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Introduction

This thesis is a study of Markov chain Monte Carlo methods used to simu-
late a wide class of quantum systems. Markov chain Monte Carlo methods
is a class of algorithms designed to sample from probability distributions ac-
cording to observables in the simulated system. For many-body systems and
systems with strong interactions, where analytical or approximation meth-
ods like perturbation theory break down, Markov chain Monte Carlo methods
have proved themselves usefull. The samples generated from these methods
can be used to estimate statistical expectation values for the system. The
first chapter provides a introduction to the concepts that will be used to find
analytical expectation values which will then be compared to the results from
the Monte Carlo methods.

Out of the Markov chain Monte Carlo methods in this thesis, the Metropolis
algorithm will be introduced first in Chapter 2. The Metropolis algorithm
samples from a probability distribution which form is known up to a constant,
by accepting or rejecting proposed samples based on their relative probabil-
ity to the last accepted sample. By using the Euclidean path integral as an
example, we estimate the expectation values for first and second moment.
Since Markov chain Monte Carlo methods have inherent autocorrelation, a
derivation and investigation is provided in this chapter. The thesis comes
with the Julia code [1] which I, the author, has written and used in the de-
velopment of the thesis.

From the data generated in Chapter 2, the One-Point function and Two-
Point functions are introduced and computed in Chapter 3. The One-Point
function for the harmonic oscillator system simulated gives an expectation
for the modulo squared wave function of the system. From the Two-Point
Correlation function expectation values about the energy levels of the system
can be estimated.

In Chapter 4 another Markov chain Monte Carlo method, Langevin, is intro-
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CONTENTS II

duced. The Langevin equation is derived and used to derive a corresponding
Fokker-Planck equation for a simple system. The Fokker-Planck equation
for a given Langevin equation expresses how the distribution the Langevin
method samples from for different observables, evolves in time. If the Fokker-
Planck arrives at a stationary distribution for an observable as the Langevin
method is run to infinity, expectation values can be extracted directly. Since
it is often very computationally expensive to find the Fokker-Planck equa-
tion for a complicated Langevin equation, expectation values for the simple
system is also estimated by simulating with the Langevin method in Section
4.5.1.

The Metropolis method can only simulate systems with real actions. So
in Section 4.5 the Complex Langevin equation is derived and used to simu-
late the simple system with a complex contribution to the action. In certain
limits the samples generated by the Langevin and complex Langevin meth-
ods can start to run of to infinity. In Section 4.5.2 and 4.5.3 some solutions
to this problem is explained more closely.

In Chapter 5 I use the code implemented by myself, and that of Alvestad et
al. [2], to compare the efficiency of different stochastic differential equation
solvers, which are an integral part of the Langevin and complex Langevin
methods introduced earlier.



Chapter 1

Quantum mechanics

This chapter contains a short introduction to the quantum mechanical deriva-
tions needed to estimate the expectation values of the Euclidean path inte-
gral. The quantum harmonic oscillator and Euclidean time path integrals
being the central topics.

The constant ℏ will be set to 1 for most of the derivations and results, it
can be reinserted by dimensional analysis.

1.1 Gaussian integrals

The next two sections are inspired by Quantum Field Theory and the Stan-
dard Model [3, p. 254–259]

For later reference, the integral over a gaussian is derived.
Consider a gaussian integral of the form:∫ ∞

−∞
exp[−(ax2 + bx+ c)]dx (1.1)

with a, b, c, x ∈ R. Since e−c is independent of x it can be moved outside the
integral (will be omitted for now).

By completing the square

I =

∫ ∞

−∞
exp[−(ax2 + bx)]dx =

∫ ∞

−∞
exp[−a(x2 + b

a
x)]dx (1.2)

=

∫ ∞

−∞
exp

[
− a

(
x2 +

b

a
x+

( b
2a

)2)
+

b2

22a

]
dx

=

∫ ∞

−∞
exp

[
− a

(
x+

b

2a

)2

+
b2

4a

]
dx (1.3)

1



CHAPTER 1. QUANTUM MECHANICS 2

again the constant can be pulled ut, and then shifting x → x − b
2a
, which

does not change the measure.

I = e
b2

4a

∫ ∞

−∞
e−ax2

dx (1.4)

Again temporarily omitting the constant, then doing the common gaussian
integral trick, in which:

(I ′)2 =

∫ ∞

−∞
e−ax2

1dx1

∫ ∞

−∞
e−ax2

2dx2 =

∫ ∞

−∞

∫ ∞

−∞
e−ax2

1e−ax2
2dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞
e−a(x2

1+x2
2)dx1dx2 (1.5)

Changing to polar coordinates:∫ 2π

0

∫ ∞

0

re−ar2drdθ = 2π

∫ ∞

0

re−ar2dr = 2π
( 1

2a
e−ar2

)∣∣0
∞ =

π

a
(1.6)

Which implies that the original integral I ′:

I ′ =

∫ ∞

−∞
e−ax2

dx =
√

(I ′)2 =

√
π

a
(1.7)

And the full solution to the gaussian integral stated in the beginning 1.1
becomes: ∫ ∞

−∞
exp[−(ax2 + bx+ c)]dx = exp

[ b2
4a

− c
]√π

a
(1.8)

Using a complex a means still that the real part must be more than zero,
see Sec. 4.4.2.

1.2 The path integral

Following the derivations of [3, p. 255–256].
Considering the one-dimensional non-relativistic quantum harmonic oscilla-
tor with the Hamiltonian given by

Ĥ(t) =
p̂2

2m
+ V (x̂, t). (1.9)

where Ĥ, p̂, x̂ are operators and t is time.
If the initial state

∣∣i⟩ = ∣∣xi⟩ is localized at xi at time ti, to compute the
projection onto the final state ⟨f

∣∣ = ⟨xf
∣∣ localized at xf at time tf , and
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assuming the system with Hamiltonian Ĥ being independent of time, the
solution is given by the matrix element as

⟨f
∣∣i⟩ = ⟨xf

∣∣e−i(tf−ti)Ĥ
∣∣xi⟩. (1.10)

setting ℏ to 1. If instead Ĥ(t) is a smooth function of t, the solution is given
in the limit of δt → 0 of the matrix element broken down to n small time
intervals δt, where tj = ti + jδt and tn = tf . Then, expanding to first order
in δt:

⟨f
∣∣i⟩ = ∫

dxn...dx1⟨xf
∣∣e−iĤ(tf )δt

∣∣xn⟩⟨xn∣∣...∣∣x2⟩⟨x2∣∣e−iĤ(t2)δt
∣∣x1⟩⟨x1∣∣e−iĤ(t1)δt

∣∣xi⟩
(1.11)

Each matrix element evaluated by inserting a complete set of momentum
eigenstates, and using ⟨p

∣∣x⟩ = e−ipx:

⟨xj+1

∣∣e−iĤ(tj+1)δt
∣∣xj⟩ = ∫

dp

2π
⟨xj+1

∣∣p⟩⟨p∣∣e−i
[

p̂2

2m
+V (x̂j ,tj)

]
δt
∣∣xj⟩

= e−iV (xj ,tj)δt

∫
dp

2π
e−

(
i

2m
p2δt−i(xj+1−xj)p

)
. (1.12)

And as was shown in section 1.1, Eq. 1.8, it is possible to evaluate this
gaussian integral.
Setting a = i

2m
δt, b = −i(xj+1 − xj) and c = 0:∫

dp

2π
e−

(
i

2m
p2δt−i(xj+1−xj)p

)
= exp

[ b2
4a

] 1

2π

√
π

a

= exp
[−m(xj+1 − xj)

2

i2δt

]√ m

2πiδt
(1.13)

=

√
m

2πiδt
ei

m
2
δt

(xj+1−xj)
2

δt2 (1.14)

The matrix element becomes (still in the limit where δt is very small, such
that O(δt2) can be omitted):

⟨xj+1

∣∣e−iĤ(tj+1)δt
∣∣xj⟩ = Ne−iV (xj ,tj)δtei

m
2
δt

(xj+1−xj)
2

δt2 = NeiL(x,ẋ)δt (1.15)

where N =
√

m
2πiδt

is a normalization constant which usually is ignored.
The Lagrangian takes the form

L(x, ẋ) =
m

2

(xj+1 − xj)
2

δt2
− V (xj, tj) (1.16)
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In the limit δt→ 0

L(x, ẋ) =
1

2
mẋ2 − V (x, t) (1.17)

is the Lagrangian of the system, generated by the Legendre transformation
from the Hamiltonian.
As the final steps, since an expression for the matrix elements is derived, the
product in 1.11 reduces to

⟨f
∣∣i⟩ = Nn

∫
dxn...dx1e

iL(xn,ẋn)δt...eiL(x1,ẋ1)δt (1.18)

and when taking the limit δt→ 0, the exponentials combine into an integral
over dt, and

⟨f
∣∣i⟩ = N

∫ x(tf )=xf

x(ti)=xi

Dx(t)eiS[x] (1.19)

where Dx stands for a sum over the paths with correct boundary conditions,
and the action is S[x] =

∫
dtL[x(t), ẋ(t)]. Note, as δt → 0, n → ∞, and the

redefined N (Nn) is formally infinite.
The final result of Eq. 1.19 shows that, integrating over different paths

with a complex phase, enables different paths to constructively or destruc-
tively interfere. And it is only the final sum, the superposition of these
possible states, that gives the expectation value.

1.3 Euclidean time Path integrals

The path integral in the previous section (Eq. 1.19) gives an action mul-
tiplied by i, which does not give a well defined probability measure for a
Metropolis algorithm. Instead, moving to Euclidean time τ = it, one can do
the Euclidean time Path integral, which in the end returns a real exponent.
This can be used to define a well defined probability measure to use in a
Metropolis update algorithm.

Following the derivations and explanations of [4]. For imaginary time
path integrals there are two main applications. Firstly, in statistical me-
chanics one can use τ as ℏ

kBT
, such that for equal initial and final positions

x, the partition function for the system can be evaluated:

Z =

∫
⟨x|e−Ĥτ/ℏ|z⟩ = Tr(e−Ĥτ/ℏ) (1.20)

Which can be used in Markov chain Monte Carlo methods to estimate statis-
tical expectation values of the system. As an example a system of a massive
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particle in an idealized fluid can be used to simulate Brownian motion in this
way.

The second main application, which will be the application in this thesis,
is the energy spectrum of a quantum system. By using the identity 1 =∑

n |n⟩⟨n|, where n is eigenfunctions of Ĥ that give the energies En, when

acted upon by the Hamiltonian, Ĥ|n⟩ = En|n⟩, the partition function can be
written as:

Z =

∫
⟨x|e−Ĥτ |x⟩dx =

∫ ∑
n

⟨x|e−Ĥτ |n⟩⟨n|x⟩dx (1.21)

having set ℏ to 1.
By using normalized wavefunctions ψn(x) it can be re-expressed as:

Z =

∫ ∑
n

e−Enτψn(x)ψ̄n(x)dx =
∑
n

e−Enτ (1.22)

The propagator ⟨xf |xi⟩, where |xi⟩ is the initial state i at time ti and ⟨xf | is
the final state f at time tf , can be expanded in terms of the eigenfunctions
|n⟩:

⟨xf |xi⟩ =
∞∑
n=0

e−En(tf−ti)⟨f |n⟩⟨n|i⟩ (1.23)

Then to derive the Euclidean time path integral, the same procedure as with
the path integral previously derived are followed. The imaginary element
i is multiplied by the factor −i from the change t → −iτ , and the matrix
element corresponding to 1.15 becomes

⟨xj+1

∣∣e−Ĥ(tj+1)δt
∣∣xj⟩ = Ne−V (xj ,tj)δte−

m
2
δt

(xj+1−xj)
2

δt2

= Ne−δt
(

m
2

(xj+1−xj)
2

δt2
+V (xj ,tj)

)
(1.24)

where N =
√

m
2πδτ

. In the limit of infinite time intervals as δτ → 0, the
partition function can be expressed as

Z = Tr(e−Ĥ(τf−τi) =

∫ x(τf )=xf

x(τi)=xi

Dx(τ)e−S[x] (1.25)

where the Euclidean action, S, over a path x(τ) from τi to τf is

S =

∫ τf

τi

L(x(τ))dτ =

∫ τf

τi

[m
2

(dx
dτ

)2

+ V (x(τ))
]
dτ (1.26)

The exponent in Eq. 1.25 is real (choosing τ as new time). The Metropolis
algorithm can therefore be used to estimate expectation values from many
systems of this form, since there exist a well defined probability measure.
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1.4 The harmonic oscillator in quantum me-

chanics

Here will the expectation values for the harmonic oscillator be solved for
algebraically, following the derivations of Ch. 2.3.1 [5, p. 39–44].
The Hamiltonian for the harmonic oscillator can be expressed on the form:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (1.27)

where x̂ and p̂ are the position and momentum operator, and ω is the natural
frequency. Defining the ladder operators

â± =
1√

2ℏmω
(∓ip̂+mωx̂) (1.28)

for which the product is

â−â+ =
1

2ℏmω
[p̂2 + (mωx̂)2]− i

2ℏ
[x̂, p̂] (1.29)

where the commutator of x̂ and p̂:

[x̂, p̂] = iℏ (1.30)

This allows for the Hamiltonian to be rewritten in terms of the ladder oper-
ators:

Ĥ = ℏω
(
â+â− +

1

2

)
(1.31)

since [â−, â+] = 1. To find the normalized ground state wave function of the
harmonic oscillator, consider the wave function ψ0 that obeys:

â−ψ0 =
1√

2ℏmω
(ip̂+mωx̂)ψ0 = 0 (1.32)

=⇒ dψ0

dx
= −mω

ℏ
xψ0 (1.33)

The solution of this differential equation for ψ0 is:

ψ0(x) = Ae−
mω
2ℏ x2

(1.34)

Normalizing
∫∞
−∞ |ψ0|2 = 1, (For the Gaussian integral see Sec. 1.1):

1 = |A|2
∫ ∞

−∞
e−

mω
ℏ x2

dx = |A|2
√

πℏ
mω

(1.35)
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The normalization constant A is then (mω
πℏ )

1
4 . And the harmonic oscillator

normalized ground state wave function becomes:

ψ0 =
(mω
πℏ

)1/4

e−
mωx2

2ℏ (1.36)

Where expectation values can be computed as:

⟨xn⟩ =
∫ ∞

−∞
ψ∗
0xnψ0dx (1.37)

The expectation values for the first and second order of x:

⟨x⟩ =
∫ ∞

−∞
ψ∗
0xψ0dx =

∫ ∞

−∞

√
mω

πℏ
e−

mωx2

2ℏ xe−
mωx2

2ℏ dx (1.38)

=

√
mω

πℏ

∫ ∞

−∞
e−

mωx2

ℏ xdx =

√
mω

πℏ
ℏ

2mω

(
0− 0

)
= 0

⟨x2⟩ =
∫ ∞

−∞
ψ∗
0x

2ψ0dx =

√
mω

πℏ

∫ ∞

−∞
e−

mωx2

ℏ x2dx (1.39)

=

√
mω

πℏ
ℏ

2mω

√
πℏ
mω

=
ℏ

2mω

Which, by setting ℏ = 1, becomes ⟨x2⟩ = 1
2mω

.

1.5 The discretized harmonic oscillator

To do simulations on a quantum system, consider the Euclidean time har-
monic oscillator Hamiltonian for a particle of mass m, and natural frequency
ω =

√
k/m, where k is the force constant:

Ĥ =
p̂2

2m
+
mω2x̂2

2
. (1.40)

To simulate the system, it is necessary to discretize the system into Nτ slices
of euclidean time τ = it. By integrating over a small constant time step dτ
in euclidean time and expressing it for each time slice i:

Li =

∫ τf

τi

p̂2

2m
+
mω2x̂2

2
dτ =

m

2

(xi+1 − xi
δτ

)2

+
mω2x2i

2
(1.41)
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This is then the discretized Euclidean Lagrangian for the system:

S =
Nτ−1∑
i=1

Li (1.42)

The metropolis algorithm proposes a change to a single coordinate of this
path through euclidean time, and accepts or rejects the proposal based on
the change in action. To make the algorithm efficient, it is beneficial to only
calculate the part of the sum that changes when a single coordinate, xj,
changes.

In the simulation, a periodic boundary condition is imposed, such that
the proposal step goes through all i = (1, Nτ ), with i = Nτ + 1 being the
same as i = 1. This leads to the sum of the action time-slices: S =

∑Nτ

i=1 Li

From [4, p. 8], expanding out the dimensionless variables, the discretized
action is:

S =
Nτ∑
i=1

[1
2
m̃(x̃i+1 − x̃i)

2 +
1

2
m̃ω̃2x̃2i

]
(1.43)

=
Nτ∑
i=1

[1
2
δτm

(xi+1 − xi
δτ

)2

+
1

2
δτ 3mω2x2i /δτ

2
]

=
m

2
δτ

Nτ∑
i=1

[(xi+1 − xi
δτ

)2

+ ω2x2i

]
(1.44)

Then, finding the part of the action that depends on only a single xj:

S(xj) =
m

2
δτ

Nτ∑
i=1

[(xi+1 − xi
δτ

)2

δi,j + ω2x2i δi,j

]
=
m

2
δτ

Nτ∑
i=1

[(x2i+1 − 2xi+1xi + x2i
δτ 2

)
δi,j

]
+
m

2
δτω2x2j

=
m

2
δτ

[x2j − 2xjxj−1 − 2xj+1xj + x2j
δτ 2

+ ω2x2j

]
=
m

δτ

[
x2j − xj(xj+1 + xj−1)

]
+
m

2
δτω2x2j (1.45)

where δi,j is the Kronecker delta, which is 1 when i = j, and 0 otherwise.
Taking the sum over j will give back the full discretized action.
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To calculate changes in the action, only

δS(xj) =
m

δτ

[
(x′j)

2 − x′j(xj+1 + xj−1)
]
+
m

2
δτω2(x′j)

2

−
(m
δτ

[
x2j − xj(xj+1 + xj−1)

]
+
m

2
δτω2x2j

)
=
m

δτ

[
(x′j)

2 − x2j + (xj − x′j)(xj+1 + xj−1)
]

+
m

2
δτω2

(
(x′j)

2 − x2j

)
(1.46)

has to be calculated, where x′j is the proposed new xj.
For this system it is possible to compute analytically the expectation

values. Since this is a harmonic oscillator with no shift in the centering (See
1.4):

⟨x⟩ = 0 (1.47)

So every xi for i = (1, 2, ..., Nτ ) the mean of saved configurations will ap-
proach 0 for many samples created by the Metropolis algorithm in Ch. 2.
The distribution around 0 will also be symmetric for the harmonic oscillator
action.

The expectation values ⟨x2⟩ and ⟨x4⟩ can be computed by the transfer
operator T̂ . Following derivations of appendix C through H in [4]. Since the
periodic discretized action for this system is given in Eq. 1.44, the discretized
path integral is given by:

Z =

∫ Nτ∏
j=1

dxje
−m

2
δτ

∑Nτ
i=1

[(
xi+1−xi

δτ

)2

+ω2x2
i

]
(1.48)

The transfer operator T̂ is then defined by its matrix elements between its
position eigenstates,

⟨x′|T̂ |x⟩ = e−
m
2δτ

(x′−x)2−mω2δτ
4

(x2+(x′)2) (1.49)

The transfer operator describes the deviations of the S matrix from the free
theory.
By imposing that for the periodic boundary conditions Z = Tr(T̂Nτ ), and
computing the commutator of T̂ with x̂ and p̂. The commutator of the low-
ering operator â = 1√

2mω
(p̂− imωx̂) (defined in Eq. (G1a) [4]) (in Euclidean

time) with the transfer operator

[â, T̂ ] = T̂ â
(δτ 2ω2

2
− δτω

(
1 +

δτ 2ω2

4

)1/2)
(1.50)
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Which can be equivalently written as:

âT̂ − T̂ â = T̂ â
(δτ 2ω2

2
− δτω

(
1 +

δτ 2ω2

4

)1/2)
(1.51)

âT̂ = T̂ â
(
1 +

δτ 2ω2

2
− δτω

(
1 +

δτ 2ω2

4

)1/2)
= T̂ âR, (1.52)

for the constant R from Eq. (G11) in [4, p. 35].

R = 1 +
δτ 2ω2

2
− δτω

√
1 +

δτ 2ω2

4
(1.53)

Since the first element of the Two-Point Correlation Function (Sec. 3.2)
is the same as the expectation value for x2:

⟨x2⟩ = ⟨xixi⟩i (1.54)

⟨x2⟩ = 1

2mω

(1 +RNτ

1−RNτ

)
(1.55)

from Eq. (H8b) in [4, p. 37]. The variance depends on the lattice spacing,
m, ω, and the number of points in the lattice Nτ . Which is intuitive since δτ
and Nτ also determines the temperature of the system, therefore ⟨x2⟩. The
inverse temperature β being:

β = δτNτ (1.56)

The solution of ⟨x2⟩ converges to a different solution because of the dis-
cretization, but as δτ → 0, the true solution is recovered. For δτ > 0, the
correcting factor

√
1 + δτ 2ω2/4 is included in the denominator:

⟨x2⟩ = 1

2mω
√

1 + δτ 2ω2/4

(1 +RNτ

1−RNτ

)
(1.57)

From Eq. (42) in [4, p. 8].

1.6 The discretized anharmonic oscillator

To test the methods explained here, it would be useful to see if problems with-
out analytic solutions give reasonable results. Since this is the main purpose
of the methods, to solve problems that are impossible or hard analytically.

To simulate a system which does not have an analytical solution, consider
discretizing the anharmonic oscillator action:

SAHO =

∫ tf

ti

[m
2

(dx
dt

)2

+ V (x(t))
]
dt, V (x(t)) =

m

2
ω2x2 +

λ

4!
x4 (1.58)
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S =
m

2
δτ

Nτ∑
i=1

[(xi+1 − xi
δτ

)2

+ ω2x2i

]
+

Nτ∑
i=1

λ

4!

( xi
δτ

)4

(1.59)

The first sum is just Eq. 1.44.
Finding the parts of the action depending on xj:

S(xj) =
m

2
δτ

Nτ∑
i=1

[(xi+1 − xi
δτ

)2

δi,j + ω2x2i δi,j

]
+

Nτ∑
i=1

λ

4!

( xi
δτ

)4

δi,j (1.60)

=
m

δτ

[
x2j − xj(xj+1 + xj−1)

]
+
m

2
δτω2x2j +

λ

24

x4j
δτ 4

(1.61)

And so the difference in action by a change in xj will be:

δS(xj) =
m

δτ

[
(x′j)

2 − x2j + (xj − x′j)(xj+1 + xj−1)
]

+
m

2
δτω2

(
(x′j)

2 − x2j

)
+

λ

24

(x′j)
4 − x4j
δτ 4

(1.62)

The anharmonic action induces a skewness to the probability distribution of
the samples xj, meaning the distribution no longer will be symmetric around
0 for λ ̸= 0.

In the limit λ→ 0 the action becomes the harmonic oscillator action, and
the previously derived statistical expectations of the probability distribution
holds.



Chapter 2

Metropolis update algorithm

This chapter provides an introduction to the simulation algorithmMetropolis-
Hastings, and gives an example simulating the harmonic oscillator in Eu-
clidean time. In part inspired by [4].

The configurations saved from a Metropolis-Hastings algorithm are in-
herently correlated. To estimate the correct error-bars a section on autocor-
relation is provided in 2.4.

2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of algorithms used to sample
configurations from a probability distribution p, which form, f , is known up
to a constant.

The MCMC method introduced in this chapter is the Metropolis algo-
rithm, a less general case of the Metropolis-Hastings algorithm. In the
Metropolis algorithm an initial condition, a sample from the domain of p,
is drawn at random or chosen. New samples are drawn randomly according
to the distribution f , with the same form as p up to a constant, and are ac-
cepted or rejected with relative probability to the previous sample. After an
initial burn in time, the samples are drawn according to the target distribu-
tion p. The Metropolis algorithm is an efficient algorithm for sampling from
high dimensional probability distributions, relative to simple accept/reject
sampling.

Later, in Ch. 4, the Langevin and Complex Langevin methods are in-
troduced. New samples are drawn by adding noise to the drift term of the
action of the harmonic oscillator. The drift term pushes the action towards
the classical limit, while the appropriate noise makes the sampled configura-
tions follow the statistical probability distribution of the quantum harmonic

12
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oscillator.
The complex Langevin method makes it possible to simulate certain com-

plex actions.

2.2 Metropolis-Hastings algorithm

The metropolis-hastings algorithm is a Markov chain Monte Carlo method
of sampling from a distribution, p(x), which form f(x) is known up to a
constant.

p(x) = N1f(x) (2.1)

Starting from a random initial configuration, the algorithm generates a new
configuration based on a proposal step, and an accept/reject step.

In the Metropolis-Hastings algorithm, a new configuration is randomly
generated by modifying the previous sample. The algorithm goes through
each element of the existing sample, and proposes changes to the element. If
the change generates a relatively more probable configuration it is accepted,
if the proposed configuration is relatively less probable it is accepted with
a probability. If the change is rejected, the element remains as it was. The
generation of proposed changes and the accept reject step, when done for
each element in the configuration, constitutes one ”sweep”, a Monte Carlo
step for the whole configuration. After each sweep the new configuration is
saved as a sample from the distribution.
As the name Markov chain Monte Carlo suggests, this generates a Markov
chain of configurations:

ai → a1 → a2 → a3 → ... (2.2)

This implies that each new configuration depends on the previous configura-
tion.
The algorithm creates new configurations such that it satisfies the condition:

T (xi → x′i)p(xi) = R(x′i → xi)p(x
′
i) (2.3)

where the transition probability T is the probability of x′i being generated
from xi and then accepted. It is crucial for the simulation that the transition
operator allows for samples to change, i.e not the identity operation I, a
delta peak at xi. For the algorithm to work it has to give the procedure
the possibility to explore the whole configuration-space. The choice of T is
important for the procedure to satisfy ergodicity. It is also possible to choose
different T (xi → x′i) for different steps aj → aj+1 as long as they satisfy the
conditions prescribed bellow.
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If the transition probability T and R is the same, then the stronger de-
tailed balance condition is met:

T (xi → x′i)p(xi) = T (x′i → xi)p(x
′
i) (2.4)

So that the transition amplitude of going from xi to x
′
i, times the probability

density at xi, is the same as the transition amplitude of going back, times
the probability density at x′i. The detailed balance condition implies that
after the Markov chain has thermalized, it will sample from a stationary
distribution, namely the target distribution:∑

xi

T (xi → x′i)p(xi) = p(x′i) (2.5)

and new samples x′i can be considered as drawn from p(x).
The first step in the algorithm generates a random element, ηi, from a

distribution, D, centered at the previous element of f(x). Which is the
same as sampling from the distribution centered at 0, for example a gaussian
distribution with finite variance σ2:

D = N(0, σ2) (2.6)

and then adding this change to the previous element:

x′i = xi + ηi. (2.7)

The new sample from f(x) is proposed and accepted based on its acceptance
probability, A(xi → x′i). The transition amplitude then becomes:

T (xi → x′i) = g(x′i|xi)A(xi → x′i) (2.8)

where g(x′i|xi) is the probability of proposing the new element, x′i, given the
current element, xi.

The choice of σ2 of ηi is very important to the efficiency of the algorithm.
If the variance of the random number is too large, the accept/reject step will
throw away many proposals, and the Markov chain will for many proposal-
accept/reject steps (sweeps) stay the same. It is not detrimental to the
algorithm as long as any proposals are accepted every once in a while, as
the probability to picking a configuration in the chain will approach the
probability of picking a configuration from the target distribution as the
length of the chain approaches infinity. More specifically, since only pseudo-
random numbers and float precision is considered, the generator with the
given seed can not repeat before a new sample is accepted, with the new
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sample being the same as one already in the chain, and the generator having
the same state it had after generating that sample.

If the variance of the random number is too low, many proposals close
to the dense parts of the distribution f will be accepted right away, but the
chain will be heavily autocorrelated (see Sec. 2.4), and it will take a long
time for the simulation to sample in the low density parts of f . The general
shape of parts of the distribution will be sampled after some time, but for the
chain to sample from all low-density parts, and move between high density
parts separated by low density, many more samples than necessary has to be
accepted to the chain.

To avoid these two extremes a preset ideal acceptance rate idrate is cho-
sen. The random number with finite variance σ2 is multiplied by h, initially
set to 1 (or some other finite, non-zero value). After each sweep, where at
least one proposal was accepted, h is updated to approach a value that makes
the acceptance rate closer to the ideal. Written in Julia, the update is as
follows:

h *= accepted_rate/idrate

where h is now multiplied by the ratio of the real and ideal rate. The pro-
posals created will then be accepted at a rate close to idrate, and new con-
figurations are added to the chain regularly. The ideal accept rate varies
for different systems, often somewhere between 0.4 and 0.8. In [4] an ideal
accept rate of 0.8 is used, although the authors mention that a lower accept
rate might be more efficient for the harmonic oscillator simulated there. A
Metropolis algorithm run with 20’000 sweeps, with the update of h above
and idrate = 0.8, returned a mean accept rate of 0.806.

From the detailed balance condition, Eq. 2.4, using Eq. 2.8:

A(xi → x′i)

A(x′i → xi)
=
f(x′i)

f(xi)

g(xi|x′i)
g(x′i|xi)

= figi (2.9)

where fi and gi is shorthand for the two fractions. Notice that the constant
N1 dropped out, which hints that:

A(xi → x′i)

A(x′i → xi)
=
p(x′i)

p(xi)

g(xi|x′i)
g(x′i|xi)

(2.10)

with p being the target distribution from before.
Since the target distribution is only known up to the constant, the method
works by exploiting the relative probabilities f(x′i)/f(xi).
The algorithm gives the acceptance probability for two cases:
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If the proposed new configuration is more probable than the last, then it
is accepted:

A(xi → x′i) = 1, if figi >= 1 (2.11)

And if the new configuration is less probable, it is accepted with the proba-
bility:

A(xi → x′i) = figi, if figi < 1 (2.12)

Where the probability of accepting the inverse being:

A(x′i → xi) =

{
1

figi
, if figi >= 1

1, if figi < 1
(2.13)

Which is consistent with Eq. 2.9.
For the Metropolis algorithm (without the Hastings), the less general case

is considered. The distribution D has to be symmetric, which implies that
the probability of proposing the new sample given the current and the other
way around is the same:

g(xi|x′i)
g(x′i|xi)

= 1 (2.14)

Then,

A(xi → x′i) =

{
1, if fi >= 1

fi, if fi < 1
(2.15)

In other words:
A(xi → x′i) = min(1, fi) (2.16)

To simulate a physics system, given an action S, the fraction

fi =
f(x′i)

f(xi)
= e−δS (2.17)

which is the exponent of the change of the action, that depends on the
system simulated. It is important to note that a complex action makes no
well defined probability measure. Therefore, the Metropolis algorithm are
only able to simulate systems with real actions.

The accept/reject step will then be on the form:

rng = MersenneTwister(11111)

if rand(rng) < exp(-dS)

x_i = x_new

else

x_i = x_old

end
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Where rand(rng) gets a random number uniformly distributed on the inter-
val [0, 1], given by the psedo-random generator MersenneTwister with seed
11111. The seed of the generator can be set to a less deterministic value, like
the computer time, temperatures, other values or combinations of these, to
create a different set of random numbers. If no seed is given to the Mersen-
neTwister from the Random package of Julia, a seed is generated ”using
entropy from the system”.
If the action is increased with the proposal, it is only accepted with a prob-
ability depending on the magnitude of the increase. And if it is decreased
(i.e. e−δS > 1), the change is always accepted.

After each Metropolis sweep, each coordinate xj, j ∈ {1, 2, ..., Nτ}, has
been proposed changed. For a visual representation, consider the imaginary
time axis, with the equidistant points jδτ :

Figure 2.1: Shows a visual representation of configurations with Nτ = 5 and
δτ = 1. X0 is a configuration after the Markow chain has thermalized, X1 is
the next configuration in the Markow chain, and is very similar to X0. X20

is the 20th configuration in the chain after X0, and differs more from X0.
Inspired by Figure 1. [4, p. 8].

As seen in the plot, new configurations are generated by small random
changes proposed to each element in the previous configuration.

2.3 Results from the metropolis algorithm

The samples generated in the burn-in time will skew the distribution towards
samples close to the initial configuration. Any initial configuration skews the
sample distribution, but configurations that have high probability in the
target distribution skew the sample distribution less, since new samples are
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drawn with relative probability close to equal to the target distribution. For
initial configurations that have very small relative probability, the proposals
are drawn from only the neighborhood, and the relative probability of the
initial configuration is not taken into account, as they would have if the
algorithm had drawn random proposals and with low probability ended up
at the configuration. When the number of samples goes to infinity, this
skewness goes to zero, as the proposals eventually will be drawn from the
target distribution and the whole configuration space have been sampled.
For a finite number of samples, one must take care to not choose initial
configurations far away from the dense probability areas. Giving an example
of the burn-in which should be discarded before saving configurations:

Figure 2.2: Action of configurations generated by the metropolis algorithm.
For each sample saved, 20’000 were discarded. The initial condition was ini-
tialized to an array of 16 elements of value 500. The algorithm uses 460’000
Metropolis sweeps to sample a configuration with close to zero action.

This results in observables of the system being estimated to wrong values
for finite sample-sizes, if not the burn-in is discarded:
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Figure 2.3: Running average of x1 for a badly initialized simulation.

As is seen in Fig. 2.2, the initial condition is very unlikely, and the
probability density is skewed toward the initial configuration. The relative
probability of samples being drawn from 500 or -500 is very low, but not
0. After an infinite amount of time, samples can be proposed and accepted
from (−∞,∞) and the scewness imposed by the initial configuration will
approach 0. By discarding the first samples, where the configurations are
not thermalized, the error induced by the first configurations in the new
data set can be ignored.

By saving configurations according to the distribution, expectation values
like ⟨x⟩ and ⟨x2⟩ can be estimated. For calculating the errors, the naive error
estimator

errO =

√
1

N−1

∑N
i=1

[
Oi − E(O)

]2
N

=

√
σ2
O,std

N
(2.18)

is used. This is the same as the standard deviation of the variables divided by
the square root of the number of variables, N . This is just the naive estimator
for the error, since it is assumed the samples are uncorrelated, which is not
always the case. An estimator for the statistical error for autocorrelated data
is derived in Sec. 2.4.5.

Running a simulation with Nτ = 16 and β = 8 =⇒ δτ = 0.5, gathering
1’000’000 samples of possible configurations, shown in the following plots:
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Figure 2.4: Average of x1 for the first 1000 samples in Metropolis time, ⟨x1⟩,
shown with the individual samples of x1.

Figure 2.5: Average of x21 for the first 1000 samples in Metropolis time, ⟨x21⟩,
shown with the individual samples of x21.
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Figure 2.6: Final estimated mean of xi and x
2
i for each index i = 1, ..., Nτ ,

⟨xi⟩ and ⟨x2i ⟩ for 1’000’000 samples. The naively estimated error bars are far
away from the realistic error.

Fig.2.4 and Fig. 2.5 capture the evolution of the mean for the first element
x1 in simulation time after burn in. In Fig. 2.6 the final mean for each
element in the configuration, xi where i = [1, ..., Nτ ] is shown. As expected,
x is centered around 0, while x2 is centered around some other value. The
naively estimated error bars are far off from the analytical expectation values,
since the samples are heavily correlated, and many more samples are needed
to get reliable estimates of the mean. To estimate appropriate error bars
Jackknife resampling is introduced in Sec. 2.4.5.
Autocorrelation of the samples can be removed or mediated by removing
intermediate samples between each saved (See Sec. 2.4.1).

The one-point correlation function (See Sec. 3.1) for the samples gener-
ated is plotted:
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Figure 2.7: Probability density plot for x over all indexes in Nτ , in unfilled
histogram form, with the smooth line being the analytical expectation for
the ground state β → ∞ in orange.

Fig. 2.7 shows the distribution of sampled realizations of xi for all i in
the configurations. The PDD is centered about 0, which is the analytical
result for the expectation value of x.

2.4 Autocorrelation

This chapter contains an introduction to the correlations along simulation
time in section 2.4.1. A derivation of the autocorrelation is provided in sec-
tion 2.4.2. To compute the autocorrelation of a data set more efficiently a
fast Fourier transformation of the original equation is derived in section 2.4.3.
Results and plots from a Metropolis simulation without correlations is pro-
vided in 2.4.4.
Finally how to estimate error bars of correlated data using Jackknife analysis
is shown in 2.4.5.

2.4.1 Correlations in simulation time

Every new configuration generated by the Metropolis Update only differ from
the previous by a small amount, since they are the previous coordinates some
of which may have added to it a random change. In other words the data is
correlated. Since correlated data contains less information of the distribution
of created configurations, with many successive configurations being similar
to the previous one, to approach a reliable distribution will require many
more samples than if the data was uncorrelated.
To remove or mediate the autocorrelation of the samples, one can remove
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some number of intermediate samples between each saved. By removing cor-
related configurations in between two uncorrelated ones, the configurations
saved approaches the correct distribution faster. Defining an integer value
nskip which removes every nskip−1 sample between each saved, the following
expectation values can be estimated from a Metropolis algorithm:

Figure 2.8: Running average of x at index 1, ⟨x1⟩, shown with the individual
samples. For each sample saved, 19 are discarded to reduce autocorrelation

Figure 2.9: Running average of x2 at index 1, ⟨x21⟩, shown with the individual
samples. For each sample saved, 19 are discarded to reduce autocorrelation
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Figure 2.10: Final estimated mean of xi and x
2
i for each index i = 1, ..., Nτ ,

⟨xi⟩ and ⟨x2i ⟩. For each sample saved, 39 are discarded to reduce autocor-
relation. The jackknife estimated error bars are only marginally larger than
the naively estimated error bars.

Compare to the figures of Sec. 2.3. Since the samples are now approxi-
mately uncorrelated, fewer samples are needed to get better estimates of the
mean. The simulation needs to run for nskip longer to generate the same
amount of samples. If a system with a finer lattice is simulated, decreasing
δτ keeping Nτδτ constant, the samples are more autocorrelated. To remove
autocorrelation nskip must increase with the inverse of the lattice spacing,
which will cause simulation times to increase. To estimate expectation val-
ues in this limit, a fit is made through expectation values of decreasing lattice
spacing’s.

To calculate the amount of samples to discard between every two ob-
servations, the autocorrelation is computed. If the autocorrelation goes to
zero very quickly (exponential decrease in the first 1-2 ∆t, then noise) one
can approximate the calculations on the data as if the samples are indepen-
dent. If not, an estimate of nskip can be made by calculating the integrated
autocorrelation time (Sec. 2.4.2).

Comparing the naive and unbiased estimator of the mean (derived in
section 2.4.5), the effective number of independent measurements is Neff =
N/(2τO,int) [4, p. 15]

Over-Relaxation is another method used to reduce autocorrelation in
Metropolis simulations of systems similar to the harmonic oscillator. The
method works by introducing a trial change in the Metropolis sweep that
changes xi far from the old value while keeping the action constant. The
method is only applicable for actions where the solution for xi giving zero
contribution to the action can be solved for analytically. See Ch. VI. [4,
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p. 15–16].

2.4.2 The Autocorrelation derivation

Autocorrelation describes how samples in a signal or data set is correlated
with themselves as a function of a time shift. If for example data of the
outdoor temperature is considered, the temperature data for every minute
of a day will typically display high positive autocorrelation for small time
shifts. Since the temperature from hour to hour does not change much,
temperatures measured depend on the temperature a short while ago. The
autocorrelation gives a value for how much the next value is dependent on
the previous. Temperature measurements will also display seasonality, since
the temperature change follows the same patterns over intervals of 24 hours
and intervals of 365 days. This causes the autocorrelation to go up from zero
for every integer multiple of the time intervals of the seasonality.

In MCMC the Markov Chain makes small changes to existing configura-
tions, therefore new configurations depend on the previous. No seasonality
is expected to occur in the generation of data, since the proposals are gener-
ated by random changes to only the previous sample. Still, when calculated
for finite samples, the autocorrelation can display small signs of seasonality
because of the random samples coincidentally aligning. This is referred to as
noise in the autocorrelation.

When extracting expectation values from the data, the assigned naive
errors does not account for autocorrelation. In other words, the samples
are not independent, and errors underestimates the true statistical errors of
correlated samples. In section 2.4.5 an unbiased estimator of the variance
of the mean is derived, to get better estimates of the statistical error in
autocorrelated data.

Since the simulation and generation of data is in under full control, certain
methods can decrease autocorrelation time in the generated samples, and
naive error will approach the true statistical error. For the simulation to be
resource efficient, less autocorrelation imply more of the samples collected
are effectively independent, which imply better statistics with fewer samples.
The MCMC algorithms samples more often in areas probable to be accepted,
but induces autocorrelation in succeeding samples, by only saving samples at
regular intervals, the previously saved configuration will go through multiple
proposal and accept/reject steps before a new is saved. There will be a higher
computational cost per sample, but each sample will be less correlated.

Autocorrelation for continuous real and bounded data (or signal), x(t),
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is defined as:

Ax(∆t) =

∫ ∞

−∞
x(t)x(t+∆t)dt (2.19)

where the integration limits imply integrating over all data existing on the
interval.
If the data is periodic the cyclic autocorrelation can be computed from this
equation, where x(tmax + δt) = x(tmin). If the data is not periodic, the
existing data is padded to ±∞ by the empty signal. This gives the linear
autocorrelation. In this thesis it is the latter that will be used for calculating
correlations in simulation time.

In cases where the data is discrete, use the discrete autocorrelation:

Ax(∆t) =

∫ ∞

−∞
x(t)x(t+∆t)δtdt (2.20)

=
1

N −∆t

N−∆t∑
t=1

x(t)x(t+∆t) (2.21)

The covariance (which also is referred to as ”autocorrelation”) of an ob-
servable ⟨O⟩ for discrete data is defined as:

AO(tMC) =
〈(
Oi − ⟨Oi⟩

)(
Oi+tMC

− ⟨Oi+tMC
⟩
)〉

(2.22)

where tMC = ∆t, is the difference in Markov chain (or Metropolis) time
between each sample for which the correlation is computed. This is Eq. (61)
[4, p. 13], and will be the definition of ”Autocorrelation” that will be used
in the following sections. Note that, since the harmonic oscillator discussed
previously has the expectation value for x, ⟨x⟩ = 0, the autocorrelation for
this observable will be approximately equal to the covariance. To compare
autocorrelations of different data sets it is easier to work with the normalized
autocorrelation:

AO,norm(tMC) =
AO(tMC)

AO(0)
(2.23)

where the autocorrelation is normalized by the sample variance σ2
O,std =

AO(0). The normalized autocorrelation will then always start at 1 for tMC =
0.

To get an estimate for how correlated the samples are, the integrated
autocorrelation time will be computed:

τO,int =
1

2
+

Nτ−1∑
tMC=1

AO,norm(tMC) (2.24)
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This gives a measure of how correlated an observable O is. To compute
the integrated autocorrelation, the sum is cut of at an clearly defined time
interval tMC where the exponential relation for the autocorrelation breaks
down. In [4] and in the Julia code of this thesis, this is taken to be when the
autocorrelation first becomes negative.

2.4.3 Fast Fourier transform AC

For a real and bounded signal, the autocorrelation can be defined as:

A(τ) =

∫ ∞

−∞
x(t)x(t+ τ)dt (2.25)

where τ = δt is the time shift between the evaluations of x(t).
Since the signal is real, the complex conjugates:

x∗(t) = x(t) (2.26)

x∗(t+ τ) = x(t+ τ) (2.27)

The Fourier transforms of x:

x(t) → X(ω) (2.28)

x(t+ τ) → eiωτX(ω) (2.29)

x∗(t+ τ) → e−iωτX∗(ω) (2.30)

Applying the Parseval’s theorem for Fourier transformations:∫ ∞

−∞
x(t)y∗(t)dt =

1

2π

∫ ∞

−∞
X(ω)Y ∗(ω)dω (2.31)

to Eq. 2.25 using Eq. 2.27,2.28, and 2.30∫ ∞

−∞
x(t)x∗(t+ τ)dt =

1

2π

∫ ∞

−∞
X(ω)e−iωτX∗(ω)dω (2.32)

Which is the same as:∫ ∞

−∞
x(t)x(t+ τ)dt =

1

2π

∫ ∞

−∞
|X(ω)|2e−iωτdω (2.33)

A new equation for the autocorrelation of a real and bounded signal is then:

A(τ) =
1

2π

∫ ∞

−∞
|X(ω)|2e−iωτdω

= F−1
(
|F(x)|2

)
[τ ] (2.34)
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where x is the continuous data stream or signal.
For data sets of discrete data with elements Oi, as those generated by

MCMCmethods, the discrete Fourier transformation can be used to calculate
the discrete autocorrelation function:

AO(tMC) = F−1(|F ({Oi})|2)[tMC ] (2.35)

with F being the discrete Fourier transform.
To get the covariance of the data the mean is subtracted from the data

before doing the first Fourier transform:

AO(tMC) = F−1(|F ({Oi − ⟨O⟩})|2)[tMC ] (2.36)

This is the discrete Fourier transform equation to calculate the symmetric
autocorrelation of the data. To get the standard linear autocorrelation the
input data must be padded at the end with 0’s to double its length.

AO(tMC) = AO(tMC)/AO(0) , AO(0) = σ2
O,std (2.37)

The normalized autocorrelation, which we will use, is normalized by the
sample variance.

Since the discretized Fourier Transform easily can be computed by use of
vectors and matrices, it has also been given the name Fast Fourier Transform
(FFT), and is frequently used for efficient computation in computer graphics
and many other fields. This allows for vastly decreased computation time of
autocorrelation.
To estimate the efficiency, for a single variable x1 in a set of 10’000 samples,
implementations of the computation of the autocorrelation by summation
and Fourier transforms were benchmarked. The autocorrelation by summa-
tion implementation took 493 ± 4.8 ms, while the Fourier transform imple-
mentation took 2.56± 0.44 ms.

2.4.4 Autocorrelation for a Metropolis simulation

For a Metropolis simulation which has not run for very long, and where burn
in and samples between each saved were removed looks like:
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Figure 2.11: Plot of autocorrelation for Monte Carlo time tMC = [0 : 9999]

As expected for uncorrelated samples, the Autocorrelation is 1 for τMC =
0, then drops of into noise. The noise decreases with simulation lenght.

Julia has packages to calculate the autocorrelation of data in an array.
To verify the results above, the autocorrelation derived here, being the nor-
malized covariance, has been compared to the autocor() function provided
from the Julia package StatsBase.jl.
To visualize the autocorrelation of the Markov chain generated by the Metropo-
lis algorithm, the autocorrelation for ∆t = [0, 300] of the samples generated
in 2.3 is plotted:
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Figure 2.12: Autocorrelation of 1’000’000 samples generated by the Metropo-
lis algorithm. After burn in, no samples are removed in between saved sam-
ples.

Excluding burn time, the autocorrelation has an exponential decrease.
When not removing any intermediate samples the saved samples are heavily
autocorrelated.
When removing intermediate samples, the autocorrelation of the samples
is decreased, as the configurations go through multiple Metropolis sweeps
between being saved. The samples generated in 2.4.1 have the following
autocorrelation:
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Figure 2.13: Autocorrelation of 10’000 samples generated by the Metropolis
algorithm. After burn in, 39 samples are removed in between every saved
sample.

The samples are much less autocorrelated. When estimating errors for
nearly uncorrelated samples the naive error can be used without heavily
underestimating the true statistical errors. The noise in the autocorrelation
is reduced by increasing the number of samples.

2.4.5 Jackknife

As has been shown, the configurations in the Markov chain are correlated. To
do analysis with reliable estimate of the error of autocorrelated data, certain
statistical methods have been developed. Here the Jackknife procedure will
be introduced.

Jackknife resampling is a statistical method for estimating mean and
variance of the mean or variance of correlated data. It is fully determin-
istic contrary to newer resampling methods such as the Bootstrap, which
picks samples randomly from the data set to estimate the mean and vari-
ance. The Jackknife will give the same results when run on the same data,
while the Bootstrap, because of its random component, gives different results
each time. The Jackknife is less computationally expensive, and because of
giving the same results for the same data set, preferred when publishing
reproducible results.

As a resampling method, smaller samples from the full data set is drawn,
and estimators are computed for each.

Following the derivation of [4, p. 13]: Block estimators of bin-size B
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samples from the data are given by k = (1, ..., NB) of

ok =
1

B

B∑
i=1

O(k−1)B+i (2.38)

where NB is the total number of block estimators. The bin-size should be
larger than the autocorrelation time to ensure that the NB values of ok can
be treated as uncorrelated. o1 contains the first B samples from the data set,
o2 the next B samples and so on.
The bin-based variance of the mean is given by

σ2
E(O),bins =

1

NB(NB − 1)

NB∑
k=1

[
ok − E(O)

]2
(2.39)

As the estimators ok are average over only the NBth fraction of all measure-
ments, it may prevent the determination of ok for some k (A fit on too few
configurations may occasionally fail to converge). By using complimentary
bins to the block estimators of length N −B, this problem is overcome:

õk =
1

N −B

( N∑
i=1

Oi −Bok

)
=

1

N −B

( N∑
i=1

[
Oi

]
−

B∑
i=1

[
O(k−1)B+i

])
(2.40)

where N is the total number of samples in the data set. õ1 is an estimate
of all but the B first samples of the data set, õ2 an estimate of all but the
next B samples and so on. Therefore, the number of samples averaged over
in the NB new Jackknife estimators, N −B, is much larger than the original
B for the block estimators, and the estimators converges as long as there is
enough samples in the data set.
The resulting jackknife variance of the mean is

σ2
E(O),jack =

NB − 1

NB

NB∑
k=1

[
õk − E(O)]2 (2.41)

An implementation of the Jackknife resampling method in Julia is given here:

function Jackknife1(array1::AbstractVector,binsize::Integer)

N_B = floor(Int64,length(array1)/binsize) # ommiting last not-full bin

leng2 = N_B*binsize

array2 = array1[1:leng2]

sum1 = sum(array2)



CHAPTER 2. METROPOLIS UPDATE ALGORITHM 33

jf = Vector{Float64}(undef,N_B)

fill!(jf,sum1)

for k = 1:N_B

jf[k] -= sum(array2[(k-1)*binsize+1:k*binsize])

end

jf = ((jf ./ (leng2 - binsize)) .- (sum1/leng2)).^2

jfvm = mean(jf)

jfvm *= (N_B - 1)

return [mean(array1),sqrt(jfvm)]

end

Instead of summing over all but some samples for each Jackknife estimator,
the sum of all samples is computed in the beginning, and only the sum
of elements to remove is computed for each estimator. This is much more
efficient. Benchmarking 10’000 samples, choosing the best of three runs, of
an implementation of the prior for an array of 15’001 elements, choosing
Jackknife bin size N − B = N − 1. This gave a mean evaluation time of
455ms ± 7.3ms (mean ±σ), while an implementation for the latter gives a
mean evaluation time of 96.7µs± 116.78µs for the same array.

If the Jackknife bin size decreases, N−B where B is larger, the efficiency
of the first implementation should increase. Usually if the autocorrelation
time is larger than half the size of the data set, Jackknife bin size chosen to
N −B < N/2, more samples are needed to get good estimates.

Taking the data set from the Metropolis simulation shown in Sec. 2.3
under the Jack-knife gives an unbiased estimator of the variance of the mean,
from which the error can be calculated by swapping the variance in Eq. 2.18
by the jackknife estimated variance.
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Figure 2.14: Final estimated mean of xi and x
2
i for each index i = 1, ..., Nτ ,

⟨xi⟩ and ⟨x2i ⟩. The jackknife estimator of the variance of the mean gives more
reliable error bars.

Comparing to Fig. 2.6, the error bars are more reliably estimated.
As is seen in the figure, the discretization of the harmonic oscillator causes
a different system to be simulated. It is only in the continuum limit δτ → 0
that the true system is recovered. In the same limit autocorrelation increases
inversely proportional to δτ . To collect effectively independent samples on
smoother lattices comes at increased computational cost. To extract expec-
tation values from the intended system, a fit must be made against data of
different lattice spacing’s.
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n-Point Correlation

For the quantum system simulated with the Metropolis algorithm in Sec. 2.3,
the ratio δτ = β

Nτ
corresponds to a coupling to a heat bath by the inverse

temperature β = 1
T
. Keeping β = δτNτ constant while changing Nτ and

δτ the lattice can be made coarser (Nτ smaller) and finer (Nτ larger). A
choice of β changes how samples are distributed around ⟨xi⟩, specifically the
value of the second moment, ⟨x2⟩. This will be shown by plotting the prob-
ability distribution diagram (PDD) for samples generated by two different
Metropolis simulations in Sec. 3.1.

To simulate how the system changes as a function of the inverse tem-
perature, the number of lattice points, Nτ , has been kept constant and the
lattice spacing a has been changed as a function of β. For larger β (lower
temperature) the lattice spacing increases, and the system approaches the
ground state.
To see the correlations within the lattice the two-point correlation function
(TPCF) will be computed in Sec 3.2.

From the TPCF, the effective mass and energy differences in the system
can be estimated. This will be the topic of Sec. 3.3.

3.1 One-Point Function

When sampling is done, configurations with values xi for i = [1, 2, ..., Nτ ]
are saved. To see how the samples are distributed, the One-Point function
is computed. This corresponds to binning the number of values that fall
between values [aj, bj] then taking the norm, such that a probability density
distribution (PDD) is obtained.
As was already shown in Sec. 2.3, the probability distribution of a system
with inverse temperature β = 8 almost matches the thermalized limit.

35
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Running a simulation with β = 2, Nτ = 16 (δτ = 0.125 and one with
β = 32, Nτ = 64 (to make δτ = 0.5 smaller than 1) gives the following PDD’s
for x:

Figure 3.1: Probability density plot for x over all indexes in Nτ , in unfilled
histogram form. The inverse temperature is here β = 2. The smooth line is
the analytical expectation for the ground state β → ∞ in orange.

Figure 3.2: Probability density plot for x over all indexes in Nτ , in unfilled
histogram form. The inverse temperature is here β = 32 (Nτ = 64 to set
δτ = 0.5. The smooth line is the analytical expectation for the ground state
β → ∞ in orange.

As can be seen from Fig. 3.1, the system is not in the ground state, and
therefore will the probability distribution of x be much wider. In Fig. 3.2
the system is much cooler, and the probability distribution of x approaches
the ground state.
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3.2 Two-Point Correlation

The two-point correlation function is used to measure correlations within the
configurations. Since there is a momentum coupling in the action (See Eq.
1.44), there is information stored in this correlation. In the configurations,
consisting of components xj = x(τ) for different τ , the Two-Point correlation
is found by taking the x(τ) minus their average ⟨x(τ)⟩ and multiplying them
with themselves shifted by an interval ∆τ and taking the average:

G(∆τ) =
〈
(x(τ)− ⟨x(τ)⟩)(x(τ +∆τ)− ⟨x(τ +∆τ)⟩)

〉
(3.1)

As one can see from this expression, for ∆τ = 0 the TPCF is the same as
the standard deviation of the configuration.
To get an expression that is easier to compute, rewrite the equation:

G(∆τ) =
〈
(x(τ)− ⟨x(τ)⟩)(x(τ +∆τ)− ⟨x(τ +∆τ)⟩)

〉
=

1

N

N∑
τ=1

x(τ)x(τ +∆τ) + ⟨x(τ)⟩⟨x(τ +∆τ)⟩ − x(τ)⟨x(τ +∆τ)⟩ − x(τ +∆τ)⟨x(τ)⟩

= ⟨x(τ)x(τ +∆τ)⟩+ ⟨x(τ)⟩⟨x(τ +∆τ)⟩

− ⟨x(τ +∆τ)⟩ 1

Nτ

N∑
τ=1

[
x(τ)

]
− ⟨x(τ)⟩ 1

Nτ

N∑
τ=1

[
x(τ +∆τ)

]
= ⟨x(τ)x(τ +∆τ)⟩+ ⟨x(τ)⟩⟨x(τ +∆τ)⟩ − ⟨x(τ +∆τ)⟩⟨x(τ)⟩ − ⟨x(τ)⟩⟨x(τ +∆τ)⟩
= ⟨x(τ)x(τ +∆τ)⟩ − ⟨x(τ)⟩⟨x(τ +∆τ)⟩ (3.2)

The last expression for G(∆τ) is the one given in Eq. (46) [4, p. 9]:

G(∆τ) =
〈
(x(τ)x(τ +∆τ)

〉
−
〈
x(τ)

〉〈
x(τ +∆τ)

〉
For the harmonic oscillator, the ⟨x(τ)⟩ = 0, ∀τ , so only the first term on
the right hand side contribute. The equation for the connected TPCF then
becomes:

G(∆τ) =
〈
(x(τ)x(τ +∆τ))

〉
=

1

Nτ

Nτ∑
i=1

∑
j,(j−i)modNτ=∆τ

x(i)x(j) (3.3)

where Nτ is the total number of elements xi in the configuration.
As an example G(0) = 1

Nτ

∑Nτ

i=1[x(i)]
2, which is the mean of the squares of

the elements x(i) in the configuration. G(δτ) is largest for τ = 0 (that is
where the largest numbers are multiplied by the largest numbers, ie. itself,



CHAPTER 3. N-POINT CORRELATION 38

and we expect it to decrease as |τ | goes to Nτ/2 since the action only contains
a next neighbor coupling term. The two-point correlation is symmetric for
∆τ → −∆τ , which can be seen from the above equation.

The two-point correlation of a harmonic oscillator with β = 8 and Nτ =
16, simulated with the Metropolis algorithm is shown below.

Figure 3.3: Two-Point Correlation of a Monte Carlo simulated Harmonic
Oscillator action in a Nτ = 16 lattice with inverse temperature β = 8.

From the TPCF it is possible to fit two exponentials, one for each slope,
or a cosine hyperbolic.

G(∆τ) = Ae−∆τ/ξ + Ae−(T−∆τ)/ξ (3.4)

where the second term comes from the periodic boundary conditions. Eq.
(49) [4, p. 10]. ξ is the correlation length of the lattice. From this it is possible
to estimate energy differences of the system of the form e−(E1−E0)∆τ/ℏ, which
will be shown in Sec. 3.3.

The true solution for the TPCF for the thermal harmonic oscillator is:

⟨xixi+j⟩ =
1

2mω

(Rj +RNτ−j

1−RNτ

)2

(3.5)

with R defined in Eq. 1.53. This is Eq. (H8b) from [4, p. 37].
Below is a plot of the estimated Two-Point Correlation the previous simula-
tion with the analytical solution:
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Figure 3.4: Two-Point Correlation Function of a simulated harmonic oscil-
lator, with Nτ = 16 timesteps and inverse temperature β = 8, with the
analytical expected value TPC exp.

Using a cosine hyperbolic function f(x) = a∗ cosh(b∗ (x−4)), the TPCF
displayed in Fig. 3.3 has been fitted using gnuplot. For the fit these were
the results:

Variable Value Asymptotic Standard Error
a 0.0185058 ± 8.909e-05
b 0.993218 ± 0.001366

Table 3.1: cosh fit for the TPCF. From the cosh fit the effective mass can be
estimated.

3.3 Effective Mass and Energy differences

The effective mass of the system can be calculated from the two-point cor-
relation function. The effective mass is estimated by the local logarithmic
slope of the TPCF:

meff =
1

ξ
=

1

2
log

[G(∆τ − 1)

G(∆τ + 1)

]
(3.6)

For the previous simulation the following estimation of the effective mass can
be made:



CHAPTER 3. N-POINT CORRELATION 40

Figure 3.5: The effective mass estimated from the Two-Point Correlation
Function of a simulated harmonic oscillator, with Nτ = 16 time steps and
inverse temperature β = 8.

The quantum harmonic oscillator (with ℏ = 1) has the energy spectrum
En = (n+ 1

2
)ω, n = (0, 1, 2, ...). This can be verified by the lattice simulations

described in Sec. 2.2 and 4.3. The energies themselves cannot be estimated,
but the energy differences can by the two-point correlation function. Fol-
lowing derivations of Ch. VII B [4]. Rewriting the two-point correlation
function, G(∆τ), in terms of the lowering and raising operators â and â†

respectively, by using the following substitution for x̂:

x̂ = i
1√

2mωδτ 2
1(

1 + 1
4
ω2δτ 2

)1/4 (â− â†
)

(3.7)

the convention for the ladder operators being

â =
1√
2mω

1

(1 + 1
4
ω2δτ 2)1/4

(
p̂− ix̂mω

√
1 +

1

4
ω2δτ 2

)
(3.8)

â† =
1√
2mω

1

(1 + 1
4
ω2δτ 2)1/4

(
p̂+ ix̂mω

√
1 +

1

4
ω2δτ 2

)
(3.9)

Eq. (G1) in [4, p. 34]. Since the ladder operators act on normalized eigen-
states |n⟩ of the number operator â†â, the lowering operator acting on the
ground state â|0⟩ = 0 and n number of raising operators acting on the ground
state (â†|0⟩ =

√
n!|n⟩.

Then the two-point correlator takes the form

G(∆τ) =
1

2mωδτ 2
√
1 + 1

4
ω2δτ 2

⟨0|â(τ)â†(τ +∆τ)|0⟩ (3.10)
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after collecting the remaining terms in the substitution. After inserting a
complete set of states, I =

∑
|n⟩⟨n|, between the two operators in 3.10, only

the state |1⟩⟨1| contributes (since â|1⟩ = |0⟩, â†|0⟩ = |1⟩ and ⟨n|m⟩ = δn,m).

Finally, writing Â(t) = eĤtÂe−Ĥt the two-point correlator G(∆τ) can be
expressed as

mδτG(∆τ) =
1

2mωδτ 2
√

1 + 1
4
ω2δτ 2

⟨0|â(τ)|1⟩⟨1|e−E1∆τ â†(τ)eE0∆τ |0⟩

=
1

2mωδτ 2
√

1 + 1
4
ω2δτ 2

e−(E1−E0)∆τ ⟨0|â(τ)|1⟩⟨1|â†(τ)|0⟩

= e−(E1−E0)∆τG(0) (3.11)

From this equation, one can see that the logarithmic slope of G(∆τ) as a
function of ∆τ measures the energy difference E1 − E0. See Fig. 3.4.

Higher order correlation functions (like the 4-point function) can be used
to determine the energy differences En − E0 for higher n.

Returning to the Effective mass, by using the new expression for the
two-point correlator, Eq. 3.6 can be expressed as:

meff =
1

2
log

(G(∆τ − 1)

G(∆τ + 1)

)
=

1

2
log(e−(E1−E0)(∆τ−1)e(E1−E0)(∆τ+1))

=
1

2
log(e2(E1−E0)) = E1 − E2 (3.12)

which holds when the slope of log(G(∆τ)) is linearly decreasing.
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Langevin

The Langevin method can be used to sample from the probability distribution
governing statistical properties of a physical system. As a classical example,
consider Brownian motion of a heavy particle submerged in an ideal fluid.
The particle experiences a drag of the fluid, and at the same time random
fluctuations due to collisions with the particles of the fluid. If the fluid is
still, i.e. the gradient of finite pieces of the fluid is zero, the particle has an
expectation position of where it was initially set with momentum 0. As time
progress, the particle will move about the original position. To calculate
expectation values of the position and its variance, a Langevin equation for
the system can be used.

An introduction to the Langevin equation is given in Sec. 4.1.
To introduce the concept the Langevin equation for a simple system, and

the corresponding Fokker-Planck equation, is derived to find the distribution
generated by the Langevin equation in Sec. 4.2.

To compute expectation values using the Langevin method in a computer
program, the problem will first be discretized as previously. The Langevin
method for the Euclidean time harmonic oscillator is demonstrated in Sec.
4.3.

4.1 The Langevin Equation

Following chapter 34 of [6], the Langevin equation can be defined as a first
order stochastic differential equation of the form:

q̇ = −1

2
f(q(t), t) + ν(t) (4.1)

where Newton’s notation has been used, q̇ = dq(t)/dt, where t is time and
q(t) is a trajectory in Rd. f(q(t), t) is the drift force, assumed to be a smooth

42



CHAPTER 4. LANGEVIN 43

function of q = (q1, q2, ..., qd), and ν(t) a stochastic vector function called the
noise.

The noise is characterized by a functional probability measure [dρ(ν)].
The following derivations will be specialized to Gaussian white noise given
by:

[dρ(ν)] = [dν]e−
1
2Ω

∫
dtν2(t),

∫
[dρ(ν)] = 1 (4.2)

where the positive constant Ω characterizes the width of the noise distribu-
tion. The measure is normalized to 1 for any finite time interval.

Gaussian noise can be equivalently described by its expectation and two-
point function:

⟨νi(t)⟩ = 0, ⟨νi(t)νj(t′)⟩ = Ωδi,jδ(t− t′), 1 <= i, j <= d, (4.3)

where again δ(t) is the Dirac delta function. Since the noise is uncorrelated
in time, the Langevin process generates a Markov chain, since every value
only depend on the first preceding value.

To determine whether the distributions generated by the Langevin equa-
tion approaches a stationary distribution, the corresponding Fokker-Planck
equation is computed and used. The Fokker-Planck equation is introduced
in the following section.

4.2 The Langevin and Fokker-Planck equa-

tions for a simple system

To demonstrate the Langevin method, consider the 1d harmonic potential

S =
1

2
µϕ2 (4.4)

where µ = mω2.
Following the derivations of [7]. The expectation values for this system

will be:

Z =

∫ ∞

−∞
e−

1
2
µϕ2

(4.5)

⟨ϕ⟩ = 1

Z

∫ ∞

−∞
ϕe−

1
2
µϕ2

= 0 (4.6)

⟨ϕ2⟩ = 1

Z

∫ ∞

−∞
ϕ2e−

1
2
µϕ2

=
1

Z

∫ ∞

−∞
ϕe−

1
2
µϕ2

+
1

µ

1

Z

∫ ∞

−∞
e−

1
2
µϕ2

=
1

µ
(4.7)
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To estimate the expectation values, first find the derivative of S

dS

dϕ
= µϕ (4.8)

and insert it into the Langevin equation

dϕ

dt
= −dS

dϕ
+ η

= −µϕ+ η (4.9)

where the second term on the right hand side is the drift term. The noise
term must be normalized:

⟨η(t)η(t′)⟩ = 2δt,t′ (4.10)

The noise term will have the normalization constant:

A =
√
2 (4.11)

and the Langevin equation becomes:

dϕ

dt
= −µϕ+

√
2η (4.12)

To check whether or not the sampled distribution approaches a stationary
distribution, the corresponding Fokker-Planck equation is derived.

For this Langevin Equation the corresponding Fokker-Planck equation is:

∂

∂t
P = µ

∂

∂ϕ
ϕP +

∂2

∂ϕ2
P (4.13)

To get an equation for ⟨ϕ⟩, multiply both sides by ϕ, and integrate over all
possible values of ϕ:

∂

∂t

∫ ∞

−∞
dϕϕP (ϕ, t) = µ

∫ ∞

−∞
dϕϕ

∂

∂ϕ
ϕP (ϕ, t) +

√
2

∫ ∞

−∞
dϕϕ

∂2

∂ϕ2
P (ϕ, t)

(4.14)
Now, integrating by parts the therms on the right hand side, noting that
P (ϕ, t) is normalizable and its moments are well defined (at least up to sec-
ond), which means P decays ”fast enough” at the boundaries, the boundary
terms in the integration by parts vanish. The first moment is then given by:

d⟨ϕ(t)⟩
dt

= −µ⟨ϕ(t)⟩ (4.15)
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Which can be solved for ⟨ϕ(t)⟩:

⟨ϕ(t)⟩ = ϕ0e
−µt (4.16)

where ϕ0 is the initial condition of ϕ. This implies that ⟨ϕ(t)⟩ = 0 as t→ 0.
The same can be done for the second moment. By multiplying on both

sides of the Fokker-Planck equation by x2 and integrating by parts. The
diffusive term will also contribute in this case, since the second derivative
d2

dϕ2ϕ
2 = 2 and not 0. If the initial condition, ϕ0, is set to 0, the equation

evaluates to:
d⟨ϕ2(t)⟩
dt

= −2µ⟨ϕ2(t)⟩+ 2 (4.17)

Which gives the following solution for ⟨ϕ2(t)⟩ (⟨ϕ2(0)⟩ = 0 since P (x, t =
0) = δ(x− x0)):

⟨ϕ2(t)⟩ = 1

µ

[
1− e−2µt

]
(4.18)

As t → ∞, ⟨ϕ2(t)⟩ approaches 1
µ
. The expectation values obtained from the

Fokker-Planck equation corresponds to those derived in Eq. 4.6 and 4.7.

4.3 The discrete Langevin equation for Eu-

clidean time Path integrals

To use the Langevin method to simulate a system with discrete action, the
discrete Langevin equation must be derived. From the discretized action
derived in 1.5:

S =
1

2
mδτ

Nτ∑
i=1

[(ϕi+1 − ϕi

δτ

)2

+ ω2ϕ2
i

]
(4.19)

Take the functional derivative:
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∂S

∂ϕj

=
1

2
mδτ

Nτ∑
i=1

[ 1

δτ 2
∂

∂ϕj

(ϕi+1 − ϕi)
2 + ω2 ∂

∂ϕj

ϕ2
i

]
(4.20)

=
1

2
mδτ

( 1

δτ 2

Nτ∑
i=1

2(ϕi+1 − ϕi)
( ∂

∂ϕj

ϕi+1 −
∂

∂ϕj

ϕi

)
+

Nτ∑
i=1

2ω2ϕi
∂

∂ϕj

ϕi

)
= mδτ

( 1

δτ 2

Nτ∑
i=1

(ϕi+1 − ϕi)
( ∂

∂ϕj

ϕi+1 −
∂

∂ϕj

ϕi

)
+

Nτ∑
i=1

ω2ϕi
∂

∂ϕj

ϕi

)
= mδτ

( 1

δτ 2

Nτ∑
i=1

(ϕi+1 − ϕi)
(
δ(δτ(j − (i+ 1)))− δ(δτ(j − i))

)
+

Nτ∑
i=1

ω2ϕiδ(δτ(j − i))
)

= mδτ
( 1

δτ 2

Nτ∑
i=1

(ϕi+1 − ϕi)
( 1

|δτ |
δ(i− (j − 1))− 1

|δτ |
δ(i− j)

)
+

Nτ∑
i=1

ω2ϕi
1

|δτ |
δ(i− j)

)
= m

( 1

δτ 2

Nτ∑
i=1

(ϕi+1 − ϕi)
(
δi,j−1 − δi,j

)
+

Nτ∑
i=1

ω2ϕiδi,j

)
= m

1

δτ 2
(2ϕj − ϕj+1 − ϕj−1) + µϕj. (4.21)

with µ = mω2.
Then, to arrive at the discrete Langevin equation, write on the discretized
form for each j:

ϕn+1
j = ϕn

j −
∂S

∂ϕj

δt+ ηnj δt

= ϕn
j −

( m

δτ 2
(
2ϕn

j − ϕn
j+1 − ϕn

j−1

)
+ µϕn

j

)
δt+ ηnj δt (4.22)

Where ⟨η⟩ = 0, and the random Gaussian distributed numbers, η, are fully
uncorrelated

⟨ηnj ηmk ⟩ = Ωδ(j − k)δ(n−m) =
2

|δτ |
δj,k

1

|δt|
δn,m (4.23)

where Ω = 2.
Using Gaussian distributed random numbers with ⟨η⟩ = 0 and ⟨η2⟩ = 1

for η gives the normalization:

A =

√
2

δτδt
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Which makes Eq. 4.22:

ϕn+1
j = ϕn

j −
( m

δτ 2
(
2ϕn

j − ϕn
j+1 − ϕn

j−1

)
+ µϕn

j

)
δt+

√
2δt

δτ
ηnj (4.24)

Which is the discrete Langevin equation for the harmonic oscillator system
from before. It is important to note that δτ is still the lattice spacing, and
not the same as the Langevin-time δt.

By increasing the Langevin time step δt, the samples will be less corre-
lated, but at the same time, the numerical approximation to the solution of
the differential equation will be affected by larger errors. To remove these
errors on the other hand, δt→ 0 and samples will be heavily autocorrelated,
many samples will need to be collected to approach the target distribution.

To simulate the system, new paths ϕn+1 are generated from the previous
ϕn, by looping through the coordinates in Euclidean time as before. The
difference from the Metropolis algorithm is that now a drift term pulls the
path towards a smaller action, and it is the complex numbers η that makes
the configurations ”jump about” the equilibrium. Whereas in the Metropolis
update, random changes were proposed, then accepted or rejected with a
probability based on the relative change in action.

As with other approximations to ordinary differential equations, the result
may diverge from the correct solution, or even diverge to ±∞, if the time
spacing, δt, is chosen too large, depending on the solver used. At the same
time a smaller time spacing does imply a higher numerical computational
cost.

A balance must be found between each step being very fine but taking
many steps to cover samples from the whole configuration space, and jumping
far each step, covering different areas of the space all the time, but being so
grainy that it converges to a skewed distribution or completely diverging!

Below is the TPCF for the samples obtained from a Langevin simulation
with this in action, with Nτ = 16, m = 1, µ = 1, δτ = β

Nτ
= 0.5 as in the

previous systems, going N = 1000 steps in Langevin time with a Langevin
time step of δt = 0.1:
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Figure 4.1: Two-Point Correlation of a Langevin simulated Harmonic Oscil-
lator action in a 16 point lattice with nearest-neighbor coupling.

4.4 Complex Langevin

To simulate systems with complex actions, which does not have a well defined
probability measure to be used in the Metropolis algorithm, the complex
Langevin method can be used for some of these. As seen in the previous
section, the Langevin equation is able to sample from the target distribution
for real actions. To demonstrate the complex Langevin method for complex
actions, a modification to the previously shown simple example will be used,
where now µ can be a complex number.

For certain µ ∈ C, the samples does not converge to a stationary distri-
bution, so in Sec. 4.4.2 reasons for why in certain limits will be explained,
and for some µ the evolution can be made more stable.

Sec. 4.4.3 shows an example for how the evolution can be made more
stable for the µ that should make ⟨x2⟩ converge to a solution.

The last two chapters go through the complex µ harmonic oscillator and
how it is possible to extend the Euclidean time evolution to also allow for
real-time dynamics by the Schwinger-Keldysh contour.

4.4.1 Complex Langevin simulations for a simple sys-
tem

Recall the action from Sec. 4.2, specifically Eq. 4.4:

S =
1

2
µϕ2 (4.25)
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To consider the case of a complex action, set µ = µr + iµi. For µi ̸= 0
the action is complex. If the Langevin method is used to sample from the
distribution according to the corresponding Langevin equation, the samples
ϕ get complex. Instead of working with a single Langevin equation for ϕ,
the equation is split into a real and an imaginary part Langevin equation for
ϕr and ϕi respectively, where ϕ = ϕr + iϕi. Then the evolution in Langevin
time is given by the two coupled, real valued Langevin equations.

To simulate this simple system, separate the corresponding discretized
Langevin equation into the two coupled, real valued, discretized Langevin
equations. The discretized Langevin equation for this system:

ϕn+1 = ϕn − dS

dϕ
|nδt+

√
2δtηn

= ϕn − µϕnδt+
√
2δtηn (4.26)

Then separating the real and imaginary evolution:

ϕn+1
r = ϕn

r −
dS

dϕ

∣∣∣
n
δt+

√
2Nrδtη

n

= ϕn
r − (µrϕ

n
r − µiϕ

n
i )δt+

√
2δtηn (4.27)

ϕn+1
i = ϕn

i −
dS

dϕ

∣∣∣
n
δt+

√
2Niδtη

n

= ϕn
i − (µiϕ

n
r + µrϕ

n
i )δt (4.28)

The random noise is chosen to contribute to the real part of the evolution
here, Nr = 1 while satisfying N2

r +N2
i = 1.

Using a real valued µ with initial condition on the complex part ϕi = 0
in Eq. 4.27 should give the same results as a simulation using the single
Langevin equation in Sec. 4.2. Each sample will then have real part according
to the real Langevin equation, and the imaginary part will stay 0. Running
a simulation using the set of coupled evolution equations, Eq. 4.27 and 4.28,
with µ = 1 + 0i, and Langevin time step dt = 0.001. A total number of
10’000 samples of ϕ were collected.
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(a) Scatter plot of the samples.
(b) Plot of the probability density
distribution (x = ψ).

Figure 4.2: Plots of samples from a complex Langevin simulation of the
Gaussian system with action S = µx2/2, µ = 1 + 0i. The 10’000 samples
were collected after 3000 removed as burn in, as well as 3000 in between each
saved. An explicit forward Euler solver was used.

The estimated value for ⟨ϕ2⟩ from the simulation was 1.003± 0.014 stan-
dard error.

If instead µi ̸= 0, the second Langevin equation has a non-zero drift term
(as long as ϕ ̸= 0) and ϕi changes over time. It would be useful to see how
samples collected using the coupled complex Langevin equations to simulate
the system for complex µ is distributed in the complex plane. Running a
simulation using the set of coupled evolution equations, Eq. 4.27 and 4.28,
with µ = 1 + 0.2i, and Langevin time step dt = 0.001:

(a) Scatter plot of the samples.

(b) Plot of the probability density
distribution for only the real part
(x = ψr).

Figure 4.3: Plots of samples from a complex Langevin simulation of the
Gaussian system with action S = µx2/2, µ = 1 + 0.2i. The 10’000 samples
were collected after 3000 removed as burn in, as well as 3000 in between each
saved. An explicit forward Euler solver was used.
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In Fig. 4.3a one can see that the samples are distributed in the complex
plane, the scatter plot corresponds to looking at the two dimensional discrete
probability distribution from above. In Fig. 4.3b, by ignoring the imaginary
part of ϕi, the probability distribution for the real part of ϕi is shown. As
can be seen, for this small change in µ it does not change much, compared
to Fig. 4.2b.

In the limit where Re(µ) → 0 there is a problem. The Langevin evolution
starts to run of to some infinity limit. The system where Re(µ) < 0 diverges.
Convergence of the Langevin equation is partially determined by the associ-
ated Fokker-Planck equation. Additionally, convergence may not be satisfied
since the problem is not well-defined, or the evolution is too coarse or the
numerical solver induces errors, round-off by floating point precision and
propagated truncation error. (Subsection 4.4.3) The first step, if possible, is
to confirm that the system under investigation is well-defined, which will be
considered in the following subsection.

4.4.2 Complex Gaussian integrals

The integral evaluated by the method in the previous section will be the
complex Gaussian integral:

Z =

∫ ∞

−∞
e−µx2/2dx (4.29)

Which is defined as long as µr = Re(µ) > 0, since then:
√

2π
µ
e−

µ
2
r2
∣∣∞
0
is finite.

The phase in the integral (eµix
2/2) is a sum over infinitely swirling phases,

which goes to zero compared to something with a constant phase. [3, p. 259]

Z =

∫ ∞

−∞
e−

µr
2
x2

e−
µi
2
x2

dx (4.30)

The limit µr → 0 can be evaluated as
√

2π
µ
. This limit is like going back

to the Minkowski path integral, where the integral is the same as the real
time integral. The bottomless system (µr < 0) is not well defined, but can
be extrapolated to by introducing a complex kernel in the complex Langevin
equation, which stabilizes the evolution. [8]

The expectation values of this integral:

⟨x⟩ = 1

Z

∫ ∞

−∞
xe−µx2/2dx = 0 (4.31)
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As long as the integral is well-defined, Re(µ
2
x2) > 0, the integrand is odd and

the integral evaluates to 0.
By partial integration:

⟨x2⟩ = 1

Z

∫ ∞

−∞
x2e−µx2/2dx (4.32)

=
1

Z

(∫ ∞

−∞
xe−µx2/2dx+

∫ ∞

−∞

1

µ
e−µx2/2dx

)
(4.33)

=
1

µ

∫∞
−∞ e−µx2/2dx

Z
=

1

µ
(4.34)

The following is inspired by the paper of Okamoto et al. [8].
To see why the complex Langevin method fails for this system, consider

a plot of the results for µ = exp(nπi/6) with values n = (0, 11).

Figure 4.4: Plot of the Gaussian system with action S = µx2/2, µ =
exp(nπi/6). The data points and statistical error was estimated by expec-
tation values of 64 runs, each with 2000 updates, of a Langevin simulation
using an explicit forward Euler solver.

When Re(µ)> 0 the system is stable and the solution converges to 1/µ,
but for Re(µ)= 0 the simulated expectation value blows up if left simulating
for too long. The data was acquired by numerical simulation with 64 runs of
2000 updates to calculate mean and statistical error. If each run is allowed
more updates, the solution for Re(µ)= 0 usually runs of, which indicate this
is an unstable solution. For Re(µ)< 0 the result runs of from the beginning.
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4.4.3 Stable Solvers

In the previous subsection, the Langevin method started to run of for Re(µ) ≈
0, and completely run of for Re(µ) < 0. Since the integral is not defined when
the real part Re(µ) < 1, it is not possible to evaluate it either, but when the
integral is defined (Re(µ) > 0), the solution exists, and the Langevin evolu-
tion should not run of.

The numerical solver introduces truncation errors which propagates through
the solutions. If the error is large enough this can cause the evolution to run
of. Typically the Forward Euler solver overestimates the solution, which
when combined with propagated errors caused the evolution to run of after
only a few time steps in the case of Re(µ) being close to 0 but still positive.
By choosing another solver the evolution can be made more stable.

For the implicit Euler, which solves for the new step as:

ϕr
n+1 = ϕr

n +
dS

dϕn+1

δt+
√
2Nrδtη = ϕr

n + µrϕr
n+1 − µiϕi

n+1 +
√
2δtη (4.35)

ϕi
n+1 = ϕi

n +
dS

dϕn+1

δt+
√

2Niδtη = ϕi
n + µiϕr

n+1 + µrϕi
n+1 (4.36)

the solutions are typically undershot, and the running away caused by prop-
agated errors in the solver is more often overcome.

Using the Euler-Maruyama method from StochasticDiffSolvers.jl, ImplicitEM(θ),
with θ = 1 for the implicit Euler method, the solutions converge to the ex-
pected solutions for the well-defined systems, as long as the propagated errors
are low enough.
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Figure 4.5: Plot of the Gaussian system with action S = µx2/2, µ =
exp(nπi/6). The data points and statistical error was estimated by expecta-
tion values of 64 runs, each with 2000 updates, of a Langevin simulation using
the Euler-Maruyama solver from the Julia package StochasticDiffSolvers.jl.

Comparing to Fig. 4.4, the values of the expectation values are much
more reliably estimated.

4.4.4 Complex Harmonic Oscillator

Running a short complex Langevin simulation for the complex action case of
the harmonic oscillator system in Sec. 4.3, with complex µ.

As before, the system must thermalize. Initializing an array of 16 ϕr and
16 ϕi, all at 20.+ 0i:



CHAPTER 4. LANGEVIN 55

Figure 4.6: Thermalization of a Complex Langevin algorithm. The real and
imaginary parts of the 16 time points in euclidean time separated by δτ = 0.5
evolved with Complex Langevin step size 0.0001. The real parts initialized
at 20, and the imaginary parts initialized at 0. As can be seen, the real parts
are fluctuating around a slope because of the random contributions to the
evolution, while the imaginary part is much more clean because of no direct
noise. The real parts goes to about −3 at t ≈ 3 because of the imaginary
part couplings.



Chapter 5

Numerical solvers for Complex
Langevin

Stable numerical solvers for complex Langevin is very central to current de-
velopments in the field. To find numerical Stochastic Differential Equation
solvers that are precise enough to not cause instabilities in the Langevin
evolution, which also are efficient. For stiff problems regular solvers are in-
efficient, therefore ”stiff solvers” are best applied for these problems.

From [9], recommended methods depend on the problem:
For non-stiff problems, with non-commutative noise, difficult problems usu-
ally require adaptive time stepping to be efficient. In this case, ”LambaEM”
is adaptive and handle general non-diagonal problems. If adaptivity is not
necessary, ”EM” (Euler-Maruyama) is a good choice.

For stiff problems with additive noise, the higher order adaptive method
”SKenCarp” is highly preferred and will solve problems with similar efficiency
as ODEs.

If only an estimation for the expected value of the solution is required, i.e.,
if one is only interested in an accurate draw from the distribution induced by
a given SDE, the use of high weak order solvers is recommended. Specifically,
”DRI1” is preferred for a high number of Wiener processes.

For later implementations of the algorithms discussed in this thesis, it
would be beneficial to test the different solver algorithms against each other
for different problems. The criteria for good solvers are computation time
and same step-size convergence for a given problem.

56



CHAPTER 5. NUMERICAL SOLVERS FOR COMPLEX LANGEVIN 57

Figure 5.1: Plot of order vs. approximate stiffness of different chosen solvers
relevant to Langevin and Complex Langevin simulations. The value 1/µ is
plotted bottom right.

By using the harmonic and anharmonic oscillators as the systems to be
simulated, testing will be done using different solvers from the StochasticD-
iffEq julia package.

To test the performance of the solvers, only the time to solve, solve(SDEProblem),
will be measured. The time to set up parameters and building the SDEProb-
lem will be the same in all the different cases for the same system. Some
solvers have the option of allowing adaptive step size to more easily meet the
tolerance error set. For testing against methods without adaptive stepsize,
the adaptive stepsize option will be turned off.

Since Julia uses a lot of time when a new function not part of the standard
library (like Plots.plot()) is run for the first time, the first test run time is
always discarded. For example, solving a stochastic differential equation of a
harmonic oscillator using the DifferentialEquations solver Euler() used 64.7
seconds from a fresh Julia REPL, while the second time, it only used 0.56
seconds. It should be noted that the initial compile time for functions from
packages can be reduced or removed by creating and using an image of a
Julia REPL with the compiled functions. See [10] for more information.

The initial condition of the systems used while testing the solvers will be
the same for all. All tests will be done on a personal desktop computer with
OS Microsoft Windows 10 Home, in WSL2 (Windows Subsystem for Linux)
with Ubuntu.
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5.1 Solvers for Complex Langevin

Different solvers will be tested for the complex Gaussian integral e−µx2
, set-

ting µ = e−iπ/4. As a good first test, a solver which is already known, the
Euler-Maruyama will be used. Setting θ = 0 uses a forward Euler type solver,
while a setting of θ = 1 uses a fully implicit Euler type solver. A choice of
θ = 0.5 uses a partially implicit Euler type solver.

Using Langevin time step δt = 0.01, and time span t = (0.0, 3000) and
saveat = δt, collecting 30’000 correlated samples. For the Gaussian system
with action S = 1

2
(e−iπ/4)ϕ the solvers time til completion and expectation

values are given:

Figure 5.2: Plot of results for a single run for different solvers.

The ImplicitEM() solver with different arguments used 4.0 seconds, the
EM() solver used 0.98 seconds, the SKenCarp() solver used 9.66 seconds, and
the DRI1() solver used 2.73 seconds, in a single run.

A proper benchmark where different runs are averaged would be more
appropriate in the future.
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