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Abstract 
Model Error in probabilistic history matching is an important topic to study, but calculating 

the model error is a challenge since the truth is uncertain. In this thesis, sources of model error 

will be discussed briefly; a novel approach has been proposed, first to define model error by us-

ing a high-quality model instead of the truth, then statistical parameters of model error will be 

calculated, and these parameters will be used to account for model error in EnKF. 

Two cases have been tested with this approach. In the first case, decline curve analyses were 

used to model the production rate. Model error has been calculated and accounted for in updating 

the model with EnKF. The second case studied model error in a 2D reservoir for the upscaling 

process. The reservoir has been upscaled, and statistical parameters of model error were obtained 

to be used in updating the model with EnKF.    

Results from these two examples showed the importance of the model error in data assimila-

tion. In both cases, it has been proven that neglecting model error caused biases and overconfi-

dence in the forecasted updated model. Additionally, the proposed approach could mitigate the 

biases and the overconfidence in the forecasted updated model. 

The proposed method is in an early stage, and further study should be done to verify and im-

prove it. Other sources of error should be examined. A proper machine learning algorithm could 

improve the quality of this method to account for model error.  
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 Introduction 
Bayes theorem is a method that allows us to update the prior knowledge (expressed as proba-

bility distribution) about an event with given extra information related to the event(Birnbaum, 

1962). The direct application of the Bayes theorem is not computationally approachable due to 

the high dimensionality of prior and the observation in the oil and gas industry. 

Data Assimilation (DA), based on the Bayes theorem, is a recursive procedure that updates 

the previous model with new information related to the event. In the 1960s, R.E. Kalman devel-

oped a statistical approach -called the Kalman Filter (KF), which introduces an equation for the 

time evolution of the error covariance matrix. In the KF, the foreword model is linear, and uncer-

tainties are modeled using Gaussian distributions (Kalman, 1960). 

Monte Carlo Simulation (MCS) is a broad group of computational methods which uses ran-

dom sampling to calculate the numerical results, and it handles calculations with a probability 

distribution. The MSC uses a random sample from probability distributions of the uncertain pa-

rameters to obtain a numerical solution. These random samples represent the probability distribu-

tion, creating an ensemble of realizations (figure 1-1). 

 

Figure 1-1 A distribution of Permeability and its representative realizations 

Later, in 1994 Evensen modified KF to handle non-linearity by combining Monte Carlo simula-

tion and KF. The modified KF was named the Ensemble Kalman Filter (EnKF). Ensemble-Based 

Data Assimilation is a family of statistical approaches to update and correlate the probability dis-

tribution of prior knowledge with given noisy observations from related phenomena. The ensem-

ble-based method refers to random sampling from prior probability distribution. In DA, typical 

problems of interest are non-linear, non-Gaussian, and/or high-dimensional(Harlim, 2017). 
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EnKF is an implementation of the Bayesian theorem with the association of MCS in a recursive 

manner, where the probability of prior knowledge will be updated with additional new observa-

tions. KF and EnKF consider probability distribution and error in input variables and observa-

tion. Prior knowledge is all available information and understanding about a specific topic at the 

beginning of a process (Schmidt et al., 2015). 

Observation error/noise could be defined as the difference between the actual and observed 

state of nature. For example, the actual state of nature, the oil rate in a well is 100 bbl per day, 

and the observed state nature by the flow meter device is 90 bbl per day. 

In studying any natural phenomenon, uncertainty should be considered for high-quality deci-

sion-making (Bratvold et al., 2010). Uncertainty is due to a lack of human knowledge about that 

occurrence and uncertainty does not mean ambiguity in natural occurrence. So, instead of ex-

plaining the circumstance with a single deterministic model, the probability of occurrence should 

be used for that natural occurrence.  

In the oil and gas (O&G) industry, geological uncertainties are commonly modeled by assign-

ing probability distributions to the parameters of a geological model; for example, a multivariate 

log-normal distribution is assigned to the permeability field of a geological model.  

Numerous uncertainties exist in studying subsurface oil and reservoir, including reservoir en-

gineering characteristics, fluid properties, wellbore design, fluid flow, and geological interpreta-

tion.  

PVT: PVT models generally try to simplify the fluid behavior to some equations and 

plots based on small-scale lab experiments. Black-Oil models and Equation-of-state models have 

their assumptions and simplification. The Black-Oil model can represent gravity segregation, 

near-wellbore effect, and negative compressibility(Coats, 2000). Equation of State (EOS) models 

are obtained under specific pressure-volume-temperature conditions. 

Wellbore: Wellbore geometry errors are related to the errors in the measurements, geo-

logical structures in the drilling path, and reservoir. Upscaling the field during simulation also 

causes changes in grids connected to the well and its trajectory  (Rammay, 2020).  
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Numerical error: Analytical solutions equations used in the oil and gas industry are gen-

erally too complex to solve and computationally infeasible; thus, instead, numerical solutions 

have been used in all reservoir simulators. A numerical solution will add error to the model 

(Haefner, 2005).  

Upscaling: The main idea of upscaling is to replace several heterogeneous fine grid 

blocks with one equivalent coarse homogeneous grid block. So, the essence of upscaling is arith-

metic averaging (Qi and Hesketh, 2005). Because of the averaging in upscaling, an upscaled 

model is less heterogeneous than its corresponding fine-grid model and the nature of a reservoir. 

All these uncertainties and other sources of errors plus engineering assumptions add up and 

divert the model, change the probability distribution of the model, and reduce the quality of the 

model. Using a model which does not correctly represent uncertainties might result in biases and 

wrong variance. Any decision based on this model would not be optimal. Applying the Bayes 

theorem on a low-quality model with extreme error would obtain a wrong or maybe unphysical 

solution. So studying model error and controlling model error is essential; therefore, the effects 

of model error in updating the prior knowledge in DA is important. 

The classic approaches to mitigate model error in data assimilation defines the model error as 

the difference between the truth and the model(Harlim, 2017). However, since the truth is un-

known, this approach cannot mitigate the model error. Several studies have been done to under-

stand and quantify the model error and its impact on DA. 

The effect of the model error has been considered by introducing an optimal reduced stochas-

tic filter in KF (Harlim, 2017). It has been suggested that the model error is not a white Gaussian 

distribution, and the biasness of the model error should also be considered. In other studies with 

Extended Kalman Filter and Short-Time Extended Kalman Filter (Carrassi and Vannitsem, 

2016), algorithms were reformulated to consider the effects of model error. The results showed 

that model error should be considered to update the model more accurately (posterior of Bayes' 

theorem). Carrassi et al. (2016) tried to find an analytical solution by adding model error to the 

initial condition, and their numerical case study showed that by neglecting model error, the accu-

racy of the updated model would be reduced. Harlim (2017) showed that by adding the error in 
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the initial model in the meteorological system, we could predict the future outcome more accu-

rately. 

The main contribution of this thesis is to discuss the importance of accounting for model error 

in ensemble-based DA and analyze and discuss the impact of model errors on data assimilation 

and probability forecasts by contrasting the results with and without including model errors in 

data assimilation. 

This thesis consists of 4 chapters. Following this introduction, Chapter 2 review the workflow 

of EnKF and discusses model error and model error sources. In chapter 3, a novel approach will 

be proposed to model and assess the model errors and account for them the EnKF updating. 

Chapter 4 discusses the results of applying the proposed approach based on two examples and 

concludes this thesis together with recommendations for future works.  
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 Probabilistic history matching 
 

 History matching 
An essential task for a reservoir engineer is analyzing available data, predicting future produc-

tion, and designing and optimizing production strategies in a specific field. The available subsur-

face reservoir model, which is built based on prior knowledge, should be adjusted with produc-

tion data to be able to reproduce previous behavior. 

 Since the start of the oil industry, several ideas have been developed to accomplish this task, 

from Decline Curve Analyses (DCA) to reservoir simulation. (Craft and Hawkins, 1991).  

In DCA, dynamic and static properties of the reservoir such as porosity, permeability, capil-

lary pressure, and fluid saturations are not considered directly. It assumes that whatever con-

trolled the production rate in the past will continue to maintain its trend in the future similarly 

(figure 2-1). 

 

FIGURE 2-1 DECLINE CURVE ANALYSES (RAHUMA ET AL.) 

 

In manual History Matching (HM) with reservoir simulation, one tries to precisely change 

reservoir properties, including porosity, permeability, fault locations, et cetera, to reduce the dis-

crepancy between simulation and the observation from the subsurface reservoir, as shown in fig-

ure 2-2. This method is time-consuming, not accurate, and demands lots of experience, and re-

sults might be biased. 
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In recent decades, a new HM approach called Assisted History Matching (AHM) approaches 

which use statistical solutions to assist reservoir engineers in considering more uncertainties and 

variables to perform history matching. AHM has been compared with manual HM, and results 

showed that AHM is trustable and very successful in updating and adjusting the geological 

model(Gruenwalder et al., 2007). These methods are based on Kalman Filter (KF).  

 

FIGURE 2-2 MANUAL HISTORY MATCHING FLOWCHART 

 Kalman Filter: 
The Kalman filter is a recursive Bayesian algorithm that updates the model parameters with 

given observations.  

𝒙𝒙𝒌𝒌 = 𝑨𝑨𝒙𝒙𝒌𝒌−𝟏𝟏  +  𝒘𝒘𝒌𝒌−𝟏𝟏 2-1 
𝒛𝒛𝒌𝒌 = 𝑯𝑯𝒙𝒙𝒌𝒌−𝟏𝟏  +  𝒗𝒗𝒌𝒌−𝟏𝟏 2-2 

𝝎𝝎~ 𝓝𝓝(𝟎𝟎,𝑸𝑸)  2-3-A 
𝒗𝒗 ~ 𝓝𝓝(𝟎𝟎,𝑹𝑹) 2-4-B 

  
Where x is the state vector at the current time, A is a linear transition matrix (forward model), 

ω is an error in the model with the covariance of Q, z is the observation vector, H is the observa-

tion operator, v is the observation error vector with the covariance of R, and k is referred to time 

step. KF updates the prior state vector to posterior with the given observation by calculating the 

error covariance matrix: 

Human interpre-
tation/ Adjusting 
Properties 

Si
m
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at
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n 

Physical  
Properties 

Observed Data Simulated Data 
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𝒆𝒆𝒌𝒌  ≡  𝒙𝒙𝒌𝒌  −  𝒙𝒙�𝒌𝒌 2-5 
𝑷𝑷𝒌𝒌  =  𝑬𝑬[𝒆𝒆𝒌𝒌 𝒆𝒆𝒌𝒌𝑻𝑻] =  𝐀𝐀𝑷𝑷𝒌𝒌−𝟏𝟏𝑨𝑨𝑻𝑻  +  𝑸𝑸 2-6 

  
Where 𝒆𝒆𝒌𝒌 is estimated error, 𝒙𝒙�𝒌𝒌 is posterior of the state vector, P is the estimated error covari-

ance matrix, E is the expected value, and T is the transpose operator. Updating step is defined as 

equations 2-6 and 2-7 when xf and xa are forecasted and updated vectors and term 𝑘𝑘𝑘𝑘 is the Kal-

man gain.  

𝒙𝒙𝒌𝒌𝒂𝒂  =  𝒙𝒙𝒌𝒌
𝒇𝒇

 +  𝒌𝒌𝒌𝒌( 𝒛𝒛𝒌𝒌  −  𝑯𝑯𝒙𝒙�𝒌𝒌) 2-7 
𝑲𝑲𝒌𝒌  =  𝑷𝑷𝒌𝒌𝑯𝑯𝒌𝒌( 𝑯𝑯𝑷𝑷𝒌𝒌𝑯𝑯𝑻𝑻  +  𝑹𝑹) 2-8 

 

While applying the KF algorithm, some assumptions must be considered. Forward model A 

should be linear, model error and measurement error are time-independent and independent from 

each other, and they follow Gaussian distribution. However, linearity of the forward model and 

Gaussianity limit the application of KF, so different variations based on KF have been proposed, 

such as Extended KF, Unscented KF, et cetera, were developed. These methods try to estimate 

the derivative of the non-linear forward model or use unscented transformation (Julier and 

Uhlmann, 2004) to handle highly non-linear forward models. Details of these methods are be-

yond this thesis. 

 Evensen, in 1994, introduced a new approach to using Monte Carlo Simulation to overcome 

some of these assumptions. 

 Monte Carlo Simulation 
Monte Carlo Simulation is a powerful tool for analyzing uncertainties in the oil and gas indus-

try and geoscience(Bratvold et al., 2010). MCS works perfectly in high dimensions. First, the 

model needs to be appropriately defined. Second, the expert’s beliefs about the uncertainty varia-

bles are represented by the probability distributions and defined as inputs in MCS. The variables 

are assumed to be independent in MCS. Therefore, dependencies need to be included in the 

model if two or more variables are dependent on each other. Third, MCS uses a random number 

to sample each input probability distribution and computes the output variables. The result of 

each trial will be stored. 
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Moreover, this process is repeated many times, and the stored results will be used to generate 

histograms and statistics of the output variables. The distributions of the output variables repre-

sent the probabilities of their occurrence; the bigger number of samples taken, the more repre-

sentative the output distributions(Elvaretta, 2021). Bratvold and Begg (2010) summarized the 

procedure of the MCS in Figure 2.3. One limitation of MCS could be its computational bur-

den(Alerstam et al., 2008)  

 

 

FIGURE 2-3 SCHEMATIC OF MONTE CARLO SIMULATION PROCEDURE (BRATVOLD ET AL., 2010 ) 

 

 The Ensemble Kalman Filter 
The Ensemble Kalman Filter, a combination of KF and MCS, can be used to rectify the as-

sumptions of non-linearity and Gaussianity in KF. In EnKF, having N number of realizations as 

representative of the distribution will be used recursively with given observation data. The poste-

rior realizations are obtained in each iteration by updating the prior realizations and the observa-

tion, and the posterior will be prior for the next time step. 

Aanonsen et al. (2009) explained the implementation of EnKF in the reservoir engineering 

context.  

𝒀𝒀𝒌𝒌
𝒇𝒇

 =  �
𝒎𝒎𝒌𝒌

𝒏𝒏,𝒇𝒇

𝒙𝒙𝒌𝒌
𝒏𝒏,𝒇𝒇

𝒅𝒅𝒌𝒌
𝒏𝒏,𝒇𝒇

� 

2-9 
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Where m is static variables (porosity, permeabilities), x is dynamic variables (pressure, satura-

tion), d is observation/data from the model (BHP, water cut, and rates), and f, n superscripts are 

for forecasted state and realization number and k subscript for timestep. 

𝒙𝒙𝒌𝒌 = 𝓜𝓜(𝒙𝒙𝒌𝒌−𝟏𝟏,𝒎𝒎) 2-10 
𝒛𝒛𝒌𝒌 = 𝓗𝓗(𝒙𝒙𝒌𝒌−𝟏𝟏,𝒎𝒎) 2-11 

  
So, with this definition, the error covariance matrix and Kalman gain will be: 

𝑷𝑷𝒌𝒌
𝒇𝒇

 =  
𝟏𝟏

𝑵𝑵 − 𝟏𝟏
[𝒀𝒀𝒌𝒌

𝒇𝒇
 −  𝑬𝑬(𝒀𝒀𝒌𝒌

𝒇𝒇)][𝒀𝒀𝒌𝒌
𝒇𝒇

 −  𝑬𝑬(𝒀𝒀𝒌𝒌
𝒇𝒇)]𝑻𝑻 2-12 

𝑲𝑲𝒌𝒌  =  𝑷𝑷𝒌𝒌
𝒇𝒇

  𝑯𝑯𝒌𝒌
𝑻𝑻(𝑯𝑯𝒌𝒌𝑷𝑷𝒌𝒌

𝒇𝒇
  𝑯𝑯𝒌𝒌

𝑻𝑻  +  𝑪𝑪𝒅𝒅𝒌𝒌)−𝟏𝟏  2-13 
and 

𝑪𝑪𝒅𝒅𝒌𝒌  =  
𝟏𝟏

𝑵𝑵 − 𝟏𝟏
𝒗𝒗𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻 2-14 

𝓗𝓗𝒌𝒌  =  [𝒈𝒈𝒌𝒌
𝒏𝒏,𝒇𝒇] (𝒀𝒀𝒌𝒌

𝒇𝒇)−𝟏𝟏 2-15 
 

Where 𝑣𝑣 is measurement noise. Finally, updated variables are 𝑌𝑌𝑘𝑘𝑎𝑎 when 𝑑𝑑𝑘𝑘 is observed data at 

timestep k: 

𝒀𝒀𝒌𝒌𝒂𝒂  =  𝒀𝒀𝒌𝒌
𝒇𝒇

 +  𝑲𝑲𝒌𝒌(𝒅𝒅𝒌𝒌  −  𝑯𝑯𝒌𝒌𝒀𝒀𝒌𝒌
𝒇𝒇) 2-16 

  
2.4.1 Model Error Covariance: 

In KF, the term Q is defined as the process noise covariance, which indicates the model error. 

The model error is generally not known, and a numerical model will therefore evolve (Evensen, 

2009). Model error is introduced because of the numerical solution of nonlinear and non-Gaussi-

anity (Jiyuan et al., 2013). 

For a linear system(Evensen, 2009): 

𝒙𝒙𝒌𝒌 𝒕𝒕  = 𝑨𝑨𝒙𝒙𝒌𝒌−𝟏𝟏 𝒕𝒕  + 𝒘𝒘𝒌𝒌 2-17 
𝒙𝒙𝟎𝟎𝒕𝒕  =  𝑿𝑿𝟎𝟎  +  𝒆𝒆 2-18 

 

When xt is the true state and 𝑥𝑥0𝑡𝑡  is the true state at the initial time with error 𝑒𝑒. Moreover,  

the forecasted model is shown as follows: 
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𝒙𝒙𝒌𝒌
𝒇𝒇

 =  𝑨𝑨𝒙𝒙𝒌𝒌−𝟏𝟏 𝒂𝒂   2-19 
𝒙𝒙𝟎𝟎𝒂𝒂  =  𝑿𝑿𝟎𝟎  2-20 

  
Furthermore, by subtracting 2-18 and 2-19: 

𝒙𝒙𝒌𝒌 𝒕𝒕 −  𝒙𝒙𝒌𝒌
𝒇𝒇

 =  𝑨𝑨(𝒙𝒙𝒌𝒌−𝟏𝟏 𝒕𝒕  −  𝒙𝒙𝒌𝒌−𝟏𝟏 𝒂𝒂 )  +  𝒘𝒘𝒌𝒌 2-21 
 

Error covariance matrix will be calculated as:       

𝑷𝑷𝑲𝑲
𝒇𝒇
𝒙𝒙𝒙𝒙  =  (𝒙𝒙𝒌𝒌 𝒕𝒕 −  𝒙𝒙𝒌𝒌

𝒇𝒇)𝟐𝟐 
���������������

   

=   (𝑨𝑨(𝒙𝒙𝒌𝒌 𝒕𝒕  −  𝒙𝒙𝒌𝒌−𝟏𝟏 𝒂𝒂 )  +  𝒘𝒘𝒌𝒌)𝟐𝟐 �������������������������������  
= 𝑨𝑨𝑷𝑷𝒌𝒌𝒂𝒂𝐀𝐀𝐓𝐓 + 𝑸𝑸𝒌𝒌−𝟏𝟏 

     
2-22 

 

For a nonlinear system, a similar approach will show where 𝓜𝓜and 𝓠𝓠 are matrix forms of the 

forward model and the covariance of the process noise(Evensen, 2009): 

 

𝐏𝐏𝐊𝐊𝐟𝐟 𝐱𝐱𝐱𝐱  =  𝓜𝓜𝐏𝐏𝐤𝐤𝐚𝐚𝓜𝓜𝐓𝐓 + 𝓠𝓠𝐤𝐤−𝟏𝟏    =   �𝝍𝝍𝐤𝐤
 𝐭𝐭 −  𝝍𝝍𝐤𝐤

𝐟𝐟 �𝟐𝟐 
����������������

 2-23 

 

In EnKF error covariance matrix is shown below if 𝝍𝝍 is the state variable(Evensen, 2009). 

One should be aware that the true state is unknown, so that it will be replaced with the mean of 

the ensemble 𝝍𝝍𝒌𝒌����. If the ensemble size is infinite, the error covariance matrix will converge to the 

below equation. In this condition there is an infinite number of realizations converge to 𝑃𝑃𝐾𝐾
𝑓𝑓 , so 

the same error covariance can be approximated with sufficient ensemble size: 

𝑷𝑷𝑲𝑲
𝒇𝒇
𝒙𝒙𝒙𝒙  ≅  (𝝍𝝍𝒌𝒌���� −  𝝍𝝍𝒌𝒌

𝒇𝒇)(𝝍𝝍𝒌𝒌���� −  𝝍𝝍𝒌𝒌
𝒇𝒇)𝑻𝑻 

������������������������������ 2-24 

  
 Model error and sources of model error: 

In both linear and nonlinear models, modeling error is the main item to achieving high-accu-

racy state estimation(Lu et al., 2021). As pointed out earlier, the error is a discrepancy between 

the true state and what can understand from the true state. So, in a condition where the true state 

is uncertain, for example, a subsurface reservoir, the model error cannot be defined and calcu-

lated with this approach. 
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In different fields of engineering and science, sources of error are various, but in subsurface 

studies, they are generally due to: (Jiyuan et al., 2013) and (Rammay, 2020) 

a. Numerical errors 

b. Upscaling errors 

c. Physical errors 

d. Human errors 

2.5.1 Numerical Errors 
In reservoir simulation, the forward models (functions) such as Darcy law, Mass conservation 

law, Buckley-Leverett, et cetera; are highly nonlinear, and solving them in analytical form would 

be computationally a big challenge. Thus, numerical approaches are being applied to approxi-

mate them. The numerical solutions are specified to limited time and space resolution; higher 

resolution and more nodes cause a smaller error but increase the computational costs. This error 

arises because an exact analytical solution to the equation is not obtained by the numerically ap-

proximated solution(Jiyuan et al., 2013). In figure 2-4, conservation law with a simple non-linear 

function with a specific initial condition is solved. In the left plot, 50 nodes, and for the right 

plot, 500 nodes have been used to calculate the solution. Comparing the numerical and exact an-

alytic solutions clarifies the numerical error. 

  
FIGURE 2-4 SOLUTION OF CONSERVATION LAW WITH A NONLINEAR FUNCTION WITH 50 (LEFT) AND 500 (RIGHT)NODES. 

 

2.5.2 Upscaling error: 
In reality, a reservoir has continuous properties and different properties in every centimeter or 

millimeter. For example, pore size and, consequently, porosity and permeability change in each 



12 
 

centimeter of formation; in one specific point, one can be in a void space with high porosity, and 

a few millimeters aside is noneffective porosity in capsulated in the matrix of rock which not 

permeable. Also, a geological interpretation measurement like seismic data has its resolution 

with some uncertainties so that geologists can make fine grids with a specific resolution.  

A reservoir can have millions of grids in high-quality fine resolution built by geologists, but 

simulating a reservoir with millions of grid cells is computationally costly, so reservoir engineers 

prefer to scarify some details to speed up the simulation by coarsening the grids. Upscaling or 

grid coarsening is the process of attaching fine cells to create a bigger cell with the average value 

of all fine cells; heterogeneity will decrease, dimension of one cell will increase, which both 

cause an error in the model. 

In figure 2-5, with the upscaling ratio of 1 to 3, permeability distribution was changed (histo-

gram plot), and values were averaged. 

 

FIGURE 2-5 “UPSCALING: (UPSCALING OF RESERVOIR PROBLEMS, THE MATLAB RESERVOIR SIMULATION TOOLBOX 2019B DOCUMENTA-
TION,” 2019) 

 

The upscaling process introduces an error due to shifting connecting cells to the wells and the 

trajectory of the well. In the blow plot, a well is lactated in a grid with extremely high permeabil-

ity and surrounded by high permeable grids, but after coarsening, the property of the connected 
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cell is changed to average also, and the well location and position are now different as shown in 

figure 2-6.   

  

FIGURE 2-6 UPSCALING IN 2D, THE EFFECT OF UPSCALING ON WELLBORE LOCATION AND GEOMETRY. 

2.5.3  Physical errors: 
Physical errors refer to choosing PVT tables, relative permeability models, and some assump-

tions while describing the physical properties of the subject field. Black-oil model is too simple 

to consider all parameters; EOS methods are experimental and valid under specific conditions. 

Relative permeability is calculated in the lab, and it is an approximation. The rock compressibil-

ity factor is kept constant, but it is not a constant value in reality. 

2.5.4 Human Errors: 
Geological interpretation, assumptions, and initial engineering guesses are always part of res-

ervoir simulation and model interpretation. It is constantly being said that experienced geologists 

or engineers have better interpretation or understanding. Still, it is just human adventitious biases 

since there is no clear and confident answer to whether the interpretation and engineering 

guesses are correct. 

 Decline Curve analyses 
Before the invention of the modern digital computer, which is capable of handling complex 

calculations, in 1945, J.J Arps, in a series of studies, introduced a method for analyzing declining 

production rates and forecasting the future performance of oil and gas wells. This method is 

based on empirical observation of production decline fitted on exponential, hyperbolic or har-

monic functions. Figure 2-7 shows the decline curves for these equations. 
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FIGURE 2-7 ARPS DCA CURVES FOR EXPONENTIAL, HYPERBOLIC AND HARMONIC FORM. 

Basic charac-

teristics 

Decline type Rate–time Rate–cumulative 

production 

Di*t 

b = 0 Exponential 𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑖𝑖𝑒𝑒−𝐷𝐷𝑖𝑖𝑡𝑡 , 𝑄𝑄 =  (𝑞𝑞𝑖𝑖 − 𝑞𝑞)/𝐷𝐷𝑖𝑖 Dit = ln(qi/q) 

0 < b < 1 Hyperbolic 
𝑞𝑞𝑡𝑡

= 𝑞𝑞𝑖𝑖(1 + 𝑏𝑏𝐷𝐷𝑖𝑖𝑡𝑡)
−1

𝑏𝑏� , 

𝑄𝑄 

=  
𝑞𝑞𝑖𝑖

(1 − 𝑏𝑏)𝐷𝐷𝑖𝑖
[1

− (
𝑞𝑞
𝑞𝑞𝑖𝑖

)1−𝑏𝑏] 

𝐷𝐷𝑖𝑖t =
(𝑞𝑞𝑖𝑖/𝑞𝑞)𝑏𝑏 − 1

𝑏𝑏  

b = 1 Harmonic 𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑖𝑖/(1 + 𝑏𝑏𝐷𝐷𝑖𝑖𝑡𝑡), Q = qiln(qi/q)/Di Dit = (qi/q) – 1 

TABLE 2-1 ARPS DCA TYPES AND PARAMETERS (HEDONG, 2015) 

 

In table 2-1, these equations have been demonstrated, where qt is well the rate at time t, q0 is 

the initial rate at t = 0, Di is the initial decline rate, and b is the decline exponent. With the as-

sumption of boundary-dominated flow, the upper bound of b is unity. For the transient flow re-

gime of unconventional production, b is often greater than unity (Valkó and Lee 2010), and as a 

result, the cumulative production is unbounded. To avoid unbounded cumulative production, we 

restrict the range of parameter b to stay in 0 <b < 1 (the cumulative production will also be un-

bounded when b = 1) in our application. 

Production data can be categorized into two-time intervals. In the initial transition, when the 

well start producing, the pressure of the well at a constant flow rate will not change. During this 

period which can last from several minutes to several years, depending on the mobility ratio of 

the reservoir, the flow has not reached the boundary or draining flow of the neighboring well. 

However, the pressure starts to drop when the flow regime has reached any boundary, and the 
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well will produce under the boundary-dominant regime. This period lasts for many years, and 

DCA can be used to model the flow rate. 

The Arps model answered three major questions at the time, a method to predict for future 

based on past production, an appropriate mathematical approach to describe the data trends, and 

the ability to identify its parameters(Valkó and Lee, 2010).  

2.6.1 Stretched Exponential Method: 
After decades of applying Arps DCA, with improving understanding of reservoir behavior 

and effective parameters in reservoir engineering, new questions arose that which Arps model 

could not answer. Pseudo-steady-state flow, material balance, or unconventional reservoir were 

beyond the capability of Arps DCA, so several new imperial methods were introduced by the 

time to answer some of those issues. 

P.P Valkó, by studying the tight gas reservoirs, introduced Stretched Exponential Method 

(SEM) to predict the unconventional reservoir production rate. SEM can consider heterogeneity 

because SEM is an integral form of exponential decays with a “fat-tailed” probability distribu-

tion of the time constants(Valkó and Lee, 2010) 

𝒒𝒒𝒕𝒕 =  𝒒𝒒𝒊𝒊𝒆𝒆
−(𝒕𝒕𝝉𝝉)𝒏𝒏 2-25 

  
Where 𝜏𝜏 , n, and t are the characteristic time parameter, the exponent parameter, and produc-

tion time, respectively(Valkó, 2009). 

 Reservoir simulation: 
With having modern computers around that can process and store big data, solve non-linear 

equations, and perform logic operations, now reservoir engineers are able to study the behavior 

of a reserve under any physically correct initial condition, monitor fluid flow in porous media, 

and history matches the production and predict the future of the reservoir. 

Generally, reservoir simulators use discretization methods to solve conservation of mass, iso-

thermal fluid phase behavior, a chemical reaction between fluids and porous media, and the 

Darcy equation for a 3D model. Building a 3D model starts with defining the geometry of the 

reservoir and shape of grids, assigning petrophysical properties to each grid and then produc-

tion/injection wells will be connected to grids. In the next step, initial conditions like rates, 



16 
 

pressures, and composition of injected fluid will be introduced. Finally, the model will simulate 

under proper physical laws in the desired time steps. 

The “Matlab Reservoir Simulation Toolbox”(Lie, 2019) and the “Open Porous Media”(Ras-

mussen et al., 2019) are two famous open-source simulators, and “Schlumberger 

ECLIPSE”(Schlumberger, 2014)  is the most trusted commercial simulator.  
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 Proposed Approach for Accounting For Model 
Errors in EnKF Updating 

 

Error and uncertainty are fundamental parts of statistics, and the terms “Error” and “Uncer-

tainty” are being used interchangeably, but these terms should be distinguished in this study. In 

the American Institute of Aeronautics and Astronautics (AIAA) Guidelines, it has been stated 

that: Uncertainty is defined as: "A potential deficiency in any phase or activity of the modeling 

process that is due to the lack of knowledge." Error is defined as: “A recognizable deficiency in 

any phase or activity of modeling and simulation that is not due to lack of knowledge.” (“AIAA 

Guidelines 077,” 1998) 

As briefly discussed in chapter 2, there are several sources of error in a subsurface reservoir 

model, including simplified PVT, grid upscaling, et cetera. In this chapter, a method will be pro-

posed to account for model error in probabilistic HM, which allows us to use the statistical infor-

mation of model error to account for it while updating the prior knowledge. This method will be 

examined in 2 case studies from the reservoir engineering context. 

 DCA methods will be used to model an unconventional tight gas field in the first case. One 

model will be built as a high-quality model, and the second is a low-quality model which con-

tains errors. Their distribution will be compared, and then by EnKF, these models will be up-

dated in the next step. Then, the suggested approach will be used to calculate the discrepancy be-

tween these two models, and a function of Model Error will be proposed to account for the 

model error. Furthermore, in the last step, statistical information from the Model Error algorithm 

will be used in the EnKF to update the prior model to account for model error and correlate the 

prior model with the given observation. 

Next, a synthetic 2D reservoir will be upscaled to different grid sizes, and then the high fidel-

ity model will be used as the HQ model. The model error will be calculated. Changes in these 

models will be discussed, and then EnKF will be used to these models with and without account-

ing for model error. Finally, the distribution of models and forecasted models will be compared 

to understand the effect of accounting for model error in probabilistic history matching. 
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 Methodology:  
The Bayesian theorem can consider all uncertainties in the problem, and it could be used to 

consider model error as probability distribution to help us to update the model containing the er-

ror. Bayes theorem is shown in equation (3-1) where  𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 and 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 are probabilities of prior 

and posterior models and  𝑑𝑑𝑝𝑝𝑏𝑏𝑝𝑝 is observed data:  

𝑷𝑷�𝒎𝒎𝒑𝒑𝒑𝒑𝒑𝒑𝒕𝒕�𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑� ∝ 𝑷𝑷(𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑|𝒎𝒎𝒑𝒑𝒑𝒑𝒊𝒊𝒑𝒑𝒑𝒑).𝑷𝑷(𝒎𝒎𝒑𝒑𝒑𝒑𝒊𝒊𝒑𝒑𝒑𝒑) 3-1 
 

Now, if we study high-quality and low-quality models, it could be presented with equation 3-

2 and by substituting it in Bayes theorem: 

𝝐𝝐 =  𝒎𝒎𝑯𝑯𝑸𝑸 −  𝒎𝒎𝑳𝑳𝑸𝑸   ⟹  𝒎𝒎𝑯𝑯𝑸𝑸 =  𝒎𝒎𝑳𝑳𝑸𝑸 +  𝝐𝝐 3-2 
𝑷𝑷�𝒎𝒎𝑯𝑯𝑸𝑸�𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑� ∝ 𝑷𝑷(𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑|𝒎𝒎𝑯𝑯𝑸𝑸).𝑷𝑷(𝒎𝒎𝑯𝑯𝑸𝑸) 3-3 

𝑷𝑷�𝒎𝒎𝑯𝑯𝑸𝑸�𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑� ∝ 𝑷𝑷(𝒅𝒅𝒑𝒑𝒐𝒐𝒑𝒑|𝒎𝒎𝑳𝑳𝑸𝑸 +  𝝐𝝐).𝑷𝑷(𝒎𝒎𝑳𝑳𝑸𝑸 +  𝝐𝝐) 3-4 
  

Having a function or algorithm to consider error 𝜖𝜖 in the Bayesian theorem to calculate the 

posterior would correct the posterior's uncertainty distribution and avoid neglecting the low-qual-

ity model's errors. 

3.1.1 Model Error function: 
In this approach, in contrast with the classical definition of model error, the model error has 

been defined as the discrepancy between the forecasted high-quality model and the forecasted 

low-quality model. Note that since a low-quality model (the model with error) can be overesti-

mated or underestimated, the model error value can be positive or negative. Now the main ques-

tion is how to extract this information from the error in the term of a probability distribution of 

model error.  

3.1.2 Sliding window algorithm: 
In an experiment, a sliding window algorithm has been modified and implemented to calcu-

late the statistical information. The sliding window moves from the beginning of input data (dis-

crepancy between forecasted high and low quality models) with the proper given window size. 

Then it calculates the Mean and the Standard Deviation of the values inside the window and 

stores them as output values corresponding to the input data. This process will be repeated for all 

input values one by one. Finally, with linear interpolation, two continuous functions of the mean 

and the standard deviation regarding the model's forecast with error will be available, assuming 
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that model error has Gaussian distribution. In figures 3-1 and equations 3-5, 3-6, and 3-7, the 

mechanism of this method has been demonstrated. 

Note that window size should be small enough to capture slight fluctuation and big enough to 

catch a specific sample size. A machine-learning algorithm could be used to optimize the win-

dow size. Figure 3-2 shows all steps of calculating the mean and STD of the model error. 

    

FIGURE 3-1 SLIDING WINDOW SAMPLING AND PARAMETER CALCULATION 

𝝁𝝁@𝑨𝑨 = 𝒎𝒎𝒆𝒆𝒂𝒂𝒏𝒏(𝟎𝟎,𝒂𝒂,𝒐𝒐) ,𝝈𝝈@𝑨𝑨 = 𝑺𝑺𝑻𝑻𝑺𝑺(𝟎𝟎,𝒂𝒂,𝒐𝒐) 3-5 
𝝁𝝁@𝑩𝑩 = 𝒎𝒎𝒆𝒆𝒂𝒂𝒏𝒏(𝒂𝒂,𝒐𝒐, 𝒄𝒄),𝝈𝝈@𝑨𝑨 = 𝑺𝑺𝑻𝑻𝑺𝑺(𝒂𝒂,𝒐𝒐, 𝒄𝒄) 3-6 
𝝁𝝁@𝑪𝑪 = 𝒎𝒎𝒆𝒆𝒂𝒂𝒏𝒏(𝒐𝒐, 𝒄𝒄,𝒅𝒅),𝝈𝝈@𝑪𝑪 = 𝑺𝑺𝑻𝑻𝑺𝑺(𝒐𝒐, 𝒄𝒄,𝒅𝒅) 3-7 

 

 

 

 

 

 

 

 

 

 

 

High Quality 
model 

Low Quality 
model 

Calculate Error 
between forecasted 

models 

Model Error= function (Low 
Quality model forecast) 

Modified Sliding win-
dow algorithm  

µ, σ = f (mismatch, Low 
Quality model forecast) 

FIGURE 3-2 MODEL ERROR CALCULATION FLOWCHART. 
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3.1.3 Updating the prior with the consideration of model error: 
EnKF algorithm has been discussed earlier in chapter 2. We modify this algorithm to consider 

the bias and overconfidence in the low-quality prior model while updating it with observation 

data.  

Now, the mean and standard deviation of the model error for the forecasted low-quality model 

are available. We use these statistical parameters to generate a random sample and add it to the 

initial forecasted prior; Thus, an interpolator function was used to estimate the values of the fore-

casted prior model, and for each forecasted value, a Gaussian random sample with the mean and 

standard deviation of the model error will be generated. It should be noted that accounting for the 

model error should be calculated just for the first iteration of EnKF. Thus, the corrected prior 

model containing error information will be updated; otherwise, we add extra error in each itera-

tion. Equation 3-8 shows how equation 2-8 in EnKF has been modified. In equation 3-8, 

𝝁𝝁𝝐𝝐𝟏𝟏
𝒏𝒏,𝒇𝒇and 𝝈𝝈𝝐𝝐𝟏𝟏

𝒏𝒏,𝒇𝒇  the mean and STD of model error. 
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servation 

Observa-
tions 

Updated 
Model 

Random 
value with Model 
ErrorN (µ, σ) 
adds 1st iteration 

FIGURE 3-3 FLOWCHART OF ENKF ACCOUNTING FOR MODEL ERROR 
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3.1.4 Forecasting metrics 
An accuracy measure is needed to compare the results of the proposed method as forecasts of 

an ensemble with or without accounting for the model error. Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) will be calculated to compare how updates are 

close to observations. It has been noticed that these data-fitting measurements alone cannot be an 

excellent reference to check the quality of the fit (Rammay, 2020), so here RMSE, MAPE, and 

visual quality check of the forecasted model should be considered.  

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑  =  �
∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊=

𝐍𝐍
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Where in RMSE, N, xi and 𝑥𝑥� are the number of data points, observed value, and estimated 

value orderly. 

𝑴𝑴𝑨𝑨𝑷𝑷𝑬𝑬 =  
𝟏𝟏
𝒏𝒏

 � �
𝑨𝑨𝒕𝒕  −  𝑭𝑭𝒕𝒕

𝑨𝑨𝒕𝒕
�

𝒏𝒏

𝒕𝒕=
 3-10 

 

Which n, At, and Ft are the value of times the summation iteration happens, actual value, and 

forecast value. MAPE works correctly as long as there is no extreme point in the data. 

 Case study 1: Decline Curve Analyses 
Production data (gas rate) has been generated for the period of 15 years in a synthetic tight gas 

field, as shown in figure 3-4. The assumption of having a tight gas reservoir will lead to use SEM 

as a high-quality method to describe the production rate and build a model to predict future pro-

duction.  
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FIGURE 3-4 OBSERVATION OF TIGHT GAS RESERVOIR 

3.2.1 Prior realizations 
To generate the prior high-quality realizations, SEM parameters τ, n, and qi will be generated 

randomly as below, where 𝒰𝒰 is a uniform probability distribution. One hundred random initial 

parameters were generated by implementing MCS to calculate the prior model with the SEM 

equation(equation 2-24). Figure 3-5 shows these realizations for the entire production time. 

𝝉𝝉 ~ 𝓤𝓤(𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎.𝟎𝟎𝟎𝟎,𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎 )    3-11 
𝒎𝒎 ~ 𝓤𝓤(𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎.𝟎𝟎,𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎 )    3-12 

𝒒𝒒𝒎𝒎 ~ 𝓤𝓤(𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎𝟎𝟎𝟎𝟎,𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎 )    3-13 
  

 

FIGURE 3-5 PRIOR REALIZATIONS WITH SEM 

To have a model which can be described as low-quality, Arps DCA has been used. In the 

main assumptions of the Arps DCA, the decline exponent parameter b is: 

𝟎𝟎 ≤ 𝒃𝒃 ≤ 𝟎𝟎 3-14 
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However, it has been acknowledged that in the case of using the Arps model for a tight gas 

reservoir, parameter b can be more than unity(Maley, 1985). So, in this case, parameter b in the 

hyperbolic formation of Arps was allowed to get bigger values. This change in the Arps model 

provides maximum fit to SEM realizations.  

In the next step, non-linear least squares analyses were applied to fit Arps equations on SEM 

curves, and at the end of this step, Arps’s parameters that can fit SEM realizations curve were 

obtained. This step has been done using the ‘SciPy/optimize/curve_fit’ function (Jones et al., 

2001). Figure 3-7 clarifies that some fitted curves with Arps equations are a good match while 

others could not be fitted correctly to the SEM curve, so the error has been introduced in the 

Arps model.  

 
( A) 

 
( B) 

 
( C) 

 
( D) 

FIGURE 3-6 HISTOGRAMS OF SEM PARAMETERS AND QT, THE PROBABILITY DISTRIBUTION OF (A) QI, (B)TAU, (C) N, AND (D) QT. 
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FIGURE 3-5 FITTED ARPS MODEL WITH SEM 

 

FIGURE 3-6 REALIZATIONS WITH ARPS DCA AND OBSERVATIONS 

 

These distributions demonstrated that the prior Arps parameters b and Di have a small vari-
ance, and based on figure 3-8, the Arps model realizations were not close to the observations, so 
the Arps model is a low-quality model representing our synthetic tight gas field. 

The distribution of Arps’s parameter is shown in figure 3-9. It should be considered that pa-
rameters of Arps and SEM are defined in different domains and cannot be compared.  

Figure 3-10 shows the discrepancy between high and low quality models as black dots. The 
black box is a schematic of the moving window, and it depicts how the window slides over 
points and calculates statistical information. 

Figure 3-11 shows the mean and the STD of the production rate model error concerning the 

Arps production rate. In this case study, a cross-validation algorithm has been used to optimize 

the window size. 
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(A) (B)  

(C) (D) 

FIGURE 3-7 HISTOGRAMS OF ARPS PARAMETERS AND QT, THE PROBABILITY DISTRIBUTION OF (A) QI, (B)DI, (C) B, AND (D) QT. 

 

FIGURE 3-8 SLIDING WINDOW SCHEMATIC 
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FIGURE 3-9 GRAPHS OF THE MEAN AND STANDARD DEVIATION OF MODEL ERROR 

3.2.2 Updating the prior: 
Based on figure 3-12, a better fit is observed after updating SEM parameters with observa-

tions. Qi at the initial time has a perfect fit, and later, the P80 confidence interval covers the ob-

servation points, and the mean is passing in the middle of observations. This plot shows that 

SEM is a high-quality model and close to the truth, and it was able to model the truth after its pa-

rameters were updated with given observations.  

From probability distribution and histogram plots in table 3-1, for parameter Qi, the initial 

rates are shifted to approximately 809 to 810, which is close to the observation at the initial pro-

duction time. Also, a narrow distribution for Qi is obtained, indicating uncertainty reduction. For 

parameters b and τ, distribution also changed to a wide distribution with bigger variance, and fi-

nally, for Qt, distribution became wider, and a bimodal distribution with the smaller mode at 800 

is noticeable.   

 

  
FIGURE 3-10 SEM, PRIOR (LEFT) AND POSTERIOR(RIGHT) 
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 Prior of SEM Parameters Posterior of SEM Parameters 

Qi 

  

τ 

  

TABLE 3-1 HISTOGRAMS OF SEM PARAMETERS AND QT FOR PRIOR AND POSTERIOR 

 

 Prior of SEM Parameters Posterior of SEM Parameters 

n 

  

Qt 

  
TABLE 3-1 HISTOGRAMS OF SEM PARAMETERS AND QT FOR PRIOR AND POSTERIOR 
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Then, with EnKF, the Arps model parameters have been updated to correspond to observation 

points. 

From figure 3-13, the Arps model with updated parameter shows a good fit at the beginning 

of the observation, and between year 2 and year 4, the shape of the curve matches with the obser-

vation curve, but the updated model is still underestimating production rate. Since it had been as-

sumed that the reservoir is a tight gas formation (which is not thoroughly describable with Arps 

DCA), the updated model Arps cannot be a good fit in this case. 

Figure 3-14 shows updated Aprs parameters while accounting for model error with EnKF. 

Distribution is generally wider, but the mean of updated realizations is close to the observation 

points, and more importantly, the 80 percent confidence interval covers the observation. 

  
FIGURE 3-11 PRIOR(LEFT) AND POSTERIOR(RIGHT) OF ARPS DCA WITH ENKF. A BETTER FIT IS OBSERVABLE AT THE YEAR 0 TO 2, 

BUT IT IS STILL UNDERESTIMATED, WHILE A SMALLER VARIANCE IS NOTICEABLE. 

 

 

FIGURE 3-14 POSTERIOR OF ARPS DCA WITH FOR MODEL ERROR. 
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As explained earlier, RMSE and MAPE could not be correct measures to compare the result 

of updating, but as table 3-2 shows, RMSE and MAPE depict good results when the model error 

is considered in updating. For the case with accounting for model error, RMSE and MAPE de-

creased in comparison to the case without model error. 

Since SEM and Arps DCA parameters are based on different definitions and equations, it is 

impossible to compare them, so parameters of initial realizations and parameters updated using 

EnKF with and without accounting for model error are contrasted.  

DCA type  RMSE MAPE 

SEM Prior 186 3.05 

Posterior 162.1 1.64 

Arps Prior 222.9 2.68 

Without Model 

Error 

133.2 4.22 

With Model Error 44.7 0.24 
TABLE 3-2 FITTING MEASURE FOR DCA 

 

From table 3-3, Qi and Di have a wide truncated normal distribution for initial realization. The 

forecasted update without and with model error has a normal distribution. Updated realizations 

accounting for model error have a higher mean and slightly wider distribution for Qi and Di. 

However, for parameter b, narrower distribution is noticeable when the model error is consid-

ered. Finally, for Qt, the shape of the PDF changed from a long-tailed distribution to log-normal 

or truncated normal distribution. Based on these probability distributions and PDF plots, wider 

distribution and shift in the mean of each parameter were observed. These changes in the distri-

bution of the parameters showed that accounting for model error can avoid overconfidence. Also, 

in figure 3-14, biases of the Arps model has been mitigated. 
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TABLE 3-3 HISTOGRAMS OF ARPS PARAMETERS AND QT FOR PRIOR AND POSTERIOR 

                                                 
1 Note that the scale of this plot is different from other plots due to limitation of Python package which have 

been used. 

 Initial of Arps Parameters 
Updated Arps Parameters without 

model errors1 

Updated Arps Parameters with 

model error 

Qi 

   

Di 

   

b 

   

Qt 
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 Case Study 2: 2D Reservoir 
A synthetic 2D reservoir simulation model with 200 × 200 grid cells was built with a geosta-

tistical model for the permeability field (the only uncertain parameters in this example) with log-

normal distribution with the mean 190 mD, standard deviation 300, and spherical variogram 

(major axis = 3000 minor axis = 1000 and the nugget effect 0.01) with the minimum 100 mD and 

maximum 900 mD as the true field as shown in figure 3-16. Porosity, initial pressure, and initial 

water saturation were 20%, 290 bar, and 10 percent. Incompressible two-phase flow of oil and 

water is considered in porous media. The dimension of the reservoir is 1000 m × 1000 m × 10 m 

in the x, y, and z directions, respectively (figure 3-16). 

A production well is placed in the southeast, and an injector well is in the northwest of the 

field. Production and water injection have been started in 1970 and continued until 2020. The 

measurements data include water cut at the production well (WCT) and bottom-hole pressure 

(PBHP & IBHP) for both wells have been collected at the end of 1970, 1980, 1990, 1995, 2000, 

2010, 2015, 2018, and 2020. The liquid rates remained constant during production (figure 3-17). 

 

FIGURE 3-12 TRUE FIELD AND HISTOGRAM OF THE FIELD 

 

101 realizations were randomly drawn from the geostatistical model for the prior ensemble, 

and one realization has been selected and separated as truth. Each realization has 200 × 200 grid 

cells. 
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FIGURE 3-13 OBSERVATION DATA FROM THE TRUE MODEL (WCT, IBHP, IBHP) 
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In this case study, the model error is due to grid upscaling. Upscaling or grid coarsening is a 

routine part of simulating a reservoir to reduce computation costs. So, the prior realizations will 

be upscaled from high fidelity(200 × 200 grid cells) to (100 × 100) and lower fidelity, (50 × 50), 

(25 × 25), and (5 × 5) grid cells and at the end, five ensembles with different grid numbers cre-

ated. Ensembles with 200 × 200 and 100 × 100 cells were considered high-quality prior models. 

By upscaling to different levels of fidelity, the mean of the ensemble was almost the same value, 

and the standard deviation of the field changed, and this process caused the error in the upscaled 

model. In table 3-4, the realization No.1 and the mean and STD of all realizations for five differ-

ent ensembles are demonstrated after the upscaling process. In this study, log-permeability has 

been used, which is noticeable from the histogram/PDF plots of the high-fidelity field. 

From table 3-4, clearly, the upscaling process makes the permeability more homogenous. 

Coarsening does not change the mean of ensembles at different levels. The mean of each ensem-

ble is around 270, while STDs are 183, 90.6, 46.5, 29, and 20 for 100×100, 50×50, 25×25, and 

5×5 cells. With different grid upscaling levels, the heterogeneity of realizations has been re-

duced. So, it can be said that grid upscaling is not biasing the prior with respect to the mean. 

These ensembles have been simulated with similar initial conditions except well location grid. 

As explained earlier, the geometry and location of a well would change in upscaling. To mini-

mize the impact of this error in this study, the location of both production and injection wells was 

designed to have fix position corresponding to the boundary of the reservoir. 

Since BHP plots for production and injection wells are almost straight lines and there are no 

significant changes, they will not be demonstrated in this chapter, but note that BHP data have 

been used in updating step.  

In table 3-5, as expected, simulated initial ensembles have a wider spread with fine grid size 

and more heterogeneity in the model. As grid size increases with different levels of upscaling, 

grids' permeability converges to the ensemble's mean. So, by simulating these ensembles, we 

will see narrow distributions. 

 Even though permeability data were not biased with grid upscaling, the production data be-

came biased by simulating those upscaled ensembles. In one realization, coarsening makes the 

field property more homogenous. Homogeneity makes the fluid flow smoother and faster, so 
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water breaks through the reservoir faster, and we see higher water cuts. This idea explains the bi-

asness of grid coarsening.  

EnKF was implemented to update the prior models with field observations. Note that, in each 

iteration, dynamic properties (pressure and saturation) were set to initial conditions, and the 

model has been simulated from the beginning of production time. Also, permeability is truncated 

to 100 to 900 mD. 

 

Permeability of realiza-

tion No.0 

Histogram of reali-

zation No.0 

Mean of the ensem-

ble 

Standard Deviation 

of the ensemble 

Histogram of the 

ensemble 

20
0 

× 
20

0 

     

10
0 

× 
10

0 

     

50
 ×

50
 

     

25
 ×

 2
5 

     

5 
× 

5 

     
TABLE 3-1 DIFFERENT UPSCALING LEVELS AND MEAN FOR EACH LEVEL OF UPSCALING 
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TABLE 3-2 FORECASTED HIGH-QUALITY PRIOR MODELS 

 

Model Error of upscaling and statistical information: 

Now proposed algorithm has been used to calculate the model error and corresponding statis-

tical data of model error. Various combinations of high-quality and low-quality models arrange-

ments have been tested, as shown in table 3-6. For example, the number ‘200’ indicates the high-

D
im

 

Water Cut (%)           Measures 

20
0 

× 
20

0 
 

 

RMSE 

WCT:0.03 

P BHP:16.83 

I BHP:1.35 

MAPE 

WCT:0.02 

P BHP:13.53 

I BHP:1.08 

10
0 

× 
10

0 

 

RMSE 

WCT:0.03 

P BHP:9.91 

I BHP:1.76 

MAPE 

WCT:0.02 

P BHP:8.15 

I BHP:1.51 
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quality model with 200×200, and the number ‘5’ indicates the low-quality model with 5×5 grid 

cells. 

HQ 

Model 
 

LQ 

Model 

HQ 

Model 
 

 

LQ 

Model 

HQ 

Model 
 

LQ 

Model 

HQ 

Model 
 

LQ 

Model 

200  50          

200  25 100  25       

200  5 100  5 50  5 25  5 
TABLE 3-3 COMBINATIONS OF HIGH-QUALITY AND LOW-QUALITY MODELS ARRANGEMENTS 

 

 Figure 3-18 Shows the Model Error function and its mean and STD for Model Error between 

two models with 200×200 and 5×5 grid cells. In the left plot, each point shows the difference be-

tween high and low quality models. Straight lines show linear interpolation between the statisti-

cal parameters in the right plot. 

 

FIGURE 3-14 MODEL ERROR(LEFT) & STATISTICAL PARAMETERS OF MODEL ERROR(RIGHT) 

 

For realizations with 5×5 grid cells, the prior ensemble has been simulated and then updated 

for observation data as shown in table 3-4 and 3-5. As expected, the forecast distribution has 

shrunk after updating this ensemble, and we probably faced ensemble collapse. However, since, 

in this case, the initial realization was not good prior, the forecasted WCT is still far from the ob-

servation. The distribution of updated permeability is slightly changed to a more normal distribu-

tion. The ensemble collapse can be recognized when the updated ensemble has a close value in 

the forecasted model.  
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We see a broader P80 confidence band and a slight shift toward observation by considering 

model error with the ensemble of 200×200 grid cells as the HQ model and 5×5 grid cells as the 

LQ model. The wider confidence band is due to model error and shows that if we use a poor 

model to describe the reservoir behavior, how much uncertainty could be neglected in the pro-

cess. Also, with this approach, we have mitigated the biasness of the LQ-model to some degree, 

the confidence band covers some observation, and the mean of the forecast is closer to observa-

tion data compared to the case without considering the model error. 

Tables 3-8 and 3-9 show forecasted models and the distributions of updated models without 

and with model error (different levels of model error). As expected, EnKF shrank the confidence 

band while forecasted realizations are still biased compared to the observation. Considering 

model error expanded the confidence interval band, and in the case with 200×200 grid cells, 

some realizations are covering the observation points. RMSE and MAPE are bigger since, with 

model error, a broader confidence interval is obtained. Updated permeability field plots are still 

highly homogeneous, and the histogram of permeability became narrower with the decrease in 

quality of model error. The term model error quality refers to which upscaling levels have been 

chosen as HQ-model. If, instead of 200×200 grid cells, we use 50×50, the quality of the model 

would decrease.   

Forecasted initial ensemble with 5×5 cells Measures  

 

RMSE 

WCT:0.02 

P BHP:7.6 

I BHP:1.49 

MAPE 

WCT:0.02 

P BHP:6.76 

I BHP:1.27 

TABLE 3-4 WCT FOR PRIOR ENSEMBLE WITH 5×5 CELLS 
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Forecasted updated with EnKF ensemble 5×5 cells Plot & Histogram Measures 

 

 

 

RMSE 

WCT:0.04 

P BHP:8.24 

I BHP:9.46 

MAPE 

WCT:0.03 

P BHP:5.06 

I BHP:8.51 

Run time: 

6694 s 

TABLE 3-5 FORECASTED POSTERIOR WITH SIZE 5×5 CELLS 

 

Update accounting for Model Error ensemble 5×5 (200×200) Plot & Histogram Measures 

 

 

 

RMSE 

WCT:0.062 

P BHP:13.7 

I BHP:8.55 

MAPE 

WCT:0.05 

P BHP:10.86 

I BHP:7.4 

Run time: 

6730 s 

TABLE 3-6 FORECASTED POSTERIOR WITH SIZE 5×5 CELLS ACCOUNTING FOR MODEL ERROR FROM HQ MODEL (200×200). THE 
MEAN OF REALIZATIONS AND HISTOGRAM. 

 

In similar steps, the model error between the ensembles with 100×100, 50×50, and 25×25 grid 

cells and the same low-quality model (5×5 grid cells) were calculated and considered in updating 

the model. As the quality of model error decreases, the forecasted WCT becomes more biased 

and shows a smaller standard deviation. As shown in tables 3-10 to 3-3-12, the forecasted WCT 

shows more biases and a narrower confidence band with the reduction in the quality of model er-

ror. From the histogram\PDF plot of permeability, we can see the permeability variance de-

creased with reduced model error quality. The plot of permeability shows that permeability is 

still almost homogenous after updating, as shown in the second column of table 3-6. 



39 
 

Update accounting for Model Error ensemble 5×5 (100×100) Plot & Histogram Measures 

 

 

 

RMSE 

WCT:0.06 

P BHP:10 

I BHP:2.36 

MAPE 

WCT:0.48 

P BHP:8.24 

I BHP:1.95 

Run time: 

4961 s 

TABLE 3-7 FORECASTED POSTERIOR WITH SIZE 5×5 CELLS ACCOUNTING FOR MODEL ERROR FROM HQ MODEL (100×100). THE 
MEAN OF REALIZATIONS AND HISTOGRAM. 

Update accounting for Model Error ensemble 5×5 (50×50)  Plot & Histogram Measures 

 

 

 

RMSE 

WCT:0.056 

P BHP:8.2 

I BHP:2.75 

MAPE 

WCT:0.048 

P BHP:6.6  

I BHP:2.26 

Run time: 

4946 s 

TABLE 3-8 FORECASTED POSTERIOR WITH SIZE 5×5 CELLS ACCOUNTING FOR MODEL ERROR FROM LQ MODEL (50×50). THE 
MEAN OF REALIZATIONS AND HISTOGRAM. 

Update accounting for Model Error ensemble 5×5 (25×25) Plot & Histogram Measures 

 
 

RMSE 

WCT:0.053 

P-BHP:6.7 

I-BHP:2.6 

MAPE 

WCT:0.05 

P-BHP:5.43 

I-BHP:2.15 

Run time: 

4937 s 

TABLE 3-9 FORECASTED POSTERIOR WITH SIZE 5×5 CELLS ACCOUNTING FOR MODEL ERROR FROM LQ MODEL (25×25). THE 
MEAN OF REALIZATIONS AND HISTOGRAM. 
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We repeated the same procedure for the ensemble with 25× 25 grids; the results are shown in 

tables 3-13 to 3-17. The forecasted model (WCT) covers the observation in the initial simulation 

since the prior ensemble has less error than the case with 5×5 grid cells but is slightly biased. Af-

ter updating, we see that the mean of realizations is closer to observation and has a smaller vari-

ance.  

Forecasted initial ensemble of 25×25 cells Measures 

 

RMSE 

WCT:0.04 

P BHP:6.12 

I BHP:7.3 

MAPE 

WCT:0.03 

P BHP:4.8 

I BHP:6 

TABLE 3-10 WCT FOR PRIOR ENSEMBLE WITH 25×25 CELLS. 

 

The updated permeability field plots in tables 3-14 to 3-17 show two high permeability areas 

in the north and south. In the EnKF, these high permeable areas are large, while in the case of us-

ing 200× 200 grid cells as the HQ model, the high permeability zone at the south is faded while 

there is a higher permeability at the northeast zone. Other updated permeability plots show simi-

lar patterns. The histograms and PDFs are not Gaussian after considering the model error, and 

the positive skew is noticeable. In the histograms, the first bin on the left and the last bin on the 

right side of the histogram are due to truncating permeability for less than 100 mD and more than 

900 mD. 
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Forecasted update with EnKF ensemble 25×25 cells  Plot & Histogram Measures 

 

 

 

 

RMSE 

WCT:0.03 

P BHP:4.8 

I BHP:1.2 

MAPE 

WCT:0.03 

P BHP:4.2 

I BHP:1 

Run time: 

5010 s 

TABLE 3-11 FORECASTED POSTERIOR WITH SIZE 25×25 CELLS. THE MEAN OF REALIZATIONS AND HISTOGRAM. 

Update accounting for Model Error ensemble 25×25 (200×200)  Plot & Histogram Measures 

 

 

 

 

 

RMSE 

WCT:0.0441 

P BHP:15.7 

I BHP:5.8 
MAPE 

WCT:0.032 

P BHP:12.63 

I BHP:4.54 

Run time: 

4978 s 

 
   

TABLE 3-12 FORECASTED POSTERIOR WITH SIZE 25×25 CELLS ACCOUNTING FOR MODEL ERROR FROM HQ MODEL (200×200). 
THE MEAN OF REALIZATIONS AND HISTOGRAM. 

Update accounting for Model Error ensemble 25×25 (100×100) Plot & Histogram Measures 

 

 
 

 

RMSE 

WCT:0.0405 

P BHP:12.07 

I BHP:6 
MAPE 

WCT:0.030 

P BHP:8.6 

I BHP:4.6 
Run time: 

4988 s 
TABLE 3-13 FORECASTED POSTERIOR WITH SIZE 25×25 CELLS ACCOUNTING FOR MODEL ERROR FROM HQ MODEL (100×100). 

THE MEAN OF REALIZATIONS AND HISTOGRAM. 
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Update accounting for Model Error ensemble 25×25 (50×50) Plot & Histogram Measures 

 

 
 

 

RMSE 

WCT:0.034 

P BHP:9.1 

I BHP:5.4 

MAPE 

WCT:0.026 

P BHP:6.6 

I BHP:4.3 

Run time: 

4990 s 

TABLE 3-14 FORECASTED POSTERIOR WITH SIZE 25×25 CELLS ACCOUNTING FOR MODEL ERROR FROM LQ MODEL (50×50). THE 
MEAN OF REALIZATIONS AND HISTOGRAM. 

The last experiment repeated the same procedure for the ensemble of 50×50 grid cells as the 

LQ model. As shown in table 3-18, the forecasted prior model has a broad confidence band due 

to higher heterogeneity in the model. Since this ensemble has higher quality than the two previ-

ous cases, forecasted realizations cover the observed WCT in most of the observation points.  

Since high-quality and low-quality models are similar, the model error has a smaller mean and 

standard deviation, so the uncertainty band is smaller than in previous cases.  

Forecasted initial ensemble 50×50 cells Measures 

 

RMSE 

WCT:0.02 

P BHP:7.6 

I BHP:1.49 

MAPE 

WCT:0.02 

P BHP:6.76 

I BHP:1.27 

TABLE 3-15 WCT FOR PRIOR ENSEMBLE WITH 50×50 CELLS. 
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Update with EnKF ensemble 50×50  Plot & Histogram Measures 

 

 

 

RMSE 

WCT:0.02 

P BHP:7.6 

I BHP:1.49 

MAPE 

WCT:0.02 

P BHP:6.76 

I BHP:1.27 

Run time: 
6694 s 

TABLE 3-16 FORECASTED POSTERIOR WITH SIZE 50×50 CELLS 

Update accounting for Model Error ensemble 50×50 (200×200)  Plot & Histogram Measures 

 

 
 

 

RMSE 

WCT:0.062 

P BHP:13.7 

I BHP:8.55 

MAPE 

WCT:0.05 

P BHP:10.86 

I BHP:7.4 

Run time: 

6730 s 

TABLE 3-17 FORECASTED POSTERIOR WITH SIZE 50×50 CELLS ACCOUNTING FOR MODEL ERROR FROM HQ MODEL (200×200). 

In the case with 50×50 grid cells, again, two high permeable zones at the north and south of 

the field; however, in this case, higher and broader high permeable are is at the south. Histogram 

and PDF of permeability with accounting for model error is close to a Gaussian distribution with 

a positive skew.  

The True field has been upscaled compared with the updated permeability fields in table 3-21. 

With upscaling the true synthetic model to 100×100 and 50×50, one high permeability area in 

the north and another high permeability area in the southwest of the field appeared. However, in 

25×25 grids, the high permeability area is almost in the middle south of the field, and for 5×5 

grids, we have a uniform permeability in the reservoir. In updated ensembles of 50×50, a wide 

high permeability zone in the south and a smaller high permeability zone is noticed. 
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10
0×

10
0 

  

50
×5

0 

  

25
×2

5 

  

5×
5 

  
TABLE 3-18 UPSCALED TRUE MODEL 
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Running time: 

All steps of this study have been coded in python language version 3.9 with Jupiter notebook 

IDE. Eclipse from Schlumberger version 2014 was used as a forward model coupled with python 

to import data and run and export the static and dynamic outputs. A computer with CPU Intel 

Xeon E5-2609 at 2.4GHz with 64 GB ram has been used to run the code. 

In figure 3-19, the average running time for each ensemble is shown, and obviously, with 

fewer grid cells running time decreases. As discussed earlier, upscaling is scarifying the quality 

of the model to reduce the computational costs, which is a massive burden in EnKF.  

 

FIGURE 3-15 AVERAGE RUNNING TIME ACCOUNTING FOR MODEL ERROR VS. GRID NUMBER. (POINTS IN PURPLE COLOR ARE 
APPROXIMATED) 
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 Conclusion and recommendations: 
 

Ensemble-based data assimilation has been applied in different industries, and recently more 

companies and institutes are implementing it in their modeling, optimization, and decision anal-

yses process(Hanea et al., 2015).  

Ensemble-based data assimilation provides a framework to update and calibrate the uncertain-

ties with additional observations in a probabilistic and Bayesian manner 

Classically, model error in DA has been defined as the discrepancy between the truth and the 

model; however, we can never calculate model error directly because the truth is never known.  

The model error has various sources that affect the updated model's outcome. This study pro-

poses a workflow to represent model error for grid coarsening in reservoir simulation. The model 

error has been assumed as the mismatch between the forecast of the fine grid and coarse grid 

models. The discrepancy's mean and standard deviation was calculated as a function of the fore-

cast of the coarse grid model, and parameters represent the model error in term of a probability 

distribution. 

In a simple case study with DCA, assimilating the low-quality model showed biases and over-

confidence results compared to the assimilated high-quality model. Any decision based on the 

low-quality model, which is biased and overconfident, could result in choosing an incompatible 

probability distribution to model the truth. With accounting for model error in assimilating the 

low-quality prior, the biasness of the forecasted model decreased, and the updated model was not 

overconfident.  

For the second case study, ensembles of synthetic 2D permeability fields have been generated 

and forecasted with a reservoir simulator as a highly non-linear forward model. The process of 

upscaling as the source of model error was studied. It has been explained that grid upscaling de-

creased heterogeneity or the standard deviation of the ensemble while the mean was almost con-

stant. Forecasting models with different grid upscaling levels showed overconfident and biased 

results for low-quality models when the model error is not considered in EnKF updating. 
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This study showed that model error is an inherent part of modeling that affects DA outcome, 

and the model error should be considered in DA for debiasing probabilistic forecasts. Using a 

prior model with ignoring model error will result in biasness and overconfidence. The 2D reser-

voir model example in this study has clarified that upscaling caused less heterogeneity in the per-

meability and consequently caused more uniform fluid flow resulting in faster water break-

through. Whether upscaling will cause to under or overestimation in oil production should be 

studied case by case. Also, upscaling or other simplifications that reduce heterogeneity make a 

prior ensemble’s forecasts overconfident, and updating overconfident results in a narrower distri-

bution of posterior or even ensemble collapse. 

This study can be extended to other sources of error such as wellbore geometry, PVT model-

ing, or combination to analyze the effect of the model error in DA. Also, the approach should be 

modified and developed for other ensemble-based algorithms such as Ensemble Smoother with 

Multiple Data Assimilation. 

A recommendation for future works is as the following. To have better results, it might be 

better to use artificial intelligence algorithms or develop a new algorithm to assess the statistical 

parameters of model error as a function of other feathers (e.g., geological properties) than the 

features (BHP, WCT, or production rate) used in this thesis work. 

An important observation from this study was the correction of biasness in assimilating low-

quality models, so in the case of using artificial intelligence to assess statistics of model error and 

predict model error for unseen observation. Then one might be able to build a general model er-

ror function with real data from several subsurface reservoirs and utilize it to account for model 

error. Additionally, the generalized model error function could allow us to assimilate low-quality 

models and reduce the computation cost of simulations in decision analyses. 
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Appendix 
 

Appendix A: Pseudocodes  
 

Model Error Function 

Y |2D  = HQ-model – LQ-model    : for each measurement vector of forecasted realizations 

X|2D  = LQ-model    : measurement vector of forecasted realizations 

Fx    ←   X|2D to X|1D, Fy   ←   Y|2D to Y|1D     Reducing dimension to 1D 

for ith in elements Fx: 

                                  Create a list to save item ith in window  

 for jth in length Fx:             Iterate over each item to increase accuracy 

  If Fx[j] inside window: 

   save Fy[j] to Wi 

  end if 

 end For 

 µ[i]        mean (Wi)  

 σ[i]        Standard deviation (Wi) 

             save (i, µ [i] & σ [i]) 

Mean = Function1 (i, µ[i]) 

STD = Function2 (i, σ [i])  
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EnKF: 

 

𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓 ← ℳ(𝑥𝑥𝑘𝑘−1𝑖𝑖𝑎𝑎 ,𝑚𝑚𝑘𝑘−1 

𝑖𝑖𝑎𝑎 ) 

𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓 ← 𝒢𝒢(𝑥𝑥𝑘𝑘−1𝑖𝑖𝑎𝑎 ,𝑚𝑚𝑘𝑘−1 

𝑖𝑖𝑎𝑎   ) 

𝑦𝑦𝑘𝑘
𝑓𝑓 ← �

𝑚𝑚𝑘𝑘−1 
𝑖𝑖𝑎𝑎  …  𝑚𝑚𝑘𝑘−1 

𝑁𝑁𝑁𝑁𝑎𝑎

𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑥𝑥𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓

𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑧𝑧𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓

 � 

𝑃𝑃𝑘𝑘
𝑓𝑓 ←

1
𝑁𝑁 − 1

[𝑦𝑦𝑘𝑘
𝑓𝑓 − 𝐸𝐸(𝑦𝑦𝑘𝑘

𝑓𝑓)][𝑦𝑦𝑘𝑘
𝑓𝑓 − 𝐸𝐸(𝑦𝑦𝑘𝑘

𝑓𝑓)]𝑇𝑇 

𝑑𝑑𝑘𝑘 ← [𝑑𝑑𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑘𝑘𝑖𝑖 , … ,𝑑𝑑𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑘𝑘𝑁𝑁𝑁𝑁] 

𝑅𝑅𝑘𝑘 ←
1

𝑁𝑁 − 1
𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 

ℋ𝑘𝑘 ← �𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑧𝑧𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓� (𝑦𝑦𝑘𝑘
𝑓𝑓)−1 

𝒦𝒦𝑘𝑘 ← 𝑃𝑃𝑘𝑘
𝑓𝑓ℋ𝑘𝑘

𝑇𝑇(ℋ𝑘𝑘𝑃𝑃𝑘𝑘𝑇𝑇ℋ𝑘𝑘
𝑇𝑇 +  𝑅𝑅𝑘𝑘) 

𝑥𝑥𝑘𝑘+1𝑖𝑖𝑎𝑎 ←  𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓 +  𝒦𝒦𝑘𝑘 (𝑧𝑧𝑘𝑘𝑖𝑖 − (ℋ𝑘𝑘 𝑦𝑦𝑘𝑘

𝑓𝑓 +  𝒩𝒩(0,𝑅𝑅))) 
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Modified EnKF to consider model error: 

if k = 0:                             first iteration in EnKF 

  

𝑧𝑧0𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 ← 𝒢𝒢�𝑥𝑥0𝑖𝑖

𝑎𝑎 ,𝑚𝑚0 
𝑖𝑖𝑎𝑎   �    𝒢𝒢 is observation operator 

 𝜀𝜀𝑀𝑀𝑀𝑀  ~ 𝒩𝒩(𝜇𝜇𝑀𝑀𝑀𝑀
𝑧𝑧0𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

, (𝜎𝜎𝑀𝑀𝑀𝑀
𝑧𝑧0𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

)2) 

𝑧𝑧0𝑖𝑖
𝑓𝑓 ←  𝑧𝑧0𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 +  𝜀𝜀𝑚𝑚𝑖𝑖𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

 

if K > 0: 

𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓 ← ℳ(𝑥𝑥𝑘𝑘−1𝑖𝑖𝑎𝑎 ,𝑚𝑚𝑘𝑘−1 

𝑖𝑖𝑎𝑎 ) 

𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓 ← 𝒢𝒢(𝑥𝑥𝑘𝑘−1𝑖𝑖𝑎𝑎 ,𝑚𝑚𝑘𝑘−1 

𝑖𝑖𝑎𝑎   ) 

𝑦𝑦𝑘𝑘
𝑓𝑓 ← �

𝑚𝑚𝑘𝑘−1 
𝑖𝑖𝑎𝑎  …  𝑚𝑚𝑘𝑘−1 

𝑁𝑁𝑁𝑁𝑎𝑎

𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑥𝑥𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓

𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑧𝑧𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓

 � 

𝑃𝑃𝑘𝑘
𝑓𝑓 ←

1
𝑁𝑁 − 1

[𝑦𝑦𝑘𝑘
𝑓𝑓 − 𝐸𝐸(𝑦𝑦𝑘𝑘

𝑓𝑓)][𝑦𝑦𝑘𝑘
𝑓𝑓 − 𝐸𝐸(𝑦𝑦𝑘𝑘

𝑓𝑓)]𝑇𝑇 

𝑑𝑑𝑘𝑘 ← [𝑑𝑑𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑘𝑘𝑖𝑖 , … ,𝑑𝑑𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑘𝑘𝑁𝑁𝑁𝑁] 

𝑅𝑅𝑘𝑘 ←
1

𝑁𝑁 − 1
𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 

ℋ𝑘𝑘 ← �𝑧𝑧𝑘𝑘𝑖𝑖
𝑓𝑓    …   𝑧𝑧𝑘𝑘𝑁𝑁𝑁𝑁

𝑓𝑓� (𝑦𝑦𝑘𝑘
𝑓𝑓)−1 

𝒦𝒦𝑘𝑘 ← 𝑃𝑃𝑘𝑘
𝑓𝑓ℋ𝑘𝑘

𝑇𝑇(ℋ𝑘𝑘𝑃𝑃𝑘𝑘𝑇𝑇ℋ𝑘𝑘
𝑇𝑇 +  𝑅𝑅𝑘𝑘) 

𝑥𝑥𝑘𝑘+1𝑖𝑖𝑎𝑎 ←  𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓 +  𝒦𝒦𝑘𝑘 (𝑧𝑧𝑘𝑘𝑖𝑖 − (ℋ𝑘𝑘 𝑦𝑦𝑘𝑘

𝑓𝑓 +  𝒩𝒩(0,𝑅𝑅))) 
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Appendix B: Plots 
 

     

Forecasted prior ensemble with 5×5 cells Forecasted update with EnKF ensemble 5×5 cells 

  

  

  
 

 

 

 

 

 

 

 



55 
 

 

Forecasted update accounting model ensemble with  5×5 
cells (model error 200×200) 

Forecasted update accounting model ensemble with  5×5 
cells (model error 100×100) 
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Forecasted update accounting model ensemble with  5×5 
cells (model error 50×50) 

Forecasted update accounting model ensemble with  5×5 
cells (model error 25×25) 
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Forecasted prior ensemble with 25×25 cells Forecasted update with EnKF ensemble 25×25 cells 
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Forecasted update accounting model ensemble with  
25×25 cells (model error 200×200) 

Forecasted update accounting model ensemble with 
25×25 cells (model error 100×100) 
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Forecasted update accounting model ensemble with  25×25 
cells (model error 50×50) 
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Forecasted prior ensemble 50×50 cells Forecasted update with EnKF ensemble 50×50 cells 
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Update accounting for Model Error ensemble 50×50 
(model error 200×200)  
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Forecasted prior ensemble with 100×100 cells HQ models Forecasted prior ensemble with 200×200 cells HQ models 
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