
Ad Hoc Table Retrieval using Semantic Similarity
Shuo Zhang

University of Stavanger
shuo.zhang@uis.no

Krisztian Balog
University of Stavanger
krisztian.balog@uis.no

ABSTRACT
We introduce and address the problem of ad hoc table retrieval:
answering a keyword query with a ranked list of tables. This task
is not only interesting on its own account, but is also being used
as a core component in many other table-based information ac-
cess scenarios, such as table completion or table mining. The main
novel contribution of this work is a method for performing seman-
tic matching between queries and tables. Specifically, we (i) repre-
sent queries and tables in multiple semantic spaces (both discrete
sparse and continuous dense vector representations) and (ii) intro-
duce various similarity measures for matching those semantic rep-
resentations. We consider all possible combinations of semantic
representations and similarity measures and use these as features
in a supervised learning model. Using a purpose-built test collec-
tion based on Wikipedia tables, we demonstrate significant and
substantial improvements over a state-of-the-art baseline.

CCS CONCEPTS
• Information systems→ Similaritymeasures;Environment-
specific retrieval; Learning to rank;

KEYWORDS
Table retrieval, table search, semantic matching, semantic repre-
sentations, semantic similarity

ACM Reference Format:
Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval using Se-
mantic Similarity. In WWW 2018: The 2018 Web Conference, April 23–27,
2018, Lyon, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3178876.3186067

1 INTRODUCTION
Tables are a powerful, versatile, and easy-to-use tool for organizing
and working with data. Because of this, a massive number of tables
can be found “out there,” on theWeb or in Wikipedia, representing
a vast and rich source of structured information. Recently, a grow-
ing body of work has begun to tap into utilizing the knowledge
contained in tables. A wide and diverse range of tasks have been
undertaken, including but not limited to (i) searching for tables (in
response to a keyword query [2, 6, 9, 30, 34, 42] or a seed table [12]),
(ii) extracting knowledge from tables (such as RDF triples [29]),
and (iii) augmenting tables (with new columns [4, 6, 12, 21, 45, 49],
rows [12, 45, 49], cell values [1], or links to entities [5]).

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186067

Singapore Search

Year
GDP

Nominal
(Billion)

GDP
Nominal

Per Capita

GDP Real
(Billion)

Singapore - Wikipedia, Economy Statistics (Recent Years)

GNI
Nominal
(Billion)

GNI
Nominal

Per Capita

2011 S$346.353 S$66,816 S$342.371 S$338.452 S$65,292

https://en.wikipedia.org/wiki/Singapore

Show more (5 rows total)

Singapore - Wikipedia, Language used most frequently at home

Language Color in Figure Percent

English Blue 36.9%

Show more (6 rows total)

https://en.wikipedia.org/wiki/Singapore

2012 S$362.332 S$68,205 S$354.061 S$351.765 S$66,216

2013 S$378.200 S$70,047 S$324.592 S$366.618 S$67,902

Mandarin Yellow 34.9%

Malay Red 10.7%

Figure 1: Ad hoc table retrieval: given a keyword query, the
system returns a ranked list of tables.

Searching for tables is an important problem on its own, in ad-
dition to being a core building block in many other table-related
tasks. Yet, it has not received due attention, and especially not from
an information retrieval perspective. This paper aims to fill that
gap. We define the ad hoc table retrieval task as follows: given a
keyword query, return a ranked list of tables from a table corpus
that are relevant to the query. See Fig. 1 for an illustration. It should
be acknowledged that this task is not entirely new, in fact, it has
been around for a while in the database community (also known
there as relation ranking) [4, 6, 9, 42]. However, public test collec-
tions and proper evaluation methodology are lacking, in addition
to the need for better ranking techniques.

Tables can be ranked much like documents, by considering the
words contained in them [6, 9, 34]. Ranking may be further im-
proved by incorporating additional signals related to table quality.
Intuitively, high quality tables are topically coherent; other indica-
tors may be related to the pages that contain them (e.g., if they are
linked by other pages [4]). However, a major limitation of prior ap-
proaches is that they only consider lexical matching between the
contents of tables and queries. This gives rise to our main research
objective: Can we move beyond lexical matching and improve table
retrieval performance by incorporating semantic matching?

We consider two main kinds of semantic representations. One
is based on concepts, such as entities and categories. Another is
based on continuous vector representations of words and of enti-
ties (i.e., word and graph embeddings). We introduce a framework
that handles matching in different semantic spaces in a uniform
way, by modeling both the table and the query as sets of semantic
vectors. We propose two general strategies (early and late fusion),
yielding four different measures for computing the similarity be-
tween queries and tables based on their semantic representations.

https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3178876.3186067

As we have mentioned above, another key area where prior
work has insufficiencies is evaluation. First, there is no publicly
available test collection for this task. Second, evaluation has been
performed using set-based metrics (counting the number of rel-
evant tables in the top-k results), which is a very rudimentary
way of measuring retrieval effectiveness. We address this by de-
veloping a purpose-built test collection, comprising of 1.6M tables
from Wikipedia, and a set of queries with graded relevance judg-
ments. We establish a learning-to-rank baseline that encompasses
a rich set of features from prior work, and outperforms the best
approaches known in the literature. We show that the semantic
matching methods we propose can substantially and significantly
improve retrieval performance over this strong baseline.

In summary, this paper makes the following contributions:
• We introduce and formalize the ad hoc table ranking task,
and present both unsupervised and supervised baseline ap-
proaches (Sect. 2).

• We present a set of novel semantic matching methods that
go beyond lexical similarity (Sect. 3).

• We develop a standard test collection for this task (Sect. 4)
and demonstrate the effectiveness of our approaches (Sect. 5).

The test collection and the outputs of the reported methods are
made available at https://github.com/iai-group/www2018-table.

2 AD HOC TABLE RETRIEVAL
We formalize the ad hoc table retrieval task, explain what informa-
tion is associated with a table, and introduce baseline methods.

2.1 Problem Statement
Given a keyword query q, ad hoc table retrieval is the task of re-
turning a ranked list of tables, (T1, . . . ,Tk), from a collection of
tablesC . Being an ad hoc task, the relevance of each returned table
Ti is assessed independently of all other returned tables Tj , i , j.
Hence, the ranking of tables boils down to the problem of assign-
ing a score to each table in the corpus: score(q,T). Tables are then
sorted in descending order of their scores.

2.2 The Anatomy of a Table
We shall assume that the following information is available for
each table in the corpus; the letters refer to Figure 2.

(a) Page title, where the table was extracted from.
(b) Section title, i.e., the heading of the particular section where

the table is embedded.
(c) Table caption, providing a brief explanation.
(d) Table headings, i.e., a list of column heading labels.
(e) Table body, i.e., all table cells (including column headings).

2.3 Unsupervised Ranking
An easy and straightforward way to perform the table ranking task
is by adopting standard document ranking methods. Cafarella et al.
[6, 9] utilize web search engines to retrieve relevant documents; ta-
bles are then extracted from the highest-ranked documents. Rather
than relying on external services, we represent tables as either
single- or multi-field documents and apply standard documents re-
trieval techniques.

…

a

b

c

e

d

Figure 2: Table embedded in a Wikipedia page.

2.3.1 Single-field Document Representation. In the simplest case,
all text associated with a given table is used as the table’s represen-
tation. This representation is then scored using existing retrieval
methods, such as BM25 or language models.

2.3.2 Multi-field Document Representation. Rather than collaps-
ing all textual content into a single-field document, it may be orga-
nized into multiple fields, such as table caption, table headers, ta-
ble body, etc. (cf. Sect. 2.2). For multi-field ranking, Pimplikar and
Sarawagi [34] employ a late fusion strategy [48]. That is, each field
is scored independently against the query, then a weighted sum of
the field-level similarity scores is taken:

score(q,T) =
∑
i
wi × score(q, fi) , (1)

where fi denotes the ith (document) field for table T and wi is
the corresponding field weight (such that

∑
i wi = 1). score(q, fi)

may be computed using any standard retrieval method. We use
language models in our experiments.

2.4 Supervised Ranking
The state-of-the-art in document retrieval (and in many other re-
trieval tasks) is to employ supervised learning [23]. Features may
be categorized into three groups: (i) document, (ii) query, and (iii)
query-document features [35]. Analogously, we distinguish between
three types of features: (i) table, (ii) query, and (iii) query-table fea-
tures. In Table 1, we summarize the features from previouswork on
table search [4, 9]. We also include a number of additional features
that have been used in other retrieval tasks, such as document and
entity ranking; we do not regard these as novel contributions.

2.4.1 Query Features. Query features have been shown to im-
prove retrieval performance for document ranking [24]. We adopt
two query features from document retrieval, namely, the number
of terms in the query [41], and query IDF [35] according to: IDF f (q) =∑
t ∈q IDF f (t), where IDF f (t) is the IDF score of term t in field f .

This feature is computed for the following fields: page title, section
title, table caption, table heading, table body, and “catch-all” (the
concatenation of all textual content in the table).

https://github.com/iai-group/www2018-table

Table 1: Baseline features for table retrieval.

Query features Source Value

QLEN Number of query terms [41] {1,...,n}
IDFf Sum of query IDF scores in field f [35] [0,∞)
Table features

#rows The number of rows in the table [4, 9] {1,...,n}
#cols The number of columns in the table [4, 9] {1,...,n}
#of NULLs in table The number of empty table cells [4, 9] {0,...,n}
PMI The ACSDb-based schema coherency score [9] (−∞,∞)
inLinks Number of in-links to the page embedding the table [4] {0,...,n}
outLinks Number of out-links from the page embedding the table [4] {0,...,n}
pageViews Number of page views [4] {0,...,n}
tableImportance Inverse of number of tables on the page [4] (0, 1]
tablePageFraction Ratio of table size to page size [4] (0, 1]
Query-table features

#hitsLC Total query term frequency in the leftmost column cells [9] {0,...,n}
#hitsSLC Total query term frequency in second-to-leftmost column cells [9] {0,...,n}
#hitsB Total query term frequency in the table body [9] {0,...,n}
qInPgTitle Ratio of the number of query tokens found in page title to total number of tokens [4] [0, 1]
qInTableTitle Ratio of the number of query tokens found in table title to total number of tokens [4] [0, 1]
yRank Rank of the table’s Wikipedia page in Web search engine results for the query [4] {1,...,n}
MLM similarity Language modeling score between query and multi-field document repr. of the table [10] (−∞,0)

2.4.2 Table Features. Table features depend only on the table
itself and aim to reflect the quality of the given table (irrespective
of the query). Some features are simple characteristics, like the
number of rows, columns, and empty cells [4, 9]. One important
feature is Point-wise Mutual Information (PMI), which is taken
from linguistics research, and expresses the coherency of a table.
The correlation between two table headings cells, hi and hj , is
given by: PMI (hi ,hj) = log

(
P(hi ,hj)/(P(hi)P(hj))

)
. A table’s PMI

is computed by calculating the PMI values between all pairs of col-
umn headings of that table, and then taking their average. Follow-
ing [9], we compute PMI by obtaining frequency statistics from
the Attribute Correlation Statistics Database (ACSDb) [8], which
contains table heading information derived from millions of tables
extracted from a large web crawl.

Another group of features has to do with the page that embeds
the table, by considering its connectivity (inLinks and outLinks),
popularity (pageViews), and the table’s importancewithin the page
(tableImportance and tablePageFraction).

2.4.3 Query-Table Features. Features in the last group express
the degree of matching between the query and a given table. This
matching may be based on occurrences of query terms in the page
title (qInPgTitle) or in the table caption (qInTableTitle). Alterna-
tively, it may be based on specific parts of the table, such as the
leftmost column (#hitsLC), second-to-left column (#hitsSLC), or ta-
ble body (#hitsB). Tables are typically embedded in (web) pages.
The rank at which a table’s parent page is retrieved by an exter-
nal search engine is also used as a feature (yRank). (In our exper-
iments, we use the Wikipedia search API to obtain this ranking.)
Furthermore, we take theMixture of LanguageModels (MLM) simi-
larity score [31] as a feature, which is actually the best performing

method among the four text-based baseline methods (cf. Sect. 5).
Importantly, all these features are based on lexical matching. Our
goal in this paper is to also enable semantic matching; this is what
we shall discuss in the next section.

3 SEMANTIC MATCHING
This section presents our main contribution, which is a set of novel
semantic matching methods for table retrieval. The main idea is to
go beyond lexical matching by representing both queries and ta-
bles in some semantic space, and measuring the similarity of those
semantic (vector) representations. Our approach consists of three
main steps, which are illustrated in Figure 3. These are as follows
(moving from outwards to inwards on the figure):

(1) The “raw” content of a query/table is represented as a set of
terms, where terms can be either words or entities (Sect. 3.1).

(2) Each of the raw terms is mapped to a semantic vector rep-
resentation (Sect. 3.2).

(3) The semantic similarity (matching score) between a query-
table pair is computed based on their semantic vector repre-
sentations (Sect. 3.3).

We compute query-table similarity using all possible combinations
of semantic representations and similarity measures, and use the
resulting semantic similarity scores as features in a learning-to-
rank approach. Table 2 summarizes these features.

3.1 Content Extraction
We represent the “raw” content of the query/table as a set of terms,
where terms can be either words (string tokens) or entities (from a
knowledge base). We denote these as {q1, . . . ,qn } and {t1, . . . , tm }
for query q and table T , respectively.

Query …… Table

q1

qn

t1

tm

~t1

~tm

…

~q1

~qn

…

Raw query representation
(set of words/entites)

Raw table representation
(set of words/entites)

Semantic vector representations
(bag-of-concepts/embeddings)

semantic
matching

Early fusion matching strategy

~t1

~tm

…

~q1

~qn

…

Late fusion matching strategy

~t1

~tm

…

~q1

~qn

…

AGGR

… …

Figure 3: Our methods for computing query-table similarity using semantic representations.

3.1.1 Word-based. It is a natural choice to simply use word to-
kens to represent query/table content. That is, {q1, . . . ,qn } is com-
prised of the unique words in the query. As for the table, we let
{t1, . . . , tm } contain all unique words from the title, caption, and
headings of the table. Mind that at this stage we are only consider-
ing the presence/absence of words. During the query-table similar-
ity matching, the importance of the words will also be taken into
account (Sect. 3.3.1).

3.1.2 Entity-based. Many tables are focused on specific enti-
ties [49]. Therefore, considering the entities contained in a table
amounts to a meaningful representation of its content. We use the
DBpedia knowledge base as our entity repository. Since we work
with tables extracted from Wikipedia, the entity annotations are
readily available (otherwise, entity annotations could be obtained
automatically, see, e.g., [42]). Importantly, instead of blindly includ-
ing all entities mentioned in the table, we wish to focus on salient
entities. It has been observed in prior work [5, 42] that tables often
have a core column, containing mostly entities, while the rest of the
columns contain properties of these entities (many of which are en-
tities themselves). We write Ecc to denote the set of entities that
are contained in the core column of the table, and describe our core
column detection method in Sect. 3.1.3. In addition to the entities
taken directly from the body part of the table, we also include enti-
ties that are related to the page title (Tpt) and to the table caption
(Ttc). We obtain those by using the page title and the table cap-
tion, respectively, to retrieve relevant entities from the knowledge
base. We write Rk (s) to denote the set of top-k entities retrieved
for the query s . We detail the entity ranking method in Sect. 3.1.4.
Finally, the table is represented as the union of three sets of enti-
ties, originating from the core column, page title, and table caption:
{t1, . . . , tm } = Ecc ∪ Rk (Tpt) ∪ Rk (Ttc).

To get an entity-based representation for the query, we issue the
query against a knowledge base to retrieve relevant entities, using
the same retrieval method as above. I.e., {q1, . . . ,qn } = Rk (q).

Table 2: Semantic similarity features. Each row represents
4 features (one for each similarity matching method, cf. Ta-
ble 3). All features are in [−1, 1].

Features Semantic repr. Raw repr.

Entity_* Bag-of-entities entities
Category_* Bag-of-categories entities
Word_* Word embeddings words
Graph_* Graph embeddings entities

3.1.3 Core Column Detection. We introduce a simple and effec-
tive core column detection method. It is based on the notion of col-
umn entity rate, which is defined as the ratio of cells in a column
that contain an entity. We write cer(Tc[j]) to denote the column
entity rate of column j in table T . Then, the index of the core col-
umn becomes: argmaxj=1..T|c | cer(Tc[j]), whereT |c | is the number
of columns in T .

3.1.4 Entity Retrieval. We employ a fielded entity representa-
tion with five fields (names, categories, attributes, similar entity
names, and related entity names) and rank entities using the Mix-
ture of Language Models approach [31]. The field weights are set
uniformly. This corresponds to the MLM-all model in [19] and is
shown to be a solid baseline. We return the top-k entities, where k
is set to 10.

3.2 Semantic Representations
Next, we embed the query/table terms in a semantic space. That is,
we map each table term ti to a vector representation ®ti , where ®ti [j]
refers to the jth element of that vector. For queries, the process
goes analogously. We discuss two main kinds of semantic spaces,
bag-of-concepts and embeddings, with two alternativeswithin each.
The former uses sparse and discrete, while the latter employs dense
and continuous-valued vectors. A particularly nice property of our
semanticmatching framework is that it allows us to deal with these
two different types of representations in a unified way.

3.2.1 Bag-of-concepts. One alternative formoving from the lex-
ical to the semantic space is to represent tables/queries using spe-
cific concepts. In this work, we use entities and categories from a
knowledge base. These two semantic spaces have been used in the
past for various retrieval tasks, in duet with the traditional bag-
of-words content representation. For example, entity-based rep-
resentations have been used for document retrieval [36, 44] and
category-based representations have been used for entity retrieval [3].
One important difference from previous work is that instead of rep-
resenting the entire query/table using a single semantic vector, we
map each individual query/table term to a separate semantic vec-
tor, thereby obtaining a richer representation.

We use the entity-based raw representation from the previous
section, that is, ti and qj are specific entities. Below, we explain
how table terms tj are projected to ®ti , which is a sparse discrete
vector in the entity/category space; for query terms it follows anal-
ogously.
Bag-of-entities Each element in ®ti corresponds to a unique entity.

Thus, the dimensionality of ®ti is the number of entities in the
knowledge base (on the order of millions). ®ti [j] has a value
of 1 if entities i and j are related (there exists a link between
them in the knowledge base), and 0 otherwise.

Bag-of-categories Each element in ®ti corresponds to aWikipedia
category. Thus, the dimensionality of ®ti amounts to the num-
ber of Wikipedia categories (on the order hundreds of thou-
sands). The value of ®ti [j] is 1 if entity i is assigned to Wiki-
pedia category j, and 0 otherwise.

3.2.2 Embeddings. Recently, unsupervised representation learn-
ing methods have been proposed for obtaining embeddings that
predict a distributional context, i.e., word embeddings [27, 32] or
graph embeddings [33, 37, 40]. Such vector representations have
been utilized successfully in a range of IR tasks, including ad hoc
retrieval [15, 28], contextual suggestion [26], cross-lingual IR [43],
community question answering [50], short text similarity [20], and
sponsored search [17]. We consider both word-based and entity-
based raw representations from the previous section and use the
corresponding (pre-trained) embeddings as follows.
Word embeddings Wemap each query/table word to a word em-

bedding. Specifically, we use word2vec [27] with 300 dimen-
sions, trained on Google News data.

Graph embeddings We map each query/table entity to a graph
embedding. In particular, we use RDF2vec [37] with 200 di-
mensions, trained on DBpedia 2015-10.

3.3 Similarity Measures
The final step is concerned with the computation of the similar-
ity between a query-table pair, based on the semantic vector rep-
resentations we have obtained for them. We introduce two main
strategies, which yield four specific similarity measures. These are
summarized in Table 3.

3.3.1 Early Fusion. The first idea is to represent the query and
the table each with a single vector. Their similarity can then sim-
ply be expressed as the similarity of the corresponding vectors. We
let ®Cq be the centroid of the query term vectors (®Cq =

∑n
i=1 ®qi/n).

Similarly, ®CT denotes the centroid of the table term vectors. The

Table 3: Similarity measures.

Measure Equation

Early cos(®Cq , ®CT)
Late-max max({cos(®qi , ®tj) : i ∈ [1..n], j ∈ [1..m]})
Late-sum sum({cos(®qi , ®tj) : i ∈ [1..n], j ∈ [1..m]})
Late-avg avg({cos(®qi , ®tj) : i ∈ [1..n], j ∈ [1..m]})

query-table similarity is then computed by taking the cosine sim-
ilarity of the centroid vectors. When query/table content is rep-
resented in terms of words, we additionally make use of word im-
portance by employing standard TF-IDF termweighting. Note that
this only applies to word embeddings (as the other three semantic
representations are based on entities). In case of word embeddings,
the centroid vectors are calculated as ®CT =

∑m
i=1 ®ti × TFIDF (ti).

The computation of ®Cq follows analogously.

3.3.2 Late Fusion. Instead of combining all semantic vectors qi
and tj into a single one, late fusion computes the pairwise similar-
ity between all query and table vectors first, and then aggregates
those. We let S be a set that holds all pairwise cosine similarity
scores: S = {cos(®qi , ®tj) : i ∈ [1..n], j ∈ [1..m]}. The query-table
similarity score is then computed as aggr(S), where aggr() is an ag-
gregation function. Specifically, we use max(), sum() and avg() as
aggregators; see the last three rows in Table 3 for the equations.

4 TEST COLLECTION
We introduce our test collection, including the table corpus, test
and development query sets, and the procedure used for obtaining
relevance assessments.

4.1 Table Corpus
We use the WikiTables corpus [5], which comprises 1.6M tables
extracted from Wikipedia (dump date: 2015 October). The follow-
ing information is provided for each table: table caption, column
headings, table body, (Wikipedia) page title, section title, and table
statistics like number of headings rows, columns, and data rows.
We further replace all links in the table body with entity identifiers
from the DBpedia knowledge base (version 2015-10) as follows. For
each cell that contains a hyperlink, we check if it points to an en-
tity that is present in DBpedia. If yes, we use the DBpedia identifier
of the linked entity as the cell’s content; otherwise, we replace the
link with the anchor text, i.e., treat it as a string.

4.2 Queries
We sample a total of 60 test queries from two independent sources
(30 from each): (1) Query subset 1 (QS-1): Cafarella et al. [6] col-
lected 51 queries from Web users via crowdsourcing (using Ama-
zon’s Mechanical Turk platform, users were asked to suggest top-
ics or supply URLs for a useful data table). (2)Query subset 2 (QS-2):
Venetis et al. [42] analyzed the query logs from Google Squared (a
service in which users search for structured data) and constructed
100 queries, all of which are a combination of an instance class
(e.g., “laptops”) and a property (e.g., “cpu”). Following [4], we con-
catenate the class and property fields into a single query string
(e.g., “laptops cpu”). Table 4 lists some examples.

Table 4: Example queries from our query set.

Queries from [6] Queries from [42]

video games asian coutries currency
us cities laptops cpu
kings of africa food calories
economy gdp guitars manufacturer
fifa world cup winners clothes brand

4.3 Relevance Assessments
We collect graded relevance assessments by employing three in-
dependent (trained) judges. For each query, we pool the top 20
results from five baseline methods (cf. Sect. 5.3), using default pa-
rameter settings. (Then, we train the parameters of those methods
with help of the obtained relevance labels.) Each query-table pair
is judged on a three point scale: 0 (non-relevant), 1 (somewhat rel-
evant), and 2 (highly relevant). Annotators were situated in a sce-
nario where they need to create a table on the topic of the query,
and wish to find relevant tables that can aid them in completing
that task. Specifically, theywere given the following labeling guide-
lines: (i) a table is non-relevant if it is unclear what it is about (e.g.,
misses headings or caption) or is about a different topic; (ii) a table
is relevant if some cells or values could be used from this table; and
(iii) a table is highly relevant if large blocks or several values could
be used from it when creating a new table on the query topic.

We take the majority vote as the relevance label; if no majority
agreement is achieved, we take the average of the scores as the fi-
nal label. To measure inter-annotator agreement, we compute the
Kappa test statistics on test annotations, which is 0.47. According
to [14], this is considered as moderate agreement. In total, 3120
query-table pairs are annotated as test data. Out of these, 377 are la-
beled as highly relevant, 474 as relevant, and 2269 as non-relevant.

5 EVALUATION
In this section, we list our research questions (Sect. 5.1), discuss our
experimental setup (Sect. 5.2), introduce the baselines we compare
against (Sect. 5.3), and present our results (Sect. 5.4) followed by
further analysis (Sect. 5.5).

5.1 Research Questions
The research questions we seek to answer are as follows.

RQ1 Can semantic matching improve retrieval performance?
RQ2 Which of the semantic representations is the most effective?
RQ3 Which of the similarity measures performs better?

5.2 Experimental Setup
We evaluate table retrieval performance in terms of Normalized
Discounted Cumulative Gain (NDCG) at cut-off points 5, 10, 15,
and 20. To test significance, we use a two-tailed paired t-test and
write †/‡ to denote significance at the 0.05 and 0.005 levels, respec-
tively.

Our implementations are based on Nordlys [18]. Many of our
features involve external sources, which we explain below. To com-
pute the entity-related features (i.e., features in Table 1 as well as

the features based on the bag-of-entities and bag-of-categories rep-
resentations in Table 2), we use entities from the DBpedia knowl-
edge base that have an abstract (4.6M in total). The table’sWikipedia
rank (yRank) is obtained using Wikipedia’s MediaWiki API. The
PMI feature is estimated based on the ACSDb corpus [8]. For the
distributed representations, we take pre-trained embedding vec-
tors, as explained in Sect. 3.2.2.

5.3 Baselines
We implement four baseline methods from the literature.
Single-field document ranking In [6, 9] tables are represented

and ranked as ordinary documents. Specifically, we use Lan-
guage Models with Dirichlet smoothing, and optimize the
smoothing parameter using a parameter sweep.

Multi-field document ranking Pimplikar and Sarawagi [34] rep-
resent each table as a fielded document, using five fields:
Wikipedia page title, table section title, table caption, table
body, and table headings. We use the Mixture of Language
Models approach [31] for ranking. Field weights are opti-
mized using the coordinate ascent algorithm; smoothing pa-
rameters are trained for each field individually.

WebTable The method by Cafarella et al. [9] uses the features in
Table 1 with [9] as source. Following [9], we train a linear
regression model with 5-fold cross-validation.

WikiTable The approach by Bhagavatula et al. [4] uses the fea-
tures in Table 1 with [4] as source. We train a Lasso model
with coordinate ascent with 5-fold cross-validation.

Additionally, we introduce a learning-to-rank baseline:
LTR baseline It uses the full set of features listed in Table 1. We

employ pointwise regression using the Random Forest al-
gorithm.1 We set the number of trees to 1000 and the max-
imum number of features in each tree to 3. We train the
model using 5-fold cross-validation (w.r.t. NDCG@20); re-
ported results are averaged over 5 runs.

The baseline results are presented in the top block of Table 5. It
can be seen from this table that our LTR baseline (row five) outper-
forms all existing methods from the literature; the differences are
substantial and statistically significant. Therefore, in the remain-
der of this paper, we shall compare against this strong baseline, us-
ing the same learning algorithm (Random Forests) and parameter
settings. We note that our emphasis is on the semantic matching
features and not on the supervised learning algorithm.

5.4 Experimental Results
The last line of Table 5 shows the results for our semantic table
retrieval (STR) method. It combines the baseline set of features
(Table 1) with the set of novel semantic matching features (from
Table 2, 16 in total). We find that these semantic features bring in
substantial and statistically significant improvements over the LTR
baseline. Thus, we answer RQ1 positively. The relative improve-
ments range from 7.6% to 15.3%, depending on the rank cut-off.

To answer RQ2 and RQ3, we report on all combinations of se-
mantic representations and similarity measures in Table 6. In the
1We also experimented with Gradient Boosting regression and Support Vector Regres-
sion, and observed the same general patterns regarding feature importance. However,
their overall performance was lower than that of Random Forests.

Table 5: Table retrieval evaluation results.

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20

Single-field document ranking 0.4315 0.4344 0.4586 0.5254
Multi-field document ranking 0.4770 0.4860 0.5170 0.5473
WebTable [9] 0.2831 0.2992 0.3311 0.3726
WikiTable [4] 0.4903 0.4766 0.5062 0.5206
LTR baseline (this paper) 0.5527 0.5456 0.5738 0.6031

STR (this paper) 0.5951 0.6293† 0.6590‡ 0.6825†

Table 6: Comparison of semantic features, used in combination with baseline features (from Table 1), in terms of NDCG@20.
Relative improvements are shown in parentheses. Statistical significance is tested against the LTR baseline in Table 5.

Sem. Repr. Early Late-max Late-sum Late-avg ALL

Bag-of-entities 0.6754 (+11.99%) 0.6407 (+6.23%)† 0.6697 (+11.04%)‡ 0.6733 (+11.64%)‡ 0.6696 (+11.03%)‡

Bag-of-categories 0.6287 (+4.19%) 0.6245 (+3.55%) 0.6315 (+4.71%)† 0.6240 (+3.47%) 0.6149 (+1.96%)
Word embeddings 0.6181 (+2.49%) 0.6328 (+4.92%) 0.6371 (+5.64%)† 0.6485 (+7.53%)† 0.6588 (+9.24%)†
Graph embeddings 0.6326 (+4.89%) 0.6142 (+1.84%) 0.6223 (+3.18%) 0.6316 (+4.73%) 0.6340 (+5.12%)
ALL 0.6736 (+11.69%)† 0.6631 (+9.95%)† 0.6831 (+13.26%)‡ 0.6809 (+12.90%)‡ 0.6825 (13.17%)‡

interest of space, we only report on NDCG@20; the same trends
were observed for other NDCG cut-offs. Cells with a white back-
ground show retrieval performance when extending the LTR base-
line with a single feature. Cells with a grey background correspond
to using a given semantic representation with different similarity
measures (rows) or using a given similarity measure with differ-
ent semantic representations (columns). The first observation is
that all features improve over the baseline, albeit not all of these
improvements are statistically significant. Concerning the compar-
ison of different semantic representations (RQ2), we find that bag-
of-entities andword embeddings achieve significant improvements;
see the rightmost column of Table 6. It is worth pointing out that
for word embeddings the four similarity measures seem to com-
plement each other, as their combined performance is better than
that of any individual method. It is not the case for bag-of-entities,
where only one of the similarity measures (Late-max) is improved
by the combination. Overall, in answer to RQ2, we find the bag-
of-entities representation to be the most effective one. The fact
that this sparse representation outperforms word embeddings is
regarded as a somewhat surprising finding, given that the latter
has been trained on massive amounts of (external) data.

As for the choice of similarity measure (RQ3), it is difficult to
name a clear winner when a single semantic representation is used.
The relative differences between similarity measures are gener-
ally small (below 5%). When all four semantic representations are
used (bottom row in Table 6), we find that Late-sum and Late-avg
achieve the highest overall improvement. Importantly, when using
all semantic representations, all four similarity measures improve
significantly and substantially over the baseline. We further note
that the combination of all similarity measures do not yield fur-
ther improvements over Late-sum or Late-avg. In answer to RQ3,
we identify the late fusion strategy with sum or avg aggregation
(i.e., Late-sum or Late-avg) as the preferred similarity method.

5.5 Analysis
We continue with further analysis of our results.

5.5.1 Features. Figure 4 shows the importance of individual fea-
tures for the table retrieval task, measured in terms of Gini impor-
tance. The novel features are distinguished by color. We observe
that 8 out of the top 10 features are semantic features introduced
in this paper.

5.5.2 Semantic Representations. To analyze how the four seman-
tic representations affect retrieval performance on the level of in-
dividual queries, we plot the difference between the LTR baseline
and each semantic representation in Figure 5. The histograms show
the distribution of queries according to NDCG@20 score differ-
ence (∆): the middle bar represents no change (∆ <0.05), while the
leftmost and rightmost bars represents the number of queries that
were hurt and helped substantially, respectively (∆ >0.25). We ob-
serve similar patterns for the bag-of-entities and word embeddings
representations; the former has less queries that were significantly
helped or hurt, while the overall improvement (over all topics) is
larger. We further note the similarity of the shapes of the distribu-
tions for bag-of-categories and graph embeddings.

5.5.3 Query Subsets. On Figure 6, we plot the results for the
LTR baseline and for our STR method according to the two query
subsets, QS-1 and QS-2, in terms of NDCG@20. Generally, both
methods perform better on QS-1 than on QS-2. This is mainly be-
cause QS-2 queries are more focused (each targeting a specific type
of instance, with a required property), and thus are considered
more difficult. Importantly, STR achieves consistent improvements
over LTR on both query subsets.

5.5.4 Individual Queries. We plot the difference between the
LTR baseline and STR for the two query subsets in Figure 7. Ta-
ble 7 lists the queries that we discuss below. The leftmost bar in
Figure 7(a) corresponds to the query “stocks.” For this broad query,
there are two relevant and one highly relevant tables. LTR does not

Figure 4: Normalized feature importance (measured in terms of Gini score).

(a) Bag-of-entities (b) Bag-of-categories (c) Word embeddings (d) Graph embeddings

Figure 5: Distribution of query-level differences between the LTR baseline and a given semantic representation.

retrieve any highly relevant tables in the top 20, while STR man-
ages to return one highly relevant table in the top 10. The rightmost
bar in Figure 7(a) corresponds to the query “ibanez guitars.” For this
query, there are two relevant and one highly relevant tables. LTR
produces an almost perfect ranking for this query, by returning
the highly relevant table at the top rank, and the two relevant ta-
bles at ranks 2 and 4. STR returns a non-relevant table at the top
rank, thereby pushing the relevant results down in the ranking by
a single position, resulting in a decrease of 0.29 in NDCG@20.

The leftmost bar in Figure 7(b) corresponds to the query “board
games number of players.” For this query, there are only two rele-
vant tables according to the ground truth. STR managed to place
them in the 1st and 3rd rank positions, while LTR returned only
one of them at position 13th. The rightmost bar in Figure 7(b) is
the query “cereals nutritional value.” Here, there is only one highly
relevant result. LTR managed to place it in rank one, while it is
ranked eighth by STR. Another interesting query is “irish counties
area” (third bar from the left in Figure 7(b)), with three highly rele-
vant and three relevant results according to the ground truth. LTR
returned two highly relevant and one relevant results at ranks 1,
2, and 4. STR, on the other hand, placed the three highly relevant
results in the top 3 positions and also returned the three relevant
tables at positions 4, 6, and 7.

6 RELATEDWORK
There is an increasing amount of work on tables, addressing a wide
range of tasks, including table search, tablemining, table extension,

Figure 6: Table retrieval results, LTR baseline vs. STR, on the
two query subsets in terms of NDCG@20.

and table completion. Table search is a fundamental problem on its
own, as well as used often as a core component in other tasks.

Table Search. Users are likely to search for tables when they
need structured or relational data. Cafarella et al. [9] pioneered the
table search task by introducing the WebTables system. The basic
idea is to fetch the top-ranked results returned by a web search
engine in response to the query, and then extract the top-k tables
from those pages. Further refinements to the same idea are intro-
duced in [6]. Venetis et al. [42] leverage a database of class labels
and relationships extracted from the Web, which are attached to
table columns, for recovering table semantics. This information is
then used to enhance table search. Pimplikar and Sarawagi [34]
search for tables using column keywords, and match these key-
words against the header, body, and context of tables. Google Web

(a) QS-1 (b) QS-2

Figure 7: Query-level differences on the two query subsets between the LTR baseline and STR. Positive values indicate im-
provements made by the latter.

Table 7: Example queries from our query set. Rel denotes
table relevance level. LTR and STR refer to the positions on
which the table is returned by the respective method.

Query Rel LTR STR

QS-1-24: stocks
Stocks for the Long Run / Key Data Findings: annual real returns 2 - 6
TOPIX / TOPIX New Index Series 1 9 -
Hang Seng Index / Selection criteria for the HSI constituent stocks 1 - -

QS-1-21: ibanez guitars
Ibanez / Serial numbers 2 1 2
Corey Taylor / Equipment 1 2 3
Fingerboard / Examples 1 4 5

QS-2-27: board games number of players
List of Japanese board games 1 13 1
List of licensed Risk game boards / Risk Legacy 1 - 3

QS-2-21: cereals nutritional value
Sesame / Sesame seed kernels, toasted 2 1 8

QS-2-20: irish counties area
Counties of Ireland / List of counties 2 2 1
List of Irish counties by area / See also 2 1 2
List of flags of Ireland / Counties of Ireland Flags 2 - 3
Provinces of Ireland / Demographics and politics 1 4 4
Toponymical list of counties of the United Kingdom / Northern . . . 1 - 7
Múscraige / Notes 1 - 6

Tables2 provides an example of a table search system interface;
the developers’ experiences are summarized in [2]. To enrich the
diversity of search results, Nguyen et al. [30] design a goodness
measure for table search and selection. Apart from keyword-based
search, tables may also be retrieved using a given “local” table as
the query [1, 12, 22]. We are not aware of any work that performs
semantic matching of tables against queries.

Table Extension/Completion. Table extension refers to the task
of extending a table with additional elements, which are typically
new columns [4, 6, 12, 21, 45]. These methods commonly use table
search as the first step [4, 21, 45]. Searching related tables is also
used for row extension. In [12], two tasks of entity complement
and schema complement are addressed, to extend entity rows and
columns respectively. Zhang and Balog [49] populate row and col-
umn headings of tables that have an entity focus. Table completion
is the task of filling in empty cells within a table. Ahmadov et al.

2https://research.google.com/tables

[1] introduce a method to extract table values from related tables
and/or to predict them using machine learning methods.

TableMining. The abundance of information in tables has raised
great interest in table mining research [7, 9, 25, 38, 42, 47]. Munoz
et al. [29] recover table semantics by extracting RDF triples from
Wikipedia tables. Similarly, Cafarella et al. [9] mine table relations
from a huge table corpus extracted from a Google crawl. Tables
could also be searched to answer questions or mined to extend
knowledge bases. Yin et al. [46] take tables as a knowledge base to
execute queries using deep neural networks. Sekhavat et al. [39]
augment an existing knowledge base (YAGO) with a probabilistic
method by making use of table information. Similar work is car-
ried out in [13], with tabular information used for knowledge base
augmentation. Another line of work concerns table annotation and
classification. Zwicklbauer et al. [51] introduce a method to anno-
tate table headers by mining column content. Crestan and Pantel
[11] introduce a supervised framework for classifying HTML ta-
bles into a taxonomy by examining the contents of a large number
of tables. Apart from all the mentioned methods above, table min-
ing also includes tasks like table interpretation [9, 29, 42] and table
recognition [11, 51]. In the problem space of table mining, table
search is an essential component.

7 CONCLUSION
In this paper, we have introduced and addressed the problem of ad
hoc table retrieval: answering a keyword query with a ranked list
of tables. We have developed a novel semantic matching frame-
work, where queries and tables can be represented using seman-
tic concepts (bag-of-entities and bag-of-categories) as well as con-
tinuous dense vectors (word and graph embeddings) in a uniform
way. We have introduced multiple similarity measures for match-
ing those semantic representations. For evaluation, we have used
a purpose-built test collection based on Wikipedia tables. Finally,
we have demonstrated substantial and significant improvements
over a strong baseline. In future work, we wish to relax our re-
quirements regarding the focus on Wikipedia tables, and make
our methods applicable to other types of tables, like scientific ta-
bles [16] or Web tables.

REFERENCES
[1] Ahmad Ahmadov, Maik Thiele, Julian Eberius, Wolfgang Lehner, and Robert

Wrembel. 2015. Towards a Hybrid Imputation Approach Using Web Tables.. In
Proc. of BDC ’15. 21–30.

[2] Sreeram Balakrishnan, Alon Y. Halevy, Boulos Harb, Hongrae Lee, Jayant Mad-
havan, Afshin Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, and Cong
Yu. 2015. Applying WebTables in Practice. In Proc. of CIDR ’15.

[3] Krisztian Balog, Marc Bron, and Maarten De Rijke. 2011. Query modeling for
entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29,
4, Article 22 (Dec. 2011), 22:1–22:31 pages.

[4] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2013.
Methods for Exploring and Mining Tables on Wikipedia. In Proc. of IDEA ’13.
18–26.

[5] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015.
TabEL: Entity Linking in Web Tables. In Proc. of ISWC ’15. 425–441.

[6] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data Inte-
gration for the Relational Web. Proc. of VLDB Endow. 2 (2009), 1090–1101.

[7] Michael J. Cafarella, Alon Halevy, and Jayant Madhavan. 2011. Structured Data
on the Web. Commun. ACM 54 (2011), 72–79.

[8] Michael J. Cafarella, AlonHalevy, Daisy ZheWang, EugeneWu, and YangZhang.
2008. Uncovering the Relational Web. In Proc. of WebDB ’08.

[9] Michael J. Cafarella, AlonHalevy, Daisy ZheWang, EugeneWu, and YangZhang.
2008. WebTables: Exploring the Power of Tables on the Web. Proc. of VLDB
Endow. 1 (2008), 538–549.

[10] Jing Chen, Chenyan Xiong, and Jamie Callan. 2016. An Empirical Study of Learn-
ing to Rank for Entity Search. In Proc. of SIGIR ’16. 737–740.

[11] Eric Crestan and Patrick Pantel. 2011. Web-scale Table Census and Classification.
In Proc. of WSDM ’11. 545–554.

[12] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding Related Tables. In Proc. of SIGMOD ’12.
817–828.

[13] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault:
A Web-scale Approach to Probabilistic Knowledge Fusion. In Proc. of KDD ’14.
601–610.

[14] J.L. Fleiss and others. 1971. Measuring nominal scale agreement among many
raters. Psychological Bulletin 76 (1971), 378–382.

[15] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth J.F. Jones. 2015.
Word Embedding Based Generalized Language Model for Information Retrieval.
In Proc. of SIGIR ’15. 795–798.

[16] Kyle Yingkai Gao and Jamie Callan. 2017. Scientific Table Search Using Keyword
Queries. CoRR abs/1707.03423 (2017).

[17] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, and
Narayan Bhamidipati. 2015. Context- and Content-aware Embeddings for Query
Rewriting in Sponsored Search. In Proc. of SIGIR ’15. 383–392.

[18] Faegheh Hasibi, Krisztian Balog, Darío Garigliotti, and Shuo Zhang. 2017.
Nordlys: A Toolkit for Entity-Oriented and Semantic Search. In Proceedings of
SIGIR ’17. 1289–1292.

[19] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik
Bratsberg, Alexander Kotov, and Jamie Callan. 2017. DBpedia-Entity V2: A Test
Collection for Entity Search. In Proc. of SIGIR ’17. 1265–1268.

[20] Tom Kenter and Maarten de Rijke. 2015. Short Text Similarity with Word Em-
beddings. In Proc. of CIKM ’15. 1411–1420.

[21] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-
heim, and Christian Bizer. 2015. TheMannheim Search Join Engine.Web Semant.
35 (2015), 159–166.

[22] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating and
Searching Web Tables Using Entities, Types and Relationships. Proc. of VLDB
Endow. 3 (2010), 1338–1347.

[23] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer Berlin
Heidelberg.

[24] Craig Macdonald, Rodrygo L T Santos, and Iadh Ounis. 2012. On the Usefulness
of Query Features for Learning to Rank. In Proc. of CIKM ’12. 2559–2562.

[25] Jayant Madhavan, Loredana Afanasiev, Lyublena Antova, and Alon Y. Halevy.
2009. Harnessing the DeepWeb: Present and Future. CoRR abs/0909.1785 (2009).

[26] Jarana Manotumruksa, Craig MacDonald, and Iadh Ounis. 2016. Modelling User
Preferences using Word Embeddings for Context-Aware Venue Recommenda-
tion. CoRR abs/1606.07828 (2016).

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proc. of NIPS ’13. 3111–3119.

[28] Bhaskar Mitra, Eric T. Nalisnick, Nick Craswell, and Rich Caruana. 2016. A Dual
Embedding Space Model for Document Ranking. CoRR abs/1602.01137 (2016).

[29] Emir Munoz, Aidan Hogan, and Alessandra Mileo. 2014. Using Linked Data to
Mine RDF from Wikipedia’s Tables. In Proc. of WSDM ’14. 533–542.

[30] Thanh Tam Nguyen, Quoc Viet Hung Nguyen, Weidlich Matthias, and Aberer
Karl. 2015. Result Selection and Summarization for Web Table Search. In ISDE
’15. 231–242.

[31] Paul Ogilvie and Jamie Callan. 2003. Combining Document Representations for
Known-item Search. In Proc. of SIGIR ’03. 143–150.

[32] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proc. of EMNLP ’14. 1532–1543.

[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proc. of KDD ’14. 701–710.

[34] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries on the
Web Using Column Keywords. Proc. of VLDB Endow. 5 (2012), 908–919.

[35] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A Benchmark Collec-
tion for Research on Learning to Rank for Information Retrieval. Inf. Retr. 13, 4
(Aug 2010), 346–374.

[36] Hadas Raviv, Oren Kurland, and David Carmel. 2016. Document Retrieval Using
Entity-Based Language Models. In Proc. of SIGIR ’16. 65–74.

[37] Petar Ristoski and Heiko Paulheim. 2016. RDF2vec: RDF Graph Embeddings for
Data Mining. In Proc. of ISWC ’16. 498–514.

[38] Sunita Sarawagi and SoumenChakrabarti. 2014. Open-domain Quantity Queries
on Web Tables: Annotation, Response, and Consensus Models. In Proc. of KDD
’14. 711–720.

[39] Yoones A. Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo Merialdo.
2014. Knowledge Base Augmentation using Tabular Data. In Proc. of LDOW ’14.

[40] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proc. of WWW ’15.
1067–1077.

[41] Stephen Tyree, Kilian Q Weinberger, Kunal Agrawal, and Jennifer Paykin. 2011.
Parallel Boosted Regression Trees for Web Search Ranking. In Proc. of WWW
’11. 387–396.

[42] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables on
the Web. Proc. of VLDB Endow. 4 (2011), 528–538.

[43] Ivan Vulić and Marie-Francine Moens. 2015. Monolingual and Cross-Lingual
Information Retrieval Models Based on (Bilingual) Word Embeddings. In Proc.
of SIGIR ’15. 363–372.

[44] Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. 2017. Word-Entity Duet Repre-
sentations for Document Ranking. In Proc. of SIGIR ’17. 763–772.

[45] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: Entity Augmentation and Attribute Discovery by Holistic
Matching with Web Tables. In Proc. of SIGMOD ’12. 97–108.

[46] Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. 2016. Neural Enquirer:
Learning to Query Tables in Natural Language. In Proc. of IJCAI ’16. 2308–2314.

[47] Meihui Zhang and Kaushik Chakrabarti. 2013. InfoGather+: Semantic Matching
and Annotation of Numeric and Time-varying Attributes in Web Tables. In Proc.
of SIGMOD ’13. 145–156.

[48] Shuo Zhang and Krisztian Balog. 2017. Design Patterns for Fusion-Based Object
Retrieval. In Proc. of ECIR ’17. 684–690.

[49] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-
Focused Tables. In Proc. of SIGIR ’17. 255–264.

[50] Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. 2015. Learning Continuous
Word Embedding with Metadata for Question Retrieval in Community Question
Answering. In Proc. of ACL ’15. 250–259.

[51] Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer, and Christin
Seifert. 2013. Towards DisambiguatingWeb Tables. In Proc. of ISWC-PD ’13. 205–
208.

	Abstract
	1 Introduction
	2 Ad Hoc Table Retrieval
	2.1 Problem Statement
	2.2 The Anatomy of a Table
	2.3 Unsupervised Ranking
	2.4 Supervised Ranking

	3 Semantic Matching
	3.1 Content Extraction
	3.2 Semantic Representations
	3.3 Similarity Measures

	4 Test Collection
	4.1 Table Corpus
	4.2 Queries
	4.3 Relevance Assessments

	5 Evaluation
	5.1 Research Questions
	5.2 Experimental Setup
	5.3 Baselines
	5.4 Experimental Results
	5.5 Analysis

	6 Related Work
	7 Conclusion
	References

