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Abstract 

Numerical models have been established to help understand the longevity of projects when 

exploring and drilling for hydrocarbons. They aid in understanding and optimizing decisions on 

the long-term feasibility of a project by using existing data to run simulations and estimate how 

long a supply can be sustained before its depletion. This thesis aims to explore and evaluate how 

different models compare to one another, how each model varies against the other, and 

ultimately decide how to better optimize production forecasts. It also investigates two 

approaches to the problem namely deterministic and probabilistic.  

As petroleum production has increased, there has been a need for companies to meet demands 

and that requires more accurate methods for reservoir evaluation and forecasting. Numerical 

models can help in this case but which model to choose and to what extent can they be relied 

upon are uncertain factors. This thesis aims to answer that question. 

The challenge in this thesis is comparing probabilistic and deterministic approaches which has 

not been done in other research before using real field data. 
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1. Introduction 

The production rate of oil and gas typically decreases with time. This is where Decline Curve 

Analysis (DCA) can be useful. The decline curve analysis has been widely regarded as an 

industry-accepted method for forecasting hydrocarbon production. One reason for this is it uses 

data that can easily be obtained and does not require many parameters to produce useful results 

(Hong et al., 2019). However, choosing which model to proceed with for what situation remains 

a question without any tangible answer.  

 

 

Review of previous work  

Numerical models to simulate and forecast oil production have been used since as early as the 

1910s (Shabib-Asl & Plaksina, 2019). Since then, many models have been derived and adopted 

some of which include the Arpes model, power-law exponential model, Stretched Exponential 

Model (SEM), Duong, and the Logistic Growth Model (LGM) The idea of combining forecasts 

was introduced in the 1970s. and was only until recently where using different models came into 

consideration for oil production 

 

State of art 

Currently, there are different models adopted by companies for different purposes. The model 

used depends on the scenario and the complexity. The situation as of today is understanding the 

most suitable model according to production requirements and feasibility. By far the most 

popular model is the Arpes model. However, it is not reliable in predicting trends for 

unconventional reservoirs and tends to be more optimistic in these situations (Shabib-Asl & 

Plaksina, 2019) Therefore, selecting the most suitable model is important. The Arpes method, 

despite being one of the more popular models, assumes many variables as constants. One such 

example is in the skin factor or the bottom hole pressure, both of which are taken as constants, 

and thus in the case of a shale reservoir, it also tends to overestimate the oil production. (Shabib-

Asl & Plaksina, 2019). 
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Most companies to this day depend on a single model on a probabilistic basis. Forecasting often 

relies on the selection of a single model with the criteria that it is the best fit. 

Currently, there are numerous methods to select the best model however, there is no concrete 

general standard for the selection of a model. 

Some of the methods used today are as follows: 

• Appearance: This method is a subjective approach used by an expert usually on no 

quantifiable basis for model selection. 

• Maximum likelihood: model selection based on which model fits the data best. 

• AIC: A deterministic approach where models are ranked based on their AIC index. 

• Probabilistic: Making use of weighted probabilities in order to determine the best model. 

This thesis will focus on the last two by investigating the rankings of each. 

 

Problem Definition 

There is the existing concept that several models can be used for the same scenario. However, 

stated by Box (1979) “all models are wrong, but some are useful”. Naturally one of the questions 

that arise keeping this in mind is, “Which model is the best?” This question is more subjective 

than it initially appears because the term “best” is not well-defined. In many applications, the 

model that best represents the data is regarded as the best model and there is no one model that 

fits all data (Hong et al., 2019)  

As shown in Figure 1, we see an example where 4 different models are tested against the same 

scenario in which we can see the red marks indicate the likely “truth” value according to the 

specific model in comparison to the actual value that is at the 50 Mbbl mark. 

 

Figure 1-1 Comparison of multiple models against a single truth value (Hong et al., 2019) 
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Proposed Method 

Based on existing decline curve parameters of an SEM model, a randomly generated data set is 

created. Using this as a reference, the models of SEM, Arpes, LGM, and Pan CRM are 

implemented accordingly as part of the probabilistic approach. Results obtained from this 

process are then used to calculate the maximum likelihood of each model, and then are ranked 

according to their respective probabilities. 

As a parallel, we will use the AIC method, as a deterministic approach, to simultaneously 

compare the two results. 



 

4 

 

 

Figure 1-2  Flow chart detailing workflow for the probabilistic approach  
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Figure 1-3   Flow chart detailing workflow for the AIC approach  

 

 

Aim  

Objective  

Overview of this report 

This chapter gives the overview and introduction that defines our motivation, reasons, and 

eventual objective we are trying to achieve with this thesis. 

The second chapter delves deeper into the background of the field, the methodologies and 

eventual progression and advancements in the field, and as to why we are using these methods 

and more specifically. 
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Chapter three will highlight our approach. What tools, formulas, direction, and parameters or 

restrictions we will work within 

Chapter four will detail how our experimentation was conducted and will go through the process 

on a step-by-step basis on how our experimentation was conducted on synthetic data 

Chapter five will investigate our experimental approach to our real data sets, discuss the 

challenges faced that were not present in the synthetic evaluation 

Chapter six will discuss the findings from our work  

Chapter seven will investigate the comparison of our results, discuss them, and will provide an 

eventual recommendation for possible future work. 
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2. Background 

This chapter will investigate the historic progress that has led us to this point. 

 

About Decline Curve Analysis 

Decline curves have become a more widely applied and more feasible approach to understanding 

the potential of production for wells for which not a lot of information may be known. The 

absence of properties or measurements such as the fluid analysis, bottom hole pressure, and other 

more advanced techniques and therefore may be more cost-bearing for other approaches 

therefore decline curves are a more natural choice for forecasting. (Poston & Poe, 2007) 

The most widely and extensively used technique used by engineers is the rate-time decline curve. 

This helps in understanding the forecasting prediction, well performance and fluid prediction. 

This understanding can contribute significantly towards key economic decisions relating to 

aspects such as the decision on securing assets, and investment planning. 

More sophisticated models can rely on liquid curves in correspondence with pseudo-pressure and 

pseudo-time alongside empirical curve fitting of the Rate-Time data. (Luis F. & Ye, 2012) 

 

About Probabilistic and Deterministic Approaches 

Probabilistic methods include elements and consideration of some form of variation. This means 

on running the same model multiple times, a different outcome can be expected even with the 

same set of initial conditions. All probabilistic models incorporate some form of random 

variation. 

On the contrary, deterministic methods are constructed such that elements of randomness are not 

kept into consideration. This means that if any deterministic model is run any number of times, 

the result will always be the same. 
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Statistical statements that do not mention or consider any form of variation can be considered to 

be deterministic. In this thesis, the AIC and the Corrected AIC method can be viewed as 

deterministic approaches. 

 

Arpes Model 

Based on Johnson and Bollens (1927), The Arpes model aimed to develop a new DCA to 

estimate reservoirs and generated a relatively simple mathematical formula that, to this day, is 

widely used especially in the oil and gas industry. However, this model is based on several 

assumptions such as a constant value of skin factor, bottom-hole pressure, and a uniform BDF 

regime. 

However, Arpes models may tend to overestimate EUR in unconventional wells (Akbarnejad-

Nesheli et al., 2012; Okouma Mangha et al., 2012). 

The Arpes model bases itself as completely empiric and has three variations, namely: 

Exponential, Hyperbolic, and Harmonic, each of which can be described as: 

 

Exponential:   where b = 0                             q0 = qi Dt exp(-Di t) 

(1) 

Hyperbolic:   where 0 < b < 1       q0 = 
qi

(1+𝑏𝐷𝑖𝑡)
1
𝑏

 

(2) 

Harmonic:      where b=1        q = = 
qi

(1+𝑏𝐷𝑖𝑡)
 

(3) 

  

 

SEM 

The SEM production decline model (Valkó, 2009) is regarded as a performance prediction tool 

set up on an intuitive physical basis. Kohlrausch in 1847 described it as a quantity which is 

generated by a sum of pure exponential decays with a “fat-tailed” probability distribution. This 

later was rethought by Valko and Lee (2010) as a determination of many contributing volumes 

individually. 
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𝑞(𝑡) = 𝑞𝑖exp⁡[− (
𝑡

τ
)
𝑛

] 

(4) 

In comparison to the Arpes model, SEM has numerous advantages. Some of these advantages 

include the bounded consideration of EUR from individual wells and the behaviour of recovery 

potential against the cumulative production (Valko and Lee 2010). 

 

LGM 

Originally stated to work as a means to measure and forecast population growth in the Unite 

States of America, the use of LGM goes back to 1838 as the Verhulst-Pearl Equation (Verhulst, 

1838).  Until eventually getting repurposed to act as an indicator for production of hydrocarbons. 

Particularly this model was applied to estimate gas reserves and the model uncertainty for 

probabilistic DCA was investigated by Hong et al. (2018) for unconventional wells alongside the 

Arpes model and showed how both, Arpes and LGM may tend to experience more optimistic 

estimates for production. 

The equation of the LGM model can be defined as: 

𝑞𝑡 = ⁡
𝑎𝐾𝜂𝜂−1

(𝑎 + 𝑡𝜂)2
 

(5) 

Q is the cumulative production. K is defined to be the carrying capacity, 𝜂 is described as the 

hyperbolic exponent.  

 

Pan CRM  

The Pan Capacitance Resistance Model (Pan CRM) is our final DCA model for the scope of this 

thesis. Specifically for unconventional wells, it is designed to calculate flow regime for transient 

and semi-steady state flow regimes. (Pan, 2016) proposed the model to calculate to investigate 

the productivity index over the different flow regimes which is described by: 

𝐽 =  
𝛽

 𝑡
+ 𝐽∞  

 

6) 
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J is the productivity, J∞ is the constant of the productivity index that is expected to be reached by 

the well when there is boundary dominated flow. β represents the linear transient flow and is 

related to the permeability in the analytical solution as put forward by. The empirical solution 

was obtained and has assumed the form of the below equation: 

𝑞𝑡 =⁡∆𝑃(
𝛽

 𝑡
+ 𝐽∞)𝑒

−(2𝛽 𝑡⁡+𝐽∞𝑡)/𝑐𝑡𝑉𝑝  

(7) 

 

Here the  ct  value is the compressibility, Vp represents the drainage pour volume, while ΔPΔP is 

the difference between the initial reservoir pressure and the constant assumed for the flowing 

bottom hole pressure. 

It is worth noting that for smaller values of time, the Pan CRM model may give unrealistically 

high values of the production rate as it approaches infinity when time approaches 0. 

 

AIC 

The Akaike Information Criterion (AIC) is a deterministic method for calculating the fit of a 

model against the data it is based on. The method is used to analyse multiple possible models to 

see which one fits best on the given data. The principle behind AIC can be based on two 

statements, the first one being the number of independent variables being used in the model we 

are evaluating. The second being how well the model may reproduce the given data based on the 

number of data points used. 

Using this algorithm, the best model is the one that covers the most variation in the data with the 

least number of parameters used. 

 

𝐴𝐼𝐶 = 𝑁𝑙𝑛 (
𝑠𝑠

𝑁
) + 2𝐾 

(8) 

N is the number of observations i.e. total datapoints, K is the number of parameters fitted plus 

one and ss is the sum of squares. According to (Shabib-Asl & Plaksina, 2019), a better approach 

to calculating the Akaike Criterion would be to use the corrected AIC method. 

This method makes use of the calculated AIC value and computes it further as given by the 

equation: 
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𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +⁡
2𝐾(𝐾 + 1)

𝑁 − 𝐾 − 1
 

(9) 

 

The corrected AIC can only be calculated if the number of data points is at least twice as great as 

the number of parameters being used. 

 

To compare models, the AIC and Corrected AIC values must be calculated for all models being 

used. The lower the AIC value the better the model fit. 
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3. Approach 

 

Clemen et al.(2000) concluded that using the average from multiple experts as opposed to just 

relying on one expert gave a more accurate forecast. This thesis intends to make use of that. The 

methodology includes using test data and running, simulating, and observing the results of each 

of the before-mentioned models. Namely:  

● SEM 

● Arpes 

● LGM 

● Pan CRM   

After running the simulations and collecting results, they are visualized to compare their 

differences, an example of which, shown in figure 3.1 where the decline curve forecast for each 

model on the same data set shows little to significant variation. 

 

 

Figure 3-1 Combined representation of all models against original data 

 

Our approach makes use of not only comparing the models based on one data set alone but 

making use of multiple samples based on the standard deviation obtained through a moving 

window function. It is expected that the length of data will have to be reduced as well due to the 
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nature of implementing the moving window approach for standard deviation. This may cause 

some initial time values to be rendered as invalid, or as NaN values in python code. 

This approach will also need the data to be as smooth as possible. In real world cases operational 

changes, testing or accidents may cause some inconsistencies in production data. One of the 

assumptions used in implementing DCA is that it requires a smooth curve. For this reason, some 

values in our data pre-processing will be removed from the processed data. 

Since the data we are using from real word cases are conducted over different wells with varying 

decline curves, it is possible that the number of days over production will not be the same for all 

the wells tested. Some decline curves can span over longer durations than others. It is therefore 

also important to consider the days needed for production forecasting. The probability of a model 

may change significantly if the length of time is reduced thus increasing the uncertainty of the 

model. The data used for our real-world testing can be seen below where out of the 13 wells 

tested the minimum, maximum, and the average length of time are described: 

 

 

Reading Length (Number of data points t) 

Minimum 69 

Maximum 97 

Average 84.53 

 

Table 3.1: Variation of time variable of tested wells 
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4. Study with synthetic data 

 

The approach taken to finding out the comparison was taken in two phases for both 

methodologies. For the synthetic data, we first conduct the probabilistic analysis and after 

obtaining the results and ranking the respective probabilities, we will then conduct the AIC 

method. 

Data required 

Using random generation for data points 

The first part of this section incorporates generating normally distributed data points over the 

time of 200 days using existing parameters from an SEM model. Once done with a standard 

deviation of 0.2, the resulting data trend was as shown in figure 4.1 below: 

 

Figure 4-1 Trend of synthetic data  

 

To get a better look of the trend, a line of best fit was also incorporated, as shown in figure 4.2 

below: 
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Figure 4-2 Trend of synthetic data averaged 

 

Once the data has been generated, we implement each of the models individually. So, at first, we 

started with the SEM model. We defined the function and the input parameters of days, The 

initial flow rate, and n is the number of days and the constant 𝜏. After this, we define our model. 

Using some initial conditions, some boundaries of both the lower and the upper and this 

generates. The best possible values. For our given parameters. 

Once the model has run via our set parameters, which we then incorporate into the SEM model 

to see how consistent it is with our initial data. The generated data is shown in the figure below 

against the generated data that we have. 
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Figure 4-3 SEM against synthetic data 

 

The next step is to set up the model for Arpes. This follows a similar sequence where the 

function is defined with the relevant input parameters. In this case we use the number of days as 

time, the initial flow rate for Arpes as q0, the constant b which is taken to be the decline exponent 

and Di being the initial decline exponent. 

This data is run against a curve fit fiction which again determines the best parameters and returns 

them respectively which we use as the input parameters to our model. The resultant data is 

collected and plotted against the original data as shown in figure 4.4 below: 
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Figure 4-4 Arpes against synthetic data 

 

The next model is the LGM model. Similar to as before, the function is defined with the input 

parameters that for this model, are the constant a, K being the carrying capacity and n being the 

hyperbolic exponent. 

When running them through the curve fit function, the optimal values are returned and then are 

used as part of the LGM function that eventually gives the result below in figure 4.5 

 

 

Figure 4-5 LGM against synthetic data 
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For Pan CRM, we repeat our process except this time instead of three parameters we now use 

four for the function input. These parameters are J as the productivity, Beta as the linear transient 

flow parameter, J∞ as the constant productivity index and cpVt as the compressibility and 

drainage pour volume. 

Obtaining the parameters and running the model function results in the graph in the figure below: 

 

Figure 4-6 Pan CRM against synthetic data 

 

 

Plotting all the models side by side gives us an overall idea of how the trend is supposed to look 

like and we can see the consistency between the four models and the data. 

 

Figure 4-7 All models against synthetic data 
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Our next step is to implement the moving window algorithm. After collecting the data from 

running the model functions, all four trends are recorded and transformed into the form of a data 

frame. This gives us a more streamlined representation of our progress so far. 

 

Figure 4-8 Model data collected into a single data frame 

 

Upon representing our data, we add newer columns which come from the result of implementing 

the moving window function and obtaining the rolling average and the rolling standard deviation. 

For the moving average implementation our window size is set to 5 and similarly we use the 

same dimension for the standard deviation. This at the end, will give us the respective column 

value in the data frame. However, the number of values will be reduced by 4 as the moving 

window can only be implemented on values greater than or equal to its size. 
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Figure 4-9 Obtained moving window average and standard deviation 

 

On obtaining these two values, we graph the results with the original values, and we can see that 

the average and standard deviation are both consistent with our data. 

 

Figure 4-10 Plotting moving window values against our data 

 

Our next step is to use the standard deviation and average to randomly generate a set number of 

samples. In our case, we have used the sample size of 10 for testing the synthetic data. 

On generating these curves, our next step is to rank the highest values of all the samples as one 

curve. We repeat the same step with all the second highest values of each time step and same for 

the third and so on until all the generated samples are ranked according to their respective order 
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of maximum value. Our resulting data frame will give us all columns arranged in a descending 

order. 

 

Figure 4-11 Ranking samples from highest to lowest 

 

The ranked distribution of the decline curves can be shown in figure 4.12 below. 

 

Figure 4-12 Plotting moving window values against our data 

 

All these samples are then made into a new data frame along with their timestep and moving 

standard deviation. 
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Figure 4-13 Samples converted to a data frame 

 

From the above figure, we can see that the first four values appear as NaN. This is due to the 

unavailability of their respective standard deviations hence these values need to be removed. 

After removing them our data points are now down to 196 instead of the original 200. 

 

Figure 4-14 Removed NaN values 

 

With the data cleaned and ready to be run through our models, we implement each of the models 

on the given data to obtain all the possible decline curves. 

Each ranked curved is passed through the curve fit function. This time we use and additional 

parameter of sigma in the curve fit which is equal to the moving standard deviation. This allows 

us to keep it as a weighted average in our probability calculations and then the resultant 

parameters are passed through the model function and are graphed respectively.  

We can see the result of passing the data through each model in the figures below. 
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Figure 4-15 Combined ranked SEM Models 

 

 

Figure 4-16 Combined ranked Arpes Models 
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Figure 4-17 Combined ranked LGM Models 

 

 

Figure 4-18 Combined ranked Pan CRM Models 

 

 

After running the simulation for all the ranked decline curves. Our next step is to set up the 

maximum likelihood function. 

The maximum likelihood function takes the squared difference between the original data and the 

simulated decline curve divided by the squared standard deviation at the specific time step. All 

the datapoints from each timestep are then added together to attain the maximum likelihood. 
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𝐿𝑀𝐿𝐸 =⁡∑
[𝑞𝑘(𝑥) −⁡𝑞 𝑘]

2

𝜎𝑘2

𝑇

𝐾=1

 

(10) 

This is done for the four models and we at the end are with arrays for all the models. 

For the probability calculation, each index of the data frame is compared and computed to get the 

probability for each model. 

The probabilities are then ranked with the higher the probability the more likely the best model. 

 

Model Probability 

SEM 0.014859 

Arpes 0.115539 

LGM 0.001562 

Pan CRM 0.868040 

 

Table 4.1 Final probabilities 

 

 

Using AIC and Corrected AIC 

Our next approach utilizes AIC. For the first step, we calculate the sum of squares and relate it to 

the parameters of AIC. These parameters are N which is the number of data points used in the 

model, ss which is the squared sum that we already calculated, and K is the number of 

parameters used in the model plus one. 

Using the results from AIC, we use the value to calculate the Corrected AIC Or AICc which was 

already stated to be more accurate than the regular AIC calculation. 

According to the definition of AIC, the lower the value, the better the fit. 

On collecting and rearranging our data as a separate data frame to be used, the squared sum for 

each model was calculated followed by the AIC calculation until we get the resulting data frame 

column for AIC. 

On calculating the squared sum and implementing the AIC equation, we obtain the result below: 



 

26 

 

 

Figure 4-19 Squared sum and AIC results 

 

To attain more accuracy, we now switch over to AICc which is done so using the calculated AIC 

values. On doing so we now obtain a new column for the Corrected AIC values. 

 

Figure 4-20 AIC and corrected AIC results 

 

As mentioned, this table now as to be sorted in an ascending order for both AIC and AICc 

Figure 4-21 AIC and corrected AIC ranked 

 

From the results above we can see that there is no difference in the rankings when using AIC or 

the corrected AIC. 

In comparison to the probabilistic approach, the results are also found to be consistent for Pan 

CRM and SEM but not for Arpes and LGM. 
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5. Study with real data 

In this chapter, for the purposes of illustration, data from well 41 is demonstrated in the 

figures and tables. 

 

Data requirement 

Similar to the previous section, values for the parameters for the models are required, 

however, the curve fit function with a set of initial parameters and a starting point can help us 

determine the appropriate parameters. 

Well data from 26 different wells that were recorded over time were used as the experimental 

data. This data was presented in the form of a Microsoft Excel sheet. This data was imported 

on a well-by-well basis and was run through the program that was constructed for the 

synthetic data. 

Our code had to be modified to accommodate the different lengths of the input data. 

The first process was to import the excel file and for that purpose, we used the 

pd.io.excel.read_excel() function. This allows us to access the file so that we can read the 

well data. 

 

Sheet 1 on the excel file gives us a detailed explanation of column values associated with the 

well. It is therefore important we single out the information we need. 

The relevant columns of time in days and the oil rate in barrels per day were extracted while 

all other information was discarded. 

The next step involved reading the data. In order to understand and get a better visual 

representation of our excel sheet, the data is imported as a data frame which indicates the 

number of rows and columns  

For our calculations, we will only consider the time (t_mid.1) and the extraction rate (Oil 

Rate [bbl/day].1) as our parameters. On obtaining this information, our data frame will look 

as shown below. 
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Figure 5-1 Imported well data 

 

On inspecting this table, we notice one aspect in the data that the extraction values for a 

considerable part of our data set is zero which implies extraction has not started yet. It is 

therefore important to have our decline curve as smooth as possible, so we drop the initial zero 

values and relabel the index. 

The final step in data pre-processing involves resetting the time values in accordance to starting 

at days the extraction process has begun. For this we subtract the first-time index from the rest of 

the array and we get our final form of our real word data set to be processed. 

 

Figure 5-2 Cleaned data 
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Graphing the data, we can see it looks similar to our synthetic data that we generated previously. 

 

Figure 5-3 plotted well data 

 

This data is now ready to be run through our four models and doing so would result in the 

following plots for each model: 

 

Figure 5-4 plotted SEM model against well data 
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Figure 5-5 plotted Arpes model against well data 

 

 

Figure 5-6 plotted LGM model against well data 
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Figure 5-7 plotted Pan CRM model against well data 

 

The next step is to implement our moving window function to obtain an average and a standard 

deviation. Just like in our synthetic data testing, we keep the moving window size to 5. This is 

processed and results in the graph representation below: 

 

 

Figure 5-8 Implementation of moving window 

 

On obtaining the average and rolling standard deviation, one thing to not is the existence of NaN 

values. NaN referrers to “Not a Number” which is to be expected as the moving window only 

gives values of indexes greater than the window size and onwards.  
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On removing the first four NaN rows we notice that there are still some indexes where the 

standards deviation is NaN. This may possibly be a result of the moving window function 

limitation. To keep our data consistent, these rows are removed as well. 

 

Figure 5-9 Existence of more NaN values which are also removed 

 

 

We are now ready to generate samples of our data. This is done so by using the by using the 

obtained standard deviation. 

This code was tested using samples of various sizes with the maximum being 100,000. But after 

comparisons the difference in our final probability results between sample sizes of 100,000 and 

10,000 were found to be minimal. So in this thesis, and for all our experimental wells, the sample 

size we will continue to use sizes of 10,000. 

Once our samples are generated, we use a sorting function to sort the maximum values of each 

time step as one curve, the second maximum values as another and so on until all the curves are 

sorted and ranked in order of their highest values. 
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Figure 5-10 Visual ranking of 10,000 samples 

 

All these samples are brought into a data frame and the data frame is appended with the 

respective time and standard deviation values. 

We remove any final NaN values and after doing so, our data is ready for processing. 

 

 

Figure 5-11 Removal of all NaN values 

 

Each model is subsequently run on all the sampled decline curves and our resulting plots are 

generated. The below figures visualize the obtained decline curves from running on the data from 

well 41. 
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Figure 5-12 Curve fit SEM 10,000 samples 

 

Figure 5-13 Curve fit Arpes 10,000 samples 
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Figure 5-14 Curve fit LGM 10,000 samples 

 

 

Figure 5-15 Curve fit Pan CRM 10,000 samples 

 

Our next step involves the maximum likelihood calculation. This is calculated by having our 

original data subtracted by our generated data and the result being squared and divided by the 

standard deviation squared as given in the equation 10 

On doing so for each model and its data, our result is saved into another data frame. 

Once we have our data frame for maximum likelihoods, our next step involves calculating the 

final probabilities.  This is done by the equation 11 where all the likelihoods are added up 
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On calculating the individual probabilities, we compile our results in the form of a data frame 

which shows the individual probabilities of each model against each other for each sample. 

 

Figure 5-16 Maximum likelihood calculations 

 

 

To calculate the final probability, the columns are added, and the obtained value signifies the 

final probability of that model being applicable on the tested data set. 

SEM 6.082972e-01 

Arpes 1.304238e-46 

LGM 4.825889e-22 

Pan CRM 3.917028e-01 

 

Table 5.1 Final probabilities 

 

On moving to the AIC calculation, there are not as many modifications to be made to 

accommodate the well data set. The only calculation needed to be made is to obtain the length of 

the dataset i.e. the time variable. This is done simply by using the len() function on the oil rate 

data that was cleaned to start from the time of production. 
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Once this is obtained, the relevant variables are put into the AIC equation (Equation 8) and for 

each model the respective AIC is obtained. 

Since (Shabib-Asl & Plaksina, 2019) said the Corrected AIC yielded better results, this thesis 

looked into implementing that as well. 

The calculation for the Corrected AIC is also relatively straightforward. It makes use of our 

previous AIC calculation for a newer calculation. 

This yields another set of results, that are different in values but similar to the AIC calculations. 

 

On comparing both models over various wells, the following results were obtained. 

 

 

Figure 5-17 Ranked AIC and Corrected AIC values 
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6. Results 

 

Having compared two different models over 13 different wells  

The following results were obtained after running the probabilistic model for a sample size of 

10,000.  

 

Well ID Probabilistic Corrected AIC 

     

9 

LGM 0.87 Pan CRM 157.5 

SEM 0.1 Arpes 313 

Pan CRM 0.01 LGM 333.8 

Arpes 0 SEM 334.2 

     

11 

Arpes 0.27 Pan CRM 322.8 

Pan CRM 0.25 SEM 458.5 

LGM 0.24 Arpes 458.58 

SEM 0.21 LGM 464.72 

     

13 

Pan CRM 4.91E-01 Pan CRM 434.1 

SEM 4.91E-01 SEM 585.4 

Arpes 1.77E-02 Arpes 597.9 

LGM 3.88E-07 LGM 621.1 

     

     

17 

Arpes 0.75 Pan CRM 423.5 

SEM 0.18 Arpes 570.9 

LGM 0.05 SEM 572.1 

Pan CRM 0.005 LGM 576.4 

     

18 

LGM 0.58 Pan CRM 117.3 

SEM 0.41 LGM 219.8 

Arpes 0.00287 SEM 223 

Pan CRM 0.00281 Arpes 223.9 

     

19 

Pan CRM 7.76E-01 Pan CRM 289.2 

SEM 2.23E-01 Arpes 420 
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LGM 3.47E-05 SEM 445.5 

Arpes 8.05E-37 LGM 448.5 

     

22 

pan CRM 6.64E-01 Pan CRM 423.2 

Arpes 3.52E-01 Arpes 482.3 

SEM 7.53E-08 LGM 532.8 

LGM 5.96E-29 SEM 537.1 

     

24 

Pan CRM 0.42 Pan CRM 186.2 

SEM 0.31 Arpes 292.3 

LGM 0.25 LGM 300.2 

Arpes 0 SEM 300.3 

     

25 

Pan CRM 0.84 Pan CRM 351.2 

SEM 0.15 Arpes 447.8 

Arpes 0.002 SEM 450.3 

LGM 0 LGM 451.5 

 
 
     

32 

LGM 0.72 Pan CRM 303.8 

SEM 0.16 SEM 436 

Pan CRM 0.03 LGM 439 

Arpes 0.07 Arpes 441.6 

     

35 

Pan CRM 0.936774 Pan CRM 381.395564 

Arpes 0.03238 SEM 549.710574 

SEM 0.030463 Arpes 550.30196 

LGM 0.000383 LGM 551.232969 

     

40 

Pan CRM 8.17E-01 Pan CRM 300.264857 

SEM 1.83E-01 SEM 479.237176 

LGM 1.51E-14 Arpes 479.691258 

Arpes 1.19E-45 LGM 488.236681 

     

41 

SEM 6.08E-01 Pan CRM 419.323882 

Pan CRM 3.92E-01 SEM 577.78516 

LGM 4.83E-22 LGM 582.237566 
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Arpes 1.30E-46 Arpes 592.10283 

 

Table 6.1 Table of results and ranking 
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7. Discussion, conclusion, and recommendation for future work 

 

Discussion 

The purpose of this thesis was to compare on the two different methodologies and to see the 

similarities, differences in both, the implementation, the process and at the end, the result.    

From our final readings, we can conclude that the two different methodologies result in 

contrasting results. There may be multiple reasons for this. 

From our results, we can see that in the AIC method, Pan CRM has consistently performed as the 

most preferred model despite it having the most parameters. This is likely due to the freedom a 

model is likely to exhibit if it has more parameters and hence a better fit may compensate for the 

increased parameters. 

Another observation is of well 13 where the ranking has been consistent across both methods. 

We can conclude for this well the Pan CRM is the most preferred method. 

One advantage of using a probabilistic approach is that it provides weightages which may prove 

beneficial as it helps determine the model that is more likely to be correct instead of relying on 

one single model. 

One disadvantage of using the probabilistic approach is the number of steps and the complexities 

involved. Unlike the AIC method where using two equations can yield results without much 

computation, there are many steps required to conduct the probabilistic approach. This is 

especially time consuming as the number of samples can increase simulation time. In our case 

the time taken to simulate the results for 100,000 samples took 12 hours to compute for a single 

well. 

 

Conclusion 

For a conclusion, it can be said that there may be more investigation required to bring tangible 

conclusions. This experiment has shown that there my be a possibility for over confidence in one 

particular model through a specific method but another model may deny it completely. 

 

Recommendation for future work 

This section is dedicated for future work if anyone decides to dedicate time to this study. 
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• More well data and testing is required. This study was conducted over 13 wells and a 

sample size of this size may not prove to be bi enough to yield usable results. 

• More data about the type of wells can be useful. The wells used in this study were mostly 

unconventional wells which explains some behaviors such as in the case of Arpes which 

tends to overestimate in such wells. 

• Compare forecasting with the preferred model from each method. 
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Appendix A 

 

Simulation graphs from the four models visualized for 10,000 samples 

• All y-axis values are oil production B/d 

• All x-axis values are time (Days) 
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Appendix B 

Simulation code 

 

 



CSV Extraction

-------------------------------------------------------------------
--------------------------

Selected Unnamed:
2

Unnamed:
3

Unnamed:
4

Unnamed:
5

Unnamed:
6

Unnamed:
7

Unnamed:
8

Unnamed:
9

Un

0 Well ID 8 9 11 13 14 15 16 17

1 rows × 34 columns

Unnamed:
0

Unnamed:
1

Unnamed:
2

Unnamed:
3

Unnamed:
4

Unnamed:
5

Unnamed:
6

Unnamed:
7

Unnamed:
8

0 NaN NaN Well ID 41 NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN Date dt t t_mid Oil Rate
[bbl/mon]

Oil Rate
[bbl/day] NaN

3 NaN NaN 01/1965 31 31 15.5 0 0 NaN

4 NaN NaN 02/1965 28 59 45 0 0 NaN

In [1]: import random

import os

import string

import numpy as np

import matplotlib as plt

import matplotlib.pyplot as plt

import pandas as pd

import math

from scipy.optimize import curve_fit

from statistics import mean

from inspect import signature


In [ ]:  


In [2]: path = "C:/Users/maaz2/Documents/UiS/Thesis/Programs/Midland_AojieSelectedData.xlsx"

df0 = pd.io.excel.read_excel(path, sheet_name=2, header = 3)


In [3]: df0.drop('Unnamed: 0',inplace=True, axis=1)


In [4]: df0


Out[4]:

In [5]: # Array of all the well numbers



wells = df0.iloc[0, 1:33]


In [6]: pdsheet = pd.io.excel.read_excel(path, sheet_name=0)


In [7]: pdsheet


Out[7]:



... ... ... ... ... ... ... ... ... ...

625 NaN NaN 11/2016 30 18962 18947 591 19.7 NaN

626 NaN NaN 12/2016 31 18993 18977.5 508 16.387097 NaN

627 NaN NaN 01/2017 31 19024 19008.5 613 19.774194 NaN

628 NaN NaN 02/2017 28 19052 19038 435 15.535714 NaN

629 NaN NaN 03/2017 31 19083 19067.5 528 17.032258 NaN

630 rows × 12 columns

Unnamed: 3

0 41

Unnamed:
0

Unnamed:
1

Unnamed:
2

Unnamed:
3

Unnamed:
4

Unnamed:
5

Unnamed:
6

Unnamed:
7

Unnamed:
8

0 NaN NaN Well ID 41 NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN Date dt t t_mid Oil Rate
[bbl/mon]

Oil Rate
[bbl/day] NaN

3 NaN NaN 01/1965 31 31 15.5 0 0 NaN

4 NaN NaN 02/1965 28 59 45 0 0 NaN

... ... ... ... ... ... ... ... ... ...

625 NaN NaN 11/2016 30 18962 18947 591 19.7 NaN

626 NaN NaN 12/2016 31 18993 18977.5 508 16.387097 NaN

627 NaN NaN 01/2017 31 19024 19008.5 613 19.774194 NaN

628 NaN NaN 02/2017 28 19052 19038 435 15.535714 NaN

629 NaN NaN 03/2017 31 19083 19067.5 528 17.032258 NaN

630 rows × 12 columns

CSV Reading and cleaning and Plotting
(WORKING)

Unnamed:
0

Unnamed:
1

Unnamed:
2

Unnamed:
3

Unnamed:
4

Unnamed:
5

Unnamed:
6

Unnamed:
7

Unnamed:
8

0 NaN NaN Well ID 41 NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN NaN

In [8]: pdsheet.iloc[0:1, 3:4]


Out[8]:

In [9]: pdsheet


Out[9]:

In [10]: # Reading file and making it into a dataframe



path = "C:/Users/maaz2/Documents/UiS/Thesis/Programs/Midland_AojieSelectedData.xlsx"

df1 = pd.io.excel.read_excel(path, sheet_name=0)


In [11]: df1


Out[11]:



2 NaN NaN Date dt t t_mid Oil Rate
[bbl/mon]

Oil Rate
[bbl/day]

NaN

3 NaN NaN 01/1965 31 31 15.5 0 0 NaN

4 NaN NaN 02/1965 28 59 45 0 0 NaN

... ... ... ... ... ... ... ... ... ...

625 NaN NaN 11/2016 30 18962 18947 591 19.7 NaN

626 NaN NaN 12/2016 31 18993 18977.5 508 16.387097 NaN

627 NaN NaN 01/2017 31 19024 19008.5 613 19.774194 NaN

628 NaN NaN 02/2017 28 19052 19038 435 15.535714 NaN

629 NaN NaN 03/2017 31 19083 19067.5 528 17.032258 NaN

630 rows × 12 columns

Unnamed:
0

Unnamed:
1 Date dt t t_mid Oil Rate

[bbl/mon]
Oil Rate

[bbl/day]
Unnamed:

8 t.1 t_mid.1

0 NaN NaN 01/1965 31 31 15.5 0 0.000000 NaN 31 15.5

1 NaN NaN 02/1965 28 59 45.0 0 0.000000 NaN 59 45.0

2 NaN NaN 03/1965 31 90 74.5 0 0.000000 NaN 90 74.5

3 NaN NaN 04/1965 30 120 105.0 0 0.000000 NaN 120 105.0

4 NaN NaN 05/1965 31 151 135.5 0 0.000000 NaN 151 135.5

... ... ... ... ... ... ... ... ... ... ... ...

622 NaN NaN 11/2016 30 18962 18947.0 591 19.700000 NaN 18962 18947.0

623 NaN NaN 12/2016 31 18993 18977.5 508 16.387097 NaN 18993 18977.5

624 NaN NaN 01/2017 31 19024 19008.5 613 19.774194 NaN 19024 19008.5

625 NaN NaN 02/2017 28 19052 19038.0 435 15.535714 NaN 19052 19038.0

626 NaN NaN 03/2017 31 19083 19067.5 528 17.032258 NaN 19083 19067.5

627 rows × 12 columns

t_mid.1 Oil Rate [bbl/day].1

0 15.5 0.000000

1 45.0 0.000000

2 74.5 0.000000

3 105.0 0.000000

In [12]: #df.drop('Unnamed: 0',inplace=True, axis=1)

#df.drop('Unnamed: 1',inplace=True, axis=1)


In [13]: df1 = pd.io.excel.read_excel(path, sheet_name=0, header = 3)


In [14]: df1


Out[14]:

In [15]: # Dropping the first 10 Columns as they are not needed



df1.drop(df1.iloc[:, 0:10], inplace = True, axis = 1)


In [16]: df1


Out[16]:



4 135.5 0.000000

... ... ...

622 18947.0 19.700000

623 18977.5 16.387097

624 19008.5 19.774194

625 19038.0 15.535714

626 19067.5 17.032258

627 rows × 2 columns

0       0.000000

1       0.000000

2       0.000000

3       0.000000

4       0.000000

         ...    

622    19.700000

623    16.387097

624    19.774194

625    15.535714

626    17.032258

Name: Oil Rate [bbl/day].1, Length: 627, dtype: float64

t_mid.1 Oil Rate [bbl/day].1

532 16206.5 49.548387

533 16237.0 313.100000

534 16267.5 324.096774

535 16298.5 291.967742

536 16329.0 253.866667

... ... ...

622 18947.0 19.700000

623 18977.5 16.387097

624 19008.5 19.774194

625 19038.0 15.535714

626 19067.5 17.032258

95 rows × 2 columns

In [17]: #Checking

df1['Oil Rate [bbl/day].1']


Out[17]:

In [18]: # Dropping all zero rows



df1 = df1.loc[df1['Oil Rate [bbl/day].1'] != 0]


In [19]: df1


Out[19]:

In [20]: # Indexing the dataframe so it starts from zero

df1 = df1.reset_index(drop=True)


In [21]:



t_mid.1 Oil Rate [bbl/day].1

0 16206.5 49.548387

1 16237.0 313.100000

2 16267.5 324.096774

3 16298.5 291.967742

4 16329.0 253.866667

... ... ...

90 18947.0 19.700000

91 18977.5 16.387097

92 19008.5 19.774194

93 19038.0 15.535714

94 19067.5 17.032258

95 rows × 2 columns

t_mid.1 Oil Rate [bbl/day].1

0 0.0 49.548387

1 30.5 313.100000

2 61.0 324.096774

3 92.0 291.967742

4 122.5 253.866667

... ... ...

90 2740.5 19.700000

91 2771.0 16.387097

92 2802.0 19.774194

93 2831.5 15.535714

94 2861.0 17.032258

95 rows × 2 columns

324.0967741935484

df1


Out[21]:

In [22]: # Selecting date of extraction start so that we can set time = 0



Extraction_Start_Datedf = df1.iloc[0,0]


In [23]: df1['t_mid.1'] = df1['t_mid.1'] - Extraction_Start_Datedf


In [24]: df1


Out[24]:

In [25]: # Finding maximum so we can use that as a starting point



max(df1['Oil Rate [bbl/day].1'])


Out[25]:

In [26]: df1.loc[df1['Oil Rate [bbl/day].1'] == max(df1['Oil Rate [bbl/day].1'])]




t_mid.1 Oil Rate [bbl/day].1

2 61.0 324.096774

2

t_mid.1 Oil Rate [bbl/day].1

3 92.0 291.967742

4 122.5 253.866667

5 153.0 255.000000

6 183.5 255.000000

7 214.0 242.548387

... ... ...

90 2740.5 19.700000

91 2771.0 16.387097

92 2802.0 19.774194

93 2831.5 15.535714

94 2861.0 17.032258

92 rows × 2 columns

Text(0.5, 1.0, 'noise trend')

Out[26]:

In [27]: #Dropping values before maximum



index_value = df1[df1['Oil Rate [bbl/day].1']== max(df1['Oil Rate [bbl/day].1'])].ind

In [28]: index_value[0]


Out[28]:

In [29]: #Dropping values before maximum

df1 = df1.drop(df1.index[0])

df1 = df1.drop(df1.index[:index_value[0]])


In [30]: df1


Out[30]:

In [31]: plt.plot(df1['t_mid.1'], df1['Oil Rate [bbl/day].1'], '.', color = 'purple')

plt.title('noise trend')


Out[31]:



-------------------------------------------------------------------
--------------------------

Implementing SEM Model with Curvefit

array([478.31134486,   0.52630254, 324.2406865 ])

In [32]: # assigning variables
t = df1['t_mid.1']

qt_setup = df1['Oil Rate [bbl/day].1']


In [33]: def sem(days,q0, n, tau):

    qt = q0 * np.exp(-(days/tau)**n)

    return qt


In [34]: par_sem, cov_sem = curve_fit(sem, t, qt_setup, p0 = [max(df1['Oil Rate [bbl/day].1'])

In [35]: # _cf referres to curve fitted as we are using the parameters to make a new decline c


q0_sem_cf = par_sem[0]

n_sem_cf = par_sem[1]

tau_sem_cf = par_sem[2]


In [36]: par_sem


Out[36]:

In [37]: qt_sem_curve_fitted = sem(t,q0_sem_cf,n_sem_cf,tau_sem_cf)


In [38]: plt.title('SEM curvefitted against noise')

plt.plot(t, qt_sem_curve_fitted)

sem_plot = plt.plot(df1['t_mid.1'], df1['Oil Rate [bbl/day].1'], '.', color = 'purple



[<matplotlib.lines.Line2D at 0x184e1062910>]

Implementing Arpes with Curvefit

array([3.44212386e+02, 6.27271607e-01, 2.50055692e-03])

[<matplotlib.lines.Line2D at 0x184e10d3f10>]

In [39]: sem_plot


Out[39]:

In [40]: def arpes(days, q0_arpes, b, Di):

    qt_Arpes = q0_arpes *(1 + b*Di*days)**(-1/b)

    return qt_Arpes


In [41]: par_arpes, cov_arpes = curve_fit(arpes, t, qt_setup, bounds=((0, 0, 0), (np.inf, 1, n

In [42]: par_arpes


Out[42]:

In [43]: # _cf referres to curve fitted as we are using the parameters to make a new decline c


q0_arpes_cf = par_arpes[0]

b_arpes_cf = par_arpes[1]

Di_arpes_cf = par_arpes[2]


In [44]: qt_arpes_curve_fitted = arpes(t,q0_arpes_cf, b_arpes_cf, Di_arpes_cf)


In [45]: plt.title('Arpes curvefitted against noise')

plt.plot(t, qt_arpes_curve_fitted, color = "green")

plt.plot(df1['t_mid.1'], df1['Oil Rate [bbl/day].1'], '.', color = 'purple')


Out[45]:



Implementing LGM with Curvefit

array([5.47407120e+02, 3.46667519e+05, 8.93837200e-01])

[<matplotlib.lines.Line2D at 0x184e1149640>]

In [46]: a_0 = np.random.randint(10, df1['t_mid.1']. iloc[-1])

eta_0 = np.random.randint(1, 100)/100

k_0 = max(df1['Oil Rate [bbl/day].1'])*a_0/eta_0


In [47]: def lgm(days, a, k, eta):

    qt_LGM = a*k*eta*days**(eta - 1)  / (a + days**eta)**2

    return qt_LGM


In [48]: par_lgm, cov_lgm = curve_fit(lgm, t, qt_setup, p0 = [a_0,  k_0 ,eta_0], bounds=((0.00

In [49]: # Values of LGM = [100, 209, 0.99] vs [113.5, 206, 0.87]

par_lgm


Out[49]:

In [50]: a_lgm_cf = par_lgm[0]

k_lgm_cf = par_lgm[1]

eta_lgm_cf = par_lgm[2]


In [51]: qt_lgm_curve_fitted = lgm(t, a_lgm_cf, k_lgm_cf ,eta_lgm_cf )


In [52]: plt.title('LGM curvefitted against noise')

plt.plot(t, qt_lgm_curve_fitted, color = 'red')

plt.plot(df1['t_mid.1'], df1['Oil Rate [bbl/day].1'], '.', color = 'purple')


Out[52]:



Implementing Pan CRM with Curvefit

array([5.39277417e+02, 2.61402554e-01, 8.18387459e+02, 3.57829784e+00])

[<matplotlib.lines.Line2D at 0x184e11b8700>]

In [53]: def panCRM(t, delta_P, J_inf, ctVp, Beta):

    

    J = Beta/(np.sqrt(t)) + J_inf



    #qt_Pan_CRM = delta_P*J*np.exp(-(2*Beta*np.sqrt(t) + J_inf*t)/ctVp)

    qt_Pan_CRM = delta_P*J*np.exp((-2*J*t)/ctVp)

    

    return qt_Pan_CRM


In [54]: # p0 Parameters need to be better. we were missing one parameter i.e. 3 instead of 4 




#par_panCRM, cov_panCRM = curve_fit(panCRM, t, qt_setup)

par_panCRM, cov_panCRM = curve_fit(panCRM, t, qt_setup, p0 = [1000, 1, 200, 2], bound

In [55]: par_panCRM


Out[55]:

In [56]: delta_P_panCRM_cf = par_panCRM[0]

J_inf_panCRM_cf = par_panCRM[1]

ctVp_panCRM_cf = par_panCRM[2]

Beta_panCRM_cf = par_panCRM[3]


In [57]: qt_panCRM_curve_fitted = panCRM(t, delta_P_panCRM_cf, J_inf_panCRM_cf, ctVp_panCRM_cf

In [58]: plt.title('Pan CRM curvefitted against noise')
plt.plot(t, qt_panCRM_curve_fitted, color = 'orange')

plt.plot(df1['t_mid.1'], df1['Oil Rate [bbl/day].1'], '.', color = 'purple')


Out[58]:



Moving Window (Pandas Version)

Time Data SEM Arpes LGM Pan CRM

3 92.0 291.967742 285.702053 277.650886 287.374863 296.666883

4 122.5 253.866667 262.733371 260.101222 264.062645 264.684632

5 153.0 255.000000 243.902723 244.287684 244.981736 241.710738

6 183.5 255.000000 227.956298 229.981072 228.793010 223.911681

7 214.0 242.548387 214.152049 216.989494 214.741063 209.431827

... ... ... ... ... ... ...

90 2740.5 19.700000 22.090287 24.119646 24.456039 19.537717

91 2771.0 16.387097 21.696977 23.776492 24.098646 19.090249

92 2802.0 19.774194 21.306435 23.435780 23.743656 18.646547

93 2831.5 15.535714 20.943167 23.118869 23.413343 18.234431

94 2861.0 17.032258 20.587835 22.808874 23.090125 17.831926

92 rows × 6 columns

<AxesSubplot:xlabel='Time'>

In [59]: df = pd.DataFrame({'Time':df1['t_mid.1'], 'Data':df1['Oil Rate [bbl/day].1'], 'SEM': 

In [60]: df


Out[60]:

In [61]: df.plot.line(x='Time', y='Data')


Out[61]:



Time Data SEM Arpes LGM Pan CRM MovingAverage MovingSD

3 92.0 291.967742 285.702053 277.650886 287.374863 296.666883 NaN NaN

4 122.5 253.866667 262.733371 260.101222 264.062645 264.684632 NaN NaN

5 153.0 255.000000 243.902723 244.287684 244.981736 241.710738 NaN NaN

6 183.5 255.000000 227.956298 229.981072 228.793010 223.911681 NaN NaN

7 214.0 242.548387 214.152049 216.989494 214.741063 209.431827 259.676559 18.798870

... ... ... ... ... ... ... ... ...

90 2740.5 19.700000 22.090287 24.119646 24.456039 19.537717 18.028602 1.481212

91 2771.0 16.387097 21.696977 23.776492 24.098646 19.090249 17.680215 1.647236

92 2802.0 19.774194 21.306435 23.435780 23.743656 18.646547 18.486667 1.434359

93 2831.5 15.535714 20.943167 23.118869 23.413343 18.234431 18.047143 1.962412

94 2861.0 17.032258 20.587835 22.808874 23.090125 17.831926 17.685853 1.946471

92 rows × 8 columns

<AxesSubplot:xlabel='Time'>

In [62]: df['MovingAverage'] = df['Data'].rolling(5).mean()

df['MovingSD'] = df['Data'].rolling(5).std()


In [63]: df


Out[63]:

In [64]: df.plot.line(x='Time', y=['Data', 'MovingAverage', 'MovingSD'])


Out[64]:



Ranking

(10000, 92)

In [65]: # Converting Data Frame to array



Moving_avg = df.MovingAverage

Moving_SD = df.MovingSD


In [66]: distributed = np.random.normal(loc= Moving_avg, scale = Moving_SD)


In [67]: # Number of samples can be defined here for scaling



samples = []

counter = 0

Number_of_Samples = 10000


In [68]: while counter < Number_of_Samples:

    sample_distributed = np.random.normal(loc= Moving_avg, scale = Moving_SD)

    samples.append(sample_distributed)

    counter = counter + 1


In [70]: # Converting to NumPy array

samples = np.asarray(samples)


In [71]: # Checking shape (samples, DataPoints)

samples.shape


Out[71]:

In [72]: # Array is sorted by column in decending 



sorted_rank = -np.sort(-samples, axis=0)


In [73]: # Combined representation of all the ranked data points and their trends



plt.title('Combined Ranked Distribution of 10 Samples')

plt.xlabel('Days')

plt.ylabel('Production')

f =0

array_sorted_rank = []

while f < len(samples):

    plt.plot(t, sorted_rank[f], label = f)

    array_sorted_rank.append(sorted_rank[f])

    f= f+1

#plt.legend()




(10000, 92)

10000

0 1 2 3 4 5 6 7

0 NaN NaN NaN NaN NaN NaN NaN NaN

1 NaN NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN NaN NaN NaN

4 332.129455 329.870626 321.833373 319.136906 318.479942 317.699318 317.208695 316.800002 316.2

... ... ... ... ... ... ... ... ...

87 23.276881 22.889304 22.868435 22.858592 22.821990 22.789532 22.780610 22.664896 22.6

88 24.266867 23.636839 23.634897 23.263044 23.041262 23.009386 22.966927 22.949025 22.8

89 23.729897 23.559114 23.539558 23.495218 23.313103 23.231697 23.163170 23.136922 23.0

90 25.484315 24.609905 24.568558 24.340222 24.319740 24.304685 24.245795 24.196162 24.1

In [74]: # Checking Only

np.shape(array_sorted_rank)


Out[74]:

In [75]: # Checking Only

len(array_sorted_rank)


Out[75]:

In [76]: counter_samples = 0

label_samples = []

while counter_samples < len(array_sorted_rank):

    label_samples.append(str(counter_samples))

    counter_samples = counter_samples +1


In [77]: df3 = pd.DataFrame(np.transpose(array_sorted_rank), columns =label_samples) 

df3['t'] = t


In [78]: # Appending SD to DF 3



df3["MovingSD"] = Moving_SD


In [79]: df3


Out[79]:



91 25.387970 24.781493 24.549008 24.118512 23.937950 23.932595 23.874951 23.857205 23.8

92 rows × 10002 columns

0 1 2 3 4 5 6 7

4 332.129455 329.870626 321.833373 319.136906 318.479942 317.699318 317.208695 316.800002 316.2

5 315.892277 315.029960 307.653855 307.455687 306.241817 305.646216 305.166078 304.981206 304.0

6 355.159653 347.003035 336.214698 333.443283 331.399598 329.959165 329.642725 328.756351 328.4

7 401.330452 397.461744 391.537208 384.676592 377.138674 369.849097 369.528463 368.258964 366.5

8 372.664780 366.104397 363.815535 361.359333 356.521256 356.008060 355.616623 350.294883 345.7

... ... ... ... ... ... ... ... ...

87 23.276881 22.889304 22.868435 22.858592 22.821990 22.789532 22.780610 22.664896 22.6

88 24.266867 23.636839 23.634897 23.263044 23.041262 23.009386 22.966927 22.949025 22.8

89 23.729897 23.559114 23.539558 23.495218 23.313103 23.231697 23.163170 23.136922 23.0

90 25.484315 24.609905 24.568558 24.340222 24.319740 24.304685 24.245795 24.196162 24.1

91 25.387970 24.781493 24.549008 24.118512 23.937950 23.932595 23.874951 23.857205 23.8

88 rows × 10002 columns

0 1 2 3 4 5 6 7

7 401.330452 397.461744 391.537208 384.676592 377.138674 369.849097 369.528463 368.258964 366.5

8 372.664780 366.104397 363.815535 361.359333 356.521256 356.008060 355.616623 350.294883 345.7

9 316.366666 307.830207 305.697717 298.436967 292.435951 290.640131 287.196910 287.179428 286.8

10 264.754502 245.844393 242.788581 237.778934 233.191976 231.577757 231.355198 229.022037 228.7

11 210.691445 206.251365 203.317346 197.899284 197.225987 195.553613 195.265564 194.809351 193.6

... ... ... ... ... ... ... ... ...

87 23.276881 22.889304 22.868435 22.858592 22.821990 22.789532 22.780610 22.664896 22.6

88 24.266867 23.636839 23.634897 23.263044 23.041262 23.009386 22.966927 22.949025 22.8

89 23.729897 23.559114 23.539558 23.495218 23.313103 23.231697 23.163170 23.136922 23.0

90 25.484315 24.609905 24.568558 24.340222 24.319740 24.304685 24.245795 24.196162 24.1

91 25.387970 24.781493 24.549008 24.118512 23.937950 23.932595 23.874951 23.857205 23.8

85 rows × 10002 columns

In [80]: # Removing Nan



df3 = df3.iloc[4: , :]


In [81]: df3


Out[81]:

In [82]: # Dropping all non values



df3 = df3.dropna() 


In [83]: df3


Out[83]:

In [84]:



10002

Index(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

       ...
       '9990', '9991', '9992', '9993', '9994', '9995', '9996', '9997', '9998',

       '9999'],

      dtype='object', length=10000)

7     18.798870

8     19.262478

9     31.726042

10    51.651471

11    52.996862

        ...    

87     2.117634

88     1.497629

89     1.221159

90     1.481212

91     1.647236

Name: MovingSD, Length: 85, dtype: float64

10     304.0

11     334.5

12     365.0

13     395.5

14     426.0

       ...  

90    2740.5

91    2771.0

92    2802.0

93    2831.5

94    2861.0

Name: t_mid.1, Length: 85, dtype: float64

Implementiong SEM

# Len is Samples+2 due to the time and SD columns so we need to remove it



len(df3.columns)


Out[84]:

In [85]: # Important to set the values to be appended



col_name = df3.columns[0:len(df3.columns) -2]


In [86]: # Checking if values of colums are correct



col_name


Out[86]:

In [87]: # To collect sample curvefit

sem_sample_array = []


In [88]: df3["MovingSD"]


Out[88]:

In [89]: df1 = df1.tail(len(df3))


In [90]: t = t.tail(len(df3))


In [91]: t


Out[91]:



(10000, 85)

(10000, 85)

------------------------------------------------------------

Implementing Curvefit for Arpes

In [ ]:  


In [92]: # To collect sample curvefit

sem_sample_array = []



# Automated Curvefit for all samples of SEM





# starting point p0 = [max(Noise), 30, 1]



for x in col_name:

    sample_col = np.asarray(df3[x])

    time_converted = np.asarray(df3.t)

    par_sem, cov_sem = curve_fit(sem, time_converted, sample_col, sigma=df3["MovingSD
    q0_sem_cf = par_sem[0]

    n_sem_cf = par_sem[1]

    tau_sem_cf = par_sem[2]

    

    

    qt_sem_curve_fitted = sem(t,q0_sem_cf,n_sem_cf,tau_sem_cf)

    sem_sample_array.append(qt_sem_curve_fitted)  # Changed from 5 to 6 for well 24||
    

    plt.title('SEM curvefitted with all samples')

    plt.plot(t, qt_sem_curve_fitted)


In [93]: np.shape(sem_sample_array)


Out[93]:

In [94]: # Confirming shape. Should be (samples, DataPoints)



np.shape(sem_sample_array)


Out[94]:

In [95]: # To collect sample curvefit

arpes_sample_array = []



# Automated Curvefit for all samples of Arpes




(10000, 85)

------------------------------------------------------------

Implementing Curvefit for LGM

8583.0

7     401.330452

8     372.664780

9     316.366666

10    264.754502

11    210.691445

         ...    

87     23.276881

88     24.266867

89     23.729897

90     25.484315

91     25.387970

Name: 0, Length: 85, dtype: float64

# p0 [max(Noise), 0.5, 0.05]



for x in col_name:

    sample_col = np.asarray(df3[x])

    time_converted = np.asarray(df3.t)

    par_arpes, cov_arpes = curve_fit(arpes, time_converted, sample_col, sigma=df3["Mo
    q0_arpes_cf = par_arpes[0]

    b_arpes_cf = par_arpes[1]

    Di_arpes_cf = par_arpes[2]

    

    

    qt_arpes_curve_fitted = arpes(t,q0_arpes_cf,b_arpes_cf,Di_arpes_cf)
    arpes_sample_array.append(qt_arpes_curve_fitted) # Changed from 5 to 6 well 40

    

    plt.title('Arpes curvefitted with all samples')

    plt.plot(t, qt_arpes_curve_fitted)


In [96]: np.shape(arpes_sample_array)


Out[96]:

In [97]: 3*max(t)


Out[97]:

In [98]: df3["0"]


Out[98]:



Implementing Curvefit for Pan CRM

In [99]: a_0 = np.random.randint(10, 3*max(t))

eta_0 = np.random.randint(1, 100)/100

k_0 = max(df3["0"])*a_0/eta_0


In [100… # To collect sample curvefit

lgm_sample_array = []



# Automated Curvefit for all samples of SEM

# p0 [50, (max(Noise)*50)/0.5, 0.5 ]





for x in col_name:

    sample_col = np.asarray(df3[x])

    time_converted = np.asarray(df3.t)

    par_lgm, cov_lgm = curve_fit(lgm, time_converted, sample_col, p0 = [a_0, k_0, eta
    a_lgm_cf = par_lgm[0]

    k_lgm_cf = par_lgm[1]

    eta_lgm_cf = par_lgm[2]

    

    

    qt_lgm_curve_fitted = lgm(t,a_lgm_cf,k_lgm_cf,eta_lgm_cf)

    lgm_sample_array.append(qt_lgm_curve_fitted) # Changed from 5 to 6 well 40

    

    plt.title('LGM curvefitted with all samples')

    plt.plot(t, qt_lgm_curve_fitted)


In [101… # To collect sample curvefit

panCRM_sample_array = []



# Automated Curvefit for all samples of SEM

#p0 = [np.random.randint(500, 1500), np.random.randint(5, 15)*0.1, np.random.randint(




for x in col_name:

    sample_col = np.asarray(df3[x])

    time_converted = np.asarray(df3.t)

    par_panCRM, cov_panCRM = curve_fit(panCRM, time_converted, sample_col, p0 = [np.r
    delta_P_panCRM_cf = par_panCRM[0]

    J_inf_panCRM_cf = par_panCRM[1]

    ctVp_panCRM_cf = par_panCRM[2]

    Beta_panCRM_cf = par_panCRM[3]

    

    qt_PanCRM_curve_fitted = panCRM(t, delta_P_panCRM_cf, J_inf_panCRM_cf, ctVp_panCR
    panCRM_sample_array.append(qt_PanCRM_curve_fitted)

    




-----------------------------------------------------

(10000, 85)

85

Combined arrayes to set up maximum likihood

Maximum Liklihood Function (Not in use in new
implementation)

SEM

    

    plt.title('PanCRM curvefitted with all samples')

    plt.plot(t, qt_PanCRM_curve_fitted)

    


In [ ]:  


In [102… np.shape(panCRM_sample_array)


Out[102…

In [103… len((panCRM_sample_array[0]))


Out[103…

In [104… def MaximumLikelihood(arraya, arrayb, arrayc):

    i = 0

    np.d= []

    while i < len(arraya):

        c = (arraya[i] - arrayb[i])**2     / (arrayc[i])**2

        np.d.append(c)

        c

        i = i+1

    return np.sum(np.d)


In [105… #df3["MovingSD"]

In [106… len(np.array(sem_sample_array))




10000

79

85

85

t_mid.1 Oil Rate [bbl/day].1

10 304.0 125.903226

11 334.5 120.466667

12 365.0 124.419355

13 395.5 162.566667

14 426.0 152.225806

... ... ...

90 2740.5 19.700000

91 2771.0 16.387097

92 2802.0 19.774194

93 2831.5 15.535714

94 2861.0 17.032258

85 rows × 2 columns

t_mid.1 Oil Rate [bbl/day].1

10 304.0 125.903226

11 334.5 120.466667

12 365.0 124.419355

13 395.5 162.566667

14 426.0 152.225806

... ... ...

90 2740.5 19.700000

91 2771.0 16.387097

92 2802.0 19.774194

93 2831.5 15.535714

94 2861.0 17.032258

Out[106…

In [107… len(np.array(df1['Oil Rate [bbl/day].1'][6:]))


Out[107…

In [108… len(np.array(df3["MovingSD"]))


Out[108…

In [109… len(sem_sample_array[0])


Out[109…

In [110… df1.tail(len(df3))


Out[110…

In [111… df1[:len(df3)]


Out[111…



85 rows × 2 columns

85

85

85

85

Arpes

85

85

85

In [112… len(np.array(df1['Oil Rate [bbl/day].1']))


Out[112…

In [113… len(t)


Out[113…

In [114… len(np.array(sem_sample_array[0]))


Out[114…

In [115… len(np.array(df3["MovingSD"]))


Out[115…

In [116… test_count = 0

ML_sem_test_array = []

while test_count< len(np.array(sem_sample_array)):

    Noise_Data_Test = np.array(df1['Oil Rate [bbl/day].1']) # Changed from 5 to 6 wel
    Model_Data_Test = np.array(sem_sample_array[test_count])

    Std_Dev_Test = np.array(df3["MovingSD"])

    

    sum_count_test = np.sum((Noise_Data_Test - Model_Data_Test)**2   / (Std_Dev_Test)
    test_count = test_count +1

    ML_sem_test_array.append(sum_count_test)

#print(ML_sem_test_array)


In [117… len(arpes_sample_array[0])


Out[117…

In [118… len(np.array(df1['Oil Rate [bbl/day].1']))


Out[118…

In [119… len(np.array(df3["MovingSD"]))


Out[119…

In [120… test_count = 0

ML_arpes_test_array = []

while test_count< len(np.array(arpes_sample_array)):

    Noise_Data_Test = np.array(df1['Oil Rate [bbl/day].1']) # Changed from 5 to 6 wel
    Model_Data_Test = np.array(arpes_sample_array[test_count])

    Std_Dev_Test = np.array(df3["MovingSD"])

    

    sum_count_test = np.sum((Noise_Data_Test - Model_Data_Test)**2   / (Std_Dev_Test)
    test_count = test_count +1




LGM

Pan CRM

85

85

85

85

Probability Calculation

10000

    ML_arpes_test_array.append(sum_count_test)
#print(ML_arpes_test_array)


In [121… test_count = 0

ML_lgm_test_array = []

while test_count< len(np.array(lgm_sample_array)):

    Noise_Data_Test = np.array(df1['Oil Rate [bbl/day].1']) # Changed from 5 to 6 wel
    Model_Data_Test = np.array(lgm_sample_array[test_count])

    Std_Dev_Test = np.array(df3["MovingSD"])

    

    sum_count_test = np.sum((Noise_Data_Test - Model_Data_Test)**2   / (Std_Dev_Test)
    test_count = test_count +1

    ML_lgm_test_array.append(sum_count_test)

#print(ML_lgm_test_array)


In [122… len(np.array(df1['Oil Rate [bbl/day].1']))


Out[122…

In [123… len(np.array(df3["MovingSD"]))


Out[123…

In [124… len(np.array(panCRM_sample_array[0]))


Out[124…

In [125… len(df3["MovingSD"])


Out[125…

In [126… test_count = 0

ML_panCRM_test_array = []

while test_count< len(np.array(panCRM_sample_array)):

    Noise_Data_Test = np.array(df1['Oil Rate [bbl/day].1']) # Changed from 5 to 6 wel
    Model_Data_Test = np.array(panCRM_sample_array[test_count]) # Changed from 1 to 2
    Std_Dev_Test = np.array(df3["MovingSD"])

    

    sum_count_test = np.sum((Noise_Data_Test - Model_Data_Test)**2   / (Std_Dev_Test)
    test_count = test_count +1

    ML_panCRM_test_array.append(sum_count_test)

#print(ML_panCRM_test_array)


In [127… len(ML_panCRM_test_array)


Out[127…



SEM Arpes LGM Pan CRM

0 1413.279272 1605.610390 1494.674371 1413.996073

1 1251.850358 1447.472687 1334.070026 1253.150079

2 1191.183525 1390.042389 1274.508556 1192.850241

3 1147.423776 1348.419511 1231.776616 1148.988913

4 1107.263600 1310.321696 1192.594952 1108.709026

... ... ... ... ...

9995 1290.391956 1596.012313 1386.228501 1288.302382

9996 1339.343897 1644.742954 1434.649574 1337.033747

9997 1399.572958 1704.650670 1494.132299 1397.093640

9998 1483.733877 1785.871880 1576.095614 1481.849005

9999 1670.379024 1960.294318 1754.268529 1668.258420

10000 rows × 4 columns

Test for 2d array (WORKING) [THIS NEEDS TO
BE REMOVED LATER]

SEM Arpes LGM Pan CRM

0 11580.677193 12350.001668 11906.257589 11583.544397

1 10293.944579 11076.433897 10622.823252 10299.143465

2 9813.318812 10608.754266 10146.618936 9819.985674

3 9466.303918 10270.286859 9803.715278 9472.564467

4 9147.943674 9960.176056 9489.269082 9153.725376

... ... ... ... ...

9995 10722.502976 11944.984405 11105.849155 10714.144680

9996 11113.145760 12334.741988 11494.368469 11103.905161

9997 11593.741399 12814.052249 11971.978765 11583.824130

9998 12262.485884 13471.037894 12631.932830 12254.946394

9999 13734.716388 14894.377565 14070.274409 13726.233970

10000 rows × 4 columns

In [128… ML_df = pd.DataFrame({'SEM':ML_sem_test_array, 'Arpes':ML_arpes_test_array , 'LGM':ML

In [129… ML_df


Out[129…

In [130… df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= ML_df[i]+ML_df['SEM']

  df4[i]+=ML_df[i]+ML_df['Arpes']

  df4[i]+= ML_df[i]+ML_df['LGM']

  df4[i]+= ML_df[i]+ML_df['Pan CRM']


In [131… df4


Out[131…



Ends here

"\ndf4=pd.DataFrame(columns=ML_df.columns)\nfor i in ML_df:\n  df4[i]= (np.exp((-1/2)
*(ML_df[i] - ML_df['SEM'])))\n  df4[i]+=(np.exp((-1/2)*(ML_df[i] - ML_df['Arpes'])))
\n  df4[i]+= (np.exp((-1/2)*(ML_df[i] - ML_df['LGM'])))\n  df4[i]+= (np.exp((-1/2)*(M
L_df[i] - ML_df['Pan CRM'])))\n  df4[i] = 1/(Number_of_Samples * df4[i])  # Confirm t
he denominator it was orignally 10 but I changed it for a bigger sample size\n  \n  "

0       0.000059

1       0.000066

2       0.000070

3       0.000069

4       0.000067

          ...   

9995    0.000026

9996    0.000024

9997    0.000022

9998    0.000028

9999    0.000026

Length: 10000, dtype: float64

0       1.013183e-46

1       2.181235e-47

2       4.587958e-48

3       1.551681e-48

4       5.428022e-49

            ...     

9995    1.123921e-71

9996    1.155734e-71

9997    1.271815e-71

9998    6.908083e-71


In [132… # Look at this one more time. especially the last line (The code works but we need to
'''

df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= (np.exp((-1/2)*(ML_df[i] - ML_df['SEM'])))

  df4[i]+=(np.exp((-1/2)*(ML_df[i] - ML_df['Arpes'])))

  df4[i]+= (np.exp((-1/2)*(ML_df[i] - ML_df['LGM'])))

  df4[i]+= (np.exp((-1/2)*(ML_df[i] - ML_df['Pan CRM'])))

  df4[i] = 1/(Number_of_Samples * df4[i])  # Confirm the denominator it was orignally
  

  '''


Out[132…

In [133… porb_count_sem = np.zeros(len(df4))

df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= (np.exp((-1/2)*(ML_df[i] - ML_df['SEM'])))

  #print(df4[i])

  porb_count_sem = df4[i] + porb_count_sem

#print(porb_count_sem)

porb_count_sem = porb_count_sem * len(df4)

porb_count_sem = 1 / porb_count_sem

porb_count_sem


Out[133…

In [134… porb_count_arpes = np.zeros(len(df4))

df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= (np.exp((-1/2)*(ML_df[i] - ML_df['Arpes'])))

  #print(df4[i])

  porb_count_arpes = df4[i] + porb_count_arpes 

#print(porb_count_arpes )

porb_count_arpes = porb_count_arpes * len(df4)

porb_count_arpes = 1 / porb_count_arpes 

porb_count_arpes

Out[134…



9999    2.857933e-68

Length: 10000, dtype: float64

0       1.244911e-22

1       9.199780e-23

2       5.616585e-23

3       3.307390e-23

4       1.989203e-23

            ...     

9995    4.024498e-26

9996    4.831206e-26

9997    6.575176e-26

9998    2.464308e-25

9999    1.563089e-23

Length: 10000, dtype: float64

0       0.000041

1       0.000034

2       0.000030

3       0.000031

4       0.000033

          ...   

9995    0.000074

9996    0.000076

9997    0.000078

9998    0.000072

9999    0.000074

Length: 10000, dtype: float64

SEM Arpes LGM Pan CRM

0 0.000059 1.013183e-46 1.244911e-22 0.000041

1 0.000066 2.181235e-47 9.199780e-23 0.000034

2 0.000070 4.587958e-48 5.616585e-23 0.000030

3 0.000069 1.551681e-48 3.307390e-23 0.000031

4 0.000067 5.428022e-49 1.989203e-23 0.000033

In [135… porb_count_lgm = np.zeros(len(df4))

df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= (np.exp((-1/2)*(ML_df[i] - ML_df['LGM'])))

  #print(df4[i])

  porb_count_lgm = df4[i] + porb_count_lgm

#print(porb_count_lgm)

porb_count_lgm = porb_count_lgm * len(df4)

porb_count_lgm = 1 / porb_count_lgm

porb_count_lgm


Out[135…

In [136… porb_count_panCRM = np.zeros(len(df4))

df4=pd.DataFrame(columns=ML_df.columns)

for i in ML_df:

  df4[i]= (np.exp((-1/2)*(ML_df[i] - ML_df['Pan CRM'])))

  #print(df4[i])

  porb_count_panCRM = df4[i] + porb_count_panCRM

#print(porb_count_panCRM)

porb_count_panCRM = porb_count_panCRM * len(df4)

porb_count_panCRM = 1 / porb_count_panCRM

porb_count_panCRM


Out[136…

In [137… P_df = pd.DataFrame({'SEM':porb_count_sem, 'Arpes':porb_count_arpes , 'LGM':porb_coun

In [138… P_df


Out[138…



... ... ... ... ...

9995 0.000026 1.123921e-71 4.024498e-26 0.000074

9996 0.000024 1.155734e-71 4.831206e-26 0.000076

9997 0.000022 1.271815e-71 6.575176e-26 0.000078

9998 0.000028 6.908083e-71 2.464308e-25 0.000072

9999 0.000026 2.857933e-68 1.563089e-23 0.000074

10000 rows × 4 columns

SEM        6.082972e-01

Arpes      1.304238e-46

LGM        4.825889e-22

Pan CRM    3.917028e-01

dtype: float64

1.0

array([6.08297243e-01, 3.91702757e-01, 4.82588892e-22, 1.30423799e-46])

Implementing the AIC Method

85

85

Model Raw_Noise Data

0 sem 10 125.903226
11 120.466667
12 124.41... 10 104.052342
11 100.777758
12 97.62...

1 arpes 10 125.903226
11 120.466667
12 124.41... 10 140.723032
11 129.172995
12 119.22...

2 lgm 10 125.903226
11 120.466667
12 124.41... 10 121.517931
11 115.235070
12 109.42...

In [139… P_df.sum(axis = 0, skipna = True)


Out[139…

In [140… Summed_P = P_df.sum(axis = 0, skipna = True)


In [141… np.sum(Summed_P)


Out[141…

In [142… np.sort(Summed_P)[::-1]


Out[142…

In [ ]:  


In [143… len(qt_arpes_curve_fitted)


Out[143…

In [144… len(df1['Oil Rate [bbl/day].1'])


Out[144…

In [145… df_of_models = pd.DataFrame({'Model': ['sem', 'arpes', 'lgm', 'panCRM'],

                             'Raw_Noise': [df1['Oil Rate [bbl/day].1'], df1['Oil Rate
                'Data': [qt_sem_curve_fitted, qt_arpes_curve_fitted, qt_lgm_curve_fit

In [146… df_of_models


Out[146…



3 panCRM 10 125.903226
11 120.466667
12 124.41... 3 296.666883
4 264.684632
5 241.71...

Model Raw_Noise Data Squared Sum

0 sem 10 125.903226
11 120.466667
12
124.41... 10 104.052342
11 100.777758
12 97.62... 67073.308187

1 arpes 10 125.903226
11 120.466667
12
124.41...

10 140.723032
11 129.172995
12
119.22... 79378.642364

2 lgm 10 125.903226
11 120.466667
12
124.41...

10 121.517931
11 115.235070
12
109.42... 70680.336969

3 panCRM 10 125.903226
11 120.466667
12
124.41... 3 296.666883
4 264.684632
5 241.71... 10117.554275

67073.30818715402

AIC Calculation

577.0256666414514

591.3433361701248

In [147… arr1 = np.array(df_of_models['Raw_Noise'])


In [148… arr2 = np.array(df_of_models['Data'])


In [149… index = 0

summed = []

while index < 4:

    diff = (arr1[index] - arr2[index])**2

    index = index + 1

    summed.append(np.sum(diff))


In [150… df_of_models["Squared Sum"] = summed


In [151… df_of_models


Out[151…

In [152… df_of_models["Squared Sum"][0]


Out[152…

In [153… def aic(Data, Model, index, name):

    N = len(Data)

    ss = Model["Squared Sum"][index]

    k = len(signature(name).parameters) + 1

    

    AIC = N * (math.log(ss/N)) + 2*k

    return AIC


In [154… aic(df1['Oil Rate [bbl/day].1'], df_of_models, 0, sem)


Out[154…

In [155… aic(df1['Oil Rate [bbl/day].1'], df_of_models, 1, arpes)


Out[155…

In [156… aic(df1['Oil Rate [bbl/day].1'], df_of_models, 2, lgm)




581.4780721838595

418.2469586970858

Model Raw_Noise Data Squared
Sum AIC

0 sem 10 125.903226
11 120.466667
12
124.41...

10 104.052342
11 100.777758
12
97.62... 67073.308187 577.025667

1 arpes 10 125.903226
11 120.466667
12
124.41...

10 140.723032
11 129.172995
12
119.22... 79378.642364 591.343336

2 lgm 10 125.903226
11 120.466667
12
124.41...

10 121.517931
11 115.235070
12
109.42... 70680.336969 581.478072

3 panCRM 10 125.903226
11 120.466667
12
124.41...

3 296.666883
4 264.684632
5
241.71... 10117.554275 418.246959

Corrected AIC

Out[156…

In [157… aic(df1['Oil Rate [bbl/day].1'], df_of_models, 3, panCRM)


Out[157…

In [158… index2 = 0

model_array = [sem, arpes, lgm, panCRM]

aic_array = []



while index2 < len(model_array):

    aic_calculated = aic(df1['Oil Rate [bbl/day].1'], df_of_models, index2, model_arr
    aic_array.append(aic_calculated)

    index2 = index2 +1


In [159… df_of_models["AIC"] = aic_array


In [160… df_of_models


Out[160…

In [161… def caic(array, model):

    N = len(array)

    ss = SumSquares(array)

    k = len(signature(model).parameters) + 1

    

    AIC = N * (math.log(ss/N)) + 2*k

    

    CAIC = AIC + (2*k*(k+1))/(N-k-1)

    return CAIC

    


In [162… def caic(Data, Model, index, name):

    N = len(Data)

    ss = Model["Squared Sum"][index]

    k = len(signature(name).parameters) + 1

    

    AIC = N * (math.log(ss/N)) + 2*k

    CAIC = AIC + (2*k*(k+1))/(N-k-1)

    

    return CAIC


In [163… index3 = 0

model_array = [sem, arpes, lgm, panCRM]

caic_array = []




Model Raw_Noise Data Squared
Sum AIC CAIC

0 sem 10 125.903226
11
120.466667
12 124.41...

10 104.052342
11
100.777758
12 97.62... 67073.308187 577.025667 577.785160

1 arpes 10 125.903226
11
120.466667
12 124.41...

10 140.723032
11
129.172995
12 119.22... 79378.642364 591.343336 592.102830

2 lgm 10 125.903226
11
120.466667
12 124.41...

10 121.517931
11
115.235070
12 109.42... 70680.336969 581.478072 582.237566

3 panCRM 10 125.903226
11
120.466667
12 124.41...

3 296.666883
4 264.684632
5 241.71... 10117.554275 418.246959 419.323882

Sorting with AIC

Model Raw_Noise Data Squared
Sum AIC CAIC

3 panCRM 10 125.903226
11
120.466667
12 124.41...

3 296.666883
4 264.684632
5 241.71... 10117.554275 418.246959 419.323882

0 sem 10 125.903226
11
120.466667
12 124.41...

10 104.052342
11
100.777758
12 97.62... 67073.308187 577.025667 577.785160

2 lgm 10 125.903226
11
120.466667
12 124.41...

10 121.517931
11
115.235070
12 109.42... 70680.336969 581.478072 582.237566

1 arpes 10 125.903226
11
120.466667
12 124.41...

10 140.723032
11
129.172995
12 119.22... 79378.642364 591.343336 592.102830

Sorting with CAIC

Model Raw_Noise Data Squared
Sum AIC CAIC

3 panCRM 10 125.903226
11
120.466667
12 124.41...

3 296.666883
4 264.684632
5 241.71... 10117.554275 418.246959 419.323882

0 sem 10 125.903226
11
120.466667
12 124.41...

10 104.052342
11
100.777758
12 97.62... 67073.308187 577.025667 577.785160

2 lgm 10 125.903226
11
120.466667
12 124.41...

10 121.517931
11
115.235070
12 109.42... 70680.336969 581.478072 582.237566

1 arpes 10 125.903226
11
120.466667
12 124.41...

10 140.723032
11
129.172995
12 119.22... 79378.642364 591.343336 592.102830



while index3 < len(model_array):

    caic_calculated = caic(df1['Oil Rate [bbl/day].1'], df_of_models, index3, model_a
    caic_array.append(caic_calculated)

    index3 = index3 +1


In [164… df_of_models["CAIC"] = caic_array


In [165… df_of_models


Out[165…

In [166… df_of_models.sort_values(by=['AIC'])


Out[166…

In [167… df_of_models.sort_values(by=['CAIC'])


Out[167…
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