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Abstract

Evidence of the existence of dark matter has been found due to deviations

of gravitational motion of astronomical objects. We want to investigate the

dark matter topic, which is constantly evolving due to the fast development of

technology today. The thermal freeze out of dark matter has been proposed

to be the production mechanism of DM in the Universe. We look into this

production mechanism, and the properties of dark matter that follows from

it. We derive the Boltzmann equation of the thermal freeze out approximately

analytical, to study the thermodynamic properties of the freeze out. By the use

of the Fortran-program DarkSUSY, a calculation program for DM properties,

we calculate precise values of the same properties. By comparing observational

values of dark matter with our derivations and calculations, we can learn about

the non-gravitational properties of DM. We further introduce some dark matter

particle candidates, the generic weakly interacting massive particle (WIMP),

and the scalar singlet.

The freeze out production mechanism has not been confirmed, because the par-

ticle candidates have not been detected. Due to this, we look further into

alternative production mechanisms. The freeze in production mechanism of

dark matter has been proposed, with the corresponding dark matter particle

candidate FIMP (feebly interacting massive particle), and we look briefly into

this.
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1 Introduction

Almost 85% of the total mass in the Universe is made up of a mysterious type

of matter, called dark matter (DM) [1]. This matter, and its nature, is one

of the most intriguing questions of both cosmology and particle physics today.

Dark matter does not reflect or emit light, and even though this prevents us to

observe the dark matter directly, there has been observed gravitational evidence

of the existence of DM [1].

By the study of deviating gravitational motion of astronomical objects many

years ago, the suspicion of an invisible form of matter grew [2]. In the 1930s,

physicist Fritz Zwicky was the first to propose the model of DM we know today

[2]. It took a while before other physicists accepted the DM theory, but in the

recent decades the knowledge and evidence of DM has increased significantly.

Theories of DM production and DM particle candidates have emerged, and new

observations of the nature of DM has been made.

Even though we have significant evidence of the existence of dark matter in

the Universe, we do not know a lot about the nature of this type of matter.

By the observation of a bullet cluster in 2006 [3], it was discovered that the

nature of dark matter was different than for baryonic matter. The dark matter

was observed to barely be self-interacting, and barely interacting with baryonic

matter. As this is different from baryonic matter, this indicated that dark mat-

ter is non-baryonic matter.

Many dark matter particle candidates have been proposed through the years,

and one of the most studied models is the weakly interacting massive particle

(WIMP) model [4]. As the standard model (SM) do not provide us with such

a particle, this is a yet undiscovered particle. To predict the existence of this

particle we need to consider extensions of the SM, such as supersymmetric par-

ticles or the addition of a real singlet scalar field.

DM is a widely studied field in both cosmology and particle physics today.

Even though the technology to study the nature of DM is quickly evolving,

there is still a lot of unanswered questions of the topic. Our knowledge of DM

evolves in line with the technology, and one will therefore most likely make new

observations of the topic of DMs nature in the coming decades. This is why this

topic is highly relevant to investigate as of today.

By our knowledge of the early Universe and cosmology, we want to look into if

we can learn about the non-gravitational properties of dark matter. We will in

this thesis investigate some proposed models for the production mechanism of

dark matter, and the corresponding properties of DM based on this. Produc-

tion models of DM explains the DM production with correct properties from
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the early Universe, and correct amount of DM today. The production model we

will focus on, the most thoroughly studied model, is called the thermal freeze

out of dark matter. This is a popular production model of DM, because it

predicts the existence of a WIMP, a particle that is in accordance with su-

persymmetric dark matter and other models. In addition, we will briefly look

into an alternative model of production mechanism, the freeze in of dark matter.

In this thesis we will firstly look into some necessary background theory of

particle physics and cosmology, in section 2. This is necessary to get an under-

standing of the models of the dark matter production. Next, in section 3, we will

look at evidence for dark matter, and some observations that have determined

what we already know about the nature of dark matter. In the next section,

section 4, we will investigate thermodynamic properties of the thermal freeze

out of dark matter. We will derive some formulas to explain what happens in

this process, and find some values for the average annihilation cross section and

relic abundance of DM in this case. In section 4.4 we consider specific examples

of properties of dark matter in the case of thermal freeze out. We do this by

the use of the DM calculation program DarkSUSY [5]. This program calculates

properties of dark matter, by the choice of specific DM particle characteristics.

We introduce a specific WIMP model, scalar singlet, in section 5. In this sec-

tion we investigate the properties of the scalar singlet model for the dark matter

particles, and how this fits with our previous calculations and derived formulas.

Next, in section 6, we will explain some probable detection experiments, that

should be able to detect dark matter if our freeze out model is correct. We

will look at both indirect and direct detection, in addition to collider searches.

Lastly, we will briefly look into a new production model, the freeze in, in sec-

tion 7, before we end the thesis with a conclusion in section 8. We include a

list of abbreviations in Appendix A, and some details of the programming in

DarkSUSY in Appendix B.
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2 Background theory

In this section we will briefly look into some standard knowledge of cosmology,

particle physics and statistical physics. This is knowledge required to get an

understanding of the theory later in this thesis. When describing cosmological

scenarios, we use natural units, where c = ~ = kB = 1. We will use these units

throughout the thesis.

2.1 Cosmology

Cosmology today is based on observations and measurements with astronomical

instruments. Due to the rapid development of technology, the knowledge of cos-

mology has developed significantly in recent decades. Our knowledge is therefore

constantly evolving, and new observations always need to be taken into account.

Our present understanding of the Universe is based on Friedmann-Robertson-

Walker (FRW) cosmology, also known as standard cosmology. This model is

based on the assumption that the energy distribution of the Universe is isotropic

and homogeneous, which is equivalent to considering the geometry of the Uni-

verse to be as well. This is stated by the cosmological principle [1]. It states that

at any given instant, the Universe has the same physical properties everywhere

and looks the same in all directions from every location [6, p.683]. Observations

of the Universe has shown us that this assumption is valid at large scales [7].

With these assumptions, one can express the simplest metric with Cartesian

coordinates to describe a system, called the FRW spacetime.

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
(1)

where a(t) is called the cosmic scale factor, and is a function dependent on cos-

mological time, t. This metric implies that all quantities are dependent on t,

and not on position. Cosmological time, t, is the time considered to be starting

at the Big Bang, and following the Hubble flow. Hence, cosmological time can

be considered as the age of the Universe. The Hubble flow describes the move-

ment of galaxies and astronomical objects due to the expansion of the Universe

[7].

The expansion of the Universe is one of the most basic features of cosmol-

ogy today. When observing the light emitted from distant galaxies, one can

see that the spectra of the light from some galaxies is redshifted with different

range. This is explained by the Doppler effect, where objects moving towards

the observer emits shorter wavelengths (blueshift), and objects moving away

from the observer emits longer wavelengths (redshift) [6]. These redshifts are
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implying that the galaxies are moving away from the observer. Observations like

these has indicated and created evidence that the Universe is expanding. The

expansion was firstly discovered in the 1920s, and universality of the expansion

shows us that it expands homogeneously [1] [2]. An observer, no matter where

in the Universe, will always observe that all galaxies and objects are moving

away from them. Redshifted galaxies and astronomical objects can be used as

a probe of the Universe from early times.

The relation between redshifts measured from distant galaxies, z, and their dis-

tances from the observer, r, was recognized by the astronomer Edwin Hubble

[6]. The relation is

z =
H0

c
r (2)

where c is the speed of light, and H0 is called the Hubble constant. We set

todays redshift to be a zero redshift, and the redshift of the very beginning

of the Universe to be an infinite redshift. The relation, (2), is called Hubble’s

law, and is consistent with the cosmological principle. Even though the Hubble

constant is called a constant, it is actually a variable dependent on cosmological

time. H0 is the value of the Hubble constant today, while it generally is defined

as

H =
ȧ(t)

a(t)
, (3)

where a, as mentioned previously, is the scale factor, and ȧ is its time derivative.

The scale factor, a(t), characterizes the Universes expansion, and is determined

by the Einstein equations. ( ȧ
a

)2

=
1

3M2
Pl

ρ, (4)

ä

a
= − 1

6M2
Pl

(ρ+ 3p), (5)

where ρ is the energy density, MPl is the reduced Planck mass defined as

MPl ≈ 2.4× 1018 GeV, and p is the pressure.

The Big Bang is set to be the beginning of the Universe, at t = 0, and at

this time the scale factor was zero, a(0) = 0. However, our description of the

Universe is not valid until tP = 5.39 × 10−44s, called the Planck time, and be-

cause the scale factor is negligible before this, this is considered the effective

start time of the Universe [1].

There are three main types of energy in the Universe, and they have been the

dominant energy form of the Universe in different eras after the Big Bang. Ra-

diation was the dominant energy form from the very beginning of the Universe,

and until z ∼ 3400. Following this, matter became the dominant energy, until
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z ∼ 0.3. From this until today, z ∼ 0, the dominant energy form has been dark

energy. Dark energy is an undefined component of negative pressure, and in the

standard cosmological model it is considered to be a ”cosmological constant”,

Λ. [1]

The matter density of the different eras of the Universe depends on the scale fac-

tor, a, due to the volume of the Universe expanding. It is given by the solution

of the Einstein equations for the FRW metric.

Radiation-dominated era ⇒ ρr ∝ a−4

Matter-dominated era ⇒ ρm ∝ a−3

Λ-dominated era ⇒ ρΛ ∝ const.

When determining a(t) in different eras from the Einstein equations, we can use

the matter density. Inserting the listed values above into equation (4), we get

a(t) ∝ t1/2 (radiation) (6)

a(t) ∝ t2/3 (matter) (7)

a(t) ∝ const. (cosm. constant Λ) (8)

Radiation domination is the era it is believed that dark matter was produced.

We can use the matter density of different types of matter as useful cosmological

parameters in the study of the Universe. A common cosmological parameter to

use is Ω. This is defined as the matter density, ρ, divided by the critical density

of the Universe, ρC . The critical density is defined as ρC = 3H2
0/8πG [7], and

G is the gravitational constant. For instance, the cosmological parameter of the

total mass in the Universe is defined as Ω0 = ρ0

ρC
, with ρ0 being the total mass

density of the Universe today, and ρC is the critical density of the Universe.

In the Planck collaboration [8], they have provided values for some cosmological

parameters. Listed below is the Hubble constant and the cosmological param-

eters of total matter, cold dark matter, baryonic matter, and the cosmological

constant respectively.

H0 = 67.66± 0.42km/s/Mpc,

Ωm = 0.3111± 0.0056,

Ωch
2 = 0.11933± 0.00091,

Ωbh
2 = 0.02242± 0.00014,

ΩΛ = 0.6889± 0.0056,
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from [8], where h = H0/(100 km/s/Mpc) is the reduced Hubble parameter

[1]. For a flat Universe, not open or closed, Ωm + ΩΛ = 1 [7]. In the case of

matter contribution, the cosmological parameter, Ω, can be referred to as the

abundance, which is the term we will use later in this thesis in the contribution

to dark matter mass.

2.2 Particle physics

2.2.1 The Standard Model

There are four fundamental forces in nature: the strong force, electromagnetic

force, weak force and gravitational force. Each of these forces can be explained

as interactions between elementary particles, where the interaction is caused

by field particles. Each force has a unique field particle, also called quanta.

Photons are the field particles of the electromagnetic field, gluons mediate the

strong force, W± and Z0 bosons are the quanta of the weak force, and the

gravitational force is carried by quanta called gravitons [9, p.548]. These field

particles are examples of the elementary particles with integer spin number, the

bosons.

In addition to the field particles that make up the fundamental forces, there

exists elementary particles that constitutes all matter. Some of these elemen-

tary particles can be affected by all four fundamental forces, while some is only

affected by some of them. All the massive particles are affected by gravity, and

all particles with electric charge participate in electromagnetic force [10]. Parti-

cles affected by the strong force are named hadrons, further divided into baryons

and mesons. However, these particles are not considered elementary, because

they are further divided into quarks. This includes the quarks top, bottom, up,

down, charm and strange, and their antiparticles. Ordinary matter as we know

it, that is visible matter, is made up of particles such as protons and neutrons.

These particles go under the category of baryons, thus, we call this baryonic

matter.

Particles affected by the weak force are named leptons. Leptons are consid-

ered elementary particles, and includes electrons, muons, tau particles, their

corresponding neutrinos, and their antiparticles. The particles that constitutes

matter, are the elementary particles that have half integer spin, hence, are the

fermions.

In addition to the previously mentioned particles, there is also the anti-particles.

All particles have an antiparticle, where the particle-antiparticle couple have

identical mass and spin, but opposite electric charge and particle number [6]. For

instance, an electron have lepton number 1, while its antiparticle, the positron,
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have lepton number -1 .

Combining all these elementary particles, both the field particles and the parti-

cles that constitutes matter, we can explain the Standard Model (SM), pictured

in Fig. 1. The Standard Model is a theory that combines electroweak theory,

the combination of electromagnetic and weak force, and Quantum Chromody-

namics (QCD). QCD is the theory of how the quarks and gluons interact by the

strong force [6]. Hence, the SM includes the electromagnetic force, weak force,

and strong force. The model includes all the discovered particles of matter

and field particles, except the graviton, which is the quanta of the gravitational

force. It also includes the Higgs boson, which is a scalar boson considered to

contribute to particles having rest mass.

Figure 1: The Standard Model of Elementary particles. © CC BY 3.0, retrieved
from [11].

2.2.2 Higgs mechanism

The electroweak theory proposes that the weak and electromagnetic forces have

the same strength at particularly high particle energies. The two interactions

are therefore looked at as the same electroweak interaction at high energies

[9]. We say that at these energies the forces become symmetric, and the field

particles become the same. This is the electroweak symmetry [9]. It states for
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instance that the bosons W± and Z0 are the same at high energies, but when

the symmetry breaks at a certain low energy threshold, the particles gain dif-

ferent mass properties [9]. At normal circumstances on Earth the electroweak

symmetry is broken, due to lower energy than the energy threshold.

In 1964, physicist Peter Higgs tried to explain this symmetry breaking of the

electroweak theory by introducing a new field, the Higgs field [9]. The field

particle of this field was proposed as the Higgs boson, a scalar boson. In 2012, a

paper was published by CERN [12] with observations that proved the existence

of the Higgs boson. The SM had included the electroweak theory, thus the dis-

covery of the Higgs boson and the possible confirmation of Higgs mechanism,

supported the SM.

The Higgs field exists in all Hilbert space, where the energy is below the sym-

metry breaking energy threshold. The break of the symmetry triggers the Higgs

field, and particles that interact with the field, gain mass. When the particles

interact with the field, one can view it as if the field causes a drag force, giving

the particles their inertia [9]. Before the symmetry breaks, the weak bosons

W+, W− and Z0 are the same, and has no mass. When the symmetry breaks,

the Higgs field contributes to give mass to the W+, W− and Z0 bosons.

A simplified explanation of why this happens, is that the Higgs field in the SM,

before symmetry breaking, is a special unitary doublet (SU(2)). That is, a rep-

resentation of the Higgs field with two complex scalars, which corresponds to

four real scalars. This is why the Higgs field has four degrees of freedom before

the break of symmetry. After the symmetry breaking, three of the four degrees

of freedom, or in other words, three of the four real scalars, combines with the

bosons W+, W− and Z0. These scalars give the bosons their mass, leaving the

field particle, the Higgs boson, with one degree of freedom, and a mass of its

own at about 126 Gev [12]. This is how interactions with the Higgs field, and

the Higgs boson, contributes to giving particles its rest mass.

2.2.3 Beyond the Standard Model

Even though the Standard Model is a good general model for many phenomena

in particle physics, it does not answer all fundamental questions about particle

physics [6]. The unification of the weak force and the electromagnetic force to

the electroweak force, has raised the question whether one can unify the strong

force and the gravitational force. Theories of unification of fundamental forces

is called Grand Unification Theories (GUT). Some features of these theories are

that the coupling constants of all four forces can reach a common value at some

high energy [6].
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The GUTs also propose a new symmetry, the supersymmetry (SUSY) [6]. This

principle states that all the fundamental equations will be unchanged when ex-

changing a fermion for a boson in the equations [9]. The principle suggests that

every particle has its superpartner, a sparticle. The sparticle of a particle is

identical to the original particle in all properties, except for the difference of

half a spin [6]. For instance, the superparticle of an electron, the selectron, has

spin 0 although the electron has spin 1/2.

Exact supersymmetry, where the sparticle has same mass as the corresponding

particle, would have already been detected if this were the case. Thus, the mass

of the sparticles has to be larger, and the SUSY theory is modified so that the

mass of the lightest supersymmetric particle (LSP) is of the order of the Z0 and

W± bosons [6].

Although no such sparticle has ever been observed, it is a theory that this

symmetry is broken, hence the sparticles cannot be produced in accelerators

we have access to [9]. Since the SM does not explain dark matter on its own,

supersymmetry is a theory that could build onto the SM, and create a more

understandable picture of the nature of dark matter. The theory of SUSY is

still a thoroughly researched and tested theory, and is one of the theories they

try to confirm or disprove by the use of the Large Hadron Collider (LHC) at

CERN [6].

2.3 Statistical physics

When working in particle physics in systems where the number of particles

becomes too large, to keep track on each particle, we can predict the probable

behavior of the particles due to measurements of their macroscopic properties.

When using general principles of physics on the macroscopic system, without

acknowledging the motions of the individual particles, we can use statistical

considerations to predict the probable behavior [6]. We will now look into

which statistical mechanics we can use in different systems.

For a classical system where the particles are identical, but distinguishable, the

distribution function of the particles is given by the Boltzmann distribution

fB(E) = Ae−E/kBT (9)

where E denotes the energy of the particle system, T the temperature, and

with A as a normalization constant [6]. kB denotes the Boltzmann constant,

however, we want to use natural units when calculating cosmological properties,

and we have set kB = 1. The Boltzmann distribution then reads

fB(E) = Ae−E/T . (10)
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In quantum mechanics, identical particles becomes indistinguishable due to the

wave nature of the particles [6]. Due to this, the statistics need to be changed,

and the Boltzmann distribution need to be modified. For particles with integer

spin, bosons, we use the Bose-Einstein distribution

fBE(E) =
1

eαeE/T − 1
(11)

where eα replaces the normalization constant A, and α = − µ
T [6]. µ is the

chemical potential of the particle system. For particles with half-integer spin,

fermions [6], we use the Fermi-Dirac distribution

fFD(E) =
1

eαeE/T + 1
. (12)

Combining the two different distributions into a general one, and simplifying

the term, we can express the distribution we are going to use in the calculations

of DM particles as

fi(E) =
[
e(E−µi)/Ti ∓ 1

]−1

, (13)

where i denotes the particle species, and the minus and plus sign are for whether

the particle species are bosons or fermions, respectively.

Equation (13) is also known as the corresponding distribution function of the

Grand Canonical Ensemble (GCE). This function describes a system in thermal

equilibrium where the particles in the system is interacting weakly with a large

reservoir, and where the particle number and total energy is constant [7].

The relation between the distribution of a particle species i in a system, f ,

and the particle density number, ni, can be expressed as

ni(t) =
g

(2π)3

∫
d3pfi(E, t), (14)

where p is the momentum of the particles, and g is the degrees of freedom [7].

Total radiation density for the radiation dominated era are given by

ρr =
π2

30
g∗T

4. (15)
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2.4 DarkSUSY

DarkSUSY is an advanced tool to calculate dark matter properties numerically

[5]. This program uses Fortran code to calculate wanted properties for several

DM particle candidates, and different DM production mechanisms. The pro-

gram can for instance, from the choice of some properties, calculate the relic

abundance of DM, and much else.

In this thesis we use DarkSUSY 6, which was released in 2018 [5]. Even though

the SUSY in DarkSUSY is short for supersymmetry, the program includes com-

putations for non-supersymmetric DM particle models too. The program has

modules for different DM particle models, and example programs for specific

calculations we can use with them. In this thesis we will mainly use the

generic wimp module, and silveira zee module. We will describe these mod-

ules in more details when using them later. We will use example programs for

both the freeze out and freeze in production mechanisms.

When modifying example programs, we will add some details of the modification

in the Appendix.
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3 Evidence for dark matter

In this section, we will review some details of how physicists came to think that

the Universe largely consisted of some invisible form of matter, and how they

eventually found evidence of this. We will look at the two main observations

of galaxies and galaxy clusters that indicates the existence of dark matter, in

addition to the cosmic microwave background radiation. Further, we will review

what we know of the nature of dark matter.

3.1 Early history

In 1687, Isaac Newton published his explanation of the gravitational motion of

astronomical objects. This was a theory proposed on the basis of astronomi-

cal observations, and intuitive logic. This theory allowed physicists to predict

the motion of astronomical objects. However, in some cases, the astronomical

objects did not follow the path the physicists had predicted. Because the New-

tonian gravitation law successfully explained other phenomena in the Universe,

the physicists began to wonder why it failed to predict the motion of certain

astronomical objects. The deviations from the expected gravitational motion

of astronomical objects, led to the suspicion that there could be objects in the

Universe one could not see. [13]

This suspicion grew stronger when the explanation that there were “dark” ob-

jects in the Universe, could be used to predict the existence of unseen astro-

nomical objects, such as planets. The astronomers U. Le Verrier and John C.

Adams could use this theory to predict the existence of the planet Neptune,

which was eventually discovered in 1846 [2]. This discovery was also an impor-

tant confirmation of the accuracy of the Newtonian gravity. When physicist

learned that there could be objects or matter in the Universe one could not see,

it opened their eyes to a new view of the Universe. The deviations of the gravi-

tational motion of objects in the Universe, led to theories that there could exist

some type of dark matter out there. However, some physicist believed that the

reason for the deviations of gravitational motion, was because the gravitational

laws as they knew them, did not apply for such large scales [13]. To be able to

validate the different theories, more refined laws of gravitational motion were

necessary. This would have to wait until Einstein’s theory of general relativity

was proposed in 1916. [13]

The astronomer Fritz Zwicky developed the theory of dark matter further, by

proposing that this undiscovered matter was a pervasive fluid-like matter that

would compile to, and make up the most of, astronomical systems like galaxies

and galaxy clusters [2]. This proposal was not well received at first, and it took
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about 40 years for this theory to be accepted [2].

Zwicky was a physicist ahead of his time, and made important observations and

theories of the evolution of stars, and contributions to classifications of galaxies

and clusters of galaxies [2]. He was the one who discovered that the galaxies

in the Coma cluster, a large galaxy cluster discovered in 1656, was moving too

fast due to their visible mass [14]. Observations had shown that the galaxies

in the cluster had a Doppler effect of 1000 km/s or more [15], which did not

correspond to the density of the visible mass of the galaxies. For this redshift to

be correct, the average density of the Coma cluster would have to be at least 400

times larger than what the visible matter contributed to. This indicated that

the cluster consisted of much more matter than what the astronomers first had

though, and that most of the matter would not be visible. This is considered

the first breakthrough in the history of dark matter, and in the following years

several other observations could also be explained by the theory of dark matter.

[2] [13] [14] [15]

3.2 Observational evidence

Even though dark matter cannot be observed by the naked eye, there have been

measurements that have detected dark matter in the Universe. With Zwicky’s

discovery of the galaxy movement in the Coma cluster being the first break-

through of the knowledge of dark matter, the theory started to be more and

more experimented and tested.

The evidence of the existence of dark matter relies on observations of gravita-

tional effects. The most unexpected gravitational effects can be measured from

galaxies, and particularly spiral galaxies. A spiral galaxy is typically shaped as

a disc, with a bulge in the center. The visible mass of this galaxy is gathered

in the bulge and the disc, and the disc fades away far from the center. [1]

Using Newtonian gravitational theory, and assuming that the Newtonian grav-

itational force, gn, provides the centripetal acceleration of the spiral galaxy, we

have

gn =
v2

r
(16)

where gn is defined as

gn =
G M

r2
. (17)

When combining these equations, we can see that the rotation velocity at dis-

tance r from the center of the galaxy is

v(r) =

√
GM

r
(18)
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where M is the mass in a sphere with corresponding radius r. As the distance r

increases, the rotational velocity decreases. From this formula one would expect

the rotational velocity to decrease the farther out we would go, until the velocity

got to zero. However, observations show us that this is not the case. [1]

Observations of rotational velocity of the galaxy M31, also known as the An-

dromeda galaxy, showed that the rotational velocity of the galaxy remained

equal at inner regions of the galaxy, as the outer regions [16] [17]. This was

the case for distances of almost twice the length of where starlight could be de-

tected. This tells us that the rotational velocity of a spiral galaxy increases until

a certain point far from the center, where the velocity approximately becomes

constant. When considering the constant rotational velocity within radius r,

the mass M inside this radius is not set to be constant, but a function of the

distance from the galaxy center. It is set to be

M(r) =
rv2
c

G
. (19)

When r increases, we see that M increases too. This indicates that the mass

increases beyond the visible disc, which means that there is invisible mass be-

yond the visible mass. This invisible mass is considered to mainly come from

dark matter. For the study of elliptic galaxies this is also the case, and when

studied globally, dark matter represents approximately 80-90% of all galaxies.

[1]

Another measurement that can be seen as evidence of the existence of dark

matter is the weight of galaxy clusters. A galaxy cluster is a cluster of galaxies

bound together by gravity. This massive object contains large amounts of gas.

To determine the mass of galaxy clusters, as well as objects in the Universe in

general, we can use gravitational lensing methods. This is a phenomenon where

a galaxy far away emits light, and there is a massive object between the galaxy

and the observer. In this case the massive object between them, is a massive

galaxy cluster. The gravitational pull of the galaxy cluster pulls the light emit-

ted from the galaxy, causing the light to bend its trajectory. By looking at how

the light is bent on its way to the observer, we can estimate the mass of the

galaxy cluster. [1]

A gravitational lens has no focal point, but rather a focal line we refer to as the

Einstein circle. This is because the light will be shaped as a ring around the

massive object, if the galaxy emitting the light is located directly behind it. If

not, the observer will see an uncomplete circle, and many distorted images of

the galaxy. [1]
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Distant galaxies behind a galaxy cluster create strong gravitational lensing. This

causes many distorted images to appear spread on the Einstein circle. The ra-

dius of this Einstein circle is related to the mass of the galaxy cluster, so we can

determine the mass of the cluster by looking at its gravitational lensing. The

angular radius of the Einstein circle, θE , is expressed by

θE =

√
4GM

c2
(DS −DL)

DSDL
. (20)

M is the galaxy clusters mass, DL is the distance from the observer to the

gravitational lens, and DS is the distance from the observer to the light source.

From this relation we can determine the mass of the galaxy cluster by the use

of the gravitational constant G, and the distances to the lens and source. [1]

When calculating this, physicists noticed that the visible mass only contributes

to about 10-20% of the calculated mass. Doing several observations and calcu-

lations of this, it confirmed that approximately 80-90% of the mass of galaxy

clusters are invisible and correspond to dark matter, the same results as for

galaxies. [1]

Cosmic microwave background (CMB) radiation is an important source of data

from which we can study the early Universe, and most of the information we

know about DM, among it the relic abundance, actually come from the study

of CMB.

After the Big Bang, the Universe was made up of significantly many charged

particles, creating an ionized gas known as plasma. The plasma was so hot and

dense that all the particles collided with each other at such high rates that no

neutral atoms were able to be made, and no particles could escape the plasma.

As the Universe expanded, and thus cooled, the plasma eventually managed to

get low enough energy to let charged particles create neutral atoms. This was

about 370 000 years after the Big Bang, and this is known as the recombina-

tion epoch [1]. This eventually allowed photons to travel through the Universe,

leading to the electromagnetic radiation known today as CMB. [1]

Since CMB originated from the early Universe, this can give us a lot of infor-

mation about structures and densities throughout the Universe. This is done

by measurements of the radiation, and that is where the properties known from

the Planck collaboration was discovered [8]. Hence, it is from CMB we get the

cosmological parameters listed in section 2.1.
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3.3 Nature of dark matter

Ever since evidence of dark matter was discovered, the identity of what particle

or particles it is composed of has been a mystery. However, due to observations,

indications have grown that our Standard Model does not include any type of

particle that can have the characteristics of a dark matter particle. Thus, we

think that dark matter is composed of an unknown type of matter. In this

section, we will look into the nature of dark matter, and which characteristics

the DM particles need.

One of the most groundbreaking observations revealing the nature of dark mat-

ter, was the observation of a bullet cluster in 2006. A bullet cluster is two

galaxy clusters colliding with each other. The gravitational lensing of the clus-

ter showed that the gravitational potential of the two clusters did not trace

the plasma, as expected if all the matter was composed of continuously the

same baryonic particles. Due to the plasma being the dominant substance of

baryonic matter in the Universe, and the disorientation of the gravitational po-

tential being too large, this implied that the majority of matter in the bullet

cluster were not baryonic. The groundbreaking discovery was that the majority

of matter, the dark matter, was spread away from the plasma, which proved

that dark matter and baryonic matter consists of different entities with differ-

ent properties. This discovery also disproved that the reason for the deviations

of gravitational motion was due to modified gravitational laws for larger scales,

as some physicists still wondered could be the case. [1] [3]
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Figure 2: The bullet cluster. The red-coloured mass is the visible mass composed
of hot gas. The blue-coloured mass is the invisible mass, that has been deduced
from gravitational lensing. © 2021 Elsevier B.V. All rights reserved. Retrieved
from [1], with permission.

Fig. 2 shows us that the visible mass (red) and the invisible mass (blue) has

not interacted. The visible mass, corresponding to the hot gas, has experienced

a drag force due to interactions in the collision. This is what creates its bullet

shape. However, the invisible mass has not experienced this, thus has been

separated from the hot gas. This shows us, as mentioned earlier, that the dark

matter does not interact with baryonic matter. Due to baryons interacting with

each other, this indicates that DM is a non-baryonic matter, and most likely

are weakly self-interacting as well. This also indicate that the particles do not

have any electrical charge. [1]

If indeed dark matter consists of new particles, we want to know whether the

particles have relativistic or non-relativistic velocities. It is common to denote

dark matter with relativistic and non-relativistic velocities, ”hot” and ”cold”

respectively. As the dark matter particles do not interact with baryons and

have no electric charge, there is only the neutrino in the SM that can have the

characteristics of a dark matter particle. However, since the neutrino is a quite

light particle, it will travel with relativistic velocity. Thus, the neutrino can act

as a good candidate for hot dark matter, but not for cold.

Hot dark matter, due to the high velocity of the particles, will spread structures

in a different way than what we observe. Also, the CMB would have different

properties if hot dark matter would have interfered. This indicates that hot

dark matter can only make up a fraction of the total dark matter, and most

of the DM therefore consists of cold DM. In this thesis we will assume that all
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dark matter is cold. [1]

For the particles to have non-relativistic velocities, they have to have a large

mass. A massive particle is the best particle candidate to fit the characteristics

of the cold dark matter particle. [5]
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4 Thermal freeze out of dark matter

There are several theories of where DM comes from, or how it is produced. In

this section, we will look into one of the most studied models of DM production,

the thermal freeze out of DM. We will firstly explain what the phenomenon is,

and then look into the thermodynamic properties of the particles when this

occurs. All the derivations we do in this section are based on derivations from

Kolb and Turners book Early Universe, reference [7].

In the early Universe, it is assumed that most elements of the Universe were in

a thermal equilibrium. Even though this is strictly not possible, due to, among

other things, the expansion of the Universe, the Universe has throughout its

history been nearly in thermal equilibrium. Thus, describing the Universe this

way is a quite good approximation. In the equilibrium, the particles interact

without transferring any net energy between them. As the Universe expands,

particles can deviate or decouple from the thermal equilibrium. When a particle

species decouples from the equilibrium, relics are made, which can be thoroughly

studied. The properties of these relics can give a lot of information about the

particle species it consists of, and this is used especially with the study of dark

matter. When a particle species decouples from the thermal equilibrium, we

say that they freeze out. It is assumed that the freeze out of DM happened in

the radiation-dominated era.

In order to decouple from the thermal equilibrium, the particles need to have an

interaction rate lower than the expansion of the Universe. That is, the expansion

rate, H, has to exceed the interaction rate, Γ.

Γ & H (21)

Γ . H (22)

In (21), the particles with interaction rate Γ, will still be coupled to the thermal

equilibrium, while in (22) the particles may have decoupled. We will see later

that this holds.

4.1 Boltzmann equation

As mentioned in section 2.3, the distribution function of a particle species in

thermal equilibrium can be expressed by the distribution function corresponding

to the GCE, equation (13). We can use this distribution for the particles in the

thermal equilibrium of the early Universe, because we make the approximation
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that the Universe is the large reservoir the particles interact with. Even if the

Universe is expanding, this is a valid approximation. For the thermal equilib-

rium of the early Universe, Ti in equation (13) is just set to be the temperature

of the equilibrium, T , and µi is some chemical potential. [7]

When wanting to express the decoupling from the thermal equilibrium, one

has to take into account deviations in the GCE distribution. It is described by

the Boltzmann equation of the form

L
[
fi
]

= C
[
fi, {fi}

]
(23)

where fi = ξ(t)fieq , and ξ(t) is a function depending on cosmological time, t.

The left-hand side of equation (23) contains the Liouville term, while the right-

hand side has the collision terms of the interacting particles [7]. The Liouville

term for a FRW metric is

L
[
fi(t, E)

]
= E

∂fi
∂t
− ȧ

a
|p̄|2 ∂fi

∂E
(24)

Considering this equation, and the number density of the decoupling particle

species i, from equation (14) in section 2.3, we can integrate by parts and get

the result for the Boltzmann equation

dni
dt

+ 3Hni = C̃[fi] (25)

where C̃ is the new collision term. When evaluating the collision term, we need

to consider all the particle interactions in the equilibrium that contribute to

change in the dark matter particle number. For the process of χ + a + b... ↔
i+ j..., the contributions to the collision term are

∆C̃ = −
∫ (

dΠχdΠadΠb..
)(
dΠidΠj ..

)
(2π)4

δ(4)
(
(pχ + pa + pb + ..)− (pi + pj ..)

)
× 1

S

[∣∣M̃χ+a+b..→i+j..
∣∣2fχfafb..(1± fi)(1± fj ..)

−
∣∣M̃i+j..→χ+a+b..

∣∣2fifj ..(1± fχ)(1± fa)(1± fb)..
]
, (26)

where S is a symmetry factor, taking into account that there can be multiple

particles of the same species in the final state. δ corresponds to the delta

function, and |M̃i..→a..| is the matrix for the specific process. The plus and minus

sign corresponds to the particle species being bosons and fermions respectively,
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and dΠi is expressed as

dΠi =
gi

(2π)3

d3pi
2Ei

. (27)

To simplify this complicated collision term, we can make some approximations.

Assuming there is no Fermi degeneracy or Bose-Einstein condensate, which is a

valid assumption for the cases we are most interested in, we use the Maxwell-

Boltzmann statistics for all species in the equilibrium. Thus, we use the same

distribution function for the bosons and fermions. By taking fi � 1, we get

(1 ± fi) ' 1. We can also assume that violations of the charge and parity

symmetry (CP) are small, which means that the process and back-process are

approximately equal,
∣∣M̃χ+a+b..→i+j..

∣∣2 ' ∣∣M̃i+j..→χ+a+b..

∣∣2 =
∣∣M̃ ∣∣2. These

approximations simplify equation (26), so that we can write the Boltzmann

equation as

dni
dt

+ 3Hni = −
∫ (

dΠχdΠadΠb..
)(
dΠidΠj ..

)
(2π)4

∣∣M̃ ∣∣2
δ(4)
(
(pχ + pa + pb + ..)− (pi + pj ..)

)[
fχfafb..− fifj ..

]
. (28)

This is the Boltzmann equation describing the particle decoupling from the ther-

mal equilibrium.

4.2 Applications of the Boltzmann equation

By looking at specific applications of the Boltzmann equation, we can treat

thermodynamics of the thermal freeze out of dark matter. To do this, we need

to make some assumptions. We assume that dark matter is made of one single

species of particles, and that these particles are protected by a new symmetry

such that new particles are always produced in pairs [1]. We set the reaction

that changes the number of dark matter particles before the freeze out, to be of

the form χχ̄↔ ff̄ , where we denote the DM particles with χ, and f is a fermion

included in the Standard Model. This will be the case if χ is a stable particle

species. We also assume that the dark matter particle is its own antiparticle,

χ̄ = χ, then their chemical potential will be zero, µ = 0. For this process, the

collision term in the Boltzmann equation will be

∆C̃ = −
∫ (

dΠχ1dΠχ2

)(
dΠfdΠf̄

)(
2π
)4
δ(4)(...)

∣∣M̃ ∣∣2(1

2
× 2

)
(fχ1

fχ2
− ffff̄ )

(29)
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The factor 2 explains that the number of dark matter particles changes by two

units in this specific reaction, but it is cancelled by the fact that the dark matter

particles are identical, (χ̄ = χ), and the symmetry factor is 1
2 [7]. If we consider

the last part in the collision term, (fχ1fχ2 − ffff̄ ), we can simplify this by

consider that both χ and f has zero chemical potential, µi = 0. If we also

assume that f and f̄ are in the thermodynamic equilibrium, we can use the

approximation
(
1/(eE/T ∓ 1) ' e−E/T

)
for the distribution functions. This

simplifies the expressions

ff = e−Ef/T

ff̄ = e−Ef̄/T (30)

The energy part of the δ-function in the collision term (29), gives that Eχ+Eχ =

Ef + Ef̄ [7]. Considering this, and the two equations (30), we see that

ffff̄ = e−(Ef+Ef̄ )/T = e−(Eχ+Eχ)/T = fχeqfχeq (31)

From this, it follows that

fχfχ − ffff̄ = fχfχ − fχeqfχeq (32)

Now we can write the collision term in terms of nχ, the actual number density of

the dark matter particles, and nχeq , the number density of dark matter particles

in thermal equilibrium [7]. We use the definition of the number density defined

in section 2.3, equation (14). We get

∆C̃ = −〈σv〉(n2
χ − n2

χeq ), (33)

where 〈σv〉 is the thermal average of the annihilation cross section multiplied

with the relative velocity of incoming particles, calculated from
∣∣M̃ ∣∣2. For sim-

plicity, 〈σv〉 will be referred to as average (annihilation) cross section in this

thesis, while σ is the cross section. The Boltzmann equation then reads

dnχ
dt

+ 3Hnχ = −〈σv〉(n2
χ − n2

χeq ). (34)

This is the Boltzmann equation we want to work with. However, to make

calculations easier, and to simpler study the thermodynamics of the dark matter

freeze out, we define some useful variables. We define the yield variable to be

Yχ =
nχ
s
, (35)

where nχ is the number density of the dark matter particles, and s is the entropy
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density of the thermal plasma. Due to the conservation of entropy per comoving

volume, sa3 = const., and the fact that nχ scales with a in the same way as the

entropy density, the yield variable will remain approximately constant after the

freeze out [7]. Then it also follows that

dnχ
dt

+ 3nχH = s
dYχ
dt

. (36)

By inserting (35) for nχ in equation (34), we get

d(Yχs)

dt
+ 3HYχs = −〈σv〉s2

(
Y 2
χ − Y 2

χeq

)
. (37)

which we can rewrite, due to relation (36), to be

dYχ
dt

= −〈σv〉
(
Y 2
χ − Y 2

χeq

)
. (38)

Further we define a new convenient variable,

x =
mχ

T
. (39)

We want to exchange the time dependence in equation (38) with dependence

on x, such that we get the temperature dependence through this factor. This is

convenient because x is a dimensionless variable. To exchange the dependence

from t to x, we use a Hubble relation for the radiation dominated era. This is

obtained when combining (4), (6) and (15).

H2(t) =

(
1

2t

)2

= g∗
π2

90

1

M2
Pl

T 4 = H2(T ) (40)

From this we get the expression for t(x). By the use of (39), (40), and the fact

that
dYχ
dt =

dYχ
dx

dx
dt , we can express the Boltzmann equation (38) as

dYχ
dx

= − s〈σv〉
H(T ) x

(
Y 2
χ − Y 2

χeq

)
(41)

The Hubble constant when we assume that T = mχ, H(mχ), is related to

the H(T ) by H(T ) = H(mχ)x−2. When using this relation, we get the final

expression for the Boltzmann equation for the cosmological evolution

dYχ
dx

= − xs〈σv〉
H(mχ)

(
Y 2
χ − Y 2

χeq

)
(42)
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From the very convenient form of the Boltzmann equation we now have derived,

we can study more in detail when a freeze out occurs [7]. We can express

equation (42) in a suggestive way,

x

Yχeq

dY

dx
= − Γ

H

[(
Y χ

Yχeq

)2

− 1

]
. (43)

Where Γ is the interaction rate of all annihilation channels before the freeze out,

and is given by

Γ = neq〈σv〉, (44)

From (43) we can see that the freeze out will occur approximately when Γ '
H ' neq〈σv〉. This supports the statement earlier from equation (21) and (22),

that when Γ ≥ H the particles are still coupled to the equilibrium, but for

Γ ≤ H the particles will in theory have decoupled.

When we know that freeze out of interactions happens at approximately Γ ' H,

we can estimate a value for x when the freeze out happens, if we assume that

the particles are non-relativistic during the freeze out. This will also estimate

the temperature of when the freeze out will occur, xfo =
mχ
Tfo

. The estimated

value for xfo when H ' κneq〈σv〉 is

xfo = ln

[
κ

√
90

8π3

(
gχ√
g∗

)
mχMPlσn

]
−(n+1)ln

(
ln

[
κ

√
90

8π3

(
gχ√
g∗

)
mχMPlσn

])
(45)

This is a modified version of an equation retrieved from [7]. κ is a constant of

unity, and a good approximation is κ = (n + 1). We also use the assumption

that 〈σv〉 ' σnx
−n. Equation (45) shows us that the freeze out x only depend

logarithmically on the dark matter mass, mχ.

4.3 Relic abundance in case of thermal freeze out

When particle interactions freeze out of the thermal equilibrium, the particle

relics create an abundance of the particle species, the relic abundance. The relic

abundance is an important observable used to determine characteristics of dark

matter [1]. If the dark matter particles had been in equilibrium from the early

Universe until today, we could neglect its relic abundance. However, if the par-

ticle interactions freeze out when the temperature is such that xfo = mχ/Tfo
is barely larger than 1, the species will have a significant relic abundance [7].

From the Boltzmann equation (42) we derived in section 4.2, we can further

30



derive an expression for the relic abundance of dark matter, Ωχ. We want to

find an approximation for the region x� xfo, where it follows that Yχ � Yχeq ,

since this will occur after the freeze out [7]. Then we can neglect the Yχeq term

in equation (42), and we get

dYχ
dx

= − xs〈σv〉
H(mχ)

Y 2
χ (46)

By using the definition of the entropy,

s(x) = g∗s
2π2m3

χ

45x3
, (47)

and assuming 〈σv〉 ' σnx−n, we get

dYχ
dx

= −λσnx(−n−2)Y 2
χ (48)

where λ =
2g∗sπ

2m3
χ

45H(mχ) . The relation 〈σv〉 ' σnx
−n shows us that when n = 0,

〈σv〉 is constant, which we will use later in the case of a generic WIMP model.

When solving (48) analytically, by integrating x from xfo to x0 ≈ ∞, we find

that

Yχ =
(n+ 1)x

(n+1)
fo

λσn
(49)

To get from the yield function to the relic abundance we need to multiply by
mχs0
ρc

, due to the definition of abundance in section 2.1, where s0 is the entropy

density of today.

Ωχ =
(n+ 1)x

(n+1)
fo mχs0

λρcσn
(50)

When converting back from 〈σv〉 ' σnx−n, λ =
2g∗sπ

2m3
χ

45H(mχ) andH(T ) = H(mχ)x−2,

we end up with the result

Ωχ '
(

45s0

2
√

90πρc

)
(n+ 1)xfo
〈σv〉MPl

g∗s√
g∗

(51)

where s0 and ρc are constants defined as s0 ' 3000 cm−3 and ρc ' (1.05h2) ×
104 eVcm−3, where h is the reduced Hubble parameter defined in section 2.1.

We can express this in a more convenient way,

Ωχh
2 '

(
45s0

2
√

90π ρch2

)
(n+ 1)xfo
〈σv〉MPl

g∗s√
g∗

, (52)

where the first term in the parenthesis is all constants. From this result we see
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that the relic abundance is not dependent on any of the properties of the SM

particle the dark matter particle annihilates into. Also, it is only dependent

logarithmically on the dark matter particle mass, due to the approximation of

xfo in equation (45).

4.4 DarkSUSY results

In this section, we will use DarkSUSY to do calculations of dark matter prop-

erties, and compare them with the approximate formulas we have derived and

with the observed values from the Planck collaboration [8]. We will do this

mainly by the use of the generic wimp module in the program. We will still

assume that the annihilation process is of the form χχ↔ ff̄ .

4.4.1 The generic WIMP module

For cold dark matter, the appropriate DM particle candidate need to massive,

as mentioned in section 3.3. Equation (52) show us that the average annihila-

tion cross section of DM, 〈σv〉, need to be very small, hence the particles are

interacting weakly. This can be shown in (52) by inserting Ωχh
2 ≈ 11933 from

[8], g∗ and g∗s from [18], and the Planck mass MPl ≈ 2.4×1018 GeV. Assuming

n = 0, xfo is the only missing property, which we can get from (45). We will do

calculations with this formula and properties later, with the help of DarkSUSY.

Such a weakly interacting massive particle (WIMP), is a good particle model

for DM particles from the freeze out production mechanism. This will be the

particle model we use when doing calculations of DM properties in DarkSUSY.

The generic wimp module in DarkSUSY is made to demonstrate how Dark-

SUSY can be used to calculate simple WIMP dark matter. By only inserting a

minimum of parameters in the program, one can get results and properties of

a WIMP dark matter. The parameters we need to input are the wanted dark

matter mass, mχ, a constant 〈σv〉, the spin-independent scattering cross-section

of dark matter with nucleons, σSI , and whether the dark matter particle is its

own anti-particle or not [5]. We also need to specify the dominant annihilation

channel.

To do further calculations, the generic wimp module is quite straightforward

to modify to get the wanted properties. We will mainly use the generic wimp

module to get our wanted properties, and also modify some of the example

programs in DarkSUSY. The modifications we do, will be described in Appendix

B.
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4.4.2 Calculations of relic abundance

From the observational results from the Planck collaboration, we know that

the relic abundance of cold dark matter is 0.11933 ± 0.00091 [8]. By the use

of DarkSUSYs generic wimp module, we can calculate what order of average

cross section, 〈σv〉, the particle interactions should have, that corresponds to

this observed quantity. By modifying the dsmain wimp example program in

the generic wimp module, we get corresponding values for the relic abundance

considering the dark matter particles mass, if we set the average cross section to

be constant. We try for the neutrino as annihilation channel, and set the average

cross section to be 1× 10−25 cm3s−1, 1× 10−26 cm3s−1 and 1× 10−27 cm3s−1.

For more detailed explanation of the modifying of programs see Appendix B.

Figure 3: The relic abundance of neutrinos with average cross section 1 ×
10−25 cm3s−1, 1 × 10−26 cm3s−1 and 1 × 10−27 cm3s−1. The red line rep-
resents the observed relic abundance from the Planck collaboration, with 3σ
error.
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Figure 4: The relic abundance of neutrinos with average cross section 1 ×
10−25 cm3s−1 and 1 × 10−26 cm3s−1. The red line represents the observed
relic abundance from the Planck collaboration, with 3σ error.

From Fig. 3, we see that average cross sections 1 × 10−25 cm3s−1 and 1 ×
10−26 cm3s−1, are the values that creates a relic abundance closest to the ob-

served value. However, if we zoom the plot, Fig. 4, we can see that none of

the chosen average cross sections actually creates a relic abundance that inter-

sects the observed relic abundance. This means that none of these values for

the average cross section can be correct for the observed value. We also tried

the same average cross sections for the muon, but this gave the same results,

as previously expected from equation (52) in section 4.3, and thus created the

same plot.

To try to get the correct average cross section, such that it creates a relic

abundance similar to the observed value, we can try with other values for the

average annihilation cross section.
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Figure 5: The relic abundance with neutrino as annihilation channel and average
cross section set to be 2× 10−26 cm3s−1, 3× 10−26 cm3s−1, 4× 10−26 cm3s−1

and 5 × 10−26 cm3s−1. With the observed relic abundance value presented by
the red dotted line, with accuracy band of 3σ, from Planck collaboration [8].

In Fig. 5 we see that some of the plots intersects with the observed relic abun-

dance value. This means that an average cross section of this value will create a

correct relic abundance if the dark matter particles have the corresponding mass.

For instance, if we study the green plot, where the average cross section is set to

be 3×10−26 cm3s−1, we see that it will create the correct relic abundance, com-

pared to the observed value, if the dark matter particle mass is approximately

4 GeV. Similarly, we can see that if the dark matter mass is approximately

between 40 Gev and 100 GeV, the average cross section that will give us the

correct value for the relic abundance is approximately 2× 10−26 cm3s−1.

Even though these plots of the relic abundance give us a clue about what the

average cross section has to be to get the observed value of the relic abundance,

at the order of ∼ 10−26, it can be quite comprehensive to get exact results using

this program. Fortunately, DarkSUSY has other programs that can do these

calculations more precise.

4.4.3 Calculations of average annihilation cross section

By the use of the oh2 generic wimp example module in DarkSUSY, one can

predict possible average cross sections, 〈σv〉, that corresponds to current obser-

vations of the relic abundance, Ωχh
2. We use the observed value for the relic
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abundance from the Planck collaboration [8], Ωχh
2 = 0.11933 ± 0.00091. We

assume the dark matter particles annihilates to SM particles, and we show the

cases of annihilation to ν̄eνe, µ
+µ−, W+W− and t̄t.

Figure 6: Average of annihilation cross section multiplied with velocity, 〈σv〉, of
the generic WIMP as a function of its mass, mχ, for the observed relic abundance
[1]. The plot includes the particle coupling to SM particles t̄t, ν̄eνe, µ

+µ− and
W+W−. Shown with accuracy of 3σ, with the value of σ determined by the
Planck collaboration [8].

Fig. 6 shows us 〈σv〉 of the annihilation from dark matter particles to specific SM

particles, that gives the correct relic abundance for each different SM particle.

As explained in [5], the generic WIMP module will not allow off-shell final state

particles, which leads to the cross-section sharply dropping to zero for dark

matter masses below the kinematic threshold [5]. This will further lead to a

rapid decrease in the relic density from the specific annihilation, which explains

the vertical lines in Fig. 6 [5]. We see that except for the vertical lines in the

figure, the average cross section for different final state particles do not deviate

much from the others. This tells us that 〈σv〉 for different final state particles

do not depend on the mass of the SM particles, which is in agreement with the

expression for relic abundance we derived, equation (52).

If we compare this plot with Fig. 5, we can see that for dark matter mass

around 100 GeV, the average cross section that will give us the correct value for

the relic abundance is approximately 2× 10−26 cm3s−1. This is the same result
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as we arrived at from Fig. 5. Thus, we can see that these plots give the same

results for the average cross section corresponding to mass and relic abundance,

but the latter plot will show it in a clearer way.

4.4.4 Calculations of freeze out x

By the use of the generic wimp module, we can also calculate the value of x

when the freeze out happens, and from this the freeze out temperature. We do

this by modifying the example program dsmain wimp, and inserting constant

values for the average cross section. When using the values 1×10−25 cm3s−1, 1×
10−26 cm3s−1, 1×10−27 cm3s−1, and the annihilation channel for the neutrino,

we get the result shown below.

Figure 7: Freeze out x for corresponding WIMP mass, with neutrino as annihi-
lation channel, for average cross section 1 × 10−25 cm3s−1, 1 × 10−26 cm3s−1,
1× 10−27 cm3s−1.

We see in Fig. 7, that the freeze out x increases logarithmically as the mass of

the dark matter particles increases, except for at a section around dark matter

particle mass from 25 GeV to 50 GeV. This bump corresponds to when the

degrees of freedom changes rapidly.

Having obtained some values for xfo with some corresponding values for the

relic density, Ωh2, we can validate whether our derived formula for the relic

abundance, equation (52), is approximately correct. We use the values for xfo
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we got from DarkSUSY, and calculate the corresponding relic abundance, Ωh2.

Then we compare our resulting value with the value DarkSUSY calculated for

the same xfo. To do our own calculations, we use the mathematical program

Python.

To calculate an approximate relic abundance from a given freeze out x, we

use our derived formula (52). Because DarkSUSY uses a constant average cross

section, 〈σv〉, when doing the calculations, we do as well. From this it follows

that n = 0, so the expression remaining from equation (52) is

Ωχh
2 '

(
45s0

2
√

90π ρch2

)
xfo

〈σv〉MPl
g∗s√
g∗

(53)

When calculating this, we need to determine a dark matter mass and an average

cross section, and find the corresponding values of g∗s and g∗. We use reference

[18] to find these values.

Figure 8: The evolution of the degrees of freedom of number density (g∗n),
energy density (g∗e, but we use notation g∗), pressure (g∗p), and entropy density
(g∗s) as functions of temperature. © CC BY 4.0, retrieved from reference [18].

Fig. 8 shows us that at most temperatures above T ' 10−1 MeV, g∗s and g∗ are

overlapping. Due to this, we set the approximation g∗s ' g∗ for T > 10−1 MeV.

To use this approximation, we have to make sure that we determine a dark

matter mass and freeze out x that corresponds to a temperature higher than

this.

With this in mind, we can choose the necessary properties to check the valida-
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tion of our derived formula for the relic abundance. As we plotted values for xfo
for three different average cross sections, we want to check the freeze out x and

corresponding relic abundance for each of the different average cross sections.

Thus, we set 〈σv〉 to be 10−25 cm3s−1, 10−26 cm3s−1 and 10−27 cm3s−1.

We have to use an exact DM mass that DarkSUSY has used in its calculations,

and we try for dark matter mass equal to 100 GeV. For this mass and average

cross section 10−25 cm3s−1, DarkSUSY calculates xfo = 23.265590333077910,

which correpsonds to temperature

T =
mχ

xfo
=

100GeV

23.265590333077910
≈ 4.29819GeV (54)

We find the corresponding degrees of freedom for this temperature in table A1

in the appendix of reference [18]. We approximate the temperature to be 5 GeV,

the closest value in the table, and read from the table that the degrees of free-

dom are approximately g∗s ≈ g∗ ≈ 85.50 for this temperature. From the choice

of these properties, the expected value for Ωh2, that DarkSUSY has calculated,

is ∼ 0.0255983.

Ωh2 is a dimensionless property, so we want to make sure that all units in

the expression (53) cancels each other. xfo, g∗s and g∗ are dimensionless, while

s0, ρc, MPl and 〈σv〉 have different units. When expressing (53) with units, and

our chosen properties, we get

Ωχh
2 '

(
45× 3000 cm−3

2
√

90 π 1.05× 104 cm−3 eV

)
23.265590333077910

10−25 cm3s−1 2.4× 1018 GeV
√

85.50
(55)

Ωχh
2 ' 0.2157× 109 GeV−1 23.265590333077910

10−25 cm3s−1 2.4× 1018 GeV
√

85.50
(56)

We can see that not all units cancel each other in the equation, so we need to

find a relation between cm3s−1 and eV to be able to do so. From the main

assumption of our cosmological calculations, c = ~ = kB = 1, we can find such

a relation. We use these units to find a relation by the use of
[
~
]

=
[
eV s

]
and

[c] =
[
m/s

]
.

~ = 6.58× 10−16 eV s = 1

c = 2.998× 108 m/s = 1

(57)
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Which can be rewritten, giving the expressions

1 m =
1 s

2.998× 108

1 s =
1

6.58× 10−16 eV

From this we can express

1 m =
1

2.998× 108 6.58× 10−16 eV

1 m =
1

2.998× 6.58× 10−8 eV

And then we can express cm3/s in terms of eV, and later cancel the units in our

expression for the relic abundance.

cm3/s = cm2 10−2m/s

cm3/s = cm2 10−2 1

2.998× 108

cm3/s = (10−2m)2 10−2 1

2.998× 108

cm3/s =

(
10−2

2.998× 6.58× 10−8 × 10−9 GeV

)2
10−2

2.998× 108

cm3/s =
10−4

2.9982 × 6.582 × 10−34 GeV2

1

2.998× 1010

cm3/s ≈ 2.5697× 1027

2.998× 1010
GeV−2

cm3/s ≈ 8.57143× 1016 GeV−2 (58)

We can insert this value for cm3/s in the average cross section 10−25 cm3/s.

Then we change its units to eV−2, and can get a dimensionless value for the
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relic abundance.

Ωχh
2 ' 0.2157× 109 GeV−1 23.265590333077910

10−25 × 8.57143× 1016 GeV−2 2.4× 1018 GeV
√

85.50

Ωχh
2 ' 0.026382280159656726 (59)

We get (59) as our calculated value for the relic abundance.

We want to do this for all the different average cross sections, to validate the

formula further. We vary the DM mass too, which gives us different properties

for xfo, T and degrees of freedom. The results are presented in the table below.

Figure 9: Calculated properties for Ωh2 with different values for chosen average
cross section. The table lists average cross section, DM mass, freeze out x,
corresponding temperature, corresponding degrees of freedom, and eventually
the relic abundance calculated by both DarkSUSY and our calculations.

We can see in Fig. 9 that the calculated value of Ωh2 in DarkSUSY is not

exactly similar to the value we calculated by the use of equation (53). However,

since the derived formula we have used to calculate the relic abundance is an

approximation, we can accept that the obtained value compared to the expected

value, has a small difference. The two values we compare are always of the same

order, hence the formula we have derived can indeed be used, more or less, as

a good approximation to calculate the expected relic abundance for certain

values.

4.4.5 Calculations of the yield

The yield is a very convenient way of measuring changes in density, for inter-

actions on dark matter. By plotting the yield, we get a good illustration of the

particles in DM acts before, and after the thermal freeze out. By the use of the

example programs dsmain wimp and dsrdeqn, we have plotted the yield against

x, for different 〈σv〉.
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Figure 10: The yield as a function of x, for different average cross section
1× 10−25 cm3s−1, 1× 10−26 cm3s−1 and 1× 10−27 cm3s−1.

Fig. 10 shows us that the yield of all the different 〈σv〉 follow the value for

the equilibrium yield, until the dark matter freezes out. The x-axis represents

the x, and we see that for different 〈σv〉, we have different freeze out x, xfo.

However, we can see that the value for xfo is approximately around xfo ∼ 20

for all the average cross sections. The plot also shows us how the yield stays

approximately constant after the thermal freeze out.

4.5 The WIMP miracle

From the properties we have both derived and calculated, we learned that the

average cross section of the interactions before thermal freeze out, should be

of order 〈σv〉 ∼ 10−26 cm3s−1. Since the velocity of DM particles is non-

relativistic, we assume the particles have velocity of v � c. We can specifically

assume that the particles have average velocity of v ∼ 0.1c.

We can then calculate the cross section, σ by

σ =
〈σv〉
0.1c

≈ 10−26cm3s−1

0.1× 3× 108 × 100cm s−1
∼ 10−36cm2 (60)

This value is in agreement with the fact that the particles is weakly interacting.

The weakly interacting massive particle (WIMP) has been looked at as the best

candidate for DM for a while. It has been thoroughly studied and searched for,
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but has not been discovered yet [1]. The existence of a WIMP would solve many

DM related problems.

The theory of supersymmetry predicts the existence of a WIMP, and this is

why supersymmetry has been a popular theory to help with the explanation

of the nature of DM for some time. The new superparticles proposed by the

theory, have been calculated to have large masses, and will make good dark

matter candidates. The lightest supersymmetric particle (LSP) is stable and

will not decay into other particles, which means that it could have existed from

the early Universe, as dark matter has. The LSP has therefore been viewed as a

good candidate for dark matter due to its appropriate properties, and the LSP

can either be the superparticle sneutrino, gravitino or the most favoured one,

the neutralino. By the use of the properties of the LSP, one can calculate the

amount of DM that would be produced if this were the correct particle model.

The resulting amount from the calculation is very close to the observed amount

of dark matter, and many do not think that this is a coincident. Physicists refer

to this as the WIMP miracle. [19] [20]

A generic WIMP is also favoured as a DM candidate because it should in prin-

ciple be easy to detect. It has been thoroughly searched for in both direct

detection experiments, indirect detection, and collider searches. We will look

more into this in section 6, but will firstly look into a specific example of the

WIMP.
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5 Scalar singlet

When assuming the freeze out to be the production mechanism of DM, we

discovered that a good candidate for the DM particle, is a WIMP that can an-

nihilate into SM particles. We want to look at a simple model of a WIMP as

the DM candidate, with few necessary parameters.

Even though the theory of supersymmetry and the LSP has been a favoured DM

candidate, this particle model is a bit too complicated to be able to calculate

wanted DM properties precisely. We want to find models that are simple enough

to do calculations, and at the same time consistent with previous evidence of

dark matter. In this section we will look into the simplest extension of the SM,

the scalar singlet. [4]

The simplest possible extension of the Standard Model is the addition of a

singlet scalar field, S. This model of a scalar singlet has been proposed as a

particle model for a non-baryonic DM particle [4]. The scalar singlet particle is

characterized by only three parameters, making it simple enough to do calcu-

lations of the DM properties. At the same time, the model is still complicated

enough to give interesting results of the calculations.

The scalar singlet is a spinless particle, electrical neutral, and stable. When

working with scalar singlet dark matter, we assume that the dark matter con-

sists of only this single species of particles. The three parameters characterizing

the scalar singlet is the particle mass, mS , the particles self-coupling, λS , and

the particle coupling to the Higgs boson, λ. The mass of the scalar singlet,

mS , is believed to be between 10-100 GeV, such that the DM is cold. The self-

coupling of the scalar singlet, λS , is constrained due to the observations of the

Bullet cluster in 2006 [3]. Therefore, λS need to be small enough such that it

corresponds to these observations. The most important coupling to study is the

coupling with the Higgs boson, λ. When looking into the Higgs portal coupling

to SM particles, this is also closely related to the expected cross section, σ ∝ λ2.

[4]

When using the scalar singlet model, we have to consider some constraints

to make the model work. The constraint for these couplings, is that we have

vacuum stability, and that we have a desirable symmetry-breaking pattern. We

want the scalar potential to spontaneously break the electroweak symmetry, but

not to break the symmetry S = −S. After the electroweak symmetry breaks,

the scalar potential responsible for the interactions with S, takes the form

V =
1

2
µ2S2 +

1

2
λS2H†H, (61)
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where H†H = 1
2 (h+ v0)2 = 1

2

(
h2 + 2hv0 + v2

0

)
. Then we can rewrite (61) to

V =
1

2
µ2S2 +

1

4
λv2

0S
2 +

1

4
λhS2 +

1

2
λv0h

2S2. (62)

µ is a mass parameter, v0 = 246 GeV is the Higgs vacuum expectation value

(VEV), and h is the Higgs boson [4]. The first two terms in the potential (62)

represents the mass of the scalar singlet, where

V 3 1

2
m2
SS

2 =
1

2
µ2S2 +

1

4
λv2

0S
2

⇒ mS =

√
µ2 +

1

2
λv2

0 (63)

Furthermore, the two last terms in (62) represents the possible couplings to

S, with couplings hS2 and h2S2. This allows for the following annihilation to

occur.

Figure 11: Feynman diagram of possible annihilation. On the right-hand side
the coupling h2S2. On the left-hand side the coupling hS2.

The Higgs exchange is shown on the right-hand side of Fig. 11. Through the

Higgs exchange, S can interact with different SM particles as shown below.
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Figure 12: Feynman diagram of annihilation of the scalar singlet particle via
Higgs exchange. The s-channel annihilation. We can see the different anni-
hilation channels, and these will be allowed depending on the value of 2mS .
Copyright © 2001 Published by Elsevier B.V.. Retrieved from [4] with permis-
sion.

5.1 DarkSUSY results

In this section we want to use DarkSUSY to do some specific calculations of the

properties of the scalar singlet DM.

5.1.1 Silveira-Zee module

The Silveira-Zee module is the module in DarkSUSY that is made for calcu-

lations of the scalar singlet particle model. The module uses the mass of the

scalar singlet boson, mS , and its coupling to the Higgs boson, λ, as parameters.

By inserting values for these parameters, the program can do calculations of the

relic abundance and average cross section of the particles at thermal freeze out.

[5]

5.1.2 Calculations of relic abundance

The relic abundance of the scalar singlet DM is mostly determined by the s-

channel annihilation by Higgs exchange, SS → X, where X is a pair of SM

particle-antiparticle, for instance ππ, µ+µ− etc. [4].

By the use of the observed value for the relic abundance of DM, ΩSh
2 ≈ 0.11933

[8], we can use the silveira zee module in DarkSUSY to produce a plot of the

relation between λ and mS for the wanted relic abundance. We do this by mod-

ifying the oh2 ScalarSinglet program.
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Figure 13: The Higgs coupling, λ, corresponding to different mass, mS , for the
observed value of the relic abundance, Ωh2 ≈ 0.11933.

Fig. 13 shows us that for this variety of scalar particle mass, the Higgs coupling,

λ, mostly take the value between the order of ∼ 10−1 and ∼ 10−3.

As previously derived in section 4.3, equation (52) gives us the approximate relic

abundance for specific freeze out x, xfo, and average cross section, 〈σv〉. The

average cross section for the scalar singlet is determined by the Higgs coupling,

λ, and the mass of the particle, mS . Hence, the relic abundance is dependent

on these parameters as well. For most values of mS , equation (52) explains the

curve in our plot. However, there are certain exceptions to this. The Higgs

threshold, that is if mS ≈ 1/2mh, is an example of a case where the equation is

not accurate enough. This is noticeable in our plot, where the drop in the curve

is for this threshold, mS = 1/2mh, and mh ≈ 126 Gev [12].

The average cross section’s dependence of λ and mS , for the limits when mS is

very large or very small, can be expressed by

σv ∝ λ2m2
S

m4
h

, if mS � mh (64)

σv ≈ λ2

4πm2
S

, if mS � mh (65)

which is retrieved from [4]. Since we already have seen that xfo ∼ 20 for the

range of cross sections and masses we use in our model, we can look at xfo as

constant. Due to this, to get the correct relic abundance, equation (52) shows
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us that 〈σv〉 also need to be held constant, while λ and mS can vary, provided

g∗ is also held constant. This is called the abundance constraint.

If mS is very small, λ increases as mS decreases. If mS is very large, λ will

increase with increasing mS . This is shown in the two equations above. [4]

Figure 14: Correct average cross section for the observed relic abundance of
DM. The average cross section can be seen as approximately constant for small
and large mS . The region where mS ≈ 1/2mh, shows us how the average cross
section will vary around the Higgs treshold.

The relic abundance constraint is shown in Fig. 14. To get the correct relic

abundance, with approximately constant freeze out x, the average cross section

is approximately constant for small and large mS , as in Fig. 14. However, sim-

ilar to Fig. 13, the Higgs threshold is an exception. At mS ≈ 1/2mh our curve

makes a jump, which tells us that equation (52) will not be a good approxima-

tion in this region, and this impacts the average cross section. Fig. 14 is also

consistent with our previous calculations, where we found that the average cross

section of the DM particles is of order ∼ 10−26 cm3s−1.
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6 Experimental detection of dark matter

From the properties we have both derived and calculated, we learned that the

average cross section of the interactions before thermal freeze out should be of

order 〈σv〉 ∼ 10−26 cm3s−1, and a cross section of order of σ ∼ 10−36 cm2.

Based on this order of cross section, one should in theory be able to detect

WIMP particles in different experiments, if this is the correct particle model.

DM particles is actively searched for, by many different types of experiments.

We will now look into experiments searching for DM particles by indirect de-

tection, collider searches and direct detection.

6.1 Indirect detection

Experiments trying to detect DM particles by indirect detection, want to detect

SM particles that have been produced by the annihilation of two DM particles

in the Universe, or from a decaying DM particle. Indirect detection experiments

can be done differently, depending on which particle they are trying to detect.

A popular particle to try to detect is the photon. This is because it is easily

detected, and their propagation through the Universe is almost unaffected by

intergalactic and interstellar media. Charged particles are also quite easy to de-

tect, but their propagation through space is highly affected by magnetic fields.

Their propagation is thus quite hard to model. As for neutrinos, their propa-

gation is also basically unaffected through the Universe, but these particles are

on the other hand much harder to detect. [1]

Independent of the difficulty of their detection, one has bigger chance to de-

tect the particles produced in the denser regions of DM in the Universe. There

are three different galactic density profiles: the NFW (Navarro-Frenk-White)

profile, Einasto profile, and the Burkert profile. These profiles measure the dis-

tribution of density in galaxies. Even though these profiles are not necessarily

too different from each other, the fact that different density profiles of galaxies

are possible, shows us that there can be large uncertainties in the measurements.

This makes the indirect detection of DM, and the search for the SM particles,

more complicated. [1]

Considering our earlier calculations of the particle cross section, this experi-

ment should be able to detect DM particles indirectly by the produced SM

particles. This, however, is not the case, and there has not been detected any

SM particles that could indicate the existence of DM. This can be both due to

large uncertainties in measurements, but could also be an indication that our

earlier derivations and assumptions are incorrect.
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6.2 Collider searches

Colliders are accelerators that send particles with equal mass and kinetic energy

towards each other with significantly high velocities [9]. When the particles col-

lide, in a high energy collision, they create a reaction where new particles are

formed.

In the searches for DM particles, by the use of colliders, one sends two SM

particles in a high energy collision, with the hope that the collision will pro-

duce new physics particles, or generating heavy particles that can decay into

new physics particles. Even though most of SM particles have very constrained

decays, some of them still have smaller constraints on their decay. In this case,

the Higgs boson is interesting. The decay width of the Higgs boson, meaning

probability of a certain decay channel to happen, can be up to 26% for the decay

into invisible particles [1]. The Higgs boson can then have couplings to invisible

particles with mass below 60 GeV. [1]

There are different types of colliders, for instance hadron colliders and lepton

colliders. The Large Hadron collider (LHC) is, as the name indicates, a collider

for hadrons. It has a high luminosity, making it suitable in the probe of small

couplings, and strong interactions. Lepton colliders are well suited to study the

electroweak sector of the SM. These colliders have a lower luminosity, giving it

a more limited reach. However, this makes it more precise in its measurements.

Both hadron and lepton colliders are used in the search for DM particles in

colliders, but due to the DM particles characteristics to be weakly interacting

and neutral, the particles will only have small Higgs couplings to the quantum

chromodynamic sector of the SM. To detect these small couplings, hadron col-

liders are suited best, for instance the LHC.

When using these colliders, one looks at the energy conservation of high energy

reactions before and after the collision. Some reactions have missing transverse

energy in the final state. This missing energy is thought to be the indication

that new heavy particles is made, and that these particles can decay into DM

particles. For this theory to be true, one relies on the characteristics of new

physics to be true, and the existence of heavier unknown particles. [1]

If DM particles really are produced in a collider, one would not have been

able to detect them due to their weak interactions. To figure out whether the

particles have been made, one has to look at the other particles that has been

made in the process as well, and the conservation of momentum. For instance,

in the LHC the missing transverse energy, referring to the DM particles, would

be accompanied by a high energy jet (spray of particles). In lepton colliders,

the accompanying particle should be a hard photon. The annihilation channels
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studied with these results are called mono-X, where identical particles are col-

liding. The X-particles in these cases can be a jet, photon, top quark, gauge

boson, a Higgs boson, or a lepton. [1]

However, there has been no such discoveries in collider searches yet. This could

be because it is quite hard to relate the missing energy in a reaction to DM

particles, or that our particle model simply is the wrong particle model.

6.3 Direct detection

By the assumption that DM particles have an approximate mass of 100 GeV,

and the fact that we know that the local DM density in the Milky Way is of

the order of 0.4 GeV/cm3, we can calculate that there should be approximately

4000 DM particles in each cubic meter of the galaxy at all times. When con-

sidering that galactic halos are fixed compared to rotations of the galaxy, DM

has a relative velocity of 200 km/s. If these values are approximately correct,

there should travel about ∼ 1016 DM particles through each cubic meter in the

galaxy, during the period of one year. [1]

If this is actually the case, there should be ∼ 1016 DM particles travelling

through every cubic meter here on Earth in a year as well, and we should be

able to detect some of these particles. This would be direct detection of the

DM particles. Due to the DM particles interaction with nucleons, one should

be able to measure the nucleon’s recoil energy after the interaction with DM.

From this we also want to be able to determine the DM particle mass, and cross

section with the nucleons.

6.3.1 Constraints of dark matter

By assuming specific DM particle masses and trying to detect the particles

interaction with the nucleons, one can confirm or decline whether particles of

this mass are travelling past the Earth. By doing this for several different masses

of DM, this can be used to set constraints of the DM mass, and nature of DM

particles. There have been many experiments trying to directly detect the DM

particles by this setup. An overview of the constraints that has been found from

the experiments CDMSLite [21], PANDAX-II [22] and XENON1T [23] can be

viewed below in Fig. 15.
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Figure 15: Constraints of scattering cross sections and DM mass for DM parti-
cles, from dark matter detection experiments CDMSLite [21], PANDAX-II [22]
and XENON1T [23]. Solid lines represent the constraints that already have
been found, while the dashed lines represent future experiments (as of 2021)
[1]. The yellow regions represents the cosmic neutrino background [1]. © 2021
Elsevier B.V. All rights reserved. Retrieved from [1], with permission.

6.3.2 Constraints of scalar singlet dark matter

The XENON detector is a device trying to detect DM particles by their in-

teractions with xenon. The detector is a two-phase time projection chambers

(TPC), and it holds a large volume of pure liquid xenon to act as a WIMP

target. The detection of ionized xenon due to the nuclear recoils of WIMPs off

the xenon nuclei, or emitted xenon scintillation light, would be an indication of

the existence of DM. To get the limits for the DM properties, it is assumed in

[24] that the DM particle has spin-independent interactions with WIMP nuclei,

which can correspond to the scalar singlet, S, with spin 0. [24] [25]

The XENON10 experiment, operated in 2007, managed to get the best con-

straints of the DM particles seen at the time [24]. The constraints were set

because the experiment should be able to detect DM particles, if the particles

had the corresponding cross section and mass. However, when no such particles

were detected, it told us that the DM particles would not have these properties

when using the scalar singlet particle model.

To be able to detect lower nucleon scattering cross section and lower cou-

pling, one increased the mass of the TPC by a factor of 10 and decreased

the electromagnetic background by a factor of 100 [25]. This experiment,

called XENON100, was also successful, and achieved even more precise con-
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straints of the DM WIMP. Going forward from this, the following experiments

were performed for lower and lower cross sections and coupling, with increas-

ingly larger mass of the TPC. These experiments were called XENON100x5,

XENON100x20, XENON1T etc. None of these experiments were able to detect

any particles, and the constraints of the particle has become more and more

stringent. XENON1T is the experiment which has achieved the most precise

constraints of the DM particle as of today. [24]

Figure 16: Constraints of scalar singlet dark matter, obtained from direct de-
tection experiments, assuming the scalar singlet is the dominant particle in DM.
The shaded and colored areas is the excluded properties of λ and mS , which the
particles cannot have. In this figure, λhs corresponds to what we denote as λ
in this thesis. Different experiments are written in certain areas to show which
constraint that has been obtained from which experiment. At the left-hand side
there is a close-up of the correct relic abundance region. At the right-hand side,
the full mass range is shown. © 2013 American Physical Society. Retrieved
from [24], with permission.

In Fig. 16, we can see all the constraints of the coupling and DM particle mass

that has been detected by the different XENON experiments. We see that most

of the figure is shaded by some color, which means that the DM particle cannot

have this corresponding mass and coupling. This means that by the use of the

scalar singlet particle model with freeze out as production mechanism, the DM

particle has quite limited values it can take.

When looking at these three types of experiments and the fact that none of

them have been able to detect DM particles yet, one can question whether our

previous predictions and calculations of DM particles average cross section etc.

is correct. If this is incorrect, it would mean that the production model of the

thermal freeze out is also incorrect. All the constraints found by the direct de-
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tection experiments of scalar singlet, tells us that it is quite improbable to find

DM particles corresponding to this particle model. In the next section, section

7, we will briefly look into a second possible production model, and study the

properties of DM in this case.

54



7 Freeze in of scalar singlet DM

The WIMP is the most studied particle model for a DM candidate, because

it is a simple particle that can acquire the correct relic abundance with freeze

out as the production mechanism. As the WIMPs have yet to be experimental

detected, we must consider the possibility that this is not the correct model for

DM.

An alternative to the WIMP model, is the FIMP model. FIMP is short for

feebly interacting massive particle, and is a particle model with significantly

smaller Higgs coupling than the WIMP [26]. Both WIMPs and FIMPs can sat-

isfy the constraints of DM in the scalar singlet model, only for the FIMP model,

a new production mechanism of DM has to be introduced. When looking into

this new production mechanism, we will still assume the scalar singlet particle

model.

The freeze in is a production mechanism of DM where the FIMPs never reach

thermal equilibrium in the early Universe, and are slowly produced by particle

collisions or decays in the thermal plasma [26]. The FIMPs are produced as

the Universe expands and the temperature decreases. When the temperature

becomes smaller than the DM mass, the plasma no longer has the energy to

produce more particles [26]. At this temperature, the production of DM will

stop, and the already produced DM will freeze in.

We can describe the freeze in process from our derived Boltzmann equation

(41). For the freeze in mechanism, the yield of DM is very small, Yχ � Yχeq ,

and can be neglected. We are then left with

dYχ
dx

=
s〈σv〉
Hx

Y 2
χeq . (66)

This show us that the yield will increase, due to the right-hand side of (66) being

positive. It will increase until it freezes in, and then it will be approximately

constant after this. Fig. 17 show us that this is the case.
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Figure 17: The yield as a function of temperature, for different λ and scalar
singlet mass, mS . The dash-dotted line represents λ = 10−10, the solid line
represents λ = 10−11, and the dashed line represents λ = 10−12. This result
was obtained in 2011, before the Higgs mass was found, and the Higgs mass
was in these plots set to be mh = 120 Gev. Copyright © 2011, SISSA, Trieste,
Italy. Retrieved from [26], with permission.

Due to the weak interactions of the FIMPs, and that they are never abundant

enough to annihilate themselves, there are two different processes that could

create the feebly interacting DM particles. The DM particles could either be

produced by the annihilation of two SM particles, or by the decay of a heavier

FIMP. In the first case, we consider that the DM particles are produced by the

2 → 2 processes, ab → SS. In the second case, an example is the Higgs decay,

h→ SS. However, when we assume the scalar singlet to be the FIMP, which is

the heaviest FIMP in this model, only the first process will be relevant.

The weak interactions of the FIMPs also indicate small λ. If the relic abun-

dance for the freeze in followed the same equation as the freeze out, (52), the

relic abundance would have increased as λ decreased. This is due to the depen-

dence of λ in 〈σv〉 for the scalar singlet, from equations (64) and (65). However,

if λ = 0, there would have been no particle interactions in the early Universe

to produce DM, and DM would never have been produced. So, eventually as λ

decreases and approaches zero, the relic abundance must also decrease, until it

vanishes for λ = 0. Due to the increase and eventually decrease in relic density,

there must exist a smaller value of λfimp that corresponds to the observed relic

abundance today. [26]
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7.1 DarkSUSY results

By the use of DarkSUSY, and the silveria zee module for the scalar singlet, we

can produce a plot of the expected value of λfimp for the correct relic abundance.

Figure 18: Expected value of λ corresponding to the singlet mass, mS , for the
correct relic abundance, with the freeze in as the production mechanism.

Fig. 18 shows us that for the FIMPs in the freeze in, the Higgs coupling has to

be significantly smaller than for the WIMPs in the freeze out. In this case the

coupling is of the order λ ∼ 10−11 − 10−12.

Despite this significant difference in the Higgs coupling, λ, both WIMPs and

FIMPs would be able to create the DM abundance we observe today. WIMPs

would be produced by the freeze out, and FIMPs by the freeze in. FIMPs is not

experimental detectable like WIMPs due to its feeble coupling, and FIMPs is

therefore a good candidate for DM particles, that can also explain the absence

of experimental detection of the DM particles.
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8 Conclusion

In this thesis we have looked at possible production mechanisms of dark matter,

and especially at the freeze out mechanism.

To understand the aspects of dark matter and its production, we first went

through some background theory. This was important for further understand-

ing in the thesis. We went into how evidence for dark matter was discovered,

and what we can know about the nature of DM from these observations.

When investigating the freeze out as a production mechanism, we derived and

solved the Boltzmann equation analytically. From this we also derived an ap-

proximate formula for the relic abundance of DM. This was used to calculate

expected relic abundance, for different properties of 〈σv〉 and freeze out x.

By the use of the Fortran-program DarkSUSY, we calculated the yield, 〈σv〉,
relic abundance and freeze out x of the DM, assuming the freeze out to be the

production mechanism of DM. Our calculated relic abundance was compared

to the calculations DarkSUSY made, and the observed value of DM abundance

from the Planck collaboration [8]. From this we could see which of the corre-

sponding values for yield, 〈σv〉 and freeze out x that would correspond to the

observed properties of DM.

These calculations told us a lot about the characteristics of the DM particles,

and we learn that the favoured DM candidate for this production mechanism

is the WIMP. We look further into the WIMP miracle, and specific candidates

to the WIMP. We focus especially on the simplest addition to SM, the scalar

singlet. We also do some calculations of this specific WIMP candidate in Dark-

SUSY.

Based of the properties we found from our assumption of the freeze out produc-

tion mechanism, and that the DM particle is a WIMP, detection experiments

should be able to detect the DM particles. There are different ways to do so, and

we look into the three most commonly used methods: direct detection, indirect

detection and collider searches. These experiments have all been performed,

but none of them have been able to detect any DM particles, or indications that

such DM particles exist. The experiments still provide us with some constraints

of the mass and coupling of the DM particles. However, with all the constraint

that have been found, the probability that the freeze out mechanism is the cor-

rect production mechanism has become smaller and smaller.

By the results of the experiments, we have to consider a new production mech-

anism for DM. The mechanism of the freeze in has been proposed [26], and

we look briefly into this. This production mechanism gives the correct relic

abundance for DM, and by calculations in DarkSUSY we see that it gives the
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correct 〈σv〉 as well. The difference of this production mechanism is that the

particles that are produced will have to have even weaker interactions than the

WIMPs, and are called feebly interacting massive particles (FIMPs). The weak

interactions of these particles can also explain why the DM particles have not

been detected by experiments.

The production mechanism freeze in, and the FIMP model, needs to be thor-

oughly studied as a DM production mechanism and candidate. This theory is an

interesting theory that can explain DM thoroughly. Hopefully detection meth-

ods that can detect this type of particles are discovered in the coming decades,

such that the freeze in theory of DM can be either confirmed or disproved.

For further reading of the freeze in mechanism and the FIMP, please view ref-

erence [26] and [27].
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A List of abbreviations

DM ... Dark matter

SM ... Standard model

FRW ... Friedmann-Robertson-Walker

SU(2) ... Special unitary doublet

GUT ... Grand Unification Theory

SUSY ... Supersymmetry

LSP ... Lightest supersymmetric particle

LHC ... Large Hadron Collider

GCE ... Grand Canonical Ensemble

CMB ... Cosmic microwave background

CP ... Charge and Parity

VEV ... Vacuum expectation value

NFW ... Navarro-Frenk-White

TPC ... Time projection chambers
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B Programming in DarkSUSY

We describe shortly the main steps in our programming in DarkSUSY, to get

the different properties we use in our plots. When modifying example programs

of DarkSUSY, we always copy the files to a new folder, such that we keep

the original files as well. We include pictures of the modified code where the

programs was significantly modified.

Figure 3, 4, 5 and 7

In the folders DarkSUSY → examples, we find the dsmain wimp.f file and its

corresponding makefile. After copying these files to a new folder, we modify

both the dsmain wimp.f and the corresponding makefile.

Modifications of the dsmain wimp.f:

- Deleted all the unnecessary modules in the file, kept the “model setup”, the

“relic density + kinetic decoupling”, the lines 624 − 639, plus the subroutine

“generic wimp”.

- Defined a new integer j

- Made a loop of the WIMP mass, by the use of integer j

- Modified the file by setting in specific values for the WIMP properties in the

generic wimp subroutine, as shown below:

Modifications of the makefile:

- Change the DS MODULE to generic wimp in line 46

- Copy and paste lines 46-57, and insert new name for the file: my xf3.f instead

of dsmain wimp.f. This is done to get the makefile to work on our modified file,
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named my xf3.f

When running the dsmain wimp program in DarkSUSY, we get a file with

the properties of relic abundance corresponding to varied WIMP mass, for the

different averaged cross sections we choose. We also get the freeze out x of the

different 〈σv〉. Then we program the plots in Python. Fig. 3, 4 and 5 plots the

different relic abundance corresponding to DM mass for different 〈σv〉, while we

plot the freeze out corresponding to mass for different 〈σv〉 in Fig. 7.

Figure 6

In the folders DarkSUSY→ examples→ aux, we find the file oh2 generic wimp.f,

and the corresponding makefile. We modify the oh2 generic wimp.f slightly and

use the original corresponding makefile.

Modifications of the oh2 generic wimp.f:

- We update the observed value of relic abundance of cold dark matter, to the

newest properties from Planck 2018.

- We change one of the annihilation channels to the neutrino annihilation chan-

nel, PDG = 12.

- Rename the file that should be created with the results.

When running the oh2 generic wimp program in the terminal, we get a file

with the averaged annihilation cross section corresponding to the WIMP mass.

We get the results for four different annihilation channels. We plot the figure in

Python.

Figure 10

In the folders DarkSUSY → src → rd, we find the programs dsrdeqn.f, ds-

main wimp.f and the corresponding makefile. We modify the dsrdeqn.f, use the

original dsmain wimp.f and modify the corresponding makefile slightly.

Modifications of the dsrdeqn.f:

- We open a file within the program, to get the program to write the results in

this file.
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Modifications of the makefile:

- Change the DS MODULE to generic wimp

- Insert the name of the folder that includes the dsrdeqn.f file, such that the

makefile can run this program as well.

When running the dsmain wimp program of DarkSUSY in the terminal, we

insert the wanted properties of the WIMP. Since we have made the makefile

consider the modified dsrdeqn.f file, the program give us the values for freeze

out x, yield and equilibrium yield. We run the program for three different 〈σv〉.
We then plot the figure in Python.

Figure 13

In the folder DarkSUSY→ examples→ aux, we find the files oh2 ScalarSinglet.f,

and the corresponding makefile. We modify the oh2 ScalarSinglet.f slightly, and

use the original corresponding makefile.

Modifications of the oh2 ScalarSinglet.f:

- Changing the observed value of relic abundance of cold dark matter to the

updated value from Planck 2018.

- Writing which properties we want in the file with the results, xfo, mS and λ.

When running the oh2 ScalarSinglet program, we get the values for different

scalar singlet mass, mS , with corresponding λ and freeze out x, xfo. We plot

the λ for corresponding scalar singlet mass in Python.

Figure 14

In the folder DarkSUSY→ examples→ aux, we find ScalarSinglet thermal averages.f

and its makefile. We modify the ScalarSinglet thermal averages.f, and use its

original makefile.

Modifications on ScalarSinglet thermal averages.f:

- Want to use the properties of singlet scalar mass, lambda and freeze out x we

found from the program to make Fig. 13. So, we open the file we created in

that case, and read the values.
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- We then open the file we want the new results in, and write the properties

there.

When we run this program we get 〈σv〉 from the corresponding λ and freeze out

x, and we plot 〈σv〉 with the corresponding mass in Python.

Figure 18

In the folders DarkSUSY→ examples→ aux, we find the files FreezeIn ScalarSinglet.f

and its makefile. We modify FreezeIn ScalarSinglet.f slightly, and use the orig-

inal makefile.

Modifications of FreezeIn ScalarSinglet.f:

- We update the value for the observed relic abundance from Planck 2018.

When we run this program we get the scalar singlet mass and corresponding λ

in the case of the freeze in. We plot our figure in Python.
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