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“The first principle is that you must not fool yourself and you are the easiest
person to fool.”

Richard P. Feynman



Preface

This dissertation is submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy (PhD) at the Department of Energy and Petroleum
Engineering at the University of Stavanger, Norway. The PhD program was
supervised by Prof. Dan Sui and co-supervised by Prof. Tomasz Wiktorski in
the period of August 2019 to January 2022.

This dissertation is written based on five scientific papers, presented in Chapter
5, and reproduced in the Appendix.
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Abstract

Directional drilling is an established technology within the petroleum industry. In
this traditionally conservative and risk averse environment application of artificial
intelligence encounters difficulties at various stages of the process. Additionally,
the unique nature of drilling data makes deployment of the off-the-shelf algorithms
problematic on multiple levels.

An artificial neural network with a custom architecture is explored in this disser-
tation; it is combining recurrent elements as well as traditional artificial neurons
to fully utilize information in both the dynamic behaviour of the system, as well
as data that is available in real time. This fit for purpose algorithm unlocks
significant improvements to the traditional directional drilling technologies.

To complement this novel architecture, research is presented that focuses on the
data preparation. Methods are presented that tackle characteristic problems
of the real-time drilling logs that make the incompatible data digestible for
the machine learning. New algorithms were developed that allow to gauge the
difference between the raw and the processed data.

Simplifying the field deployment a method for on-the-job training is explored for
the developed architecture, where no prior knowledge about the exact drilling
system nor historical data is required. To aid the confidence in the presented
methods a fit for purpose sensitivity analysis is investigated allowing to peek
inside the data driven algorithm.
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Chapter 1

Introduction

Artificial intelligence (AI) is a collection of approaches and algorithms that
experiences both explosive growth in research and industry. It is a technology
that promises self driving cars, automatic translations, and replacing humans in
various jobs and positions. While AI is a term that became widely known to the
public, the practical side of it, machine learning, is what is being worked on by
scientists and engineers alike.

Machine learning (ML) [1], has a clear definition. In general, it is an algorithm
that based on experience in a form of input-output pairs, typically referred to as
training data, can predict the outputs of new and unknown inputs. Most basic
example of that is fitting a linear regression model which nowadays can be done
in Excel with a mouse click. On the other hand, complex algorithms such as
reinforcement learning, are able to perform complex tasks like playing computer
games [2].

There are countless ML algorithms in existence with new ones being constantly
invented. Their architecture is tailored for various types of problems, from simple
mapping of arbitrary data to image analysis, translation, or data generation.
When focus is set to drilling data and drilling logs, one of the most promising
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Chapter 1. Introduction 2

architectures is the family of recurrent neural networks (RNN) [3]. This mathe-
matical construct can capture temporal information about the signal, building
on not only on the information about the current state, but also on a number of
the past states. This technology is widely used commercially in translation, voice
recognition, music composition and speech synthesis, but has seen only modest
adoption in the typically conservative petroleum industry.

Research presented in this dissertation is focused on utilizing the recurrent neural
networks for data extrapolation, interpolation and prediction, as well as on data
processing and model evaluation. It focuses on the best way of utilizing this
technology, finding its potential, limitations, understanding better how does it
work, as well as how to correctly apply it in the field.

1.1 Objectives

The general objective of the presented research is to attack some of the unsolved
petroleum related problems with the latest machine learning technologies. It is
about finding ways of applying modern algorithms to practical real life problems
that are bound by constraints unique to the field of oil and gas.

At the same time it is crucial to stress what is not the objective of the presented
research. It is not about creating new machine learning algorithms for a broad
use. It is an interdisciplinary work, probably best summarized as applied artificial
intelligence. It is about a holistic approach to the task at hand. There are four
core areas of the presented research:

• Data preparation. RNNs have specific requirements when it comes
to data, and drilling logs have a very specific structure. Making them
compatible was to a large extent not explored in detail before

• Model creation. Modern ML algorithms can often be connected together
as if they were LEGO bricks, to create new, fit for purpose architectures.
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Drilling processes require innovative ML models to efficiently model the
downhole environment

• Model application. Exploring how a model can be deployed is a critical
aspect of applied machine learning. Investigation into how to practically
apply the model can define its usability.

• Model evaluation. Machine Learning models are typically considered so
called black boxes, indicating that it is for all intents and purposes not clear
how they work. One of the goals of this research is to shed light on what
can be expected of the model.

1.2 Methodology

Research presented in this dissertation is following the Cross-industry standard
process for data mining (CRISP-DM) [4]. This is the most common methodology
used for broadly understood data science projects. It consists of the following
major phases:

1. Business Understanding

2. Data Understanding

3. Data Preparation

4. Modeling

5. Evaluation

6. Deployment

All these phases, with the exception of deployment, were executed in the presented
work. The business understanding is linked to the needs of the industry; this
part is linked to the case study presented in section 3.5 as well as in [AT3, AT4],
which discusses the problem of delayed sensor readings in relation to directional
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drilling using the bent sub assembly. This is a practical and common struggle
in the development of directional drilling tools, where it is desired to have the
direction sensor as close to the bit as possible. There is a strong business need to
move the sensor forward, be via mechanical means or through machine learning.

Data understanding that covers data collection, data description, discovery and
data quality evaluation, was performed in publication [AT6], which is not explicitly
included in this dissertation. Data utilized in the presented research comes from
the Volve dataset [5].

Data preparation step is the sole focus of the most recently published publication
[AT1], where various novel pre-processing techniques are applied with focused
on solving common drilling data series issues. Since one of the goals of the
undertaken research was the application of recurrent neural networks in drilling,
the publication focuses on data preparation in light of this technology.

Modelling and evaluation phases of the CRISP-DM process dominate publications
[AT3, AT4]. RNN based ANN of a custom branched architecture is developed and
is evaluated based on a scenario where training is done during drilling. Additional
publication [AT5] focuses purely on evaluation of the developed models from the
sensitivity analysis point of view.

1.3 Novelty

Top 3 most important novel elements of the presented research are listed below:

• Data pre-processing as described in [AT1] provides a number of novel tools
and methods that are aimed at data series preparation with RNN utilization
in mind.

• Custom ANN branched architecture utilizing RNN and MLP elements for
problems where significant amount of information is carried both in the
temporal information of the data series, as well as in parallel data-channels.
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This architecture plays a major and minor roles in most of the publications
linked to this dissertation [AT1, AT3, AT4, AT5].

• Sensitivity Analysis of ML models utilizing a dataset as a reference starting
point for PaD analysis [AT5] is particularly novel and important in relation
to RNN-based models that can contain hundreds of inputs, and require
sensitivity analysis not only per individual input, but also as a series of
inputs.

1.4 Scientific results

Within publication [AT1] one of the explored problems is infilling missing data
that stems from varying sensor rates; it was discovered that there is a statistically
significant difference between forward filling and linear interpolation. The same
publication highlights the efficiency of using PCA decomposition instead of
traditional attribute selection for drilling data, as well as proposes a mathematical
method of evaluating how close resampled data reflects the original dataset with
erratic recording frequency.

In [AT3] an RNN-based ANN with custom architecture significantly outperforms
traditional ML approaches. A case study of sensor lag in directional drilling is
explored, where the inclination sensor is present in the MWD over 23 meters
behind the bit in the BHA utilizing bent sub assembly. The same model is later
utilized in [AT4] where it proves the efficiency of continuous learning approach
when deploying an untrained model in the field, with all the training performed
on the job. A high resolution analysis is performed to evaluate how deep one
has to drill and train the model utilizing freshly harvested data to start yielding
satisfying results.

Publication [AT5] presents a novel approach to sensitivity analysis, and provides
effective tools for understanding the relationships between the inputs and the
outputs of the ML model. It is an approach rooted in one-at-a-time sensitivity
analysis method that offsets some of the limitations of such methods by performing
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the analysis with the train/test dataset as a collection of starting points, and
presents the results as a statistical distribution for additional clarity.

The work [AT2] focuses on providing a catalyst for future research in a form of
reference dataset for ROP modelling. It contributes also a stark example how
strongly the data split into training and testing data influences the accuracy of
various models.

1.5 Engineering applications

There are a number of potential engineering applications that could utilize
methods developed and presented throughout this dissertation. One of the
key elements is the novel ANN architecture that combines the RNN and MLP
elements, allowing for utilization of the most relevant data. The case study of the
delayed sensor data in case of directional drilling with bent sub motor was the
catalyst for this research and in itself is a valuable practical application. There
are a number of potential alternative applications to this architecture:

• predicting directional data in directional drilling ahead of the sensor, allow-
ing for more precise well placement in legacy drilling systems

• drilling tool design optimization through deprioritization of the directional
sensor location

• predicting drilling parameters, used in the drilling optimization tasks

• modelling of novel, unconventional drilling systems, where physics are not
yet fully understood

• non-petroleum problems, such as household power usage usage prediction,
battery degradation prediction, snow cover estimation.

Developed pre-processing techniques as well as sensitivity analysis tools are in
principle domain-agnostic, and therefore are potentially applicable to other ML
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problems utilizing RNN or other architectures based on taking into account
multiple steps in the data-series, such as transformers.

1.6 Dissertation outline

This is a publication based dissertation, where the key research is already published
in either a journal or as a peer reviewed conference publication. This document
connects all the published research into a cohesive work.

The presented research is interdisciplinary, at the connection between petroleum
and data science, what is probably best summarized as applied ML.

Chapter 1 acts as an introduction and sets the stage for the problem.

Chapters 2, 3, and 4 focus on background information and theory, only highlighting
the direction of the performed research. They are presented to contextualize the
attached publications. Chapter 2 itself focuses on the data itself. It discusses
the actual dataset used in this research, established pre-processing methods
particularly useful for RNN deployed in drilling; it also puts emphasis on the new
research performed in relation to gap classification, gap filling, resampling, and
evaluation of the resampling performance. Lastly, work on establishing better
access to the datasets to the community is showcased.

Chapter 3 focuses on the core of the machine learning - the model and its
application. Proposed custom branched neural network is discussed in detail; it
was developed for the purpose of tackling various problems related to real-time
drilling.

Chapter 4 presents a new approach to sensitivity analysis, rooted in partial
derivative, where sensitivity is explored utilizing the original dataset that provides
the starting points of the analysis. This attempts to mitigate the key problem of
one-at-a-time sensitivity analysis methods, where selection of the starting point
can influence the sensitivity results greatly.
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Chapter 5 provides an overview of published research and links them directly to
the areas of this dissertation, explicitly highlighting the innovation areas and the
main contributions to science. These five key publications have fixed reference
keys [AT1, AT2, AT3, AT4, AT5]1 with further citations of other work of my
authorship and co-authorship are numbered per their appearance in the text.

Chapter 6 provides summary and conclusions.

Appendix contains relevant published publications that were reproduced in a
re-formatted to be consistent with this dissertation. References in the appendix
have independent numbering and independently listed bibliographies. No changes
to text nor figures were done and the contents are considered for all intents and
purposes identical with the published version.

1References are generally numerical, with additional AT prefix (f.ex. [AT4]) indicating
publications that were personally authored, or co-author.



Chapter 2

Data preparation methods

2.1 Source of the data

The backbone of presented research is the Volve dataset published by Equinor [6].
Volve field was discovered in 1998 with production starting in February 2008. It
is located in the central part of the North Sea, nearly perfectly between Stavanger
and Aberdeen, the Norwegian and British respective oil capitals, where the sea
depth is approximately 80 meters. The reservoir itself lies 2700 - 3100 meters
deep.

Throughout the life of the field 4.7 billion Norwegian kroner were invested into
the Volve field yielding production of 63 million barrels of oil. Production ceased
in 2016 with the facilities shut down in 2018.

In June 2018 Equinor has announced that to support innovation and research
in the oil and gas industry complete data of that field will be shared. This was
originally done using Creative Commons CC BY-NC-SA 4.0 license that was
superseded by the Equinor Open Data License in 2020. Both licenses are very
open allowing researchers to work on the dataset free of charge, publish results
and modify the dataset as long as the original license is retained.

9
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Figure 2.1: Location of the Volve field [6]

The unprecedented amount of data that was made available enabled hundreds of
research articles to be written and published. Without a doubt in the absence
of the publication of the Volve field data, research presented in this dissertation
would not exist.

Within the total 40 000 files shared the most relevant data for research presented
in this dissertatiin were the WITSML real-time drilling data. This 5 GB archive
contains logs that are both time-based or depth-based spanning multiple wells.
Some of the logs were merely few hundred samples long, with the biggest ones
containing millions of rows.

2.1.1 Data logging

There are a number of logged attributes connected to the process of drilling.
Some can be measured directly, such as standpipe pressure or RPM, with a simple
sensor at the surface. Some attributes are measured indirectly, such as WOB,
where apparent weight of the drill string is measured, but additional effects must
be taken into account such as buoyancy, friction etc. to estimate the actual weight
pressed on the drill bit.

There are also attributes measured downhole by systems called Measurement
While Drilling (MWD) and Logging While Drilling (LWD). The main difference
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between the two is that MWD is typically related to the drilling process itself, while
LWD is considered mostly with geology. It is the MWD tool that will measure
the inclination and azimuth of the BHA; this information will be transmitted to
the surface while drilling to the directional driller, so he or she may place the
well according to the well plan.

Despite the progress in communication technologies the most common way of data
transmission between the drill bit location and the surface is mud pulse telemetry.
Special flaps are extended from the MWD tool into the annulus, and by varying
obstruction to the return mud flow a digital signal can be created. This signal
is later decoded at the surface and the measurements can be read. The biggest
limitation of this system is bitrate, typically up to 40 bits per second depending
on exact technology used, which is the same as a skilled Morse code operator.
As there are multiple sensors in the MWD and LWD the complete transmission
sequence of all desired parameters takes typically a couple of minutes.

Differences in sensor polling rates, data transmission limitations etc. create data
logs that are not very clean, full of data gaps and that require a lot of processing
effort to be used by the modern tools of data science.

2.2 Data quality improvements

Drilling data itself has often multiple quality issues. Recent publication [AT7]
lists following problems that are most commonly encountered:

• invalid data - from outside of the range of the measurement system

• inaccurate data - noise and outliers

• incomplete / missing data - various reasons for lack of data

• inconsistent data - result of varying polling frequencies

• redundant data - two sensors recording in principle the same phenomenon
or parameter
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Similar issues were also encountered in a laboratory scale rig [7] with research
focusing on noise filtering. Recent literature also discusses data reconciliation
and validation (DRV) in context of wired drillpipe [8], which reduces the error
by filtering noises and making the data conform to the mathematical models
whenever possible. Overall various schemes are proposed for improving data
quality [9] indicating the overall important of this issue.

2.2.1 Data imputation

Drilling logs can be generally considered as a two-dimensional matrix built of rows
and columns. Rows designate consecutive readings, while columns are assigned
to specific sensors or otherwise calculated attributes. While the order of rows
generally matters, the order of the columns does not. Among the attributes in a
given dataset there is typically one that can be considered an index. This will be
time in the time-based data and measured depth in the depth based data.

This matrix in the case of Volve data is not filled in completely. Some cells
are be empty, which is not to be confused with a value of zero. There are also
cells that will carry a so-called sentinel value, typically designated as an highly
improbable reading such as -999.98. Presumably logging software responsible for
given sensors is unable to deal with empty values, hence indicates a lack of value
through such sentinel number. Throughout the volve real-time drilling data gaps
typically occupy over 80% of the cells [AT6].

Gap size identification and classification

There are a number of reasons for gaps to exist in a dataset, that can be
generally put into four different categories based on their nominal quantity and
the percentage of the dataset they occupy [AT7] with Figure 2.2 visualizing the
division. This dissertation focuses on gaps from the upper portion of this chart;
gap classification is discussed in more detail, both relating to source of the gaps
as well as potential of filling them in the related publication [AT7].
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Figure 2.2: Classification of gap sizes

Gap statistics can be visualized as a bar chart, such as the one presented in
Figure 2.3, where gaps statistics of Weight on Bit attribute are analyzed for the
well F9a of the Volve dataset. Cells that contain data cover 31% of the dataset,
with most of the data missing due to gaps that are between one and six rows long.
There is also a group of gaps, 177 and 322 rows long, that did not contribute
significantly to the data loss percentage wise. However, the length of those gaps
is concerning and indicate that they are likely due to data actually missing.

There is a definite spectrum; at one end, there are small and few gaps, that are of
least concern. On the other end there are long gaps that are a definite data loss.
To quantify that spectrum an equation is proposed to calculate a gap coefficient,
GC. This method was published and applied in practice [AT1].

GCi = i

GQi · TL
. (2.1)

Here i is the gap length, GCi is the gap coefficient for a gap length of i, GQi

designates the quantity of gaps of length i and TL is the total length of the log.
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Figure 2.3: Raw gap statistics, Weight on Bit [kkgf], Volve well F9a.

Note that unit here is row count. This equation makes GC proportional to the
relative gap size, and inversely proportional to the quantity of the gaps.

Having calculated the GC we can plot the results again, as it is shown in Figure 2.4.
The long gaps, quite clearly, have a significantly higher GC. Having manually
explored the dataset and reviewed some of the attributes it is possible to establish
a cutoff value, δcf , that will separate data gaps fillable with basic methods, such
as forward filling or linear interpolation, from the ones being a clear sign of data
loss. For the real-time drilling data in the Volve dataset a cutoff value of δcf =
0.005 was selected, which reliably differentiated between two types of gaps; this
cutoff value is also shown in Figure 2.4. This value was selected based on manual
inspection of a number of logs in the Vovle dataset. Calculating GC generates a
scalar that can be used to identify problematic gaps and was proven useful in
automating data processing for RNN studies [AT1].

Literature review

Topic of data imputation is very broad. Different methods will be relevant for
data series, when there is significant correlation between consecutive samples
[10, 11], and other will be appropriate where no such correlation exists in the
tabulated data [1].
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Figure 2.4: Gap statistics, gap coefficient, Weight on Bit [kkgf], Volve well F9a.

This chapter focuses on data imputation where missing values are caused by
uneven logging frequency of the measurements systems, that is when various
sensors are providing data at different times, and therefore not all attributes will
have updated values for all the data rows. This process is therefore more akin to
signal upsampling or image upscaling than traditional imputation.

Upsampling by an integer factor is generally described as a two-step process,
where first a sequence is expanded by introduction of empty values between
existing readings and interpolating the signal [12]. The first step is already
complete, since it is the actual problem that needs solving. There are many
methods for achieving the second step. In the domain of image upscaling the
most basic method is nearest neighbour, essentially KNN with K = 1 [13]. More
complex method is bilinear interpolation and bicubic interpolation, which is linear
interpolation and cubic interpolation in two dimensions respectively [14]. Local
regression techniques can also be utilized, such as Locally Weighted Scatterplot
Smoothing (LOWESS) [15], although this method is more used for smoothing
out data, and not upscaling or data imputation.

At this stage it is important to mention the problem of information leakage [16].
It is especially important in ML tasks to avoid receiving information from the
future, especially when working with data series and creating artificial training
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and testing datasets. All imputation processes should be performed on the portion
of the data that is considered available at a given time.

In the following section, and consequently in the related publication [AT1], only
the most basic imputation algorithms are taken into consideration - forward
filling (last valid value carried forward), and linear interpolation. This selection
was done due to lack of systematic comparison of such basic methods, as well as
a working assumption that some signals will be better infilled using one or the
other method. To cite a recent review of ROP prediction publications [17] on the
problem of data gaps: "In general, this problem was omitted".

Methods for small gaps

When dealing with data series one of the most common filling methods is forward
filling, otherwise known as last observation carried forward [1]. In this basic
method the series are processed from the beginning, and when value at position n

is missing, then the value from previous position, n − 1, is used in its place. This
method allows to populate all the empty cells, except for the situation when the
first value is missing; in such edge case operation of analogous backward filling
may be performed after forward filling.

Another basic method of handling missing values that is applicable for data
series is linear interpolation, which is a curve fitting method. When utilized
for imputation it is a robust method that for a gap spanning from position n

to m, henceforth designated yn and ym respectively, requires to know only the
values yn−1, ym+1, and the index value for these datapoints such as measured
depth, here designated: xn−1, and xm+1. This allows for infilling of any gaps,
except of the edge cases when first and/or the last value in the dataset is missing.
This dissertation takes into account only those basic infilling algorithms for two
reasons: they work on vast majority of the gap sizes, and the focus of presented
research was to evaluate the principle of varied and semi-automatic selection of
gap filling algorithm, and not on achieving lowest possible error.
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General equation for linear interpolation is given as:

y − y0
x − x0

= y1 − y0
x1 − x0

(2.2)

Solved for y it becomes:

y = y0 + (x − x0) y1 − y0
x1 − x0

= y0(x1 − x) + y1(x − x0)
x1 − x0

(2.3)

Error of the linear interpolation can be estimated using Rolles theorem, which
was used extensively in the past when sparse tabulated data was more common
[18]. It utilizes the maximum value of a second derivative of the function at hand,
assuming the second derivative is continuous.

|RT | ≤ (x1 − x0)2

8 max
x0≤x≤x1

|f ′′(x)| (2.4)

Where |RT | is the maximum error calculated per Rolles theorem and f is the
evaluated function. While for tabulated data it will necessarily be only an
approximation, it is a useful tool when quantifying the introduced error.

Choosing between forward filling and linear interpolation automatically

Recent review of or ROP prediction publications identified that data gaps are a
problem generally omitted [17]. While forward filling and linear interpolation are
common algorithms, I have not identified a publication that would discuss the
differences between them in the context of machine learning applied to drilling.

An algorithm was proposed and published [AT1] to select whether a given attribute
should be infilled with forward filling or linear interpolation. A dataset with an
attribute X containing k + 1 data points defined as

X = {x0, x1, . . . , xk}. (2.5)
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A new dataset can be calculated using simple partial derivative, using dot notation:

∆X = {ẋ0, ẋ1, . . . , ẋk−1} (2.6)

and no is the quantity of zero-valued of data points in ∆X. The proposed solution
is to apply algorithm:

• Forward filling if no
k ≥ θth%

• Linear interpolation if no
k < θth%

A threshold θth% is a hyperparameter that can be tweaked to achieve the best
results in the ML tuning process.

Two case studies were run based on ML model proposed in published work
[AT1], described in section 3.5.1. Utilizing F9a, depth base dataset, prediction of
inclination and prediction of ROP was performed in two independent studies. The
accuracy of the prediction was calculated using MAE and training-while-drilling
[AT4], a continuous learning approach [19], described in detail in this dissertation
in section 3.4.

Two case studies are presented in publication [AT1] and there is a statistically
significant difference in MAE depending on the threshold parameter. While the
difference is not very big, it is approximately 6.5% between best and worst case
in the inclination case study, as well as more modest 1.6% for the ROP case
study. This is most likely due to fact that the inclination case study depends to a
much higher degree on the temporal effects then the ROP one. Note that the gap
filling algorithms are compared via a case study, since no ground truth for the
data within the gaps exist that would allow for direct comparison. Furthermore,
comparison of error in a case study provides results in terms of practical prediction
error reduction.

More work is needed to identify the exact reason in performance difference
between the infilling using forward filling and linear interpolation. One of the
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main difficulties is that the ML model itself at this level of complexity is, for all
intents and purposes, a black-box device where it is not clear why it behaves the
way it does. Nevertheless, there is a difference in performance depending on which
algorithm is used to what extent and it is a worthwhile hyperparameter to tune.
It is also worth noting that it is likely that specific attributes work best with a
specific algorithm (f.ex. ROP always performs best with linear interpolation),
and further research is required to identify and confirm such settings.

2.2.2 Data resampling methods

As discussed in earlier sections, real-time drilling logs are in practice a combination
of various logging systems that work at different frequencies, and provide data
at different times. This necessarily creates a log where, after merging all the
data sources, the sampling rate is not even. There is also an additional reason
unique to drilling logs for the sampling rate to vary even more. While logging is
essentially always done in the time domain, drilling logs are often converted to
be indexed along the measured depth, making so called depth-based data. There
are a number of reasons for that, such as:

1. Drilling operation consists of multiple technical elements that are irrelevant
for many purposes, like adding pipe or tripping out to relocate heavy weight
drill pipe, where the drill bit is not on the bottom of the well.

2. Equipment failure or unfavourable weather may stop drilling for an extended
period of time

3. It is much easier to analyze one seemingly uninterrupted drilling process

4. It often makes more sense to perform predictive analysis in terms of depth,
not time.

When converting time based logs to a depth base, the sampling rate for sections
with high ROP will be lower, while sampling rate for areas with low ROP will
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be higher. At the extreme, areas where no progress is being made will create
multiple data points at the same depth.

Research presented in this dissertation was based on depth-based data.

Why is resampling necessary?

Resampling, or more precisely making the data points equidistant, is a requirement
for many ML models that contain temporal, or dynamic information. Consider
Figure 2.5, where a sine wave is evaluated. Dashed black dashed line is the ground
truth. Black dots, are data points that were selected from a random, normal
distribution for x ∈ (0, 10). If this data is however plotted (red diamonds) without
the index information at equal distances the sine wave becomes significantly
deformed. This makes it much more difficult for a ML model to learn the pattern
existing in data. To solve this problem data can be resampled. Here, using
a K-Nearest-Neighbours algorithm [20, 21], new dataset was created and was
plotted equidistant along x axis as blue X’s.
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Figure 2.5: Importance of resampling. Effects of unevenly sampled signal.
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In general, established RNNs such as LSTM and GRU do not take into account
index. There is recent research into feeding irregularly sampled data directly
into ML models [22, 23, 24], however solving the problem by modifying the data
allows for use of well established techniques and algorithms.

Literature review

Resampling, in case of non-uniformly sampled signals in practice requires creation
a regression function that can provide a predicted value of the signal at hand
on the arbitrary index position. It is worth noting that in machine learning
resampling often refers to correcting imbalanced datasets; this is often done in
classification problems to make various classes are equally represented [25].

A thorough, albeit dated overview of the problem of sampling at uneven rates [26];
it describes various methods of dealing with the issue, notably linear interpolation,
cubic interpolation, boxcar averaging, equivalent to RNR algorithm uniformly
weighted, and weighted average, equivalent to RNR with distance weights. In
drilling domain only one earlier publication was identified that implemented a
form of resampling, here cubic spline interpolation [27].

As the topic of resampling is fairly unexplored, for a thorough investigation two
algorithms were selected, K-Nearest Neighbours [13] as well as Radius Neighbour
Regressor [28, 29]. These two algorithms have a limited number of parameters to
set, K-neighbour value and radius respectively, as well as allow for alternative
weighting of datapoints. They are quick, easy to understand, and do not generate
artifacts such as Runge’s phenomenon in polynomial regression [30] that would
require additional verification of results.

The algorithms

Two algorithms useful for resampling were evaluated in detail: K-Nearest Neigh-
bors (KNN) [31], and Radius Neighbor Regressor (RNR) [28].
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Figure 2.6: KNN algorithm

KNN algorithm is conceptually presented in Figure 2.6. Parameter K is set to
4, hence 4 data points nearest to the desired location xi are found. Following
calculation is done to establish point yi:

yi = 1
K

K∑
i=1

hi (2.7)

Where hi is the datapoint value as sorted from closest to the desired location xi.

Alternatively it is possible to add a distance weight elements to make the points
closest to the resampled point more important than the further ones as:

wi = 1
di

(2.8)

where di is the distance of the i-th point to the desired location xi.

Alternative, albeit similar algorithm, is RNR is shown in Figure 2.7. The difference
compared to KNN is that the inclusion of the points for resampling is based on
the radius r and the distance from the new data point xi, hence the quantity
of them will vary throughout the dataset. Value yi is calculated the same way
as in equation (2.7). The same as with KNN distance based weights can be
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Figure 2.7: RNR algorithm

utilized. Using RNR there is a risk that no point from the original raw dataset
is within the specified radius. That is why throughout the research presented
in this dissertation radius is defined using the multiples of maximum distance
between the existing datapoints.

Side effects of resampling

Like with all data processing techniques there is a risk of side effects. Since
resampling is in many aspects similar to a centered moving average the same
problems of smoothing out the signal may surface. Exploration of various resam-
pling algorithms with different settings is performed in one of the publications
attached to this dissertation [AT1].

If the deformed signal is left unnoticed, it may cause an increase in the model
performance that would not be representative of the real-life predictive quality. At
the extreme, when using KNN the K parameter is set to be equal to sample count
in a dataset, the resampled dataset will contain of attributes of constant value and
undoubtedly perfect apparent performance. Furthermore, when resampling with
a high radius (or equivalent K value) may be detrimental to real-time applications.
If a model is trained on data resampled with r = 5m (ref. Figure 2.7), then
in real-time operation only data 5m away from the bit will be reliable, since in
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resampling radius is in both forwards and backwards directions in relation to the
index.

Root Mean Riemann Squared

The base for the development of new resampling quality is the previously men-
tioned work using sum of absolute differences [32]; following changes to the
method were introduced in [AT1]:

• difference would be squared to penalize high deviations

• average value instead of a sum would be used to make the metric independent
of the data length.

• root of the sum will be utilized, bringing the method in line with RMS
calculations

There is additional practical problem to be solved however: original and resampled
datasets to not share the same indexes and therefore there is no straightforward
difference to be calculated between two points. In practice, what needs to be
calculated is the average squared distance between two piecewise functions, defined
as straight lines between the consecutive datapoints. This piecewise function is
here designated as g(x). This can be calculated using a Riemann sum [33]. This
results in an equation that is called Root Mean Riemann Squared (RMRS) in
the publication [AT1]:

RMRSg =

√√√√ 1
u

u∑
i=1

(
g(xi)

)2
. (2.9)

where u is the quantity of divisions as understood in a classical Riemann Sum.

Practical application of RMRS to optimize resampling.

RMRS was applied to select the best resampling algorithm on a case study of
a Volve dataset well F9a, depth based dataset. Sampling rate was selected at
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0.25m, in line with the research done on that well for the inclination prediction
[AT3, AT4]. Two algorithms were tested, KNN and RNR, both with uniform
weighted samples and distance weighted samples. Parameters varied were the K,
the neighbor count for KNN and radius multiplier for the RNR, where maximum
distance between datapoints was checked in the dataset and that value was
multiplied. This is explored in detail in [AT1].

2.3 Benchmarking datasets

Recent survey revealed that 70% of scientists attempted and failed to reproduce
results from a publication [34] touting reproducibility crisis in science. As a part
of publication [AT2] there was a review performed of publications that focused
on ROP prediction [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52]. Vast majority of them did not share data at all. Two publications [48,
49] used ancient by modern standards data, which is 30 samples from 1974, with
data listed verbatim in references [50]. There was also a publication listing all
25 samples used [51] which were later re-used [52]. This is a very poor data
landscape to benchmark novel methods.

To tackle this problem a reference dataset was created [AT2] for the purposes of
benchmarking ROP prediction methods. It is based on the Volve dataset [6] and
retains the original open license applicable at the time: CC BY-SA-NC 4.01. It
consists of 7 wells from the original dataset and are depth-based.

Additional problem in ML model benchmarking is that different researchers apply
their models differently, not always in a correct manner. Three scenarios were
defined in [AT2]: Continuous Learning [19], All for One, and One for All, that
define how one is to divide the data into available and for testing. Available data
can be used for training and validation purposes. The scenarios are visualized
in Figure 2.8. Those scenarios were designed to represent real-life application

1In September 2020 Equinor changed the license to their own, equally open Equinor Open
Data Licence
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Figure 2.8: USROP recommended scenarios, from [AT2]

possibilities, that is one reference well used for training the model that is deployed
to multiple wells (One for All); multiple wells can be available for making the
model while one is left for testing, evaluating the impact of additional data
available (All for One); lastly the continuous learning approach, where no pre-
trained model is available as it is being trained while drilling. Technical details
on how perform this study is included in the related publication [AT2].

The publication also suggests the error metric, as there are many to choose from.
Weighted Mean Absolute Percentage Error (WMAPE) is recommended as more
intuitively understandable by petroleum experts than R2 more commonly seen in
scientific publications:

WMAPE =

n∑
t=1

|yt − ŷt|
n∑

t=1
|yt|

(2.10)

where yt is the true value and ŷt is predicted value, with n being the dataset
length.

Having all these boundary conditions established the publication shows results
for ROP prediction using a number of off-the-shelf algorithms, as well as physics
based Bingham model [53], to establish base performance. Publication [AT2]
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presents reference results for the all the described scenarios using various metric
methods. The publication also shares the code used to build the dataset from
the Volve data.



Chapter 3

Machine learning modelling
procedure

3.1 Introduction to Machine Learning

Machine Learning is a method where algorithms develop relationships between
provided input and output data, called training, so that afterwards the output
can be predicted for an arbitrary input. This is best understood on the most basic
example. When data is plotted in a typical spreadsheet program such as Excel,
there is an option to add a trendline. This is one of the most basic examples of
machine learning. The equation provided by the software allows to estimate the
total payment per arbitrary number of claims.

While there are multiple ML algorithms the one that is the basis of the work
contained in this dissertation is an artificial neuron. It is based on a biological
neuron and was developed in 1943. Currently employed basic artificial neuron
structure is shown in Figure 3.1.

The input vector containing values from x1 to xn is multiplied by weights from
w1 to wn. The result is then summed (Σ) with bias value. This sum is then
passed through an activation function, here designated as φ. There are multiple

28
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Figure 3.1: Structure of the artificial neuron.

activation functions in use: linear, rectified linear (ReLU), sigmoid, hyperbolic
tangent (tanh), and many more. The output of the activation function is the
output of the neuron, designated here as y.

3.2 Data split in data series

In ML the dataset at hand is in principle split into three separate portions, training,
validation and testing [54]. The training dataset is used to establish internal
coefficients and structure of the ML algorithm. It provides the algorithm both
the input and the desired output in a goal of establishing a correlation between
the two. Validation dataset is a portion of data that is used for hyperparameter
tuning, or more generally, selecting the best algorithm to use. During development
of the ML model, the algorithm is presented with the input from the validation
dataset, and based on the "learning" of the data gained from the training dataset
it provides the estimate of the output. The difference between the true output
of the validation data and the value predicted by the ML algorithm is used to
adjust, manually or automatically, the way the model is trained. Lastly, the
testing dataset in principle should be evaluated only once at the end of the ML
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model development process, to provide the final score by calculating the difference
between the true output of the test dataset and the ML predicted output. No
further modifications to the ML model are allowed at this point, since otherwise
the test dataset becomes just another validation dataset. In principle it is not
necessary to use a strict validation dataset; the main split of the data is into
training and testing, with the validation data being taken from training as needed.

While there are discussions on the methodology itself [55, 56] there are two main
methods of splitting data at hand into training and testing. One is a random
data split, where samples are allocated to one or the other dataset at random at
predefined quantities, and sequential split, applicable to data series, where at one
point a cutoff exists, splitting the data into training and testing at a given index
value, be it time, depth, or other.

An experiment was performed where two random walks are generated and a
machine learning algorithm is employed to predict one based on the other [AT2].
In this clearly nonsensical dataset, with two random series, when train/test split
is performed randomly a basic off-the-shelf ML algorithm, Gradient Boosting
Regressor of scikit-learn library [21] achieves impressive result of R2 = 0.946. By
tweaking parameters such as the split ratio and random seed it was possible to
predict one random walk based on other random walk with R2 = 1.00, when
rounding to two decimals. This is clearly an absurd result.

Proper way of splitting data in series is to do so in continuous sections, where data
up to a given point is considered training, and data beyond that point is used for
testing. This way of splitting a dataset is at the core of the training-while-drilling
approach presented in the next section.

Model validation

Part of the available data, the training dataset, can be set aside as validation
data, somewhat reducing the size of the training set. Work presented in this
dissertation [AT4, AT3] reduces that set typically by the last 20% to evaluate
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the model while training; this validation set is the newest data which showed the
best results later compared to picking early, middle, or random samples.

Having validation dataset it is possible to implement early stopping [57], a
technique where validation error is constantly monitored. Model with a lowest
validation error is retained, and as long as consecutive epochs yield reduced
validation error, this model gets updated. At one point model will begin to
overfit; this is a moment where while training error will continue to drop, the
validation error will begin to increase. Training will continue for a number of
epochs defined as patience, in case of model shown in this dissertation it is set to
25. In that time either the validation error will reach a new minimum, in which
case the patience counter will be reset to original value, or the training will stop.
This is shown schematically in Figure 3.2.
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Figure 3.2: Concept of early stopping in machine learning training

3.2.1 Feature engineering

To make the job of the ML algorithm easier it is often beneficial to perform
feature engineering. This is a process in which expert domain knowledge is used
to apply mathematical transformations to existing inputs so that additional input
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is created that has a more straight-forward correlation with the output, making
the prediction easier, and therefore, error lower.

The term feature engineering was coined approximately 20 years ago [58] to
establish it as a part of a software lifecycle. A basic example of feature engineering
would be deconstruction of a date. While ML algorithms can work with formats
such as Unix time, there is a lot of potentially useful information that can be
mode more easily accessible. Hour of the day, day of the week, a binary attribute
for "is it weekend?" can make ML problems such as road traffic prediction much
more successful.

Feature engineering is widely adopted in drilling related problems [36, 59, 38];
a recent publication explores feature engineering as a key element in predicting
ROP, where DWOB values are corrected through physics based models achieving
significant performance increase [AT8].

In the case study of inclination prediction feature engineering was applied to the
target signal, the inclination, explained in detail in related publication [AT3]. The
rationale is that directional drilling process is to a high degree independent in its
behaviour of the absolute inclination; therefore the output was moved to a local
coordinate system. For each input sample inclination starts at xi−n and ends at
xi−1, and then continues as output at xi and ends at xi+m. Scaling was applied,
where inclination at xi−n is equal to 0, and at xi+m it is equal to approximately
1. It is not guarantied to end at one, because within a sample the inclination can
rise a lot, or not at all, and scaling uniform throughout all samples is necessary.
The process is visualized in Figure 3.3

Such transformation allows the network to generalize better and be trained
on a single well. It abstracts the inclination prediction process so that the
absolute inclination is irrelevant. Scaling in range (0, 1) was selected as it is
standard procedure in ML. There are studies comparing different scaling methods,
standardization, normalization and other algorithms, with to single algorithm
being clearly better than the other [60].
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Figure 3.3: Local coordinate system transformation of inclination

3.2.2 Attribute selection

While feature engineering creates new attributes based on the existing ones, the
attribute selection focuses on picking the most useful attributes from the ones
that are available. Recent publication performed systematic analysis of various
attribute selection techniques [61]. Three basic categories of feature selection
methods were identified:

• Intrinsic

• Wrapper

• Filters

Intrinsic methods are a part of the ML process itself; for example in Decision Tree
algorithm the less important features will simply not be a part of the resultant
tree, effectively omitting some of them. Wrapper methods perform a search for
a subset of features that will perform best. An example of such algorithm is
Recursive Feature Elimination (RFE) [62], where an ML algorithm is trained
on the initial set of features, and the least important feature is removed. This
process is repeated until a desired quantity of features is remaining.

Filters category is very broad, and focuses on mathematical evaluation of the
relationship between the features and the target. The aforementioned publication
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[61] categorizes various algorithms based on their applicability using the input-
output data type matrix. It is necessary to identify if the input is numerical
or categorical, and whether the output is numerical or categorical. In relation
to drilling related ML problems explored in this dissertation both inputs and
outputs are numerical. For such combination Pearson correlation coefficient [63]
and Spearman’s rank correlation [64] are listed as the main algorithms of interest,
which are often compared in literature [64] as they are closely related. Pearson’s
method is based on evaluating the linear correlation between the attributes, being
equal to the ratio of covariance of the attributes to the product of standard
deviations of the attributes:

ρX,Y = cov(X, Y )
σXσY

(3.1)

where ρX,Y designates the Pearson’s coefficient between variables X and Y , cov

is the covariance value of two attributes, and Σ stands for standard deviation.

Spearman’s rank correlation is defined similarly, where actual values are replaced
by their ranks (position) in the dataset:

rs = cov(R(X), R(Y ))
σR(X)σR(Y )

, (3.2)

where rS is the Spearman’s rank, and R(·) designates the rank (position) in the
dataset.

There are newer methods for numeric input to numeric output correlations. One
of such algorithms is called Predictive Power Score [65]. It utilizes Decision
Trees to evaluate if given attributes A can predict attribute B. One of the
major touted benefits of this approach is that it makes the correlation matrix
asymmetrical, as many correlations are in reality. An example of asymmetric
correlation is post codes (zip codes) and cities. Any given numeric post code
will be directly correlated with a city, for example 75005 can be reliably decoded
to Paris. However this correlation does not hold true in the other direction, as
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city of Paris has multiple post codes and pinpointing the correct one for a given
sample requires more data.

An alternative to feature selection is feature projection, where original inputs are
transformed into a different set of inputs. One of common feature projection
methods in use is Priciple Component Analysis (PCA) [66]. This method decom-
poses multi-dimensional dataset into principal components; these are eigenvectors
of the multi-dimensional data’s covariance matrix. The components of the PCA
transformation are sorted based on the quantity of variance explained, with all
components explaining 100% of the original variance. It is the components that
carry the most variance information that are desirable in retaining as inputs to
ML algorithms, while those explaining a small range of variance can be omitted.

It is important to highlight that while feature selection algorithms simply select
attributes that may be the most valuable for the ML algorithm, the PCA trans-
formation completely changes the dataset making it unrecognizable to the naked
eye. Another key consideration is that the PCA transformation, similarly to ML
algorithm is trained, or here calculated, on a dataset, based on which eigenvectors
and eigenvalues are established. These create a core of the PCA transformation
allowing translation between the raw values to PCA components and back, albeit
with data loss unless all PCA components are used. This allows for calculating
PCA transformation of previously unseen data.

Alternative feature projection methods such as Non-negative matrix factorization
(NMF), Linear discriminant analysis (LDA), Generalized discriminant analysis
(GDA), Autoencoders, and T-distributed Stochastic Neighbor Embedding (t-SNE)
are out of scope of this dissertation.

In drilling

Many drilling related publications utilize Pearson correlation coefficient [63] to
identify attributes correlated with the target output. This strategy works best for
simpler problems and simpler models, as it basically uncovers correlation close to
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linear, and therefore it is not useful for cyclic signals. Furthermore, more complex
ML models are in principle deployed where relationships far beyond linear exist.

Another approach for selecting inputs for the ML model is expert knowledge. It
may be the case that highly correlated attributes contain certain information
that is simply duplicated, while less correlated signals carry more nuanced data.
It is inadvisable to utilize all available attributes as inputs, since there may be
literally hundreds of attributes recorded in drilling logs [AT6] which will likely
yield good results in training, but high error in testing, as spurious correlations
will be used by the ML model. This is particularly visible when limited data is
available, as in proposed training-while-drilling approach in further chapters and
the relevant publication [AT4].

Alternatively, PCA can be utilized as dimensionality reduction technique [1].
Eigenvectors are calculated based on training data only, while transformation is
applied to both training and testing datasets. This technique showed to perform
very well in the presented case study [AT1], where 5 components showed lowest
error either significantly outperforming selection based on Pearson coefficient and
ppscore [65], or performing approximately on-par, depending on the exact case
study setup.

3.3 Recurrent Neural Networks

There is a vast number of algorithms that fall under machine learning; research
presented in this dissertation utilizes Recurrent Neural Networks (RNN) [3] that
are able to capture the dynamic behaviour of the system by using past values as
inputs to predict the future values, outputs.

RNNs, or rather their modern implementation using LSTM and GRU, play a
significant role in many ML applications. While RNN is theoretically Turing
Complete [67], meaning it can be applied to any computational problem, they
excel in a specific sets of tasks. They are a common choice for language transla-
tion, or sequence to sequence learning [68]. LSTM is also widely used in both
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handwriting recognition as well as speech recognition [69]. There are also more
exotic applications of LSTM; in 2016 Google’s OpenAI created a deep neural
network to play a popular computer game Dota 2.

What LSTM is mostly known for and widely applied in is time series forecasting,
which is also the area that is most relevant to real-time drilling forecasting. LSTM
in such problems hugely outperforms non-ML approaches such as ARMIA [70].

In 2014 a simplification of LSTM was introduced, a Gated Recurrent Unit (GRU)
[71]. The key practical difference betwen GRU and LSTM is that the former tends
to perform better in certain small datasets [72, 73]. This becomes particularly
relevant in proposed mode of model deployment presented in this dissertation
called training-while-drilling [AT4], where drilling operation begins with blank,
untrained model, and as the data is being collected, the model begins to perform
better and better. Additional benefit of GRU is that it is similar to LSTM, where
the models can be switched back and forth during development phase without
significant changes to the software.

Variants of RNN are used in petroleum based problems, but likely due to their
more advanced nature are less common than basic ML algorithms. There is
research into ROP prediction [42] as well as gas kick prediction [74] using LSTM.
GRUs are also used, for example in tool condition monitoring [75]. Both archi-
tectures were employed for gamma log prediction [76] with mixed results.

The main benefit of RNN-like architecture is that the sequence of the input has
meaning. If n time-steps are used as input to an ML algorithm, the information
about sequence of the input is lost if MLP, Decision Tree, or SVM is used.
While through the training process this information can be learned, matching the
sequential nature of the data to the architecture of the algorithm allows for much
better performance, similarly to how feature engineering boosts the ML scores
even though application of basic math. On the other hand, RNN architectures
will struggle with non-sequential data, as they would have to effectively learn
against their own nature.
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3.3.1 RNN cell structure

As visualized in Figure 3.4 the cell A takes not only input xt but also a value
vt−1, the recurrent connection generated in the previous step. That connection
may contain the generated output from the previous step, ht−1, but depending on
the exact cell architecture it can contain additional data. This process generates
output ht. For practical purposes this process is typically considered in the
unfolded state, as shown on the right hand side of the Figure 3.4.
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Figure 3.4: Recurrent Neural Network [3]

Internal structure of the basic RNN cell is very simple. Current input vector
and previous output vector are concatenated and processed through a tanh layer.
Figure 3.5 provides visualization of the RNN cell structure; note that the structure
is somewhat simplified and omits basic elements of an artificial neuron.
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Figure 3.5: RNN cell structure [3]

Mathematically it can be described as:

ht = σ(W · xt + U · ht−1 + b) (3.3)
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where ht is the output vector, σ is the activation function, in Figure 3.5 hyperbolic
tangent function is listed. W and U are weights for the input and output vectors
respectively, and b is bias.

3.3.2 Long Short-Term Memory

To solve a number of practical problems in training RNNs a new cell structure was
developed called Long Short-Term Memory (LSTM) [77]. It has a significantly
more complex structure than a classical RNN cell, as seen in Figure 3.6. The
architecture of the LSTM cell is made such that it facilitates remembering
information for longer periods of time.

σ tanh

σ

tanh

σ

x

x

+

x

σ

tanh

x

+

sigmoid
function

tanh
function

concatenate

pointwise
multiplication

pointwise
addition

copy

ct-1

ht-1

xt

ct

ht

cell state

output
vector

intput
vector

Figure 3.6: LSTM cell structure [77]

The cell structure can be expressed mathematically as shown below:

ft = σg(Wf xt + Uf ht−1 + bf ) (3.4)

The ft is the activation vector of the forget gate. W and U designate matrices that
are the weights of the input and recurrent connections with subscripts identifying
the specific vector. σ is the activation function with subscript identifying the
relevant vector. For LSTM σg is sigmoid function, σc is hyperbolic tangent
function, and σh is also hyperbolic tangent function. t subscript identifies the
current time-step, and analogously t − 1 the previous time-step. xt is the input
vector and b is bias, separate for each relevant vector.
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it = σg(Wixt + Uiht−1 + bi) (3.5)

The it is the activation vector of the input gate

ot = σg(Woxt + Uoht−1 + bo) (3.6)

The ot is the activation vector of the output gate

c̃t = σc(Wcxt + Ucht−1 + bc) (3.7)

The c̃t is the activation vector of cell input

ct = ft ◦ ct−1 + it ◦ c̃t (3.8)

The ct is cell state vector

ht = ot ◦ σh(ct) (3.9)

The ht is the output vector of the LSTM unit. The ◦ symbol designates an
pointwise multiplication, element-wise product, or Hadamard product, where two
matrices A and B of same shape are the input and the output is a matrix of the
same shape C, where elements are calculated as cij = aijbij .

3.3.3 Gated Recurrent Unit

Active research into RNNs yielded a structure called Gated Recurrent Unit (GRU)
[71] which is based on the LSTM, but has fewer elements, as seen in Figure 3.7.
This structure was of interesting for the presented research as it may perform
better than LSTM when applied to smaller datasets [72, 73], which was the case
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for training-while-drilling approach [AT4], where an ML algorithm is trained on
data from the well where it is applied at the same time.

Expressing the GRU structure mathematically:

zt = σg(Wzxt + Uzht−1 + bz) (3.10)

where zt is update gate vector. W and U designate matrices that are the weights
of the input and recurrent connections with subscripts identifying the specific
vector. ht−1 is the output vector of the previous state, b designates bias with
subscript designating the relevant vector. xt is the input vector. σg is the
activation function, here sigmoid function.

rt = σg(Wrxt + Urht−1 + br) (3.11)

rt is the reset gate vector

ĥt = σh(Whxt + Uh(rt ◦ ht−1) + bh) (3.12)

ĥt is the candidate activation vector, σh is the activation function, here hyperbolic
tangent function. rt is the reset gate vector.

ht = (1 − zt) ◦ ht−1 + zt ◦ ĥt (3.13)

ht is the output vector and zt is the update gate vector.

3.4 Training-while-drilling approach

One of the challenges in machine learning adoption in the petroleum industry is
the fact that very often wells will differ in lithology and equipment used, causing
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big differences in system response. This can cause machine learning models
trained on one well perform poorly on other wells. Furthermore, if a piece of
equipment fails it may be decided to finish drilling using a different technology,
complicating matters even further.

It is however not necessary to train machine learning model on a different well
than it is being applied to. Continuous learning paradigm [19] discusses ML
models that are continuously updated, so that new experiences can influence
predictions made in immediate future. This method, applied to drilling was called
training-while-drilling [AT4], where drilling starts with an untrained model, and
as the data is collected it is being used for training. While reusing data from
the same well to perform predictions has been done recently [36, 39], research
performed for this dissertation was the first application of truly continuous
learning at high resolution [AT4].

Training dataset in training-while-drilling approach is considered to be in [0, x%]
of the available data, and the testing dataset is in [x%, (x + F )%]. The value
x is varied from as close to zero as possible, where there is sufficient data to
train a model, to value near 100%. This describes the increasing measured depth
while drilling. The F value drives the size of the testing dataset, which can be
in practice equivalent to the length of MD drilled while the new model is being
trained. The complete process is described in detail in publication [AT4].

It is important to compare new methods to the previously used ones. In the
publication [AT4] total four approaches were evaluated:
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1. local coordinate system method, where inclination is moved to the point
(0,0) for the first point in the sample. This is a feature engineering approach,
ref. Section 3.2.1. A branched MLP+RNN neural network design was used,
see Section 3.5.1.

2. incremental method - inclination value was converted to inclination change,
again a feature engineering approach, and later recovered through cumula-
tive sum. The same branched neural network was used as before.

3. MLP method - off the shelf Multi-Layer Perceptron based off an artificial
neuron (ref. Section 3.1) was used to predict inclination change. This is a
purely row-wise application and no temporal information is included in the
model

4. XGB method - an off the shelf algorithm utilizing extreme gradient boost-
ing [78] was applied row-wide, without temporal information. This is a
very popular multi-purpose algorithm and therefore was chosen for this
benchmarking task.

Results are presented in the publication [AT4], where RNN based methods signif-
icantly outperform MLP and XGB. One of the key findings of that publication is
that to achieve best performance two different approaches have to be used, since
using inclination change performs better for the shorter horizon prediction, while
the local coordinate system approach performs better for further predictions, as
it does not accumulate error - the incremental method contains a cumulative sum
to restore actual inclination, hence sums the error from all earlier predictions.

3.5 Case study of directional drilling

Main case study used throughout the research presented in this dissertation is
related to directional drilling, explained shortly in Chapter 2. One of the practical
problems in directional drilling is the distance between the DNI sensor and the
drill bit. Especially in the case of the old and reliable bent sub drilling method
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this distance can be very significant; schematics included in the Volve dataset
show it being 23 meters behind the bit. This results in a problem here called
sensor lag, where a portion of a well is drilled, but it is yet to be measured by
the sensor. The targets that directional drillers have to hit are often very narrow,
for example in the Bakken field pay zones are just between 5m and 15m thick
[79]. This makes providers of directional drilling equipment compete in terms of
putting the sensors as close to the bit as possible; this is a big technical challenge,
since front of the drilling tool is occupied by complex mechanisms that allow the
BHA to turn. Due to high pressure, temperature and vibration levels the sensors
suitable for downhole use are much bigger in size than the ones found in modern
consumer electronics. This problem was also presented for the Forsker Grand
Prix 2020 [AT9].

The resulting sensor lag makes directional data lag behind the real-time attributes.
This is shown in Figure 3.8; to the right from the sensor exists a portion of the
well where attributes such as WOB, RPM, ROP, SPP, etc. were collected while
drilling and were available for processing and analysis, for all intents and purposes,
instantly. Directional information such as inclination and azimuth however, are
available only from the portion of the well directly behind the sensor, resulting in
delayed reaction to the actual direction of the well drilled. The goal of the case
study is to predict the directional information in the section where it is missing.

distance	b	
contains	m	steps

distance	p	
contains	n	steps

sensor

inclination	data
available

inclination	data
not	available

real-time	attributes	available

t

Figure 3.8: Sensor lag, originally in [AT4]
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3.5.1 Branched model architecture

To achieve high quality prediction when using ML techniques correct inputs and
correct algorithm have to be selected. In principle, the more directly relevant
information is provided to a ML model, the better the result quality can be
expected afterwards. Just like with human brain, where different areas of the
brain are wired differently for different tasks, such as occipital lobe handling most
of the visual stimuli [80], it is important to pick the ML algorithm best suited for
the task.

To predict the lagging inclination data, as described in the described case study
before, there are two distinct methods of prediction that can be used:

1. Predicting when sliding and rotating section of the well are based on ROP,
WOB, Torque, etc.

2. Predicting the characteristic rising and holding pattern of the inclination

While these two elements sound similar, first element works row-wise, and the
data directly before and after a given point is irrelevant; the second element
works purely column-wise, focusing on inclination alone, where past datapoints
carry all the relevant information.

To combine these two methods of prediction a custom neural network architecture
is necessary, as there are no off-the-shelf algorithms suited for this task. This
was achieved using Keras [81], developed and maintained by a Google engineer
François Chollet. It works as a high-level input to TensorFlow [82], an ML library
developed by Google Brain team. Using these tools it is possible to build a custom
architecture using implemented building blocks such as vanilla RNN, LSTM,
GRU, densely connected ANN layer (Dense), as well as additional non-learning
layers that are useful for various reasons, such as dropout layers, gaussian noise,
concatenation etc.

Figure 3.9 presents the final model architecture developed and used in this, or
slightly modified form for multiple publications. Publication [AT3] introduced
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Figure 3.9: Developed branched model architecture [AT1]

the model, which was later used from continuous learning perspective in [AT4].
The model contains two distinct branches: one for the RNN input, and other the
MLP input. The left hand side, RNN, will accept the inclination data from points
from xi−n to xi−1 (ref. Figure 3.8 for visual representation). The data is first
channeled through dense layer for basic processing, and is later put into an RNN
layer, which will be either LSTM or GRU; inclination case study showed better
results with the GRU layer, while work focused on ROP prediction indicated
better results with LSTM [AT8]. The result is put into a densely connected ANN
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layer and a dropout layer afterwards that is randomly dropping connections while
training to enable better generalization abilities of the network. This layer is set
to drop a specified percentage of the connections, which is a hyperparameter to
be tuned.

The other branch use real-time parameters as input from location xi to xi+m.
First attributes are put through row-wise dense layers, later to act as an input to
a sequence of dense-dropout-dense-dropout layers.

To further visualize the way the inputs are arranged Figure 3.10 is shown; this
visualizes where the inputs are in relation to the output. In earliest publications
on the proposed model [AT3, AT4] the area here marked as unused data was also
used for MLP input, however it does not directly correspond to the output and
by removing the prediction quality increased.

To visualize a sample with practical data Figure 3.11 is shown. It is a single
sample from the case study, where Surface Torque, Rotary Speed and ROP
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Figure 3.11: Input sample, originally published in [AT5]

are known in real time, while Inclination data is lagging behind and has to be
predicted. The continuous line in the upper chart is the prediction done by the
model and the dotted line is ground truth. All other values are inputs. In this
particular example taken from earlier work [AT3, AT5] inputs were selected using
expert judgement, and as indicated before contain MLP input throughout the
whole length of the sample, ie. also cover known inclination region, not only the
prediction.
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Sensitivity analysis

4.1 Rationale

Machine learning models are notorious for being so called black boxes; this
means that it is not straight-forward to understand what exactly the model is
doing. While one can display the structure of ANN with all the weights and
biases established throughout the training process at a certain complexity level it
becomes impossible to understand the logic behind an output to a given input
manually. If a model is not well understood it brings a risk when it is to be
deployed.

It is possible to gain some insight to the inner workings of a model by performing
sensitivity analysis, and this chapter focuses on providing method of doing that
for RNN-based models, particularly for the proposed branched model architecture
described in this dissertation. Presented methods are flexible enough to be applied
to other, significantly different architectures as well.

49
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4.2 Definition

Sensitivity can mean different things, therefore specifying which definition is
discussed here specifically. Sensitivity analysis in a sense discussed in this
dissertation is defined as the ratio of the change in model’s output relative to the
change in model’s input.

The reason for sensitivity analysis is the unknown nature of complex models,
where relationship between inputs and the output is not clear. Such models
are often referred to as ’black boxes’. Sensitivity analysis is typically performed
together with uncertainty analysis, analyzing the range of potential outputs [83].

The basic approach to sensitivity analysis is to change one of the input parameters
and to observe the change of the output [84]. This method is often referred to as
one-at-a-time (OAT). Its biggest downside is that it is unable to efficiently explore
the input hyperspace for highly dimensional models [85] making the method
unreliable for them.

Different method for sensitivity analysis is regression analysis [86], where the
input and output relationship is fitted with a linear regression and sensitivity is
taken from the appropriate regression coefficients.

Variance-based sensitivity, often referred to as Sobol’ indices [87, 88], is a more
robust method of calculating sensitivity of a system. It decomposes the variance
of the output to signify what portion of it is related to a given parameter.
Furthermore, this method allows also to uncover that variance is dependent on
interaction of two inputs. The calculation is based on sampling random points in
the input domain; often a latin hypercube method [89] retaining the statistical
probability of inputs is utilized to reduce the necessary amount of calculations as
well as make the analysis more reliable. Additional noteworthy variance based
method is Fourier amplitude sensitivity testing (FAST) [90]; it utilizes fourier
series to represent the model and reduce the computational complexity compared
to competing methods.
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A relatively new method, called Variogram Analysis of Response Surfaces (VARS)
[91] that aims to provide deeper understanding of sensitivity than the partial
derivative and the variance based methods. This is achieved by classifying
sensitivity not through a single value, but as a variogram [92], allowing to better
define the sensitivity in the input hyperspace.

4.2.1 Sensitivity analysis in Machine Learning

Recent publication analyzed an ML model for predicting real estate prices [93]
utilized a Profile method of sensitivity analysis [94] which in principle is an
extension of partial derivative, where five alternative scales of input change are
probed.

Different publication from 2013 focuses on proposing a number of novel methods
of sensitivity analysis for data driven models [95]. Following methods were
presented:

• 1D-SA - OAT PaD method

• GSA - an earlier published global sensitivity analysis [96]

• Data-based SA - PaD where few samples are taken as the starting points

• Monte-Carlo SA - PaD method where N starting points samples are gener-
ated synthetically

• Cluster-based SA - utilizing clusters of inputs based on the dataset

Another publication [97] focuses on exploring sensitivity analysis in ML vision
systems, employing partial derivatives, creating heatmap of importance of indi-
vidual pixels in a given image. In general, sensitivity analysis within Machine
Learning is far from unexplored, but the publications on the topic are relatively
sparse and there are no widely adopted standards in use.
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4.2.2 Sensitivity analysis of ML in drilling

Sensitivity analysis is rarely performed in relation to ML models in drilling. Most
commonly mentioned sensitivity analysis performed in relevant research refers to
optimizing the ML model, or hyperparameter tuning [98, 99, 100], treating it as
a meta-model where error is to be optimized. Only one publication was identified
that strictly performed sensitivity analysis of the ROP via ML surrogate model in
relation to the model inputs [101]. This analysis was performed via one-at-a-time
method, changing one input while keeping others constant; single base case, here
a mean value was used. More recently same author performed sensitivity analysis
to explore modelled drill bit behaviour [102]. The publication produced results
as cobweb plots, which are sometimes used to visualize sensitivity [103], which
are well suited for exploring systems with relatively low quantity of variables,
and ML models with recurrent elements may contain hundreds.

In the domain of artificial neural networks it is possible to evaluate sensitivity
though analysis of the weights attached to neurons [104]; again an approach that
is problematic in practical implementation for bigger networks.

4.3 Local, global, and data-driven sensitivity

Sensitivity analysis can be performed in a twofold way in terms of the scope of
inputs. Basic approach considers sensitivity around a single set of inputs and is
considered a local sensitivity analysis, or one-at-a-time analysis. This approach
is simpler, but the results are valid either for only close vicinity of the input
vector, or for the whole system if the system is fully linear.

Considering a basic linear system: y = f(x) = 2x Sensitivity of this equation for
any given input will result in the same result. Derivative of a linear equation is
constant value, and therefore partial derivative will also be a constant value.

Non-linear systems will have different sensitivity depending on the selected starting
point. Most basic non-linear system, y = x2, will have negative sensitivity (output
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decreases when input increases) whenever starting point of input x is in range of
(−∞, ∼ 0). The sensitivity will be positive when selected starting point x is in
range (∼ 0, ∞). Results of a local sensitivity analysis for a non-linear systems
can be used as an approximation of a global sensitivity, if the non-linearity is
small, for example equation y = x2 will be nearly linear if a system described by
it realistically exists only for a very small range.

Alternative approach is global sensitivity analysis. There are various methods
to calculate such sensitivity that is independent of the input, such as employing
Monte-Carlo analysis [105] or via Sobol’ indices [87, 88].

Research presented in this dissertation and the related publication [AT5] aims
to perform global sensitivity analysis through partial derivative (PaD) that is
data-driven. The innovation in this work is to perform such analysis through
utilization of the dataset (inputs only) at hand which both defines the realistic
area of the input hyperspace as well as statistical density of such hyperspace;
the result is presented as statistical distribution providing additional sensitivity
information.

4.3.1 Partial Derivative

The process presented in publication [AT5] is rooted in a partial derivative. Let’s
assume a system R defined by a function f(·) with input S as:

R = f(S) (4.1)

To apply PaD sensitivity analysis one of the inputs is varied by a given small
amount and change of the function in relation to the extent of change is calculated:

SIRS = [R(S0 + ∆S) − R(S0 − ∆S)]
2∆S

(4.2)
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where S0 is a selected starting value of input and ∆S is the small change to the
input. This is a one-at-a-time (OAT) approach, where only one input is changed
a any given moment. This is shown to be problematic, since OAT methods cannot
successfully probe the high-dimensional Euclidean space [85], and ML models
including RNN elements, such as the one presented in this dissertation, can have
hundreds of inputs, and therefore hundreds of dimensions of the input vector.

The goal however is not to analyze sensitivity in each and every possible location
of the input hyperspace, but only in the realistic and therefore relevant areas of
it. When RNNs are applied it is specifically because the sequences of data, and
therefore sequences of inputs, are not arbitrary, but follow specific patterns. In
the case study of inclination prediction in directional drilling it is the smooth
sequences of sliding and rotating of the bent sub creating characteristic wavy
signal. Inclination will not vary in a sawtooth-like signal and therefore even
though the system will have a sensitivity for this input, it is irrelevant.

Data driven methods have a unique characteristic which identify the area of
realistic inputs - by definition the training dataset for an ML model has to cover
a realistic range of inputs. If the dataset at hand does not cover realistic input
range it will not work as intended in deployment.

4.4 Data driven sensitivity

Partial derivative based data driven sensitivity analysis is proposed [AT5], that
significantly expands the previously published work on Data-based Sensitivity
Analysis [95]; it is done on a larger scale and results are explored statistically.
It performed by applying sensitivity shown in equation (4.2) to a given input S

multiple times using the dataset at hand (used for model creation) as a set of
starting points S0. To formalize the process the dataset at hand is defined as as
X; it can be containing both training and testing data, or just testing data for
more stringent testing where generalization capabilities of the model at hand are
not yet established. This dataset will contain n samples [X1, X2, ..., Xn]. Each
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individual sample Xi, with i designating a given sample, will contain an input
vector of length m:

Xi := [xi,1, xi,2, ..., xi,m] (4.3)

The data driven sensitivity index (DDSI) for a given input from 0 to m will
be a set of PaD sensitivity indexes SI calculated via equation (4.2) DDSI :=
[SI1, SI2, ..., SIn]. Note that any given SI will be a vector if the model returns a
vector as well.

Application requires selection of the value ∆. Following best ML practices all
inputs are typically scaled to range (0,1) or similar. In research presented in
this dissertation we have used ∆ = 0.1, ie. 10% of input value change. Multiple
values of ∆ can be explored to evaluate sensitivity to a small or a big change.

Resultant DDSI is a three-dimensional vector with dimensions responsible for
sample, input, and output. This allows to perform statistical analysis of the
sensitivity. Example using inclination sensor lag case study discussed in detail in
the attached publication [AT5]. An example taken from this study shows a 2D
image, where the sample direction of the DDSI vector is reduced to an average,
resulting in visualization of average sensitivity of a given input for a given output.
The results shown in Figure 4.1 are truncated to show only inclination data input
(data behind the directional sensor) relationship to output - the predicted data
ahead of the sensor.

4.4.1 Sensitivity per input channel

Calculating sensitivity for an individual input however may not necessarily be
the most informative way towards understanding how a given ML model behaves.
The particular inclination prediction model that was evaluated consisted of 644
inputs (86 inclination inputs, 3x 186 associated attributes inputs) as well as 100
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Figure 4.1: Sensitivity heatmap between Inclination input channel and output,
with color bar designatig data driven sensitivity; from [AT5].

outputs for inclination prediction. These values are tied to the architecture of the
problem at hand, available attributes, desired prediction distance, resolution, etc.

DDSI method presented in [AT5] can be applied towards complete channel, which
here designates all the inputs related to a given attribute, for example inclination.
The process is analogous to DDSI calculated per individual input. This way
output response to change of all inputs out of a given channel is measured.

Calculating DDSI per channel provides new result visualization opportunities,
with many variants presented in related publication [AT5]. One example is
reproduced here in Figure 4.2, where sensitivity is evaluated to inclination
input as a whole. It is a heatmap of results generated from multiple samples
corresponding to multiple starting points. While the y-axis shows sensitivity, the
x-axis designates prediction at various distances from the sensor. It effectively
shows that the prediction close to the sensor is strictly tied to the absolute value
of the inclination input, while further predictions are not as clear, although on
average still the sensitivity is approximately equal to 1.
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Figure 4.2: Statistical sensitivity to 10 percent value change on Inclination
channel, heatmap. Here "gap start" is the location of the sensor, after which

there si a data gap; from [AT5].

4.5 Comparison with Sobol’ indicies

As discussed earlier in this chapter, a popular sensitivity analysis method is a
variance-based global sensitivity analysis called Sobol’ indices [87]. It calculates
how much outputs’ variance can be assigned to individual inputs. Compared
to DDSI there are a number of limitations to this method. Firstly, using Sobol’
indicies the sign of correlation is unknown (proportional or inversely propor-
tional), requiring additional model exploration when such information is critical.
Another key difference is that it is not possible to calculate Sobol’ indices per
complete channel, only individual inputs. With ML models for data-series taking
inputs from different data sources considering offset for a complete signal line
is an important consideration when analyzing sensitivity to a sensor drift or
miscalibration.

Additional practical difference is that DDSI method can be used to calculate
sensitivity of a very small portion of the model, for example a one given input,
without needing to explore sensitivity of the all inputs, which is necessary in
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Sobol’ indicies method. As the ML models get more complex quick, meaningful
results related to a small subset of inputs may have a big practical use.

Publication introducing the data driven sensitivity analysis [AT5] presents results
of calculated Sobol’ indicies as well as presents a thorough comparison between
them and the newly proposed method. For a quick reference, Figure 4.3 is
reproduced, which shows Sobol’ indicies result for the analogous setup as shown
in Figure 4.1. The information that the sign of the sensitivity changes in a portion
of the input-output mapping is lost, and overall results have less definition to
them. This is likely due to fact that Sobol’ indicies are calculated without regard
to how the realistic inputs are constructed, analyzing the ML model with random
data.
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Figure 4.3: Sobol indices heatmap of Inclination input channel and output,
colorbar indicates the value of Sobol’ indicies; from [AT5].
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Contributions

5.1 Publications

Number of first author publications were published in relation to the PhD studies
comprising this dissertation, reflecting research performed between August 2019
and late 2021. There are total five first-author publications; one is connected
to Conference on Ocean, Offshore and Arctic Engineering (OMAE) in 2020,
classified as level 1, and four published in the Journal of Petroleum Science and
Engineering (Elsevier).

The publications together contribute to key elements of an applied ML process
workflow from raw data, through data processing to model creation, training,
and analysis, as presented in Figure 5.1. The publication numbers are provided
here for the ease of reading, and do not reflect publication sequence.
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data imputation,
resampling, and other
data pre-processing

ML modeling

model applications

[AT1]

dataset usable by ML
models

[AT3]

[AT4]

ML model post-analysis
and evaluations

[AT5]

[AT2]

Figure 5.1: Mapping of contributions, listing relevant publications

5.1.1 Publication [AT1] - Impact of data pre-processing tech-
niques on recurrent neural network performance in context
of real-time drilling logs in an automated prediction frame-
work

This publication focuses on the next step in the basic applied ML workflow, data
preparation - here in context of drilling logs with focus on the RNN application.
Recent literature review pointed out that this problem is mostly omitted [17],
hence has a good research potential, especially for more advanced ML models.
This publication answers a question about the impact of data preparation in
context of RNN models in drilling. In this publication the Gap Coefficient
concept is introduced, together with a complete process for implementing RNNs.
Difference between forward filling and linear interpolation on results is explored,
together with proposal of selection algorithm helping to choose the appropriate
algorithm for each attribute. Resampling strategies, like KNN and RNR, are
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compared and a novel method of evaluating resampling quality is proposed, the
RMRS.

All the aspects related to data preparation can be considered novel in this
publication. The topic of drilling data preparation is fairly poorly researched to
date, in big part because in a lab setting it is easy to avoid the issues that have
to be dealt with when working on real drilling data.

Key contributions to this publication are the conceptual and practical development
of the pre-processing methods, development of the complete framework for
data prediction using RNN, as well as benchmarking of different approaches
presented. Key scientific finding of this publication is that pre-processing methods
play a significant role in the accuracy of the model. There is a small, yet
significant difference between imputation based on forward filling and linear
interpolation. Explored case studies show that instead of input selection based on
traditional methods, such as correlation coefficients, PCA can be used to reduce
the dimensionality of the problem and in return yield lowest error.

5.1.2 Publication [AT2] - Reference dataset for rate of penetra-
tion benchmarking.

To create a tangible, usable product of the pre-processing efforts, as well as to
use the developed methods for practical model application, a curated dataset for
ROP prediction was created. Therefore, this publication has more of a goal than
a research question - to establish best practices for machine learning application
in drilling, and at the same time provides a benchmarking dataset that can
be and is used by other researchers to evaluate different approaches to ROP
prediction. Based off the Volve dataset seven wells were hand-picked with a
number of common attributes, pre-processed and resampled. Three realistic
scenarios were presented:

a) All for One - six wells are used for training, one for testing
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b) One for All - one well is used for training, six for testing

c) Continuous learning - employing training-while-drilling scenario, where
training data is continuously obtained and close future is predicted.

Additionally reference results are presented from a number of established ML
algorithms to help others gauge any potential improvements over the baseline.
Main innovation and the scientific contribution behind this publication is to
provide a benchmark dataset for applied machine learning in drilling, something
that did not exist to date. This is a very valuable resource already used by students
and researchers alike, with some work already referencing the publication [106,
107]. Key contribution to this publication was hand picking all the data from the
Volve dataset, creating the reference scenarios as well as calculating the base-case
results using off-the-shelf ML algorithms.

5.1.3 Publication [AT3] - Continuous drilling sensor data recon-
struction and prediction via recurrent neural networks

Continuing in the applied ML process shown in Figure 5.1, focusing on the model
itself, this publication answers a question whether inclination data can be made
known in directional drilling with bent sub for the region between the drill bit
and the inclination sensor. During directional drilling with bent sub assembly the
key sensors related to directional drilling - inclination, and azimuth - are located
at a significant distance from the drill bit, in the MWD unit. Data from the
Volve dataset suggests that this distance is often approximately 23 meters, which
will differ depending on the technology used. As the targets that the directional
driller has to hit are just few meters tall and wide, this sensor lag is a significant
issue. While the steering ability of the BHA is limited, especially in the case of
the bent sub, inclination and azimuth will change due to downhole conditions
without explicit input from the driller. The position of the well is in principle
not known for that region, except for an estimate by the driller.
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To solve the sensor lag issue a custom branched RNN is introduced to predict the
inclination data in the section of the well that is drilled, but it is not measured
yet. Both temporal pattern in the inclination data as well as the correlation with
real-time parameters that can be recorded instantly, such as torque, weight on
bit, or rate of penetration, and is used for accurate prediction. The results show
that the inclination data can be accurately predicted using the presented ML
method with an average absolute error under 0.4°up to 20 meters ahead of the
last known inclination value.

Main scientific contribution in this publication is introduction of the custom
RNN network architecture, when RNNs were sparsely used before in research
related to real-time drilling data. The key element to high accuracy was in the
feature engineering, where inclination data was converted to a local coordinate
system, a solution that was also compared to using inclination change, ie. the
first numerical derivative. Additionally, the case study of delayed inclination
sensor has a big practical use, as commercial actors strive to bring their sensors
as close to the bit as possible. This solution provides reliable inclination readings
at the bit, despite the sensor being 23 meters behind, using software only.

Work presented in this publication is later expanded in publication [AT4], where
the model developed here is used in the continuous learning fashion. Furthermore,
Publication [AT5] uses the model as a case study for the presented sensitivity
analysis method.

5.1.4 Publication [AT4] - Training-while-drilling approach to
inclination prediction in directional drilling utilizing recur-
rent neural networks.

Expanding on the previous publication, Publication [AT3], this publication takes
the inclination prediction case study and focuses on the practical application of
the model. It answers a question of the effects of practical application of an RNN
model for inclination prediction, and whether it is feasible to train the model
based on data received while drilling, without pre-training using historical data.
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One of the typical problems in applied machine learning is the fact that the model
has to be trained on data obtained from a system equivalent to the system that is
meant to be later predicted. This is a big practical problem, since there are often
minute differences between the BHA setup, well plan, lithology etc, even between
offset wells, making application in drilling difficult. The presented solution is
a concept called continuous learning, where a model is continuously trained on
fresh data. Here a case study is presented, where training data is taken from a
well being drilled, and the testing is performed on the near-future data, exploring
a situation where an untrained model is deployed and it "learns on the job".

Key scientific contribution and novelty of this publication is in the application of
high resolution continuous learning application, or training-while-drilling. Earlier
publications [38, 36, 39] presented similar approach in few, hand picked steps,
while this research presents a continuous spectrum of results along the drilled well.
It shows that in some cases of continuous process, such as directional drilling, it
is possible to forgo training a model based on reference data, and simply use the
data at hand.

5.1.5 Publication [AT5] - Data-driven sensitivity analysis of com-
plex machine learning models: A case study of directional
drilling.

As the final stage, this work is focused on analyzing the developed ML model.
The research question is how can the sensitivity of a black-box ML model can
be evaluated, with sensitivity being understood per definitions stemming from
control theory, ie. how much does the output change per given change in input.
This publication employs partial derivative, a tried and true sensitivity analysis
method and expands it through the use of a reference dataset as a source of
starting points. The main premise of this research is to apply the partial derivative
not at an arbitrary starting point, but on multiple points taken from the dataset
used to create the model in the first place. This solves the main issue of the
partial derivative, one-at-a-time method, where sensitivity is explored in just
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one point of the hyperspace of possible inputs. Furthermore, the method is
particularly suitable for RNNs, where multiple inputs correspond to the same
parameter at different points in time or space. Instead of polling sensitivity of
single input, multiple inputs can be tested at the same time as a single input
channel, ie. multiple readings of an attribute in time. Sensitivity results are
analyzed in this method as a statistical distribution of results. In this publication
presented method is applied both on a basic flow equation, as well as the delayed
inclination sensor case study with branched RNN network.

The innovation behind this publication is a novel sensitivity analysis method, that
allows to peer into the typical black-box machine learning model using traditional
methods.

5.2 Petroleum perspective, machine learning perspec-
tive

Being multidisciplinary work, this dissertation falls between two areas of science -
petroleum and machine learning. One can however appreciate, that in principle
petroleum is a domain, while machine learning is a method; this dissertation
therefore focuses on a method within a domain. Petroleum studies are after all
rooted in mechanical, control, chemical, and geophysics domains.

Presented work is interesting from the petroleum perspective, as this research
covers holistically the complete workflow needed to apply machine learning in
real-time drilling. Fit for purpose data pre-processing, model, model application
and model analysis is explored, providing novel methods and solving issues that
were extremely difficult when utilizing traditional approaches.

This dissertation is also valuable from machine learning, or rather applied machine
learning perspective. Pre-processing methods developed are not by any means
limited to the domain of petroleum. Presented branched model is novel and
useful for other applications - for example predicting power usage in households,
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where RNN element models day-night and weekday-weekend patterns, and at
the same time data can be fed to the MLP branch from the weather forecast,
combining these two data streams into a solution superior to either prediction
methods separately.

Presented holistic approach focused on the complete ML process starting from
raw-data and finishing at model analysis depending on perspective will fall under
petroleum, or applied ML - not between two fields, but simply within one field
depending on the readers’ perspective.

5.3 Other published research

5.3.1 Drilling dataset exploration, processing and interpretation
using Volve field data.

This publication [AT6] focuses on raw data itself and performs the analysis of
the Volve dataset published in 2018 by Equinor. The research question behind
this publication is to understand what data is available in the real-time drilling
dataset. It presents the work performed to convert the WITSML files to CSV files
and makes them available for others to use. The publication discusses various
problems related to data quality. Examples are shown and multiple alternatives
are presented in relation to filling in the data gaps. By describing exactly what
kind of real-time drilling data is available, together with quantity of the wells,
idiosyncrasies related to data being available in both time-based and depth-based
formats, it acts as a catalyst for future research [108]. It contains information
about typical data problems that one will encounter while using this data, together
with description of the root cause, as well as best practices on how to deal with
them.

The main scientific contribution in this publication is making the real time drilling
data better understood and providing the easy to read CSV files for others to
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use, as well as providing better understanding of the data available in the Volve
dataset.

5.3.2 Automated Iterative Gap Filling Method for Drilling Logs
and Other Data Series

This work [AT10] focuses on the data-preprocessing aspect of imputation. It
presents an effort in creating a novel, iterative, sudoku-like, semi brute-force
approach to gap filling, where gaps in all of the attributes are attempted to be
filled by using various algorithms applied in various manner. A matrix of results is
constructed and the best ones, that are within designated R2 threshold, are applied.
The algorithm is then repeated until all the gaps are filled. Synthetic as well
as drilling-based case studies are presented that show a significant improvement
over the other fully automated methods of gap filling.

The method presented in this publication is completely novel and not based off
other work; it answers the question whether it is feasible to automate and at the
same time improve the quality of data imputation over other fully automated
methods. While the quality aspect was achieved in the evaluated benchmark, the
feasibility remains inhibited by the excessive computational time required by the
method.

5.3.3 Drilling data quality improvement and information extrac-
tion with case studies

This publication [AT7] focused on the drilling data quality, mainly on filtering,
outlier removal, data assimilation, data validation and reconciliation, etc. Pre-
sented methods improve accuracy, consistency, reliability and validity of the
available data, and the work is presented using both lab collected data, acquired
from University of Stavanger Drillbotics team, as well as from the Volve real-time
drilling data published by Equinor.
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5.3.4 Downhole Data Correction for Data-driven Rate of Pene-
tration Prediction Modeling

This publication [AT8] is utilizing an RNN architecture to predict ROP for
different prediction horizons utilizing physics-based DWOB correction. The
goal of this publication is to highlight the limitations of pure machine learning
approaches and the benefits of physics-based feature engineering efforts that can
vastly improve the results. The ML method with corrected DWOB is benchmarked
against alternative approaches, as well as evaluated against different prediction
horizons - predicting 5, 7.5, and 10 meters ahead of the bit.
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Conclusions

Employing RNN in the domain of drilling requires handling various idiosyncrasies
of the drilling process. High quantity of asynchronous data and unique model
deployment requirements necessitate holistic approach to the ML implementation
process, with individual conclusions ranging from data preparation to model
analysis.

1. Modern data-logging produces out-of-sync readings due to ever increasing
quantity of sensors of various type. Necessary pre-processing techniques
related to resampling such data have a significant impact on the quality of
the results while using ML methods utilizing temporal information, such as
RNN, LSTM, GRU [AT1]. To date this is a fairly unexplored topic in ML
research related to drilling and can be considered an untapped source of
additional, available performance improvement.

2. Resampling, which is necessary due to the way drilling data is recorded,
can significantly deform the data. This can result in apparent increase in
the performance of a given algorithm, while in reality additional significant
error is added in the data preparation process. Such difference between two
data-series can be efficiently calculated numerically as root of mean square
distance despite the fact that are not sharing the same index values [AT1].
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Quantification of data resampling performance is a significant element of
understanding the data at hand.

3. Attribute selection is an important early step in developing a ML model
and various techniques can be used to provide the best selection and reduce
the error. PCA as dimensionality reduction is a good alternative approach
for drilling data that was shown in some cases providing significantly better
performance [AT1]. With drilling logs containing a lot of stationary and
duplicated parameters, PCA transformation retains maximum of data
variance per given quantity of attributes, making it a good solution for ML
models in drilling.

4. There is a strong need to systematically compare ML methods applied
in drilling and lack of common datasets hinders progress in the domain.
Due to nature of the petroleum industry sharing data is difficult and rare,
as companies are often barred from disclosing drilling logs due to legal
reasons. Clear reference data, predefined train-test setup, and common error
measurements are necessary to translate proposed methods to real-world
performance [AT2]. Without reference data it is not possible to compare
performance of competing algorithms.

5. Inclination data missing from the area between the drill bit and the MWD
in a case of bent-sub drilling can be reliably predicted using ML methods
utilizing architecture combining RNN and MLP elements. Average absolute
error under 0.4 degrees was achieved for prediction distance of 20 meters
[AT3]. Implementing this method can significantly improve the accuracy of
existing and future directional drilling tools without hardware investment
or adjustment.

6. ML models, such as the one explored inclination data prediction, can be
reliably deployed untrained, where training data is collected while drilling.
In the aforementioned case study the model started providing reliable results
after 180 meters of relevant drilling [AT4]. This not only simplifies the
field deployment significantly, but also removes the doubt about matching
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the model with the BHA at hand. While this method does not provide
results from the first meter drilled, the simplicity of the solution offsets this
limitation

7. Classical sensitivity analysis methods, as understood in control theory,
are ill-suited for ML models that contain high (50+) number of inputs.
Using data-driven sensitivity analysis allows for reliable inspection of the
model within the domain covered by the dataset [AT5]. This method
provides results that are linked to the potential inputs, and it also allows for
sensitivity analysis for specific ranges of inputs that correspond to real-life
scenarios.

6.1 Future work

Opportunities exist to significantly expand on the presented work. RNNs are still
relatively young and their strengths in the domain of drilling are yet to be fully
explored. Furthermore, even newer competing algorithms, such as transformers,
require further investigation into how they can be best applied in drilling.

1. Extra research should be done into understanding why there is a significant
difference between forward filling and linear interpolation when imputing
small gaps in data such as show in publication [AT1]. Today the presented
results are statistically significant and the source of this effect is yet to
be explored from either practical or the mathematical perspective. Bigger
scale evaluation is also worth performing to better establish where the effect
is biggest and how reliably this difference can be identified.

2. Today, Riemann Squared method presented in [AT1] can quantify which
resampling algorithm generates data closest to the ground truth. More
work is needed to develop derivative methods that are needed to quantify
the exact amount of error added to a typical sample. Error may vary
throughout the dataset, and identification of areas contributing the biggest
amounts will be highly valuable.
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3. Reference datasets beyond just ROP [AT2] should be made to promote
reproducible ML research in drilling. Furthermore, the USROP dataset
can be expanded by adding lithology information that exists in the Volve
dataset, making in even more valuable for other researchers. Lack of research
reproducibility is one of the major concerns among ML researchers [34]
throughout various domains.

4. Systematic exploration of additional architectures combining RNN and
MLP branches [AT3] should be performed, as such structures can be used in
many different domains beyond petroleum, for example predicting household
power use based on trend and forecasted weather. Software available today
allows for relatively simple creation of ML architectures from existing
algorithms and is an attractive opportunity to explore in the domain of
applied AI.

5. Exploration of additional case studies in directional drilling is necessary to
fully understand the potential impact of reliable inclination prediction of
data ahead of the sensor. While bent-sub drilling case study was explored
based on Volve data, benchmarking on additional datasets is necessary to
fully gauge the performance of proposed method. Expanding case studies
to rotary steerable systems can also be beneficial - while those systems
have typically close to the bit already, it may be possible to optimize the
construction of the tool if the sensor location is no longer a priority.

6. Additional case studies for training-while-drilling methodology [AT4] should
be explored, to establish which kind of problems can and which cannot
be tackled using this method. Training the ML model on the job relieves
the burden of creating a pre-trained model, making deployment much
easier. Furthermore, there are ML technologies that allow to use a pre-
trained model that can be later updated during deployment, alleviating the
limitation of deploying completely untrained model.

7. Data driven sensitivity [AT5] concept should be explored for other types of
sensitivity analysis beyond PaD, yielding better understanding of the black
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box models. There are multiple ways of analyzing sensitivity in a model,
and a systematic exploration of available algorithms and their potential
suitability for data-backed methods can produce useful results.
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Abstract

Recurrent neural networks (RNN), which are able to capture temporal natures of
a signal, are becoming more common in machine learning applied to petroleum
engineering, particularly drilling. With this technology come requirements and
caveats related to the input data that play a significant role on resultant models.
This paper explores how data pre-processing and attribute selection techniques
affect the RNN models’ performance. Re-sampling and down-sampling methods
are compared; imputation strategies,a problem generally omitted in published
research, are explored and a method to select either last observation carried
forward or linear interpolation is introduced and explored in terms of model
accuracy. Case studies are performed on real-time drilling logs from the open
Volve dataset published by Equinor. For a realistic evaluation, a semi-automated
process is proposed for data preparation and model training and evaluation which
employs a continuous learning approach for machine learning model updating,
where the training dataset is being built continuously while the well is being
made. This allows for accurate benchmarking of data pre-processing methods.
Included is a previously developed and updated branched custom neural network
architecture that includes both recurrent elements as well as row-wise regression
elements. Source code for the implementation is published on GitHub.

B.1 Introduction



Nomenclature

∆X dataset, first numerical derivative

δcf cutoff value

ẋ first numerical derivative

x̂t+1 predicted value of x at t+1

θth% threshold of zero-value numerical first derivatives

b length of prediction (meters)

g(·) function describing difference between raw data and resampled data

GCi gap coefficient for gap length of i

ht cell output at current time t

j number of attributes used

m number of prediction (rows)

MSEg Riemann sum squared of function g(·)

MSEg Root Mean Riemann sum squared of function g(·)

n number of memory (rows)

n0 number of zero-valued first numerical derivatives
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p length of memory (meters)

r(·) function describing raw data

R2 R-squared

Sg Riemann sum of function g(·)

SSg Riemann sum squared of function g(·)

t current sample time (row)

t(·) function describing resampled data

vt information from recurrent connection at time t

x% percentage of well drilled

xt input at current time t

CNN convolutional neural network

CSV comma separated values

d distance in KNN/FRN

F quantity of the well to be evaluated

F9A One of the wells of the Volve dataset

FRN fixed radius neighbour

GC gap coefficient

GRU gated recurrent unit

K quantity of neighbours in KNN

k quantity of datapoints of the first numerical derivative dataset

KNN K-nearest neighbours

LSTM long short-term memory
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MAE mean absolute error

MD measured depth

ML machine learning

MLP multi-layer perceptron

MWD measurement while drilling

NLP natural language processing

PCA principal component analysis

r radius in FRN

RNN recurrent neural network

RNR Radius Neihgbour Regressor (implementation of FRN)

ROP rate of penetration

RPM revolutions per minute (rotary speed)

SPP stand pipe pressure

TL total length

u quantity of steps in Riemann sum

w weight in KNN/FRN

WOB weight on bit

B.1.1 Background and State of Art

Data preparation is often left as an afterthought when discussing machine learning
(ML) research applied to drilling. Recently conducted review of rate of penetration
(ROP) prediction papers [1] acknowledges the issue of data gaps in drilling logs;
quoting directly from the aforementioned review paper: In general, this problem
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was omitted. This is likely due to researchers working on datasets that are already
pre-processed, where they are not exposed to this common practical problem.
Raw drilling logs extracted from Volve field, dataset made public by Equinor [2],
expose that they can be occupied in over 80% by data gaps [3]. Drilling logs from
this dataset are used as a case study throughout this paper.

To capture the temporal behaviour of a given logged attribute recurrent neural
networks (RNN) are commonly used [4]. Basic architecture of such network is
shown in Figure B.1; cell A takes current input, xt, as well as the information
from recurrent connection vt−1 from the previous step; this may be simply the cell
output ht−1, but can also contain additional state information. This generates
an output ht. It is in practice implemented in so called unfolded state, as seen
on the right hand side of the Figure B.1. Various designs of a RNN cell exist,
with Long Short-Term Memory (LSTM) [5] and Gated Recurrent Units (GRU)
[6] seeing wide implementations.

A

xt

ht

A

x0

h0

A

x1

h1

A

x2

h2

A

xt

ht

...

Figure B.1: Recurrent Neural Network basic architecture

When applying the RNN architecture one of the important assumptions is the
equidistance of the samples along the indexed dimension. This means that
samples are logged every x meters drilled, or every x seconds, where the value
of x does not change throughout the dataset. This is rarely the case outside of
the lab environment, and since the quantity of sensors used is ever increasing,
this problem becomes more and more prevalent in the industry. To bring drilling
log attributes in-sync and at constant sampling rate, data resampling step is
necessary, where a dataset with uneven sampling rate is converted to a dataset
that has a constant sampling rate. While reviewing the recent literature this
step is often simply mentioned without even indicating which algorithm or the
parameters are used [7]. To the best of authors’ knowledge, petroleum related
papers on the RNN rarely mention resampling [8, 9]; our previous work on
the RNN [10] admittedly also sparsely touched the topic by simply mentioning
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the algorithm used. It is difficult to find valuable, practical information and
comments on the impact of resampling on RNNs also outside of petroleum, with
some papers acknowledge the problem and mention "window based resampling"
[11] without additional details. What further makes the literature review difficult
is the fact that within ML the term resampling is also used for a method of
removing the imbalance from the dataset, while for data-series, like in the case
of real time drilling logs, resampling means creating a new dataset with a new,
constant polling rate.

This paper focuses not only on the data preprocessing strategies and the effects
on the quality of the models’ results, but also on the attribute selection. This
topic is widely discussed in most, if not all papers on topics like data- driven
ROP modelling. In this paper we compared attribute selection strategies, applied
dynamically through simulated drilling process, to evaluate which strategy is
likely to yield better results. This is especially important when a given model is
applied in a continuous learning approach, when the training dataset continuously
expands and therefore correlation scores can dynamically change as the drilling
progresses.

B.1.2 Motivation and Contribution

Some aspects have to be considered during ML models/applications development,
like data quality issues, ML models’ process automation and optimization, ML
models’ evaluation and interpretation etc. Motivation behind this paper is two-
fold. First and foremost, closing knowledge gaps related to data pre-processing is
identified as a a topic with an urgent need for attention. Capturing knowledge
on temporal patterns becomes more common in the future, hence appropriate
data preparation for this kind of problems is a crucial building block. The main
contributions are in the following areas:

1. Method for automatic imputation algorithm is presented and evaluated for
data gaps common in drilling data. (Data Quality Improvement)
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2. Resampling process is heavily analyzed. First, evaluation in terms of the
quality of resampling is done; and a novel method is introduced using
Riemann sum to quantify how close the resampled data is to original data.
Secondly, a case study is presented to show practical model performance
improvements. (Data Quality Improvement)

3. The resampling rate is evaluated to gauge how reduced data resolution
affects the machine learning model performance in a case study.(ML Model
Evaluation)

This paper does not elaborate on the signal processing methods, such a median
filter, Kalman filter, outlier identification etc. While this is an important step in
data driven methods it is out of scope of this paper.

Secondly, to explore the effects of data pre-processing we have developed a
semi-automatic framework for data preparation, modelling including temporal
information, and evaluation in relation to problems from the realm of real-time
drilling logs. It is challenging to provide universal answers on topics like attribute
selection strategies in drilling, therefore providing tools to perform such studies
case by case is beneficial. The evaluated framework consists on a two-branched
neural network that contains both elements for row-wise correlation and pattern
identification, as well as a temporal element. This structure was adapted from our
previous work on continuous inclination prediction [10, 12], made target attribute
agnostic, and the whole framework is open sourced and published on Github [13].
The case study of predicting inclination values between the sensors and the bit is
used throughout this paper to evaluate various pre-processing configurations.

Additionally, data selection techniques were developed that are used to automat-
ically find useful data range in the provided dataset. This involves automatic
differentiation between small gaps that exist due to varying sampling frequencies
and can be easily filled in, and big gaps, that exist due to equipment failure or
change. The main contributions for that portion are:



Paper AT1 100

4. Algorithm for automated identification of data gaps of varying significance
is proposed.(Data Issue Identification)

5. Framework for RNN implementation in drilling is proposed to formalize the
process, with focus on best practices for data pre-processing. (ML Process
Framework’s Formalization)

B.1.3 Paper Structure

After introduction (section 1 ), this paper presents a process framework (section 2 )
where individual pre-processing steps are described, as well as the model structure
and the way the model is applied and evaluated. After the process is established
research towards individual pre-processing steps is presented, focusing on data
imputation (section 3 ), data resampling (section 4 ), and attribute selection
(section 5 ).

B.2 Process Framework

This paper proposes a process framework designed for data prediction for se-
quential data logs focused on semi-automatic data processing. This allows to
test approaches to data processing in a uniform rule-based manner easily, while
keeping everything else equal. For example by automating the approach for
attribute selection at different stages of well drilling, different attributes will be
selected and therefore model dynamically adjusted.

The presented process attempts to automatically predict selected attribute from a
selected raw dataset. Individual steps are listed in Table B.1 as well as presented
in a flowchart form in Figure B.2. The process is generally split into four
major elements: data selection, data pre-processing, machine learning model
development, and its evaluation and inspection. First, data selection, focuses
on automated identification of a usable area of the log in terms of completeness.
This step is necessary as the framework aims at processing existing drilling logs;
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real-time data often has gaps and unusable regions that have to be avoided.
Pre-processing section handles problems like imputation, resampling, train/test
split and attribute selection. Exploring configurations of this section is the key
element of this paper. Machine Learning application section, while can consist of
any regression algorithm, in this paper and study was equipped with a model
that takes into account not only attributes row-wise, but has a temporal element,
a recurrent neural network to capture the dynamic behaviour of the predicted
attribute. Lastly, the evaluation and inspection section focuses on result analysis
both in terms of presenting results from continuous application of the algorithm
through emulated log creation while drilling (continuous learning), as well as
data-driven sensitivity analysis [14]. Process presented in this paper focuses in
principle on the research-workflow, and not field implementation; it is however
designed such to simulate the field deployment and it is trivial to adjust it for such
purpose. For a complete continuous learning approach it is necessary to repeat
the complete workflow with different continuous Train/Test splits performed in
the step 2.1. Individual steps are elaborated on below with subsection number
matching the steps listed in the table, while research on specific areas of the
framework is presented separately in the following sections.

B.2.1 Data Selection

B.2.1.1 Import raw dataset

Typical raw drilling data log consists of columns, designating attributes logged,
and rows as the consecutive measurements. Logs often contain multiple missing
readings. Most common format for data series is a comma separated values (CSV)
file. For the framework to work a prediction target attribute has to be selected
as well as the index, which in drilling logs is typically time or measured depth.

This paper uses the Volve dataset [2] for all presented calculations. It was
published in 2016 by Equinor and it covers seismic, drilling, production and
additional data related to the Volve field that is located in the North Sea. The
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Table B.1: Process framework steps. Areas with key contribution of this paper
are marked in bold.

1 Data selection
1.1 Import raw dataset
1.2 Drop unwanted columns
1.3 Run gap statistics
1.4 Identify and select longest stride
1.5 Remove incomplete columns

2 Pre-processing
2.1 Split dataset into continuous Train/Test dataset
2.2 Imputation
2.3 Resample the dataset
2.4 Scale dataset to (0,1)
2.5 Select attributes/Principal Component Analysis (PCA)
2.6 Shape the dataset to fit the model

3 Applying ML model
3.1 Take out part of Training dataset for Validation
3.2 Train the model
3.3 Stop when validation loss stops dropping
3.4 Calculate error on Test dataset

4 Evaluation and Inspection
4.1 Results analysis
4.2 Sensitivity analysis

dataset is fully open for everyone to explore and therefore it was used as a basis
for case studies in this paper. Whenever well name is mentioned in this paper it
is possible to acquire raw logs, daily reports, well plans, production reports etc.
for this well.

Data used in this study was purely numerical, ie. there were no status attributes
logged as text. If one is to apply presented methodology to a dataset containing
such data, standard machine learning methods of converting such attributes to
numerical values, such as one-hot encoding, should be applied.

In this paper the term raw dataset is used to indicate data not processed in any
particular way, however if data is for example noisy an initial filtering and outlier
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removal is recommended. This is a very wide topic, and as this paper does not
propose any new methods nor identify particularly useful ones, it is prudent to
evaluate the data at hand and apply appropriate methods. Basic filtering such as
rolling mean is a typical good starting point and methods such as data validation
and reconciliation [15, 16, 17] are worth considering.

B.2.1.2 Drop unwanted columns

It is important to remove attributes derived from the target through simple math.
Most basic and common example would be predicting ROP while Inverse ROP
also exists in the dataset, which is calculated based on the ROP. Leaving the
Inverse ROP as an input for predicting ROP would defeat the purpose of the
model and therefore Inverse ROP parameter has to be manually identified and
removed. This is the case in the Volve dataset, where attribute Inverse ROP (5ft
avg) is often present.

It is important to highlight that the attribute availability is a part of the architec-
ture of the designed process and should not be confused with attribute selection
for the ML model. Attribute availability is dictated by what is to be achieved,
and attribute selection is related to how it is being achieved. For example, if
a problem at hand is to predict inclination data that is delayed due to sensor
position it is unreasonable to provide the model with vibration or azimuth data
recorded by the same device, as it is also delayed and hence unavailable. Only
surface recorded parameters, such as ROP, rotary speed (RPM), weight on bit
(WOB) etc. will be immediately available. However, if the task at hand is to
recover inclination data due to this specific sensor failing at some point, it is valid
to include vibration and azimuth data.

In the presented case study of inclination prediction the following columns were
dropped:

• RHX_RT unitless - magnetic sensor raw data

• RGX_RT unitless - gravity sensor raw data
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• MWD Continuous Azimuth dega - azimuth

The azimuth data was removed as it is delayed due to the same reasons as
inclination data that is to be predicted. Raw sensor data also exists in the dataset
for both inclination and azimuth, which has to be removed, as the target is a
simple function of those, also delayed, readings. Additionally index counter was
removed, as well as columns containing single constant value, such as well name.

It must be noted that some columns that are fully static within a well, f.ex. well
name, can be useful for the model if multiple wells are fed into the model. In case
of categorical data a one-hot encoding should be utilized, that is an attribute
well 1 and well 2 would be introduced that would have a binary value of either
1 or a 0. Such static attributes can be processed by the proposed workflow the
same way as other data.

B.2.1.3 Run gap statistics

Data can be missing from the raw dataset for various reasons. It can by typically
understood that data gaps are either small, created due to uneven or out of sync
logging, or big and generally not easily recoverable that exist due to equipment
change or failure. It is therefore necessary to evaluate if a given gap in attribute
readings is small enough to be imputed using simple methods such as forward
filling (last valid value forward) or linear interpolation, or the gap is too large
such that it has to be abandoned. Our own novel method of analysing data gaps,
named Gap Coefficient (GC) is proposed here, where the gaps are classified based
on their continuous length and the percentage of the dataset that they occupy.
It is proportional to the gaps’ continuous length and inversely proportional to
the quantity of gaps of a given size and the total length of the dataset. This way
small, but plentiful gaps return low value, while few big gaps return high value.
The GC is calculated as:

GCi = i

GQi · TL
(B.1)
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Where i is the gap length, GCi is gap coefficient calculated for the gap length of
i, GQi is the quantity of gaps of length i and TL is total length, or row quantity
of the whole dataset. Visualization is provided in Figure B.3. For a more realistic
example, when evaluating gap length of 5 rows, if there are 50 gaps in a dataset
of total 4000 rows, calculation will be:

GC5 = 5
50 · 4000 = 0.000025 (B.2)

All gap sizes for all attributes are calculated separately. A cutoff value δcf can be
selected based on experiences, cases and requirements, where GC > δcf signifies
a gap that should not be infilled by forward filling or linear interpolation as it is
too big and not caused by typical small-gap processes as asynchronous logging or
varying logging frequencies. In general, small and plentyfull gaps will yield a low
GC value, while few big gaps will return a high GC. In our case studies, δcf is
set as 0.005, but for other datasets different value may be more appropriate..

TL = 19

i=2 i=1 i=1 i=1 i=6

cell with data cell without data

index

Figure B.3: Gap coefficient calculation example

B.2.1.4 Identify and select longest stride

By using the GC, it is easy to calculate usable or unusable areas of the log for
each attribute. As the same process is applied to the target (predicted) attribute,
it is possible to identify the longest part of the well log when this attribute has
only small gaps, here called a stride. This is the part of the provided log that
will be used for training and evaluating the model.
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B.2.1.5 Remove incomplete columns

As the longest stride for the target attribute is identified, it is possible to select
compatible attributes that have complete data in the same area of the log. Small,
one percent margins are cut off from the target attribute stride at the start and
at the end. This is done because target attribute might appear a small distance
before others, which would lead to unnecessary attribute removal. This value
may be tweaked to retain maximum amount of data.

Additional check is performed on the first derivative of the index attribute
(typically depth or time) to ensure continuity of the log. If there are any outliers,
for example a handful of very high values in the first derivative of the index, it
suggests that the log is not continuous and should be manually inspected.

B.2.2 Pre-processing

In this section, we put our main focuses and discussions on data imputation and
resampling, attribute selection by PCA and data scaling. Other important data
pre-processing techniques for invalid data, noisy data, incorrect data, delayed
data and data with outliers are out of this work focus.

B.2.2.1 Split dataset into continuous Train/Test dataset

To mimic real-life application the dataset is split into continuous sections for a
given percentage of well drilled. This is what this paper refers to as training
while drilling, where training dataset is continuous section from 0% to x% of well
drilled, while testing dataset is from x% to (x+F)% of the well drilled, where F

designates the quantity of the well to be evaluated at a given step; in the case
studies used in this paper F = 20%. This paper typically used x ∈ (15, 80) in
50 evenly spaced steps for a full evaluation. The lower boundary of 15% was
selected due to limited nature of the case study’s dataset; predicting inclination
relies on identifying the sliding and rotating sections, and these are needed in the
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training dataset. First 15% contained just one such cycle. Note that when bigger
datasets are available, or problem at hand is simpler, model can begin to show
good performance earlier.

It is a common mistake in machine learning applications in data series, such
as drilling logs, to split the dataset randomly into training and testing. It was
shown that even random values, such as a random walk can be predicted with an
R2 metric as high as 0.9948 based on index alone if split randomly, as presented
in earlier research [18], despite the model being clearly nonsensical. Random
train/test split is common in other types of ML applications, but when dealing
with data-series the sequential split, as presented in this paper, is the correct
approach.

B.2.2.2 Imputation

Imputation for data series, in relationship to small data gaps, can be either done
by forward filling (using last valid value forward), linear interpolation or other
types of curve fitting methods. While many methods of imputation exist they are
often either not suitable for drilling logs, such as filling with mean, or impractical
for logs that contain a lot of missing values throughout the dataset, such as
regression. There are also methods such as polynomial interpolation, that has
potential for higher quality imputation, it will not work in some common cases,
such as data gaps separated by a singular data point.

To decide whether forward filling or linear interpolation is better suited a check
is performed on each attributes’ first derivative, calculated while temporarily
removing missing data. If more than 90%1 of values of the first derivative are
zero, then forward filling is selected as presumably the better method. This
will identify rarely changing values such as wellbore diameter, which is more
likely to change rapidly or discretely, where linear interpolation would introduce
unrealistic slopes to the data. Selection of the threshold value is explored and
discussed in detail in further sections of this paper.

1base case value, evaluated further in the manuscript
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It is critical to perform data imputation utilizing linear interpolation after the
division into train and test data. As the dataset is split into continuous training
and testing portions infilling before a split would leak future information [19]. For
example, if drilling torque suddenly rises and the data train-test split happens
to be just before data row with the rise, linear interpolation would cause the
value to rise due to effect in the future, making the model perform better than it
realistically should in real-life operation. After the data split, linear interpolation
can be performed without the risk of data leakage, or ’peeking’, as the dataset
at this stage is split into training and testing. Linear interpolation cannot fill
missing data that resides at the edge of the dataset, and those values are filled
using forward and backward filling.

B.2.2.3 Resample the dataset

Drilling logs are likely needed to be re-sampled before temporal machine learning
models utilizing RNN can be applied. This is because the sampling rate is not
constant leading to stretching and shrinking of the signal. It may also be desirable
to reduce the quantity of data rows used for various reasons. Resampling will
dictate the resolution of data, meaning what distance (or time) is between two
consecutive samples. Resampling methods are discussed in detail and evaluated
in further sections of this paper.

B.2.2.4 Scale dataset to (0,1)

Machine Learning algorithms typically work best when inputs are scaled to (0,1).
There are competing approaches [20] to scaling, normalizing, or standarizing data,
and these are outside of the scope of this paper. Simple (0,1) scaling is applied
when pearson or ppscore, Predictive Power Score, is used further in the process
for attribute selection purposes, as such scaling is transparent to these correlation
methods. If Principal Component Analysis (PCA) [21] is applied as an alternative
to attribute selection, the base case is also (0,1) scaling; however an option to
apply standardization is provided; this process is transforming attributes such
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that the mean becomes equal to zero and standard deviation becomes equal to one.
This alternative is explored later together with attribute selection strategies. Note
that the PCA implementation used here [22] automatically centers the data (but
does not scale it) as this is a prerequisite for the PCA transformation. Therefore
practical difference for two options above are either min-max based scaling or
standard deviation based scaling. PCA is extremely sensitive to scaling and it is a
key pre-processing element [23] that explored in the further section of this paper.
Pre-PCA scaling cannot be omitted, because the resultant PCA component values
would be overwhelmed by attributes with high numerical values.

B.2.2.5 Select attributes, PCA

Two methods of selecting attributes are implemented and evaluated: pearson
coefficient [24], ppscore [25] which provides asymmetric correlation of coefficients
based on decision trees. Additionally, Principal Component Analysis [21], a
method for dimensionality reduction, can be applied that also achieves the goal
of reducing the amount of inputs. These three approaches (pearson, ppscore,
PCA) are evaluated in this paper. Despite the fact that (0,1) scaling was done
already, if PCA transformation is applied the data is likely not to be within (0,1)
range anymore, hence to improve machine learning performance (0,1) scaling is
applied again.

B.2.2.6 Shape the dataset

The dataset has to be reshaped to fit the machine learning model, which means
that samples are created that contain the input and predicted output of the
model. A user shall specify the length of data of the target attribute, say 25
meters in the presented case study for inclination prediction, is used as input to
the recurrent neural network processing the temporal information of the signal.
This paper refers to this as memory area. Further, directly adjacent length of
target attribute, in the case study 25 meters as well, is selected for prediction,
which this paper refers to prediction area. Other attributes from the dataset
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residing in the prediction area are also selected as input of a single sample. For
better visualization of the sample shape Figure B.4 is presented, where memory
length is set at 5 samples, prediction length is at 4 samples. Predicted attribute
is A with B, C and D as additional attributes.

In conclusion, a single input sample consists of n + m values of target attribute,
where n is the row quantity from the memory portion and m is the row quantity
from the prediction area, as well as m · j values, as there are m rows in the
prediction area and j attributes, which are all selected attributes from the dataset
(or PCA dimensions). The exact quantity of m and n rows will depend on
the length of the prediction and the memory area (defined by user), as well as
re-sampling rate. In Figure B.4, m = 4, n = 5 and j = 3.
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Figure B.4: Shape of the data showing RNN and Multilayer Perceptron (MLP)
input shapes
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B.2.3 Applying ML model

B.2.3.1 Dataset for validation

In the use case of training-while-drilling, or continuous learning, where the training
dataset is created as the well is being drilled, the amount of data is quite low,
especially in the initial model training phase using continuous training concept.
This often leads to overfitting of the machine learning model [26]. To tackle
that a validation dataset is taken from the training portion of the data. This
may also be referred to as masking, where a portion of data is masked, and
therefore unavailable for training even though it is technically available to the
user. By monitoring the error on the validation dataset it is possible to pinpoint
the moment when the model is no longer learning, but begins to overfit. This
technique is called early stopping and is a recommended practice, especially for
small dataset [26]. In our case study, the validation portion consists of 15% of
the available training data taken from the newest available samples. These values
will change depending on the problem at hand and computational power available
in deployment.

The approach of masking portion of available dataset for gauging the models’
performance is commonly used in ML and applied in petroleum related topics
[27, 28].

B.2.3.2 Model training

Model takes into account both temporal information about the target signal as
well as attribute values from the same index rows as the prediction. For example,
when predicting the ROP with taking into account the WOB and RPM the model
will predict the ROP in the prediction area based on how the ROP changed in
the past, as well as the current WOB and RPM. Simplified model structure is
shown in Figure B.5. Memory (n) and prediction (m) step quantities are selected
by users; the case studies presented in this paper typically use n = 100 and
m = 100. This, connected with selected resampling rate for the case study of
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0.25m between samples, results in the memory and prediction being 25 meters
long. Right hand side model branch consists dense layers making a Multilayer
Perceptron (MLP) [29] artificial network, while left hand side branch consists of
Recurrent Neural Network employing Gated Recurrent Units [6] (GRU). While
in the presented case study and evaluation further in the manuscript GRU was
selected as as the RNN due to its performance on relatively small datasets, it is
trivial to substitute it with Long-Short Term Memory (LSTM). Pure RNN layers
are not recommended as they suffer from the vanishing gradient problem [30].
Technical details, such as specific Keras implementation, numbers of neurons in
all the layers, activation function, etc. are provided on Github2.

To visualize and better convey the configuration of inputs and outputs Figure B.6
is shown. It contains complete data related to one randomly selected sample.
Data sharing same x-axis location is related to the same physical location in the
well in relation to the bit. Inputs are shown in black; in this example there is
one RNN input (here MWD Continuous Inclination, in degrees), and 5 PCA
components as MLP inputs. Dotted blue line shows true inclination for the
sample and dashed red line shows the prediction generated by the ML model.
Note that in practice all approximately 50 attributes were used as inputs to
the PCA here, and it is possible to consider the ML model to be inclusive of
the 50 physical attributes. This however would be difficult to visualize and not
representative of data fed to the neural network itself.

B.2.3.3 Stop when validation loss stops dropping

While training the model validation loss is continuously measured. If the validation
loss at a given epoch is lowest since the training began, the model is saved for
use, but the training continues. Through consecutive iterations the validation
loss normally drops continuously, until it levels off and begins to rise, signifying
overfitting; this procedure is called early stopping [31] and is widely used in
machine learning. A specified number of epochs is set as patience, which defines

2https://github.com/AndrzejTunkiel
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Figure B.5: Simplified model schematic

the amount of epochs since the last validation loss improvement is allowed. In
presented implementation patience of 50 epochs was used.

B.2.3.4 Calculate error on Test dataset

The score of the model is calculated on the test dataset, that remained untouched
throughout the training process. To completely evaluate a given model it is
critical to repeat the training process, each time starting with an untrained
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model, for multiple points in the dataset simulating continuous drilling of a well,
ie. training while drilling. Proposed framework uses mean absolute error (MAE)
as a key metric that is used throughout the paper. Other metrics, such as R2,
weighted mean absolute error, average percentage error may be better suitable
for specific case studies, however scoring method selection is outside of the scope
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of this paper.

B.2.4 Model Evaluation and Inspection

B.2.4.1 Results analysis

Results are evaluated by incorporating training-while-drilling methodology [10]
derived from a continuous learning concept [32]. In this methodology it is
assumed that the machine learning prediction model will be trained while drilling,
hence the performance of such model has to be explored with consideration of
continuously expanding training dataset available. Figure B.7 shows how the
training and testing datasets are split in relation to the bit position and which
data is considered available. As the drilling progresses, more data is available.
A fixed portion of the data, here 20% is used, that is at the end of the drilled
section is used for testing.

This case study and train-test split is used throughout the paper. A sample
result is shown in Figure B.8, where the error is shown as a heatmap; the color
designates mean absolute error and is a function of the percentage of well drilled
and the prediction horizon. Each row in the heatmap designates performance of
a model trained after reaching a given depth, shown on the y-axis together with
the percentage covered of the dataset at hand. The x-axis designates the location
of the prediction, with 0m being at the sensor, and the bit being 23 meters away
from the sensor. 20% of the dataset directly adjacent to the training data is used
for testing and calculating the error. When this paper discusses results as a single
value, an average of all prediction points from all steps in training-while-drilling
process is used.

It is important to understand what the presented model predicts to understand
the results fully. It was developed in tackling the sensor lag problem [12], where,
referring to Figure B.9, the information is not yet recorded for a portion of the
well due to sensor position. Inclination data is unavailable ahead of the sensor,
but is available behind the sensor, and at the same time real-time attributes,
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Figure B.7: Training-while-drilling, train-test data split example.

such as ROP, Weight on Bit, Surface Torque, etc. are available for the complete
section. The results are generated for the area on the distance marked b using
m continuous datapoints, or steps; data in the distance p containing n samples
is considered available.

When applying the model in practice there are multiple metrics that may be
interesting depending on the actual problem at hand. For example, for the
inclination prediction model, while based on the inclination value in degrees, one
of the developed metrics was the predicted position of the bit in (x,y) coordinates
later evaluated as using R2 value [10].

B.2.4.2 Sensitivity Analysis

Sensitivity analysis of the model can be performed using Data-driven Sensitivity
Analysis methodology [14], where the model is made based on the complete
dataset and then the complete dataset is used as a starting point for one-at-a-
time sensitivity study. The results, due to multiple starting points, are considered
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Figure B.8: Example results of continuous learning applied to predicting 25
meters ahead of the bit.
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Figure B.9: Sensor lag case study.

statistically. More traditional methods, such as sobol indicies [33] can also be
applied.

As this topic is very broad it is not evaluated in details in this paper, only
presented as one of the elements in the complete workflow. Multiple sensitivity
analysis methods exist and it is beneficial to perform such analysis when a model
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is explored, to gain more insights into the working of the model, as well as to
identify potential issues that would otherwise remain unidentified.

B.2.5 Hyperparameter Tuning

In general, different problems will require different hyperparameters for a machine
learning model to perform at the peak performance. The process of identifying
hyperparameters such as neuron count for individual layers, activation functions,
dropout rates etc., called hyperparameter tuning, is necessary before finalizing
the model. In this paper, the hyperparameters were tuned for a case study
of predicting continuous inclination with 25 meters of memory and 25 meters
of prediction, PCA dimensionality reduction and moving inclination data in
individual samples to local coordinate system. When evaluating different aspects
of the model, such as re-sampling algorithms with all their parameters, it is
not feasible to perform hyperparameter tuning for all possible combinations to
establish true error minimums. Introducing changes however will indicate the
system’s sensitivity to those changes, and will be indicative if certain configuration
is better than the other without the need of performing full hyperparameter
tuning.

B.3 Data Pre-processing: Imputation

As indicated earlier, the imputation in the data series when related to real-
time drilling logs is often omitted despite being a common practical problem.
This paper tackles two separate issues: big gaps covering significant stretch of
the measured process, and small gaps resulting from varying sampling rates of
measuring equipment. The other distinction between these two gap sizes is the
fact that small gaps are assumed to be imputable with simple techniques of
forward-filling, otherwise known as last observation carried forward, and linear
interpolation, while the data in the big gaps is considered unrecoverable, at least
using simple methods.
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Identification of big gaps in the process this paper uses is done as the one of
the first steps after importing data, as this will determine the usable range for
further model evaluation. This is done automatically based on the selected target
attribute using proposed Gap Coefficient from Equation (B.1)

GCi = i

GQi · TL

This simple equation is used to calculate an indicator value, that is proportional
to the relative size of the gap and inversely proportional to the quantity of gaps of
the given size. Basic statistics related to gap sizes and the percentage of dataset
that they occupy are shown in Figure B.10 for MWD Continuous Inclination
attribute of Volve well F9a, depth based data. In this specific case, under 12%
of cells in the raw log contains data, and the rest is empty. Gaps are of various
lengths from 1 row to 1480 rows. Note that the row here refers to a raw dataset
that is sampled unevenly; in the case of well F9a the mean distance between the
rows is 0.05m.

Proposed GC data is presented in Figure B.11. The cutoff value δcf = 0.005 is
proposed in dash-line; this value should be considered a tentative proposal for
real-time drilling logs, as the optimal value might be different for other processes.
Once the GC is above such cutoff value, the data section for a given attribute is
considered unusable due to the large gap.

When big gaps are identified it is possible to identify continuous log portions
consisting small gaps only that this paper calls strides, see section B.2.1. In the
proposed automatic process the longest stride is used for analysis by default.
This approach has a risk, where an attribute significantly correlated with the
target, and therefore highly useful for prediction, exists only in a portion of the
stride, which would exclude it from analysis. This is a limitation of the proposed
semi-automatic approach and such cases have to be identified and mitigated
manually.
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Figure B.10: Raw gap statistics, MWD Continuous Inclination, Volve well F9a.
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Figure B.11: Gap statistics, gap coefficient, MWD Continuous Inclination,
Volve well F9a.

An algorithm is proposed to determine if a given attribute should be infilled (in
relation to small gaps) via forward filling or linear interpolation. The working
assumption is:
Assumption 1: if an attribute is mostly stationary the small gaps are best filled
with forward filling. Other parameters will be filled by linear interpolation.
Attributes such as nominal wellbore diameter, on-bottom flag, or stick-slip flag,
would be examples where forward filling is best, as it does not change often
throughout the well, and is unlikely or impossible to change gradually. The
validity of this assumption is presented in further sections, where imputation
algorithm selection threshold is evaluated

Rationale behind considering only forward filling or linear interpolation is such,
that those algorithms are extremely robust in terms of the imputation. They
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only rely on singular data point at one or both ends of the gap and therefore
easily fill all the gaps, with an exception of linear interpolation failing to fill gaps
at the start and the end of the data series; this is fixed by applying forward fill
and backward fill after linear interpolation to close those gaps. Furthermore, a
correctly setup measurement system works under assumption:
Assumption 2: the last received measurement is valid, or the polling rate is fast
enough to capture the nature of the signal by being above Nyquist rate [34].
If the assumption on the Nyquist frequency is invalid, then signal will exhibit
artifacts, similar to Moiré patterns, where poorly resolved high frequency signal
generates a low frequency artifact. In such case the presented gap infilling will
further copy the apparent signal. This is however in principle logging system
failure, not a limitation of the presented methodology. Statement on the validity
of last received measurement is generic, meaning that values in dataset are
considered correct at stated index position.

To identify if an attribute falls under forward filling or linear interpolation
algorithm, this paper proposes to use a threshold (θth%) as an selection criterion
by calculating the relative quantity of zero-valued numerical first derivatives
of a given data series, and therefore identify generally stationary and generally
non-stationary signal. For example, a data series with attribute X with k + 1
data points is given as

X = {x0, x1, . . . , xk}.

Let us define a new calculated dataset

∆X = {ẋ0, ẋ1, . . . , ẋk−1},

and no is the number of zero-valued of points in ∆X. The algorithm is that
- Forward filling is applied if no

k ≥ θth%;
- Linear interpolation is used when no

k < θth%.

In the case study, to identify optimal value a grid search simulation was applied,
where a full training-while-drilling scenario for inclination prediction consisting of
50 train-test iterations was applied to predict continuous inclination of well F9a of
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the Volve dataset. Prediction distance was set for 25 meters and 100 samples, and
the memory was also 25 meters and 100 samples. The threshold was varied from
0 percent to 100 percent by 10 percent increments. After running the simulation
23 times for each of the thresholds totalling 12 650 train-test iterations, the mean
absolute error was analysed, with results presented in Figure B.12. Multiple
simulations were performed for the same configurations since the training process
is stochastic in nature, and re-running it with different random seed will yield
different results.

Results suggest that in this case study threshold should be at least 20%, where
the MAE is lowest. Since the spread in MAE values is high, a t-test was applied
to verify that results are significant. The difference between the worst score at 0%
(always forward filling) and best at 20% is significant with p − value = 2.6 · 10−7,
and the difference in the MAE is 6.5%. Difference between the threshold of 20%
and 100% is also significant at p − value = 2.2 · 10−5. This shows, that for at
least some cases, there is a significant difference between infilling methods applied
for small gaps and that using only one or the other method is not optimal with
selection based on first numerical derivative a good alternative.

It is also worth indicating, as shown by the attribute count subplot in Figure B.12,
that drilling attributes in a drilling log generally fall into one or the other category
of filling no matter where the threshold is set between 10% and 90%.

Another study was run, this time for ROP prediction on the same dataset, well
F9a, and otherwise generally the same settings, corrected for attribute removal
(f.ex. removed Inverted ROP attribute for this case study). In this case, shown
in Figure B.13, the imputation based purely on linear interpolation for all the
attributes showed the best results. T-test between pure forward filling and linear
interpolation shows that results are significant at p−value = 5.3 ·10−5 for a mean
1.6% difference between them. These results show that selecting the optimal filling
method may bring a modest, yet statistically significant performance improvement,
and it is worth considering when performing hyperparameter tuning.
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While performance improvement was expected, it is difficult to find the exact
reason for performance change between specific settings. It is also interesting that
while for inclination prediction case study linear interpolation for all attributes
performed poorly, for ROP prediction it was a reasonable strategy. More research
is needed to better understand results shown here. Simpler machine learning
models may be better suited for such task.
Remark 1: Note that hand-picking and/or evaluating imputation method for
each and every attribute is likely to yield superior results. Presented method acts
as an automation method that can yield modest prediction quality improvements.
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Figure B.12: Smart filling study, inclination prediction, by varying the threshold
for applying linear interpolation versus forward filling, the percentage of zero-
valued first numerical derivative values. (0% - Forward Fill only, 100% - linear
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Figure B.13: Smart filling study, ROP prediction, by varying the threshold
for applying linear interpolation versus forward filling, the percentage of zero-
valued first numerical derivative values. (0% - Forward Fill only, 100% - linear

interpolation only)

B.4 Data Pre-processing: Resampling

When utilizing the RNN, similarly to other signal processing methods, it is
implied that the steps between the consecutive data points are evenly spaced.
While there is recent research related to modification of RNN architectures to
introduce time gate [35] that mitigates the issue, the asynchronous nature of
recorded value remains a practical problem. Additionally, the RNN architectures
implementing such time gate are not included, as for now, in the most common
machine learning libraries such as Tensorflow/Keras or PyTorch.

In typical real-time drilling logs the sampling rates vary and the readings are
asynchronous. Even if readings are evenly spaced in time domain, they will not
be such in the depth domain and vice versa. Common technologies, such as
mud-pulse telemetry, transfer readings from multiple sensors sequentially, and
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therefore out of sync due to low bit-rate of this data transfer technology. Therefore
re-sampling of the data logs is critical pre-processing step when working with
drilling logs.
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Figure B.14: Importance of resampling, example of signal deformation due to
uneven sampling rate

To re-sample a dataset it is to change it such that the consecutive sensor readings
are recalculated for arbitrary index values. For example, when working with a
depth based dataset, original ROP readings may be (50, 59, 61, 70) m/h logged
for Measured Depth (MD) of (100, 104.5, 105.5, 110) meters respectively. When
looking at the raw ROP values it is obscured that the ROP grows close to linearly
in relation to the MD. In this simple example the log can be re-sampled for MD
of (100, 105, 110) meters resulting with ROP at (50, 60, 70) m/h respectively.
While in this case re-sampling reduced the number of data points from 4 to 3,
the information is much clearer. If the same log has the WOB readings (30, 40,
35, 35, 35, 40, 40, 35) klbs at corresponding MD of (98, 100, 102, 104, 106, 108,
110, 112) meters re-sampling is again necessary to bring the reading in-sync with
the other attributes, even though the sampling rate is even.
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B.4.1 Resampling Importance and Algorithms

In practice, to perform re-sampling it is necessary to create a regression algorithm
to estimate the output variable value (an attribute) for an arbitrarily selected
input (index) variable, which in the case of drilling logs is typically either depth
or time.

To further visualize the problem Figure B.14 is produced to better explain the
issues at hand. First a sine function is applied to values of x between 0 and 10.
True sine function is plotted as a dashed black line. 50 random points in (0,10)
were selected from a uniform distribution and the true value of sine was calculated
for those point; these values are plotted as black dots and represent non-uniformly
sampled sensor readings. If the actual index value for those readings is ignored and
they are plotted as 50 uniformly distributed points the nature of the sine function
is greatly distorted, see red triangles plotted in the same figure. In numerical
signal processing it is common that the index of a signal is not retained explicitly
for each data point and assumed constant throughout the dataset. This, in
presented basic example, heavily distorts the temporal nature of the sine function
and is detrimental to achieve good results with recurrent neural networks. It is
however possible to re-sample the data to match the original function much more
closely. In Figure B.14 such data is calculated using K-Nearest Neighbor (KNN)
regression [36] algorithm for neighbour count of 3 and distance weighted; results
are plotted as green crosses. The results are not perfect, but are a significant
improvement when compared to no re-sampling, plotted in red.

This paper explores two algorithms that are particularly suited for re-sampling:
KNN [36], and Fixed Radius Neighbour (FRN) [37]. The two algorithms are
similar to each other. Given a two dimensional dataset, an arbitrary value along
the x-axis can be selected and the algorithm will identify K closest points (KNN)
or points within the specified radius r (FRN) and return their average value.
Additionally, it is possible to assign weights to the identified points based on the
distance from the point of interest along the x-axis, where individual weights
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w are equal to inverse distance d, w = 1/d. For the purposes of this paper
scikit-learng implementation of these algorithms was used [22].

B.4.2 Resampling Quality Evaluation

B.4.2.1 Known ground truth

It is, in principle, not possible to directly evaluate the performance of resampling
algorithms on drilling data, as the ground truth is not known. It is not possible
to calculate the difference between resampled data and true data, because the
samples do not share the same index values. True values simply do not exist
in the new index positions in the raw data. Therefore as a first step evaluation
using a sine wave was performed. Values of sine wave can be calculated for any
value to check the resampling quality against the ground truth. The dataset was
created the same way as shown in Figure B.14, where 100 points along the x-axis
were generated instead of 50 to not exaggerate the errors. Two algorithms were
evaluated, the KNN using K-Nearest Neighbours Regressor implementation and
the FRN using Radius Neighbours Regressor, from scikit-learn implementation
[22]; two weight options were tested, uniform and distance-based, giving four
different combinations. For the KNN algorithm the k-value was evaluated from
1 to 50, and FRN radius multiplier from 1 to 10, with the base radius being
maximum distance between neighbouring data along x-axis.

Since the test was based on randomly generated values along the x-axis, a Monte
Carlo simulation [38] was set up with 100 runs for each combination. The
results are presented as the mean absolute error between the re-sampled data
and true value of sine function. Additionally, as a reference, the error value for
non-resampled data is provided from a case where non-uniformly distributed
sine function data is evaluated against uniformly distributed values of the sine
function. Results are presented in Figure B.15.

Inspecting the results it is clear that the lower the radius and the k-value, the
better the results. There is slight exception in case of KNeighborsRegressor used
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with distance weights, where the lowest neighbor count registers an uptick in
error. In general the results are in line with intuitive expectations, where the
best correlation with reality is for methods inspecting the closest vicinity of
the re-sampled points, that is close to the smallest radius or lowest quantity of
neighbors.

While synthetic results can be indicative of real-world performance, it does not
mimic the reality fully. While in principle all signals are a collection of sine
waves that can be decomposed thorough a Fourier transformation, it does not
necessarily indicate that results from a single sine wave will match any arbitrary
signal.
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Figure B.15: Resampling error study
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B.4.2.2 Unknown ground truth

To calculate how well the resampled signal matches the original data, where the
ground truth is not known, a method based on integrating squared difference
between data is proposed. Let’s assume that g(·) is the difference between the
function describing original raw data r(·) and a function describing resampled
data t(·), or

g(xi) = r(xi) − t(xi), (B.3)

where xi is the data variable (point). In practice those functions are defined by
tabulated data, hence let those functions be defined as straight lines between two
neighboring points, see Figure B.16.

It is trivial to calculate the integral of g(xi) as an area of a set of polygons,
however this is not a robust way of evaluating the goodness of fit, as it in practice
uses linear weight for the error, while a square error is typically preferred, to
penalize few large differences more than many small ones. This is similar to a
technique where the mean square error is evaluated against a rolling average in
function of the window length, however the task is more complicated in the case
of data resampling since the index of original and new datapoints don’t match.
To solve this issue the squared difference between the two functions is calculated
discretely.

The practical implementation is based on Riemann sum [39]. A basic example of
the method for calculating the discrete difference between the curves is shown in
Figure B.16. Note that the index of the data points do not have to match. A
Riemann sum Sg of a function g(x) is defined as:

Sg =
u∑

i=1
g(xi) ∆xi (B.4)

where ∆xi = xi − xi−1 and i is the index, such as Measured Depth. u is the
quantity of equidistant x-coordinates used to calculate the Riemann sum. A



Paper AT1 131

Δxi

g(
x i

)

raw datapoint

index

at
tri

bu
te

 v
al

ue

interepolated raw data
resampled datapoint
interpolated resampled data

Numerical approximation of
area between curves

Figure B.16: Numerical difference visualization

square function can be easily added to the distance element of the sum, g(xi),
making it a sum of difference-squared, or

SSg =
u∑

i=1

(
g(xi)

)2 ∆xi. (B.5)

Additional modification is necessary, since the integral, or the total sum, which
indicates the total cumulative error may not be particularly informative. The
average error is more intuitive, as it is independent of the actual length of the
dataset, hence the equation can be further transformed to a mean squared error
(MSE):

MSEg = 1
u

u∑
i=1

(
g(xi)

)2
. (B.6)

It can be done under an assumption that the ∆xi is constant. Finally, the
equation can be transformed to a Root Mean Square (RMS) equivalent, here
denoted as Root Mean Riemann Squared (RMRS):
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RMRSg =

√√√√ 1
u

u∑
i=1

(
g(xi)

)2
. (B.7)

Remark 2 For the Riemann sum to correctly approximate the value of the
integral, relatively high resolution of calculation has to be employed (here: high
value of u). Since the r(·), t(·), and consequently g(·) are defined as a tabulated
data with linear interpolation between the consecutive points, the quantity u has
to be higher than the quantity of datapoints in the resampled dataset. Results
in this paper were calculated at u being 10 times higher than the quantity of
resampled datapoints. The higher the value the closer the approximated function
will be to the true value, approaching asymptotically.

To validate the method, it can be applied to the previously used synthetic dataset,
where results were shown in Figure B.15. Error calculated using RMRS matches,
for all intents and purposes, the calculations using the ground truth nearly
perfectly, as seen in Figure B.17 which is nearly identical to Figure B.15, with
R2 correlation coefficient between the two being between 0.95 and 0.997.

In Appendix, additional results for a synthetic function (a triangular function)
are presented in Figures B.26, B.27, and B.28 with more modest results of R2

between 0.945 and 0.997.

B.4.3 Resampling: Case Study

B.4.3.1 Resampling quality evaluation on drilling data

To visualize the difference between the raw and resampled data in practice
Figure B.18 and Figure B.19 were produced, where a small section of the ROP
data from the well F9d of Volve dataset is shown. This shows how detrimental
to signal quality resampling can be. Radius Neighbor Regressor and K-Neares
Neighbor algorithms were applied at three different configurations of maximum
depth-step multipliers of 1, 20, and 100 as well as of neighbour count of 1, 20
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Figure B.17: Resampling error study
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Figure B.18: Radius Neighbor Regressor, effects of different regressor radius
on resampled data

and 100. When the uniform weight is used then even the relatively small radius
distorts the signal.

In Figure B.18, inspecting signal for resampling using distance-based weights it
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Figure B.19: K-Nearest Neighbors, effects of different neighbor count on
resampled data

is clear that even at very high resampling radius the signal is effectively retaining
all of its features. This makes this configuration most desirable. The key to this
behaviour is the weight function applied to datapoints, which is the inverted
distance, w = 1/d. In practice it means that points that are relatively far, even
if they are within specified radius, will have a low weight attached and will not
distort data significantly. To avoid having to manually inspect the data after
resampling the RMRS method of calculating the deviation between original and
resampled data is employed.

A sample result of the RMRS calculation based on Equation (B.7) is shown
in Figure B.20. Here, a Stand Pipe Pressure (SPP) attribute from the well
F9a of the Volve dataset is evaluated for four different resampling alorithms,
Radius Neighbour Regressor and K-Nearest Neighbour with both uniform and
distance based weights. Different radiuses and neighbour quantity is utilized.
Corroborating manual inspection findings, the distance-weighted algorithms
generally provide a lower error. As expected, the higher the radius and higher the
neighbour quantity the higher the error, since the signal is being smoothed out.

Remark 3 It is worth noting that the error discussed here indicates the difference
between the resampled and original data and is not indicative of the expected error
for the further applied model. It does however indicate which resampling method
keeps the resampled data closest to the truth, and therefore being desirable for
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use. It may be the case that the signal is noisy and therefore replicating the noise
in the resampled data is undesirable. However in such case it is worth considering
denoising the resampled data as a separate step, before or after resampling, to
keep better control over the process.
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Figure B.20: Evaluation using RMRS example

Using the proposed RMRS method it is possible to evaluate which algorithms
combination is the best for all the attributes in an example well. This exercise
was performed on the well F9a, rows 2000 - 10000 (longest clean stride), of the
Volve dataset and the results are presented in the Table B.2, where 112 attributes
are used for resampling quality evaluation with different algorithms. It is clear
that the majority of the attributes can be best resampled using Radius Neighbor
Regressor, uniform weight with radius equal to 1 or 2 times maximum index step
of the raw data. This, however, seems to be counter-intuitive when compared
with Figure B.20, where this algorithm shows rapid error increase with K and
radius.

For further insights additional analysis was performed where average performance
of different algorithms was compared to the best algorithm for a given attribute.
In other words, how much the RMRS error would increase if one was to always
choose a fixed algorithm "blindly" compared to evaluating all possibilities and
selecting the best one. Results are shown in Figure B.21. These results show that
if one resampling algorithm was to be used for all algorithms "blindly" it is best
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Table B.2: Algorithms that provide the lowest RMRS, out of 112 attributes

Algorithm N / radius Winner count
RNR Uniform 1 49
RNR Uniform 2 15
RNR Distance 2 9
RNR Uniform 3 4
RNR Uniform 4 4
RNR Distance 3 4
RNR Distance 1 3
KNN Uniform 7 3
other n/a 21

to either use Radius Neighbour Regressor, distance weighted, with radius of 2
times the biggest original index step, or K-Nearest Neighbour, distance weighted,
with 15 neighbors. Either of those two options come with penalty of under 5
percent of additional error compared to best algorithm. Out of those two the
distance weighted KNN is likely a better choice, as it overall provides low error
no matter the exact neighbour count selected.
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Figure B.21: Comparing a fixed algorithm throughout the dataset versus always
picking best one.
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B.4.3.2 Resampling method selection effect on prediction quality

Considering the findings from the previous sections, it is worthwhile to evaluate
the influence of the re-sampling methods on the overall performance of machine
learning model. Additionally it is possible to benchmark against non-resampled
signals. To achieve an apples-to-apples comparison, the signal has to be downsam-
pled so that the quantity of predicted time-steps as well as the average prediction
horizon is the same as for other methods. This makes it possible to use identical
neural network structure for all cases. This is achieved in practice by skipping a
fixed number of rows in gap-filled dataset such that the quantity, and therefore
the mean step size is identical to the case when data is re-sampled at specific,
selected frequency.

Benchmarking was performed via complete training while drilling scenario when
continuous inclination is predicted ahead of the bit while bent-sub drilling, as
described in earlier publication [10], where the training dataset is continuous
section from 0% to x% of well drilled, while testing dataset is from x% to (x+20)%
of the well drilled, ref. previously shown Figure B.7. There are multiple iterations
for the model training and evaluation for x ∈ (15, 80) in 50 evenly spaced
percentage-steps. The sampling rate is set at five times the mean increment of
the index value (measured depth), which results in approximately 100 data-rows
for 25 meters of data.

Note that here it is the re-sampling algorithm settings that are evaluated, not
the sampling rate. Effect of the sampling rate selection is explored in the next
subsection. Results are evaluated as the MAE of the prediction. Data was taken
from well F9A, depth based dataset, from Equinor’s Volve data [2] converted to
CSV files [3]. This dataset contains all the files related to a Volve field that was
in operation between 2008 and 2018, including seismic, drilling, and production
data.

Figure B.22 shows the results in terms of the MAE as a function of radius that
is described by a multiplier for maximum index step, which in this case study
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Figure B.22: Resampling error study, results in terms of mean absolute error

is 0.15 meters. A multiplier for maximum step is used to ensure that radius
regressor will find at least one data point in the series for any arbitrary location.

Two algorithms were evaluated, K-Nearest-Neighbors and Fixed Radius Regressor,
and two datapoint weighing strategies, uniform and distance based. Additionally
a line is produced on each chart indicating mean, 5th, and 95th percentiles, results
where data was not re-sampled, but downsampled (based on 100 runs at the same
settings to calculate mean and percentiles). The results indicate that the radius
equal to approximately 18 maximum index derivatives, or maximum steps, for
Fixed Radius Regressor at uniform weight showed best results with MAE at 0.8
degrees, although the results are fairly spread out.

There are also additional practical reasons for choosing a low radius for Fixed
Radius Regressor as well as low K for K-Nearest Neighbors algorithm. From
practical point of view, if a radius of 5 meters is selected, then predictions will have
to be delayed until further 5 meters of data is available; a resampled datapoint at
MD=x takes into account points between MD=x-5 [m] and MD=x+5 [m]. This
may or may not be an issue, depending on the specific application.

B.4.3.3 Sampling rate selection effect on prediction quality

When re-sampling or down-sampling the dataset, the new constant sampling
rate has to be decided. In the process presented in this paper, the sampling
rate is based on the mean index increments. To evaluate practical effects of the
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sampling rate, again a Monte Carlo simulation was employed using the continuous
inclination prediction scenario as described earlier.

Results of the inclination prediction study are presented in Figure B.23. A clear
trend is visible, where the longer the sampling rate results in the higher mean
absolute error. While the results are noisy, there is a visible area for the shortest
sampling rates, where the error suddenly increases defying the general trend. This
is most likely an artifact of the specific neural network size used. Hyperparameter
tuning was done only once for the re-sampling rate equal to five times the mean
original sampling rate, which is the minimum in the results. It is prohibitively
time-expensive to perform hyperparameter tuning for each inspected re-sampling
rate. It is likely that network layer size, dropout rates and learning rates can be
adjusted to prevent that error increase, and therefore a high (short) sampling rate
should be preferred, although that is achieved at the cost of the computational
power needed.
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Figure B.23: Sampling rate study

B.5 Attribute selection and PCA configuration

Two attribute selection strategies were implemented in the semi-automatic process
presented in this paper, Pearson correlation coefficient [24], and Predictive Power
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Score (ppscore) [25] which provides asymmetric correlation coefficients based
on decision trees. As an alternative to attribute selection PCA transformation
is also available. Two scaling methods were tested as a pre-processing before
applying PCA: normalization (ie. (0,1) scaling) and standardization (scaling so
that standard deviation becomes 1).

Simulation was set up to evaluate the mean absolute error for all four approaches
to reducing the quantity of inputs, as well as the actual quantity of inputs
selected. Again, prediction of continuous inclination case study was chosen for
this purpose. Figure B.24 shows the results, where PCA approach provides
significantly lower error, without any difference between scaling strategies. This
result is understandable considering the data; while continuous inclination is
predicted, there is no direct correlation between the details of the inclination
signal and drilling parameters, as the inclination is constantly rising in the
analyzed curved section with varying rate. This is likely to be also the case for
problems where recurrent neural networks perform the best. This shows that
PCA transformation is a very convenient tool for input quantity reduction, as
it captures the behaviour of the dataset independent of the target attribute.
Pearson algorithm, at 80% of available well data, selected following attributes
as correlated with inclination: Hole depth (MD) m, Bit Drill Time h, Hole
Depth (TVD) m, Extrapolated Hole TVD m, and Corrected Total Hookload kkgf.
While those values are technically corrected with inclination data, they are not
particularly useful for a high quality prediction. ppscore algorithm picked similar
attributes: Extrapolated Hole TVD m, Pump Time h, Measured Depth m, Total
Bit Revolutions unitles, and Hole depth (MD) m.

An alternative simulation was performed, where the same case study was explored
with the exception that the inclination values were converted to inclination change
before feeding it into the model. The transformation was reversed to nominal
inclination after the model’s output. Such process is related to feature engineering,
where attributes are altered to make the prediction process easier for the machine
learning algorithm. There are pros and cons for such methods, however this is
outside of the scope of this article.
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This change allows the pearson correlation and ppscore algorithm to work on par
with PCA, as seen in Figure B.25. In this case all algorithms perform similarly,
although the spread in the results is significant. This is again a regrettable artifact
of hyperparameters setup for slightly different problem (nominal inclination) and
the quality can be improved by adjusting the neural network layer size, dropout
rates and learning rate. Best score was again achieved when inputs were converted
via PCA, this time input quantity of 3 showed the best results.

When investigating attributes selected is becomes clear that converting the target
to inclination change allowed the algorithms to work as intended. Much more
reasonable selection was done using pearson algorithm, yielding: Total Hookload
kkgf, Average Rotary Speed rpm, Total Downhole RPM rpm, Average Surface
Torque kN.m, and Weight on Bit kkgf. ppscore selection was less obvious, listing
Total Downhole RPM rpm, Average Rotary Speed rpm, MWD DNI Temperature
degC, Extrapolated Hole TVD m, and Corrected Total Hookload kkgf.
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Figure B.24: Model selection strategy for MWD Continuous Inclination predic-
tion
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Figure B.25: Model selection strategy for MWD Continuous Inclination predic-
tion based on inclination change

Remark 4 The main takeaway here is that it is unwise to depend on one "best"
correlation algorithm to select inputs, as simple change to the case study makes the
results very different. Additionally, in an automated approach where attributes
are selected without a manual expert selection, PCA is a good alternative to
typical correlation methods that will may when a more complex algorithm, such
as RNN is used.

Two examples of correlation plots are reproduced in the appendix, Figure B.29 for
Pearson coefficient and Figure B.30 for ppscore. It is worth noting that ppscore,
unlike pearson correlation, does not generate symmetric results, which is rooted
in the way how the algorithm works.

B.6 On Neural Network architectures

Work presented in this paper utilizes RNN for prediction purposes, namely
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GRU; this also makes it is trivial to substitute it with vanilla RNN or LSTM.
Considering the rapid pace of research within ML, it is necessary to point out
that alternative architectures exist, both newer and older. Architecture selection
can make a model less or more affected by the pre-processing, such as methods
presented in this paper, and therefore further work is needed to understand this
problem. This paper utilized RNNs in a case study where there was known
benefit from including temporal information in the model [10], and therefore
various approaches to pre-processing were likely to affect the results.

B.6.1 One to One, One to Many, Many to One, Many to Many

There are four distinct approaches to time series prediction in terms out input-
output configuration. Input can consist of one single row of the data-series, i.e. Xi,
or many rows, f.ex. [Xi−2, Xi−1, Xi]. Outputs can also be analogous, where only
one step is predicted at a time, i.e. x̂i+1, or many steps, f.ex. [x̂i+1, x̂i+2, x̂i+3].
These variants can therefore be made into four distinct configurations, commonly
referred to as One to One, One to Many, Many to One, and Many to Many.

Using just one row for input has a limitation that very limited temporal infor-
mation can be learned by the network, limited in practice to predicting the first
derivative behaviour.

In terms of outputs it is possible to predict multiple steps when predicting just
one step by reusing previous predictions, where predicted value x̂i+1 can be used
as an input, allowing prediction of x̂i+2 using the same architecture. This paper
utilizes Many to Many approach, where multiple steps are the outputs of the
ML model, as visualized in Figure B.5, as this was the approach that performed
better, however no extensive research was done to benchmark the alternatives
against each other.

Whether it is better to predict one or many will highly depend on the case study
at hand. In the problem of inclination prediction explored in this paper predicting
many was selected because the inclination will generally rise in the curved portion
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of the well. This will cause error to accumulate if predict one approach was to
be selected due to re-use of outputs needed to predict further values. In other
case studies this may not be the case and predicting one value at a time might
be the better solution.

B.6.2 Transformers

In 2017 a new architecture was introduced called a Transformer [40]. It displaced
LSTM as the state of the art for natural language processing (NLP) by using
attention mechanism. This allows the network to keep focus on the elements
further down the sequence of inputs compared to RNNs. While it is not a problem
fully analogous to drilling it does indicate that this new architecture should also
be applicable for such problems. At the same time it is not given that more
complex approach will perform better. There is a paper published in Nature [41]
that put a single neuron against an earlier published deep learning network for a
problem of predicting earthquake aftershocks matching the results. Further work
is needed to establish when it is desirable to apply Transformer and when RNN
in drilling.

B.6.3 Convolutional Neural Networks (CNN

Another potential approach is to use CNN architecture, which was successfully
applied in drilling problems before to determine rock strength parameters [42]
or lithofacies recognition [43]. While CNN are typically applied to classification
problems, as opposed to a regression problem presented in this paper, a CNN
element introduction either within the network itself, or as a separate step
identifying sliding and rotating portions of drilling may bring benefits, and even
make the proposed architecture more universal.
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B.6.4 Linear regression, decision trees, support vector machines

As indicated in relation to Transformers, it is not given that new, more complex
methods bring improved performance. This at the same time means that it is
possible that simpler methods can perform better than the architecture presented
here. For example decision trees were successfully used to fill in data gaps in
drilling data [44]. While the case study of predicting inclination was explored in
the past to benchmark performance against simpler methods [10] showing big
benefits of RNNs, it is not guarantied to be the case for all problems.

B.7 Conclusion

A number of conclusions can be drawn from the performed studies related to
optimal setup of machine learning processes in real-time drilling related problems.

1. Pre-processing of data plays a significant role in the quality of prediction
using Recurrent Neural Networks

2. There is a significant difference in results depending whether small data
gaps are filled using forward filling, linear interpolation, or using a smart
selection of the two.

3. Re-sampling using fixed radius regressor with a small radius and uniform
weight provided lowest prediction error, however it results in significant
data degradation, and re-sampling with distance based weights provided
similar results without the high potential for data degradation seen from
the uniform weight approach. Evaluating the difference between raw and
resampled data using proposed method of Root Mean Riemann sum Squared
is an efficient way of gauging the quality of resampling.

4. Re-sampling rate has significant effect on accuracy, while benefiting from
much faster computation time
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5. Performance of attribute selection strategies can vary significantly with PCA
being a good alternative to commonly used Pearson correlation coefficient

6. Predictive Power Score (ppscore) algorithm, although has significant theo-
retical improvements over the Pearson coefficient did not provide practical
improvements in evaluated case study.

We hope that this paper highlights the need of proper data preparation in terms
of gap filling and resampling, for research in both petroleum and other fields.

B.7.1 Future work

Future work is needed to better understand some effects seen in the presented
research. This paper identified that there are differences in models’ performance
based on gap filling strategies, the root cause of this effect remains elusive.
Additional case studies, RNN and non-RNN, would be beneficial to better quantify
the effects of the re-sampling rate, especially utilizing hyperparameter tuning for
different settings, which is extremely demanding of computational resources. More
research towards the behaviour of the RNN models is necessary to understand
better how the length of the input, length of the output, model update frequency,
etc. influence the results.

B.8 Appendix
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Figure B.30: Volve well F9a, ppscore correlation
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Reference Dataset for Rate of
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Tunkiel, A. T., Sui, D., & Wiktorski, T. (2021). Reference dataset for rate
of penetration benchmarking. Journal of Petroleum Science and Engineering,
196, 108069.

Abstract

In recent years, there were multiple papers published related to rate of penetra-
tion prediction using machine learning vastly outperforming analytical methods.
There are models proposed reportedly achieving R2 values as high as 0.996.
Unfortunately, it is most often impossible to independently verify these claims as
the input data is rarely accessible to others. To solve this problem, this paper
presents a database derived from Equinor’s public Volve dataset that will serve
as a benchmark for rate of penetration prediction methods. By providing a
partially processed dataset with unambiguous testing scenarios, scientists can
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perform machine learning research on a level playing field. This in turn will
both discourage publication of methods tested in a substandard manner as well
as promote exploration of truly superior solutions. A set of seven wells with
nearly 200,000 samples and twelve common attributes is proposed together with
reference results from common machine learning algorithms. Data and relevant
source code are published on the pages of University of Stavanger and GitHub.

C.1 Introduction

Research review related to machine learning (ML) models within petroleum is
problematic. To fully evaluate a proposed method both data and exact description
of the method are necessary, which is regrettably rare in the field. Data is often
withheld on the grounds of confidentiality and there is little pressure to release
source code behind presented methods. It leaves the scientific discourse susceptible
to errors or cheating [1], where results might be artificially inflated. Most
researchers consider that there is currently a reproducibility crisis in science [2],
with 70% of polled scientists admit to trying and failing to reproduce experiments.

Introduction of a standardized real-time well log dataset has a capacity to trans-
form research in data-driven methods related to drilling. It has high potential to
spark a healthy competition between researchers striving for better performance.
Well known datasets such as MNIST promoted competition, and facilitated re-
search and knowledge sharing in the field of handwriting recognition. Additionally,
having source data available makes paper authors accountable, as any dishonest
practices will be easily discoverable when others attempt to reproduce the results.

Building upon Volve dataset [3], made public by Equinor in 2018 on a very
permissive license1, and previous data preparation work [4], this paper proposes a
standardized dataset of seven wells containing twelve commonly logged attributes
for ROP prediction purposes. In addition to data itself, three benchmarking
scenarios are proposed, with specific metrics attached to them, ensuring that future

1Creative Commons BY-NC-SA 4.0, https://creativecommons.org/
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results are comparable with each other. To establish a point of reference results
from a number of basic algorithms are presented, together with complete source
code2 needed for result replication as well as a starting point for other researchers.
We hope that it will enable reproducibility, competition, and cooperation between
the researchers elevating the quality of papers published in the field. It also has
potential of lowering the entry point for data-driven methods in drilling as well
as attracting talent from outside of petroleum field.

C.2 Existing problems and potential pitfalls

C.2.1 Rationale behind rate of penetration prediction and method-
ology

Purpose and goal

Drilling of oil wells is very expensive. IHS reports day rates of semisubmersible,
and jack-up rigs, as well as drillships [5] from mid 2017 up to present day. At
the time of this writing3 average rates vary between 40,000 to 300,000 USD per
day of drilling, therefore increasing the ROP translates directly to savings for the
operator.

Additional area of potential savings is optimization of the mechanical specific
energy (MSE) to ROP ratio required to drill. While the energy itself is not a
significant portion of the drilling cost, its excess has to be released as effects other
than cutting of the rock, as vibrations and heat, leading to higher tool wear and
increased likelyhood of failure. This in turn can extend the drilling time due to
additional tripping operations to exchange equipment, or fishing operations to
retrieve equipment lost in hole.

Assumptions
2https://github.com/AndrzejTunkiel/USROP
3August 2020
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ROP prediction model is necessary for ROP optimization. This historically is
done both though analytical as well as data-driven models. Both approaches
require reference data, to either find model constants [6] or to train the machine
learning model. The closer the reference drilling is to future drilling, the smaller
expected error between reality and the model should become. This also means,
that reported accuracy of a model is only applicable to drilling at the same level
of similarity, in terms of equipment, lithology, procedures, depth, etc. Reference,
or training, data, can be taken from neighbouring wells, or from the currently
drilled well in continuous learning scenario [7], where a model is created on the
go.

ROP optimization process

ROP optimization can be performed in multiple ways. Figure C.1 presents a
basic outline of two general approaches to such an optimization process. ROP
model is used to determine optimal drilling parameters, related to a chosen
optimization problem, be it minimizing drilling time, minimizing MSE used to
drill or others. This in turn is to set typical drilling inputs, such as drill bit
RPM or weight on bit. The difference between a reference well and continuous
learning method is indicated in subfigures a) and b). A reference well can be
used, which is similar to the well drilled, a). This allows for model development
to happen offline and is done once, and is in general simpler to deploy; a reference
well is however required, which may or may not be available. Alternatively, the
model can be created on the go in a continuous learning fashion, as shown in the
subfigure b). This requires model development to happen while drilling, which
is more difficult to implement due to computing equipment and skills necessary.
Additional drawback is that the initial dataset is very small, and empty at the
very start, which is detrimental to machine learning training process. Temporary
model can be used, or a warm-up period exists where there is no model present.
This is countered by the fact that the data is much more closely related to drilling
at hand, improving the performance. In both approaches the ROP model is used
to calculate the optimized drilling parameters that are then applied to the drilling
controls related to parameters such as weight on bit, drill string RPM, mud flow
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etc. Method choice would depend on data availability, and other local constraints.
Hybrid methods are also possible, and best practices are yet to be established.

Reference
well data

Current well
data

Drilling controls

a) Reference well method

Current well
data

Drilling controls

b) Continuous learning method

Model update Model update

Optimized drilling
parameters

Optimized drilling
parameters

ROP
model

ROP
model

Reference
well data

Figure C.1: ROP optimization method

C.2.2 Data availability

Initiating this research was a review of a number of recent papers [8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] that aimed at rate of penetration
(ROP) prediction. Nearly none provided the data; we were able to identify few
exceptions - two papers [21, 22] used data originally published in 1974, of which
30 samples [23] were directly quoted in the reference paper. Another identified
paper provided 25 samples [24] that were subsequently re-used by others [25].
This means that the existing publications are either not reproducible or use a
very small size dataset that does not meet the standards of modern machine
learning research. For comparison, a popular open MNIST [26] dataset, a Modified
National Institute of Standards and Technology database of handwritten digits
contains 70,000 samples, which was later extended [27] to 300,000 samples. These
datasets contributed to over 20,000 publications over 20 years since its inception.
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C.2.3 Source code availability

Source code availability among reviewed papers was even poorer - none of the
reviewed papers shared it. While mathematical description of the basic underlying
method was common, it is rarely sufficient to reproduce results. Simple Multi-
Layer Perceptron (MLP) in a popular Keras implementation has to be described
at least by number of layers with number of neurons, activation of each layer,
bias, kernel initializer, kernel regularizer, bias regularizes, activity regularizer,
kernel constraint, bias constraint, training loss function, batch size, epoch count,
an optimizer selection together with specific internal parameters such as learning
rate, beta 1, beta 2, epsilon, and amsgrad status in case of the default adam
optimizer. While most of those parameters have defaults, they differ between
libraries and even version of the libraries themselves, making reproduction or
result verification impossible if configuration information is incomplete. This
problem can, and often is, solved via source code publication, often with a
random seed fixed to achieve exactly the same results as published. A popular
website paperswithcode.com tracks publications with source code available, as well
as keeps leaderboards tracking performance improvement on selected datasets.
This website has no drilling related papers listed. It is difficult to improve the
state-of-the-art if it is not possible to reproduce it, making the goalposts invisible.

C.2.4 Incorrect data split

Sequential nature of real-time drilling data makes it susceptible to mistakes, for
example related to train/test data split. One of the commonly logged attributes
is measured depth, which with wrong data split, can inadvertently provide the
model with information it should not have. Consider data where the only input
attribute consists of evenly spaced values from 0 to 1. The target value is a random
walk with step distance taken from normal distribution. There is absolutely no
correlation between the input and the output. Yet if a random test/train split
is applied, a common practice in ML, together with an off the shelf regression
algorithm the resulting prediction R2 score is 0.9948. This is because machine
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learning algorithm will learn that for input 0.40 target is 55 and for input 0.42
target is 57, then, when asked for prediction for input 0.41 accurate answer is
very easy (most likely about 56). Full implementation showing the problem in
the Appendix as Listing C.1.

Even without the depth attribute there may be enough information for the model
to correctly recognize that a certain sample is from the same area as the samples
used for training and infer a correct output. Consider an absurd notion - Measured
Depth prediction based on Surface Torque and Rotary Speed. While one can
argue, that there would be some correlation, at least with the Surface Torque,
these attributes are surely insufficient for an accurate prediction. Performing
exactly this exercise, applying a random train/test split, it is possible to achieve
impressive R2 score of 0.946 for measured depth prediction using an off the shelf
Gradient Boosting Regressor with default parameters - source code in Listing C.2.
With automated best model selection, testing portion reduced to 10%, and a
malicious random seed selection, R2 of 0.998 was achieved, or 1.00 if rounded to
two decimals.

Using random train/test split may be used if the goal of the model is to interpolate
existing data or explore the relationships existing in specific well. This however
has to be done with caution and with understanding that spurious correlations
will be utilized by the model and it should not be used to predict values for other
wells. For example, if drilling was unusually slow at Measured Depth of 1,040m
and 1,050m, such model will correctly predict that it was also slow at MD of
1,045m. This however is not an indication that in a different well ROP will also
be low at this specific depth, even though the model is likely to indicate that.

In Scikit-Learn [28] library an appropriate function exists for splitting sequence-
type data; it is sklearn.model_selection.TimeSeriesSplit. While the name suggests
that it is meant specifically for time series, it is also the correct tool to use for
depth series type of data, or any sequential data where there is dependence
between consecutive measurement points. This function divides the data into
even, continuous splits. In the kth split, it returns first k folds as train set and
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the (k+1)th fold as test set. This creates multiple train/test sets in a structure
suitable for continuous learning methods.

C.2.5 Easy target problem

Different problems can arise due to specific data selection and scoring. Consider
data where the only input is a random number with average of 20 and standard
deviation of 2. The target attribute is a random number with average of 50
and standard deviation of 3, so it ranges approximately between 40 and 60. No
correlation exists between these two attributes, yet again, average error between
the prediction and ground truth is only 4.8%. This is result of a very easy target,
where simply guessing at the average, here 50, and ignoring the input will yield
such an impressive result. The example code is shown in Listing C.3.

While all these described shortcomings do not necessarily mean that any of the
published papers have flawed methodology or doctored results. It is nevertheless
a fact that the bulk of published papers on data-driven ROP prediction is
done on undisclosed data, using methods that are not described sufficiently for
reproduction, and therefore present results that are impossible to verify. One
cannot improve on the existing research without reproduction or at minimum - a
presence of a unified benchmark.

C.3 University of Stavanger Rate of Penetration (US-
ROP) dataset

C.3.1 Data source - Volve dataset

In 2018 Equinor published data related to the Volve field located off the coast of
Norway. It was in operation in years 2008 - 2016 and in total produced 63,000,000
bbl of oil. The dataset contains data related to geoscience, production, seismic,
reservoir modelling and drilling. What made the adoption of the data for research
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relatively slow, is that the data is provided without any preprocessing that would
make it more accessible. To facilitate research related to drilling, independent
work was done to convert the real-time drilling logs from segmented WITSML
files into compact CSV files [4]. This makes the data much easier to handle for
the purpose of data science. The files are made available for download from the
pages of University of Stavanger4. The Volve dataset is published on Creative
Commons BY-NC-SA 4.0 licence, which allows anyone to modify and re-publish
the data as long as the original source is attributed, it is done in a non-commercial
fashion, and that the license is retained.

C.3.2 The data

The real-time drilling data from the Volve dataset is vast and allows for research
in different sub-fields of drilling. At the same time the logs are of varying quality,
containing missing data and different attributes. Significant clean up pre-work
is required before feeding the data into ML algorithms, which can be to a high
extent arbitrary. To solve this issue a curated subset of Volve is necessary.
Based of analysis of the logged attributes total of seven wells were selected. The
selection criteria was the completeness of the data and common attributes logged.
Additionally only the depth-based real-time WITSML logs were used as opposed
to time-based logs. Rationale behind this selection was that the time-based data
would require additional processing which is currently outside of the scope of this
study. The following wells were selected:

• Norway-NA-15_$47$_9-F-9 A depth

• Norway-Statoil-15_$47$_9-F-7 depth

• Norway-StatoilHydro-15_$47$_9-F-14 depth

• Norway-StatoilHydro-15_$47$_9-F-15 depth

• Norway-StatoilHydro-15_$47$_9-F-15S depth
4http://www.ux.uis.no/~atunkiel/
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• Norway-StatoilHydro-15_$47$_9-F-5 depth

• Norway-StatoilHydro-15_$47$_9-F-9 depth

In terms of available attributes, the focus was on commonly logged data to pro-
mote models for wide application. Following attributes were selected: Measured
Depth [m], Weight on Bit [kkgf], Average Standpipe Pressure [kPa], Average Sur-
face Torque [kN.m], Rate of Penetration [m/h], Average Rotary Speed [rpm], Mud
Flow In [L/min], Mud Density In [g/cm3], Diameter [mm], Average Hookload [kg],
Hole Depth (TVD) [m], USROP Gamma [gAPI].

It is necessary to understand, that data in Volve, as well as generally in drilling
rigs, is not collected in a standardized manner. Different equipment is used
and operated using different procedures. This is often the reality of the oilfield
operations and a method that is meant for future field deployment should be
robust enough to overcome those challenges. Alternatively, all equipment could be
properly and identically calibrated, as highlighted by [29]. This is an important
distinction to note when comparing methods and results.

Minimal processing was done to the attributes to preserve original data. This
is necessary as the drilling logs often contain erroneous, non-physical values.
There may be sentinel values to indicate no reading (typically -999), corrupted
values coming through the mud-pulsing system, and others. Samples containing
Weight on Bit values below 0 and above 35 were truncated. The same way
rows with Mud Density In, Mud Flow In, and Average Surface Torque values
below zero were removed, as well as with Rate of Penetration values above 100
and Average Standpipe Pressure above 25,000. Diameter refers to the nominal
wellbore diameter. Forward and backward filling was used to fill in the small
gaps in the data resulting from uneven logging frequency of different equipment.

There was no unified gamma reading between all the wells, hence a new attribute,
USROP Gamma, was introduced. It contains data logged under different names
and different equipment, sometimes even within the same well. Source code is
provided for exact explanation of which gamma related attribute was used in each
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case. The dataset was balanced in terms of samples per measured depth available.
The goal was to remove the variability in the polling rate, so that a given length
of a well has the same weight in terms of error, when it is calculated as a total
of multiple wells. Well with fewest samples per available depth was identified
and sample count of other wells was reduced through random sampling to match
the identified value. Additionally, it is typically beneficial for ML approaches
to balance the dataset anyway. It prevents error minimization algorithms from
being overwhelmed by an over-represented value. In simple terms, an algorithm
differentiating between cats and dogs will be best trained when the dataset is
split evenly between these two classes. If cats were to be over-represented in a
ratio of 9:1, algorithm may settle on a local minimum where everything is a cat
with 90% accuracy. Complete source code used for data preparation is made
available on GitHub5.

The described pre-processing results in data from seven wells with total available
measure depth ranging from 332m to 2,759m. This translates to 6,389 and 53,041
data samples respectively with total of 198,928 samples and 10,346 meters of
measured depth among all the wells. Table C.1 provides the exact breakdown
of those values. The names of the well were changed so that they are easily
identifiable, such as USROP_A 2 N-SH_F-14d.csv. USROP stands for University
of Stavanger Rate of Penetration. A refers to the revision of the dataset. 2 is a
short well identifier, and N-SH_F-14d refers to original CSV file titled Norway-
StatoilHydro-15_$47$_9-F-14 depth.csv. For brevity, this paper henceforth will
refer to the wells simply by their consecutive number, such as well 2 .

To provide a general insight in how the quality of the data well 2 is reproduced
in the Appendix as Figure C.13. This chart is for reference only to provide a
general feel for the dataset for potential researchers. Some outliers are present,
changes in equipment are visible both in terms of well diameter, as well as gamma
reading, which abruptly changes.

Among the attributes available in the presented dataset one can notice that
lithology information is not present. This was done because such data is not

5https://github.com/AndrzejTunkiel/USROP
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Table C.1: USROP dataset well depth reference

Filename Starting
MD [m]

Final
MD [m]

Available
length [m]

Sample
count

USROP_A 0 N-NA_F-9_Ad.csv 491 1,206 715 13,746
USROP_A 1 N-S_F-7d.csv 301 634 332 6,389
USROP_A 2 N-SH_F-14d.csv 988 3,466 2,478 47,645
USROP_A 3 N-SH-F-15d.csv 1,306 4,065 2,759 53,041
USROP_A 4 N-SH_F-15Sd.csv 1,401 4,090 2,689 51,708
USROP_A 5 N-SH-F-5d.csv 2,828 3,792 964 18,548
USROP_A 6 N-SH_F-9d.csv 225 634 408 7,851

always immediately available while drilling, and it is actually missing from the
Volve dataset for a number of wells. The lack of lithology information will
therefore promote creation of more universal models. There is still a possibility of
an ROP prediction model that identifies lithology through unsupervised methods,
such as clustering first, and then applies this knowledge to the testing dataset.
Such approach potentially makes the model more robust and applicable to more
operations. Nevertheless, further work is planned on creating additional curated
dataset that would contain lithology information, bit wear, time, and other
parameters.

It is also possible to develop models that work on additional pre-defined internal
splits, for example dividing data further by the wellbore diameter, so that data
for a given well section is evaluated by a model created only on training data
from wellbores with an identical or a similar diameter.

C.3.3 Additional information

Volve dataset contains a plethora of information about the field and all the
relevant operations, ranging from daily reports and production logs to reservoir
models and seismic data. Due to volume of that additional information it was not
pre-processed as a part of this paper. Some of that information still may be used
indirectly as a hint or idea driving model creation, or directly, where additional
data is used to potentially significantly reduce prediction error. Also in this
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case the USROP dataset will be useful as a reference point. When proposing an
improvement, for example inclusion of seismic data to improve ROP prediction,
the results may be directly benchmarked against the state-of-the-art models of
other researchers. Today, if such improvement is proposed a before-and-after
comparison is often questionable, as the before state is provided by the same
researcher due to lack of comparable results available. This, consciously or not,
may not be the best effort as one focuses on the new and improved model.

C.3.4 Score metrics

Not only data needs to be standardized in order to evaluate differences in models’
performance, but unification of the way the results are calculated is also needed.
Mean Absolute Error (MAE) is suggested as the key metric in case of the ROP
prediction.

MAE = 1
n

n∑
t=1

|At − Ft| (C.1)

Where n is the sample count, t is the consecutive sample number, At is actual
value at sample t, and Ft is the forecast value for sample t. Rationale behind
this choice is that ROP modelling is mainly done for drilling time optimization,
where the interest is in the cost per meter drilled. A given value of error, for
example 10 m/h, will be of roughly the same significance for an operator whether
the true value is 30 m/h or 80m/h.

Commonly used alternative to MAE is Mean Absolute Percentage Error (MAPE)

MAPE = 1
n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (C.2)

This heavily penalizes errors for low ROP values. In case of an error of 10m/h
in a very slow section of a well, like 0.1 m/h, becomes a 10,000% of error. In
practice ROP can be very close to zero, or zero, on some datapoints, making the
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problem even more extreme generating error values at infinity. Manual removal
of such datapoints is possible, but would make the results significantly influenced
by arbitrary decisions. This was the deciding factor behind selecting MAE as the
key metric. Supplemental metric is proposed to indicate the error value related
to the absolute value of ROP without the infinite error problem - Weighted Mean
Absolute Percentage Error (WMAPE)

WMAPE =

n∑
t=1

|At − Ft|
n∑

t=1
|At|

(C.3)

This way of calculating error gives an indication of the scale of the error related
to the complete well without the infinite error problem, as it avoids dividing by
values close to zero. WMAPE is used as a supplemental metric in this paper.

Note that this is related only to model evaluation, and other metrics may be
better for the purpose of training the model. Care must be taken when evaluating
total MAE as it cannot be simply averaged between different wells, as the sample
count is not identical. The best approach is to store absolute error values per
sample from evaluating all the iterations and calculate mean at the end. To better
understand distribution of ROP values histograms are provided in Figure C.2.
Note that the sample counts are displayed in logarithmic scale.

C.3.5 Defined scenarios

Three scenarios are proposed to evaluate ROP prediction models that reflect
both reference well as well as continuous learning methods discussed
earlier. First, Continuous Learning scenario is suggested as a particularly
attractive approach for real-time prediction. Each well is evaluated separately;
initially first 30 meters are available for training and validation to evaluate next
30 meters. Next iteration considers first 60 meters as available and subsequent
30 meters for testing. After that 90 meters are taken and so on. Note that
the last testing section will necessarily be smaller than 30 meters, as the total
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Figure C.2: ROP distribution of USROP wells.
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Figure C.3: Proposed scenarios for model validation

length of wells is not a multiple of 30. After processing the mean absolute
error is reported for complete well taking into account testing scores from all
iterations. Distance of 30m (100ft) was selected as a typical length of a stand
in a common triple drilling rig. To practically implement the train/test split in
a unambiguous way, the split should done be every 5776 depth-sorted samples,
which is equivalent to approximately 30 meters of Measured Depth in USROP

6Total samples divided by total meters times 30; 198928/10346 · 30 = 576.8 ≈ 577
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dataset. This implementation works around the problem of minor gaps in the
data that can potentially cause different results in different implementations.

Second proposed scenario is All for One7, when all but one well is available for
training and validation and one complete well is used for testing. This allows for
seven different iterations with different well left for testing as cross-validation,
and calls for one final MAE score from all the wells combined. Lastly, a One for
All8 scenario is proposed, where only one well is available, and all other wells
are evaluate based on this model. As with the second scenario, this results with
7 train/test iterations acting as cross-validation. All three scenarios are shown
symbolically in Figure C.3.

Note that only the split into available and testing data is fixed for each scenario.
When methods like early stopping or dynamic model selection are used, the
available data has to be split into training and validation data. All these samples
have to be taken from the dataset designated available in the current iteration.
It is also highly recommended that all publications related to ROP prediction
based on this dataset share the relevant source code for research reproducibility
and verification.

Note that all iterations in All for One and One for All scenarios are independent,
hence developed algorithms should work on data only from a given iteration. In
case of Continuous Learning scenario, each well is considered independent, but
the sequence of expanding the dataset through drilling has to be maintained.

Referring to the data-split discussion in the Incorrect data split in the Existing
problems and potential pitfalls section, it is worth highlighting that the proposed
scenarios are de facto predefined, custom data-splits. Continuous Learning
scenario is a variant of TimeSeriesSplit implementation, with fixed depth step
instead of fixed split count. All for One and One for All explicitly splits the
dataset into training and testing by well. Validation dataset is not specified, and
it can be taken from the training data if so desired.

7Training on All, testing for One
8Training on One, testing for All
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C.4 Reference results

Reference results are provided as a starting point for the basic algorithms’ per-
formance, as well as to gauge the available room for improvement. Source code
to replicate the results is provided on GitHub9. Tested algorithms were mostly
sourced from the Scikit-Learn library [28]: Gradient Boosting Regressor, Ran-
dom Forest Regressor, AdaBoost Regressor and K-Nearest Neighbors Regressor.
Additionally XGBRegressor was used from the popular XGBoost library [30].
Additionally, results for classical approach - Bingham model [31] developed in
1964 - are provided as well.

C.4.1 Bingham model

This is a popular model developed through laboratory testing. This is a common
model acting as a reference point when suggesting improved ROP prediction
methods in published research.

ROP = K

[
WOB

Db

]a

N (C.4)

where K is constant accounting for formation strength, WOB is weight on bit, Db

is bit diameter, a is bit weight exponent and N is the rotary speed. The constants
K and a were established based on minimizing the mean square error between the
predicted and true value in the testing dataset, using the same training/testing
data splits as done for the data-driven methods. A least squares optimization
algorithm was used from SciPy library [32], where parameters K and a were
selected such, that mean squared error (MSE), between real ROP values and
calculated ROP values is smallest. This stands in apparent conflict where results
are evaluated based on different metric. Our results however showed that MSE
based optimization algorithms worked best producing lowest MAE and WMAPE
results.

9https://github.com/AndrzejTunkiel/USROP
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More advanced methods such as neural networks, 1D convolutions, recurrent
models, automatic model selection such as TPOT library [33], ensemble results,
additional pre-processing, and other approaches are possible. They are likely to
yield superior results, however multiple separate publications will be needed to
fully explore the ever-evolving landscape of machine learning methods that can
be applied to the USROP dataset.

C.4.2 Continuous Learning

Continuous learning is an attractive practical approach that can yield good
results. It does not require information from reference wells making it possible to
implement it without prior knowledge or data from a given field. It also does not
suffer from typical problems such as changes in logged attributes or differences in
equipment used between the wells and varying equipment calibration. Reference
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Figure C.4: Continuous learning scenario results for individual wells and
methods, heatmap. Mean Absolute Error
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results for this scenario are presented in Figure C.4 and Figure C.5. The main
proposed metric, MAE, is shown as subfigure C.4. It is presented as a heatmap,
where cells correspond to various well and method combinations, and the color
represents the error value. There is a clear difference in performance between
the wells, with wells 1 and 6 typically being the most poorly modelled across
all applied methods, and with best results for wells 3 and 4. There are two
key factors that explain this finding: wells are different lengths, with longer
ones allowing for nominally bigger training datasets, and different average ROP
values (ref. Table C.1 for well’s size, and Figure C.2 for average ROP values).
To compensate for differences in ROP, alternative heatmap is reproduced, as a
subigure C.5, where results are normalized in terms of average ROP of a well and
shown as WMAPE. Note that this is an error shown as a percentage of average
ROP of a well, not ROP of a given sample, as in MAPE. This means that error of
x m/h has the same value across a specific well, but it will change between wells.

For both MAE and WMAPE metrics the best overall score was achieved for
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Figure C.5: Continuous learning scenario results for individual wells and
methods, heatmap. Weighted Mean Absolute Percentage Error
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Gradient Boosting Regressor of Scikit-Learn library. Bingham model, the classical
approach, scored worst in all but one well, where it was placed next to last beating
the AdaBoost Regressor, albeit only for MAE score. What is worth noting is that
depending on the metric used a well can be easy or difficult. This is the case with
well 1 and 6, where the error is high when calculating MAE, compared to other
wells, but is low when using WMAPE. Refering back to Figure C.2, these are
wells that have highest mean ROP. In practice both those metrics carry valuable
information about the performance, and while there are differences between the
wells, the overall rating of the methods remains mostly unchanged.

C.4.3 All for One

Reference results for All for One benchmark are shown in Figure C.6 as a violin
plot. This type of chart is a merger of a histogram and a box plot, providing
high resolution results at a glance in a compact format. The width of the light
gray portion referencing the sample count for a given value on the y-axis, and
is smoothed out via kernel density estimation. Note that the dot in the center
of each figure represents median absolute error, while the key metric is mean
absolute error. The dark grey bar spand 15th and 75th percentile. Best value
in terms of MAE was achieved by Gradient Boosting Regressor of Scikit-Learn
library. All defaults were kept for this algorithm, hence the outcomes are not
fully representative of its potential. The results in terms of the well-by-well
split are presented in as a heatmap in Figure C.7. It is possible to see how the
tested algorithms behaved on individual wells. Note that different algorithms
may perform better for different wells. While Gradient Boosting Regressor has
the lowest overall error, alternative approaches worked better when testing wells
0, 1, 3, 4, and 6. This suggests that using multiple models, such as an ensemble
approach, is likely to yield improvements. What is particularly noteworthy is that
the classical Bingham model scored best for wells 2 and 3. Additional heatmap
with WMAPE metric is shown in Figure C.8. As it was the case in Continuous
Learning scenario, this metric changes for which well ROP prediction was done
well or poorly, but the overall rating of tested algorithms stays the same. What
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becomes highlighted however, is the fact that Bingham model’s error is over 100%
for well 4, which is significantly higher than other methods.

Investigating results in more detail one can notice that Continuous Learning
approach typically yielded better results than All for One. While this is true
for all models, it is not true for all wells. Random Forest Regressor in All for
One scenario achieved better results than any model in Continuous Learning
approach. While this is only a preliminary result, it suggests that different
modelling approaches may be optimal for different wells.
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Figure C.6: All for One results per method, violin plots

C.4.4 One for All

The One for All benchmark is significantly more difficult, as it is trained on one
well only in contrast to six wells in All for One variant. This is visible clearly in
inferior results seen in Figure C.9. In this benchmark, again, it is the Gradient
Boosting Regressor that shows the lowest MAE; albeit the value is 49% higher
than in All for One scenario. The heatmap in Figure C.10 shows that, surprisingly,
the best algorithm showed worst results for well 0 out of all tested algorithms.
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Note that the average MAE is calculated per sample basis, hence good results in
biggest wells, here 3 and 4, have the highest weight. The traditional Bingham
model again showed mixed performance scoring well for some wells (5) and poorly
for others (6). In calculations done for WMAPE, Figure C.11, results are similar
with Bingham model performing worst, but uncovering that relatively it was
the well 4 where it was most off-target, as that well was drilled more slowly,
increasing the percentage error.

C.5 Discussion

C.5.1 Comparison against a flawed methodology

The reference results for all three proposed scenarios significantly differ from
numbers presented in previous research related to ROP prediction using machine
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Figure C.7: All for One results for individual wells and methods, heatmap.
Mean Absolute Error
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learning. The absolute error is much higher, and improvements over the Bingham
model are only modest. First basic reason for this situation is that presented
results are not indicative of the state of the art, but act as an indication of
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Figure C.8: All for One results for individual wells and methods, heatmap.
Weighted Mean Absolute Percentage Error
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Figure C.9: One for All results per method, violin plots
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performance of the off-the-shelf algorithms applied without any tuning. This
paper does not aim at developing an ROP prediction model, but to facilitate
comparative research in this domain.

The second reason for relatively poor results is that all three proposed scenarios
were developed to be realistic and representative of the overall performance
of different models. Proposed dataset consists of drilling operation through
various lithologies with no explicit attribute identifying them, and using different
eqiupment. This is representative of real-life drilling, where such information
is not always readily available. It was found to be very common in related
publications that they are often limited the ROP prediction models in specific
lithology.

To underline the perceived performance differences potentially stemming from
different data split an exercise was performed, where USROP dataset as a whole,
all wells joined together, was split into train/test portions in 9:1 ratio, with data
rows randomly assigned to those subsets. Such methodology is flawed and does
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Figure C.10: One for All results for individual wells and methods, heatmap.
Mean Absolute Error
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not represent real-life performance, a problem indicated in the second section
of this paper. This approach was found to be in use in at least one of the
reviewed papers, unsurprisingly reporting very good results. Using an untuned
Gradient Boosting Regressor we achieved MAE value of 4.75, and R2 = 0.82,
better than all benchmarked algorithms in all the USROP proposed scenarios,
and approximately half the error of the best global result. To further improve the
score, TPOT library [33] was used to automatically search for best performing
off-the-shelf algorithm to replicate assumed reasonable best effort in making an
ROP model. This resulted in an algorithm with MAE under 0.3 m/h. Further
stretching the apparent performance by applying the train/test split with different
random seeds it was possible to identify a specific random sampling pushing the
MAE down to 0.265 m/h and a near-perfect R2 value of 0.999. While those
numbers may look impressive, they are just a result of a flawed methodology and
do not translate to practical application.
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Figure C.11: One for All results for individual wells and methods, heatmap.
Weighted Mean Absolute Percentage Error
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C.5.2 Bingham reference results

Among the tested algorithms in this paper the Bingham model is both most
widely used by other researchers, and the one implemented most unambiguously.
This allows one to compare the USROP dataset to other datasets via proxy of this
model. Previous work on undisclosed dataset provided by Marathon [34] evaluated
the Bingham model both on individual lithologies as well as on entire dataset.
The overall MAPE ranged between 23% and 43% depending on the method
used to identify the coefficients. This is in line with results from the Continuous
Learning scenario, where in USROP dataset the WMAPE was between 20% and
103% when inspecting individual wells in different scenatios. Another research
[19] showed Bingham model achieving MAPE between 33% and 40%, again in
line with results from USROP dataset. It is worth noting that these metrics are
similar, yet not identical, since WMAPE in our paper refers to percentage of
average ROP to avoid results being overwhelmed by moderate nominal error at
very low ROPs. Methods in calculating the coefficients of the Bingham model
also vary, with the quoted papers using a 3rd party software, making comparisons
difficult. For the sake of comparison MAPE was also calculated per sample for
All for One scenario and shown in Figure C.12. The mean error is 102%, however
as expected, the histogram clearly shows that the bulk of actually expected error
is between 0% and 60% with outliers inflating the average. Truncating these
would significantly reduce the overall MAPE. Those results are in-line with the
other quoted papers, suggesting that USROP dataset does not significantly differ
in terms of ROP prediction difficulty.

C.5.3 Future work

Volve dataset, which is the source for the USROP dataset presented here, contains
significant amount of additional data that was not included. This includes, but
is not limited to, time-based data, pit volume, trip tank volume, block position,
bit depth, mud type, mud name, mud properties, daily drilling reports, seismic
data, lithology data, production data, and more. Significant effort is necessary



Paper AT2 185

0 50 100 150 200 250 300 350 400 450 500
MAPE

0

5000

10000

15000

Sa
m

pl
e c

ou
nt

mean MAPE = 102.2
median MAPE = 46.7

Figure C.12: Mean Absolute Percentage Error, calculated as per sample
percentage (MAPE).

to make these data seamlessly available for the purpose of machine learning or
more general data science. Operations in the Volve field were not recorded using
unified parameter set, and therefore making a curated dataset is necessarily a
balance between the amount of parameters included and the amount of wells that
contain all the selected parameters.

Immediate work that is planned by authors is to either expand, or create addi-
tional dataset meant for ROP prediction that includes lithology data, as well as
parameters currently missing that are necessary for implementation of Bourgoyne
and Young ROP model [35]; these include jet impact force, pore pressure gradient,
fractional bit tooth wear and threshold bit weight per inch of bit diameter at
which the bit begins to drill. Other researchers are encouraged to create curated
(sub)datasets for the specific problems they are working on, what will facilitate
and accelerate research in the respective domain.
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C.6 Conclusion

The key novel aspect of presented work is the creation of a reference, pre-processed,
and simple to use ROP prediction dataset with specific challenges to solve has
high potential to become a catalyst for higher quality research. It is a necessary
step to evaluate what is the current state-of-the art in ML applied to drilling.
The proposed three scenarios are related to real-life situations and aim to be
representative of field deployment. As the reference dataset is based on Volve
data, it is possible to extract further information about the wells used, allowing
for more informed modelling decisions, background information, as well as further
expansion towards more reference datasets. It allows researchers to propose
inclusion of specific new information and to have a universal benchmark to show
the achieved improvement.

Additionally, we found that when the data-split is performed in a realistic manner,
suitable for field deployment, the standard ML algorithms perform worse than
in previously published studies. Presented reference results shed a light on the
performance of data-driven methods, where, depending on the methodology and
specific well, they may be both vastly superior and sometimes inferior to the
classical approach of physics-based models. This further confirms the need for
bigger reference datasets, which enable robust evaluation of the accuracy of
developed models.

import numpy as np
from s k l e a r n . ensemble import GradientBoost ingRegressor
import matp lo t l i b . pyplot as p l t
from s k l e a r n . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
np . random . seed (42)

X = np . l i n s p a c e (0 ,1 ,10000)
y = np . cumsum(np . random . normal ( s i z e =10000))

reg = GradientBoost ingRegressor ( random_state=42)

X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (
X[ : , np . newaxis ] , y , t e s t _ s i z e =0.33 , random_state=42)
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reg . f i t ( X_train , y_train )

print ( reg . s c o r e ( X_test , y_test ) )

Listing C.1: Train/Test split failure

from s k l e a r n . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
from s k l e a r n . ensemble import GradientBoost ingRegressor
df = pd . read_csv ( ’USROP_A 4 N−SH_F−15Sd . csv ’ )
y = df [ ’ Measured Depth m’ ] . to_numpy ( )
X = df [ [ ’ Average Sur face Torque kN.m’ ,

’ Average Rotary Speed rpm ’ ] ]

X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (
X, y , t e s t _ s i z e =0.33 , random_state=42)

reg = GradientBoost ingRegressor ( random_state=42)
reg . f i t ( X_train , y_train )

print ( reg . s c o r e ( X_test , y_test ) )

Listing C.2: Measured Depth prediction

import numpy as np
import matp lo t l i b . pyplot as p l t
from s k l e a r n . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
from s k l e a r n . ensemble import GradientBoost ingRegressor
np . random . seed (42)

X = np . random . normal (20 ,2 , s i z e =10000)
X = X[ : , np . newaxis ]
y = np . random . normal (50 ,3 , s i z e =10000)

reg = GradientBoost ingRegressor ( random_state=42)
X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (

X, y , t e s t _ s i z e =0.33 , random_state=42)

reg . f i t ( X_train , y_train )
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p l t . s c a t t e r ( y_test , reg . p r e d i c t ( X_test ) , s =1, c=" black " )
print (np . average (np . abs ( y_test − reg . p r e d i c t ( X_test ) ) ) / np . average ( y_test ) )

Listing C.3: Easy target failure



Paper AT2 189

10
00

20
00

30
00

Measured
Depth

[m]

0

10000

20000

30000

40000

Sa
m

pl
e

0 10

Weight
on Bit
[kkgf]

10
00

0
20

00
0

Average
Standpipe
Pressure

[kPa]

10 20

Average
Surface
Torque
[kN.]m

0 50

Rate of
Penetration

[m/h]

0
10

0

Average
Rotary
Speed
[rpm]

20
00

40
00

Mud
Flow In
[L/min]

1.
1

1.
2

1.
3

Mud
Density In
[g/cm3]

30
0

40
0

Diameter
[mm]

10
0

15
0

Average
Hookload

[kkgf]

10
00

20
00

30
00

Hole Depth
(TVD) [m]

0

25
0

USROP
Gamma
[gAPI]

Figure C.13: All parameters of well 2, for reference only.
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Abstract

Machine Learning adoption within drilling is often impaired by the necessity to
train the model on data collected from wells analogous in lithology and equipment
used to the well where the model is meant to be deployed. Lithology information
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is not always well documented and fast-paced development of drilling equipment
complicates the challenge even further, as a model would likely become obsolete
and inaccurate when new technologies are deployed. To bypass this problem
a training-while-drilling method utilizing neural networks that are capable of
modelling dynamic behaviour is proposed. It is a continuous learning approach
where a data-driven model is developed while the well is being drilled, on data
that is received as a continuous stream of information coming from various
sensors. The novelty in presented approach is the use of Recurrent Neural
Network elements to capture the dynamic behaviour present in data. Such model
takes into account not only values of the adjacent data, but also patterns existing
in the data series. Moreover, results are presented with a focus on the continuous
learning aspect of the method, which was sparsely researched to date. A case
study is presented where inclination data is predicted ahead of the inclination
sensor in a directional drilling scenario. Our model architecture starts to provide
accurate results after only 180 meters of training data. Method, architecture,
results, and benchmarking against classical approach are discussed; full dataset
with complete source code is shared on GitHub.

E.1 Introduction

Lack of adequate training data is one of the major issues preventing machine
learning model deployment within petroleum. While in general it is relatively
easy to develop data-driven models for problems like rate of penetration (ROP)
prediction, such models will be valid only for wells where geology, equipment, and
general design matches closely the training dataset. This is further corroborated
by the lack of published general-purpose data-driven ROP prediction models.
All machine learning models face such challenge; if an algorithm is trained to
detect cats, but the dataset contains only cats indoors, it will struggle to classify
pictures taken outdoors. Such problem was explored in practice when a neural
network was trained to discern dogs from wolves. Training dataset was made
flawed on purpose, where pictures of dogs were taken on grass, and pictures of
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wolves in the snow. This lead to the classifier using snow as the key feature, and
subsequently poor model performance [1].

To solve this underlying issue, continuous learning [2] methods could be used,
where a model is continuously retrained while the well is being drilled. Data
collected from a drilled section are used to train a model that can be applied to the
further section of the same well. When additional section of a well is drilled, the
process is repeated to create an updated model. Advances in computational power
make data-driven model training time negligible in comparison to time required
to drill a well making the training-while-drilling approach feasible. Model training
is often fast enough to be completed in the short breaks in the drilling process,
such as adding a stand to the drillstring. Additional benefit of a dynamically
trained model is that any discrepancies between predictions and incoming data
are used as a feedback to improve the subsequent iteration of the model.

There is limited previous research related to such approach in drilling. Data-
driven rate of penetration (ROP) prediction models are abundant in the latest
literature: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 12, 16, 17]. There is however
limited work related to continuously expanding dataset. Only few papers were
identified where the training to testing ratio was explored showing improvement
over analytical methods even at smallest training datasets [18]. Application of
continuous expanding of the training dataset was researched as well in other
papers, such as [4], applying random forest algorithm to again predict the ROP,
and [19], where expanding dataset was used for ROP prediction implemented
as changing train/test ratio, evaluating random forest, support vector machines
and neural networks, and comparing it to analytical models such as Bingham,
and Bourgoyne and Young. No other analysis of continuous learning in drilling
environment was identified.

To expand on this existing work, a novel model was developed that uses not
only the real-time attributes as inputs from a specific time and space, but also
utilizes previous values; this is what this paper refers to as dynamic behaviour.
It means that the model is aware of not only the current state, but also of the
previous values and how they change along the data series, be it space or time,
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identifying the dynamics of the local environment. This is achieved through the
use of Recurrent Neural Network (RNN) [20], where attribute values are fed to
the network from multiple steps along the data series.

To the best of our knowledge, no drilling related continuous learning research
was done that utilized the recurrent neural networks the way this paper proposes.
This paper also performs a thorough analysis of how the models’ performance
change as the data is continuously acquired; we were unable to identify any
drilling-related paper that would discuss this aspect in a comparable detail.

While our novel approach does not produce results from the first meter drilled,
it requires relatively small dataset to start working reliably. A case study is
presented where lagging inclination data is predicted in a directional drilling
scenario using a bent sub. It was selected because the problem is sparsely explored
in the existing research, and the way that data behaves makes it a good candidate
for a neural network model with recurrent elements. The applied model is based
on our earlier work [21] where the problem of predicting lagging inclination data
was first explored. In this paper, accuracy along the depth of the well is explored
to evaluate method’s usefulness and applicability in real-life situations.

E.1.1 Motivation

In the recent years, directional drilling became one the common drilling methods,
especially in relation to shale developments[22]. Precise well placement is an
important factor when it comes to the future well performance. Directional driller
depends on the values from downhole sensors to know where the well is being
placed. One of the challenges is, that due to space constraints, those sensors are
at a significant distance from the bit, often tens of meters. This in turn creates a
blind zone, a section of a well that is drilled, but the driller does not know where
it exactly is, potentially leading to a delayed corrective actions.

As the sensor data is delayed, decisions taken based on these sensors’ readings
are delayed as well, leading to suboptimal well placement. With pay zones only 5
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- 15m thick, as in case of the Bakken field[23], minimizing that delay distance
in the directional readings is critical. The goal of this case study is to predict
such continuous inclination readings that are yet to be made, predicting the well
direction between the sensor and the bit.

E.1.2 Innovation

There are a number of innovative elements in the presented paper. Only one
prior published study was identified discussing the recreation of sensor data using
machine learning methods, apart from parts of the proposed method presented
by the authors on the 39th International Conference on Ocean, Offshore & Arctic
Engineering in August 2020 [21]. Presentation was given [24] on similar topic
applying basic regression algorithms, lasso, ridge, random forest and gradient
boosting, to predict a number of sensor values lagging behind the bit. Achieved
results showed relative error less than 16% for 80% of the tested data. Our
research uses more advanced network architecture as well as is considered within
continuous learning environment. Applying machine learning allows for method
deployment when prior specific knowledge of the bit steering mechanism is not
necessary. Such exact information is on the other hand needed to follow recently
published analytical approach, such as performed by [25, 26], where beam bending
model is developed based on exact bottom hole assembly geometry and function.

Another key innovative element presented in the case study is the application of
continuous learning. This concept is related to lifelong machine learning [2], where
continuously expanding training dataset is used to evaluate samples from the
immediate future. While there is significant research related to data stratification,
i.e. the split ratio between training and testing datasets, such as [27, 28], it
must be noted that this is a similar, yet different topic. Continuous learning
mimics the real life learning, where immediate future is predicted using all the
past experiences, while stratification studies consider a fixed dataset and the
best way to split it. Presented case study focuses of the models’ performance in
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the continuous learning scenario in detail, which we were unable to identify in
literature.

Lastly, inclusion of past values as inputs via use of recurrent neural networks is
also a topic sparsly explored in research related to drilling. Publications related
to flow rate estimation [29] utilized generic recurrent neural networks, as well as
newer work on kick detection [30] utilized newer architecture of Long-Short Term
Memory. Our work expands on this by utilizing Gated Recurrent Units, RNN
cell first discussed in 2014 [31] in a continuous learning scenario, a combination
that we were unable to identifiy in literature related to drilling.

The proposed solution is fast to deploy, requires no proprietary software and
can be run using any modern consumer-grade Graphics Processing Unit (GPU),
making the necessary investment very low. Properly set up system automatically
adapts to available data through dimensionality reduction techniques discussed
in the further chapters. A single well data is required to validate the method for
a given use case. Given the auxiliary nature of the generated results, there is
little to no risk in deploying the presented method to the field. The accuracy of
the method can be continuously monitored, since true values are measured with
23 meter lag relative to the prediction.

E.1.3 Machine Learning methods used

Machine learning can be applied in various ways. Generally speaking, an algorithm
learns the correlations between inputs and outputs that can later be exploited
for prediction purposes. One of the methods of implementing this is to use data
from a given moment in time to predict a different, unknown parameter. For
example, weight on bit (WOB) and drill bit’s rpm can be correlated with rate
of penetration, so that optimization can be done on the developed model to
maximize the ROP. That correlation can be captured using various algorithms,
such as linear regression, decision trees, neural networks, gradient boosting and
others. This approach will however not capture any dynamic behaviour of the
model. This can be rectified partially by calculating derivatives of inputs, but it
will have a very limited impact. To fully capture dynamic behaviour of a given
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model Recurrent Neural Networks[20] are used. This is an architecture suited
for data-series, such as speech, language processing, or drilling logs. Its internal
structure is well suited to take inputs both from the current state as well as a
number of previous states. It contains a connection that feeds the output from
step t-1 to step t. The basic principle is shown in Figure E.1 on the left hand
side. Practically this type of network is implemented in an unfolded form, seen
on the right hand side. Input x0 generates output h0. At the next step, the
network is fed both input x1 as well as the output h0, generating new output
h1. The actual model of the case study uses Gated Recurrent Units [32] as its
RNN component. This architecture was found to perform well on relatively small
datasets [31], which is a key requirement for the training while drilling approach,
where dataset gradually grows from empty while the well is drilled.
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Figure E.1: Basic Recurrent Neural Network schematic

Another important aspect of developing machine learning model is how the
training and testing datasets are created. This is especially important in work
related to drilling, where logs are data-series. Most common way of creating a
train/test split is random sampling, where a percentage of a dataset is randomly
selected to be a part of a training or testing. This is a method that cannot be
used for predictive models in drilling, since spurious correlations will inflate the
testing result. Correct approach is to split the data into continuous sections,
where first n% of a well is used as training, and remainder is used as testing. This
is the most common way of performing a data split in research related to drilling.

A relatively new approach is continuous learning [2], where training dataset is
continuously growing, and predictions are done based on training on all previous
data. This approach fits field deployment particularly well, because it is equivalent
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to how data is collected while drilling. In this approach initial results are poor
due to small size of the dataset, but the assumption is, that while the dataset
expands the model will outperform models created on data from offset wells, as
it better represents drilling currently at hand. Figure E.2 is meant to visually
explain the data split strategies discussed above.

...

Random split Sequential split Continuous learning

step = 1

step = 2

step = n-1

- training samples - testing samples

- dataset

Figure E.2: Train/test split strategies

E.2 Case study and model design

The case study data from the open Volve dataset [33], [34] was used, specifically
the well F9A. It was chosen as it contained a relatively long section of the well
without any data issues in its depth-based log. It contains a curved section
drilled with a bent sub motor, where inclination rises and falls in waves, as is
characteristic of this method, see Figure E.3 for reference. The sensor lag is
introduced artificially in the data and is equal to 23 meters, a value that is in
range of a typical BHA configration. This was necessary as the log in question
contained already depth-corrected data, an operation that is performed after the
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well is drilled, hence a reverse operation was needed for a case study. What the
model predicts is the continuous inclination data between the sensor and the
bit location of each sample. Real-time attributes are the input to the model,
including Rate of Penetration, and Weight on Bit from all the locations behind
the bit, hence overlapping with the continuous inclination prediction. Inclination
from the locations behind the sensor is used as in input to the RNN portion of
the network. This is explained in detail in further sections.
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Figure E.3: Case study well inclination profile

E.2.1 Data preparation

Raw data from the real-time drilling logs are rarely usable as-is. A number of
processes were applied to increase their quality. First, a section of the well without
any missing data was identified, in this case, between 500 and 848 meters measured
depth. Since our approach relies on neighbouring data in the model as an input,
depth-steps in the data series had to be made even. RadiusNeighbourRegressorm
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part of scikit-learn [35] was used to re-sample the data at even depth intervals of
0.230876 meters - median distance between datapoints in the original dataset.
Attributes that have missing data after resampling process are considered not
complete enough and disregarded. If a section of the well is missing some
attributes, it will get discarded from future predictions. Alternatively, one can
develop a system where such section of the well may be ignored completely in the
process to retain certain attributes in the model when they come back on-line.

To include the past values information a windowing process was applied. Referring
to Figure E.4, a single input sample contains inclination data from behind the
sensor (already measured inclination values), as well as real-time attributes from
behind and ahead of the sensor. In the presented case study, the distance between
the sensor and the bit is 23 meters, divided into 100 discrete measurements.
Distance behind the sensor taken as an input the model is also 23 meters, divided
into 100 discrete measurements. The output of the model is inclination values
between the sensor and the bit, also 23 meters and 100 discrete values. Referring
back to Figure E.4, distances p and b are equal to 23 meters; number of discrete
steps, both n and m is equal to 100. The distance between steps is even and
approximately 0.23 meters. This setup creates a model with a high number of
inputs and outputs. Each included real-time attribute adds 200 inputs, since
there are 100 values before and 100 values after the sensor. There are also
100 inputs related to inclination values. Presented case study has 51 usable
real-time attributes. These are however reduced to 3 attributes through principle
component analysis (PCA), described in further subsection, resulting in practice
in 3x(100 + 100) + 100 = 700 inputs to the machine learning algorithm itself.

PCA transformation In relation to input attributes, to simplify selection
process, and easy field deployment, all instantaneously available attributes are
used. Inclination data is stored separately, while all other data is compressed
using Principle Component Analysis [36], a dimensionality reduction method.
Note that this reduces dimensions that the machine learning algorithm is exposed
to only, as the input to the complete setup still takes all attributes. Resampled
data is first normalized to a range (0,1), fed through a PCA algorithm that
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Figure E.4: Sensor lag

reduces it to the prescribed amount of components, and normalized again to a
range of (0,1). The number of output attributes and how it affects the prediction
was evaluated and it was found that a reduction to 3 components from initial 51
attributes1 generates best results (Mean Square Error (MSE)=0.035) in terms of
prediction error. The study for determining optimal number of PCA components
was performed through complete training-while-drilling exercise, from 15% to 80%
of available data, with 1% increments - process explained in detail further in the
paper. Results were on average better than selecting all the attributes without
PCA dimensionality reduction (MSE=0.041). PCA-based results were also better
than manual selection of attributes based on engineering judgement - approach
applied to a related case study before [21] (MSE = 0.048), where average surface
torque, average rotary speed, and rate of penetration were selected as inputs.
Data from PCA dimension evaluation results are shown in Figure E.5, where
mean square training error is plotted against the number of PCA components
used, plus the reference values. The best solution, with 3 components, explains
88% of the total variance. It is worth noting that standardization of data was
not performed. This process of substracting mean from sample values was tried

1These are attributes such as Weight on Bit kkgf, Average Standpipe Pressure kPa, Average
Surface Torque kN.m, Rate of Penetration m/h, etc.,
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through using RobustScaler, a solution from the Sklearn package [35], and it
produced overall inferior results.
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Figure E.5: PCA dimension evaluation.

The reason why dimensionality reduction decreases the error of a model is most
likely tied to overfitting and spurious correlations. As explained earlier, inclusion
of each real-time attribute in our case study increases number of inputs by 200.
This results in 10 000 inputs if 50 attributes were to be used. Such high number
of inputs in a dataset as (relatively) small as ours is bound to cause overfitting
to some extent.

It must be noted that no prior attribute selection was performed. No correlation
matrices were calculated nor any other approach was applied. This is connected to
the expected deployment of the method, were decision related to which attributes
will be available during drilling operation is not always known much in advance.
Attribute selection is not trivial, and methods, such as mentioned correlation
analysis are difficult to implement to work automatically; furthermore, the basic
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correlation methods will uncover only linear relationships. Therefore using all the
available parameters through the PCA transformation is proposed as a solution
that can be done fully automatically without manual intervention.

Nominal and incremental inclination data Preparation of inclination data
was different than for other parameters. It is not immediately obvious if best
results will be achieved while predicting inclination data itself, or change in
inclination (incremental value ,first derivative), therefore both approaches were
evaluated in parallel. Use of inclination change is simpler, as it can be used
directly with (0,1) normalization. Use of actual inclination data is more difficult,
as it requires normalization through introduction of a local coordinate system.
Proposed neural network uses RNN layer to process previous values of the
predicted attribute; in our case n=100 input steps were selected, a value selected
through hyperparameter tuning, which is explained in detail later in this paper.
Nominal inclination data have to be scaled such, that first and oldest inclination
input value is zero in the local coordinate system, and the highest value is no
bigger than one. The length of the dataset after complete preparation is 1486
samples, a value that is a function of well depth data at hand, resampling rate,
and the n and m values of the model described in the previous section.

E.2.2 Model design

Overall architecture The model consists of two branches, RNN branch and
Multi-Layer Perceptron (MLP) [37] branch; these branches respectively contain
additional Gaussian noise and dropout layers. They are later concatenated
and connected into a single Dense layer. See Figure E.6 for reference, as well
as the publication first discussing this general model [21]. All the layers used
are from Keras library [38] and therefore specific details can be found in the
project’s documentation. Inclination data is fed into the RNN branch, and all
real-time attributes are fed into the MLP branch. The model was implemented
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in TensorFlow 2.1.0 with Keras library. Full source code used for this paper’s
case study is available on Github2.

As indicated in the data preparation section of this paper, it is not immediately
clear if in the presented case study one should predict nominal inclination or
the change in inclination, later referred as incremental method, as opposed to
nominal method. Neither of the methods predict the actual inclination, since
individual samples are encapsulated in a local coordinate system and scaled in
range (0,1). The difference is that the incremental method works on the first
derivative along the depth of the inclination. In practice, the nominal method
predicts the value of the inclination in the local coordinate system, while the
incremental method predicts the change in inclination value in the same local
coordinate system. There are pro’s and con’s to each of the methods, which are
highlighted in the results section of this paper.

GRU	(RNN)

Gaussian	Noise

Dropout

Dropout

Dense	(MLP)

Flatten

Dense	(MLP)

Concatenate

Dense	(MLP)

Inclination	data Other	parameters

Predicted
inclination

Figure E.6: Neural network architecture

2https://github.com/AndrzejTunkiel
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E.2.3 Continuous learning implementation

Continuous learning implementation flowchart is displayed in Figure E.7. Evalu-
ation process starts at 15 percent of available dataset, or 52 meters of drilling
data. This minimum value was selected as the data from the drilled section has
to be split further into training and validation. 15 percent of our dataset contains
only 195 samples which are further split into 195*80% samples for training and
195*20% for validation. This is already a small dataset and it was decided not to
train data on even smaller sample size, hence starting point of 15% was selected.
Training and validation subsets are continuous and the validation data boarders
with the recent end of the data; alternative strategies were tested for locating
the validation data, and the best results were achieved when it was placed at the
end. This split is necessary to implement early stopping, another method crucial
for avoiding overfitting. The validation data are not used in the backpropagation
part of the training process itself, but they are continuously evaluated while
the model is trained. Typically validation error drops together with training
error along the training epochs, but at the point where overfitting begins, it
starts to increase. This is the point where training is stopped and the model
with best validation score is retained. Data consisting of future 20 percent of
the dataset is set aside for testing of the model from current iteration. 20% is
relatively big, and it was chosen to be indicative of a wider model performance.
It is also important to mention that the PCA dimensionality reduction model is
fit only on the available data within an iteration, and not on the testing data, as
it is considered not available at the time of training. In other words, the PCA
transformation rules (calculating the data covariance) are established only on the
part of the dataset that is considered known. Subsequent transformation is done
on the dataset that contains the testing data. The inclination values are not a
part of PCA transformation. The PCA model is later used for model evaluation,
as the input data have to be processed with the same PCA model that was used
for training.

Training process is repeated ten times to increase accuracy with two competing
strategies evaluated: a lottery ticket approach [39], where the model with best
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validation score is later used for testing, and an average of all ten models -
results from both approaches are elaborated on in the results section. Next, the
percentage of the well assumed to be drilled is increased by one percentage point
and the complete training process is repeated. Increments can in practice be
either shorter or longer. New models can be trained continuously and there is no
underlying reason to artificially increase the intervals.

Our implementation uses TensorFlow 2.1.0 with integrated Keras library and
Python 3.7. Model training was performed on Intel Core i7-8850H CPU, 32GB of
RAM and NVIDIA Quadro P2000 GPU with 5 GB of GDDR5 memory providing
Peak Single Precision FP32 Performance at 3 TFLOPS. Model training required
2-15 minutes (2-15 meters of drilled well at ROP of 60 m/h), depending on the
simulated percentage size of the well drilled. Predictions based on the trained
model are for all intents and purposes calculated instantaneously.

Hyperparameter tuning

Hyperparameter tuning is a process of adjusting various settings in the machine
learning algorithm to increase its performance and is done utilizing training and
validation dataset. This poses a problem as our proposed method assumes no
prior access to data. Performing hyperparameter tuning on similar dataset and
with the same goals can be done to overcome such issue. Such approach is utilized
in other areas of machine learning, for instance a neural network detecting cats
and dogs will not call for new hyperparameter tuning when detection classes are
expanded to birds and rabbits since the problem at hand is technically identical
from the perspective of the neural network. This is not to be confused with
requirement of training a model on a similar well. This process is much more
generic and likely not sensitive to geology or equipment used. Hyperparameters
found to be working well for our case study are likely to provide good results
when reused in model application to any bent sub directional drilling around the
world. We were regrettably unable to evaluate and confirm this assumption due
to lack of access to suitable dataset.
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Figure E.7: Training while drilling process workflow

In our case study due to available data being limited to one well, hyperparameter
tuning was performed on the same well that was later used for method evaluation.
This was limited to layer size, dropout size, learning rate, kernel initialization
variants, Gaussian noise levels and batch size, hence should not artificially
increase the performance of evaluated case study. Hyperparameters stay constant
throughout the complete drilling operation and all the iterations of the model
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generated as new data becomes available.

Tuning of these parameters was done using Bayesian optimization algorithm
[40]. Best parameters vary between nominal inclination and change in inclination
approaches, with dropout layer at 50 percent, Gaussian noise layer at standard
deviation equivalent to 0.2 percent of full scale, and approximately 350 neurons
in the RNN layer and 10 and 100 neurons in final dense layer, depending on the
prediction approach. Specific values can be found in the source code provided.
All tuning was done with early stopping, with patience at 25 epochs and saving
only the best model.

Three datapoints were selected, with 30, 55 and 80 percent of dataset used in
the case study for training and validation as a basis for hyperparameter tuning
exercise. Average loss of these three points was used when evaluating changing
performance. Alternative methods are possible, such as evaluation based on
the worst score, or evaluation based only on most difficult sections, i.e. those
with little data. Method selection should be driven by specific objectives of the
network under development. In our case study average overall performance was
chosen as the key factor and method selected accordingly. Only three percentage
points were selected to limit the time required for hyperparameter tuning, which
is notorious for being time consuming. Note that PCA dimensionality reduction
was not a part of final hyperparameter tuning. It was decided that this is a
critical aspect of the model and therefore analysis of component quantity from 1
to 20 was performed separately, as shown before in Figure E.5.

In the future, as computational power increases, hyperparameter tuning prior to
model deployment may not be necessary. As it is required to evaluate hundreds
of alternative hyperparameter configurations in the tuning process, even models
that are trained in mere minutes take hours to become optimized. This time has
to be significantly reduced, by two orders of magnitude, to perform it during
the drilling operation itself. Considering current progress in the discipline this is
unlikely to happen in the next 10 years, unless new, more efficient algorithms are
discovered.
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E.2.4 Overfitting

Proposed method was optimized for small datasets to provide useful results as
fast as possible. Small datasets are often prone to overfitting, where a machine
learning algorithm memorizes specific datapoints instead of creating a method
capable of generalizing. A number of methods were applied to tackle this problem.
Typical approaches to overfitting are a dropout layer, where neurons are randomly
dropped while training, Gaussian noise layer, where artificial noise is added to the
signal and an architecture minimizing the number of neurons. Another approach
to overfitting reduction is an ensemble of models, which is explained in detail in
the results section of this paper.

E.3 Results

Results from a single sample can be visualized by plotting the past inclination data,
predicted inclination data and ground-truth target values. The same method is
used regardless of using nominal inclination data or incremental inclination data.
This gives a good representation of the task at hand in terms of practical results
that can be achieved. One sample of such chart is shown in Figure E.8. Note how
the inclination prediction follows the same pattern and values relatively close to
the actual data. The rotating potion of the bent sub drilling, where inclination is
temporarily constant is also well represented. Note that the complete cycle of
build-hold-build takes approximately 20 meters in our case study, and prediction
window used is 23 meters. The y-axis refers to a local coordinate system of a
sample, where first, oldest inclination datapoint is moved to zero.

There are multiple ways of describing the error between the prediction and the
ground truth. It must be first established what is actually the value of interest
that is being predicted, as this may change from application to application.
Figure E.9a shows the mean absolute error that this paper uses to evaluate the
presented model in its variations. This specific figure is a heatmap showing error
for the prediction with the prediction distance on the horizontal axis and a given
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Figure E.8: Sample result, 60% of the dataset for training and validation,
Measured Depth ca. 700m, incremental inclination model.

distance drilled on vertical axis. This figure immediately shows that the further
from sensor one predicts, the worse the results; it also shows that predictions
made early in the well are worse than the later predictions. This is in line with
expectations, as at measured depth of 552 meters (after 52 meters of available
data, which starts at MD=500m) the training dataset is too small to reliably
predict future data yet.

Another potential way of understanding data is in terms of the positional error.
Figure E.9b shows how different is the predicted bit position from the true position,
considering a local coordinate system. This is calculated in the inclination plane
using predicted inclination value and the fixed step of the prediction of 0.23 meters.
Here, the horizontal axis shows position error, and the vertical axis measured
depth drilled, making a two dimensional histogram. The position error drops all
the way to and below 0.1 meters in the latter section of the dataset. Alternatively,
positional confidence intervals can be plotted, as shown in Figure E.10, displaying
roughly the same information, but in a more quantifiable manner. It shows both
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(b) Positional error at bit, distribution heatmap.

Figure E.9: Different prediction error metrics in a function of well depth drilled,
nominal method.

the median line as well as the confidence intervals, between 5th and 50th, and
between 50th and 95th percentile.

Error can also be quantified in terms of R2 value. This was calculated both based
on predicted angle as well as predicted local x and y coordinates. While results
for all those 3 parameters follow similar trend, they are slightly different as seen
in Figure E.11a, Figure
reffig:r2x and Figure E.11c. The beginning of the well shows lack of meaningful
prediction, i.e. no correlation with R2 values below zero, which significantly
improves later in the well. Note that R2 values below zero were changed to zero
for readability. The calculations were done for angle prediction at all prediction
steps, while the error for coordinates were done only for the bit position, since
all predictions are used to calculate the final position anyway. The prediction
based on coordinates shows better results, which is likely due to averaging out of
the noise in predicted data.
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Figure E.10: Confidence intervals for bit position prediction, nominal method.

From multiple evaluation metrics we have chosen to use mean absolute error to
discuss and elaborate on alternative prediction methods, as the most intuitively
understood value. As the data used for case study is shared, as well as complete
source code, it is possible to calculate additional metrics on demand with relative
ease. It must also be stressed that presented results, in terms of accuracy, have
no equivalent in current state of the art. Presented method generates values that
otherwise would simply not be there; normally the inclination value between the
sensor and the bit is considered simply as unknown.

E.3.1 Alternative architectures benchmark

To highlight the benefits of including past values’ information into the network two
more traditional architectures were tested - MLP and extreme gradient boosting
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Figure E.11: R2 scores for different predicted values.

(XGBoost) [41]3, a method that won multiple machine learning competitions.
These algorithms were applied using a single datapoint per sample, without taking
into account the past values. That is, the only inputs are from data strictly
co-located in time with the output. Results are shown in Figure E.12. Note that
in this approach the inclination change was predicted, and actual inclination

3Version xgboost-1.1.0 was used, Python implementation
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was reconstructed through cumulative sum to calculate the mean absolute error
relative to the actual inclination value.
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Figure E.12: Comparison between traditional and proposed approach

While both the MLP method and XGB method show mean absolute error lower
than the nominal method, this is mostly due to very high error rates in the
early stages of drilling. Both of the simpler methods predict inclination well
throughout the well only for short prediction distance. At approximately 600
meters of measured depth drilled there is an area of low error visible, but this
does not continue further into the well, suggesting area that is simply easier to
predict.

Direct Comparison between XGBoost, the better performing of two simple meth-
ods, and our proposed method (incremental inclination, lottery ticket approach)
was also performed, as seen in Figure E.13, where a difference between mean
absolute error values are seen. What is interesting here is that the simpler model
worked much better on a small dataset, although referring back to Figure E.12,
error for predictions above few meters was nevertheless high. This behaviour most
likely stems from the fact, that our proposed method uses a much more elaborate
structure capable of finding more complex relationships. This in turn penalizes
problems with small training datasets; only after collecting sufficiently large
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amount of data our proposed method outperforms simpler models. XGBoost,
which is an ensemble of basic algorithms, perform better on a small dataset
because it requires less data to train efficiently. Recurrent neural networks require
bigger training datasets to perform well, which is evident in this comparison.
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Figure E.13: Comparison between proposed approach and XGBoost

E.3.2 Incremental compared to nominal model

Although the incremental model shows significantly lower MAE scores it does not
necessarily mean that it is better in all scenarios. As seen earlier in Figure E.13,
nominal model performs better for further predictions. This is explored in detail
in Figure E.14, where difference between the mean absolute error of two different
models is calculated. Slight Gaussian blur was added to the results for easier
analysis and outlier removal. With prediction distance on x-axis and drilled depth
on y-axis, the color suggests which model is more accurate.
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Figure E.14: Comparison between approaches

The results suggest, that if a further prediction is targeted, the nominal inclination
approach is better. If however short prediction is needed, up to approximately 8
meters, it is the incremental inclination method that works best. Referring back
to Figure E.16, it is clear that inclination method delivers good prediction for
the first few meters from the start and provides good 10m+ predictions earlier
then the alternative. Depending on requirements, one or the other approach
should be selected, or potentially an ensemble of those two methods can be
implemented. The difference in results comes from the target predicted value -
nominal inclination or inclination change. When predicting the nominal value, the
algorithm may perform poorly in the short term prediction, however for further
data-points the algorithm still aims at the actual inclination value, while the
incremental model will accumulate the errors from each consecutive prediction,
as all those values are needed to recreate further inclination values.
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E.3.3 Lottery ticket and ensemble results
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Figure E.15: Histograms of incremental and nominal method MAE, multiple
runs compared.

While developing the method it became clear that the results often vary between
good and bad, even if calculated for identical data, only with different random
seed. This is because training process has stochastic elements, such as weights and
biases initialization. Distribution of MAE values for repeated runs is presented
in Figure E.15 for both the method predicting nominal inclination as well as
predicting inclination change. Standard deviation at approximately 5 percent of
mean MAE suggests that it is possible to improve the accuracy. This is in line
with recent research discussing lottery ticket hypothesis, that network initialization
may be simply lucky and achieve better performance [39]. Alternatively, average
of models, otherwise known as ensemble, is often used to increase the prediction
performance, which is especially common in climate research [42, 43]. Both
approaches were evaluated by training the model 10 separate times, and in one
scenario selecting the model with best validation score, and in the other taking
the average prediction of all the models. Repeating model training ten times
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was chosen as a balance between increased performance and increased model
training time; increasing this value would continue to yield continuously smaller
improvements. Additionally, predicting inclination variant and predicting of
inclination change was tested, resulting in total of four different models. Results
are shown in Figure E.16. When using the nominal inclination model, the mean
MAE dropped from 1.12 to 1.07, approximately 5% improvement to the lottery
ticket method. The inclination change method also showed 5% improvement for
the lottery ticket method, with the ensemble method actually increasing MAE,
although the standard distribution was significantly reduced. This suggests that
the lottery ticket brings tangible, modest improvements, and should be used.
There were approximately 40 simulations run for each ensemble and lottery ticket
variant to find the distribution of the results.
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Figure E.16: Lottery ticket and ensemble performance evaluation

E.4 Discussion, usability threshold

In relation to our case study, it was possible to achieve results with mean absolute
error under 0.5 degrees for prediction horizon of 23m after approximately 180m of
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drilled well. This is a relatively short section of a well and an acceptable start-up
period necessary to build a sufficient training dataset after which reasonable
predictions can be made. Considering the practical use of the case study this
can be considered acceptable when the target inclination is further ahead, which
it typically is. In relation to other applications, such as ROP prediction, this
method should be applicable as well. While ROP lacks clear sequences as in
bent sub drilling, information from data directly adjacent to the prediction area
undoubtedly carries useful information.

There are some caveats when this technology is deployed in the field. Considera-
tions have to be made when changes are introduced to the bottom hole assembly.
These can be minor, such as replacing a blunt bit, or major, such as change in
bent sub angle. A decision has to be made whether the data from before the
change should continue to be used, or if a new training while drilling model should
be trained from scratch. The best solution is likely to execute both approaches
simultaneously and monitor performance.

Referring to all the results presented in this paper, it is worth highlighting that
the case study predicts the data gap that is 23 meters long. While various results
suggest that certain models work better for a shorter prediction horizon, it still
has to be considered in relation to a 23 meter long prediction model. When
tasked with shorter prediction, for example in a case where a sensor is 10 meters
behind the bit, results may be different.

Improvements can be achieved by utilizing logging while drilling (LWD) data,
as it contains formation related information. While that information is not
immediately available, and cannot be considered a real-time attribute, it certainly
has potential for improved performance, as well as more efficient model training
which can lead to acceptable results earlier in the drilling process.
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Figure E.17: Mapping best models.

E.4.1 Selecting the best model

Multiple alternative models were discussed in this paper, namely two including
dynamic behaviour, nominal and incremental, and two standard regression models,
MLP and XGBoost. All of these approaches seem to have strong and weak sides
related to how much training is necessary and how far the prediction could be
done with acceptable results. To indicate which one performs best in which area,
a figure was created identifying the best out of four models.

For each point relating to specific distance drilled and prediction distance the best
performing model was selected and plotted with an individual color. Additionally,
areas with Mean Absolute Error above 0.6 degrees were truncated indicating
that none of the explored methods worked sufficiently well. Results are shown in
Figure E.17. Note that the marker size decreases with the rising error, giving
an additional visual clue about the performance. The area of the chart is
overwhelmingly occupied by both proposed models with dynamic behaviour, with
simpler alternatives occupying very small portions of it, especially early in the
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well. This again confirms previously stated conclusions, that the simpler models
learn faster, but as the training set expands, the more complex ones prevail.

E.5 Conclusion

Presented method tailored for continuous learning shows good performance in the
case study of predicting sensor data during directional drilling with bent motor.
With existing methods being able to predict only nearest 7 meters while keeping
the mean absolute error under 0.6 degrees, our proposed method achieve that goal
for 23 meters of prediction most of the time. With multiple inputs decomposed
to only three via PCA method, the model can be applied with little analysis
in terms of available attributes, significantly reducing the workflow related to
hyperparameter tuning.

Further work is needed to verify the method’s applicability to predicting sensor
readings of other attributes, such as gamma ray, neutron measurement, and
others; and to fully quantify its potential in drilling. Presented method may also
find applications in non-petroleum areas such as weather forecasting and motion
capture technologies, creating models through continuous learning filling in data
for failed sensors, obscured markers, and data delayed for other reasons.
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Appendix F

Data-driven sensitivity analysis
of complex machine learning
models: A case study of
directional drilling, AT5

Tunkiel, A. T., Sui, D., & Wiktorski, T. (2020). Data-driven sensitivity anal-
ysis of complex machine learning models: A case study of directional
drilling. Journal of Petroleum Science and Engineering, 195, 107630.

Correction: ∆S is used inconsistently in the publication: first it originally it
designates a scalar, while later ∆S is a vector and ∆s is used as a scalar.

Abstract

Classical sensitivity analysis of machine learning regression models is a topic
sparse in literature. Most of data-driven models are complex black boxes with
limited potential of extracting mathematical understanding of underlying model
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self-arranged through the training algorithm. Sensitivity analysis can uncover
erratic behaviour stemming from overfitting or insufficient size of the training
dataset. It can also guide model evaluation and application. In this paper, our
work on data-driven sensitivity analysis of complex machine learning models is
presented. Rooted in one-at-a-time method it utilizes training, validation and
testing datasets to cover the hyperspace of potential inputs. The method is highly
scalable, it allows for sensitivity analysis of individual as well as groups of inputs.
The method is not computationally expensive, scaling linearly both with the
available data samples, and in relation to the quantity of inputs and outputs.
Coupled with the fact that calculations are considered embarrassingly parallel,
it makes the method attractive for big models. In the case study, a regression
model to predict inclinations using recurrent neural network was employed to
illustrate our proposed sensitivity analysis method and results.

F.1 Introduction

Sensitivity of a model describes the severity of change of the model’s output
related to the change of a given input value. It can give an insight in the influence
of input variables on outputs. Such analysis is necessary for understanding models’
behavior in terms of the change of input values, noise tolerance, data quality,
internal structure, etc.

There are a number of statistical methods to evaluate sensitivity, for instance
Sobol’ indices [1], cobweb plots [2], various metamodels [3] and more [4]. These
methods might however be not suitable for high-dimensional models of hundreds
of input variables. In cases where inputs are highly dependent on each other, as
in case of recurrent neural networks, sensitivity analysis remains an area of active
research [4]. More recent work have introduced Shapley effect [5] to tackle this
problem, however the high computational cost remains a problem.

Sensitivity information can be, to an extent, extracted by examining weights of
neurons in the network. Such approach has been published in the past [6], however
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it becomes impractical for networks when neurons are counted in hundreds. Most
commonly however, a simple sensitivity index [7], a one-at-a-time (OAT) approach
is utilized. In light of the rise in machine learning approaches applied to drilling,
such as [8, 9], a rise in focus on models’ sensitivity analysis is expected in the
near future.

This paper presents sensitivity analysis using partial derivatives (PaD) with the
dataset used for development of the machine learning model as a basis of a
quasi-Monte Carlo analysis [10]. To our knowledge this is the first comprehensive
exploration of PaD method of sensitivity analysis for models with number of
inputs over 100; case study of directional drilling model this paper presents
consists of 643 inputs and 100 outputs.

In this paper, presented case study contains hundreds of inputs and outputs and
is based on the model prepared for prediction and recovery of inclination data
in directional drilling [11]. The aim of this study is to explore the sensitivity
analysis for complex machine learning models, such as those exploiting recurrent
neural networks, where it is impossible or impractical to follow the classical
methods - this is done in detail in Section F.3.2. Employing the dataset that was
originally used for training, validation and testing of the model is the basis for
our analysis. Basic method where an input is altered within carefully selected
range and response of the output is evaluated was applied; this was in turn
applied through all the samples of existing dataset as individual starting points,
generating individual results. Using this method, sensitivity can be presented
as a statistical distribution based on starting points representative of realistic
potential inputs.

Similar work on a much smaller scale was performed by Lu et al. [12] for neural
networks with 19 inputs for spool fabrication productivity studies, which was
later picked up for business research [13], climatology [14], nanotechnology [15],
petroleum [16], metallurgy [17] and ecology [18]. These studies were however
restricted to non-recurrent models and no more than 26 inputs in total. Existing
analyses lack specific focus on the base dataset, which becomes necessary with the
rising number of inputs, as the dataset necessarily will not populate the complete
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possible input hyperspace. This paper contributes to filling these gaps, applying
and analyzing the method for big machine learning models. To our knowledge we
are first in presenting, and formally defining a data-driven sensitivity analysis that
is suitable for recurrent models with inputs and outputs defined as spatio-temporal
sequences.

The paper is structured with focus of gradual understanding of the presented
method. First, sensitivity calculations are performed using basic mathematical
model as an example. Next, our novel method of data-driven approach to
sensitivity is introduced. Using the same mathematical model as before, our
method is applied and sample results and conclusions are presented. As a next
stage, a mathematical model is replaced by a machine learning model mimicking
the original one to evaluate how the results differ. This prepares the reader for
analysis of our case study, a complex model for predicting continuous inclination
data that utilizes 643 inputs and 100 outputs. In the case study, sensitivity
analysis is performed for both individual inputs, as well as sets of inputs - a
unique, new possibility in our novel method for sensitivity analysis. At the end,
benchmarking against Sobol’ indices is performed to evaluate how our proposed
method compares with other established approaches.

To explore and better understand basic one-at-a-time method, assume that the
system is described as:

R = f(S) (F.1)

where R is the output and S is the input of a model described by a function f .
Classical OAT sensitivity index is typically calculated at an arbitrarily selected
point in the possible input domain, typically in the middle. Sensitivity index can
be calculated through the following equation, that can be considered a partial
derivative:

SIRS = [R(S0 + ∆S) − R(S0 − ∆S)]
2∆S

(F.2)
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Where SIRS denotes sensitivity index for an output variable R per unit change in
the magnitude of an input parameter S from its base value S0. ∆S is the change
applied to the input.

There are significant shortcomings to this basic approach. To illustrate we
introduce a simple model of a flow rate through a nozzle:

Q = c · A · v = c · πr2 ·
√

2∆p

ρ
(F.3)

where:

• Q is Flow Rate through a nozzle, output in m3/s.

• c is Discharge Coefficient (unitless), c ∈ (0.5, 1)

• A is Nozzle Area in mm2

• v is Flow Velocity, in mm/s

• r is Nozzle Diameter, in mm, r ∈ (1, 50)

• ∆p is Pressure across the nozzle, in Pa, ∆p ∈ (0, 1000000)

• ρ is Fluid Density, in kg/m3, ρ ∈ (700, 1300)

By using a spider plot, as seen in Figure F.1, it is visualized how the output
value will change per percentage change in input. All inputs are set at their
median value, considering their potential range, i.e. for discharge coefficient
c the value is set at (0.5 + 1)/2 = 0.75. Keeping all other values at their
median value, the output Q can be plotted as a function of c from -33.3 percent
(0.75 − 0.75 ∗ 33.3% = 0.5) to +33.3 percent (0.75 + 0.75 ∗ 33.3% = 1). This is
done in the same manner for all the inputs.

There is a lot of information that is hidden on this plot. For example, the change
in nozzle diameter r suggests that the flow rate can be adjusted by this parameter
between 0m3/s and 0.05m3/s. This is however only true for the selected middle
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Figure F.1: Sample Spider plot of mathematical model’s sensitivity.

values for all the other parameters. More general statement can be made that
doubling the nozzle radius will quadruple the flow rate, however the chart does
not uncover that this is not valid when the pressure drop ∆p is equal to zero.
Most importantly however, OAT methods cannot cover a significant part of
the high-dimensional Euclidean space [19]. The significance of this grows with
the number of dimensions, which is especially high in case of recurrent neural
networks.

F.2 Data-driven approach to sensitivity of data-driven
models.

In machine learning problems related to sequential data Recurrent Neural Net-
works (RNN) are often utilized [20]. Abstracting from the specific internal
structure of the network, the model takes multiple inputs, in the same order as
they exist in a dataset. Model that will take into account last n values of a single



Paper AT5 266

input will technically have n inputs. This custom length will be driven by the
performance of a given model as well as computational cost of training.

Neural Networks can have thousands of inputs without reaching a bottleneck in
terms of computational power when training the model. Areas where machine
learning often excels are commonly both highly dimensional with interdependent
inputs, such as RNN and other complex models, which makes them unsuitable
for classical sensitivity analysis methods. This paper proposes a number of
approaches that were specifically designed for data-driven models with high
number of inputs and outputs, addressing both of these issues.

A number of assumptions are made in the proposed method that stem from
specific nature of data-driven models. This enables simple calculations and it
leapfrogs shortcomings of the classical methods. The basis for proposed sensitivity
analysis is the training, validation, and testing dataset of the model. It is a
requirement that this dataset represents the complete range of possible inputs
and outputs relatively well. While this may be considered too strict or unrealistic
requirement, by definition a data-driven model is applicable to inputs and outputs
that are covered by the training material. Data-driven sensitivity analysis will be
valid only for ranges of values represented by the dataset at hand, the same way
as the data-driven model is valid only for the input data from the mathematical
vicinity of the training set. It has to be stressed, that sensitivity analysis in
any form is connected to the range of inputs and, additionally in our case, the
distribution of the samples.

Typical training/validation/testing split of the dataset is removed in our method
and complete dataset is used to maximize the amount of samples and therefore
coverage of the inputs’ hyperspace. While developing a data-driven model this
split is introduced to ensure that the model can generalize and not simply
memorize the provided samples. In contrast, our method utilizes the data as a
set of representative and realistic inputs to the model, and therefore the split is
no longer necessary.
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Limiting calculations to the data points existing in the dataset, instead of all
possible combinations, apart from significant reduction in calculation time, avoids
diluting results with impossible inputs. Our case study consists of multiple se-
quential data inputs organized along the increasing depth, for example inclination
change of the well or surface torque. These data are continuous and never rapidly
oscillate between maximum and minimum value, only smoothly rises at different
rates. Checking sensitivity for unrealistic scenarios is non-productive, since the
model is not valid for them.

Second assumption is that the existing dataset is balanced in terms of probability
of inputs. That is, if a given model predicts daily mean temperature, the number
of samples should be distributed evenly across all twelve months. This is done
to ensure that any data skew that may exist in the dataset does not translate
to a skew in sensitivity analysis. Additionally, an artificial limitation can be
introduced to a dataset, for example to explore sensitivity related to data exclusive
to February.

If a dataset is imbalanced, methods commonly used for dealing with such problem
in the domain of machine learning can be applied. Undersampling the over-
represented data can be performed, where some samples are simply removed.
Duplicating underrepresented samples can also be done, however this should be
done with caution, so that the dataset does not become overly skewed towards
specific data. For example, if there are 1000 samples for weather data for each
month except for February, duplication would be acceptable if it extends the
sample size from 750 to 1000. On the other hand, should February have only 100
data points, such process would be questionable.

Presented SA methods, while are rooted in one-at-a-time methods, are applied to
an existing dataset populating the complete hyper-space of probable inputs. This
means that the computational complexity in big-O notation is O(n · m) with n

being the sample count and m being the input count. The amount of outputs
does not influence the computational complexity. Our case study consisting of
643 inputs, 100 outputs, and with a dataset of 1300 samples required just over 1
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hours to calculate all the results1. Our method is also considered embarrassingly
parallel, i.e. it is trivial to perform calculations on multiple computers at the same
time. Therefore, it can be easily implemented in frameworks such as Hadoop or
Spark should the data size require that.

The result of the presented methods is a probability distribution. One-at-a-time
methods are applied to the many samples of the dataset generating a set of
individual results that, as a whole, present global sensitivity of the model.

F.2.1 Method introduction, flow through a nozzle

Basics of the method are presented using the example of flow rate through a
nozzle shown earlier in Equation F.2 before exploring an oilfield related case
study utilizing recurrent neural networks. Dataset was generated for inputs for
this model containing 1000 samples with normal distribution at the center of
the range indicated for Equation F.3 and standard deviation equal to 0.2 of
total range width. For example, samples for density, ranging from 700 to 1300
kg/m3, were randomly generated using normal distribution with mean value of
1000 kg/m3 and standard deviation of 120 kg/m3. Note that this is done for
illustration purposes only in-lieu of real dataset. Systems in practice rarely follow
pure Gaussian distribution hence using true dataset is important.
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Figure F.2: Sensitivity index, histogram.

1Calculations were performed on Intel Core i7-8850H, 32GB RAM, Python 3.6.9, SALib
library in version 1.3.8.
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Sensitivity Indices were calculated using Equation F.2 with previously generated
sample data as a starting point. Value of ∆S was set to 0.1; the influence of
the value selection is explored further in the paper. The following calculations
were performed for each of the four inputs to gauge their respective sensitivities.
Figure F.2 shows the distribution of sensitivity indexes over the dataset. To better
understand the data behind this Figure F.3 is also plotted, where sensitivity
index is shown as a function of the input value. What may be surprising is that
it is not a continuous line. This is because sensitivity index, as described by
Equation F.2, deals with absolute values. For example, when pressure across
the nozzle is high, small increase in its diameter will cause a large nominal flow
increase. Alternatively, at very low pressures, even big nozzle increase will not
yield significant change.
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Figure F.3: Sensitivity index as scatter plot of dataset.

To check the relative impact on the output one may calculate sensitivity divided
by the model output at nominal input value, which this paper refers to as relative
sensitivity index:

RSIRS = [R(S0 + ∆S) − R(S0 − ∆S)]
2∆S

· 1
R(S0) (F.4)

This will produce a relation seen in Figure F.4, where a fixed change in nozzle
size will affect relative flow output more at smaller diameters, i.e. change from
1.5mm nozzle to 2.5mm, and less for bigger nozzles, i.e. from 20mm to 21mm
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nozzle. Since this response is disconnected from the absolute value of the output,
it produces a continuous line.
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Figure F.4: Relative sensitivity index.

One can further explore the system response with Elasticity Index, or elasticity
of a function [21], given by Equation F.5 below.

EIRS = [R(S0 + ∆S) − R(S0 − ∆S)]
2∆S

· S0
R(S0) (F.5)

The equation was again applied to all the samples and all the inputs, with results
plotted in Figure F.5. Elasticity Index in practice uncovers the exponent of
the function, hence in case of Equation F.3 it is equal to 2. Derivation of this
relationship is presented in the Appendix.
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Figure F.5: Elasticity index

When exploring the produced figures one can see a number of issues with the
calculated data. First and foremost, the scale of the Sensitivity Index values
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varies by orders of magnitude. For nozzle radius it is between 0 and 4, and for
pressure drop, intuitively a very important parameter for flow through a nozzle,
it is in range of 10−8. Note that the units themselves are different (m3/s/m,
m3/s/Pa, and others) which mean that the values cannot be compared.

While in the case of a simple equation the relative sensitivity index and elasticity
index bring interesting additional information, in our case study focus will be
on the basic sensitivity index. Nevertheless, it is beneficial, for the sake of
presentation of the method, that all three equations will be explored. They are a
natural next step, and are needed to understand why the simpler, and seemingly
less informative equation is used.

F.2.2 Practical problem of scale

One problem that was identified while inspecting results produced in the previous
section is units and scales. Referring back to Figure F.2 and inspecting the x-axis
it is clear that there is no straightforward information about which input has
high sensitivity compared to others. This is the key information that sensitivity
analysis is seeking to uncover when probing a given model.

It is worth reiterating that machine learning models exist with a strong relationship
to a dataset of samples, and in consequence, to the range in which inputs exist.
Looking back at the sample nozzle flow Equation F.3, while mathematically
sensitivity is defined by the equation alone, the application makes it tied to the
range of inputs. For example, in practical terms, sensitivity of the nozzle radius
input can be considered high if it is ranging from 1 to 50mm, but it will be very
low if it is bound between 5mm and 5.1mm.

Nozzle Equation F.3 was encapsulated in a function such that all inputs are scaled
between 0 and 1 in relation to generated samples. Output is also scaled between
0 and 1 for values generated from the samples. While this looks uncanny for a
mathematical equation this is a very typical approach for a machine learning
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model. Histograms seen in Figure F.6 were generated the same way as described
in the subsection before, and therefore are analogous to Figure F.2.

The scaling process did not affect the shape of the histograms in a significant way,
but the sensitivity factor can now be evaluated in terms of expected range of
inputs and outputs. For example, one can see that when radius input is changed
by 10 percent of full scale, output can be expected to also change by 10 percent,
since the most common sensitivity value on the histogram is 1. In case of discharge
coefficient sensitivity is smaller. 10 percent change will typically affect the output
by 2.5 percent of expected full scale (one to 0.25). This can be tied to the
spider plot back in Figure F.1, where the model response is presented. Linearly
approximating the curves one can roughly see the same values as presented here
- the steeper the curve the higher the sensitivity index. Note that this is a
distribution of results, hence the response discussed above should be considered
mean sensitivity of the model.

After scaling, inputs and outputs should be considered unitless with a scaler
attached to them that describes the scaling parameters, i.e. original minimum
and maximum values. Therefore the sensitivity index calculated with scaled
data becomes unitless as well. Alternatively, scaled values can be considered
percentage of range, making the unit of sensitivity index to be a percentage of
range of output per percentage of range of input. This method was used before
in relation to sensitivity analysis of neural networks [12] highlighting the same
problems related to units and scale.
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Figure F.6: Sensitivity index, scaled function, histogram.
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Analyzing scatter plots in Figure F.27 showing relationship between the sample
value and sensitivity index there are no immediate differences due to scaling of
the dataset. For brevity this figure is reproduced in the appendix.

Moving to Relative Sensitivity Index in Figure F.7 and comparing to non-scaled
charts seen previously in Figure F.4 one can notice that the result is no longer a
continuous line. There is some disturbance introduced due to scaling and this
effect is even stronger when inspecting Elasticity Index in Figure F.8, where EI
is strongly pulled towards zero at inputs close to zero. The average still indicates
what kind of function is behind the model, but it is no longer precise. as indicated
by the average values below the plots.
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Figure F.7: Relative Sensitivity index, scaled function, scatterplot.
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Figure F.8: Elasticity index, scaled function, scatterplot.

Analysis of results of the scaled inputs and outputs is easier, as it can be done
in relation to the full scale of these inputs and outputs. It is easy to see that
sensitivity to the nozzle radius is highest, followed by pressure drop, discharge
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coefficient and with density being the lowest, which additionally is identified as
inversely correlated with the output.

F.2.3 Applying method to a machine learning model

While sensitivity index and the other methods used provide clear insights to
the inner working of a model when applied to simple equations, a study was
done in relation to machine learning models. To evaluate method’s suitability
for such scenario, an ML model of the previously used flow through a nozzle
equation was created using a Random Forest regression model [22] made with
previously generated samples. Common best practices were used while making
the model, including a train/test dataset split (here 50/50 split) as well as basic
hyperparameter tuning to find the optimal amount of estimators and forest
depth2. Model results of the testing portion of the dataset evaluated against
the equation output have an R2 value of 0.976. This can be considered a very
good fit for a machine learning model and can be considered representative of
performance of the best case real-world ML models.

Scaling of inputs and outputs in the range of(0,1) was also applied. This is
considered standard practice when creating ML models, although not strictly
necessary for the algorithm used here. The transformation was nevertheless
applied, since our method of evaluating sensitivity works best on a scaled model.
Note that there is no practical reason to create an ML model of a known equation
and here it is done only for the purpose of evaluating the method.

Same type of analysis was performed on the ML model as it was on the mathemat-
ical model to evaluate how the intrinsic inaccuracies of the ML model influence
the results. Figures F.9 and F.10 showing results for the ML model correspond
to Figures F.2 and F.3 produced for the equation-based model. Most important
takeaway is that the histograms of sensitivity indices for both models show ap-
proximately the same shapes and values, while the scatter plots are significantly
different. When calculated for mathematical model, scatter plots for all but one

2identified values are: n_estimators = 93, max_depth = 3
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variables seen in Figure F.3, showed approximately Gaussian distribution along
both axes. For the ML model, Figure F.10, scatter plots are significantly different
taking various shapes that were not present before.
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Figure F.9: ML model Sensitivity Index histogram
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Figure F.10: ML model, scatter plot of Sensitivity Index.

Relative Sensitivity Index was also calculated for the ML model, seen in Fig-
ure F.28; same charts for mathematical model are in Figure F.4. Clear smooth
lines are no longer visible, except for the the nozzle radius. For other three
parameters it is hard to identify even the direction of the original curve. This
means that Relative Sensitivity Index is very susceptible to the inaccuracies
even in a case of very accurate ML model and its usefulness will be limited
for data-driven models. Lastly, the Elasticity Index was analyzed, as seen in
Figure F.29; mathematical model-based results are in Figure F.5. Average values
became closer to zero than in the mathematical model with scaling and data is
overall difficult to interpret. Conclusions related to the exponent of the equation
used can no longer be drawn.
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The conclusion from ML model analysis is that our proposed method focuses
mainly on the distribution of the sensitivity index. Calculating additional metrics,
such as relative sensitivity index and elasticity index in our experience did not
bring forward any further valuable information.

F.2.4 Uneven distribution

Sensitivity analysis is closely tied not only to the range of inputs, but also to
their distribution. To uncover it, another simulation was performed with the
nozzle flow equation, but this time the distribution of the discharge coefficient
was changed, with 800 samples generated at fixed value of 0.5 and 200 samples
generated at a fixed value of 1, making a strongly bi-modal distribution. This
does not change the range of the inputs, but significantly alters how the model
behaves on average.

For a direct comparison (0,1) scaling was performed and machine learning model
created. Analysis of histograms and scatter plots (Figure F.30 and A.F.31,
appendix) shows reduced sensitivity of all inputs. This is caused by overrepresen-
tation of samples with low discharge coefficient and therefore low flow rate, and in
return - low sensitivity in terms of percentage of output range. This situation can
only be uncovered via analysis on the inputs’ distribution, and later by analyzing
sensitivity for both clusters separately. This is outside of the scope of this study.

F.2.5 Summary of the method

Different aspects of dataset-based sensitivity analysis were evaluated on a synthetic
example in the previous sections. Our conclusion is that the most condensed
information is retained within median value and distribution of Sensitivity Index
when calculated on a (0,1) scaled values. Coincidentally, scaling of values, both
inputs and outputs, is a standard practice in machine learning, making application
of the method very simple.
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Relative sensitivity index was found to not bring significant additional information
when exploring even our very accurate machine learning model. Furthermore,
this parameter is best evaluated on a scatter plot, what becomes impractical
when hundreds of inputs are being analysed. Elasticity Index can potentially
bring information about the type of equation behind the model, it is however
sensitive to scaling and can suggest misleading values. Additionally, it cannot be
used when probing multiple inputs, which is useful in case of recurrent neural
networks, as presented in further chapters.

F.2.6 Pseudocode

To aid in the implementation of the presented method pseudocode is provided in
Algorithm F.1 demonstrating calculation of Data-Driven Sensitivity Index. Note
that the output of the algorithm is a 3 dimensional array that contains all local
sensitivity indices for all samples, inputs, and outputs. One can visualize this
data in a number of ways, for example calculating median sensitivity of individual
inputs by calculating it over samples and outputs such as in Figure F.17. In this
case, inputs along one channel were probed individually.

If a particular input is of interest, median sensitivity on outputs can be calculated
along samples on that one input, such as in Figure F.18, where one particular
input in the inclination channel is investigated. It is possible to visualize data as
a heatmap, where median sensitivity is calculated of all samples per individual
inputs and outputs, resulting in a 2D map of sensitivity between inputs and
outputs, as seen in Figures F.20 and F.21. If samples are sorted by a meaningful
dimension, depth, time, distance, etc., it may be useful to calculate mean of all
inputs, retaining the sample and input dimension, to investigate the distribution
of sensitivity along that meaningful dimension. In our case study, such analysis
was performed and is presented as a 2D map in Figure F.22.

Pseudocode for calculating sensitivity index per complete channel is provided in
Algorithm F.2. It is particularly useful in relation to RNNs, where inputs are
often given in a series along depth or along time. It can also be suitable when
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Algorithm F.1: Data-Driven Sensitivity Index (DDSI), per single input
Data: X := [X1,X2, ... , Xn]

Xn := [xn,1, xn,2, ... , xn,m]]
an array of n samples with m inputs
∆ typically 0.1, or 10% of input range

Result: DDSI := [SI1, SI2, ..., SIn]
SIn := [SIn,1, SIn,2, ..., SIn,m]
SIn,m := [sin,m,1, sin,m,2,..., sin,m,w]
an array of individual, local Sensitivity Indices, through n samples,
m inputs, and w outputs.

1 Function Model([xni,1, xni,2, ... , xni,m]):
2 model calculations;
3 return [y1,y2, ... ,yw] ;

4 for i:=1 to n do
5 for j:=1 to m do
6 samplePlus = X[i];
7 samplePlus[j] += ∆;
8 outputPlus = model(samplePlus);
9 sampleMinus = X[i];

10 sampleMinus[j] -= ∆;
11 outputMinus = model(sampleMinus);
12 oneSensitivity = (outputPlus - outputMinus) / 2∆ ;
13 DDSI[i,j] = oneSensitivity;

inputs may be grouped together for other reasons, for example in weather models
sensors can be grouped into temperature, barometric, and rainfall channels.

The output of the algorithm is a 3 dimensional array, with dimension for samples,
channels, and outputs. Visualizing one channel at a time, one can visualize distri-
bution of channel’s sensitivity via 2D heatmap, as in Figure F.13, or potentially
easier to read median and percentile statistics reducing the sample dimension, as
seen in Figure F.14.
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F.3 Case study model - inclination in directional
drilling
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Figure F.11: Case study model flow chart.
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To evaluate proposed methods of sensitivity analysis a case study machine learning
model was employed which was previously used for prediction of continuous
inclination data in directional drilling [11]; data and source code is available on
GitHub [23]. This model predicts inclination values that are artificially made
lagging 23 meters behind the bit. It is a mixed approach of trend prediction as
well as regression by correlation with other parameters assumed available real-
time. Flowchart from aforementioned paper showing simplified model structure
is shown in Figure F.11.

Data were taken from the Volve dataset open sourced by Equinor [24], which
covers an offshore oil field off the coast of Norway. Part of a well F9 A, starting
from 500m to 845m measured depth was selected as containing the longest
directional drilling section performed with a bent motor. Three parameters
assumed available all the time were selected in addition to the past inclination
data: Surface Torque, Rotary Speed and Rate of Penetration. Data were split
into training and validation, 500m to 800m, with 80/20 split, and testing, 800m
to 845m, which were used only for final score calculation.

All inputs and outputs of the model are scaled between 0 and 1, and all calculations
presented in this paper are done in relation to those scaled values. Additional
normalization step was introduced to the inclination input channel. To normalize
the samples in relation to absolute inclination, a local coordinate system was
employed. This way, inclination input channel samples always start at zero, see
Figure F.12 for reference. Global scaling of the inclination was selected such, that
after introducing the local coordinate system the maximum value of inputs in
the inclination channel should be maximum 1.

The model contains a branched neural network, with one branch with Gated
Recurrent Unit [25] RNN taking 85 inputs, the inclination data, and a second
branch with multi-layer perceptron (MLP) taking 3x186 inputs from the additional
available parameters. Inputs and outputs are considered in terms of relative
position from the introduced start of the gap. The RNN branch receives inclination
values from position -20 meters to zero meters relative to the gap. The MLP
branch receives values from three different measurements, the Rotary Speed,



Paper AT5 281

Surface Torque, and Rate of Penetration. That data are input from position of
-20 meters to +23 meters relative to the gap. The model returns 100 output
values as prediction of individual inclination values at location from 0 meters to
+23 meters.

One can consider this model as utilizing four input channels and one output
channel. This way the model can be reduced, for the purposes of the analysis,
to four separate vector inputs and one vector output. Example results from the
case study model can be seen in Figure F.12. In the top subplot dashed line
denotes inclination data input, while the solid line is a prediction, and the dotted
line is ground truth. The other three plots present the surface parameters that
are considered available all the time. Note that the output is a continuous line.
This result is not forced through algorithm, but achieved purely through neural
network training.
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Figure F.12: Input and output sample from the case study model.
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For the purpose of the sensitivity analysis the case study model was considered
as follows:

Y = f(X) (F.6)

To reflect the structure of the input consisting of four distinct channels, further
expansion to Xt = f(XA

t , XB
t , XC

t , XD
t ) is made, where: Xn denotes the nth

input channel. Let’s consider the model to be:

Yt = f(XA
t , XB

t , XC
t , XD

t ) (F.7)

where

Yt =
[
yt−m0|t, · · · , yt−1|t, yt|t

]T

(F.8)

XA
t =

[
xA

t−m1|t, · · · , xA
t−m0−2|t, xA

t−m0−1|t

]T

(F.9)

Xn
t =

[
xn

t−m1|t, · · · , xn
t−1|t, xn

t|t

]T

, n = B, C, D (F.10)

and m0 = 100 and m1 = 186, y ∈ R and x ∈ R.

F.3.2 Sensitivity index of input channels

To analyze the model top to bottom, sensitivity of the complete channel is
explored first, i.e. related to multiple inputs at the same time. This is done the
following way:

SIA
t = f(XA

t + ∆S, XB
t , XC

t , XD
t ) − f(XA

t − ∆S, XB
t , XC

t , XD
t )

2∆S
(F.11)
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where SIA
t is sensitivity of the channel A, and

∆S =
[
∆s, · · · , ∆s, ∆s

]T

, ∆s = 0.1 (F.12)

This generates multidimensional results and there are many ways to visualize
them. The model is predicting 100 continuous data points (23 meters), hence
they are plotted along x axis as a distance to the start of data gap. Complete
results can be presented as a heatmap, as seen in Figure F.13, however this makes
quantitative analysis difficult. It is clear that sensitivity is approximately 0.9 at
distance to data gap 0 (bright yellow area) and becomes more spread out further
along, but it is in general hard to read. To facilitate evaluation of the results
median, 15th, and 85th percentile, maximum, and minimum values were used.
In Figure F.14 results are presented from calculating sensitivity index related
to the complete inclination channel. Referring to equation F.2, all inputs in the
inclination channel are varied by ∆S = 0.1, which is 10 percent of the total
input scale, as the inputs are scaled between 0 and 1. This is akin to using a
miscalibrated sensor where an offset is introduced to all inputs on a channel.

Particularly interesting insight is that while sensitivity of the inclination input
starts slightly below 1 with very little change in median value, other channels’
sensitivity index starts at zero for the first predicted data point (one example in
Figure F.15) and the magnitude of it rises as the prediction is done for further
points. Both of those results indicate that the developed model acts as it should.
The output is a continuous prediction, a continuation of the inclination input,
therefore necessarily if whole input channel is shifted by a given value, the first
output will shift by nearly identical value. Inclination cannot change sharply,
only gradually, hence near zero sensitivity on the other three channels for the
first prediction point.

For channels other than inclination, sensitivity index grows as the prediction
distance increases. This is consistent with the modelled process, as the inclination
can be influenced more in the outputs farther from the initiated gap.
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Figure F.13: Statistical sensitivity to 10 percent value change on Inclination
channel, heatmap.

F.3.3 Magnitude of change

In calculating sensitivity index there is a potential influence of the ∆S value. To
evaluate this matter, sensitivity index was calculated at ∆S = 0.1 and ∆S = 0.5.
It must be noted that this value corresponds to scaled parameters, hence are
equivalent to 10 percent and 50 percent of full scale change respectively. Results
can be inspected in Figure F.16. Median sensitivity can be considered the same
for both selected ∆S. The main difference is that the result is more stable, i.e.
the 15th and 85th percentile values are closer to median. This suggests that the
selection of specific ∆S does not affect the results of the analysis significantly.

F.3.4 Sensitivity to single inputs

Another type of sensitivity analysis proposed is sensitivity to single inputs, which
can also uncover sensitivity to outliers or sensitivity to a specific input. A function
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Figure F.14: Statistical sensitivity to 10 percent value change on Inclination
channel, distribution.
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Figure F.15: Statistical sensitivity to 10 percent value change on Torque
channel.

was developed that calculated the sensitivity index, as per equation F.2, again
using the existing dataset of inputs.
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Figure F.16: Evaluation of the importance of magnitude of change in sensitivity
analysis, inclination channel.

SIA
t (k) = f(XA

t + ∆Sk, XB
t , XC

t , XD
t ) − f(XA

t − ∆Sk, XB
t , XC

t , XD
t )

2∆s
(F.13)

where

∆Sk =
[ 1 2 ... k−1 k k+1 ... 643

0 0 ... 0 1 0 ... 0
]T

(F.14)

Per given sample only one singular input was modified. This was done for all
singular inputs and channels separately, from the first input to the last one,
altering original value by 0.1.

To provide a two dimensional, easy to read chart, for this method sensitivity
that is averaged over all outputs is used. This way, an indication of how all the
outputs change on average in relation to a change on a specific input is provided.
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For further clarity result plots are bundled into input channels. Two charts are
reproduced here, one for the inclination channel, Figure F.17, and one for the
torque channel, Figure F.19. What is interesting in the first figure, is that there
is a decrease in value close to the input points at about -3 meters from the gap.
Additionally, points farther than -10 meters have much lower response, which
suggests that it may be possible to shorter the input to the model without a
significant loss in performance. It must be noted, though, that the case study
model was developed through hyperparameter tuning and the input length of 23
meters was selected as providing the smallest error. Figure F.17 suggests that this
window can be shortened with minimal influence on the output, and therefore
minimal influence on the error. Such changes may be considered if, for example,
shortening that input would generate significant savings in the deployment phase
of a project. It may also be used in guiding sensor accuracy selection, by showing
relationship between measurement error and output. Additionally, charts similar
to Figure F.17 and Figure F.19 may be generated while tuning hyperparameters
of a data-driven model, giving an instant insight in the inner workings of the
neural network, allowing to narrow down a range of possible hyperparameters.
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Figure F.17: Output channel sensitivity to a change in a singular point on
inclination input channel.
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To explore results from Figure F.17 further, a chart was generated that investigates
the point of maximum sensitivity at approximately -1 meters from data gap,
presented in Figure F.18. This allows us to evaluate how the point of maximum
sensitivity, in relation to all outputs, is distributed between individual outputs.
One can see that output at approximately 8 meters after the data gap is the most
sensitive, with further points’ sensitivity dropping. This is in line with previously
explored sensitivity of the inclination channel as a whole in relation to individual
outputs, Figure F.14. Additional takeaway here is that 15th percentile line lies
almost perfectly at zero sensitivity, suggesting that there is a relatively sharp
cutoff with sporadic negative sensitivity, which is in line with the physical aspect
of the model, i.e. higher inclination just before the data gap will suggest higher
inclination after it.
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Figure F.18: Sensitivity to inclination input at -1 m to data gap, point of
maximum sensitivity

Similar analysis was performed for input channel related to torque, with results
in Figure F.19. Note that this channel has more inputs, as in our case study this
parameter is considered available both before and after the data gap, while the
inclination only before. Interestingly, there is a clear minimum between -6 meters
and 3 meters. This is approximately the same area that has a local maximum
in the inclination input. Higher response is visible for the points from 0 meters
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forward. This again confirms the intuitive behaviour of the model. Physically,
the inputs above 0 meters are co-located with the output, and therefore logically
will have the highest impact.

Another interesting insight here is that again the 15th percentile line often lies
at zero change, also in line with the physics of the modelled system. Attention
must be paid to the scale of the y-axis on these charts, as the sensitivity to the
inclination input channel is an order of magnitude higher than the one calculated
for rotary speed.
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Figure F.19: Output channel sensitivity to a change in a singular point on
torque input channel.

F.3.5 Input-output heatmap

It is possible to plot median sensitivity of outputs to specific input channel as
a heatmap. This allows to see the influence of individual inputs to individual
outputs. It must be highlighted that this is done on a point-by-point basis, one-
at-a-time. Note that in this case the color scales are not synchronized between
the charts as the results vary by an order of magnitude. Due to nature of the plot
it is the median sensitivity calculated over the complete dataset that is visualized.
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Looking at Figure F.20 one can consider it an expanded version of Figure F.17,
with the output dimension now visible. One can, for example, identify, that
inclination input at -5 meters from the gap positively influences the output close
to the gap, but negatively influences the outputs further from the gap. Similarly,
in Figure F.21, the weakest response between inputs between -6 meters and -3
meters can be identified, first seen in Figure F.19, as a white plateau over the
whole range of outputs. In this figure one can also identify a potential problem
with the analyzed model. As explained before, this input physically overlaps with
the output. Therefore input at location of n meters cannot have influence on the
outputs before location n meters. There practically should be a triangle between
points (0,0), (23,0) and (23,23) with zero sensitivity - yellow overlay in that area
was added in Figure F.21.

This apparent contradiction can be explained through correlation and causation.
It is likely that during operation it is the achieved inclination (here output) that
influences the rotary speed (here input), and not the other way round. The
correlation however still exists and the model can use it. This means that the
model will correctly predict inclination during typical drilling, but will fail if the
inputs will deviate too much from normal operation. This is understandable
considering that the training dataset covers only typical drilling.

F.3.6 Channel sensitivity as a function of well depth

The core of the presented method is statistical analysis of the models’ sensitivity
with the training/validation/testing dataset at its foundation. It is, however,
possible to investigate how the calculated statistical sensitivity is affected by the
contents of available dataset. Our case study models BHA-formation interaction
while drilling a curved section of a well. Sensitivity analysis can be performed on
a channel as a whole, as done in the section Sensitivity Index of Input Channels,
and evaluated along the length of the well. Results are presented in Figure F.22.
The sensitivity analysis was performed for a complete channel, as previously
presented in Figures F.14 and F.15 and using Equation F.11. Sensitivity was
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Figure F.20: Sensitivity heatmap between Inclination input channel and output.
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Figure F.21: Sensitivity heatmap between Torque input channel and output.
Yellow overlay shows area that should have sensitivity zero.

calculated separately for all four channels. The heatmap presented in Figure F.22
shows the median value of sensitivity for a given output.

Such a graphic enables evaluation of sensitivity changes with the varying base
value in the dataset. It is possible to identify areas of significantly high or
low sensitivity and investigate those specific samples. This can provide further
insights of how the system behaves - in our case study it is possible separately
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analyze the sensitivity during rotating and sliding modes of the BHA. It is also
possible to evaluate how well the dataset represents potential inputs of the system
by looking for unusual responses, with an assumption that unusual sensitivity
response coincides with unusual set of inputs. In our case this can be seen in the
inclination channel between samples 500 and 600 and further on at approximately
sample 950, where there is negative inclination channel sensitivity in outputs
close to 23 meters. This is the area responsible for minimum sensitivity below
zero visible earlier in Figure F.14.

F.3.7 Comparison to Sobol’ indices.

Sobol’ indices developed in the early 90s [1] are a form of variance-based global
sensitivity analysis. This method is used to calculate how much of the output’s
variance can be attributed to different inputs. With this method one can calculate
how important are individual inputs, and if second order indices are calculated,
how important is interaction between two inputs.

Our data-driven sensitivity analysis method used n=1300 samples. To calculate
sensitivity index 2n model evaluations must be performed, as a base value has
to be increased and decreased. With 643 inputs, to calculate sensitivity for all
of them individually, this results in 1 674 400 evaluations. For comparison,
calculated Sobol’ indices were calculated using SALib Sensitivity Analysis Library
in Python [26], using methods developed by Sobol and Saltelli [27, 28, 19].
n=5000 samples were used, limited by memory in available computer. Note that
in common practice 104 samples are required to estimate Sobol’ indices within
10% uncertainty [4]. Our setup resulted in 3 225 000 sub-samples for first order
calculations. It took 10 minutes to generate required samples, 38 minutes to
evaluate the model for all the samples and 40 minutes to calculate the resulting
indices3. Second order calculations require double the amount of samples and
were not calculated. Other, faster algorithms were considered, however in general

3Calculations were performed on Intel Core i7-8850H, 32GB RAM, Python 3.6.9, SALib
library in version 1.3.8.
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literature suggests that those methods remain costly, unstable and biased for
models with more than 10 inputs [29, 4].

While computation time was not significantly different between our method and
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Sobol’ indices, our method allows for evaluating partial results, that is sensitivity
of a single input can be calculated for a model with thousands of inputs very
quickly. Note that since our case study model has 100 outputs representing
100 individual depth-steps in the model, each input will have 100 Sobol indices
related to all separate inputs. Sobol indices are calculated assuming singular
output; since our case study produces 100 outputs as a complete depth-sequence
prediction, Sobol indices had to be calculated as if there were 100 separate models
with single output to evaluate. Minimum and maximum boundaries for Sobol’
indices calculation were taken from boundary values for specific input found
in the dataset. This is typically in range (0,1) for all inputs except for the
ones responsible for inclination input. Due to scaling and moving the center of
coordinate system employed in the model they vary in minimums and maximums.

For comparison purposes, a number of figures that were originally developed
with our proposed method were recreated to compare results. Note that it is
not possible to evaluate the sensitivity of a complete channel (multi-input) with
Sobol’ indices, hence it is not possible to compare those. First comparison is
between our Figure F.17 and Figure F.23 generated with Sobol’ index data. It
can be seen that results are different. First, Sobol indices in principle cannot be
negative, hence negative sensitivity at -5 meters is not seen. The chart overall
looks much more noisy and difficult to read.

Chart type that was used to investigate the maximum sensitivity on that channel,
Figure F.18, was also plotted again, which can be seen in Figure F.24. Note that
there is no statistical distribution to the new chart, as at this level singular Sobol’
indices are being plotted.

As with previous comparison, general insights are still here, but some of the
information available with our data-driven method is not there. Our method
uncovers the spread in sensitivity, is based on actual data, and additionally
uncovers that in some rare cases the sensitivity can be negative, which is not
visible using Sobol’ indices.
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Figure F.23: Average sobol indices for inclination inputs.

Lastly, the Sensitivity heatmap for inclination channel, Figure F.20, was re-done
as a heatmap of Sobol’ indices in Figure F.25. When using our method one can
see exactly which areas are sensitive, and which are not. Using Sobol’ indices this
information is again missing. While our method uncovered an area of negative
sensitivity, it is nearly invisible in Figure F.25, and the information about the
sign of sensitivity is necessarily gone.

F.4 Discussion

Approaching sensitivity analysis in the domain of neural networks, especially
those with a high number of inputs, require a novel approach. This is especially
visible in the case of recurrent neural networks that have highly interdependent
inputs; it is where variance-based methods cannot be reliably used [30]. Proposed
data-driven approach exploits the fact that ML methods are created when there
is a dataset available that is sufficiently big to cover the possible inputs and
outputs.
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Figure F.24: Sobol indices for all individual outputs for inclination input at
-1m from data gap.

While geometric arguments are brought up proving insufficiency of one at a time
methods [19] due to inability to cover the possible inputs, the proposed method
does not suffer from this shortcoming. By performing analysis on a single input,
as in the section on Sensitivity to single inputs, through repeating calculations
on multiple starting points, the whole scope of potential inputs is covered. It
is crucial to understand that the presented method deals with sensitivity of the
model, not sensitivity of the real system. It is a significant distinction and expert
interpretation is needed to decide whether a specific insight belongs to the system,
or does it only exist in the model.

Additional benefit of data-driven sensitivity analysis is mathematical simplicity of
the approach. It utilizes very basic methods and expands them through repetition.
It becomes more and more common to bypass math-heavy approaches where
analytical solutions exist with Monte Carlo type methods due to their simplicity
[31]. Additionally, since the basic output of the presented method is a dataset,
as opposed to a single value, further, deeper analysis is possible than presented
here. For example, referring back to Figure F.14, median sensitivity of all outputs
is the same, approximately 0.8. It is however possible to extract much more
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Figure F.25: Sobol indices heatmap of Inclination input channel and output.

information, such as standard deviation or variance of the sensitivity. Result of
such calculation is shown in Figure F.26, where standard deviation is shown for
sensitivity on the inclination channel. This gives a very good indication of how
different sensitivity can be between outputs, even though the median value is the
same. Such calculations can be tailor made for each case, providing even more
tools to analyse a model compared to common methods.

F.5 Conclusion

Classical sensitivity analysis methods are often ill-suited for data-driven mod-
els, such as recurrent neural networks, due to high number of interdependent
inputs. Common, basic, one-at-a-time methods fail to provide meaningful results
when high number of inputs is considered. These can, however, be enhanced
by employing datasets originally used for training, validation, and testing the
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Figure F.26: Statistical sensitivity, Inclination channel, standard deviation

models. These datasets necessarily cover the possible inputs, often with statistical
distribution matching reality.

In our case study, the proposed sensitivity analysis method was able to pinpoint
many new insights into performance and limitations of the model that would
otherwise be difficult to uncover. It was discovered that sensitivity exists where
it should not. This suggests that the model performs well when directional driller
follows a certain procedure of operation, and the model can exploit correlations
that are tied to that behaviour. At the same time, the model would perform
poorly if used as a simulator, where users are free to do as they please. We believe
that the presented method may be a very useful tool in developing ever more
complicated machine learning models, as well as, in evaluation of other black box
solutions.
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Figure F.27: Sensitivity index, scaled function, scatterplot.

Appendix

Elasticity Index as input exponent

Deriviation of Elasticity Index being the exponent of the input:

Consider Elasticity index of a function y = f(x) as:

Ey,x = dy

dx
· x

y
= f ′(x) · x

y
(F.15)

A function in a general form f(x) = C · xα has derivative in relation to x as
f ′(x) = α · C · xα−1. Therefore Ey,x = α · C · xα−1 · x

C·xα . Since xα−1 = xα

x :

Ey,x = α · C · xα

x
· x

C · xα
(F.16)

which can be reduced to simply Ey,x = α. Bear in mind, that this is true for ∆S

being significantly smaller than S0.

Additional figures

Some less important figures are reproduced in the appendix only.
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Figure F.28: ML model, relative Sensitivity Index.
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Figure F.29: ML model, Elasticity Index
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Figure F.30: Uneven sample distribution, sensitivity index histogram
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Figure F.31: Uneven sample distribution, sensitivity index scatterplot
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Algorithm F.2: Data-Driven Sensitivity Index, per channel
Data: X := [X1 ,X2, ... , Xn]

Xn := [Xn,1, Xn,2 , ... , Xn,k]
Xn,k := [Xn,k,1, Xn,k,2, ... , Xn,k,mk ]
an array of n samples with k channels, and mk inputs on k-th
channel.
∆ typically 0.1, or 10% of input range

Result: DDSI := [SI1,SI2, ..., SIn]
SIn := [SIn,1, SIn,2, ... , SIn,k]
SIn,k := [SIn,k,1, SIn,k,2, ... , SIn,k,w]
an array of individual, local Sensitivity Indices through n samples, k
input channels, and w outputs.

1 Function Model(
[[xni,1,1, xni,1,2, ..., xni,1,mk

],
[xni,2,1, xni,2,2, ..., xni,2,mk,],
...,
[xni,k,1, xni,k,2, ..., xni,k,mk

]]):
2 model calculations;
3 return [y1,y2, ... ,yw] ;

4 for i:=1 to n do
5 for r:=1 to k do
6 samplePlus = X[i];
7 sampleMinus = X[i];
8 for j:=1 to mk do
9 samplePlus[r][j] += ∆;

10 sampleMinus[r][j] -= ∆;

11 outputPlus = model(samplePlus);
12 outputMinus = model(sampleMinus);
13 oneSensitivity = (outputPlus - outputMinus) / 2∆ ;
14 DDSI[i,r] = oneSensitivity;
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