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Abstract

I have for this thesis worked on automating the steps in evaluating wavelength spectra from

quartz. To do this I have applied different machine learning algorithms suitable to the automa-

tion requirement at each step, and they were implemented using Python.

A neural network is used to fit a curve to cathodoluminescence spectra from quartz. From this

curve are feature values extracted, which are then to be used by a machine learning classifica-

tion algorithm to predict which of three defined groups a quartz sample belong to.

Two machine learning classification algorithms have been evaluated: The kNN algorithm and

the Random Forest algorithm. These algorithms were trained on multiple feature subsets de-

rived from two different datasets. The difference between the two datasets is that one, the

reduced dataset, has had cathodoluminescence spectra influenced, primarily by feldspar, re-

moved.

The classification algorithm whose model achieved the highest accuracy was the kNN algo-

rithm with 84%. It achieved this when trained on a feature subset derived from the reduced

dataset where only features representing intensity were included. The best performing model

by the Random Forest algorithm achieved an accuracy of 81%.
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1 | Introduction

Cathodoluminescence (CL) of quartz can be used as an indicator for parent rock of

sand. This is due to lattice defects in the quartz crystal structure caused either pre or

post crystallisation, often resulting in unique CL spectra signatures corresponding to

specific defects.

Analyzing CL spectra can be a time consuming process, especially when the number

of spectra needed to be analyzed number in the hundreds to thousands (for example

Götze et al. (2001); Boggs et al. (2002); Augustsson & Reker (2012)).

1.1 Aim and Objective

The aim of this thesis is to examine if machine learning (ML) can be used to automate

the process of classify quartz on the basis of raw CL spectra data. The workflow of the

steps making up that process are depicted in figure 1.1, and these steps can further be

grouped into two sub–processes. In the first sub–process, steps are taken to be able to

extracted feature values from the CL spectra data. This include first filtering the CL

spectra data and then fitting a curve to it using a neural network.

In the second sub–process, steps are taken to be able to classify quartz samples on

the feature values that have extracted in the first sub–process. This include feature

selection an testing multiple models and model configurations to find the model with

the best performance in terms of accuracy.

Common for the entire process is that I have used Python, and for the ML parts I

have relied on the Python libraries from Scikit–learn (classification) and Keras (neural

network). These are free and accessible for everyone.

The initial plan for this thesis at the start of the project was to develop an app that could

automatically extract feature values based on raw CL spectra data. The scope of this

thesis has since then evolve a bit away from the app as an end result, toward a proof

of concept (POC) for an entire multi–step process for automatically classifying quartz

based on raw CL spectra data. Machine learning was always a fundamental part of the

thesis objective.

The python scrips developed for this thesis are organized in Jupyter notebooks, and

1



1.1. AIM AND OBJECTIVE 2

may be used as is. To go from raw CL spectra data to final quartz group prediction

require multiple steps, and there are some step that may require user interference (in

the Jupyter notebooks). This is mentioned throughout this thesis where it is relevant.

It is most likely the case that it does not make sense to have the entire process from

raw CL spectra data to proposed classification fully automated. Rather, there is a need

for user observation and interference, especially in the step described in section 5.3, to

ensure quality of the results produced.
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2 | Theoretical background

2.1 Rocks and Minerals

2.1.1 Quartz

Quartz is the second most abundant mineral and it makes up 12.6 wt.% of the Earth’s

crust as crystalline and amorphous silica (Götze, 2009). It is a framework silicate

which mean it has a three–dimensional framework comprising SiO4 tetrahedras that

are corner linked together in a network as illustrated in figure 2.1. Because each oxygen

atom are shared between two tethrahedras, quartz has the general chemical formula

SiO2, but may have impurities in the form of metalic elements incorporated into its

crystal structure.

Figure 2.1: Representation of α–quartz structure. The large spheres represent Silicon
atoms, and the small spheres represent oxygen atoms (Demuth et al., 1999)

On a side note, the structure as a whole in the quartz lattice has no center symmetry.

It is this lack of center symmetry that gives rise to the piezoelectric effect1 utilized for

time keeping in digital watches.

Unlike most minerals, quartz has the ability to crystallize at a range of temperatures in

1In certain materials, such as quartz, they can accumulate an electric charge in response to applied me-
chanical stress.

4



2.1. ROCKS AND MINERALS 5

different geological settings and thereby taking on characteristics related to the environ-

ment in which it was formed. This feature of quartz make it useful when determining

the conditions at which a reservoir rock was formed, by studying its quartz inclusion.

2.1.2 Metamorphic Rocks

Metamorphism is a process that changes preexisting rocks into new forms because of

increases in temperature, pressure, and chemically active fluids (Cheremisinoff, 1997).

The pre–metamorphic parent rock is called the protolith.

The metamorphic rocks resulting from metamorphism are often characterized by unique

mineral composition, particular texture, and structure to differentiate them from ig-

neous and sedimentary rocks (Zou, 2013).

A metamorphic process takes place at temperatures above 200◦C and pressure greater

than 300 MPa. The upper limit of metamorphism occurs at the pressure and temper-

ature of wet partial melting of the rock in question. Once melting begins, the process

changes to an igneous process rather than a metamorphic process (Nelson, 2017).

Further, as pressure and temperature increases the rock undergo prograde metamor-

phism. That is, the grade of metamorphism increases, as illustrated in figure 2.2

Figure 2.2: Factors affecting degree of retrograde metamorphism (Nelson, 2018)

Quartz is the most common SiO2 polymorph2 in metamorphic environments.

2In materials science, polymorphism describes the existence of a solid material in more than one form or
crystal structure.
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2.1.3 Igneous Rocks

Igneous rocks are formed when magma solidifies. This can happen beneath and above

the surface, resulting in igneous rocks of two origins:

• plutonic

• volcanic

The texture of an igneous rock can tell whether it is an intrusive or extrusive rock.

When magma and lava cool, mineral crystals start to form in the molten mass. Intrusive

rock form underground where slow cooling takes place, and therefore allow for larger

crystal growth. A special type of intrusive rocks are pegmatitic rocks which have very

large crystals due to slow cooling of magma which is extra rich in dissolved water.

Extrusive rocks will be more fine–grained due to more rapid cooling near or at Earth’s

surface.

The most widely used and simplest classification of igneous rocks is according to the

silica (SiO2) content, known as the silica-content classification scheme:

• Rocks with >66 wt.% silica are categorized as felsic (relative abundance in rock

of feldspar and silica-quartz minerals),

• Rocks with 52-66 wt.% silica are categorized as intermediate,

• Rocks with 45-52 wt.% silica are categorized as mafic (relative abundance in

rock of magnesium and ferrum or iron minerals),

• Rocks with <45 wt.% silica are categorized as ultramafic.

2.2 Cathodoluminescence (CL)

Cathodoluminescence is the light given off by a material when it is struck by an electron

beam (Goldberg, 1966). Minerals in sedimentary rocks, such as feldspar, quartz and

carbonate minerals, emit characteristic visible luminescence (figure 2.3) when bom-

barded by a stream of high–energy electrons.
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Figure 2.3: The electromagnetic spectrum with the visible light region blown up
(Nayak et al., 2020).

In crystals, the energy state of electrons depend upon whether electrons are bound in

particular atoms (inner–shell electrons) or are delocalized. Delocalized electrons are

electron that are not associated with individual atoms or identifiable chemical bonds

(S. Boggs & Krinsley, 2006).

Individual atoms have discrete energy states that are associated with the orbits of shells

in of electrons in the atom. Because of the very large number of atoms that interact in

a solid material (relative to material state such as gas), the energy levels are so closely

spaced that they form bands (figure 2.4). The lower energy band is commonly desig-

nated as the valence band , and the other bands as the conductor band. Electron in

the conductor band are easily removed by application of electric field. In insulators,

such as quartz, a forbidden zone lie between the valence band and the conduction band

–the band gap. Electrons do not reside permanently in the forbidden zone, but travel

back and forth through it.
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Figure 2.4: Illustration of energy bands in minerals. Insulator minerals, such as
quartz, have quite wide band gap, whereas in conductor the band gap is essentially
non–existing. Redrawn after (S. Boggs & Krinsley, 2006)

In insulator materials the conduction band hold none electrons as they reside in the

lower–energy valence band. In CL, electrons are excited from the valance band into

the conductor band as a result of a directed high energy electron beam onto a semicon-

ductor. When this happens, it leaves behind a so–called "hole". Luminescence results

when an electron in the conduction band recombines with a hole in the valence band.

2.2.1 Cathodoluminescence Applied to Quartz

The crystalline form of SiO2 at temperatures below 573◦C is called α–quartz, or just

simply quartz. Above 573◦C the form of SiO2 is called β–quartz. The α–quartz

structure is more compact than the β–quartz structure and hence is less open to the in-

corporation of trace elements. These trace elements may be incorporated during crystal

growth and re–crystallisation in the cation site of quartz.

When performing CL on quartz, and electrons have been exited from the valance band

to the conduction band, they will after a short time begin to de–excite and return to a

lower–energy state in the valence band. They do this by moving randomly through the

crystal lattice until they encounter a trap caused by defects caused by trace elements in

the crystal lattice. The electron remain trapped only momentarily and as the electron

exit the trap, a photon is emitted.
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If no traps are present, electrons fall directly back to the valence band and emit pho-

tons with wavelength in the near ultraviolet. Therefore, the presence of such traps at

discrete energy levels within the band gap, is a precondition for emission of photons

(cathodoluminescence) in the visible light range (S. Boggs & Krinsley, 2006).

Quartz CL spectrum has several emission bands which are directly related to lattice

defects. The type and frequency of lattice defects are influenced by the thermodynamic

conditions during mineralization. Post mineralization effects, such as metamorphism,

tempering or deformation can change the structural properties of quartz (Götze et al.,

2001). For this reason, quartz derived from plutonic, volcanic, metamorphic, and hy-

drothermal systems emit often unique CL signatures that can aid in identifying different

generations of quartz formed in a specific geologic environment (Frelinger, Ledvina,

Kyle, & Zhao, 2015).

The visible CL of natural quartz mainly consists of two broad emission bands centered

at ∼450 nm (blue emission) and 620–650 nm (red emission), as shown in figure 2.5.

The blue band is usually very broad and consists of up to four overlapping component

bands centered at 390, 420, 450, and 500 nm (Gorton, Walker, & Burley, 1997). Each

of these emission bands, and more, are due to unique lattice defects in the crystal

structure of quartz, as summarized in Götze et al. (2001).

Figure 2.5: CL spectra from a quartz sample. The blue emission band is given by the
first peak at around 480 nm, and the red emission band is given by the second peak at
around 640 nm.
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Zinkernagel (1978) was the first to systematically investigate quartz from different

types of crystalline rocks for their CL characteristics (Augustsson & Reker, 2012).

Further, he established one of the first classification schemes of quartz CL colors in

sandstone.

In Augustsson & Reker (2012) they investigated the CL spectra of more than 1000

quartz crystals from 58 samples of different plutonic, volcanic, metamorphic, and peg-

matitic rocks. They came up with a discrimination scheme based on the relative inten-

sity of the two main emission centers in visible light at 470–490 nm and 600–640 nm.

In their proposed discrimination scheme they divided rocks into one of three groups.

This grouping is further described in chapter 3, as this grouping is what the ML clas-

sification models are trained to predict when trained on Augustsson & Reker’s dataset

consisting of data from more than than 1000 quartz CL spectra.

2.3 Principal Component Analysis

The foundation for principal component analysis was first laid by Karl Pearson in

(1901), but was independently developed into the techniqe we know today by Harold

Hotelling initially in (1933) and then further in (1936).

Principal Component Analysis (PCA) is a dimensionality-reduction method where the

features of the dataset are transformed into linearly independent principal components

(PC), where each PCi ∈ [1, d] collectively and in decreasing magnitude explain the

variance of the dataset. Here, d is the number of features in the dataset. This way,

most of the variance of the dataset can be explained by a number of PC’s less than the

original number of features of the dataset while the loss of information is minimal. For

machine learning purposes this can be particularly useful as a method to aid in feature

selection. Having more features to train ML models on does not necessarily translate

into higher accuracy. It may actually decrease accuracy as some of the feature only

create noise.

Having the features of interest represented in a two–dimensional matrix, X, with fea-

tures as the columns and n rows of observations (equation 2.1), the first step of PCA

analysis is to standardizes (or scaled) the features. This can be done by subtracting the

mean and dividing by the standard deviation for each value of each variable, as show

by equation 2.2. The purpose of this standardization is to avoid that with high variance
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features dominate low variance features, causing bias.

X = (xi,j) ∈ Rn×d (2.1)

Z⃗d =
xd,j − µd

σd
, (2.2)

where µ is the mean, σ is the standard deviation and j ∈ [1, .., n].

After normalizing the features of matrix X , it is now referred to as the matrix Z, where

Z = Xnorm = (zi,j) ∈ Rn×d (2.3)

The second step is to calculate the covariance of Z = {Z⃗1, .., Z⃗d}, as given by equation

2.4, where Z⃗ = [z1, .., zn]:

ΣZ =


V ar(Z⃗1) · · · Cov(Z⃗1, Z⃗d)

...
. . .

...

Cov(Z⃗d, Z⃗1) · · · V ar(Z⃗d)

 (2.4)

In the third step one compute the eigenvectors (equation 2.6) and eigenvalues (equation

2.5) of the covariance matrix to identify the principal components of the dataset. The

eigenvectors of the covariance matrix give the direction of the axes where there is the

most variance, and the eigenvalues are coefficients attached to the eigenvectors giving

the amount of variance carried in each principal component.

det(λ⃗I−Σ) = 0 (2.5)

where λi ∈ [1, d] are the eigenvalues and I is the identity matrix.

By ranking your eigenvectors in order of their eigenvalues, highest to lowest, you will

the principal components in order of significance. The eigenvectors associated with

each eigenvalue can then be computed as
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(λiI−Σ)Vi = 0 (2.6)

where Vi is the eigenvector.

By dividing each eigenvalue, λi, by the total sum of all eigenvalues,
∑d

i=1 λi, the

percentage of variance accounted for by each principal component is found.

Principal components are linear combinations of the the standardized data vectors

Z1, ..Zd, using the eigenvectors as the weights. Take the eigenvalues λ1, ..λd and sort

them from largest to smallest, q ∈ [1, .., d]. In doing so, sorting the corresponding

eigenvectors accordingly one find the principal components as:

PCq = V T
q Z =

d∑
i=1

Z⃗i · wq,i (2.7)

where wq,i ∈ [−1, 1] is known as the loading and may be thought of as the correlation

between a feature Z⃗i and PCq .

2.4 Machine Learning (ML)

The term machine learning was coined by Arthur Samuel (1959), a pioneer in the field

of computer gaming and artificial intelligence.

One can split machine learning into two broad approaches: Supervised learning which

uses labeled data to help predict outcomes, and unsupervised learning which does not

use labeled data.

With the supervised learning approach the datasets are conditioned to train or "super-

vise" algorithms into classifying data or predict outcomes accurately. An example of

such data set is seen in table 2.1. In the left-most column we have the target variable

which consist of groups (described in chapter 3). The other columns have the predictor

variables, or features, which are used to train the algorithm into predicting a rock type.
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Table 2.1: Example of data structure used for supervised machine learning. This is a
sample of the actual source dataset used for this thesis.

Group Peak 1, nm Peak 1, counts Peak2, nm Peak 2, counts Trough, nm Trough, counts Bg, counts

3 485,8 325 615,3 304 547,3 234 10
3 490 199 630,5 247 525,5 187 0
1 479 63 642,7 99 621,9 74 5
3 487,4 468 608,1 404 557,7 380 10
1 474,3 453 626,5 356 568,5 241 0
2 490 344 607,1 352 515,6 302 5
3 486,3 181 634,1 456 511,4 179 0
3 483,7 173 635,3 246 531,8 150 0
1 476,3 54 646,7 70 613,7 62 0

Supervised learning can be separated into to groups:

• Classification: Target variable consist of categories.

• Regression: Target variable is continuous.

Given real–word observations represented by f , the goals of supervised learning is to

first find a model f̂ that best approximates

f : f̂ ∼ f (2.8)

where f̂ can be of any ML algorithm applied. Further, the model should discard noise

as much as possible, which translates into the end goal - f̂ should achieve a low pre-

dictive error on unseen datasets. The difficulties in approximating f is seen in

• Overfitting: f̂ fits the training set noise.

• Underfitting: f̂ is not flexible enough to approximate f .

The objective of this thesis only call for the use of supervised learning methods. Al-

though, unsupervised learning methods could be used in another thesis, on a related

topic to this thesis, for example to search for hidden patterns and correlations in the

dataset used.

2.4.1 Neural Network (NN)

Neural networks, also known as artificial neural networks (ANNs) or simulated neu-

ral networks (SNNs), are machine learning techniques that simulate the mechanism

of learning in biological organisms. These networks contain computation units that
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are referred to as neurons. An example of such a neuron is illustrated in figure 2.6.

The computational units are connected to one another through weights, which serve

the same role as the strengths of synaptic connections in biological organisms. Each

input to a neuron is scaled with a weight, which affects the function computed at that

unit. An artificial neural network computes a function of the inputs by propagating the

computed values from the input neurons to the output neuron(s) and using the weights

as intermediate parameters. Learning occurs by changing the weights connecting the

neurons (Aggarwal, 2018).

Figure 2.6: The perceptron is the oldest neural network, created by Frank Rosenblatt in
1958. It has a single neuron and is the simplest form of a neural network with a single
input layer and an output node. Based on (Vieira et al., 2017).

The perceptron takes several binary inputs, x1, .., xd and produces a single binary out-

put. The neuron’s output, 0 or 1, is determined by whether the weighted sum
∑

xiwi

is less than or greater than some threshold value (equation 2.9). That is, the neuron is

either "ON" or "OFF".

output =

0 if
∑

xiwi ≤ threshold

1 if
∑

xiwi > threshold
(2.9)

Whereas the perceptron is a linear classifier, activation functions are applied to neural

networks in order to introduce non-linearity into the output of a neuron. In those cases,

the outputs may also take on a continuum of values instead of just 0 and 1.

The sum of all weighted inputs,
∑

xiwi + bias (equation 2.10), is passed through a
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nonlinear activation function f , to transform the preactivation level of the neuron to

an output yj . The output yj then serves as input to a node in the next layer. Several

activation functions are available, which differ with respect to how they map a pre-

activation level to an output value.

Traditionally, the sigmoid activation function (equation 2.13) was the default activation

function in the 1990s. Then, the tanh function (equation 2.12) became the default

activation function for hidden layers. Both the sigmoid and tanh activation functions

can make the model more susceptible to issues and problems, especially the so-called

vanishing gradients problem3.

In today’s neural networks, the default recommendation is to use the rectified linear

unit or ReLU as activation function (equation 2.11) (Jarrett, Kavukcuoglu, Ranzato,

& LeCun, 2009); (Nair & Hinton, 2010); (Glorot, Bordes, & Bengio, 2011) because it

overcomes the vanishing gradient problem, allowing models to learn faster and perform

better. However ReLUs are non-negative and, therefore, have a mean activation larger

than zero. Units that have a non-zero mean activation act as bias for the next layer. If

such units do not cancel each other out, learning causes a bias shift for units in next

layer. The more the units are correlated, the higher their bias shift (Clevert, Unterthiner,

& Hochreiter, 2016).

Clevert et al., (2016) introduced the exponential linear unit (ELU) (equation 2.14).

In contrast to ReLUs, ELUs have negative values which allows them to push mean

unit actuation’s closer to zero like batch normalization but with lower computational

complexity. Mean shifts toward zero speed up learning by bringing the normal gradient

closer to the unit natural gradient because of a reduced bias shift effect.

yj = x̄ · w̄ + bias =

d∑
i=1

xiwi + bias (2.10)

Where in equation 2.10 bias ≡ −threshold in equation 2.9, x̄ = [x1, .., xd] and

w̄ = [w1, .., wd].

3In machine learning, the vanishing gradient problem is encountered when training artificial neural net-
works with gradient-based learning methods and backpropagation. In such methods, during each iteration
of training each of the neural network’s weights receives an update proportional to the partial derivative of
the error function with respect to the current weight. The problem is that in some cases, the gradient will
be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may
completely stop the neural network from further training (Basodi, Ji, Zhang, & Pan, 2020)
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f(yj) =

yj if yj > 0

0 if yj ≤ 0
(2.11)

f(yj) = tanh(yj) (2.12)

f(yj) =
1

1 + e−yj
(2.13)

f(yj) =

yj if yj > 0

α(eyj − 1) if yj ≤ 0
(2.14)

where α in equation 2.14 is a constant with default value of 1.

By connecting more neurons together in layers, as shown in figure 2.7, one can make

more complex decisions.

Figure 2.7: Example of a neural network. This specific neural network has 3 neurons in
the first hidden layer, and 4 neurons in the second hidden layer. Figure is from (Nielsen,
2013).

An optimizer is an algorithm or method used to change the attributes, such as weights

and learning rate, in order to reduce loss. Loss is a metric on how a model is performing

at a given instance, and the goal is (in general) to minimize loss through a process of

optimization. The loss function C must be suited to the kind of problem a neural

network is applied toward. In this thesis for example, mean squared error (MSE),
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equation 2.15, is used as loss function (C = MSE) because the goal is to fit a curve

to data points.

C(Y, x̄, w̄, bias) =
1

N

N∑
i=1

(Yi − ŷi)
2, (2.15)

where Y = [Y1, .., YN ] are the true data points being predicted by ŷ via the neural

network and N is the number of data points.

When it comes to choice of optimizer, there are numerous to choose from (Ruder,

2016). Common for most of them is that they are based on the method of gradient

decent, an algorithm where parameters θ, which include the weights (w), are adjusted

until a (local) minimum of the loss function (C(θ)) is presumably found. This is illus-

trated in figure 2.8.

The gradient decent algorithm (equation 2.16) has two requirements toward a function:

(1) The function is differentiable (since this algorithm is based on gradients) and (2)

the function is convex (given that the goal is to minimize the function).

θt+1 = θt − α∇θC(θ) (2.16)
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Figure 2.8: The basic working of gradient decent-based optimizers. The collection of
parameters θ are adjusted in the search for a minimum. The (local) minimum is also
known as point of convergence.

The Adam (Adaptive moment estimation) optimizer (equation 2.17) is a popular opti-

mizer because it work well in most scenarios due to it in general being fast and con-

verging rapidly (Kingma & Ba, 2014).

Adam build on previous optimizers before it, and aim to accommodate their combined

strengths. To be specific, Adam is a combination of two gradient decent methods;

momentum and Root Mean Square Propagation (RMSP).

Momentum is used to accelerate the gradient descent algorithm by taking into consid-

eration the exponentially weighted average of the gradients (equations 2.20 and 2.21),

making the algorithm converge toward a minimum at an increased pace. In other words,

instead of using only the gradient of the current step, momentum also accumulates the

gradient of the past steps to speed up the decent. Further, this also has the benefit of

reducing the likelihood of the optimizer getting stuck at a local minima.

In RMSP, the learning rate adapts based on the exponential moving average of the

magnitudes of the recent gradients. By adapt, what is meant is that the learning rate
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start in larger steps and then reduces, or decays (β), as the minima approaches. This

allows for a faster convergence due to taking larger steps initially.

Adam, like the other optimizers, is an iterative process and the update rule is given by:

θt+1 = θt − α · m̂t

(
1√

v̂t + ϵ

)
(2.17)

where

m̂t =
mt

1− βt
1

(2.18)

v̂t =
vt

1− βt
2

(2.19)

and where

mt = (1− β1)gt + β1mt−1 (2.20)

vt = (1− β2)g
2
t + β2vt−1 (2.21)

ϵ in equation 2.17 is a small +ve constant to avoid "division by 0" error when vt −→ 0.

mt and vt in equations 2.20 and 2.21, are estimates of the first moment and the second

moment of the gradients, respectively.

Further, gt = ∇θC(θt−1), and β1, β2 are decay rates. The decay rates are usually set

at β1 = 0.9 and β2 = 0.999

Finally, because mt and vt has a tendency to be biased toward 0 as both β1 and β2 ∼ 1.

This is fixed in equations 2.18 and 2.19 by "bias–correcting" mt and vt.

2.4.2 k-Nearest Neighbours (kNN) Algorithm

The k-nearest neighbor algorithm (kNN) is a widely used and easy to implement clas-

sification algorithm. It consider the k closest labeled data points to an unknown data

point x, and classify it by taking a "majority vote" (equation 2.23). Deciding which
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points are nearest is done according to some pre-specified distance. The number of

data points (k) can be user-defined constant (k-nearest neighbour learning), or vary

based on the local density of points (radius-based neighbor learning).

Figure 2.9 illustrate how classification of an unknown data point is done in the kNN

algorithm. In the case illustrated, the algorithm is defined to make a prediction on un-

known data points by taking the class majority of the three closest labeled data points.

Figure 2.9: Prediction made by a three-nearest-neighbors algorithm. A majority vote
decide the classification of the unknown data point (Müller & Guido, 2016).

Fundamentally, there are two important parameters to the kNN algorithm: The num-

ber of neighbors, k, and how you measure distance between data points. The default

method for measuring distance between data points is by Euclidean distance as defined

by equation 2.22 for a N-dimensional domain

d(x′, xi) =

√√√√ N∑
j=1

(xi,j − x′
j)

2. (2.22)

The kNN algorithm is summarized as follows (Yigit, 2013):

Consider {( xi, yi) }Ni=1 ∈ D as the training set, where xi is the N-dimensional training

vector and yi is the corresponding class label. Given a query x′ from the test set (x′, y′),

its unknown class label y′ is determined as follows:
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1. Compute distance d between x′ and each ( xi, yi)

2. Arrange all distances in an ascending order

3. Assign wi = 1 for equally-weighted kNN rule,

4. The class label of x′ is assigned based on majority vote of its nearest neighbors,

y′ = argmax
χ

∑
(xi,yi)∈D

wiδ(χ = y′i) (2.23)

where χ is a class label, y′i is the class label for the ith nearest neighbors among its k

nearest neighbors, δ(·) is the Dirac-Delta function that takes the value 1 if its argument

is true and 0 otherwise.

The value of k in the kNN algorithm is related to the error rate of the model. A small

value of k could lead to over-fitting, just as a big value of k can lead to under-fitting.

Over-fitting imply that the model will do well with regard accuracy on the training data,

but has poor performance when generalized to unseen data. An example of this is seen

in figure 2.10.

Figure 2.10: Example of decision boundaries created by a kNN model for different
values of k. A smaller k give a more complex model but can lead to over-fitting,
whereas a larger k give a smoother decision boundary but can lead to a less complex
model. (Müller & Guido, 2016).

One common rule of thumb followed in the data science community regarding the value

of k, is to set it equal to the square root of the number of observations in the training

dataset.

A more precise way of deciding k is to split the data set into a training set and a

test set (also known as train/test–split and described in detail in section 2.4.4), and
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then plotting different values of k against the training and testing accuracy (see section

2.4.4 for definition on accuracy) as illustrated in figure 2.11. Optimal number of k

neighbours is generally taken to be where testing accuracy is maximized, but this point

should also be located close to the Elbow point of the training accuracy curve. The

Elbow point can be recognised as the point of the training accuracy curve where the

rate of change suddenly become marginal.

Figure 2.11: Example of how the optimal k can be selected for a kNN model by plotting
different values of k against the training and testing accuracy (see section 2.4.4 for
definition of "accuracy"). For this case the optimal would be k = 9.

By taking a more analytical approach to deciding k, the chance of over or under fitting

by the model is reduced.

2.4.3 Tree-Based Algorithms

The classification and regression tree algorithm, (CART) for short, was first introduced

by Breiman et al. (1984). In the CART algorithm, the objective is to minimize a cost

function, for example the Gini Index (equation 2.24) or entropy (equation 2.25), at each
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node of a classification tree. A classification tree, as illustrated in figure 2.12, can be

described as a series of if-else questions about individual features, and by doing this

achieve the objective which is to predict class labels.

The main strengths of this algorithm is that it is able to capture non-linear relationships

between features and classes, and it does not require feature scaling (e.g., standardiza-

tion).

Figure 2.12: The building blocks (nodes) of a typical decision-tree model.

The building blocks of a decision–tree can be summarized in three kinds of nodes,

and these building blocks form a hierarchy of nodes where a node is either a question

regarding a feature or a prediction:

• Root Node: No parent node, where question regarding features give rise to child

nodes.

• Decision Node: One parent node. Question regarding features give rise to child

nodes, either new decision nodes or leaf nodes.

• Leaf Node: Node where predictions are realized.

Information gain (IG) (equation 2.26) is used as a criterion to measure impurity4 of a

node, and the information gain is based on the decrease in entropy after a dataset is

4The node impurity is a measure of the homogeneity of classes at a node, and is measured as the tree is
grown recursively. A node is said to be pure, or homogeneous, if it only contains a single class. The more
classes at the node, the more impure it is, and is given by a number between 0 and 1.
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split on a feature. If Gini impurity or Entropy = 0, that is, all cases in a node fall into a

single target category, it is declared a leaf node and can’t be split further.

Algorithm 1 CART (F,Y,D) (Wu et al., 2020)

Require: F: feature set, Y: label set, D: sample set
Ensure: T: decision tree

if prune conditions satisfied then
classification: return leaf node with majority class
regression: return leaf node with mean label value
else
determine the best split feature j and value s
split D into 2 partitions Dl, Dr

return a tree with feature a that has two edges, call
CART (F − j, Y,Dl) and CART (F − j, Y,Dr)
end if

We assume there is a training dataset D with n observations {x1, .., xn} each containing

d features and has the corresponding output label set Y = {y1, .., yn}. For each tree

node, it first decides whether some pruning conditions are satisfied, e.g., feature set is

empty, tree reaches the maximum depth, the number of samples is less than a threshold.

If any condition is satisfied, then it returns a leaf node with the class of majority samples

for classification or the mean label value for regression. Otherwise, it determines the

best split to construct two sub-trees that are built recursively. In order to find the best

split feature and split threshold, CART uses Gini impurity or Entropy as a metric in

classification. Let c be the number of classes and K = {1, .., c} be the class set. Let D̃

be sample set on a given node, the Gini impurity and Entropy is calculated (Wu et al.,

2020):

IGini(D̃) = 1−
∑
k∈K

(pk)
2 (2.24)

IEntropy(D̃) = −(pk) · log2(pk) (2.25)

where pk is the fraction of samples in D̃ labeled with class k. Let F be the set of

available features, given any split feature j ∈ F and split value τ ∈ Domain(j), the

sample set D̃ can be split into two partitions D̃l and D̃r. Then, the information gain of

the split is calculated as follows:
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IG(D̃, j) = IParent(before split)− IChild(after split)

= I(D̃)− (wl ∗ I(D̃l) + wr ∗ I(D̃r))
(2.26)

where wl = |D̃l|/|D̃|, wr = |D̃r|/|D̃| and the impurity criterion I can be either the

Gini impurity or Entropy. The split with the maximum information gain is considered

the best split of the node (Wu et al., 2020).

One of the challenges with decision trees is that they are very good at learning relation-

ships within any given data you train them on, but they tend to overfit the data you use

to train them on and usually generalize poorly to new data. That is, they are low bias,

high variance learning models as illustrated in figure 2.13.

Figure 2.13: Graphical illustration of bias and variance. (Fortmann-Roe, 2012)

A workaround for this is to apply ensemble methods like boosting or bagging (short

for bootstrap aggregating). Boosting is a technique, and not a specific ML algorithm,

where a collection of weak learners5 are converted into a strong learner6, by sequen-

tially training each new instance to the ensemble such that it correct the errors of the

5Weak learner: ML algorithm that is slightly better than chance.
6Strong learner: Any algorithm that can be tuned to achieve good performance.
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previous tree.

In bagging, multiple subsets are created by randomly sampling observations with re-

placement from the original training set. Models are then fitted on these subsets. The

final predictions are determined by majority voting (equivalent to majority voting for

the kNN algorithm described by equation 2.23) on the predictions by all models in the

ensemble.

Random forest is a type of bagging method, but in addition not all features from the

original dataset are present in each subset. Only a predetermined number of randomly

sampled features. Again, for prediction, just like for bagging, it is determined by ma-

jority vote.

2.4.4 Cross–Validation and Evaluation of ML Classification Mod-

els

For most ML classification algorithms, the initial step is to normalize the feature values

(equation 2.2) in the dataset on which the algorithm is to be applied to. This is done

because ML algorithms, for example the kNN algorithm which rely on some defined

distance between a point with unknown label and labeled neighbouring points when

classifying, tend to perform better when features can be evaluated on a similar scale.

Next, the dataset (D) is split into two randomly drawn training and testing subsets.

The training dataset is used to train the ML algorithm, and the test dataset is used to

evaluate the ML model afterward. This train–test procedure got one weakness: It is

sensitive to the randomness of the split. A way to mend this to a large degree is to

utilize k–fold cross–validation on the training set. This is done by further splitting the

training set into k equal parts and in turn one part is withheld for testing, and the k− 1

remaining parts are used for fitting the ML model. For each turn the resulting metrics

are kept, and after k models have been fitted and tested, the metrics are averaged. This

process is illustrated in figure 2.14. In the end, the initially withheld test set is used to

validate the model.



2.4. MACHINE LEARNING (ML) 27

Figure 2.14: Example of the process of using cross–validation on training data when
deciding on optimal ML parameters (scikit learn, n.d.).

Most of Scikit–learns library of ML algorithms have predefined hyperparameters7, and

often an algorithm will yield decent performing model when applied as is. Although,

there may be a lot to gain in terms of for example accuracy by applying hyperparameter

tuning on a algorithm. This is done by defining a range of values for each hyperparam-

eter one wish to tune. The algorithm can then either be fitted with each combination

of hyperparameters, known as grid search, or alternatively, if the number of possible

combinations of hyperparameters get very large, one may opt for a randomized search.

In a randomized search, a defined number of random hyperparameter combinations are

tested. In both methods, a score is kept track on for each iteration, for example the

accuracy of the algorithm, and the combination yielding the highest score is applied to

the algorithm.

Confusion matrices are used to evaluate the classification models. It show the ways in

which a classification model is confused when making predictions.

The confusion matrix based on four variables, shown in figure 2.15.

7In ML, hyperparameters are parameters whose value is used to control the learning process.
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Figure 2.15: Example of a confusion matrix with a two–event outcome, positive or
negative. After a model has been trained, the confusion matrix give metrics on how
good that model is at correctly predict and where it struggles.
The output "TN" shows the number of negative examples classified accurately. "TP"
indicates the number of positive examples classified accurately. "FP" shows the num-
ber of actual negative examples classified as positive; and "FN" is the number of actual
positive examples classified as negative.

False positive (FP) is also known as "Type I error", and false negatives (FN) is also

known as "Type II error".

The metrics most commonly kept track on is precision, sensitivity (also known as re-

call), F1 score (equation 2.27) and accuracy.

F1− score =
2 · Precision ·Recall

Precision+Recall
(2.27)

2.4.5 Permutation Feature Importance

The permutation feature importance is the decrease in model score, for example ac-

curacy, when observations in a single feature are randomly shuffled (Breiman, 2001).

This break the relationship between the feature and the class. Thus, the more important

the feature is the higher the decrease in score when shuffling. This shuffling in repeated

K times for each feature.

Given a dataset D with j ∈ [1, .., d] features, where s is the reference score of a model

m fitted on dataset D, the importance ij for feature xj is given as:



2.4. MACHINE LEARNING (ML) 29

ij = s− 1

K

K∑
k=1

sk,j (2.28)

Where sk,j is the score of model m on a corrupted dataset (a dataset with shuffled

features) D̃k,j for each repetition k ∈ [1,K].



3 | The Datasets

The source dataset for this thesis is the same as developed by Augustsson & Reker

(2012). They analyzed more than 1000 quartz crystals from 58 samples of different

plutonic, volcanic, metamorphic and pegmatitic rocks. I.e., one analyzed quartz crys-

tal is the same as one observation in the source dataset. Therefore, the source dataset

consist of more than 1000 observations.

In their paper, Augustsson & Reker (2012) proposed a three-group discrimination

scheme based on origin of the the rocks from which these quartz crystals came:

1. volcanic quartz

2. low-temperature metamorphic and mafic plutonic quartz

3. felsic plutonic, high-temperature metamorphic, and pegmatitic quartz

The different rock species that are represented in each group are listed in table 3.1.

Table 3.1: Overview over which rock species are represented in groups 1, 2 and 3.

Group 1 Group 2 Group 3

Andesite 2-mica granite 2-mica orthogneiss
Igimbrite 2-mica tonalite Amphibole-bearing gneiss
Rhyolite Biotite-hornblende-gnejs Biotite gneiss

Biotite granite Blueschist
Charnockite Diorite

Granulite Metadiorite
Leucosome Metagranodiorite
Pegmatite Metatonalite
Tonalite Orthogneiss

Wollastonite-bearing
clinopyroxene hornfels

In the part of this thesis where I have applied ML classification algorithms, those al-

gorithms were trained and tested on two different datasets. The first dataset, hereafter

referred to as the full dataset, is a subset of the source dataset where observations with

missing values are removed (statistics on this dataset is summarized in table 3.2).
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Table 3.2: Summary statistics on the full dataset.

Peak 1,
nm

Peak 1,
counts

Peak 2,
nm

Peak 2,
counts

Trough,
nm

Trough,
counts

Peak 1,
rel. pos.

Peak 2,
rel. pos.

Peak 1,
rel. int.

Peak 2,
rel. int.

count 841 841 841 841 841 841 841 841 841 841
mean 480,04 494,21 617,12 359,08 560,68 306,60 0,86 1,10 1,63 1,29
std 7,01 265,66 12,20 174,91 22,65 155,35 0,04 0,05 0,45 0,61
min 467,50 36,00 559,40 47,00 496,80 34,00 0,76 1,01 0,35 0,59
25 % 474,80 306,00 608,10 243,00 543,10 201,00 0,83 1,06 1,27 0,98
50 % 478,00 472,00 616,80 335,00 567,50 283,00 0,84 1,09 1,64 1,12
75 % 483,70 641,00 625,70 436,00 574,20 379,00 0,88 1,13 1,96 1,38
max 502,00 1387,00 652,30 1330,00 628,00 1082,00 0,98 1,28 3,01 6,17

The second dataset, hereafter referred to as the reduced dataset, is a subset of the

source dataset where in addition any observations that have a third peak in their CL

spectra are removed (statistics on this dataset is summarized in table 3.3). The reason

for these third peaks are likely due to influence from adjacent plagioclase (at ∼560

nm) and Fe3+ in feldspar (at ∼705 nm) (Augustsson & Reker, 2012), as illustrated in

figure 3.1. Therefore, the results from the classification should reflect to what degree

the additional noise from feldspar in the quartz CL spectra affect accuracy. All "counts"

features in both datasets are corrected for background noise on a by observation basis.

This is done by subtracting the magnitude of background noise from these feature

values.

Table 3.3: Summary statistics on the reduced dataset where observations with a third
peak in the CL spectra have been removed.

Peak 1,
nm

Peak 1,
counts

Peak 2,
nm

Peak 2,
counts

Trough,
nm

Trough,
counts

Peak 1,
rel. pos.

Peak 2,
rel. pos.

Peak 1,
rel. int.

Peak 2,
rel. int.

count 394 394 394 394 394 394 394 394 394 394
mean 481,38 398,55 621,97 338,64 556,55 243,30 0,87 1,12 1,63 1,50
std 7,34 226,66 10,45 213,84 22,83 123,52 0,04 0,05 0,48 0,78
min 467,50 44,00 596,30 53,00 496,80 38,00 0,77 1,02 0,49 0,63
25 % 475,30 225,50 615,65 210,25 536,90 167,00 0,83 1,08 1,21 1,08
50 % 480,15 370,50 622,15 288,50 565,40 223,00 0,85 1,11 1,60 1,25
75 % 486,00 515,75 629,30 389,50 573,20 294,00 0,90 1,16 1,97 1,64
max 501,10 1328,00 652,30 1330,00 621,40 772,00 0,98 1,28 3,01 6,17
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Figure 3.1: Source of a third peak in CL spectra of quartz: Spectra of plagioclase
(plg), potassium feldspar (kfsp) and glass, as well as quartz spectra affected by Fe3+

in neighboring feldspar (Augustsson & Reker, 2012).

In both datasets, relative peak intensity is given by equation 3.1 and relative peak po-

sition is given by equation 3.2.

Peaki, rel. int. =
Peaki, counts−Background Noise, counts

Trough, counts−Background Noise, counts
(3.1)

Peaki, rel. pos. =
Peaki, nm

Trough, nm
(3.2)

Extreme outliers were also removed removed from the source dataset. The criteria

for removing these observations was set to a Peak 1, counts > 1500, and a total of 40

observations were removed by this criteria. Of the 40 removed observations, 1 was

from group 2 and 39 were from group 3. The cut–off value of 1500 for "peak 1 counts"

was chosen because this removed the most extreme outliers, while still preserving the

bulk of the observations as shown in the density plot in figure 3.2. The reason for
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removing the outliers is to focus on how ML classifiers perform in the bulk of the

observations, as extreme outliers in general are quite easy to classify correctly.

Figure 3.2: Density plot for "Peak 1 counts" in the source dataset.

Despite the full dataset being quite larger (n=841) than the reduced dataset (n=394),

we see from table 3.4 that each groups relative representation in each dataset is close

to similar.

Table 3.4: Total and relative group representation in each dataset.

Full dataset Reduced dataset

Group
Number of

obs. in dataset
Frac. of
dataset

Number of
obs. in dataset

Frac. of
dataset

1 91 0,11 55 0,14
2 477 0,57 204 0,52
3 273 0,32 134 0,34

The histograms for the features in the full dataset, seen in figure 3.3, reveal that there

is in general a high degree of overlap among the distribution of values attributed to the

different groups. I.e., there are for the most part no clear ranges, for neither wavelength

nor intensity, where solely values from a single group are present. The exception be-

ing the features Peak 2 counts and Through nm where Group 1 have some high-value

observations not overlapped by observations from the other groups.

On the other hand, there is a tendency for separation in the bulk of the distribution of
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values from group 2 and group 3. This is clearly seen in the features Peak 1 counts

and Trough nm, which also carry over to the relative features, except Peak 2 rel. int..

Therefore, this is a early general indication that the features Peak 1 counts, Peak 2

counts and Trough nm are important when classifying quartz samples using ML mod-

els. Especially for three-based models which rely on value discrimination between

classes on single feature when classifying.

Figure 3.3: Histograms for all 10 features in the full dataset.

The histograms for the features in the reduced dataset, seen in figure 3.4, are similar

to the histograms for the features from the full dataset, but show a comparably higher

degree of separation among the distribution of values of the different groups. This

increased separation is most evident between group 2 and 3. This show that removing

all observations with influence from a third peak from the dataset, removed "noise".

Therefore, this is an early indication that classification models based on the reduced
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data set should do better in terms of accuracy than models based on the full dataset.

Figure 3.4: Histograms for all 10 features in the reduced dataset.

The PCA and ML classification algorithms are applied to four different feature subsets

derived from each of the two datasets. The compositions of each feature subset is given

in table 3.5.

Table 3.5: Features present in each the feature subsets the ML classification algorithms
are trained on.

Peak 1,
nm

Peak 1,
counts

Peak 2,
nm

Peak 2,
counts

Trough,
nm

Trough,
counts

Peak 1,
rel. pos.

Peak 2,
rel. pos.

Peak 1,
rel. int.

Peak 2,
rel. int.

Feature subset 1 ● ● ● ● ● ●
Feature subset 2 ● ● ● ●
Feature subset 3 ● ● ●
Feature subset 4 ● ● ●

The reason for specifying these feature subsets give itself naturally as the features are of

two types; features representing light spectrum (nm) and features representing intensity
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(counts). By dividing features into subsets one can then examine whether one type is

more important that the other to the models, and to what degree.

Further, and more important in this regard, is that it was shown in Augustsson and

Bahlburg (2003) that (relative) height, or intensity, of the two major peaks in quartz CL

spectra could be a good provenance indicator. This is tested if true for ML classification

models as well.



4 | Principal Component Analysis (PCA) on the

Datasets

The purpose of performing a principal component analysis on the datasets is to further

examine the interrelations among the groups caused by the features. Histograms are

good tool when examining the interaction, or overlap of values, between groups in

single features. However, when features aggregate to data points in a higher dimension

PCA may be used to examine group interaction in the dataset.

PCA is a dimensions reducing technique which allow one to observe the class interac-

tion in a dataset in a dimension which can be visualized. This is done by transforming

a dataset into principal components (PCs). The first two principal components account

for most of the explained variance in a datasets, and creating a scatter plot from these

two components result in what is known as a score plot (figures 4.2 and 4.5). The score

plot can be used to assess the data structure of a dataset - to detect clusters, outliers,

and trends among classes.

It may not be ideal to have too many features when applying classification algorithms

as some features only add noise. Thereby reducing accuracy. In that regard, PCA can

give an indication toward which features may be discarded, if any.

4.1 PCA on the Full Dataset (n = 841)

This dataset include observation where a third peak is present. Figure 4.1 give an

overview over the cumulative explained variance with increasing number of principal

components for each of the feature subsets. Noteworthy is that for feature subsets 1

the first two PCs explain a total of 69% of the variance of the dataset, and four PCs are

needed to have >90% of the variance explained.

Further, for feature subset 3, the first two principal components explain a total of 96%

of the variance in the dataset.
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(a) (b)

(c) (d)

Figure 4.1: Cumulative explained variance as fraction of total explained variance, by
principal components given PCA performed on (derived from the full dataset): (a)
Feature subset 1: all features (b) Feature subset 2: relative features (c) Feature subset
3: only features representing intensity (counts) (d) Feature subset 4: only features
representing wavelength (nm)

The score plots for each of the four feature subsets (figure 4.2) reveal that there exist a

clear clustering tendency for observations belonging to the different groups, especially

for groups 2 and 3. Though, observations from group 3 have a tendency to overlap with

the clusters of group 2 observations.

Noteworthy is the score plot for feature subset 3 where not only is the the group clusters

more concentrated than seen for the other feature subsets, but the border between group

2 and 3 is also sharper and less feathered with overlap. Even group 1 observations are

to a degree segregated from the other group clusters. Since it is given by definition

that the first two PCs for this feature subset account for 96% of the variance in the

dataset, the resulting score score plot should be representative for the underlying group

structure in this feature subset.
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(a) (b)

(c) (d)

Figure 4.2: Projection of feature into 2 dimensions via features transformed into Prici-
pal Component 1 and Principal Component 2, given PCA performed on (derived from
the full dataset) (a) Feature subset 1: all features (explained variance by PC1 and PC2
is 69%) (b) Feature subset 2: relative features (explained variance by PC1 and PC2
is 82%) (c) Feature subset 3: only features representing intensity (counts) (explained
variance by PC1 and PC2 is 90%) (d) Feature subset 4: only features representing
wavelength (nm) (explained variance by PC1 and PC2 is 83%)

A bar plot of the factor loadings based on feature subset 1 is shown in figure 4.3. Load-

ings are important because they may be thought of as feature correlation with a given

PC. Therefore, a large absolute loading for a feature onto PC1, which account for most

of the explained variance of a dataset, translate into that feature accounting for a large

proportion of the explained variance of the dataset.
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Figure 4.3: Factor loadings given PCA performed on feature subset 1 derived from the
full dataset.

PC 1 is the most important PC as it explain the most variance. Almost all features show

a relatively large absolute factor loading (> 0.5) onto PC1, with the exception being

Through nm. Further, it is noteworthy is that the features representing intensity have

positive loadings onto PC1, while features representing wavelength (except Through

nm, which has insignificant correlation/loading with PC1) have negative loadings onto

PC1. A principal component has one dimension, with a midpoint value of 0. Therefore,

the sign of a loading tell which direction a features will push an observation on the

line while the magnitude of the loading tell how much. With regard to classification,

this indicate that features with significant factor load having the same sign, positive or

negative, should be grouped and examined separated.

It has actually been suggested by some, for example Hair et al. (2014), to in general

remove features from a dataset with factor loadings < 0.40. For this case, it would

eliminate all features representing intensity.
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4.2 PCA on the Reduced Dataset (n=384)

This dataset does not include observation where a third peak is present. Figure 4.4

give an overview over the cumulative explained variance with increasing number of

principal components for each of the feature subsets. Again, it is noteworthy that for

feature subsets 1 the first two PCs explain a total of 68% of the variance of the dataset,

and the four first PCs are needed to have >90% of the variance explained.

For feature subset 3, the first two principal components explain a total of 95% of the

variance in the dataset.

(a) (b)

(c) (d)

Figure 4.4: Cumulative explained variance as fraction of total explained variance, by
principal components given PCA performed on (a) Feature subset 1: all features (b)
Feature subset 2: relative features (c) Feature subset 3: only features representing
intensity (counts) (d) Feature subset 4: only features representing wavelength (nm)

The score plots for each of the four feature subsets (figure 4.5) show much the same

as did the score plots for all the feature subsets derived from the full dataset. What is

different is less overlap among the group clusters, especially groups 2 and 3. The score

plot for feature subset 2 now show a clearer segregation between groups 2 and 3, with

less overlap among the clusters.
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Just like the results from the histograms in chapter 3, PCA also indicate that removing

observations from the dataset which have a third peak present in the CL spectra, reduce

noise. This translate into an early indication that feature subsets from the reduced

dataset should do better when fitted to ML classification models.

(a) (b)

(c) (d)

Figure 4.5: Projection of feature into 2 dimensions via features transformed into Pric-
ipal Component 1 and Principal Component 2, given PCA performed on (a) Feature
subset 1: all features (explained variance by PC1 and PC2 is 68%) (b) Feature subset
2: relative features (explained variance by PC1 and PC2 is 88%) (c) Feature subset
3: only features representing intensity (counts) (explained variance by PC1 and PC2
is 95%) (d) Feature subset 4: only features representing wavelength (nm) (explained
variance by PC1 and PC2 is 83%)

A bar plot of the factor loadings based on feature subset 1 is shown in figure 4.6. The

result is much the same as seen for the full dataset in figure 4.3. The major difference

now is that the feature Through nm have a significant positive factor loading (>0.5)

onto PC1, while the factor loading for Peak 2 counts is now barely >0.4.
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Figure 4.6: Factor loadings given PCA performed on feature subset 1 derived from the
reduced dataset.



5 | Methods and Results

5.1 Filtering of Raw CL Spectra

When performing CL measurements, external light sometimes find its way into the area

of measurement. An example of this is the large spike in intensity seen in figure 5.1

(a). Because the neural network base its curve fit on minimizing MSE relative to the

CL spectra, it is thus necessary to remove such noise beforehand to ensure a good fit

and accurate feature value extraction.

Initially, a few methods for noise filtering was evaluated. For example, one such

method was to filter out data points from the CL spectra data that deviated a certain

distance from a t–period rolling mean. The issue with this method being that a rolling

mean is the average of the previous t–period data points, and for the rolling mean to not

be too affected by the spikes one need the t–period to be a significant number. There-

fore, the resulting curve given by the rolling mean would be shifted relative to the raw

CL data points. This could potentially be corrected by back–shifting the rolling mean

curve to fit with the CL data and then removing noise. The question was how robust

this method would be as part of an automatic process. Likely, not very.

When exploring the method of filtering based on a rolling mean it was realized that

neighbouring CL data points on average have a limited range of difference in intensity.

This gave the idea to use the first–difference as a basis for filtering the raw CL data.

I propose to filtering the raw CL spectra data via the first-difference (equation 5.1) of

the CL spectra data

∆(f)i = fi − fi−1, (5.1)

where f is a list of CL spectra intensity data with k data points, and i ∈ [2, k].

The first-difference is the difference between one value and the next, and if that differ-

ence exceeds a user defined threshold S, the corresponding CL spectra data point are

removed.

This method of filtering must be looped because often a spike can be comprised of sev-

eral subsequent data points, and a single pass-through will only remove the first data
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point of that spike.

Given a list f with CL spectra intensity data, algorithm 2 describe how noise if filtered

out.

Algorithm 2 Filter (f )

Require: f : feature list, S: Sensitivity, k: dim(f)
Ensure: ∆(f)i < S ∀ i ∈ [2, k]
m← {}
l← dim({∆(f)i|∆(f)i > S}ki=2)
while l > 0 do

m← {fi|∆(f)i < S}ki=2

l← dim({∆(m)i|∆(m)i > S}ki=2)
end while

This filtering algorithm does not replace the removed data points, because the number

of data points removed will be very small compared with the total amount of data points

in the CL data. Thus, removing a small number of data points will not affect the the

result of the curve fitting via neural networks described in chapter 5.2.
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(a)

(b)

Figure 5.1: (a) From an example dataset where a large spike in intensity caused by
external light is seen at around 670 nm. Before the data can be fitted with a curve via
neural network, any major noise must be removed. (b) After filtering the raw data. A
filtering threshold of S = 52 was used in this case.

This method of filtering should be a robust as long as the first-difference of the CL
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spectra data exhibit at least second-order stationarity (also called weak stationarity).

This is when the series have, among other, a constant mean and variance. In the case

that the criterion of second-order stationarity does not hold, one risk filtering out data

points from the CL spectra that is not noise since the threshold value (S) a constant.

5.2 Curve Fitting Using Neural Network

When it comes to neural network architecture there are no clear rules as to how many

hidden layers to apply, and how many nodes to put into each layer. In general, simpler

models are more robust to noise in the inputs due to risk of over-fitting.

One tip, or rule of thumb, I’ve encountered multiple times on different ML forum

online, is to start with one hidden layer and to err on the side of more rather than less

nodes in the hidden layer - a few extra nodes in the hidden layer isn’t likely do any any

harm. On the other hand, too few nodes in the hidden layer can prevent convergence1.

With this method on build a network progressively, keep adding layers and nodes, while

keeping track on some relevant measurement. In this case, MSE.

We can see this method implemented in table 5.1. In the end, a neural network with 4

hidden layers and 30 nodes in each layer stood out as a sensible choice based on MSE.

The ELU activation function was chosen for this neural network due to its benefits over

other activation functions (see section 2.4.1 for details).
1Convergence describes a progression towards a network state where the network has learned to properly

respond to a set of training patterns within some margin of error.
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Table 5.1: Using MSE as a metric to decide the best architecture for the neural network.
The tests were performed using 5000 epochs (the number of times the algorithm runs
on the whole training dataset), a learning rate of 0.005 for the "Adam" optimizer and
the ELU activation function. The values in blue are the final configuration of the neural
network.

Hidden layers Nodes per layer Mean square error

1 10 536
1 50 159
1 75 185
2 50 163
3 50 140
3 40 153
4 50 151
4 40 142
4 30 133
4 25 132
4 20 145
5 25 156

The result for a curve fitted to a CL spectra by a neural network with the specified

architecture (4 hidden layers, and 30 nodes per layer), is seen in figure 5.2. We observe

that the neural network is just complex enough to capture the shape of the CL spectra

without over-fitting. This neural network architecture has been tested on ∼10 different

CL spectra and have yielded good results similar to the on seen in figure 5.2. This is an

indication that the chosen network architecture is robust with respect to repeatability

of result.

The total fit–time for the neural network given 5000 epochs is close to 100 seconds, but

there was in place a clause in the algorithm, a stopping criteria, that the fitting should

terminate if no improvement in loss was seen for 2500 epochs.

The number of epochs can likely be reduced significantly and thereby improving the

fit–time. The reason for this claim is seen in figure 5.2 (b): We see that the neural

network quickly converges toward the minimum loss value (MSE). After around 1000

epochs the loss value is very close to minimum, and only a slight gradual improvement

is seen over the next 4000 epochs as the neural network continue to adjust parameters

in search of a better fit. At the point of writing this thesis there have not been sufficient

time to thoroughly test whether stopping at a lower number of epochs will yield robust

results in the long run (explained in detail in section 5.3).
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(a)

(b)

Figure 5.2: (a) Curve fitting using a neural network with 4 hidden layer and 30 nodes
per layer. The architecture of this model is capable to capture the complexity of the
underlying data without over fitting. (b) The loss plot show that the model with 4
hidden layer and 30 nodes per layer quickly converges toward a low level MSE. The
loss plot also show that there is a small but steady improvement with increasing epochs.
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5.3 Feature Value Extraction from Neural Network Fit-

ted Curve

The purpose of fitting a cure by neural network to the CL spectra data is so that feature

values used to classify the quartz sample on can be extracted. The features of interest

are:

• Peak 1 and 2: intensity (counts) and wavelength (nm)

• Trough: intensity and wavelength

• Background noise: intensity

Background noise (BG) intensity is used to correct the value of the features Peak 1

counts, Peak 2 counts and Through counts. This to ensure the intensity of each CL

spectra is evaluated with the same point of reference.

The CL curves are not always ideally shaped as seen in figure 5.3. Sometimes they

may present as seen in figure 5.4.

When the CL curves are ideally shaped as in figure 5.3, the values of peak 1 and 2

are taken as the maximum value of the curve fitted by the NN, inside set intervals.

These intervals are set based on where the location, the wavelength, for these peaks

is expected to be. The values for these intervals may be updated inside the Jupyter

notebook if needed by a user. The values for the through is taken to be the minimum

of the NN cure inside an interval given by the maximum of peak 1 interval and the

minimum of peak 2 interval. Lastly, the intensity of the background noise is defined

to be the average intensity of the NN curve at wavelengths greater than 850 nm. This

value of 850 nm is set as a default value because some tests on random CL spectra data

indicate that this value yield a good general fit. This value may also be updated inside

the Jupyter notebook if needed by a user.
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Figure 5.3: Ideally shaped CL spectra for feature value extraction, where values are
extracted based on minimum and maximum intensity values inside certain wavelength
intervals.

In the case when a CL curve has a shape similar to the one seen in figure 5.4, the

method of automatically extracting the values for peak 1 and 2, and the through must

be different than the one described previously. The reason being that these values are

not defined by local minimum or maximum values inside set intervals.

Therefore, I propose to use the second derivative of the NN curve, still within set

intervals, to decide these values. This method should work as long as NN curve does

not overfit the CL data, but rather underfit to a small degree. This causes the NN curve

to be made up of somewhat piece–wise linear elements in the intervals of interest, and

the location of peak 2 (or peak 1) and the through is guided by spike–values of the

second derivative of the neural network curve.

In figure 5.4, for example, the through wavelength is taken to be the point where rate of

change of the NN cure suddenly increases inside the interval [570 nm, 600 nm] (user

defined). This result in a +ve spike in the second derivative. For peak 2 wavelength we

look for a point in the NN curve where the rate of change suddenly decreases inside the

[610 nm, 630 nm] (user defined). This result in a −ve spike in the second derivative.

The intensity of background noise is still defined as described previously.
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Figure 5.4: Example of a CL spectra shape that pose a challenge for extracting feature
values, and it is proposed to use the second derivative of the curve fitted to the CL
spectra to guide feature value extraction.

The Jupyter notebook include script for both methods for feature value extraction, and

the user may choose method based on the shape of the CL spectra.

5.4 Group Prediction for Quartz Sample

Both the full and the reduced datasets were split into a training set and a testing set at

a ratio of 1/3. I.e., 1/3 of a given dataset was used to test the model after it had been

trained on the training set. A random state = 6 was sat for the split to ensure that the

datasets were split the same way each time, and thus the results are comparable.

The random state for the split was chosen such that the fractional representation of each

group in the testing sets was close to equal that of the initial datasets (see tables 5.2 and

5.3).
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Table 5.2: Representation of each group in the training dataset of the full dataset.

Observations in
dataset before split

Observations
in test set

Representation of groups in test
set relative to the full dataset

Group 1 91 33 106,50 %
Group 2 477 159 100,00 %
Group 3 273 89 97,80 %

Sum 841 281

Table 5.3: Representation of each group in the training dataset of the reduced dataset.

Observations in
dataset before split

Observations
in test set

Representation of groups in test
set relative to the reduced dataset

Group 1 55 18 94,70 %
Group 2 205 71 102,90 %
Group 3 134 43 95,60 %

Sum 394 132

Table 3.4 in chapter 3 describing the datasets, revealed one major and important issue:

The datasets are imbalanced. This mean that there is an unequal number of observa-

tions representing each group in the datasets. Group 1 has the lowest representation

in both the full dataset and the reduced dataset with 11% and 14% of observations,

respectively. Due to the choice of random state for the split into training and a testing

datasets, these group representations are close to preserved after the split as seen in

tables 5.2 and 5.3.

Most ML classification algorithms are designed around the assumption of balanced

datasets (Lemaître, Nogueira, & Aridas, 2017), i.e., an equal fractional representation

from each class in the datasets. When this is not the case, it may lead to biased ac-

curacy results. For example, for a classification algorithm like the kNN algorithm a

domination group will naturally have more potential neighbours represented than the

other groups, thereby inflating the accuracy for that dominant group.
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5.4.1 kNN Model

The kNN algorithm was trained using a 10–fold cross–validation, accompanied with a

grid search over k ∈ [1, 15] to find the optimal value for k.

Starting with the feature subsets derived from the full dataset, table 5.4 show the results

for a kNN model trained and tested on each of these four feature subsets. The best

performance was seen when the algorithm was trained on feature subset 1 and 2 (both

had an accuracy of 77%), and in both cases without scaling of the features as well as

uniform weights on the neighbour points.

Table 5.4: Accuracy and optimal number of k neighbours for the kNN algorithm trained
on each of the four feature subsets derived from the full dataset.

Weights
Accuracy,
No scaling

Accuracy,
With Scaling

k neighbours,
No scaling

k neighbours,
With scaling

F. subset 1 uniform 0,77 0,75 5 4
distance 0,76 0,73 5 6

F. subset 2 uniform 0,77 0,76 6 9
distance 0,74 0,73 7 3

F. subset 3 uniform 0,74 0,76 5 5
distance 0,72 0,76 7 6

F. subset 4 uniform 0,7 0,69 6 8
distance 0,7 0,68 9 10

When the algorithm was trained on feature subset 3, it achieved an accuracy of 76%

when including feature scaling. This is almost as good as the best cases which achieved

an accuracy of 77%. This conclude that the features representing wavelength does not

add much in terms of predictive power to the model.

Permutation feature importance results shown in figure 5.5, which is based on feature

subset 1 derived from the full dataset, reveal that the most important features in term of

accuracy are the three representing intensity. I.e., feature subset 3. Some importance

is also put on the wavelength of the trough (Though nm). Referencing the histograms

in figure 3.3, one commonality seen in the histograms for these features are, despite a

substantial overlap among the groups, that there is more separation between the groups

compared to the other features. One can speculate that adding the feature Through nm

to feature subset 3 may yield a best performing model. This was also indicated by

the factor loadings from the PCA, not for this full dataset, but for the reduced dataset,
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where Through nm showed a relatively large positive factor loading onto PC1.

Further, the score plot in figure 4.2 (c), which resulted from PCA performed on feature

subset 3, show a high degree of group clustering without too much overlap among the

groups.

Figure 5.5: Permutation feature importance from the kNN algorithm fitted on the test
set of feature subset 1 derived from the full dataset. The error bars show one standard
deviation of uncertainty in the importance means.

The kNN algorithm was then trained and tested on each of the four feature subsets

derived from the reduced dataset. The results are given in table 5.5, and show a clear

improvement in the accuracy compared to when trained and tested on the full dataset.

The best performance was now achieved when the algorithm was trained on feature

subset 3 (accuracy of 84%), with no feature scaling and with uniform weights on the

neighbour points. This is an improvement of 10% compared to the equivalent model

configuration given the full dataset.
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Table 5.5: Accuracy and optimal number of k neighbours for the kNN algorithm trained
on each of the four feature subsets derived from the reduced dataset.

Weights
Accuracy,
No scaling

Accuracy,
With Scaling

k neighbours,
No scaling

k neighbours,
With scaling

F. subset 1 uniform 0,80 0,83 9 3
distance 0,83 0,83 10 3

F. subset 2 uniform 0,80 0,80 8 5
distance 0,80 0,80 10 6

F. subset 3 uniform 0,84 0,81 4 4
distance 0,82 0,82 10 10

F. subset 4 uniform 0,73 0,73 8 10
distance 0,72 0,73 5 10

Permutation feature importance results shown in figure 5.6, which is now based on

feature subset 1 derived from the reduced dataset, put close to all the importance on

the three feature representing intensity. Almost none importance is now given to the

feature Though nm.

An even higher importance is now put on the feature Peak 1 counts at close to 35%

compared to about 27% from the full dataset. Referencing the histograms for the re-

duced dataset in figure 3.4, this result is not very surprising as the histogram for the

feature Peak 1 counts show an increase in separation between group 2 and group 3

after observations with a third peak have been removed.

Histograms for the features alone is probably not the best indicator for feature impor-

tance for the kNN algorithm. The reason being that the dimension where the obser-

vations are plotted is equal to the number of features in the dataset. Therefore, one

cannot look at individual features by themselves. For example, some of the features

representing wavelength also show some separation between the values from the dif-

ferent groups, but close to no importance is given to them by the kNN model.

Because of this, a dimension reducing technique like PCA will likely give a better early

indication of feature importance by testing different feature subset combinations, and

observing class clustering and separation in either 2- or 3-dimensional score plots. The

cumulative explained variance by the principal components must also be kept in mind,

since this will dictate how representative what is observed in the score plot is for the

actual structure in the dataset.

The high importance given to the feature Peak 2 counts is likely due to this feature
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being the only one where group 1 have a relatively high degree of separation from the

other groups.

Figure 5.6: Permutation feature importance from the kNN algorithm fitted on the test
set of feature subset 1 derived from the reduced dataset. The error bars show one
standard deviation of uncertainty in the importance means.

The confusion matrix for the best performing model configuration, i.e., feature subset 3

derived from the reduced dataset, is shown in table 5.6. The highest f1–score was seen

for group 2 at 87%, and the lowest f1–score seen for group 1 at 69%. These results

must be interpreted with consideration to the datasets being imbalanced: The result

show a correlation between the f1–score and the number of observation for a given

group.

Table 5.6: Confusion matrix for the kNN model configuration with the highest accu-
racy: Feature subset 3 from the reduce dataset with uniform weights and no feature
scaling.

Precision Recall F1-score Support

Group 1 0,79 0,61 0,69 18
Group 2 0,83 0,92 0,87 71
Group 3 0,88 0,81 0,84 43

Accuracy 0,84 132
Macro avg. 0,83 0,78 0,80 132
Weighted avg. 0,84 0,84 0,84 132

It is therefore reasonable to assume that the accuracy from the confusion matrix is not
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truly representative, that it is biased due to an imbalanced source dataset. Best guess

is that the accuracy may be a bit lower than it would be for a balanced dataset. The

f1–score for group 1 could have been lowered due to few observations (n = 18), while

on the other hand the f1–score for group 2 could be a bit elevated due to relatively many

observations (n = 71). A more balanced dataset may therefore lead to improvement in

both precision and recall, especially for group 1 and group 3.

In addition, 40 observations were excluded form the source dataset due to their relative

extreme values. They were removed in order to better observe how the ML classi-

fication algorithms were able to predict group label in the bulk volume of the group

observations. A total of 39 of these removed observations were from group 3, and if

included should be quite easy for the kNN algorithm to classify correctly. Thereby

increasing the scores for group 3 along with the overall accuracy.

5.4.2 Random Forest Model

For each feature subset the random forest algorithm was trained on, the hyperpa-

rameters were tuned using a random grid search. It was opted to use a random grid

search instead of the standard grid search, as was applied to the kNN algorithm, due to

the shear number of possible parameter configuration for the random forest classifier

(p = 38, 880) (see appendix A.2 for details on hyperparameter distributions). Meaning

that the algorithm would have been trained and tested p-times in order to find the best

hyperparameter settings using a grid search. Therefore, instead of performing an ex-

haustive and time consuming grid search over all possible p parameter configurations,

a fixed number of parameter settings was sampled from the specified hyperparameter

distributions. In the following, 500 random parameter configurations were randomly

sampled and tested.

Just like for the kNN algorithm, a 10–fold cross–validation was also performed for the

random forest algorithm. Therefore, should one have performed a standard grid search

for hyperparameter tuning, one would have performed close to 400,000 iterative fits

per instance of a feature subset the model was fitted on. By applying the random grid

search approach, the number of iterative fits were reduced to 5,000.

Table 5.7 give the resulting accuracy score for each subset configuration fitted to the

random forest algorithm. Just like for the kNN algorithm, the feature subsets derived
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from the reduced dataset performed the best in terms of accuracy. Although, for feature

subset 1 the difference between the full dataset and the reduced dataset is marginal.

The table also show that there is little difference between the three best resulting sub-

sets fitted to the random forest algorithm: Feature subsets 1,2 and 3 derived from the

reduced dataset. And again, this show that the most important features for random for-

est algorithm as well, are the ones representing intensity (Peak 1 counts, Peak 2 counts

and Through counts), since one can remove all but these features without lowering the

accuracy score. The likely reason that feature subsets 1, 2 and 3 derived from the re-

duced dataset give so close to the same accuracy score is because all have the features

representing intensity in them. Either directly or indirectly. Further, the random forest

algorithm is less sensitive to additional "noisy" features in a dataset than the kNN algo-

rithm because it tries to classify on single features and not points in a higher dimension

(dimension equal to number of features) represented by all features in a dataset.

Table 5.7: Accuracy score results for the random forest algorithm trained and tested on
each of the four feature subsets derived from the full and the reduced dataset, respec-
tively.

Accuracy, full dataset Accuracy, reduced dataset

F. Subset 1 0,79 0,80
F. Subset 2 0,76 0,81
F. Subset 3 0,72 0,81
F. Subset 4 0,70 0,76

The permutation feature importance results for feature subset 1 derived from the full

dataset (figure 5.7) is not as decisive with regard to feature importance as the equivalent

feature importance for the kNN models. Still, the highest importance is given to the

feature Peak 1 counts. It is also important to notice the scale of importance. Despite

the feature Peak 1 counts given to be the most important feature, it only accounted for

an average of ∼11% decrease in accuracy.
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Figure 5.7: Permutation feature importance for the random forest algorithm fitted on
the test set of feature subset 1 derived from the full dataset. The error bars show one
standard deviation of uncertainty in the importance means.

The permutation feature importance results for feature subset 1 derived from the re-

duced dataset (figure 5.8) give almost the same result as for the full dataset, but now

almost non importance is given to the features Peak 1 nm and Though counts. Also, the

importance now given to feature Peak 1 counts is on average ∼20%, almost twice that

for the full dataset. These results correlates with what can be observed in the feature

histograms in figure 3.4, and they are not surprising given how a decision tree algorithm

make its predictions based on individual features.

Figure 5.8: Permutation feature importance for the random forest model fitted on the
test set of feature subset 1 derived from the reduced dataset. The error bars show one
standard deviation of uncertainty in the importance means.
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Although feature subset 2 and 3 from the reduced dataset had the same accuracy score,

group 1 and 3 in feature subset 3 had a significant higher f1–score. Which came at a

cost of a slightly lower f1–score for group 2. Therefore, feature subset 3 was selected

as the best performer. This is convenient as it allows for a more direct comparison

between the best performing kNN model and the best performing random forest model.

The confusion matrix for this feature subset is given in table 5.8:

Table 5.8: Confusion matrix for the random forest model with the best performance
and highest accuracy: Algorithm trained on feature subset 3 derived from the reduced
dataset.

Precision Recall F1-score Support

Group 1 0,85 0,61 0,71 18
Group 2 0,82 0,87 0,84 71
Group 3 0,79 0,79 0,79 43

Accuracy 0,81 132
Macro avg. 0,82 0,76 0,78 132
Weighted avg. 0,81 0,81 0,81 132

Compared to the best performing kNN model the random forest model did quite a bit

better at correctly classifying group 1 (precision = 0.85), but still have quite a few

of group 1 observations wrongly classified as other groups (recall = 0.61). Still, the

precision of 0.85 is an improvement compared to the kNN model which achieved a

precision of 0.79 for group 1. This result can likely be linked to the feature Peak 2

counts, as group 1 have more extreme values in this feature compared to the two other

groups. Since the random forest algorithm can attribute these extreme values directly

to group 1, the error is reduced and the accuracy is not afflicted in the same way by an

unbalanced dataset as the kNN algorithm.

The random forest model did a bit worse when it comes to classifying group 2 and 3

compared to the kNN model, witch can be blamed on the high degree of value over-

lap for these groups throughout the features in general. This is especially notable in

the precision of group 3 which achieved a score of 0.79 in the random forest model,

compared to 0.88 for the kNN model.
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6.1 Conclusions

Machine learning has proven its potential to be a good tool for automating the process

of evaluating CL spectra from quartz.

The filtering algorithm for raw CL spectra I propose is simple in its method and fast

to run, but most important, robust with regard to repeatability of good results. The

algorithm depend on one user input, S, which state the cut-off value for data points

(noise) to filter out from the CL spectra. A method for automatically setting the value

of S could quite possibly be found. This would then fully automate the filtering step.

The architecture of the neural network used to fit a curve to CL spectra has yielded

good results. By good result is meant that a curve fitted has not been observed to over-

or under-fit CL spectra, while at the same time achieving a low MSE measured on the

fit. These are important criteria as they ensure that accurate feature values are extracted

from CL spectra.

The current run-time for fitting a curve to CL spectra is ∼100 seconds. This time can

likely be reduced significantly by reducing the number of epochs, which is currently

set to 5000. Data on the fit show that the NN model quickly converges to a low MSE

at around 1000 epochs, and only yield a small gradual improvement until 5000 epochs

have been performed. It must be examined whether the fit given at around 1000 epochs

is good enough for accurate feature values to be extracted.

The architecture of the neural network and hyperparameters could likely also be im-

proved upon to further reduce the run-time.

I propose two methods for feature value extraction from a curve fitted by neural net-

work to CL spectra. The first method is used when CL spectra is ideally shaped, i.e., it

have two clearly defined peaks in intensity with a though in between them. The feature

values are in this case extracted based on maximum and minimum intensity inside user

defined wavelength intervals for the CL spectra.

The second method is used when a peak in a CL spectra is muted, almost non-existing.

This also affect the through. In this case I propose to use the second derivative of the

curve fitted by the neural network to find the feature values. This is an important reason

62
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why it must be examined whether terminating a curve fit by the neural network after

about 1000 epochs can be done. Ideally, the curve should be made up of piece-wise

linear elements in the interval where the feature values are to be extracted, as the wave-

length of a peak and the through is taken to be where there is a sudden change in the

slope of the curve inside a set wavelength interval. Terminating the curve fit too early

could cause the curve to under-fit the CL spectra such that the peak and the trough is

inaccurately defined or not defined at all.

The ML classification algorithm which achieved the highest overall accuracy was the

kNN algorithm with a model score of 84%. It achieved this when trained and tested

on a feature subset of the reduced dataset containing only features representing inten-

sity. Overall, when this algorithm was trained and tested on subsets from the reduced

dataset it achieved 5-10 % higher accuracy compared to when trained and tested on

subsets from the full dataset. This result was indicated prior to ML classification being

performed by histograms for the feature values and PCA. Both the histograms and the

score plots from the PCA showed significantly less overlap between feature values and

observations among the groups for the reduced dataset. This conclude that CL spectra

of quartz having been influenced by other minerals, e.g. feldspar, causing a third peak

in the CL spectra, is negative for ML classification accuracy.

Further, the confusion matrices showed that the group that did worse overall in term

of accuracy, was group 1. The group that did the best was group 2. Much of this can

likely be attributed to imbalanced dataset. There is evident a correlation between the

accuracy for a group (F1-score) and the fractional group representation in the dataset.

Group 1 representation was 11% and 14%, while group 2 representation was 57% and

52% in the full dataset and the reduced dataset, respectively. Therefore, it is believed

that the accuracy results are a bit reduced for this reason.

The accuracy results given by the best performing random forest models are quite sim-

ilar to the results for the best performing kNN models. The dataset that, when the

random forest algorithm was trained and tested on, yielded the models with the highest

accuracy, again was feature subset 3 from the reduced dataset. This model achieved an

accuracy of 81%, which is almost the same accuracy given by models based on feature

subset 1 and 3 from the reduced dataset. The difference in accuracy for models based

on subsets from the reduced dataset, compared to models based on subsets from the

full dataset, is on average ∼5% higher.
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The conclusion given by both ML classification algorithms is that these algorithms only

need the features representing intensity to make their prediction on group for a quartz

sample. This is evident in the difference in accuracy between feature subsets 1 and

3, as removing the features representing wavelength increase accuracy. Though, there

are indications that including the feature Through nm to feature subset 3 may increase

accuracy for both algorithms. Especially for the reduced dataset.

The accuracy results given by the ML classification models and the conclusion regard-

ing only needing features representing intensity for making group prediction, are in line

with what was reported by Augustsson & Reker (2012). They achieved a classification

accuracy of 87% based on relative intensities of CL spectra (equation 3.1).

6.2 Future Work

I have next listed some moments that I believe can progress the work already done in

this thesis further.

• Improve on the imbalanced dataset, i.e., add more group 1 and 3 observations to

the source dataset.

• Improve run-time for the curve fitting to CL spectra by neural network.

• The score plots from the PCA show that observations from the same groups in

general cluster together. Although, there is some overlap among the groups.

Techniques, for example from unsupervised ML, could be used to examine if

a different grouping of source rocks could yield better results with regard to

classification.

• Examine whether adding the feature Through nm to feature subset 3 increase

accuracy for the ML classification models.

• The classification accuracy may be increased by using other ML classification

algorithms, or by including more algorithms and then putting them into an en-

semble.

• Collect all the python code written for this thesis in an application.
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A | Python Scripts

A.1 Filtering Algorithm

# I mp or t l i b r a r i e s

import pandas as pd

import p l o t l y . g r a p h _ o b j e c t s a s go

# C a l c u l a t e F i r s t d i f f e r e n c e o f Counts − t o t a l column i n d a t a s e t " da ta "

d a t a [ ’ F i r s t D i f f e r e n c e ’ ]= d a t a [ ’ C o u n t s T o t a l ’ ] . d i f f ( ) #Used f o r f i l t e r i n g

Sens_FD = 60 # S , Change t h e number t o i n c r e a s e t h e f i l t e r t h r e s h o l d

i n i t _ l e n = l e n ( d a t a [ ’ C o u n t s T o t a l ’ ] )

L e n F i l t e r F r a m e = l e n ( d a t a [ d a t a [ ’ F i r s t D i f f e r e n c e ’ ] > Sens_FD ] )

whi le L e n F i l t e r F r a m e > 0 :

# Rep lace v a l u e s based on s e n s i t i v i t y g i v e n above

d a t a = d a t a [ d a t a [ ’ F i r s t D i f f e r e n c e ’ ] < Sens_FD ]

# C a l c u l a t e new F i r s t d i f f e r e n c e o f Counts − t o t a l column

d a t a [ ’ F i r s t D i f f e r e n c e ’ ]= d a t a [ ’ C o u n t s T o t a l ’ ] . d i f f ( ) # C a l c u l a t e f i r s t − d i f f e r e n c e

L e n F i l t e r F r a m e = l e n ( d a t a [ d a t a [ ’ F i r s t D i f f e r e n c e ’ ] > Sens_FD ] )

f i n _ l e n = l e n ( d a t a [ ’ C o u n t s T o t a l ’ ] )

# P l o t r e s u l t s

f i g _ d a t a = go . F i g u r e ( )

f i g _ d a t a . a d d _ t r a c e ( go . S c a t t e r ( x= d a t a [ ’ Wavelength ’ ] . v a l u e s [ : ] ,

y= d a t a [ ’ C o u n t s T o t a l ’ ] . v a l u e s [ : ] , mode= ’ l i n e s ’ , name= ’ F i l t e r e d d a t a ’ ) )

f i g _ d a t a . a d d _ t r a c e ( go . S c a t t e r ( x= d a t a [ ’ Wavelength ’ ] . v a l u e s [ : ] ,

y= d a t a [ ’ F i r s t D i f f e r e n c e ’ ] . v a l u e s [ : ] , mode= ’ l i n e s ’ , name= ’ F i r s t − d i f f e r e n c e ’ ) )

f i g _ d a t a . u p d a t e _ l a y o u t ( t i t l e ={ ’ x ’ : 0 . 5 , ’ y ’ : 0 . 8 5 } , x a x i s _ t i t l e = ’ Wavelenght (nm) ’ , y a x i s _ t i t l e = ’ I n t e n s i t y ( c o u n t s ) ’ )

f i g _ d a t a . show ( )

p r i n t ( ’ Number o f v a l u e s f i l e t e r e d o u t : ’ , i n i t _ l e n − f i n _ l e n )

p r i n t ( ’ Length o f f i l t e r e d d a t a s e t i s : ’ , f i n _ l e n )

A.2 Hyperparameter Tuning for the

Random Forest model

# Range o f h y p e r p a r a m e t e r s

n _ e s t i m a t o r s = [ 5 0 , 1 0 0 , 2 0 0 , 5 0 0 ] # number o f t r e e s i n t h e random f o r e s t

m a x _ f e a t u r e s = [ ’ a u t o ’ , ’ s q r t ’ ] # number o f f e a t u r e s i n c o n s i d e r a t i o n a t e v e r y s p l i t

max_depth = [ i f o r i in range ( 2 , 1 1 , 1 ) ] # maximum number o f l e v e l s a l l o w e d i n each d e c i s i o n t r e e

m i n _ s a m p l e s _ s p l i t = [ ( i +1) f o r i in range ( 1 , 2 1 , 2 ) ] # minimum sample number t o s p l i t a node

m i n _ s a m p l e s _ l e a f = [ i f o r i in range ( 1 , 1 9 , 2 ) ] # minimum sample number t h a t can be s t o r e d i n a l e a f node

b o o t s t r a p = [ True , F a l s e ] # method used t o sample da ta p o i n t s

c l a s s W e i g h t = [ ’ none ’ , ’ b a l a n c e d ’ , ’ b a l a n c e d _ s u b s a m p l e ’ ]

c r i t = [ ’ g i n i ’ , ’ e n t r o p y ’ ]

# S t o r e h y p e r p a r a m e t e r ra nge s i n d i c t i o n a r y

p a r a m s _ r f = { ’ n _ e s t i m a t o r s ’ : n _ e s t i m a t o r s ,

’ m a x _ f e a t u r e s ’ : m a x _ f e a t u r e s ,

’ max_depth ’ : max_depth ,

’ m i n _ s a m p l e s _ s p l i t ’ : m i n _ s a m p l e s _ s p l i t ,

’ m i n _ s a m p l e s _ l e a f ’ : m i n _ s a m p l e s _ l e a f ,
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’ b o o t s t r a p ’ : b o o t s t r a p ,

’ c l a s s _ w e i g h t ’ : c l a s s W e i g h t ,

’ c r i t e r i o n ’ : c r i t }

A.3 Fitting Curve to CL Spectra using NN

# I mp or t l i b r a r i e s

import t ime

import pandas as pd

import p l o t l y . g r a p h _ o b j e c t s a s go

import t e n s o r f l o w as t f

import k e r a s

from k e r a s . models import load_mode l

from k e r a s . c a l l b a c k s import ModelCheckpoint , E a r l y S t o p p i n g

# choose t h e i n p u t and o u t p u t v a r i a b l e s

# da ta i s a d a t a s e t c o n t a i n i n g t h e CL s p e c t r a da ta

x , y = d a t a [ ’ Wavelength ’ ] . v a l u e s , d a t a [ ’ C o u n t s T o t a l ’ ] . v a l u e s

t i c = t ime . p e r f _ c o u n t e r ( )

#============ d e f i n e model

model = k e r a s . S e q u e n t i a l ( )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 1 , a c t i v a t i o n = ’ l i n e a r ’ , i n p u t _ s h a p e = [ 1 ] ) )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 30 , a c t i v a t i o n = ’ e l u ’ ) )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 30 , a c t i v a t i o n = ’ e l u ’ ) )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 30 , a c t i v a t i o n = ’ e l u ’ ) )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 30 , a c t i v a t i o n = ’ e l u ’ ) )

model . add ( k e r a s . l a y e r s . Dense ( u n i t s = 1 , a c t i v a t i o n = ’ l i n e a r ’ ) )

#============ s e t t i n g o f t h e model

model . compi le ( l o s s = ’ mse ’ , o p t i m i z e r = t f . k e r a s . o p t i m i z e r s . Adam( l e a r n i n g _ r a t e = 0 . 0 0 5 ) ) # mean s qu ar e e r r o r

# D i s p l a y t h e model

# model . summary ( )

# S e t c a l l b a c k f u n c t i o n s t o e a r l y s t o p t r a i n i n g and save t h e b e s t model so f a r

e a r l y _ s t o p p i n g _ m o n i t o r = E a r l y S t o p p i n g ( m o n i t o r = ’ l o s s ’ , p a t i e n c e =2500 ,

mode = ’ min ’ , r e s t o r e _ b e s t _ w e i g h t s = True )

m o d e l _ c h e c k p o i n t = ModelCheckpoin t ( f i l e p a t h = ’ b e s t _ m o d e l . h5 ’ , m o n i t o r = ’ l o s s ’ , s a v e _ b e s t _ o n l y =True )

#=========== t r a i n i n g

h i s t o r y = model . f i t ( x , y , epochs =5000 , v e r b o s e =0 , c a l l b a c k s =[ e a r l y _ s t o p p i n g _ m o n i t o r , m o d e l _ c h e c k p o i n t ] )

t o c = t ime . p e r f _ c o u n t e r ( ) # t i m i n g t h e t r a i n i n g

p r i n t ( f " Runtime was { t o c − t i c : 0 . 4 f } s e c o n d s " )

f i g _ d a t a = go . F i g u r e ( )

f i g _ d a t a . a d d _ t r a c e ( go . S c a t t e r ( x= h i s t o r y . epoch , y= h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , mode= ’ l i n e s ’ ) )

f i g _ d a t a . u p d a t e _ l a y o u t ( x a x i s _ t i t l e = ’ epoch ’ , y a x i s _ t i t l e = ’ l o s s (MSE) ’ )

f i g _ d a t a . u p d a t e _ l a y o u t ( t i t l e ={ ’ t e x t ’ : ’ Exce l f i l e : ’+ r a w D a t a _ f i l e _ n a m e + ’ , ’+ ’ S h e e t : ’+ s t r ( s l i d e r V a l u e . v a l u e ) ,

’ x ’ : 0 . 5 , ’ y ’ : 0 . 8 5 } ,

l e g e n d = d i c t ( x = 0 . 7 , y = 0 . 9 5 , t r a c e o r d e r = ’ normal ’ , f o n t = d i c t ( s i z e = 1 5 , ) ) )

f i g _ d a t a . u p d a t e _ y a x e s ( type =" l o g " )

f i g _ d a t a . show ( )
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