distribution as well as the ACER method is used to have both a proven method and an

experimental one.

For the Gumbel distribution, a simple Matlab script, performing a probability plot will solve for both µ

andσ for the Gumbel distribution. The ACER method more complex to solve, but a script provided by

Arvid Næss makes it possible to solve in order to get a result.

The results from both Gumbel and ACER will be compared to the results by Teng and Rotter [14], the

physical test by Arbocz and Abramovich [4] and the lower bound curve.
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4 Results

The results will be divided into two parts, first, the results from the FEA, and then the probabilistic

calculations.

4.1 FEA Results

To get a better overview, the results from axial compression is shown first, then the results for external

pressure.

4.1.1 Axial Compression

For the A7-shell, the simulated buckling strength relates to a stronger cylinder than was tested in [4], with

the exact imperfections achieving a strength of 4880.1N , this is very close to the theoretical buckling

strength of 5158.6, and is equivalent to a knockdown factor of λ= 0.946. This is much higher than the

knockdown factor of λ= 0.589 for the tested A7-shell.

For the SST, the theoretical buckling strength is 1.81E +9N and with the exact imperfections from the

A7-shell, the buckling strength is 1.46e 9N , resulting in a buckling factor of λ= 0.801.

Using a Monte Carlo method with a variation of 0.4, the coefficients in the Fourier coefficient matrix

in Appendix E and the half-wave cosine Fourier series, a simulation of 20 shells had a mean result of

4500.7N and a standard deviation of 59.0N for the A7 shell. A CDF of the result is shown in Figure 5.

The SST had a mean strength of 1.44E +9N and a standard deviation of 4.85E +7N . A CDF of the result

is shown in Figure 6

The shapes of the deformations are showed in 7. There is clearly a difference in where and when

the cylinder buckled. This can be observed both in the difference in collapse strength and on the

post-buckling geometry.

4.1.2 External Pressure

For the simulations with external pressure, the imperfections had much less effect on the results. The

knockdown factor for buckling with external pressure is almost λ= 1.

Using the method from [19], better described in [20], the external collapse pressure for the A7-shell is

0.0203b a r and it is 0.0578b a r for the SST.

The result for the simulated shells without imperfections are 0.0255b a r and 0.521b a r for the A7-shell

and SST respectively. For the simulation with imperfections, the A7-shell and the SST got collapse

pressures of 0.0254b a r and 0.512b a r . It is easy to observe, not only from the similarities in the

simulations with and without imperfections, but also in the deformation shape in the FEA, shown
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Table 4: Gumbel coefficients for A7 and SST with axial load.

Shell µ σ
A7 4529.9N 56.91N
SST 1.4648e+9N 5.1886e+7N

in Figure 8, that the imperfections don’t affect the shells collapse pressure for buckling. For the SST,

the general shape for the deformation is the same, but buckling has started on another place along the

circumference because of the imperfections.

4.2 Probabilistic Calculation

It is only practical run probabilistic analysis on the simulation with axial load, as imperfections does

not affect the collapse strength for external pressure.

4.2.1 Gumbel Analysis

With the Gumbel extreme value distribution, the µ andσ, was found using the Matlab script attached

as Appendix D, and is listed in Table 4. The probability plot is plotted an is shown in Figure 9 and 10. The

shape of the Gumbel distribution does not fit well to the simulated results for either the A7-shells or for

the SST-shells. When going down to low probabilities with this distribution, the Gumbel representation

will give results that are much stronger than what is the reality. This is unacceptable when designing

structures.

Figure 5: CDF of the simulated A7-shells.
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Figure 6: CDF of the simulated SST-shells

Table 5: 10−6 return level estimate with confidence interval

Shell 10−6 return level estimate Lower confidence interval Higher confidence interval
A7 4285N 4245N 4389N
SST 1.2739e+9N 1.2502e+9N 1.3667e+9N

Using the inverse Gumbel distribution in Equation 6, and the parameters in Table, 4 the collapse strength

for the A7-shell and the SST with a failure probability of 10−6 are 4380N and 1.3286e+9N respectively.

4.2.2 ACER Method

For the ACER method, the result for the collapse strength with a failure probability of 10−6 was

dependent on what tail-marker was used. After inverting the values in the results and running the

Matlab script for the ACER method, when selecting the tail-marker, Figure 11 shows up. From the figure,

it is possible to see that the value for the tail-marker could be set to η1 = 2.22e-4. This ensures that the

nice slope from around the middle of the graph and to the right forms the basis for script to find the

best fitting parameters. For the SST, shown in Figure 12, a good tail marker is η1 = 6.9e-10.

For these tail-markers, the results from the ACER method is shown in Figure 13 and 14, and the values

for the results are shown in Table 5

4.3 Summary of Results

To summarise the result, the knockdown factor for axial can be increased for when FEA and statistical

analysis is used on thin metal shells. Listed in Table 6 are the results from both the A7-shell and the
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(a) SST no imperfections (b) SST with imperfections

(c) A7-shell no imperfections (d) A7-shell with imperfections

Figure 7: Deformed shape of cylinders that buckled because of axial load
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(a) SST no imperfections (b) SST with imperfections

(c) A7-shell no imperfections (d) A7-shell with imperfections

Figure 8: Deformed shape of cylinders that buckled because of external pressure (Note that the buckling factor is
on order of magnitude to small compared to the correct result)

SST from Teng and Rotter [14], which used a reliability of 0.99997, Arbocz and Abramovich [4], the lower

bound curve [13], the Gumbel distribution and the ACER method.

From Table 6, it is possible to observe that the method of doing and FEA on the imperfections can

drastically increase the knockdown factor. Though, the result for the exact imperfections that the

A7-shell resulted in a larger collapse strength than then the physical test, method is promising.

The imperfections does not seem to affect the buckling factor for cylinders exposed to external pressure.
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Figure 9: Gumbel probability plot for the simulated A7-shells.

Figure 10: Gumbel probability plot for the simulated SST-shells.

Table 6: Knockdown factor for simulation and tests, numbers in first row are failure probability

Shell
Teng and Rotter
3 ∗10−5

Physical test by
Arbocz and Abramovich

Lover bound curve
Gumbel distribution
1 ∗10−6 (3 ∗10−5)

ACER method
1 ∗10−6 (3 ∗10−5)

A7 0.54 0.589 0.238 0.849 (0.852) 0.823 (0.830)
SST N/A N/A 0.497 0.734 (0.742) 0.691 (0.705)
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Figure 11: η1 = 2.22e-4 is a good tail-marker.

Figure 12: η1 = 6.9e-10 is a good tail-marker.
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Figure 13: ACER distribution for the A7-shell

Figure 14: ACER distribution for the SST.
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5 Conclusion

To conclude this thesis the method of using imperfections and FEA are the future for designing large

thin metal shells. The shells using this method is shown to have a higher knockdown factor, therefore

increasing the buckling load, and consequently reducing both weight and cost. The ACER method is

a good tool to perform statistical analysis, as it more easily adapts to the distribution of test results,

resulting in a closer fit than the Gumbel distribution.

For cylinders exposed to external pressure, the imperfections does not affect the strength of the cylinder

in any way that can not be within the margin of error, therefore conventional methods should be used

when designing for external pressure. This result is a bit strange, as mentioned in 2.1 and by [3], an

imperfection that disturbs the geometry by as 1% can decrease the buckling strength by as much as

50%. One reason that the buckling strength is not affected with the imperfections in the A7-shell is that

because of the Fourier representation only has a limited amount of coefficients, there is a limit to how

sharp the imperfections can get, see Figure 3 in Chapter 2.2, and that sharper imperfections will affect

the buckling strength more.
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6 Further work and recommendations

Although the process used in this thesis did not get concrete results for the design of the SST outer shell,

the method is really promising. The next focus areas of others, when trying to continue this research

should be, but is not limited to; creating a model to run FEA on an outer shell with stiffeners, creating

another set of Fourier coefficients that more randomly creates the imperfection surface or finding a

better probability distribution to fit the lower end extremes of the FEA results.

The use of shell stiffeners drastically increase the buckling strength of the outer shell. Because of the

internal tanks of the SST, an analysis of ring stiffeners alone will give a very conservative results, as the

internal structure will provide extra support to the ring stiffeners.

This thesis used only Fourier coefficients from the A7 shell made random with Monte Carlo simulations

in order to make the imperfections surfaces. To create a more realistic set of coefficients for the

production process of a 17m diameter shell as well as not create only one general shape for the

imperfections is a good idea in order to make room for more different imperfections. One last thing

to take into account with imperfections is to look at the effect of small to large dents on the buckling

strength of the shell, as it is not uncommon for containers, anchors or other objects to fall to the sea

bed. If the SST is hit with an object, it can cause massive damage as well as collapse.

Only Gumbel extreme value distribution and the ACER method was used to create an estimate for the

weakest allowable buckling strength for the SST, neither of whom was a distribution that fitted as well

enough to create a results that can be trusted enough to create a design from.
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• Appendix A: Fourier coefficient matrix for A7-shell

• Appendix B: Matlab script for creating node placement and elements

• Appendix C: Matlab script for creating .inp file for ANSYS APDL

• Appendix D: Matlab script for reading results from the simulations

• Appendix E: Matlab script to create a probability plot and to get teh Gumbel parameters
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Create surface imperfection and node coordinates 

 

clc 

% clf 

clear 

load('..\OFF600\Data\Coefficients.mat') 

% 

% SST       - 0 

% A7        - 1 

% A12       - 2 

% B1        - 3 

% HO        - 4          

% Custom    - 5 

 

 

Shell= 0 ; %See table above 

Imp=1; %See table above 

Thickness_override = 0; % If 0, no, if 1, yes 

Thickness = 0.00005; 

Perfect= 0 ; %If 0, imperfect, if 1, perfect 

Variance = 0.4; %Set to zero for exact imperfections 

Num_Sim=20; 

Imperfectionscalar=1; 

if Shell == 0 

 

    % SST 

    t=0.05;        %Thickness 

    R=17/2;         %Radius 

    L=100;          %Lenght 

    Dia=2*R; 

 

    Meshsize=0.21; 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

 

    E=2e11; 

    v=0.3; 

 

%     Div_Len=200;         %No of divisions on length 

%     Div_Cir=80;          %No of divisions on circumferance 

 

elseif Shell == 1 

 

    % A-7 

    t=0.000114;        %Thickness 

    R=0.1016;         %Radius 

    L=0.2032;          %Lenght 

    Dia=2*R; 

 

    E=1.0411e11; 



    v=0.3; 

 

    Meshsize=0.0011; 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

%      Div_Len=200;         %No of divisions on length 

%      Div_Cir=360;          %No of divisions on circumferance 

 

 

 

elseif Shell == 2 

 

    % A-12 

    t=0.0001204;        %Thickness 

    R=0.1016;         %Radius 

    L=0.20955;          %Lenght 

    Dia=2*R; 

 

    E=1.048e11; 

    v=0.3; 

 

    Meshsize=0.002; 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

%     Div_Len=200;         %No of divisions on length 

%     Div_Cir=360;          %No of divisions on circumferance 

 

 

 

elseif Shell == 3 

 

    % B-1 

    t=0.000205;        %Thickness 

    R=0.1016;         %Radius 

    L=0.19685;          %Lenght 

    Dia=2*R; 

 

 E=1.065e11; 

    v=0.3; 

 

    Meshsize=0.002; 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

%     Div_Len=200;         %No of divisions on length 

%     Div_Cir=360;          %No of divisions on circumferance 

 

 

elseif Shell == 4 

 

    % HO 

    t=0.0006426;        %Thickness 

    R=0.9462;         %Radius 

    L=2.7432;          %Lenght 



    Dia=2*R; 

 

 E=6.895e10; 

    v=0.3; 

 

    Meshsize=0.02; 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

     Div_Len=200;         %No of divisions on length 

     Div_Cir=360;          %No of divisions on circumferance 

 

 

elseif Shell == 5 

 

    %Custom 

    t=0.000114;        %Thickness 

    R=0.1016;         %Radius 

    L=0.2032;          %Lenght 

    Dia=2*R; 

 

 E=1.065e11; 

    v=0.3; 

 

    Meshsize=0.002; 

 

    Div_Len= round(L/Meshsize); 

    Div_Cir= round(2*pi*R/Meshsize); 

%     Div_Len=200;         %No of divisions on length 

%     Div_Cir=360;          %No of divisions on circumferance 

 

else 

    disp('Error! Wrong shell') 

    return 

end 

 

if Imp == 0 

 

elseif Imp == 1 

 

    MA=table2array(A7A); 

    MB=table2array(A7B); 

 

elseif Imp == 2 

 

    MA=table2array(A12A); 

    MB=table2array(A12B); 

 

elseif Imp == 3 

 

 MA=table2array(B1A); 

    MB=table2array(B1B); 

 

elseif Imp == 4 



 

    MA=table2array(HOA); 

    MB=table2array(HOB); 

 

else 

    disp('Error ! Wrong imperfection') 

return 

 

end 

 

if Thickness_override == 1 

t=Thickness; 

end 

Half wave cosine 

SDA=MA*Variance;                     %Standard deviation 

SDB=MB*Variance;                     %Standard deviation 

 

sz=size(MA); 

 

 

 

for m=1:Num_Sim 

    if Perfect == 0 

        A=zeros(sz); 

        B=zeros(sz); 

        for i=1:sz(1)                   %Monte Carlo simulation on coeficcients 

        for j=1:sz(2) 

            A(i,j)=( randn() * SDA(i,j) ) + MA(i,j); 

            B(i,j)=( randn() * SDB(i,j) ) + MB(i,j); 

        end 

        end 

        W2=zeros(Div_Len,Div_Cir); 

 

 

 

        for x=1:Div_Len       %Half-wave sine 

            for y=1:Div_Cir 

                for i=1:sz(1) 

                       W2(x,y)=W2(x,y)+A(i,1)*cos((i-1)*pi*x/Div_Len); 

                end 

 

                for i=1:sz(1) 

                    for j=2:sz(2) 

                        W2(x,y)=W2(x,y)+ (cos((i-1)*pi*x/Div_Len)*(A(i,j)*cos((j-

1)*y/Div_Cir*2*pi)+B(i,j)*sin((j-1)*y/Div_Cir*2*pi))); 

                    end 

 

                end 

            end 



        end 

 

   W2=W2*Imperfectionscalar; 

 

 

Node 

            n = 1; 

            Node=zeros(Div_Cir*Div_Len,5); 

            for i = 1:Div_Len            %Only from i=1, not i=0 

                z = i/Div_Len*L; 

                for j = 1:Div_Cir 

                    x = (R+t*W2(i,j))*cos(j/Div_Cir*2*pi); 

                    y = (R+t*W2(i,j))*sin(j/Div_Cir*2*pi); 

                    Node(n,1) = n; 

                    Node(n,2) = x; 

                    Node(n,3) = y; 

                    Node(n,4) = z; 

                    n = n + 1; 

                end 

            end 

     

Node Without imperfection 

        elseif Perfect ==1 

n = 1; 

        Node=zeros(Div_Cir*Div_Len,5); 

        for i = 1:Div_Len            %Only from i=1, not i=0 

            z = i/Div_Len*L; 

            for j = 1:Div_Cir 

                x = (R)*cos(j/Div_Cir*2*pi); 

                y = (R)*sin(j/Div_Cir*2*pi); 

                Node(n,1) = n; 

                Node(n,2) = x; 

                Node(n,3) = y; 

                Node(n,4) = z; 

                n = n + 1; 

            end 

        end 

    else 

        break 

    end 

Elements 

 

Ele=zeros((Div_Len-1)*Div_Cir,5); 



n = 1; 

for i = 1:(Div_Len-1) 

    for j = 1:Div_Cir 

        Ele(n,1) = n; 

        Ele(n,2) = n; 

        Ele(n,5) = n + Div_Cir; 

        n = n + 1; 

    end 

end 

 

for i = 0:Div_Len-2 

    Ele(1+i*(Div_Cir):Div_Cir-1+i*(Div_Cir),3) = Ele(2+i*(Div_Cir):Div_Cir+i*(Div_Cir),2); 

    Ele(Div_Cir+i*(Div_Cir),3) = Ele(1+i*(Div_Cir),2); 

    Ele(1+i*(Div_Cir):Div_Cir-1+i*(Div_Cir),4) = Ele(2+i*(Div_Cir):Div_Cir+i*(Div_Cir),5); 

    Ele(Div_Cir+i*(Div_Cir),4) = Ele(1+i*(Div_Cir),5); 

end 

 

 save(['..\OFF600\Mat\' num2str(m) '.mat'],'Node','Ele'); 

end 

 

UnitLoad=1/Div_Cir; 

 

FE_mesh.E = E; 

FE_mesh.v = v; 

FE_mesh.Variance = Variance; 

FE_mesh.Dia = Dia; 

FE_mesh.L = L; 

FE_mesh.Div_Cir = Div_Cir; 

FE_mesh.Div_Len = Div_Len; 

FE_mesh.UnitLoad = UnitLoad; 

FE_mesh.t = t; 

FE_mesh.Num_Sim = Num_Sim; 

FE_mesh.Perfect = Perfect; 

FE_mesh.Shell = Shell; 

 

save('..\OFF600\Data\FE_mesh.mat','FE_mesh'); 

 

load('..\OFF600\Data\ser.mat','serial') 

serial = serial +1; 

 

save('..\OFF600\Data\ser.mat','serial'); 

 

 

Published with MATLAB® R2021b 



Appendix B

ix



Create .inp file for ANSYS 

clear all; 

 

 

load('..\OFF600\Data\FE_mesh.mat','FE_mesh') 

load('..\OFF600\Data\ser.mat','serial') 

 

for m=1:FE_mesh.Num_Sim 

   load(['..\OFF600\Mat\' num2str(m) '.mat'],'Node','Ele'); 

 

fid = fopen(sprintf('%ia%i.inp',serial,m), 'w'); 

 

fprintf(fid, '\n'); 

 

fprintf(fid, '\n'); 

 

fprintf(fid, '/TITLE,file%i \n',m); 

fprintf(fid, '\n'); 

 

fprintf(fid, '/PREP7\n'); 

fprintf(fid, '\n'); 

 

for i = 1:size(Node,1) 

    fprintf(fid, 'N,%i,%d,%d,%d,,,,\n', Node(i,1),... 

        Node(i,2),Node(i,3),Node(i,4)); 

end 

fprintf(fid, '\n'); 

 

fprintf(fid, 'ET,1,SHELL181\n'); 

fprintf(fid, '\n'); 

 

fprintf(fid, 'MPTEMP,,,,,,,,  \n'); 

fprintf(fid, 'MPTEMP,1,0  \n'); 

 

fprintf(fid, 'MPDATA,EX,1,,%d  \n',FE_mesh.E); 

 

fprintf(fid, 'MPDATA,PRXY,1,,%d \n',FE_mesh.v); 

fprintf(fid, '\n'); 

 

fprintf(fid, 'sect,1,shell,,Shell \n'); 

fprintf(fid, 'secdata, %d,1,0.0,3   \n',FE_mesh.t); 

fprintf(fid, 'secoffset,MID   \n'); 

fprintf(fid, 'seccontrol,,,, , , ,\n'); 

fprintf(fid, '\n'); 

 

for i = 1:size(Ele,1) 

     fprintf(fid, 'EN,%i,%i,%i,%i,%i\n', Ele(i,1),... 

         Ele(i,2),Ele(i,3),Ele(i,4),Ele(i,5)); 

end 

fprintf(fid, '\n'); 

 



fprintf(fid, 'elist,all,,,0,0 \n'); 

fprintf(fid, 'TYPE,   1   \n'); 

fprintf(fid, 'MAT,       1\n'); 

fprintf(fid, 'REAL,   \n'); 

fprintf(fid, 'ESYS,       0   \n'); 

fprintf(fid, 'SECNUM,   1 \n'); 

fprintf(fid, '\n'); 

 

fprintf(fid, '/SOLU\n'); 

fprintf(fid, '\n'); 

 

fprintf(fid, 'ANTYPE,0\n'); 

fprintf(fid, '\n'); 

 

fprintf(fid, '\n'); 

Pressure 

 

% fprintf(fid, 'ESEL,ALL,,,,,,\n'); 

% fprintf(fid, 'SFE,ALL,1,PRES, ,-1000000, , ,  \n'); 

Force 

 

fprintf(fid, 'FLST,2,5,1,ORDE,2 \n'); 

fprintf(fid, 'FITEM,2,%i   \n',size(Node,1)-FE_mesh.Div_Cir+1);     %From 

fprintf(fid, 'FITEM,2,%i \n',-size(Node,1));                        %To node 

fprintf(fid, '!* \n'); 

fprintf(fid, '/GO  \n'); 

fprintf(fid, 'F,P51X,FZ,%f  \n',-FE_mesh.UnitLoad); 

fprintf(fid, ' \n'); 

Boundary conditions Fixed Bottom 

 

fprintf(fid, 'FLST,2,5,1,ORDE,2  \n'); 

fprintf(fid, 'FITEM,2,1 \n'); 

fprintf(fid, 'FITEM,2,%i \n',-FE_mesh.Div_Cir); 

fprintf(fid, '!*  \n'); 

fprintf(fid, '/GO \n'); 

fprintf(fid, 'D,P51X, ,0, , , ,UX,UY,UZ, , , \n'); 

fprintf(fid, ' \n'); 

Boundary conditions All Bottom 

 

 

% fprintf(fid, 'FLST,2,5,1,ORDE,2  \n'); 

% fprintf(fid, 'FITEM,2,1 \n'); 



% fprintf(fid, 'FITEM,2,%i \n',-FE_mesh.Div_Cir); 

% fprintf(fid, '!*  \n'); 

% fprintf(fid, '/GO \n'); 

% fprintf(fid, 'D,P51X,UX, , , , ,UY,UZ,ROTX,ROTY,ROTZ, \n') 

% fprintf(fid, ' \n'); 

Boundary conditions Fixed Top 

fprintf(fid, 'FLST,2,5,1,ORDE,2 \n'); 

fprintf(fid, 'FITEM,2,%i   \n',size(Node,1)-FE_mesh.Div_Cir+1);     %From 

fprintf(fid, 'FITEM,2,%i \n',-size(Node,1));                        %To node 

fprintf(fid, '!* \n'); 

fprintf(fid, '/GO  \n'); 

fprintf(fid, ' D,P51X,UX,0, , , ,UY,,,, ,   \n'); 

Boundary conditions All Top 

 

%fprintf(fid, 'FLST,2,5,1,ORDE,2 \n'); 

%fprintf(fid, 'FITEM,2,%i   \n',size(Node,1)-FE_mesh.Div_Cir+1);     %From 

%fprintf(fid, 'FITEM,2,%i \n',-size(Node,1));                        %To node 

%fprintf(fid, '!* \n'); 

%fprintf(fid, '/GO  \n'); 

%fprintf(fid, ' D,P51X,UX,0, , , ,UY,ROTX,ROTY,ROTZ, ,   \n'); 

%fprintf(fid, ' \n'); 

  

 

Simulation 

fprintf(fid, 'FINISH   \n'); 

fprintf(fid, '/PREP7   \n'); 

 

 

fprintf(fid, '/NOPR    \n'); 

fprintf(fid, 'KEYW,PR_SET,1    \n'); 

fprintf(fid, 'KEYW,PR_STRUC,1  \n'); 

fprintf(fid, 'KEYW,PR_THERM,0  \n'); 

fprintf(fid, 'KEYW,PR_FLUID,0  \n'); 

fprintf(fid, 'KEYW,PR_ELMAG,0  \n'); 

fprintf(fid, 'KEYW,MAGNOD,0    \n'); 

fprintf(fid, 'KEYW,MAGEDG,0    \n'); 

fprintf(fid, 'KEYW,MAGHFE,0    \n'); 

fprintf(fid, 'KEYW,MAGELC,0    \n'); 

fprintf(fid, 'KEYW,PR_MULTI,0  \n'); 

fprintf(fid, '/GO  \n'); 

 

fprintf(fid, '! /COM,    \n'); 

fprintf(fid, '! /COM,Preferences for GUI filtering have been set to display: \n'); 

fprintf(fid, '! /COM,  Structural    \n'); 

 



fprintf(fid, 'FINISH   \n'); 

fprintf(fid, '/SOL   \n'); 

fprintf(fid, 'ANTYPE,0 \n'); 

fprintf(fid, 'PSTRES,1 \n'); 

fprintf(fid, '! /STATUS,SOLU \n'); 

fprintf(fid, 'SOLVE    \n'); 

 

fprintf(fid, 'FINISH   \n'); 

fprintf(fid, '/SOLUTION    \n'); 

fprintf(fid, 'ANTYPE,1 \n'); 

 

fprintf(fid, 'BUCOPT,LANB,1,0,0,CENTER \n'); 

fprintf(fid, '! /STATUS,SOLU \n'); 

fprintf(fid, 'SOLVE    \n'); 

fprintf(fid, 'FINISH   \n'); 

fprintf(fid, '/POST1   \n'); 

fprintf(fid, 'SET,FIRST    \n'); 

Output results 

fprintf(fid, 'FINISH  \n'); 

fprintf(fid, '/POST26 \n'); 

fprintf(fid, 'FILE,''file'',''rst'',''.''  \n'); 

fprintf(fid, '/UI,COLL,1  \n'); 

fprintf(fid, 'NUMVAR,200  \n'); 

fprintf(fid, 'SOLU,191,NCMIT  \n'); 

fprintf(fid, 'STORE,MERGE \n'); 

fprintf(fid, 'FILLDATA,191,,,,1,1 \n'); 

fprintf(fid, 'REALVAR,191,191 \n'); 

fprintf(fid, '! Save time history variables to file test/12345678.csv\n'); 

fprintf(fid, '*CREATE,scratch,gui \n'); 

fprintf(fid, '*DEL,_P26_EXPORT\n'); 

fprintf(fid, '*DIM,_P26_EXPORT,TABLE,1,1  \n'); 

fprintf(fid, 'VGET,_P26_EXPORT(1,0),1 \n'); 

fprintf(fid, '/OUTPUT,''%i'',''csv'',''Raw\\%i''\n',m,serial); 

fprintf(fid, '*VWRITE,''TIME''  \n'); 

fprintf(fid, '%%C  \n'); 

fprintf(fid, '*VWRITE,_P26_EXPORT(1,0) \n'); 

fprintf(fid, '%%G  \n'); 

fprintf(fid, '/OUTPUT,TERM \n'); 

fprintf(fid, '*END\n'); 

fprintf(fid, '/INPUT,scratch,gui  \n'); 

 

 

fclose(fid); 

 

movefile(sprintf('%ia%i.inp',serial,m),'..\OFF600\Model'); 

end 

 

 

 



load('..\OFF600\Data\ser.mat','serial') 

load('..\OFF600\Data\FE_mesh.mat','FE_mesh') 

fid = fopen(sprintf('%i-%s.inp',serial,date), 'w'); 

fprintf(fid, '/BATCH \n'); 

fprintf(fid, '\n'); 

fprintf(fid, '/TITLE,OneFile \n'); 

fprintf(fid, '\n'); 

q=char(39); 

str=['/INPUT' ',' '''%ia%i''' ',' '''inp''' ',' '''../Model''']; 

for m=1:FE_mesh.Num_Sim; 

fprintf(fid, str,serial,m); 

fprintf(fid, '\n'); 

end 

 

fclose(fid); 

 

mkdir('..\OFF600\Ansyspath\Raw',sprintf('%i',serial)); 

movefile(sprintf('%i-%s.inp',serial,date),'..\OFF600\Ansyspath'); 

movefile('..\OFF600\Data\FE_mesh.mat',sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\FE_mesh_%i.mat',se

rial,serial)); 
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Read results from ANSYS simulation 

load('..\OFF600\Data\ser.mat','serial') 

serial=270;      %Override serial 

load(sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\FE_mesh_%i.mat',serial,serial)) 

%Override 

% FE_mesh.Div_Cir=80; 

% FE_mesh.Div_Len=200; 

% FE_mesh.Dia=0.1016*2; 

 

%Override 

% FE_mesh.Num_Sim=20; 

 

Res=zeros(FE_mesh.Num_Sim,2); 

for i=1:size(Res,1); 

   A=importdata(sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\%i.csv',serial,i)); 

 

   Res(i,1)=A.data; 

   Res(i,2)=i*100/FE_mesh.Num_Sim; 

end 

 

Res=sort(Res); 

delete(findall(gcf,'type','annotation')) 

Mean=mean(Res(:,1)); 

SD=std(Res(:,1)); 

PL=plot(Res(:,1),Res(:,2)); 

xlabel('Buckling load (N)'); 

ylabel('%'); 

Text={[sprintf('Coefficients: SD= %f * Mean', FE_mesh.Variance)],[sprintf('Number of simulations 

= %i',FE_mesh.Num_Sim)],[sprintf('Mean = %.6g (N)', Mean)],[sprintf('Standard deviation = %.6g 

(N)',SD)],[sprintf('Lowest 10^-3 = %.6g (N)',Mean-(4*SD))]}; 

title(sprintf('CDF with mesh size: %.3g m * %.3g m 

',FE_mesh.L/FE_mesh.Div_Len,FE_mesh.Dia*pi/FE_mesh.Div_Cir)); 

annotation('textbox', [0.15, 0.75, 0.36, 0.15], 'String', Text); 

 

if exist(sprintf('..\\OFF600\\Results\\Results-%i.xlsx',serial)) ==2; 

 

else 

    xlswrite(sprintf('..\\OFF600\\Results\\Results-%i.xlsx',serial),Res); 

    saveas(PL,sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\Fig_%i.fig',serial,serial)); 

end 
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Create a probability plot, as well as get Gumbel parameters 

clear 

 

load('..\OFF600\Data\ser.mat','serial') 

serial=270; 

 

load(sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\FE_mesh_%i.mat',serial,serial)) 

 

prob=readtable(sprintf('..\\OFF600\\Results\\Results-%i.xlsx',serial)); 

prob=prob.Var1; 

 

dist=fitdist(prob,'ExtremeValue'); 

mu=dist.mu; 

sigma=dist.sigma; 

x=1430000000; 

 

 

Lin=(1/FE_mesh.Num_Sim):(1/FE_mesh.Num_Sim):1; 

 

y=evpdf(x,mu,sigma); 

 

 

ev =sigma^-1*exp((x-mu)/sigma)*exp(-exp((x-mu)/sigma)); 

 

% test2=proflik('extremevalue',) 

 

PL=figure 

probplot('extreme value',prob(:,1)) 

legend('Best fit','Test data','Location','best') 

 

saveas(PL,sprintf('..\\OFF600\\Ansyspath\\Raw\\%i\\Probplot_%i.fig',serial,serial)); 

Published with MATLAB® R2021b 



Appendix E

Table 7: Fourier coefficients for A7 shell

Ak l coefficients
L= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k= 0 0.018 -0.005 -0.391 -0.456 0.098 0.19 0.106 -0.044 0.002 0.036 -0.049 0.027 0.006 -0.004 -0.006
k= 1 0.067 0.007 -0.446 -0.052 0.054 0.077 0.018 -0.045 -0.044 -0.005 0.04 0.029 0.005 0.02 -0.005
k= 2 -0.016 0.021 0.021 0.024 -0.005 0.011 -0.005 0.007 -0.027 -0.029 0.033 -0.012 -0.008 0.006 0.003
k= 3 -0.018 -0.003 -0.043 -0.01 0.005 0.007 0.012 -0.008 -0.021 0.003 0.011 -0.018 -0.002 0.004 0.003
k= 4 -0.04 -0.001 0.006 0.001 0.003 0.003 0.005 -0.002 -0.008 0.003 -0.002 -0.007 0 0 0.003
k= 5 -0.003 -0.009 -0.022 -0.003 0.002 0.004 0.002 -0.003 -0.002 0 0.003 0 -0.002 0.002 0
k= 6 -0.032 0 0.003 0.004 -0.003 0 0 0 -0.002 -0.002 0 0 0 0 0
k= 7 -0.005 -0.005 -0.008 -0.002 0 0.001 0.003 -0.002 -0.003 0.002 0 0 0.001 0.002 0.001

Bk l coefficients
L= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k= 0 -0.002 -0.241 0.155 0.51 0.132 -0.165 -0.077 0.008 0.018 -0.03 0.006 0.016 -0.028 0.013
k= 1 -0.002 -0.342 -0.036 0.128 -0.007 -0.143 -0.035 0.076 0.035 -0.024 0.032 0 -0.024 0.008
k= 2 0.005 -0.001 -0.005 -0.015 -0.021 -0.026 -0.042 0.007 0.008 0.012 -0.011 -0.007 0.031 -0.01
k= 3 0.011 -0.038 -0.012 0.013 0.006 -0.028 -0.013 0.013 0.003 0 -0.009 0.009 0.014 -0.025
k= 4 0.003 0.004 0 -0.002 -0.001 -0.014 -0.007 0.003 0.002 0 -0.006 0.009 0 -0.006
k= 5 -0.003 -0.017 0.003 0.006 0 -0.007 -0.003 0.003 0.003 -0.001 0 0 0 -0.003
k= 6 0.003 0.001 0 -0.003 -0.002 -0.004 -0.004 0 0 0 -0.001 0 0.002 0
k= 7 0.004 -0.007 -0.002 0.004 0 -0.008 0 0.003 0 0 0 0.002 0 -0.003

Ck l coefficients
L= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k= 1 0.037 -0.016 -0.506 -0.588 0.127 0.236 0.136 -0.059 0.015 0.057 -0.076 0.04 0.011 -0.008 -0.009
k= 2 0.066 0.009 -0.348 -0.038 0.042 0.06 0.008 -0.033 -0.026 -0.006 0.028 0.034 0.005 0.014 -0.006
k= 3 0.03 0.013 -0.149 -0.17 0.035 0.084 0.037 -0.011 -0.015 -0.008 0.006 0.006 -0.003 0.002 -0.002
k= 4 0.012 0.008 -0.156 -0.022 0.02 0.027 0.013 -0.018 -0.027 0 0.018 -0.003 0 0.007 0
k= 5 0.006 0 -0.082 -0.099 0.025 0.048 0.026 -0.01 -0.012 0.003 -0.003 -0.001 0 0 0
k= 6 0.011 0 -0.1 -0.012 0.012 0.018 0.006 -0.01 -0.014 -0.002 0.011 0.001 -0.002 0.005 -0.001
k= 7 0.007 -0.003 -0.052 -0.061 0.013 0.03 0.016 -0.005 -0.006 0 -0.001 0.001 0 0 0

Dk l coefficients
L= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k= 1 -0.005 -0.305 0.198 0.653 0.177 -0.196 -0.078 0.007 0.02 -0.043 0.013 0.026 -0.05 0.022
k= 2 -0.007 -0.264 -0.024 0.1 -0.009 -0.103 -0.023 0.056 0.027 -0.02 0.031 -0.005 -0.028 0.02
k= 3 0 -0.103 0.06 0.199 0.04 -0.077 -0.058 0.007 0.012 -0.003 -0.002 -0.002 0.011 0
k= 4 0.009 -0.124 -0.021 0.045 0.002 -0.059 -0.019 0.03 0.011 -0.007 0.004 0.007 0.003 -0.012
k= 5 -0.001 -0.055 0.033 0.113 0.026 -0.051 -0.031 0.005 0.008 -0.004 -0.005 0.009 0 -0.003
k= 6 -0.002 -0.079 -0.006 0.028 0 -0.032 -0.012 0.017 0.009 -0.005 0.004 0.001 -0.002 -0.004
k= 7 0 -0.037 0.023 0.007 0.016 -0.031 -0.021 0.003 0.004 -0.002 -0.002 0.003 0.002 0
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