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Abstract

In reservoir management, the ensemble-based history matching is applied to
quantify and update uncertainty in reservoir characterization with the main objective to
support high quality decisions. However, the ensemble-based history matching could
suffer from statistical problems that make the ensemble unable to represent probability
distributions and quantify uncertainty statistically-correctly. Localization can effectively
solve the ensemble-based history matching problems. Localization weights the influence
degree that observations have over model parameters in the analysis step of ensemble
Kalman filter-based methods. In the non-adaptive localization scheme, the influence
degree is fixed in time, and unimodal distributed for all types of observations and model
parameters. Unlike the non-adaptive localization scheme, the adaptive localization
scheme defines the influence degrees based on causality relationships among simulated
observables and model parameters, so that the influence degrees can be time-variant,
multimodal distributed, and dependent of reservoir dynamics and different types of model
parameters and observations. The thesis lies in the research about the practical advantage
of adaptive localization over non-adaptive localization schemes for ensembled-based
history matching. The thesis is developed in five sections: i) generation of the initial
ensemble; ii) development of an ensemble-based history matching without localization,
the benchmark case, that applies ES-MDA,; iii) selection of the best non-adaptive
localization case, applying distance-based studies; iv) Selection of the best adaptive
localization case, applying a denoising approach; and v) Comparative analysis among
updated ensembles, defining selection criteria of the best ensemble-based history

matching for the Reek field.
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The main conclusion from the thesis work is that the history matching with the adaptive
localization scheme overperformed the history matching with the non-adaptive
localization scheme and the benchmark case (i.e., no localization) for the Reek field.
Therefore, adaptive localization scheme can improve uncertainty quantification and

decision quality in ensemble-based reservoir management.

The novelty of the thesis is that it has investigated the practical pros and cons of applying
the adaptive localization scheme for ensemble-based history matching reservoir
simulation models and proposed a general workflow to guide localization implementation
and evaluation. The thesis work has brought state-of-the-art and innovative workflows to
best practice in Equinor for implementing non-adaptive and adaptive localization
schemes. Several guidelines of recommended practice of implementing the workflows
have been proposed and developed. The effectiveness of the guidelines and workflows
have been tested and evaluated, which contributes to further developing and improving
the theories/workflows/guidelines and integrating them in Equinor’s existing workflows
and software for quantitative and qualitative analysis of history matching results and for
facilitating and enhancing the adaptive localization implementation in Equinor and the

oil and gas industry.
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Preface

The thesis work subject lies in the knowledge gap about the practical pros and cons that
adaptive localization scheme has over non-adaptive localization scheme for enhancing
ensemble-based history matching. The thesis scope includes the theoretical description
and comparison between non-adaptive and adaptive localization schemes, the proposal of
a best practice workflow for qualitative and quantitative comparison of the different
localization scheme results, and the implementation of this workflow in a synthetic case,
Reek field. The proposed workflow develops a benchmark case (i.e., no localization),
three non-adaptive localization cases and select the best non-adaptive localization case,
three adaptive localization cases and select the best adaptive localization case and,
ultimately, performs a comparative analysis among the benchmark case and the best non-
adaptive and adaptive cases. The aim of the thesis is to investigate the practical pros and
cons of applying the adaptive localization scheme for history matching reservoir
simulation models and to propose practical guidelines for implementing the adaptive
localization scheme. This thesis is supervised by Professor Aojie Hong at UiS and Remus
Hanea in Equinor, and it is submitted to the Faculty of Science and Technology at UiS in
partial fulfilment of the requirements for the master’s degree in Petroleum Geosciences

Engineering, in the spring semester 2022.

The problem statement, its background theories, and the research questions for the thesis
are in Chapter 1. Descriptions and theoretical limitations of non-adaptive and adaptive
localization schemes are in Chapter 2. The applied methods for ensemble-based history
matching with and without localization, the proposed workflow tested in the thesis, and
the dataset used for implementing localization are in Chapter 3. The main history

matching results, and its analysis and discussions are in Chapter 4. Complementary
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history matching result are in the appendixes, which are consistent with the discussions
presented in Chapter 4. The discussion with respect to the research questions, conclusions
and further work are in Chapter 5. Initial ensemble coverage of observations for all wells
and observation types are in Appendix A. The benchmark (i.e., no localization) ensemble
coverage of observations for all wells and observation types are on Appendix B. The non-
adaptive tapering maps and the non-adaptive localization history matching results for
permeability are included in Appendix C. The adaptive localization history matching
results for permeability are in Appendix D. The comparative analysis results for
permeability and the comparison of ensemble coverage of all updated ensembles for all

wells and all types of observations are in Appendix E.
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1. PROBLEM STATEMENT

1.1. Background overview

1.1.1. Ensemble-based history matching

Ensemble-based history matching brought a different approach to quantify
subsurface uncertainties in reservoir engineering to support high-quality decisions. The
ensemble-based history matching introduced a probabilistic approach that changed the
deterministic paradigm in reservoir characterization, and the manually history matching.
The deterministic approach for history matching was based on defining one geological
realization as reference or base model, and manually match observations!. Then, the
manually history matched reference model was used to forecast reservoir performance.
The probabilistic approach consists of defining multiple geological realizations for
assisting history matching of observations, and then use all these possible geological
realizations to predict a probabilistic reservoir performance, quantify subsurface
uncertainties and take better supported decisions. The ensemble-based history matching
generates a set of multiple geological realizations relying on Monte Carlo simulation for

representing probability distributions of model parameters?.

Chapter 1 will introduce a brief historical review of how ensemble-based history
matching started, its definition, motivation, and limitations. The ensemble-based history
matching applied in the thesis is the ensemble-smoother with multiple data assimilation

(ES-MDA). The description of the ES-MDA scheme is in Chapter 3.

1 Observations mean the data that are actually measured from the reservoir, e.g., well production rates, well
water cuts, well gas-oil ratio, well bottomhole pressure.
2 Model parameters are uncertain static subsurface properties, e.g., porosity, permeability.
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Brief historical review

The ensemble-based history matching method — ensemble Kalman Filter (EnKF)
— was developed by Evensen (1994). After that, many variants of the method were
proposed, and they (including the original EnKF) where first applied in the atmospheric
and oceanographic sciences (Evensen and van Leeuwen, 2000; Houtekamer and Mitchell,
2001; Whitaker and Hamill, 2002; Navdal et al., 2003; Aanonsen et al., 2009). In these
applications, large scale non-linear forward models® were used, and only state variables®*
were updated given additional information/data for weather forecasting.
Early applications of the ensemble-based history matching in petroleum reservoir
engineering appeared in the 2000s (Neevdal et al., 2003; Evensen et al., 2007), where both
model parameters and state variables were updated simultaneously. Neevdal et al. (2003)
applied the ensemble Kalman filter (EnKF) for updating dynamic reservoir model state
variables (such as pressure and saturations), and static geological model parameters (such
as permeability) of a 2D reservoir model. The 2D reservoir model was history-matched
to production rates and bottom hole pressure data. Later studies (Gu and Oliver, 2004;
Wen and Chen, 2005; Zafari and Reynolds, 2005; Gao et al., 2006) included the update
of other types of geological model parameters (such as porosity, fluid contacts, and fault
transmissibility) in synthetic models. Bianco et al. (2007), Evensen et al. (2007), and
Haugen et al. (2008) presented history matching studies in three real fields located in the
west of Africa and in the North Sea, in which EnKF was applied and gave better match
of observations and predictive capability of the reservoir models than the obtained by
manual history matching. Emerick and Reynolds (2013) compared manually history-

matched results with ES-MDA and EnKF ensemble-based history matching results in a

3 Forward models mean numerical models to calculate predictions, e.g., reservoir numerical simulator.
4 State variables are uncertain dynamic properties, e.g., fluid saturations, reservoir pressure.
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turbidite reservoir located in the Campos Basin, Brazil. Emerick and Reynolds (2013)
observed that both ensemble-based history matching methods resulted in significant
improvements in the observation matches from the manual history matching results, and
generated more realistic geological models with better predictions. These referenced
studies demonstrates that the ensemble-based history matching can achieve promising

results in synthetic and real cases.

Definition

Ensemble-based history matching is a statistical and Bayesian approach to
quantifying and updating uncertainty in reservoir characterization and production forecast
when additional information/data (e.g., observations) become available (Zafari and
Reynolds, 2005; Chen and Oliver, 2011). Ensemble-based history matching applies
Monte Carlo simulation to perform Bayesian inference for updating a prior ensemble of
geological realizations that represents the prior uncertainties of model parameters, given
new information (Evensen, 2003; Aanonsen et al., 2009). Thus, the output of the
ensemble-based history matching is an updated/posterior ensemble of geological
realizations that represents the posterior uncertainties of the model parameters.
In general, the ensemble-based history matching consists of three steps (Gu and Oliver,
2004; Evensen et al., 2007; Aanonsen et al., 2009):

I. Initialization step: A prior ensemble is generated from randomly sampling over

the probability distributions of the model parameters, given the current

knowledge.
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Forecast step: Forward modelling is then performed on the prior ensemble to
simulate observables®.

Analysis step: The model parameters of the prior ensemble are adjusted
according to the mismatch between the simulated observables and actual
observations. In the history matching context, this mismatch is called
innovation. The geological realizations with the adjusted model parameters

constitute the posterior ensemble.

Fig. 1 shows a simplified view of the forecast step and the analysis step of the ensemble-

based history matching. The forecast step is starting from the prior ensemble (grey

squares in the left panel of Fig. 1). The space of simulated observables is generated by

numerical simulation (green arrows and dotted line in the left panel of Fig. 1). The

analysis step calculates the mismatch (innovation) between the simulated observables and

actual observations, and it uses a linear combination scheme to calculate the posterior

ensemble. The linear combination scheme will be explained in more details in Chapter 3,

section 3.1.
FORECAST STEP ANALYSIS STEP
Simulated
Prior _ Observables Actual
Ensemble & e Observations
_
! I Mismatch (Innovation)
¢ ) ! Calculation
! \
i 1 .
\ ? Linear
I / Combination Posterior
h / Ensemble

1
R

Fig. 1 Simplified view of the forecast and analysis steps in the ensemble-based history matching

5 Observables are variables than can be observed or measured, e.g., well fluid rates, well water cuts, well
gas-oil ratio, well bottomhole pressure. Notice that simulated observables are different from observations.
Observations are observables that have been actually observed/measured, whilst simulated observables are
calculated using forward modelling.
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Motivation and limitations

The ensemble-based history matching has caused a cultural change from using a
deterministic reservoir characterization towards a probabilistic reservoir characterization
as a result of history matching. The ensemble-based history matching introduced the
concept of updating multiple geological realizations to match the observation history.
Therefore, ensemble-based history matching allows to quantify uncertainty of the
material model parameters® to generate probabilistic forecasts; it generates a range of
production forecasts that embrace the reservoir characterization uncertainty; and it
supports decision makers with a better understanding of possible outcomes. Thus, the
main motivation for applying ensemble-based history matching focuses on supporting
high-quality decisions that can lead to a greater chance of getting desired outcomes. In
addition, ensemble-based history matching allows to combine a non-linear forward model
to represent the nonlinearity of reservoir dynamics, with a linear and Gaussian uncertainty
updating, while projecting the whole model parameter uncertainty space in the space of
the ensemble dimension. Such a combination can significantly mitigate the computational
intensiveness for Bayesian updating when a computation demanding forward model is
involved. Thus, the ensemble-based history matching is more efficient and assertive for
quantifying reservoir characterization uncertainties than the traditional manually history
matching, performed by trial and error, in an iterative process, in which the users analyzed
the difference between simulated observables and actual observations, chose one or few

model parameters to change manually at a time to improve the history matching.

A main limitation of ensemble-based history matching refers to the use of an ensemble

with a small number (usually, < 100) of realizations, which brings probability distribution

® Material model parameters are those whose different possible values could drive to different decisions.

5
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sampling errors’, and rank deficiency or insufficient degrees of freedom?®. These statistical
problems can lead to spurious correlation, filter divergence, and/or ensemble collapse;
and consequently, an ensemble loses its ability to statistically-correctly represent
probability distributions and quantify uncertainty given additional observations
(Aanonsen et al., 2009; Emerick and Reynolds, 2010; Sakov and Bertino, 2010; Luo et
al., 2019). Spurious correlations are correlations among observations and model
parameters that do not have a physical relationship or causation. Spurious correlations
make the ensemble diverge, which is known as filter divergence. When ensemble
diverges, the ensemble is getting updated wrongly, its uncertainty quantification is not
reliable, and could drive to an ensemble collapse (right panel of Fig. 2 shows an
illustration of an ensemble collapse). At this point, the posterior model parameter
distributions suffer the loss of their variance (c?). Consequently, all the realizations give

similar value of simulated observables.

ENSEMBLE COLLAPSE

Prior Ensemble Posterior Ensemble

Fig. 2 lllustration of ensemble collapse.

Chen and Oliver (2017) performed ensemble-based history matching in a synthetic 2D
water flooding model, and pointed out filter divergence and spurious correlation in an
small ensemble when updating the log-permeability field. Chen and Oliver (2017)

compared the history matching results between a small and large ensemble. Fig. 3(a)

7 Sampling errors are statistical errors that occurred when randomly sampling (Monte Carlo) the model
parameters distribution with a small ensemble size.

8 Rank deficiency or insufficient degrees of freedom refers to the inability of a small ensemble to solve the
assimilation algorithms for large number of independent data, when they are greater than the number of
ensemble members.
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shows the truth log-permeability field. Fig. 3(b) and Fig. 3(d) illustrate respectively the
ensemble mean and the standard deviation of the log-permeability field obtained with a
small ensemble of one hundred members (N, = 100). Fig. 3(c) and Fig. 3(e) display
respectively the mean and the standard deviation achieved with a large ensemble of two
thousand members (N, = 2000). The scale for the mean of the log-permeability maps is
the same. The scales for the standard deviation for the small and large ensembles are
different. The scale for the small ensemble, in Fig. 3(d), ranges in the interval (0, 0.04),
and the scale in the large ensemble, in Fig. 3(e), ranges in the interval (0, 1.4). The initial
ensemble average mean and average standard deviation of the log-permeability are 2.5
and 1.2, respectively (both values highlighted with a dashed line over the respective color
scale). The dark grey squares over the log-permeability mean maps in Fig. 3(a), Fig. 3(b),
and Fig. 3(c) are used in the thesis for highlighting differences among the Truth model,

and the history-matched models from the small and large ensemble.

6.51
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4.90
4.10
329
T4
1.69
0.88
0.08
=073
-153

wuny

Initial ensemble:
Average Mean (Unitiq1) = 2.5
Average Std (oppitiqr) = 1.2

(d) (e)

Fig. 3 Example of spurious correlation, filter divergence and ensemble collapse in a synthetic 2D water flooding
field, edited from Chen and Oliver (2017).
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Chen and Oliver (2017) showed the effect of sampling error and insufficient degree of
freedom that a small ensemble suffered and resulted in filter divergence, spurious
correlation and tendency to ensemble collapse. In the small ensemble, the log-
permeability mean values (Fig. 3(b)) are spatially more heterogenous than the log-
permeability mean values of the Truth (Fig. 3(a)). This larger spatial heterogeneity is
observed with greater proportion of areas colored in dark red and dark blue in Fig. 3(b)
than in Fig. 3(a). Therefore, the resulted small ensemble got updated wrongly, it suffered
of filter divergence and spurious correlation. Opposite to the small ensemble, the large
ensemble shows log-permeability values colored in lighter red and lighter blue in Fig.
3(c) that represent less spatial heterogeneity, which is more alike to the spatial
heterogeneity observed in the Truth model. The dark grey boxes over the log-permeability
mean maps (Fig. 3(a), Fig. 3(b), Fig. 3(c)) are useful to highlight the filter divergence and
spurious correlation observed in the framed area in the update of log-permeability field
by the small ensemble. The filter divergence and spurious correlation in the small
ensemble are observed by reddish areas inside the dark grey box in Fig. 3(b) that are not
observed inside the dark grey box over the Truth model, Fig. 3(a). These reddish areas in
Fig. 3(b) represent high values of log-permeability which are not observed inside the dark
grey box over the truth. Opposite to the small ensemble, the large ensemble does not show
reddish colors inside the dark grey box in Fig. 3(c) and matches better the log-
permeability spatial distribution observed in the Truth model in Fig. 3(a) (notice that the
blueish and greenish colors inside the dark grey box are alike between the large ensemble
and the truth model). Furthermore, the small ensemble suffered a larger reduction of the
ensemble log-permeability standard deviation than the large ensemble did. In Fig. 3(d),
the log-permeability standard deviation values range mostly in the interval (0.01, 0.02),

and they are significantly smaller than the log-permeability standard deviation values of

8
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the large ensemble in Fig. 3(e), which range mostly in the interval (0.42, 0.84). Chen and
Oliver (2017) reported that the average initial ensemble standard deviation was 1.2. In
Fig. 3(d), the resulted average standard deviation of the small ensemble can be observed
to be approx. 0.017. In Fig. 3(e), the resulted average standard deviation of the large
ensemble can be observed to be approx. 0.70. In the small ensemble, the larger reduction
of the ensemble log-permeability standard deviation after history matching (from an
initial ensemble average of 1.2 to 0.017) means that the small ensemble lost its spread
abruptly, and it was tending to ensemble collapse. Unlike the small ensemble, the large
ensemble kept the spread of the ensemble after history matching (from an initial ensemble
average of 1.2 to 0.70). The example presented by Chen and Oliver (2017) illustrated
some of the challenges that ensemble-based history matching experiences when using
small ensembles, limiting their effectiveness to quantify the uncertainty in reservoir
characterization, to make reliable models, to predict production profiles and

consequently, to support high-quality decisions.
1.1.2. Localization Concept

Definition

Localization is an approach for enhancing ensemble-based history matching of
large amounts of data. Localization mitigates the ensemble-based history matching
problems caused by sampling errors and insufficient degree of freedom of small
ensembles. Localization regulates the analysis step during the history matching process
by defining the degree of influence that observations have over the update of different
model parameters. There are different types of localization schemes to tackle both rank
deficiency and sampling errors, such as tapering the Kalman-gain matrix, or splitting

observations in groups in order to do local analysis (Sakov and Bertino, 2010; Chen and

9
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Oliver, 2017; Luo et al., 2019). The localization scheme selected and used for this thesis
work is the local analysis scheme. Local analysis selects which observations are used and
their degree of influence over the model parameters for computing the updated ensemble.
Chen and Oliver (2017) explained the local analysis localization concept using a 2D
example, illustrated in Fig. 4, where the dots are the location of the observations in the
field, the grey square represents the model parameters to be updated in a grid model, and
the circle represents the virtual window or region for selecting which observations are
considered to have influence on the update of the model parameters in the grey cell. The
size of the circle is a user input and is determined based on the user’s domain knowledge.
Only the observations inside the circle (the red dots) are used for computing the update
of the model parameters in the grey cell. The observations outside the circle (the black

dots) are not used for updating the model parameters in the grey cell.

4 6 8 10 12 14 16

Fig. 4 Local analysis scheme example for performing the update of the model parameters in a single cell from Chen
and Oliver (2017).

In addition, localization can weight gradually the influence degree that observations have

over the update of model parameters inside the virtual window or defined region.

Therefore, some observations could have stronger influence than others inside the circle.

Fig. 5, right panel, shows a circle (virtual window) around well P28 painted with a color

scale. This color scale illustrates a gradual decrease of influence that observations have

10
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for the update of model parameters in the grid cell where well P28 stands. Observations
that are in the red-reddish area have stronger influence, those in the yellowish-greenish
area have moderate influence, those found in blueish area have week influence, and
finally, those observations in the white area of the 2D space in Fig. 5, right panel, which
are out of the critical radius defined by the virtual window, do not have any influence

over the update of the model parameters in the grid cell where well P28 exists.
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Fig. 5 Local analysis example of observation selection and their influence degree (tapering function) over model
parameters update from Chen and Oliver (2017).
Localization can effectively eliminate unrealistic correlations over long-distance by
reducing the amount of data used for history matching at a specific location. As a result,
localization solves the ensemble-based history matching problems or limitations:
spurious correlation, filter divergence and ensemble collapse (Aanonsen et al., 2009;

Emerick and Reynolds, 2010; Sakov and Bertino, 2010; Luo et al., 2019).

Non-adaptive and adaptive localization brief overview

The influence degree that observations have over model parameters updates
could be defined either based on a non-adaptive or adaptive localization scheme. The
traditional localization scheme for history matching has been non-adaptive, which defines

the influence degree of observations over model parameters update based on the physical
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distance between observations and the model parameters coordinates in the geological
model space. In the non-adaptive localization scheme, the influence degree relations
among observations and model parameters are fixed in time, and are independent of the
type of observations or model parameters that are related to each other during the analysis
step (Sakov and Bertino, 2010; Chen and Oliver, 2017; Silva Neto et al., 2021). Unlike
the non-adaptive localization scheme, the adaptive localization scheme defines the
influence degree of observations over model parameters based on causality relations
among them, which are represented by correlation coefficients that are calculated based
on reservoir simulation results. Model parameters and simulated observables that have
stronger dynamic causality in reservoir simulation generate stronger correlation
coefficients among the corresponding model parameters and observations (Emerick and
Reynolds, 2010; Luo and Bhakta, 2019; Luo et al., 2019; Silva Neto et al., 2021). The
correlation coefficients that relate observations and model parameters in the adaptive
localization scheme can change over time when reservoir dynamics changes, and the
correlation coefficients can be different for different types of observations and model

parameters.

LOCALIZATION SCHEMES
Non-Adaptive Adaptive
[ o ®
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Fig. 6 Non-adaptive and adaptive localization scheme illustration, highlighting different influence degrees of the
same set of observations over model parameters in the grey cell.
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Fig. 6 illustrates the differences between non-adaptive and adaptive localization schemes
regarding the influence degree of the same set of observations over the update of model
parameters located in the grey cell. The non-adaptive localization scheme is distance or
region based. Thus, it assigns stronger influence degrees to those observations that are
closer to the grey cell (left panel in Fig. 6). In contrast, the adaptive localization scheme
Is reservoir dynamics correlation based. Therefore, the correlation coefficients among
observations and model parameters to govern the analysis step is defined based on the
reservoir dynamics causation among model parameters and simulated observables. This
means that closer observations to the grey cell can have weaker influence degrees that
farther observations, depending on correlations among observations and model
parameters (right panel in Fig. 6). The adaptive localization scheme selects only those
observations that have stronger causal relationships, based on reservoir dynamics, with

the model parameters to be updated in the analysis step.

Further localization scheme discussions and descriptions are in Chapter 2 and Chapter 3,

respectively.

1.2. Knowledge gap

The knowledge gap of the study lies in the research about the practical advantage of
adaptive localization over non-adaptive localization schemes for ensembled-based history
matching. Theoretically, adaptive localization schemes should be more representable of
the reservoir dynamics and its heterogeneities. However, their applications have not been
extensively tested in different settings to conclude their practical advantage over the non-

adaptive localization schemes.
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1.3. Aim of the study

The aim of the thesis is to investigate the practical pros and cons of applying the
adaptive localization scheme for history matching reservoir simulation models, and to
propose practical guidelines for implementing the adaptive localization scheme. The
thesis applies the ensemble-based history matching study in a synthetic field, Reek field,

which is described later in Chapter 3, section 3.6.
1.4. Research questions

The thesis will answer the following research questions:
¢ Does the application of localization techniques achieve a better history matching than
the case without applying any localization technique in ensemble-based history

matching, for the Reek Field?

¢ Does the adaptive localization scheme enhance history matching over the non-adaptive
localization scheme for the Reek Field?

e What are the advantages and limitations of using non-adaptive and adaptive

localization schemes in practice?

e What are the recommended practices of implementing non-adaptive and adaptive

localization schemes?

14
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2. LOCALIZATION SCHEME DISCUSSION

Localization is an approach for addressing the challenges in the ensemble-based
history matching. In Chapter 1, the definition of localization is in section 1.1.2., and the
ensemble-based history matching limitations or challenges are in section 1.1.1. There are
two common localization methods being applied in reservoir engineering, Kalman-gain
or covariance localization and local analysis. Both methods use tapering coefficients® to
perform the Schur product® of the Kalman Gain ensemble matrix and regulate the
updating of the model parameters. The covariance localization regulates the analysis step
globally, by multiplying the Kalman gain matrix elementwise by a distance-based
correlation matrix (matrix with all the tapering coefficients) to generate a localized
covariance estimate (Aanonsen et al., 2009; Sakov and Bertino, 2010; Chen and Oliver,
2017). The local analysis decomposes a reservoir model into several local domains so that
the model parameter update of each domain is performed by selecting observations within
a critical distance or region from the model parameters, and by weighting the influence
degree of those observations with tapering coefficients (Aanonsen et al., 2009; Sakov and
Bertino, 2010; Chen and Oliver, 2017). The Kalman-gain or covariance localization
method is beyond the scope of this thesis. The thesis applies localization with the local
analysis method, which is referred to as the non-adaptive localization scheme in the rest

of the thesis.

® Tapering coefficients are scaling coefficients to weighting the degree of influence that observations have
over a space of model parameters in the analysis step. The tapering coefficients can follow a hard rule,
ranging in the discrete interval {0,1}, or they can follow a smooth rule, ranging in the continuous interval
[0, 1]. Strong influence degrees are represented by coefficient’s values near or equal to one (1). Week
influence degrees are represented by coefficient’s values near or equal to zero (0).

10 The Schur product is an elementwise product of matrices. Operation that takes two matrices of the same
dimension to produce a matrix of the same dimension, where each resulted element i,j is the product of
element i,j of the original two matrices.
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The rest of Chapter 2 will discuss the main features and limitations of the non-adaptive
and adaptive localization schemes. The detailed description of the ensemble-based history
matching method (ES-MDA), the non-adaptive and adaptive localization schemes applied

in the thesis are in Chapter 3.
2.1. Non-adaptive localization scheme

Main features

The non-adaptive localization scheme is the most adopted scheme for ensemble-based
history matching, and many studies have demonstrated the benefit of using the non-
adaptive localization scheme over the history matching without localization (Emerick and
Reynolds, 2010; Sakov and Bertino, 2010; Chen and Oliver, 2013, 2017; Luo et al., 2017,
2019; Luo and Bhakta, 2019; Silva Neto et al., 2021). However, there are limitations of
using the non-adaptive localization scheme, as will be discussed later. The non-adaptive
localization scheme is a distance-based or region-based scheme to define the influence of
observations over model parameter updates. The region-based localization scheme
consists of defining polygons in the space of the reservoir model and governing the update
of the model parameters inside each polygon with the observations physically located in
the polygon. The influence degree of an observation/datum over model parameters can
be represented with a value equal to either one (1) or to zero (0), which is called in the
rest of the thesis as discrete tapering coefficients. If the observation is taken in the update,
then the influence degree is one (1). Otherwise, the influence degree is zero (0), which
means that the observation is not taken in the update of those model parameters. The non-
adaptive localization scheme can also apply continuous tapering coefficients to define
smooth influence degrees (values from 0 to 1 instead of either O or 1) of observations over

model parameters. Either the discrete or continuous tapering coefficients are computed
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based on the physical closeness between an observation and a model parameter in the
geological models. Therefore, closer observations to a model parameter have stronger
influence on the model parameter than farther observations. The influence degree of
observations over model parameters can be defined with discrete or continuous tapering
coefficients. Unimodal tapering functions!! are commonly used to govern the
observations influence degrees over model parameters, when choosing continuous

tapering coefficients in the non-adaptive localization scheme.

Luo et al. (2019) showed an example of a distance-based unimodal tapering coefficients
for the observations in the well B-2H in the Norne Field (Fig. 7). Luo et al. (2019)
introduced a yellow to blue color scale to illustrate B-2H observations influence degrees
over model parameters updates in the Norne Field. In Fig. 7, the yellowish color
represents the area where B-2H observations have stronger influence degrees, smoothly
reducing to weaker influence degrees farther from B-2H towards the blueish area. The
non-adaptive localization schemes are characterized by setting the same tapering
coefficients in the space and time domain for each type of observations over each type of
model parameters during history matching. Thus, the unimodal tapering coefficients map
that is illustrated in Fig. 7 was kept fixed for all types of observations in B-2H (water, gas
and oil production rates) over the update of model parameters (porosities and
permeabilities) in Layer 10 of the Norne Field during the nine years of history matching

performed by Luo et al. (2019).

11 “Unimodal tapering functions” refers to the functions that generate continuous tapering coefficients that
decreases smoothly and continuously from the physical location of the observations.
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Fig. 7 Unimodal tapering function for non-adaptive localization scheme in the Norne field from Luo et al. (2019).

Limitations

Luo and Bhakta (2019) summarized the non-adaptive localization scheme
shortcomings for history matching. A major drawback occurs when it is needed to handle
non-local observations which are observations that are not linked to a physical coordinate
in the 3D geological model space (e.g., leading wavelet coefficients of 4D-seismic data
(Luo et al., 2017), because the non-adaptive localization scheme depends on the
availability of physical locations for both the observations and the model parameters.
Additionally, the non-adaptive localization scheme does not consider that the
observations influence degrees over model parameters may change over time due to
reservoir dynamic changes through production life. Furthermore, the non-adaptive
localization scheme does not consider different influence degrees among observations
and model parameter types. Therefore, the same tapering coefficients maps are applied to
all type of observations which share the same physical location in the 3D geological
model space to govern the update of model parameters. In addition, another limitation of
the non-adaptive localization scheme refers to unimodal distributed tapering coefficients
which update model parameters based on distance instead of reservoir dynamics relations

among observations and model parameters.
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2.2. Adaptive localization scheme

Main features

The adaptive localization scheme is designed to mitigate the limitations of the non-
adaptive localization that is based on distance or regions. The first attempts for adaptive
localization schemes were based on streamlines (Arroyo-Negrete et al., 2008) or drainage
areas (Emerick and Reynolds, 2010). These attempts considered reservoir dynamics
(streamlines or drainage radius) to define the influence degree regions of well
observations over model parameters, but the localization scheme still depended on
physical location of observations and model parameters; the tapering coefficients maps
were unimodal distributed, did not change over time during history matching, and did not
consider different physical relations among observation and model parameter types. Luo
et al. (2019) introduced an adaptive localization scheme based on correlation coefficients
among model parameters and the simulated observables. The adaptive localization
scheme introduced by Luo et al. (2019) held the principle that if an simulated observable
showed a physical causal relation with a specific model parameter, then the observation
needed to be used in that model parameter update. Otherwise, that observation should not
be considered in the update of the specific model parameter. The physical causal relation
is quantified in term of the magnitude of the correlation coefficient between a model
parameter and a simulated observable because the correlation coefficient is related to the
physics modelled in the reservoir simulation model. The correlation coefficients can have
multimodal*? distribution, can be sensitive to different physical relations among

observation and model parameter types, and can vary in the time domain. Fig. 8 and Fig.

12 The term of multimodal distributions means that the correlation coefficients between model parameters
and simulated observables could have different spatial trends based on the physical causality among model
parameters and simulated observables, modelled with reservoir simulation.
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9 illustrate different correlation coefficients maps of the adaptive localization scheme

(Luo et al., 2019).
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Fig. 8 Correlation coefficients between B-2H gas production rate (WGPR) and two model parameters, permeability

(PERMX) and porosity (PORO) in the Norne field study on Day 41 of reservoir simulation, from Luo et al. (2019).
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Fig. 9 Correlation coefficients between B-2H gas production rate (WGPR) and two model parameters, permeability
(PERMX) and porosity (PORO) in the Norne field study on Day 2,460 of reservoir simulation, from Luo et al. (2019).

Fig. 8 shows different correlation coefficients maps among gas production rates and two

different model parameters, permeability (PERMX) and porosity (PORO) at Day 41 of

reservoir simulation. The differences in the correlation coefficients maps between Fig.

8(a) and Fig. 8(b) demonstrate that the adaptive localization scheme can provide different

correlation coefficients among different type of observations and model parameters. In

addition, Fig. 9 shows the correlation coefficients between gas production rates and the
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same two model parameters (permeability and porosity) at a different date than Fig. 8,
Day 2,460. The correlation coefficients in Fig. 8 are different than those in Fig. 9. The
adaptive localization scheme can define different correlation coefficients maps based on
the physical causation relation among model parameters and simulated observables at

different times.

The adaptive localization scheme introduced by Luo at al. (2019) defined observations
influence degrees over model parameters with discrete tapering coefficients'®. The
adaptive localization calculates tapering coefficients to regulate the history matching
update based on correlation coefficients among model parameters and simulated
observables, and it applies a positive correlation-threshold value. The adaptive
localization scheme introduced by Luo at al. (2019) proposed that if the absolution value
of the correlation coefficient between a simulated observable and a model parameter was
greater than the correlation-threshold value, the tapering coefficient had a value of one
(1), and then the observation was taken for updating the model parameter. Otherwise, the
tapering coefficient had a value of zero (0), and the observation was excluded during the
history matching. The application of positive correlation-threshold values allows to only
include the observations that have strong causal relations with the model parameters, in

history matching.

The adaptive localization explained by Luo and Bhakta (2019) identified two problems
in the adaptive localization scheme introduced by Luo at al. (2019) and proposed an
alternative method to compute a positive correlation-threshold value. The two problems

identified by Luo and Bhakta (2019) were, first, the application of a user-defined

13 Discrete tapering coefficient means that the tapering coefficient only can have the value of either zero
(0) or one (1).
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(empirical) tuning factor to compensate the assumption that sampling errors in the
correlation fields were white Gaussian noise'*; and second, the application of discrete
tapering coefficient to update model parameters that may induce discontinuities in the
updated geological realizations, and could neglect some observations that may be slightly
lower than the positive correlation-threshold value, but may have still-influential degree
in the model updates. Luo and Bhakta (2019) proposed a more efficient workflow for the
estimation of noise levels that were used for computing a positive correlation-threshold
value, and the application of a continuous tapering rule for defining the tapering

coefficients that govern the model parameter’s updates.

Furthermore, as the adaptive localization scheme introduced by Luo at al. (2019) and Luo
and Bhakta (2019) were based on the magnitudes of correlation coefficients instead of
being based on the magnitudes of physical distances between observations and model
parameters, the adaptive localization scheme allows to handle non-local observations,
which can be available in seismic data history matching problems (e.g., leading wavelet
coefficients of 4D-seismic data (Luo et al., 2017)). However, in the case study of this
thesis, only the observations with a physical location (e.g., well water cut, well gas-oil

ratio, well block average pressure) are considered.

Limitations

The discrete tapering coefficients maps proposed by Luo at al. (2019) could have isolated
speckles depending on the way how the tapering coefficients were calculated from the
correlation coefficients and the correlation-threshold value, which could make the

tapering coefficient maps to look discontinuous in space. Fig. 10 illustrates the tapering

14 White Gaussian noise means that the sampling errors are assumed to have a zero-mean normal
distribution with variance or noise, S, (N(0, S)).
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coefficients for B-2H gas production over permeability and porosity (the left and right
panel in Fig. 10, respectively) on simulated Day 41. The illustrated tapering coefficients
are chosen from the discrete interval {0,1}. There are examples of isolated speckles in
Fig. 10(a), where yellow-colored gridcells are isolated within the blue area. Fig. 10(b)
illustrates the lack of transitions or smoothness among blue-colored and yellow-colored
gridcells in the model space due to discrete tapering coefficients. The use of discrete or
discontinuous tapering coefficients could make abrupt model parameters update in space,
generating that the reservoirs models in the ensemble could lose the representable

geological continuities.
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Fig. 10 Tapering coefficients calculated from the correlation coefficients in the Norne Field by Luo et al. (2019)

Furthermore, the adaptive localization scheme could be more computational demanding
than the non-adaptive localization scheme because of additional computations required
for calculating the correlation coefficients among model parameters and simulated

observables.
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3. METHODS AND DATA

3.1. Ensemble smother with multiple data assimilation

The ensemble smoother with multiple data assimilation (ES-MDA) is an iterative
ensemble-based method that consists of performing the assisted history matching (AHM)
multiple times (user-defined number of iterations), with the same set of observations, for
gradually control the changes in the model parameters during history matching. ES-MDA
makes smaller changes in the model parameters at early iterations and then gradually
makes larger changes in the model parameters at later iterations. The motivation of
applying the ES-MDA lies in its advantages over other ensembled-based history matching
methods used in reservoir engineering, e.g., ensemble Kalman filter (EnKF) (Aanonsen
et al., 2009) and ensemble smoother (ES) (Skjervheim et al., 2011). ES-MDA performs
better than EnKF and ES in highly non-linear systems: ES-MDA achieves better data
matches, more reliable uncertainty quantification of model parameters and production
forecasts, and it runs with comparable computational costs (Gu and Oliver, 2007; Emerick
and Reynolds, 2012, 2013). In the ES-MDA, the spread of the observation error’s
covariance is increased gradually with inflating factors over each iteration. The sum of
the inversed inflating factors used in each ES-MDA iteration is equal to 1, Equation ( 2).
Emerick and Reynolds (2013) introduced the algorithms to perform the three history
matching steps (initialization, forecast and analysis) in the ES-MDA, which are

summarized in Workflow 1.
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WORKFLOW 1

Initial ensemble
Ensemble of prior geologic models

Pre-iterations
Define number of iterations and the inflating factors

Initialization

v
Run forward model
‘ Simulate ensemble of observables

Forecast

‘ Perturb observations
Create the vector of inflated observations

‘ Update model parameters
- Eguation.(fz).

Analysis

No
All iterations?

l Yes

Output AHM results
v
Stop

Workflow 1 Perform ensemble-based history matching with ES-MDA

The details in each history matching steps (initialization, forecast and analysis) are

described as follows:

Initialization step:

¢ Initial ensemble: Sample N, members from the prior distributions of the uncertain
model parameters (m) of the reservoir dynamic system,
N
{m?l}nil
(1)
where subscript, n , denotes the index of an ensemble member that ranges from 1 to
N,, and the superscript, 0, indicates that the ensemble of model parameters is the initial

ensemble, based on prior knowledge.

e Pre-set iterations: Define the number of iterations, N,, and the inflating factors a;., 4
forl =0,1,...., N, — 1 to be used in each iteration. The values of a;,; are commonly

defined as decreasing with [, and they must satisfy the following condition
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Ng-1

1
D a =1
AR

=0

(2)
Forecast step:

FOR Il=0to N,—1 (Il =0 indicates that the forecast step in the first iteration is
starting from the initial ensemble. Consequently, the forecast step in the last iteration, N,

starts with the ensemble correspondingto [ = N, — 1)

e Run forward model: Simulate the vector of observables, d, , by running the forward
model (i.e., a numerical reservoir simulator, Eclipse in this thesis) for the entire time

of observations,

dl = gmb), forn=1,2,...,N,,
(3)

where g(-) represents the forward or simulation model, and d! is the vector of
simulated observables throughout the observation history, containing the observables

simulated with the model parameters m,.

e Observation perturbation: Create the vector of inflated observations d', , , based
on the vector of actual observations d,;,s, the covariance matrix of observation

measurement errors Cp,, and the inflating factors «a;..,, using

d%l,C,Tl = dObS + 4/ al+1CD1/ZZd, forn = 1,2, ...,Ne;
(4)

where z; is a vector of random values generated from the normal distribution,
N(0,Iy,), with Iy, being the identity matrix of size equal to the total number of

actual observations in the entire history (Ny).
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Analysis step:

e Analysis step: Update the model parameter vector using the linear combination

calculated in the following equation,

-1
mitt = mb + Chp(Chp + a141Cp)  (dhen —db), forn =12, ..., N,;
(5)

where C};, is the cross-covariance matrix between model parameters and simulated
observables, €, is the auto-covariance matrix of simulated observables. Both
covariance matrices Cj,, and C}, are calculated for each iteration in the same way
as the ensemble smoother (ES) is used, based on the ensemble {m!, dh},’l’il

(Skjervheim et al., 2011).

END FOR 1 =0 to N, —1 (history matching loop is repeated for N, number of

iterations).

In the thesis, the number of iterations N, = 3, and the inflating factors, a;,, =

7,3.5,1.75 for [ = 0,1,2, respectively, are used.

3.2. Localization in ensemble smoother with data assimilation

Luo et al. (2019) explained that the role of localization was to modify the degree of
the observation’s influence on model parameters. The way how localization modifies the

analysis step is summarized as followed:

¢ In the analysis step of ES-MDA history matching, the updated model parameters are

calculated using Equation (5) forn =1,2,...,N,,andforl = 0,1, ..., N, — 1.
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e Equation (5) can be re-expressed using Equation ( 6 ) and Equation ( 7 ) to ease later
discussions.

-1
K'= CI{/ID(CIZ)D + al+1CD) )

(6)
where K! is a Kalman-gain-like matrix in iteration I,

Ad' = (dben — db),
(7)

where Ad' is the innovation with respect to the prior m},

mitt = mb + K'Ad!
(8)

o Let mi,f,} stands for the pth model parameter variable (p =1, 2, ..., m) of the updated
model vector m4+L. In the same way, mé,n represents the pth model parameter variable

(p=1,2, ..., m) of the prior model vector m},. Then, Equation ( 8 ) can be re-write as:

+1 _ .1 Ng 11 l
Mpn = Mpn + z:s=1 KpSAdS’

(9)

where K, denotes the element of K* at the pth row and sth column, and Ad} is the sth

element of Ad', for the observationss=1, 2, ..., Nj.

e Equation (9 ) implies that each innovation element, Ad}, contributes to the update of
the pth model parameter , m,lg’;%, and the degree of contribution is governed by the
element of the Kalman-gain-like matrix, Kzﬁs.

e Localization modifies the degree of influence that each innovation element, Ad., has

over the update of the pth model parameter, mé,f,}, by introducing scalar coefficients,
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Cps € [0,1] that multiplies the element of the Kalman-gain-like matrix, K,ﬁs. Then, the
analysis step equation with localization can be expressed as:
N
m;)-,ihnl = mé,n + 2531(Cpusl)s)Adéa

(10)

where (cpsK,is) represents the element-wise product (Schur product) that weights the

degree of influence that observations have over model parameters.

The inclusion of localization in the ES-MDA only modifies the analysis step of the
ensemble-based history matching. The workflow to perform ES-MDA with localization
is summarized in Workflow 2. The difference between Workflow 1 and Workflow 2 is
the equation used in the analysis step. Equation ( 10 ) requires the definition of the
tapering coefficients, c,,, to perform the update of the model parameters mé,f,}. The

following sections will include the equations to compute the tapering coefficients for field

and free parameters®®, and for non-adaptive and adaptive localization schemes.

WORKFLOW 2

Initial ensemble
Ensemble of prior geologic models

Pre-iterations
Define N, and the inflating factors a; 41

Initialization

Run forward model |

= Simulate ensemble of observables =

Forecast

Perturb observations |

| Createthevector of inﬂa,ted,observaﬁons,ii

Update model parameters \
E,qua,t,ifn,(lp) —

Analysis

Yes

I<(N.—1)

y No

Output AHM results

v

Stop

Workflow 2 Perform ensemble-based history matching with ES-MDA and localization

15 Field parameters are model parameters with a coordinate location, e.g., porosity, permeabilities. Free
parameters are those without a coordinate location, e.g., fault multipliers, relative permeabilities.
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3.3. Tapering coefficients in non-adaptive localization scheme

The non-adaptive localization scheme is distance or region based as explained in
Chapter 1 and Chapter 2. The non-adaptive localization method presented by Luo et al.
(2019) consists of defining the tapering coefficients, ¢, in Equation ( 10 ) as a function
of the distance between the location of model parameters and observations. Luo et al.
(2019) exemplified the distanced-based tapering coefficients computation by considering
a 2D layered-reservoir model, a model parameter element located in the 2D cartesian
coordinate A = (x,,y4) and an observation located in the 2D cartesian coordinate B =
(xg, ¥p), then the distance-based tapering coefficients can be computed by:

cps = fldist* (4, B)],

(11)

where f(+) is a tapering function that exits in the positive real values domain, ranging in
the interval [0, 1]; dist*(4, B) is the physical horizontal distance between A and B in the
reservoir model. In addition, Luo et al. (2019) explained that in practical implementation
of distanced-based localization, an elliptical region is used for representing the influence
area that observations have over model parameters instead of a circular region. The
elliptical regions allow to extend localization regions based on reservoir anisotropies.
Emerick and Reynolds (2010) illustrated an elliptical influence region with an internal
color scale, calculated by applying a tapering function based on Gaspari and Cohn (1999)
to compute the tapering coefficients, c,, in Fig. 11. Furthermore, Emerick and Reynolds
(2010) introduced different methods that have been implemented to define the influence
regions among observations and model parameters, such as the studies developed by
Devegowda et al (2007) and Arroyo-Negrete et al. (2008), which used streamlines to

define the influence regions and the tapering coefficients, c,;. Arroyo-Negrete et al.
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(2008) performed a covariance localization with EnKF in a nine-spot waterflooding
reservoir model. Arroyo-Negrete et al. (2008) defined the observations-model parameters
influencing areas by taking all the gridblocks crossed by streamlines from injectors to
each producer. Fig. 12 shows all the gridblocks crossed by streamlines arriving at the
producer P8. Left and center panel in Fig. 12, show ensemble member 15 and 73,
respectively. The right panel in Fig. 12 shows the region resulted after stacking all the
ensemble members. The resulted region (right panel in Fig. 12) became to be the
influencing area that observations located in P8 coordinates has over model parameters.
In the study presented by Arroyo-Negrete et al. (2008) the use of streamline defined the
gridblocks of the entire-ensemble that were included in the cross-covariance calculation,

and the tapering coefficient, c,,, ranged in the discrete interval [0,1].

1.0

30 !
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Fig. 11 Illustration of elliptical influence area among an observation element and the model parameters in the analysis
step (from (Emerick and Reynolds, 2010))
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Fig. 12 Example of observation influence region defined by streamline simulation in a waterflood reservoir model
(from (Arroyo-Negrete et al., 2008))
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WORKFLOW 3

Ensemble of prior geologic models

v

| Streamline simulation of injection/production <—

v

‘ Identified regions drained by producer

All ensemble No
members

v Yes

Compute the CDF probability drainage map for
the entire ensemble

'

All producers

Yes
Build the three cases of non-adaptive
localization

Output tapering maps
v

Stop

Workflow 3 Define the tapering coefficients in the non-adaptive localization scheme.

In this thesis, the implemented method to compute the tapering coefficients in the non-
adaptive localization scheme is based on the introduced studies of Devegowda et
al.(2007), Arroyo-Negrete et al.(2008), Emerick and Reynolds (2010), and Luo et al.
(2019). The process used to define the non-adaptive localization regions and the tapering
coefficients is summarized in Workflow 3. The streamline simulation is run for every
ensemble member, considering all the injectors active and one producer active at a time.
The streamline simulation identifies all the gridblocks that are drained by the active
producer in each ensemble member. Then, the results of all the ensemble members are
outlined in a drainage probability map for the active producer, using cumulative
distribution function (CDF) in each gridblock. The drainage probability map for the active
producer has a value in each gridblock that ranges in a continuous interval [0,1], and this
value represents the probability that the gridblock is drained by the active producer. The

mentioned steps of Workflow 3 are repeated for all the producer wells to generate the
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non-adaptive tapering coefficient maps for each producer well. In this thesis, three non-

adaptive cases are defined based on different tapering maps, as followed:

Non_adapt_00 case: This case includes the CDF probability drainage maps
computed with Workflow 3 for each producer. In these tapering maps, all
gridblocks that have a probability to be drained larger than zero will be taking as
part of the influence area for all observations in the specified well location, and
the tapering coefficients, ¢, are equal to the CDF value in each gridblock.
Non_adapt_50 case: This case applies a cut off to the CDF probability drainage
maps computed with Workflow 3 for each producer. The tapering maps in the
non_adapt_50 case only include the gridblocks that have a CDF probability of
being drained equal or larger than 50%. In this case, the tapering coefficients, c;,
are equal to the tapering coefficients in non_adapt_00 case where the gridblocks
have a CDF probability of being drained equal or larger than 50%. Otherwise, the
tapering coefficients are equal to zero. However, smoothing (weighted averaging)
technique is performed with the geomodelling software (RMS) to solve abrupt
changes of the tapering maps in the nearest gridblocks where the tapering
coefficients change from being equal to the CDF probability (when the CDF
probability of being drained is equal or larger than 50%) to zero (when the CDF
probability of being drained is less than 50%), (Nagle, 2010; von Harten et al.,
2021).

Non_adapt 80 case: In the same way than the non_adapt 50 case, the
non_adapt_80 case applies a cut off to the CDF probability drainage maps
computed with Workflow 3 for each producer. The tapering maps in the

non_adapt_80 case only include the gridblocks that have a probability of being
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drained equal or larger than 80%. In this case, the tapering coefficients, c,, are
equal to the tapering coefficients in the non_adapt_00 case where the gridblocks
have a CDF probability of being drained equal or larger than 80%. Otherwise, the
tapering coefficients are equal to zero. Like non_adapt 50 case, non_adapt_80
case uses smoothing technique to solve abrupt changes of the tapering maps in the
nearest gridblocks where the tapering coefficients change from being equal to the
CDF probability (when the CDF probability of being drained is equal or larger
than 80%) to zero (when the CDF probability of being drained is less than 80%),
(Nagle, 2010; von Harten et al., 2021).
The tapering maps to be developed with Workflow 3 are kept fixed for all type of
observations in a specific well location, model parameters (porosity and permeability),
during the entire observation history, and in each of the ES-MDA iterations.
In respect to the free parameters (parameters without a coordinate location e.g., fault
multipliers), the tapering coefficients, c¢, follow a discrete tapering function, ranging in
the discrete interval [0,1]. If the drainage area computed with streamlines for each active
producer and the cut off considered in each non-adaptive localization case, crosses the

faults, then the ¢, has a value of one. Otherwise, ¢, has a value of zero.

3.4. Tapering coefficients in adaptive localization scheme

The adaptive localization scheme follows a different method to define the tapering
coefficients that regulate the update step during history matching. For the adaptive
scheme, the tapering coefficients, c,, in Equation ( 10 ) are computed following the
procedure explained by Luo et al. (2019) and Luo and Bhakta (2019), using

Cps = J[abs(pps) > 965], forallp € G
(12)
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where 7(+) is the indicator function, which have a value equal to the unity when there is
a correlation that satisfy the condition abs(pps) > 0,5, and a value equivalent to zero
otherwise; abs(:) returns the absolute value of the input, p,s denotes the correlation
coefficient between a model parameter and a simulated observable; and 6, is a positive
threshold value to mitigate the correlation noise between model parameters and simulated
observables, when either the correlation is weak or there is no actual correlation. In the
context of ensemble-based history matching methods with a relatively small ensemble
size because of sampling errors, p,,; might not be exactly zero when the pair of simulated
observable and model parameter element are uncorrelated; p represents a specific model
parameter (e.g., porosity or permeability); and G represents the group of the same type of
petro-physical parameters. The use of 8. in Equation ( 12 ) instead of a threshold value,
0,5, for each model parameter m}m is a practical implementation to reduce the

complexity of the adaptive localization scheme.

The threshold value, 6., could be estimated, as proposed by Luo and Bhakta (2019),
using an image-denoising-based method that is suitable to model parameters that are
distributed over the reservoir gridblocks (called in this thesis as field parameters), such

as permeability and porosity,

Ocs = vV Zln(#pcs)O-Gs

(13)

_ median(abs(&gs))
%6s = 0.6745

(14)

where #p., denotes the number of elements of the correlation field p., which is a set of
correlation coefficients between a fixed observable element and a group of model
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parameters denoted by G; o, represents the noise level when treating the correlation
field p;, as an image to be denoised because of ensemble sampling errors; g, is the field
sampling error associated with pg. The noise level in the adaptive localization scheme is
estimated based on the workflow developed by Luo and Bhakta (2019) that uses the
random-shuffle approach to approximate o,. Instead of directly estimate &g, the
workflow developed by Luo and Bhakta (2019) estimates another set of noise fields &gy,
which are induced by sampling errors in an environment similar to the one that caused
£cs- The objective is to make that an estimated noise level 6;,, when using & in Equation
(14), would be a reasonably good approximation to o, which can be used to calculate

6;, in Equation (13).

For computing the threshold values for free parameters, 6, which are not distributed

spatially in the reservoir gridblocks, such as fault multipliers, an empirical threshold value

is introduced,

Ors = 305
(15)
1
Ops = \/_N—e
(16)

where oy, is the sampling error noise level approximation assuming that the joint
distribution of model parameter-observation pairs is Gaussian (Luo and Bhakta, 2019) .

Thus, the correlation coefficient for free parameters, css, can be computed by editing
Equation ( 12 ), where py, represents the correlation between the simulated observable

and the free parameter.

crs = J[abs(pys) > O]
(17)
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The adaptive localization correlation coefficients in Equations (12 ) and (17 ) are resulted
from the indicator function J(-), which represents a hard tapering function, because it
generates correlation coefficient in the discrete interval [0,1]. Luo and Bhakta (2019)
proposed a continuous tapering function, f;., based on a Gaspari and Cohn (1999)

function, that can be used for computing both c,; and ¢,

1 1 5 5
—ZZ5+EZ4+§Z3—§Z2+1, lfOSZSl]
= 1 1 5 5 2
Joc i—ﬁzs _EZ4+§ZS +§ZZ —Sz+4—§z_1, ifl<z< 2}
0, ifz>2
(18)
_ 1- abs(pps)
1—6;s
(19)
Then ¢, and ¢4 can be expressed as:
_ 1-abs(pps)
Cps = fGC (1_—965)1 for all p € G
(20)
1- abs(pfs))
¢rs = foc <—
fs 1— 0
(21)

In the thesis, the implemented method to compute the tapering coefficients in the adaptive
localization scheme is based on the introduced studies of Luo et al. (2019), and Luo and
Bhakta (2019). The process to define the adaptive localization regions and the tapering
coefficients is summarized in Workflow 4. The prior ensemble of geologic models is
simulated to generate the ensemble of simulated observables. The random-shuffle
approach (Luo and Bhakta, 2019) is applied to estimate the sampling error &g,

approximate o, with Equation ( 14 ), and calculate 8., with Equation ( 13 ). In the case
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of free parameters, the random-shuffle approach (Luo and Bhakta, 2019) is not applied.
The noise level, oy, and 6 are calculated with Equation ( 16 ) and Equation ( 15 ),
respectively. The tapering coefficients for the field parameters, c,s, and the tapering
coefficients for the free parameters c,, are calculated based on the selected tapering
function, which are discussed later when describing the adaptive cases. Workflow 4
computes correlation coefficients and tapering coefficients for each type of observations,
at each observation time step, for each model parameter (porosity, permeability, and fault
multipliers). In the thesis, the correlation coefficients are recomputed in every ES-MDA
iteration. Therefore, the correlation coefficients for field model parameters and free
model parameters can be rewrite as cpsl and cfsl, respectively. The random-shuffle
approach (Luo and Bhakta, 2019) requires independence among the reservoir realizations
in the ensemble to generate reliable correlation fields. Recomputing the correlation
coefficient in every ES-MDA iteration (c,s', crs") could make unreliable correlation
fields, because the updated reservoir models become correlated after history matching
observations in each iteration. However, this thesis uses a software (PIPT) that
recomputes the correlation coefficient in every ES-MDA iteration and has conveyed to

good history matching in previous studies.

In the thesis, using Workflow 4, three adaptive cases are defined. The cases differ in the
type of tapering function used for calculating the tapering coefficients. The cases are the

followings:

I.  Adapt _hard case: In this case, the tapering coefficients are computed with a
discrete tapering function (indicator function). Therefore, the tapering
coefficients, c,s' and cys' , are computed with Equations ( 12 ) and ( 17 ),
respectively, for each ES-MDA iteration.
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Adapt_soft case: In this case, the tapering coefficients are computed with a
continuous tapering function. Therefore, the tapering coefficients, c,' and cf',

are computed with Equation ( 20) and Equation ( 21), respectively, for each ES-
MDA iteration.

Adapt_sigm case: This case is like adapt_hard case but applying smoothing
technique (Nagle, 2010; von Harten et al., 2021) in the nearest gridblocks where

the hard tapering coefficients changes in the discrete interval [0,1].

WORKFLOW 4

Ensemble of prior geologic models

v
| Simulate ensemblle of observables

v

‘ Compute correlation coefficients between model parameters and

observables

‘ Random shuffle ensemble of geologic models ‘

v
Estimate the correlation sampling error between shuffled
ensemble of reservoir models and ensemble of observables

v

‘ Estimate the noise level of the correlation ‘

v

l Estimate the threshold values !

v
| Compute the tapering coefficients and generate the tapering map ‘f

v

All observations
7 v Yes

Allmodel ) No
parameters

v Yes

No

Three cases of No
tapering functions

v Yes
Output tapering maps

Stop

Workflow 4 Define the tapering coefficients in the adaptive localization scheme
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3.5. General workflow

The general workflow of the thesis is formed by five sections:
Section i. Generation of the initial ensemble:

In this section, the initialization step of ensemble-based history matching, described
in Chapter 1, is done. The model parameters to be updated are defined. In the thesis, the
model parameters selected to be updated are porosity and permeability fields, and fault
multipliers as scalar parameters. The initial ensemble with 100 geological realizations is

generated and its coverage to the observation is evaluated qualitatively.

Section ii. Development of the benchmark case:

The benchmark case applies the ES-MDA without localization to the dataset.

Specifically, the benchmark case is developed with Workflow 1.

Section iii. Selection of the best non-adaptive localization case:

The three non-adaptive cases of tapering coefficient maps (section 3.3), are
computed, using Workflow 3. Then, the dataset is history matched with ES-MDA and
non-adaptive localization, using Workflow 2, for each of the non-adaptive cases of
tapering coefficient maps. The selection of the best non-adaptive localization case is
based on the significant difference among the updated ensembles and their
representativity of the Truth. The latter is a geological model that is used to simulate the
observations, and it is not included in the prior ensemble. The significant difference

among the updated ensembles is evaluated computing the ensemble mean mean; ; and
standard deviation Std; ;, Equation ( 25 ) and Equation ( 26 ), respectively. The updated

ensemble representativity of the Truth is estimated computing the root mean square
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deviation (RMS) of the updated ensemble against the Truth for the field parameters and
the observations. For the field parameters, the RMS is reported in a 2D field map
(RMS; ;). Considering a geological realization of the ensemble with model parameters
Dijk. the vertical average p; ; is computed for each member of the updated ensemble.

Similarly, considering the Truth model with model parameters P; ; ., the vertical average

P; ; is computed. Then, the RMS, ; is calculated by

Ne ;- =
RMS,, = \/anl(pi,]j\,,n — P ;)?
e

(22)

where N, is the number of ensemble members, n indicates the index of a member in the
ensemble. For the observations, the RMS is reported as a unique value for each type of
observation, o, for the entire production history, RMSy;s., . and separately, for the

prediction period, RMS,,..4,. The RMS values are computed as follow:

Wt thist yNe _ : 2
RMS. = PINAIND Wi anl(ObservableO,n,t,W Observatlono,tlw)
hist.o Wt * Lpise * Ne

(23)
where Observable, ,,, Means the simulated observable, type o, for each ensemble
member n at a time step t and for well w; Observation, ,, is the observation, type o, to
be generated with the Truth model at time t for well w; and w; is the total number of

wells, t,,;s; 1S the total number of time steps in the production history;

=14&t=1

t . . .. 2
RMS B \/Zﬁt pred Zgil(Predlctlbleo,n,t,w — Prediction,,,)
pred,o —

Wy * tpred * Ne

(24)
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where Predictible, ,, ; ,, means the simulated forecast, type o, for each ensemble member
n at a time step t and for well w; Prediction,,, is the forecast, type o, to be generated
with the Truth model at time t for well w; and w, is the total number of wells, .., is the

total number of time steps in the prediction period.

Section iv.Selection of the best adaptive localization case:

The three adaptive cases of tapering coefficient maps (section 3.4), are computed,
using Workflow 4. Then, the dataset is history matched with ES-MDA and adaptive
localization, using Workflow 2, for each of the adaptive cases of tapering coefficient
maps. Similarly to section iii, the selection of the best adaptive localization case is based

on its representativity of the Truth. In this section, the RMS, ;, Equation ( 22 ); the

g
RMSp;st 0, Equation (23 ); RMS,,eq,, Equation ( 24 ); mean; ; Equation ( 25 ); and

standard deviation Std; ;, Equation ( 26 ) are computed for each adaptive localization

J

case.

Section v.Comparative analysis among updated ensembles

The three ensemble-based history matching cases results (benchmark, best non-
adaptive localization, best adaptive localization) are compared based on the following

criteria:

Updated ensemble mean for field properties
Considering a geological realization with model parameters p; ; ., the vertical average p; ;

is computed for each member of the updated ensemble. Then, the ensemble mean is
reported in a 2D field map. For each updated ensemble, the mean, ; in each gridblock is

calculated by
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N, —
Ynl1Dijn

mean; j =
, Ne

(25)

Updated ensemble standard deviation for field properties
Considering a geological realization with model parameters p; ; ., the vertical average p; ;

is computed for each member of the updated ensemble. Then, the ensemble standard

deviation is reported in a 2D field map. For each updated ensemble, the Std; ; in each

gridblock is calculated by

N, _
Yine1(Dijn — mean ;)2
Stdlj =
). Ne

(26)

Updated ensemble RMS values against the Truth

Compute the RMS; ;, Equation (22 ), the RM Syt o, Equation (23 ), RMS,,¢q,,, Equation

g
(24) for each ensemble-based history matching case. In addition RMS against the Truth
can be computed for production rates and production cumulated volumes, during
production history and prediction period, with Equations ( 23 ) and ( 24 ), respectively,

substituting the type of observation o by keywords for production rate and production

cumulated volumes.

=14~t=1

RMShist,r_v =

Wt thist y'Ne ; 2
Yo anl(Observabler_v,n,t,W — Observatlonr_v,t,w)
Wt * tpist * Ne

(27)

Wt tpred Ne . . . . 2

RMS I DD Y Y. ¢ (Predictible, , . — Prediction, ,,,)
pred,r_v — W, % t « N
t pred e

(28)

where the subscript r_v represents the keywords for production rate and production

cumulated volumes for oil, gas, and water. In this thesis, the production data are well
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water production rate (WWPR), well oil production rate (WOPR), well gas production
rate (WGPR), well water total production (WWPT), well oil total production (WOPT),
and well gas total production (WGPT). In this thesis, the production data are different to
the observations defined in section 3.6 (WBP9, WWCT, WGOR). The observations are
used for conditioning the history matching, but the production data are not. In this thesis,
the RMSy;s¢ r » aNd RM S, -, are calculated to evaluate the updated ensemble capacity
to predict data that have not being used for conditioning the ensemble in the history

matching.

Updated ensemble RMS values against the initial ensemble

Compute the root mean square deviation of the updated ensemble against the initial
ensemble for field model parameters RMS; j iniriqi- Analogously to RMS; ;, RMS; j initial
is reported in a 2D field map. Considering a geological realization of the ensemble with
model parameters p; ; ,, the vertical average p;; is computed for each member of the
updated ensemble. Considering a geological realization of the initial ensemble with model

parameters p; ; x initiar, the vertical average p; j intiq; s Computed for each member of the

initial ensemble. Then, the RMS; ; initiq; IS Calculated by

RMS; j initiat =

Ne /= — 5
z:n=1 Pijn — Pi,j.n initial)
N,

(29)

Updated ensemble coverage of observations and measurement errors

Better updated ensemble coverage of the observations and their measurement errors
means better quantification of the model parameter uncertainties by the updated
ensemble. Fig. 13 shows an example of production rate vs time plot, including simulated
observables and observations for a study case developed by Evensen (2021). The green

lines represent the initial ensemble, the magenta lines stand for the updated ensemble, the
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black dots are the observations, and the black vertical lines are the spread of the
measurement errors. Commonly, a black vertical line represents the P10-P90 interval or
P5-P95 interval of the measurement error. Fig. 13 shows that the spread of the updated
ensemble (magenta ensemble) is smaller than the spread of the initial ensemble (green
ensemble) and is covering the observations and their measurement errors during history.
The history matching achieved with the updated ensemble (the magenta ensemble) is an

example of good coverage to the observations and their measurement errors.

OP2 OPR (m*~3/day)

0 I I L L
0 5 10 25 30 35

L
15Mon1h520

Fig. 13 Example of final ensemble coverage analysis plot from Evensen (2021).

Updated ensemble free parameter distribution
For each free model parameter, the updated ensemble probability distribution is illustrated

with a boxplot to be qualitatively compared against the value of the Truth model.

The comparative analysis section can be summarized with Workflow 5, where the Truth
model, initial ensemble and updated ensembles are inputs of the process; all the
comparative criteria described in this section are applied, and the best ensemble-based

history matching scheme (AHM) is selected for the studied dataset.
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WORKFLOW 5

Geologic model of the Truth

v

Ensemble of initial geologic models

v

Ensemble of updated geologic models for each AHM scheme

v

Compare qualitatively ensemble mean for field properties ‘

v

Compare qualitatively ensemble standard deviation for field [

v
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.
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v
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v

Compare qualitatively ensemble coverage ‘

v

Compare qualitatively ensemble free parameter distribution |

Identify spurious correlation, filter divergence or ensemble collapse

v

Output best AHM case for the dataset

v
Stop

Comparative analysis among updated ensembles

Workflow 5 Perform comparative analysis among updated ensemble members

Tools to support the general workflow

The general workflow uses a fast update modelling workflow developed by Equinor
ASA, which integrates different tools, such as: ERT (“Welcome to ERT’s documentation!
— ERT 2.30.0rc1.dev46+g6ccfc183 documentation,” n.d.), Eclipse (“ECLIPSE Industry
Reference Reservoir Simulator,” n.d.), and RMS (“Products by Emerson E&P Software,”
n.d.). Additionally, the ensemble-based history matching with adaptive localization is
executed with Python Inverse Problem Toolbox (PIPT), which is an internal tool
developed under collaboration agreement between Equinor ASA and NORCE (“About
us - Norce,” n.d.). In the thesis, different python scripts were created for pre-processing
and post-processing data. Fig. 14 summarizes the main tools to apply in each section of

the general workflow. In the lower part, in Fig. 14, every tool is assigned to a color box.
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The white boxes stack the five sections of the general workflow. The semicircles located
at the left in Fig. 14 are connected to each section of the general workflow, and they are
filled with the colors of the tool’s boxes. Most of the semicircle are colored with a gradient
fill of two colors, corresponding to the main tools applied in that section. In addition, Fig.
14 includes a bullet list with the main job to be done in each section and the workflows
to apply.

TOOLS IN GENERAL WORKFLOW

¢ Comparative analysis
Section v ¢ Workflow 5

* Adaptive AHM

|
‘ Section iv * Workflow 2,4
* Non-adaptive AHM
‘ Section iii e Workflows 2, 3
‘ * Benchmark AHM
\ Sectlon i * Workflow 1
Section i * Initial ensemble
RMS I ERT I ECLIPSE

PPT  OWNPYTHONSGRFTS

Fig. 14 Color diagram to illustrate the main tools in each section of the general workflow

3.6. Dataset

The dataset corresponds to a synthetic field, named Reek. The Truth geological
realization is not included in the initial ensemble, and it is used to simulate the
observations to be used for history matching, and the predictions for evaluating the
updated ensembles prediction power. General features about the structural, facies,
petrophysics, and well modelling of the Reek field will be described in this section as

follow:

Structural modelling
Reek field has a horst-and-graben structural style. It consists of one formation with

fourteen layers. The formation tops range from 1550m to 1960m. Six normal faults cut
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the formation (F2, F3, F4, F5, F6, F7). Vertical fault’s displacements limit lateral
communication but make no isolated compartments. Fault locations, depth of formation
tops and Truth model fault multipliers (MULTFLT) for each fault are displayed in Fig.
15. The fault multipliers are the only uncertain structural parameters in the Reek model,;
their uncertainties are modelled using log-uniform distributions with possible values
ranging in the continuous interval [0.001, 1]. Formation tops and fault displacements are
kept fixed in each initial ensemble member. In the thesis, the structure is not updated

during the ensemble-based history matching.

FAULTS MULTFLT

F2 0.3
0.01

S5
0% 0% e%e e
SERERIR
SISO
SISO SIS K
09,0% 8% 8% e

0
1960 gy ' S asTes sl tieel “-ﬁ-”:':‘:‘
o%e% Nos, 5858
1900 SIS o8 $eeiee)

X558
1800

1700 l
1550
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(11 .

metres
1:66356.4

Fig. 15 Structural modelling of the Reek model.

Facies modelling

In the thesis, the Reek model is a simple reservoir model that does not have facies
modelling described. Therefore, the initial ensemble does not include uncertainties in

facies modelling.
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Petrophysics modelling

The porosity and permeability vertical average of the Truth model are shown in the left
and in the right panel of Fig. 16, respectively. The Reek reservoir model includes
uncertainties in porosity and permeability. In the thesis, the Reek reservoir model is
provided with an initial ensemble of porosity. The porosity values range in a continuous
interval [0.001,0.5]. The initial ensemble of permeability is built with a stochastic perm-

porosity transform that is illustrated in Fig. 17.

PORO_2D_avg_TRUTH

0.25 —

0.22
0.20
0.18
0.15

0 __500 1000 1500 2000 2500
metres

0 500 1000 1500 2000 2500
metres

1:64347.7 1:64347.7

Fig. 16 Porosity and permeability vertical average of the Truth model.

PERMEABILITY (md)

0 01 02 03 04 05 06

POROSITY (fraction)

Fig. 17 Permeability — porosity transform to build the permeability initial ensemble.
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Well modelling

Reek reservoir model includes five producer wells and three injector wells. The wells’
locations are illustrated in Fig. 18. The available observations are monthly well water cut
(WWCT), well gas-oil ratio (WGOR), and well-9-blocks-average pressure (WBP9)
which represents the average pressure of the nine surrounding and connected gridblocks
to a given well. The whole production dataset has seven years in total, and it was split
into a history-matching period and a prediction period. The production history lasts three
years from February 2000 until January 2003. The prediction period lasts four years from
February 2003 until January 2007. The first three producers (OP_1, OP_2, OP_3) are
active during the entire production and prediction history. Producers OP_4 and OP_5 start
production a year later than OP_1, OP_2 and OP_3, January 2001. The injector wells
WI_1, WI_2 and WI_3 start injection in April 2000, Jun 2000, and March 2001,

respectively.

Faults
F2, F3,F4, F5, F6, F7
Wells

¥ Producers

Injectors

0 500 1000 1500 2000 2500
metres

1:65483.2

Fig. 18 Producer and injector wells in Reek reservoir model
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4. RESULT ANALYSIS

4.1. Initial ensemble

The initial ensemble was generated with a prior knowledge for porosity,

permeability, and fault multipliers. The ensemble mean, ; for each field property (each
model parameter) are shown in Fig. 19. The porosity uncertainty is modelled using a
Gaussian distribution, and the permeability uncertainty is modelled using a lognormal
distribution. Both maps in Fig. 19, porosity mean;; at the left panel, and natural
logarithmic of the permeability mean, ; at the right panel, show smooth variation of the
mean, ; values in the 2D space of Reek reservoir model. The fault multiplier uncertainty

is modelled using a lognormal uniform distribution. The initial fault multiplier

distributions are outlined in Fig. 20.
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Fig. 19 Porosity and permeability mean map of the initial ensemble.
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Fig. 20 Fault multipliers distribution of the initial ensemble.

The initial ensemble coverage in wells OP_1 and OP_2 for well-9-blocks-average
pressure (WBP9) observations are shown in Fig. 21. The initial ensemble spread between
its minimum and maximum value for each time step is illustrated in blue. The
observations in the production history (Feb 2000 to Jan 2003) are illustrated with a
continuous black line, and their measurement errors (error bars) are illustrated with
vertical lines. The observations are only those points with error bars, they are not
continuous, but for easy the visualization of the observation and prediction plots, the
observations are illustrated with a continuous line. The Truth model prediction is plotted
with a black dash line in Fig. 21 for both wells. The initial ensemble spread covers the
observations (WBP9, WWCT, WGOR) and their measurement errors (see Appendix A

for other wells and type of observations).
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Fig. 21 Initial ensemble coverage of WBP9 observations in wells OP_1 and OP_2.

4. Benchmark case

In the benchmark case, the porosities, log-normal permeabilities and fault multipliers
were updated with ES-MDA without localization. The vertical average values (mean; ;)
for porosities and for the lognormal permeabilities are illustrated in Fig. 22. The updated
porosities and lognormal permeabilities are correlated in the 2D space of the reservoir
model. The correlation between porosity and permeability is due to the permeability-
porosity transformation applied when developing the initial ensemble (Fig. 17). Areas
with greater porosity values tend to have greater permeability values (green areas in the
maps at left and right panels in Fig. 22); and areas with lower porosity values tend to have
lower permeability values (dark blue and magenta areas in the maps at left and right

panels in in Fig. 22).
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Fig. 22 Porosity and permeability mean maps of the updated benchmark ensemble.
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Fig. 23 Fault multipliers distribution of the initial and updated benchmark ensemble.

The initial and updated benchmark fault multiplier distributions are outlined in Fig. 23.

The fault multiplier standard deviation of the benchmark ensemble increased in F3, F6
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and F7 (faults highlighted in Fig. 23). This means that the uncertainty of these three faults
increased after benchmark history matching. The rest of the fault multipliers distributions

show a reduction of their standard deviation after history matching.

In general, the updated benchmark ensemble has a narrower ensemble spread of simulated
observables than the initial ensemble does, and it has a good coverage of the observations,
because the benchmark ensemble spread covers the observations and their measurement
errors in the entire history. In Fig. 24, the updated benchmark ensemble min-max interval
is illustrated in green for WBP9 observables in wells OP_1 and OP_2, and it is overlapped
over the initial ensemble. Fig. 24 shows an example of the benchmark good coverage
over observations. However, in two wells, the benchmark updated ensemble for the
simulated WWCT and WGOR observables shows a wider ensemble spread than the initial
ensemble. In Fig. 25, an example of the updated benchmark ensemble spread increment
over the initial ensemble is illustrated for WWCT and WGOR observations in well OP_3.
The increment in the updated benchmark ensemble spreading might be caused by
spurious correlation and filter divergence. Also, it is noticed that water breakthrough does
not occur during the history matching period in well OP_3 (upper panel in Fig. 25) and
OP_5 (last panel in Fig. B- 2). Late water breakthrough (approximate during the last year
of history) occurs in all the wells (see Appendix B for updated benchmark ensemble

coverage in other wells and over other type of observations).
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Fig. 24 Initial and updated benchmark ensemble coverage of WBP9 observations in wells OP_1 and OP_2.
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Fig. 25 Initial and updated benchmark ensemble coverage of WWCT and WGOR, well OP_3.
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4.3. Best non-adaptive localization case

Workflow 3 was applied to compute the tapering coefficients in the non-adaptive
localization scheme. Fig. 26 shows the tapering coefficients of observations in OP_1 for
each non-adaptive localization case. The tapering coefficients range in the continuous
interval [0,1], being either one or closer to one in the proximity to OP_1 location and
decreasing smoothly as farther they get from OP_1. The updating influence area that the
OP_1 observations have over model parameters is larger in the non_adapt_00 case, where
all the gridblocks that are drained by OP_1, based on streamlines, have a tapering
coefficient larger than zero. In the non_adapt_50 and non_adapt_80 cases, the updating
influence area of observations in OP_1 gets truncated based on the selected probability
cut-off and the smoothing (explained in section 3.3). The non_adapt 80 case has an
updating influence area similar to the practical elliptical approach for distance-based
localization proposed by Emerick and Reynolds (2010) and Luo et al. (2019), (see

Appendix C for the tapering coefficient of observations in other wells).

Case
Non_adapt_00

Case
Non_adapt_50

Case
Non_adapt_80

Fig. 26 OP_1 observation tapering coefficients for the three non-adaptive cases.

In this section of the thesis, the objective is to choose the best non-adaptive localization

case among the three non-adaptive cases by analyzing the results based on the criteria
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explained in Chapter 3, section 3.5. The porosity mean, ; of the updated non-adaptive
ensembles are illustrated in Fig. 27. The three non-adaptive cases show similar property
patterns. The three non-adaptive cases make good-quality rock channels and poor-quality
rock areas more visually obvious, compared to the quality rock observed in the initial
ensemble in Fig. 19. This good-quality-rock channels for each non-adaptive cases are
illustrated in Fig. 27 where red, yellow, and green colors stand for good porosity values
and illustrate a streak or channel shape, oriented NW-SE. The red, yellow, and green
colors indicate good-quality-rock channels in the non-adaptive updated ensembles.
Similarly, in the three non-adaptive cases, poor-quality-rock reservoir is updated in the
same areas of the reservoir model, represented in magenta and blue colors in Fig. 27. The

porosity standard deviation Std; ; of the updated non-adaptive ensembles are illustrated
in Fig. 28, where larger Std; ; are coloured yellowish or reddish, and smaller Std, ; are
presented with greenish and bluish colours. The three non-adaptive localization cases
perform stronger updates in the central area of the model, reducing the ensemble standard
deviation (i.e., spread) in this area, and differ in the way how the update is performed
closer to the edges of the model. Neither of the three non-adaptive localization cases
present ensemble collapse, which means that the Std; ; values for the three cases are
larger than zero. In the case of ensemble collapse, the Std; ; are equal to zero and would
be colored in magenta in a similar plot to Fig. 28. In the non_adapt_00 case, the Std,
values tend to be smaller towards the reservoir model edges in comparison with the
non_adapt 50 and non_adapt 80 cases. Unlike the non_adapt 00 case, in the
non_adapt_50 and non_adapt_80 cases, the updates are governed and limited to a less
extended space. However, the ensemble Std; ; differences among the three non-adaptive

cases are insignificant.
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Fig. 27 Updated ensemble porosity mean for the three non-adaptive cases.
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Fig. 28 Updated ensemble porosity standard deviation for three non-adaptive cases.
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Fig. 29 Updated ensemble porosity RMS for three non-adaptive cases.
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In addition, the porosity RMS; ; against the Truth for each of the three non-adaptive cases
are illustrated in Fig. 29. The RMS; ; results of the three non-adaptive cases are alike.
Lower and larger RMS; ; values are occurring in approximately the same areas among the

three non-adaptive cases (see Appendix C for the updated non-adaptive ensemble
permeability results). The RMSy;s, and RMS,,,..q,, for the initial, benchmark, and the
three non-adaptive cases are summarized in Fig. 30. As explained in Chapter 3, section
3.6, the production history lasts three years from February 2000 until January 2003, and
the prediction period lasts four years from February 2003 until January 2007. The
application of ensemble-based history matching (without localization and with non-
adaptive localization) reduces the RMS values during history and prediction, which
indicates that the updated ensembles can predict production in terms of WBP9, WWCT
and WGOR with a higher accuracy than the initial ensemble. The non_adapt_00 case
achieves smaller RMS values against the Truth than the benchmark, non_adapt 50 and
non_adapt_80 cases do for WBP9 observations during production and prediction period.
For the WWCT observations, the non_adapt_00 case achieves RMS values against the
Truth like the non_adapt_50 and non_adapt_80 cases do and smaller to the benchmark
case does during production and prediction period. For WGOR observations, the
non_adapt_00 case achieves RMS values against the Truth smaller than the benchmark
case does and smaller or equal than the non_adapt 50 and non_adapt 80 cases do,

respectively, during prediction period.
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Fig. 30 RMS non-adaptive cases for production history and prediction period.

In summary, the comparative results analysis of the property mean, ;, Fig. 27, indicates
that the three non-adaptive cases generate alike patterns on the spatial distribution of the
field model parameters (porosities and permeabilities). The comparative evaluation of the
property Std; ;, Fig. 28, indicates that the three non-adaptive cases are reducing the
uncertainty in the field model parameters without suffering of ensemble collapse. The
comparative results analysis of RMS; ;, Fig. 29, indicates that there are not significant
changes in the achieved RMS values among the three non-adaptive cases for field model
parameters. The RMSy;s¢, and RMS,,..q, results, Fig. 30, for the three non-adaptive
cases, indicate that the history matching cases with non-adaptive localization achieve
better prediction accuracy than the initial ensemble does. Based on the results analysis
discussed for mean, ;, Std;

RMS; j, RMSpist o » RMSpreq, , the three non-adaptive

g J
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localization cases perform history matching without significant differences among them.
The non-adaptive localization history matching results for permeability are in Appendix
C, and they are consistent with the discussed history matching results for porosity. In the
thesis, the non_adapt_00 case was selected as the best non-adaptive case. The main reason
for the selection was that the tapering coefficients in non_adapt 00 case are purely
physically defined by streamline simulations, without including a user-defined cut off for
reducing the observation influence area over model parameters.’® In addition, it is
observed that the non_adapt 00 case has a better predictivity power (predictivity
accuracy) than the benchmark case does for all type of observations (WBP9, WWCT,

WGOR), which is illustrated with smaller RMS,,..4 , in Fig. 30.

4.4, Best adaptive localization case

Workflow 4 was applied to compute the tapering coefficients in the adaptive
localization scheme. The adaptive tapering coefficient maps are sensible to the type of
observation, model parameter, time step and ES-MDA iteration. For illustration of the
tapering rule differences among adaptive cases, the tapering coefficient maps for the three
type of OP_1 observations (WBP9, WWCT and WGOR) over permeability are illustrated
in Fig. 31, Fig. 32, and Fig. 33, respectively, for Feb 1% 2000. The adaptive tapering
coefficients range in the interval [0,1] for each of the adaptive cases. However, the
adapt_soft tapering coefficients are smaller and smoother than the tapering coefficients
in adapt_hard and adapt_sigm cases. The adapt_soft tapering coefficients are represented

with colors mostly blueish and greenish, which means than the tapering coefficients are

16 We do not see any theory to support what the optimal cut-off probability should be, and thus, defining
the cut-off probability is purely subjective. In practice, we recommend minimizing the number of user-
defined inputs/parameters for minimizing the impact of subjectiveness (i.e., human factors) on history-
matching results.
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dominantly between 0.4 and 0.6. Unlike the adapt soft case, the adapt hard and
adapt_sigm cases show larger heterogeneity in the spatial distribution of the tapering
coefficients, represented with a wider tapering coefficients range, from magenta to red
colors. Also, it is observed that the adapt_sigm case presents the same trend of tapering
coefficient as the adapt_hard case does but including smoothness at the edges. The
comparison of the tapering coefficients maps among Fig. 31, Fig. 32, and Fig. 33
exemplifies how the tapering coefficients with the adaptive localization scheme, change
for different type of observations in each tapering rule (soft, hard and sigm). Thus, the
adaptive localization scheme calculates tapering coefficients sensitive to different
physical correlations among simulated observables and model parameters. For illustration
of the adaptive tapering coefficients sensitivity to reservoir dynamics (which means that
the tapering coefficients can change in time), the tapering coefficient maps for the three
type of OP_1 observations (WBP9, WWCT and WGOR) over permeability are illustrated
in Fig. 34, Fig. 35, and Fig. 36, respectively, for Feb 1% 2002. The adaptive tapering
coefficients sensitivity to reservoir dynamics is observed when comparing the tapering
coefficient map of the same observation type in Feb 1%, 2000, with the tapering coefficient
map in Feb 1%, 2002. Adaptive tapering coefficient differences are observed in Fig. 31,
Fig. 32, and Fig. 33 vs Fig. 34, Fig. 35, and Fig. 36, respectively. In addition, the user
criteria have low influence in the calculation of the adaptive tapering coefficients. Unlike
the non-adaptive tapering coefficients, the adaptive tapering coefficients are calculated
automatically based on the chosen tapering rule (soft, hard or sigm), and the reservoir-
dynamics correlations among the simulated observables and the model parameters. In
PIPT, the user can apply a tuning factor to modifies the positive threshold, 8. , and can
choose the tapering rule (soft, hard or sigm). In this thesis, the tuning factors used were

0.1, 0.1, and 1 for the adapt_soft, adapt_hard, and adapt_sigm, respectively.
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Fig. 31 OP_1 WBP9 tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2000.
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Fig. 32 OP_1 WWCT tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2000.
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Fig. 33 OP_1 WGOR tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2000.
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Fig. 34 OP_1 WBP9 tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2002.
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Fig. 35 OP_1 WWCT tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2002.
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Fig. 36 OP_1 WGOR tapering coefficients over permeability, the three adaptive cases, first iteration, Feb 1%, 2002.
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The porosity mean, ;, standard deviation Std; ;, and RMS; ; of the updated adaptive

i,jr
ensembles are reported in Fig. 37, Fig. 38, and Fig. 39, respectively. The results obtained
for the adapt_hard and the adapt_sigm cases are alike. The spatial distribution of the
ensemble property mean; ; follows a similar trend in the adapt_hard and the adapt_sigm

cases. Fig. 37 shows that the color patterns in the adapt_hard and adapt_sigm cases are

like each other. The ensemble property standard deviation, Std; ;, reduces more in the

g
adapt_hard and the adapt_sigm cases than in the adapt_soft case (Fig. 38), because the
influence degrees of observations over model parameter updates in the adapt_soft case
are smoother than the influence degrees of observations in the adapt_hard and adapt_sigm
cases. These differences in influence degrees among adapt soft, adapt hard and
adapt_sigm cases are observed in the tapering coefficient maps in Fig. 31, Fig. 32, and
Fig. 33, where the adapt_soft case has smaller tapering coefficients than the adapt_hard

and adapt_sigm cases do. The ensemble property standard deviation values, Std; ;, for

i,j1
the three adaptive cases (adapt_soft, adapt_hard and adapt_sigm) are larger than zero,
which means that none of the adaptive cases present ensemble collapse. In Fig. 38, the

reddish, greenish, and blueish colors illustrate areas where the Std; ; values are larger
than zero (which would be coloured with magenta). The ensemble porosity RMS; ; values
for the three adaptive cases are illustrated in Fig. 39. The ensemble property RMS; ; in
the adapt_hard and the adapt_sigm cases are smaller than the RMS;; values in the

adapt_soft case, which means that the adapt_hard and adapt_sigm cases are closer to or

more representable of the Truth (Fig. 39) (see Appendix D for the mean; ;, Std, ;, and

RMS; ; adaptive history matching results for permeability).
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Fig. 37 Updated ensemble porosity mean for three adaptive cases.
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Fig. 38 Updated ensemble porosity standard deviation for three adaptive cases.
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Fig. 39 Updated ensemble porosity RMS for three adaptive cases.
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The RMSy;st, and RMS,,.q , for the initial, benchmark, and the three adaptive cases are
summarized in Fig. 40. The RMS differences between the adapt_hard and the adapt_sigm
cases are subtle, and they overperform the benchmark and the adapt_soft cases for all
type of observations during history and prediction periods. This is reflected by smaller

RMSpst o and RMS,,,cq,0, Fig. 40, for the adapt_hard and the adapt_sigm cases than for

the benchmark and the adapt_soft cases.
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Fig. 40 RMS adaptive cases for production history and prediction period.

In summary, the comparative result analysis of the property mean, ;, Fig. 37, indicates
that the patterns of the spatial distribution of the model parameters are very alike for the
adapt_hard and adapt_sigm cases. The comparative evaluation of the property Std, ;, Fig.
38, indicates that the three adaptive cases are reducing the uncertainty in the field model

parameters without suffering of ensemble collapse. The comparative result analysis of
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RMS; ;, Fig. 39, indicates that the adapt hard and adapt sigm cases are more

ij
representable of the Truth. The RM S5, and RMS,,..q, results, Fig. 40, for the three
adaptive cases, indicate that the adapt_soft underperforms in Reek model, and the other
two adaptive cases (the adapt_hard and adapt_sigm) show equal predictivity accuracy for
the WBP9, WWCT and WGOR observations. The adaptive localization history matching
results for permeability are in Appendix D, and they are consistent with the discussed
history matching results for porosity. Based on the results analysis of mean, ;, Std, ; ,

RMS; j, RMSpist o, RMS,,ca,0 , the selection of the best adaptive localization case stands

g
between the adapt_hard and the adapt_sigm cases. In the thesis, the adapt_sigm case was
selected as the best adaptive localization case. The main reason for the selection was that
the adapt_sigm case brings the advantage over the adapt hard case of avoiding
discontinuities in the geology due to a hard-tapering rule update, as introduced by Luo

and Bhakta (2019). Therefore, the adapt _sigm case is selected as the best adaptive

localization case and is recommended both theoretically and practically.

4.5. Comparative analysis of cases

The comparative analysis among the updated ensembles without localization, non-
adaptive localization and adaptive localization is performed following the general
workflow criteria in Chapter 3, section 3.5. The porosity field and fault multiplier results
are outlined in the main body of the thesis’ report. The permeability field results are

consistent with the porosity field results, and they are included in Appendix E.
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Fig. 41 Comparative analysis of the updated ensemble porosity mean.
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Updated ensemble mean for porosity.
The porosity mean,; ; for the Truth, initial and the updated ensembles are outlined in

Fig. 41. The application of localization, both non-adaptive or adaptive, generates updated
porosities with a spatial trend or pattern closer to the Truth than the benchmark case does.
The adapt_sigm case overperforms the non_adapt_00 case, because its porosity mean, ;
spatial distribution (patterns) are visually more similar to the reservoir spatial distribution
of the Truth. This is easily observed while comparing the greenish and magenta areas
between the adapt_sigm case and the Truth, which represent the areas of good and poor-
quality rock (porosities), respectively. The benchmark case underperforming in this

criterion is an indication that it is suffering of filter divergence and spurious correlations.
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Fig. 42 Comparative analysis of the updated ensemble porosity standard deviation.

Updated ensemble standard deviation for porosity.
The porosity Std; ; for the initial and each of the updated ensembles are outlined in

Fig. 42. In general, the ensemble standard deviation values, Std; ;, get smaller after

g
history matching. In Fig. 42, the initial ensemble shows more proportion of reddish and

yellowish areas than the updated ensembles, which represent larger values of Std; ;. The
benchmark case performs updates in all gridblocks of the model. The non_adapt_00 case
focuses the updates in the central area of the reservoir model and keeps edges of the model
with minor or none updates. The adapt_sigm case distributes the updates in all the space
of the reservoir model as the benchmark case does, but with a different influence degree
of observations over model parameters. The Std; ; in the adapt_sigm case are smaller
than in the benchmark case. None of the updated ensembles shows an ensemble collapse
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(Std; ; = 0), which might be represented with magenta color in Fig. 42. An important
difference between the non-adaptive and adaptive localization schemes refers to their
performance for honoring geological/spatial correlations among properties at different
locations. The non-adaptive localization ignores spatial correlations between the model
parameters inside and outside the localization regions because it considers only to update
the regions with flows/streamlines, whilst the adaptive localization considers spatial
correlation in the entire model, because it is a correlation-based method. Unlike the non-
adaptive localization, the adaptive localization performs updates in locations without flow
that have strong correlation with locations with flows. This is reflected by that the Std, ;

are reduced along the edges in the adaptive localization case (the adapt_sigm) in Fig. 42.
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Fig. 43 Comparative analysis of the updated ensemble porosity RMS.
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Updated ensemble RMS values against the Truth

The RMS; ; results for the initial and updated ensembles are reported in Fig. 43.
Larger proportion of magenta and dark blue colors in the maps represents smaller
differences between the updated ensemble and the Truth. Both localization schemes
perform better than the benchmark case does. In this criterion, the adapt_sigm case
overperforms the non_adapt 00 case with smaller RMS; ;, which is represented with
larger proportion of magenta color in its RMS; ; map in Fig. 43. The RMSy;s;, and
RMS,eq,, are summarized in Fig. 44. The RMS results for the observations, both during
the history or prediction period, are mostly smaller when applying the two types of
localization schemes. The RMS values are generally smaller for the adapt_sigm case than
for the non_adapt_00 case. The exception occurs in the WWCT observation during the
history, where the non-adaptive scheme is overperforming the adaptive scheme. A
possible reason for this exception could be that the WWCT is very sensitive to the update
in the region with flows and the non-adaptive localization mainly focus and update the
region with flows. Another reason could be that during the history matching (three years),
the producer wells have late or no water breakthrough, which can impact the history
matching quality for WWCT, because there are few data different to zero for
conditioning. An opportunity to improve the history matching for WWCT could be to
increase the history matching period and include more observations for WWCT after
water have broken through in the wells. However, during the prediction of WWCT, in

Fig. 44, the RMS,,cq, Of the non_adapt 00 and adapt_sigm cases are alike. This is

observed in Fig. 44 by that the adapt_sigm case overperforms subtly the non_adapt_00

case with smaller RMS,,,..q , deviations against the Truth.
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Fig. 44 Observations RMS comparative analysis of the updated ensembles

The RMSy;s¢ r » aNd RMSy,,.0q - , OF the production data are outlined in Fig. 45. In this
thesis, as introduced in Chapter 3, section 3.5, the production data (WWPR, WOPR,
WGPR, WWPT, WOPT, and WGPT) are different than the observations (WBP9,
WWCT, WGOR). In this thesis, what is called as the production data are not used for
conditioning the history matching. Based on the RMS criterion, the adaptive localization
scheme is overperforming benchmark and non-adaptive localization cases with smaller
RMS values for all type of production data during history and prediction periods (Fig.

45). The non-adaptive localization scheme is performing like the benchmark for oil and
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gas production rate and accumulated volumes, and the non-adaptive localization scheme
Is underperforming the benchmark case for water production rate and accumulated
volumes. The non_adapt_00 case history matches better the WWCT observations than
the adapt_sigm case does, Fig. 44, but the non_adapt_00 case underperforms the history
matching of the WWPR and WWPT production data in comparison with the adapt_sigm
case, Fig.45. This means that ultimately the adapt_sigm case is more reliable for history
matching water production volumes, even though it has larger RMS values for history

matching the water cut observations.
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Fig. 45 Production RMS comparative analysis of the updated ensembles.
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Updated ensemble RMS values against the initial ensemble

In Fig. 46, the RMS; ; iniriax Maps indicate the areas that have been updated during
history matching. Areas that have not being changed from the initial ensemble are colored
In magenta. Areas with stronger changes are colored in yellowish and reddish colors, and
areas with moderate changes are colored in light bluish and greenish colors. The
benchmark case updates the initial ensemble in the entire model space because there are
no magenta areas in its RMS; ; iniriqy Map. Based on the discussed property mean, ;
pattern in Fig. 41 and RMS; ; results in Fig. 43, the benchmark case diverges, making
property field updates with a different spatial distribution than the Truth, which was
qualitative observed in Fig. 41, and quantitative analyzed with the calculation of the
RMS; ; in Fig. 43. The non_adapt_00 case localizes the updates by only updating the
properties in the regions where the streamlines among injectors and producers occupy.
Therefore, the non_adapt 00 case performs most of the update in the nearby of the
producer and injectors wells. Unlike the benchmark case, the non_adapt 00 case
performs subtle changes to the initial ensemble along the edges of the reservoir model,
and areas without streamline flows will get minor or none updates, such as the magenta
area in the central panel of Fig. 46. The magenta area represents a hanging wall block of
fault F2 that is poorly connected with streamlines to the rest of the reservoir. Thus, the
non_adapt_00 case considers that the properties in the magenta area are irrelevant to the
observations. The adapt_sigm case changes the initial ensemble in the entire space of the
model in different way as benchmark and non_adapt_00 cases did. The adapt_sigm case
is a correlation-based approach that tends to honor the spatial property correlations in the
reservoir model. The adapt_sigm case differs from the non_adapt_00 case by performing

updates towards the edge of the model (including the magenta area in the non_adapt_00
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RMS; ; map), which means that these areas might not have significant streamline flows
but are still spatially correlated to the areas that have stronger streamline flows. The
adapt_sigm case differs from the benchmark case by performing updates in the entire
model but driven by physical correlations. The inclusion of the physical correlations in
the update of the model parameters solves the benchmark case divergence and make the
adapt_sigm case to change assertively the initial ensemble. The adapt_sigm case achieved
a property mean, ; spatial distribution closer to the Truth, Fig. 41, and smaller RMS, ;,
Fig. 43, against the Truth. The adaptive localization scheme proves to be more assertive

in terms of accuracy for history matching and prediction in the Reek field.

Case Case Case
Benchmark Non_adapt_00 “ Adapt_sigm

Porosity
RMS;jinitial

0.05 gy
0.04

Porosity
RMS; jinitial

Porosity
RMS; jinitial

005 g
0.04

4 ‘
0.02 0.02 -
l iy I
0.00 0.00
0 500 1000 1500 2000 2500
O W eves \
1:65006.3

Fig. 46 Comparative analysis of the RMS between Initial and updated ensembles for porosity
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Updated ensemble coverage of observations and measurement errors

The non-adaptive and adaptive localization scheme generate an updated ensemble
spread narrower than the benchmark ensemble does for simulated observables. The
adaptive localization scheme has a similar or better observation coverage and predicting
power than the non-adaptive localization scheme. A good observation coverage occurs
when the spread of the updated ensemble gets narrower than the spread of the initial

ensemble, it is covering the observations and their error bars during the entire history, and

77



Implementation of Adaptive Localization for Enhancing Ensemble-Based History
Matching in Hydrocarbon Reservoir Management

the updated ensemble mean is closer to the observations. In the same way, a good
predicting power occurs when the spread of the updated ensemble gets narrower than the
spread of the initial ensemble, it is covering the predictions, and the updated ensemble
mean is closer to the predictions. In Fig. 47, Fig. 48, and Fig. 49, the non-adaptive and
adaptive localization results are illustrated with three dotted lines in red and purple colors,
respectively. In each figure, the lower, middle, and upper dotted lines for each localization
scheme represent the min, mean, and max values at each time step, respectively. In Fig.
47, for wells OP_1 and OP_2, the WBP9 ensemble spread for initial, and the updated
ensembles are shown. The updated WBP9 ensemble results, for both localization
schemes, are similar for these two wells. There are none significant differences regarding
updated ensemble spread, coverage of observations and measurement error range.
However, the non-adaptive localization ensemble mean predicts better in OP_1 and the
adaptive localization ensemble mean predicts better in OP_2. In Fig. 48, the updated
WBP9 ensemble results for wells OP_3 and OP_5 are illustrated. For these wells, the
adaptive localization generates an updated ensemble with a narrower spread than the non-
adaptive localization does that still covers the observations and the measurement error
range. The mean of the adaptive ensemble matches better the observations during history
matching and gets closer to the predictions. For OP_3 and OP_5, the adaptive localization
performs a better history matching and prediction than the non-adaptive localization does.
In section 4.2, in Fig. 25, for WWCT and WGOR in well OP_3, it was observed an
increment of the benchmark updated ensemble spread in comparison with the initial
ensemble. In Fig. 49, non-adaptive and adaptive updated ensemble results are added to
Fig. 25 to illustrate that both localization schemes solves the observed increment of the
benchmark ensemble spread for WWCT and WGOR, in OP_3, which was an indication

of ensemble filter divergence. Therefore, the non-adaptive and adaptive localization
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results are closer to the observations and predictions than the benchmark case are in Fig.
49. (See Appendix E for visualizing the initial and updated ensembles plots for all wells
and all type of observations). The general observations from these plots are that both non-
adaptive and adaptive localization tend to show a narrower ensemble spread than the
benchmark does for the simulated observables, with better coverage of observations and
measurement error bars; and in most of the cases, the adaptive localization performs

equally or better than the non-adaptive localization does.
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Updated ensemble free parameter distribution

The fault multiplier distributions for the initial and updated ensembles are
summarized in Fig. 50 and Fig. 51, and they are compared to the fault multiplier value of
the Truth for each fault. In summary, the adaptive localization scheme produces better
uncertainty quantification for the seven fault multipliers than the non-adaptive
localization does and solves ensemble filter divergence and spurious correlation observed
in benchmark case. A good uncertainty quantification of the fault multipliers means that
the updated distribution gets narrower, and the updated ensemble median (it is used the
median instead of the mean, because the fault multipliers distribution is modelled using a
lognormal uniform distribution) gets closer to the Truth. For fault F2, the benchmark and
the non_adapt_00 cases reduce incorrectly the ensemble spread by making the ensemble
median farther from the Truth. The adapt_sigm case solves the divergence suffered by
the benchmark and the non_adapt_00 cases in this fault. The adapt_sigm case median is
closer to the Truth. For fault F3, both the adaptive and non-adaptive localization cases
overperform the benchmark case. The benchmark ensemble median gets closer to the
truth than the initial ensemble, but its ensemble spread is larger than the initial ensemble.
This means that the benchmark case suffers of filter divergence. Both localization
schemes reduce assertively the fault multiplier standard deviation and generate an
updated fault multiplier distribution closer to the Truth. However, the adapt_sigm case
overperforms the non_adapt_00 case. For fault F4, the non_adapt 00 and adapt_sigm
cases reduce the initial ensemble spread and generate an updated distribution which
medians are closer to the Truth than the benchmark median is. The benchmark reduces
the ensemble spread of the initial ensemble, but its means is farther from the Truth than
the initial ensemble median is. The adaptive localization case overperforms the non-

adaptive localization and the benchmark cases. For fault F5, both localization scheme
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quantifies similarly the fault multiplier uncertainty, being both better approaches than the
benchmark case that diverges to make an ensemble median closer to zero, being the
Truth’s value equal to 0.3. For fault F6, both localization schemes solve the filter
divergence observed in benchmark case, which ensemble spread is wider than the initial
ensemble spread. The adaptive localization scheme overperforms the non-adaptive
localization scheme because the adaptive updated distribution is narrower, and its
ensemble median is closer to the Truth. For F7, both the benchmark case and the
non_adapt_00 cases suffer of filter divergence. The benchmark case generates an
ensemble spread wider than the initial ensemble, even though its ensemble median is
closer to the Truth. The non_adapt_00 case diverges by reducing abruptly the ensemble
spread, making the ensemble median closer to zero, which is farther from the Truth. The
adaptive localization overperforms benchmark and the non_adapt_00 cases, making the

ensemble median closer to the Truth.

Legend:

1QR =Q3-Q1, where
IQR = Interquartile range
Q3 =3rd quartile or 75" percentile
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Fig. 50 Fault multiplier distribution comparative analysis among Truth, initial and updated ensembles for F2, F3.
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5. DISCUSSION AND CONCLUSIONS

5.1. Discussion with respect to research questions

Does the application of localization techniques achieve a better history matching than the

case without applying any localization techniques in ensemble-based history matching for

the Reek Field?

Yes, the application of localization techniques achieved a better history matching for the

Reek Field. The benchmark case, the non_adapt_00 and the adapt_sigm history matching

results were compared in Chapter 4, section 4.5. Both non-adaptive and adaptive

localization schemes generated an updated knowledge closer to the Truth than the

benchmark case (i.e., without localization) did. The answer is based on:

v

Both localization techniques achieved closer Truth representation of the field property
maps than Benchmark case did (Fig. 41, Fig. E- 1)

Both localization techniques achieved smaller root mean squared deviations between
the Truth and the updated model parameters than benchmark case did (Fig. 43, Fig. E-
3).

Both localization techniques achieved smaller root mean squared deviations between
the simulated observables and the observations (WBP9, WWCT) than benchmark case
did during history period (Fig. 44, upper panel).

Both localization techniques achieved better predictivity power than benchmark case
did for estimating WBP9, WWCT and WGOR (Fig. 44, lower panel).

Both localization techniques achieved better history match and prediction than

Benchmark did for WBP9 in OP_3 (Fig. 48, upper panel).
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v Both localization techniques corrected the observed filter divergence in Benchmark
case for WWCT and WGOR simulated observables in wells OP_3 (Fig. 49).

v Both localization techniques solved observed benchmark filter divergence in faults F3,
F4, F5, and F6 multiplier distributions (Fig. 50 and Fig. 51). For fault F7, only the

adaptive localization scheme solved the benchmark case divergence.

Does the adaptive localization scheme enhance history matching over the non-adaptive
localization schemes for the Reek Field?

Yes, the adaptive localization scheme enhanced ensemble-based history matching over
the non-adaptive localization scheme for the Reek Field. The adapt sigm case
overperformed the non_adapt_00 case in all the comparative analysis criteria, explained

in Chapter 4, section 4.5. The answer is based on:

v' The adaptive localization scheme achieved closer Truth representation of the field
property maps than the non-adaptive localization did (Fig. 41, Fig. E- 1)

v' The adaptive localization scheme achieved smaller root mean squared deviations
between the Truth and the updated model parameters than the non-adaptive
localization did (Fig. 43, Fig. E- 3).

v' The adaptive localization scheme achieved smaller root mean squared deviations
between the simulated observables and the observations than the non-adaptive
localization did, during history for WBP9 and WGOR (Fig. 44, upper panel).

v' The adaptive localization scheme achieved better predictivity power than the non-
adaptive localization did for WBP9, WWCT and WGOR (Fig. 44, lower panel).

v The adaptive localization scheme achieved better history matching and predictivity
of the production data (WWPR, WOPR, WGPR, WWPT, WOPT, WGPT) than the

non-adaptive localization did, (Fig. 45, upper and lower panel). In this thesis, the
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production data were different than the observations (WBP9, WWCT, WGOR). The
production data were not used for conditioning the ensembles.

v The adaptive localization scheme performed better than the non-adaptive localization
scheme for simulating observables closer to the Truth. Fig. 48 shows that the adaptive
updated min-max ensemble interval is closer to the Truth than the non-adaptive
interval for WWCT and WGOR in well OP_3. Fig. 48 shows that the adaptive
updated min-max ensemble interval is closer to the Truth than the non-adaptive
interval for WBP9 in wells OP_3 and OP_5.

v The adaptive localization scheme achieved fault multiplier distributions closer to the

Truth than the non-adaptive localization did for all the six faults, Fig. 50 and Fig. 51.

What are the advantages and limitation of using non-adaptive and adaptive localization
scheme in practice?

In practice, the adaptive localization scheme brings more advantages than the non-
adaptive localization scheme. The advantages of the adaptive localization scheme are the
limitations of the non-adaptive localization scheme, and vices versa. The adaptive and
non-adaptive localization scheme practical advantages are summarized in Fig. 52. The

adaptive localization scheme practical advantages are explained as follows:

v" Tend to honor reservoir dynamics: The adaptive localization generates sensitive
tapering maps for governing observation influence degree over model parameter
updates. The adaptive tapering maps show sensitivity to different correlations among
simulated observables and model parameter types, and their variation in time. The
sensitive tapering maps in the adaptive localization is an advantage over non-
adaptive localization scheme, which uses the same tapering maps in time. Therefore,

the adaptive localization tends to honor better the reservoir dynamics.
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Fig. 52 Advantages of using non/adaptive and adaptive localization scheme in practice.

v" Tend to honor better reservoir heterogeneities: In the adaptive localization
scheme, the computed tapering coefficients, to relate observations and model
parameters, have multimodal distributions (Fig. 31, Fig. 32, Fig. 33, Fig. 34, Fig. 35,
Fig. 36) that tend to honor better the geological anisotropies in the reservoir. The
non-adaptive localization scheme consists of tapering coefficients with unimodal
distribution (Fig. 26, Fig. C- 1, Fig. C- 2, Fig. C- 3, Fig. C- 4) that weights
observations influence degree in proportion to closeness of the model parameters to
the location of observations. Therefore, the update step in the adaptive localization
scheme suits better the reservoir model heterogeneities than the non-adaptive
localization scheme does.

v' Support localization standardization: The adaptive localization scheme defines

the tapering maps for governing observation influence degree over model parameter
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updates with an automated process, in which users just need to indicate the model
parameters to be updated. This automation in generating the adaptive tapering maps
brings the advantage of supporting less experienced users and avoid differences
between users. Unlike the adaptive localization scheme, the non-adaptive
localization scheme depends on the user’s preference to calculate the distance-based
regions. Therefore, the adaptive localization scheme supports standardization in the
implementation of localization in ensemble-based history matching.

v Include non-local observations: In the thesis, the observations are local, and
therefore, they have a 3D coordinate in the reservoir model. However, non-local
observations are used in other modern applications as mentioned in Chapter 2,
section 2.2. The possibility to include non-local observations is an advantage that

adaptive localization scheme has over non-adaptive localization scheme.

The non-adaptive localization scheme practical advantages in Fig. 52 are:

v" Higher sense of user ownership: The non-adaptive localization scheme easily
allows the user to make changes to the tapering maps for governing observation
influence degree over model parameter updates based on user-reservoir dynamics
knowledge. The user-interaction to adjust the tapering maps creates a sense of user
ownership in the history matching. In the adaptive localization scheme, the tapering
maps are generated automatically, internally by the software, and they are not straight
forward visualized, interpreted and edited by the user. If the user wants, the adaptive
tapering maps can be exported from the software for visualization, interpretation, and
edition. However, the exporting step has not being yet implemented in a
straightforward and user-friendly way. If the adaptive localization scheme is

implemented fully automatically, it will become a black box, and the user will lose
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their understanding of the tapering map changes to govern the observation influence
degree over model parameters. In practice, the sense of user ownership is an
advantage of non-adaptive localization scheme over the adaptive localization
scheme, if the latter is used as a black box.

More intuitive to understand: In the non-adaptive localization scheme, the tapering
maps to govern the observations-model parameters influence degree are based on a
user pre-study on model reservoir dynamics. In the adaptive localization scheme, the
tapering maps are based on correlations among observations and model parameters.
The spatial regions for updating of the non-adaptive localization scheme are more
intuitive to most engineers than correlations. Although correlations of the adaptive
localization scheme embed reservoir dynamics, the understanding and interpretation
of the correlations are not as straightforward as spatial regions are.

More intuitive to set up: The non-adaptive localization scheme allows the user to
set up the observation-model parameter influence degree, just based on classical
reservoir engineering knowledge (e.g., drainage areas, streamline flows,
compartmentalization, vertical connectivity). The adaptive localization scheme is
automated, but still requires the user to choose the most efficient tapering rule (soft,
sigm, hard) and to tune the threshold values to improve history matching. The
learning process for choosing the tuning factor and its meaning is less intuitive for
most engineers and requires building a learning curve of the methodology proposed

by Luo and Bhakta (2019), explained in Chapter 3, section 3.4.

The adaptive localization scheme has been demonstrated to be a better approach to guide

the model parameter updates than the non-adaptive localization scheme. The adaptive

localization scheme tends to honor better the reservoir dynamics and heterogeneities.

However, the adaptive localization scheme requires to create tools for facilitating the user
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learning curve of the method’s theory and the adaptive correlation coefficient

sensitivities, and ultimately for developing user history matching ownership when

implementing adaptive localization.

What are the recommended practices of implementing non-adaptive and adaptive

localization schemes?

In practice, the general workflow explained in Chapter 3, section 3.5 could be applied as

follow:

Section i.

Section ii.

Generation of the initial ensemble: Collect the prior knowledge of the
sensible model parameters for the reservoir modelling and their
uncertainties from a multidisciplinary team. The initial ensemble should
consider wide ranges of possible values of the model parameters and cover
the selected observations and their measurement error bars, for avoiding
over-confidence (i.e., too narrow ranges of possible values of the model
parameters).

Development of history matching without localization: Perform the
history matching case without localization with Workflow 1. Evaluate the
history matching results by observing and interpreting the updated model
parameters distribution and the updated ensemble simulated observables
(e.g., property mean, ; in Fig. 22, property Std; ; in Fig. 42, changes in
the initial ensemble in Fig. 46, property distribution box plots in Fig. 23,
updated ensemble coverage and spread in Fig. 24 and Fig. 25, data match
quality with RM Sy , and RMS,,..q ., in Fig. 30. Identify the presence of
ensemble-based history matching challenges: ensemble collapse, spurious

correlation, or filter divergence. The ensemble collapse is identified when
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Section iii.

the ensemble spread reduces to zero for the model parameter’s distribution
or simulated observables’ forecast. Spurious correlation and filter
divergence can be identified when model parameters which are not
physically related to observations get updated, or when the updated
ensemble shows good observation coverage and small RMSy;s , and
RMSyreq, in some wells, but bad observation coverage and large
RMSpist o and RMS,,0q,, inother wells of the field. If the ensemble-based
history matching results show indication of ensemble collapse, filter
divergence or spurious correlation, then apply localization schemes.

Selection of the best non-adaptive localization case: Perform a
multidisciplinary brainstorming for defining the non-adaptive cases. The
thesis work proposes as reference Workflow 3 for defining the tapering
maps based on streamlines simulation. In practice, the approach for
defining the non-adaptive localization regions is tailored to each
application. For example, if reservoir compartmentalization exits and
isolated blocks have been proven in the field, then the distanced-based
localization region could be the compartment area. Another example can
be, if layers are not connected vertically in the field, then the distance-
based localization can be to make that those observations related to a layer
should only update model parameters in this layer of the field. As proposed
in Workflow 3, streamline simulations are useful in waterflooding fields,
with which the localization regions will be based on the flows among
injectors and producers. Perform the non-adaptive localization history
matching following Workflow 2. Select the best non-adaptive case

comparing the results of the ensemble mean mean, ; (Fig. 27), standard
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Section iv.

deviation Std; ; (Fig. 28), root mean square deviations RMS; ; (Fig. 29),
the root mean square deviation during history RMSy,;. , and the root mean
square deviation in prediction RMS,,,.q , (Fig. 30), the root mean square
deviation against the initial ensemble RMS; ; iniriar (Fig. 46). When
working with a real field, the property RMS; ; cannot be defined as did in

the thesis, where Truth porosities and permeabilities were known. In real
application, property RMS comparison can be calculated against measured
property data (e.g., core data, well log data). In the thesis, RMS,,;..q , Was
calculated using the Truth model predictions. In real applications,
RMS,req, could be computed for a period in the history not used for
conditioning.

Selection of the best adaptive localization case: The thesis proposes
Workflow 4 for computing the tapering maps based on Luo and Bhakta
(2019). Observe and interpret the changes in the adaptive tapering maps.
Identify if they tend to honor the reservoir dynamics and heterogeneities
in the field. Perform the adaptive localization history matching following
Workflow 2. Select the best adaptive case based on the results of the
ensemble mean mean; ; (Fig. 37), standard deviation Std; ; (Fig. 38),
vertical average root mean square deviations RMS; ; (Fig. 39), the root
mean square deviation during history RMSy,; , and the root mean square
deviation in prediction RMS,,,.., , (Fig. 40). Evaluate if applying tunning
factors in the tapering rules could improve the history matching results. In
the thesis, the tuning factors used were 0.1, 0.1, and 1 for the adapt_soft,

adapt_hard, and adapt_sigm, respectively. When working with a real field,
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Section v.

5.2.

the property RMS; ; cannot be defined as did in the thesis, where Truth
porosities and permeabilities were known. In real application, property
RMS comparison can be calculated against measured property data (e.g.,
core data, well log data). In the thesis, RMS,,,..q , Was calculated using the
Truth model predictions. In real applications, RMS,,.q, could be
computed for a period in the history not used for conditioning.

Comparative analysis among updated ensembles: Perform the
comparative analysis among the initial, updated ensembles with and
without localization applying Workflow 5. Select the best ensemble-based
history matching after the comparative analysis of all the criteria explained
in Chapter 3, section 3.5: updated ensemble mean for field properties
mean, ; (Fig. 41), updated ensemble standard deviation for field properties

Std;; (Fig. 42), updated ensemble RMS values: RMS;;, RMSp;st o,

g
RMSpred,o RMShist,r_w RMSpred,r_w RMSi,j,initial (Flg 43! Flg 441 Flg
45, Fig. 46), updated ensemble coverage of observations and measurement

errors (Fig. 47, Fig. 48, Fig. 49), and updated ensemble free parameter

distribution (Fig. 50, Fig. 51).

Conclusions

The novelty of the thesis is that it investigated the practical pros and cons of applying

the adaptive localization scheme for ensemble-history matching reservoir simulation

models and proposed a general workflow to guide localization implementation and

evaluation.

The general workflow was proposed and elaborated in the five sections: i) Generation

of the initial ensemble, ii) Development of the benchmark case, iii) Selection of the
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best non-adaptive localization case, iv) Selection of the best adaptive localization
case, v) Comparative analysis among updated ensembles. The workflow was
implemented on the Reek model, and the results were analyzed and discussed.

The benchmark case was the ensemble-based history matching with ES-MDA (three
iterations and the inflating factors, a;,; = 7, 3.5, 1.75) and without any localization.
The non_adapt_00 was the best non-adaptive localization case which was based on
non-adaptive studies performed by Devegowda et al.(2007), Arroyo-Negrete et
al.(2008), Emerick and Reynolds (2010), and Luo et al. (2019). The adapt_sigm was
the best adaptive localization case which was based on the methodology developed
by Luo and Bhakta (2019).

The thesis demonstrated that the ensemble-based history matching without
localization, benchmark case, suffered from filter divergence and spurious correlation
for the Reek field.

The thesis demonstrated that localization techniques, both the non-adaptive scheme
and adaptive scheme, enhanced ensemble-based history matching for the Reek field.
The thesis demonstrated that the history matching with the adaptive localization
scheme overperformed the history matching with the non-adaptive localization
scheme for the Reek field. Therefore, the adaptive localization scheme can contribute
to improving uncertainty quantification and eventually decision quality.

The workflow developed and proposed in the thesis has been demonstrated to be
useful for comparing ensemble-based history matching schemes and results for the
Reek field. The workflow is practical and general and thus can be applied for

quantitative and qualitative analysis of history matching results for other fields.
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5.3. Further work

Incorporate the adaptive localization scheme in Equinor’s FMU tools.

Test and improve the general workflow for non-adaptive and adaptive localization
schemes for other cases (e.g., real fields, seismic data assimilation, and facies
updating).

Develop and implement a practical method to visualize and analyze the changes in
the adaptive localization tapering maps during history matching to facilitate
understanding and interpretation of the adaptive localization tapering maps and avoid
using adaptive localization scheme as a black box.

Develop a tutorial on adaptive localization scheme for users to better understand the

method’s theory and application.
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APPENDIX A

Initial ensemble coverage of observations
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Fig. A- 1 Initial ensemble coverage of WBP9 observations for all producer wells.
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Fig. A- 2 Initial ensemble coverage of WWCT observations for all producer wells.
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Fig. A- 3 Initial ensemble coverage of WGOR observations for all producer wells.
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APPENDIX B

Updated benchmark ensemble coverage of observations
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Fig. B- 1 Initial and updated benchmark ensemble coverage of WBP9 observations for all producer wells.
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APPENDIX C

Non-adaptive localization results
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Fig. C- 1 OP_2 observation tapering coefficients for the three non-adaptive cases.
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Fig. C- 2 OP_3 observation tapering coefficients for the three non-adaptive cases.
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Fig. C- 3 OP_4 observation tapering coefficients for the three non-adaptive cases.
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Fig. C- 4 OP_5 observation tapering coefficients for the three non-adaptive cases.
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Fig. C- 5 Updated ensemble In permeability mean for three non-adaptive cases.
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Adaptive localization results
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APPENDIX E

Comparative analysis among updated ensembles
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Fig. E- 1 Comparative analysis of the updated ensemble In permeability mean.
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